Science.gov

Sample records for carbon isotopic signatures

  1. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  2. A Modern Analogue for Proterozoic Inverse Carbon Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Diefendorf, A. F.; Freeman, K. H.; Pearson, A.

    2008-12-01

    The carbon isotope distribution preserved in sedimentary lipids changes near the Neoproterozoic-Cambrian boundary. In older samples, n-alkyl lipids contain more 13C than both isoprenoid lipids and kerogen [1]. In younger samples, the opposite prevails. Although extreme heterotrophy has been invoked as a mechanism to explain the enrichment in 13C [2], here we suggest another explanation. The switch may reflect a fundamental transition from an oligotrophic ocean dominated by prokaryotic biomass, to an ocean in which carbon fixation is more intensive and burial is dominated by eukaryotic biomass. An analogue for Proterozoic ordering is found in the modern, oligotrophic Pacific Ocean, where n-alkyl lipids of picoplankton (0.2-0.5 μm particulate matter) contain excess 13C relative to the same lipids found in larger size classes (> 0.5 μm). Picoplanktonic lipids are heavier isotopically (-18 ‰) than both the sterols of eukaryotes (-23 ‰ to -26 ‰) and the total organic matter (-20 ‰; TOM). The 0.2-0.5 μm size class also has a distinct chain-length abundance profile. Although large particles must be the vehicle for total carbon export, paradoxically the lipid component of export production appears to be dominated by the 0.2-0.5 μm source. The picoplanktonic chain lengths and isotopic composition dominate lipids of TOM at 670 meters. When the ratio of prokaryotic to eukaryotic production is high, as in the modern central Pacific Ocean, it appears that exported material has an inverse carbon isotope signature similar to that preserved in Precambrian samples. [1] Logan, G. A. et al., Nature 376:53-56 (1995). [2] Rothman, D. H. et al., PNAS 100:8124-8129 (2003).

  3. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kreuzer, Helen W.; Horita, Juske; Moran, James J.; Tomkins, Bruce; Janszen, Derek B.; Carman, April J.

    2012-01-03

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  4. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kruzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  5. Stable Carbon Isotopic Signatures and Fractionations Occurring During Fungal Biosynthesis of Methyl Chloride

    NASA Astrophysics Data System (ADS)

    Shaw, S. L.; Henn, M. R.; Chapela, I. H.; Conrad, M. E.; Goldstein, A. H.

    2003-12-01

    Methyl halides are responsible for approximately 25% of the equivalent chlorine involved in stratospheric ozone depletion, yet quantitative understanding of their atmospheric budgets is still incomplete. The use of an isotopic mass balance to constrain these budgets is currently being investigated. The utility of this approach will depend not only on being able to measure the source signatures and loss kinetic isotope effects contributing to their atmospheric budgets, but also in our ability to assess the variability in these terms. Natural methyl halide sources and sinks due to microbial cycling, combined with their large and variable associated isotopic effects, should have discernable effects on the global atmospheric signature of these gases. Thus, we have begun investigating the isotopic signatures of methyl halides produced by fungi, and the fractionations occurring during their biosynthesis, using controlled laboratory cultures. Measurements of the stable carbon isotopic signatures of growth medium, biomass, respired CO2, CH3Cl, and the carbon mass balance were made over the growth cycle of Inonotus andersonii, a wood-rot fungus previously shown to emit methyl halides. Resulting CH3Cl δ 13C signatures were enriched by approximately 10\\permil as compared to those previously reported for Phellinus pomaceus, another wood-rot species1. Fractionations between substrate and biomass \\{ɛ s-b\\}, as well as biomass and gases \\{ɛ b-g\\}, were nearly constant during exponential and early stationary phase growth. Biomass was depleted by 1\\permil compared to the 13C malt extract medium, and CH3Cl and CO2 were depleted by up to 5\\permil compared to the biomass, implying the bulk of the final CH3Cl signature is determined during CH3Cl synthesis and not during uptake of the carbon substrate. However, the magnitude of these fractionations, and the direction of ɛ s-b, probably depends on the complexity of the substrate. Additionally, a survey of isotopic signatures

  6. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment

    SciTech Connect

    Martens, C.S.; Blair, N.E.; Green, C.D.; Des Marais, D.J.

    1986-09-19

    Systematic seasonal variations in the stable carbon isotopic signature of methane gas occur in the anoxic sediments of Cape Lookout Bight, a lagoonal basin on North Carolina's Outer Banks. Values for the carbon isotope ratio (delta /sup 13/C) of methane range from -57.3 per mil during summer to -68.5 per mil during winter in gas bubbles with an average methane content of 95%. The variations are hypothesized to result from changes in the pathways of microbial methane production and cycling of key substrates including acetate and hydrogen. The use of stable isotopic signatures to investigate the global methane cycle through mass balance calculations, involving various sediment and soil biogenic sources, appears to require seasonally averaged data from individual sites. 17 references, 2 figures, 2 tables.

  7. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment

    NASA Technical Reports Server (NTRS)

    Martens, C. S.; Green, C. D.; Blair, N. E.; Des Marais, D. J.

    1986-01-01

    Systematic seasonal variations in the stable carbon isotopic signature of methane gas occur in the anoxic sediments of Cape Lookout Bight, a lagoonal basin on North Carolina's Outer Banks. Values for the carbon isotope ratio of methane range from -57.3 per mil during summer to -68.5 per mil during winter in gas bubbles with an average methane content of 95 percent. The variations are hypothesized to result from changes in the pathways of microbial methane production and cycling of key substrates including acetate and hydrogen. The use of stable isotopic signatures to investigate the global methane cycle through mass balance calculations, involving various sediment and soil biogenic sources, appears to require seasonally averaged data from individual sites.

  8. Calcium Isotope Signature of Amorphous Calcium Carbonate: A Probe of Crystallization Pathway? (Invited)

    NASA Astrophysics Data System (ADS)

    Gagnon, A. C.; Depaolo, D. J.; Deyoreo, J. J.

    2010-12-01

    Stable isotope fractionation is sensitive to the energy landscape of nucleation and growth. Thus isotope ratios represent a promising tool to understand the chemical mechanisms controlling precipitation in geological systems. To realize this potential we must (1) determine the isotopic fractionation associated with different growth pathways, (2) use these isotopic constraints to test nucleation or growth mechanism, and (3) compare these signatures to natural isotopic variability. The first two goals can be explored by laboratory precipitation under controlled conditions. Through inorganic synthesis of amorphous calcium carbonate (ACC), we quantify the impact of an important amorphous precursor phase on calcium isotope ratios. Synthetic ACC was first characterized spectroscopically, then calcium isotope analysis was conducted using a double-spike method on a thermal ionization mass spectrometer. Experiments spanning a range of oversaturations and temperatures show that ACC is consistently less fractionated than CaCO3 precipitated as crystalline calcite. These data suggest the rate-limiting step that controls calcium incorporation is different between ACC and direct precipitation of calcite. Furthermore, different isotopic signatures between ACC and calcite appear to represent a useful proxy for crystallization pathway. To further explore this possibility, we plan to measure the calcium isotope composition of several biominerals where an ACC precursor phase has been identified. It is hoped that our investigation will lead to both improved identification of the ACC pathway and a better understanding of the general rules that control CaCO3 crystal growth and composition.

  9. Stable Carbon Isotopic Signatures of Abiotic Organics from Hydrothermal Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Summers, David P.; Kubo, Mike; Yassar, Saima

    2006-01-01

    Stable carbon isotopes can be powerful biogeochemical markers in the study of life's origins. Biogenic carbon fixation produces organics that are depleted in C-13 by about -20 to -30%0. Less attention has been paid to the isotopic signatures of abiotic processes. The possibility of abiotic processes producing organics with morphologies and isotopic signatures in the biogenic range has been at the center of recent debate over the Earth's earliest microfossils. The abiotic synthesis of organic compounds in hydrothermal environments is one possible source of endogenous organic matter to the prebiotic earth. Simulated hydrothermal settings have been shown to synthesize, among other things, single chain amphiphiles and simple lipids from a mix of CO, CO2, and H2. A key characteristic of these amphiphilic molecules is the ability to self-assemble in aqueous phases into more organized structures called vesicles, which form a selectively permeable boundary and serve the function of containing and concentrating other organic molecules. The ability to form cell like structures also makes these compounds more likely to be mistaken for biogenic. Hydrothermal simulation experiments were conducted from oxalic or formic acid in water at 175 C for 72 hr. The molecular and isotopic composition of the products of these reactions were determined and compared to biogenic fractionations . Preliminary results indicate isotopic fractionation during abiotic hydrocarbon synthesis in hydrothermal environments is on par with biological carbon fixation.

  10. Factors Affecting the Clumped Isotope Signature of Dissolved Inorganic Carbon and Carbonate Minerals

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Tripati, A. K.; Schauble, E. A.

    2011-12-01

    18O/16O ratios[a] and 13C-18O bond ordering[b] in many natural and synthetic carbonate minerals may reflect the extent of isotopic equilibration of dissolved inorganic carbon (DIC) species, rather than the crystalline equilibrium. In the simplest case where transport and surface-reaction steps do not impart their own fractionations, the clumped isotope signature (Δ47: the enrichment in per mil of 13C18O16O above the amount expected for a random distribution of isotopes among all CO2 isotopologues) of a carbonate mineral precipitating from solution would preserve the temperature of DIC equilibration at the time of precipitation. We examine the consequences of (1) the time scale of DIC equilibration and (2) precipitation rate on Δ47 values of carbonate minerals, using electronic structure models of molecular clusters that approximate aqueous and crystalline chemical environments. Our use of cluster models for both the aqueous and the mineral phases of the clumped isotope system has the advantage of enabling us to compare aqueous and mineral systems with the same electronic structure methods, partially canceling systematic model errors. Fluid cluster models containing 21-32 water molecules are generated from periodic-boundary-condition molecular dynamics simulations. Mineral clusters are derived from measured crystal structures, with boundaries terminated by link atoms so as to retain Pauling bond strengths with severed distal lattice bonds[c]. Different combinations of density functional theory (DFT) methods and basis sets are compared. These studies, combined with concurrent controlled precipitation experiments, will add to our understanding of the extent of disequilibrium effects on clumping while providing a framework to include previous studies (such as the work of Guo et al. on the kinetic effects of CO2 dehydration and dehydroxyation and acid digestion[e]). [a] Zeebe, R.E. (2007) G3, 8, Q09002,; Zeebe, R.E. (1999) GCA 63, 2001-2007 [b] Tripati, A.K. et al

  11. Cellulose and Lignin Carbon Isotope Signatures in Sphagnum Moss Reveal Complementary Environmental Properties

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Nichols, J. E.; Kaiser, K.; Beilman, D. W.; Yu, Z.

    2016-12-01

    The carbon isotope signature (δ13C) of Sphagnum moss is increasingly used as a proxy for past surface wetness in peatlands. However, conflicting interpretations of these carbon isotope records have recently been published. While the water film hypothesis suggests that the presence of a thick (thin) water film around hollow (hummock) mosses leads to less (more) negative δ13C values, the carbon source hypothesis poses that a significant (insignificant) amount of CH4 assimilation by hollow (hummock) mosses leads to more (less) negative δ13C values. To evaluate these competing mechanisms and their impact on moss δ13C, we gathered 30 moss samples from 6 peatlands in southern Patagonia. Samples were collected along a strong hydrological gradient, from very dry hummocks (80 cm above water table depth) to submerged hollows (5 cm below water surface). These peat bogs have the advantage of being colonized by a single cosmopolitan moss species, Sphagnum magellanicum, limiting potential biases introduced by species-specific carbon discrimination. We measured δ13C from stem cellulose and leaf waxes on the same samples to quantify compound-specific carbon signatures. We found that stem cellulose and leaf-wax lipids were both strongly negatively correlated with moss water content, suggesting a primary role of water film thickness on carbon assimilation. In addition, isotopic fractionation during wax synthesis was greater than for cellulose. This offset decreases as conditions get drier, due to (i) a more effective carbon assimilation, or (ii) CH4 uptake through symbiosis with methanotrophic bacteria within the leaves of wet mosses. Biochemical analysis (carbohydrates, amino acids, hydrophenols, cutin acids) of surface moss are currently being conducted to characterize moss carbon allocation under different hydrological conditions. Overall, this modern calibration work should be of use for interpreting carbon isotope records from peatlands.

  12. Carbonate “clumped” isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    DOE PAGES

    Kimball, Justine; Eagle, Robert; Dunbar, Robert

    2016-12-12

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near-constant temperature, salinity, and pH and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop “clumped” isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate-related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed inmore » CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and high-Mg calcitic gorgonian (Isididae and Coralliidae) deep-sea corals and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures, and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than high-Mg calcitic gorgonian corals and the two groups of coral produce statistically different relationships between Δ47–temperature calibrations. These data are significant in the interpretation of all carbonate clumped isotope calibration data as they show that distinct Δ47–temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different

  13. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, Justine; Eagle, Robert; Dunbar, Robert

    2016-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near-constant temperature, salinity, and pH and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate-related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and high-Mg calcitic gorgonian (Isididae and Coralliidae) deep-sea corals and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures, and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than high-Mg calcitic gorgonian corals and the two groups of coral produce statistically different relationships between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate clumped isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset

  14. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the

  15. Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures

    NASA Astrophysics Data System (ADS)

    Tachikawa, Kazuyo; Piotrowski, Alexander M.; Bayon, Germain

    2014-03-01

    Neodymium isotopic ratios in marine environments have been used as a tracer of water masses and exchange processes between dissolved and particulate phases. The interest in this tracer has been growing with improvement of our knowledge on its chemical behaviour in the modern ocean and the identification of sedimentary phases that preserve past seawater ɛNd values. In the last few decades the Nd isotopic composition measured on Fe-Mn crusts, sediment leachates, bulk carbonate fraction, corals and fish teeth have been increasingly interpreted in the context of understanding the role of the ocean in paleoclimate changes. In particular, calcareous foraminiferal tests (shells) have acquired increasing attention as an archive of seawater Nd isotopic signatures, because it allows continuous high-resolution records to be measured and directly compared to other proxies including stable isotopes and trace metals. The main challenge of interpreting the Nd isotopic composition of foraminifera is determining the origin of the Nd preserved within them. In this review, we present an overview of methodological progress including that of bulk foraminifera and microanalyses within foraminiferal tests, as well as geochemical meaning of extracted Nd concentrations and isotopic compositions. The growing body of evidence suggests that Nd isotopic signatures of sedimentary planktonic foraminifera correspond to bottom water values rather than surface water ones. The Nd-rich phases associated with sedimentary foraminifera are adhesive nano-scale particles of Mn and Fe oxides and hydroxides, and Mn-rich carbonates formed within layers of foraminiferal calcite. Mechanical cleaning to remove clay minerals is likely to be sufficient in most cases to reconstruct past bottom water circulations. Unresolved issues include the potential influence of pore water Nd on ɛNd values extracted from sedimentary foraminiferal tests under different sedimentalogical and oceanographic conditions.

  16. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird.

    PubMed

    Pearson, Scott F; Levey, Douglas J; Greenberg, Cathryn H; Martínez Del Rio, Carlos

    2003-05-01

    The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine delta15N and delta13C turnover rates for blood, delta15N and delta13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for delta13C and from 0.5 to 1.7 days for delta15N . Half-life did not differ among diets. Whole blood half-life for delta13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7-3.6% for nitrogen isotopes and by -1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds on diets with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures require use of mixing models that incorporate elemental concentration.

  17. Methane carbon stable isotope signatures in waters and sediments of the Laptev Sea Shelf

    NASA Astrophysics Data System (ADS)

    Samarkin, V.; Semiletov, I. P.; Finke, N.; Shakhova, N. E.; Joye, S. B.

    2012-12-01

    There are a number of areas characterized high water column methane concentrations and active seafloor methane seepage zones along the shelf of the Laptev Sea. Degrading subsea permafrost, which is rich in organic carbon and possibly containing metastable methane gas hydrates, is considered a potent source of methane in this area. To better understand possible methane sources generating high methane areas of the Laptev Sea, carbon stable isotope signatures of water column methane and in surface and deep drill core sediment samples were obtained during summer 2011 and spring 2012 field campaigns. The δ13C values of methane dissolved in seawater at the drill site varied from -37.8 to -75.7 ‰. The range of δ13C values of methane in the surface sediments was from -51.3 to -58.2 ‰ and in drill core samples (up to 26.5 m depth) values ranged from -77.8 to -100 ‰. Methane carbon isotope signatures in seawater reflect various sources of methane and the influence of active aerobic methane oxidation in seawater and surface sediments. Significant depletion of methane from drill core with δ13C (to -100‰) is characteristic of hydrogenotrophic methanogenesis at cold near 0°C in situ temperatures, which was confirmed with δ14C-radiotracer rate incubations.

  18. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  19. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    USGS Publications Warehouse

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  20. Surface area dependence of calcium isotopic reequilibration in carbonates: Implications for isotopic signatures in the weathering zone

    NASA Astrophysics Data System (ADS)

    Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.

    2016-12-01

    The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to

  1. Distinct iron isotope signatures in suspended matter in the northern Baltic Sea; implications for cycling of organic carbon and phosphorus

    NASA Astrophysics Data System (ADS)

    Ingri, Johan; Conrad, Sarah

    2015-04-01

    Two distinct groups of iron isotope signatures can be identified both in river water and in the Bothnian Bay, northern Baltic Sea. Particles and colloids with negative iron isotope signatures (enriched in the light isotope) are mobilised in the riparian zone during high discharge. Due to high concentration of DOC the oxidation of Fe(II) is incomplete, and un-oxidised Fe(II) is associated with Fe(III)-OH and OC (organic carbon), forming Fe(II,III)-OC colloids, and particles, with a negative iron isotope signature. Colloidal iron with a negative signature is a labile fraction that transforms during freshwater transport. Photo reduction of Fe(II,III)-OC particles and colloids will release Fe(II) and reduce Fe(III) to Fe(II), and formed Fe(II) is oxidised forming Fe(III)-OH colloids with a heavy iron isotope signature. Phosphorus and organic carbon are to different extent associated to these two suspended iron complexes during transport and early diagenesis. Flocculation of negative Fe(II,III)-OC colloids produce negative Fe(II,III)-OC particles, without changes in the isotopic composition. Most of the suspended iron is rapidly removed below 1.0 psu, due to flocculation and sedimentation. Negative Fe(II,III)-OC particles may serve as an efficient 'rusty sink' for organic carbon, when deposited in the coastal zone.

  2. Stable carbon isotopic signature of methane from high-emitting wetland sites in discontinuous permafrost landscape

    NASA Astrophysics Data System (ADS)

    Marushchak, Maija; Liimatainen, Maarit; Lind, Saara; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    The rising methane concentration in the atmosphere during the past years has been associated with a concurrent change in the carbon isotopic signature: The atmospheric methane is getting more and more depleted in the heavy carbon isotope. The decreasing 13C/12C ratio indicates an increasing contribution of methane from biogenic sources, most importantly wetlands and inland waters, whose global emissions are still poorly constrained. From the climate change perspective, arctic and subarctic wetlands are particularly interesting due to the strong warming and permafrost thaw predicted for these regions that will cause changes in the methane dynamics. Coupling methane flux inventories with determination of the stable isotopic signature can provide useful information about the pathways of methane production, consumption and transport in these ecosystems. Here, we present data on the emissions and carbon isotopic composition of methane from subarctic tundra wetlands at the Seida study site, Northeast European Russia. In this landscape, underlain by discontinuous permafrost, waterlogged fens represent sites of high carbon turnover and high methane release. Despite they cover less than 15% of the region, their methane emissions comprise 98% of the regional mean (± SD) release of 6.7 (± 1.8) g CH4 m-2 y-1 (Marushchak et al. 2016). The methane emission from the studied fens was clearly depleted in 13C compared to the pore water methane. The bulk mean δ13CH4 (± SD) over the growing season was -68.2 (± 2.0) ‰ which is similar to the relatively few values previously reported from tundra wetlands. We explain the depleted methane emissions by the high importance of passive transport via aerenchymous plants, a process that discriminates against the heavier isotopes. This idea is supported by the strong positive correlation observed between the methane emission and the vascular leaf area index (LAI), and the inverse relationship between the δ13CH4 of emitted methane and LAI

  3. Nitrogen and Carbon Isotopes in Presolar Diamond Samples with Known Noble Gas Isotope Signature

    NASA Astrophysics Data System (ADS)

    Verchovsky, A. B.; Huss, G. R.; Pillinger, C. T.

    1994-07-01

    the noble gas results are described in detail elsewhere [7]. It should be noted that sample purity is supposed to be an important condition affecting release pattern of noble gases and N due to chemical reaction between coexisting minerals (for further discussion see [10]. Therefore we expected the influence of the reactions to be eliminated or significantly reduced for the samples studied here compared to those (OU samples) analyzed [6,8] before. Surprisingly we did not find any particular difference in C and N isotope systematics for the CT and OU samples. In particular they have the same carbon and N release profiles and isotope systematics (Figs. 1,2) although OU samples were measured without any attempt to remove spinel, SiC, or other oxidizing acid resistant phases. At low temperature pyrolysis steps, the CT samples have a similar peak of C, which we have previously correlated with P3 noble gases [11]. More important, release temperature of the light nitrogen from the CT samples (Fig. 2) is now confirmed to be significantly lower than that for HL noble gases supporting the hypothesis [11,12] of different carriers for the components or an entirely different release mechanism. Perhaps the most surprising outcome of our investigation was that none of the CT samples measured appeared to be 100% carbon; the reason for this apparent discrepancy ;the at present not clear. References: [1] Swart P. K. et al. (1983) Science, 220, 406-410. [2] Lewis R. S. et a1. (1983) Nature, 305, 767-771. [3] Pillinger C. T. (1993) Phil. Trans. Roy. Soc. Lond. A, 343, 73-76. [4] Anders E. and Zinner E. (1993) Meteoritics, 28, 490-514. [5] Ott U. (1993) Nature, 364, 25-33. [6] Russell S. S. et al. (1991) Science, 254, 1188-1191. [7] Huss G. R. and Lewis R. S. (1994) Meteoritics, in press. [8] Verchovsky A. B. et al. (1993) LPS XXV, 1435-1436. [9] Clayton D. D. et al. (1994) Astrophysics J., in press. [10] Verchovsky A. B. et al. (1994) Meteoritics, this volume. [11] Verchovsky A. B. et al

  4. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Popa, Maria Elena; Krol, Maarten; Hofmann, Magdalena

    2016-04-01

    High precision measurements of molecules containing more than one heavy isotope in environmental samples are becoming available with new instrumentation and may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk isotopic composition of the molecule, which for rare heavy isotopes is approximated by the arithmetic average of the isotope ratios of single substituted atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies when the indistinguishable atoms are from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule and these anomalies have to be taken into account in data interpretation. The size of the signal is closely related to the relative standard deviation of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  5. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    SciTech Connect

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.; Martinez del Rio, Carlos

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures

  6. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  7. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  8. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2.

    PubMed

    Górka, Maciej; Sauer, Peter E; Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2011-01-01

    This paper describes results of chemical and isotopic analysis of inorganic carbon species in the atmosphere and precipitation for the calendar year 2008 in Wrocław (SW Poland). Atmospheric air samples (collected weekly) and rainwater samples (collected after rain episodes) were analysed for CO2 and dissolved inorganic carbon (DIC) concentrations and for δ13C composition. The values obtained varied in the ranges: atmospheric CO2: 337-448 ppm; δ13CCO2 from -14.4 to -8.4‰; DIC in precipitation: 0.6-5.5 mg dm(-3); δ13CDIC from -22.2 to +0.2‰. No statistical correlation was observed between the concentration and δ13C value of atmospheric CO2 and DIC in precipitation. These observations contradict the commonly held assumption that atmospheric CO2 controls the DIC in precipitation. We infer that DIC is generated in ambient air temperatures, but from other sources than the measured atmospheric CO2. The calculated isotopic composition of a hypothetical CO2 source for DIC forming ranges from -31.4 to -11.0‰, showing significant seasonal variations accordingly to changing anthropogenic impact and atmospheric mixing processes.

  9. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates.

    PubMed

    Williford, K H; Ushikubo, T; Lepot, K; Kitajima, K; Hallmann, C; Spicuzza, M J; Kozdon, R; Eigenbrode, J L; Summons, R E; Valley, J W

    2016-03-01

    An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of δ(13) C, δ(34) S, Δ(33) S, and Δ(36) S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS δ(13) C measurement of organic matter is identified. Small (2-3 μm) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-μm domains of kerogen in a single ~0.5 cm(3) sample of the ~2.7 Ga Tumbiana Formation have δ(13) C = -52.3 ± 0.1‰ and -34.4 ± 0.1‰, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the ~2.6 Ga Jeerinah Formation and the ~2.5 Ga Mount McRae Shale is systematically (13) C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Δ(33) S and more extreme spatial gradients in Δ(33) S and Δ(36) S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of δ(34) S, Δ(33) S, and Δ(36) S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections

  10. Carbon and Sulfur Isotopic Signatures of Ancient Life and Environment at the Microbial Scale: Neoarchean Shales and Carbonates

    NASA Technical Reports Server (NTRS)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Hallmann, C.; Spicuzza, M. J.; Kozdon, R.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.

    2015-01-01

    An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of delta(sup 13)C, delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS delta(sup 13)C measurement of organic matter is identified. Small (2-3 microns) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-micron domains of kerogen in a single approx. 0.5 cu cm sample of the approx. 2.7 Ga Tumbiana Formation have delta(sup 13)C = -52.3 +/- 0.1per mille and -34.4 +/- 0.1per mille, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the approx. 2.6 Ga Jeerinah Formation and the approx. 2.5 Ga Mount McRae Shale is systematically 13C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Delta(sup 33)S and more extreme spatial gradients in Delta(sup 33)S and Delta(sup 36)S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation

  11. Carbon and Sulfur Isotopic Signatures of Ancient Life and Environment at the Microbial Scale: Neoarchean Shales and Carbonates

    NASA Technical Reports Server (NTRS)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Hallmann, C.; Spicuzza, M. J.; Kozdon, R.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.

    2015-01-01

    An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of delta(sup 13)C, delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS delta(sup 13)C measurement of organic matter is identified. Small (2-3 microns) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-micron domains of kerogen in a single approx. 0.5 cu cm sample of the approx. 2.7 Ga Tumbiana Formation have delta(sup 13)C = -52.3 +/- 0.1per mille and -34.4 +/- 0.1per mille, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the approx. 2.6 Ga Jeerinah Formation and the approx. 2.5 Ga Mount McRae Shale is systematically 13C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Delta(sup 33)S and more extreme spatial gradients in Delta(sup 33)S and Delta(sup 36)S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation

  12. Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient.

    PubMed

    Gavazov, Konstantin; Hagedorn, Frank; Buttler, Alexandre; Siegwolf, Rolf; Bragazza, Luca

    2016-01-01

    Peatlands are important sinks of atmospheric carbon (C) that, in response to climate warming, are undergoing dynamic vegetation succession. Here we examined the hypothesis that the uptake of nutrients by different plant growth forms (PGFs) is one key mechanism driving changes in species abundance in peatlands. Along an altitude gradient representing a natural climate experiment, we compared the variability of the stable C isotope composition (δ(13)C) and stable nitrogen (N) isotope composition (δ(15)N) in current-year leaves of two major PGFs, i.e. ericoids and graminoids. The climate gradient was associated with a gradient of vascular plant cover, which was parallelled by different concentrations of organic and inorganic N as well as the fungal/bacterial ratio in peat. In both PGFs the (13)C natural abundance showed a marginal spatial decrease with altitude and a temporal decrease with progression of the growing season. Our data highlight a primary physical control of foliar δ(13)C signature, which is independent from the PGFs. Natural abundance of foliar (15)N did not show any seasonal pattern and only in the ericoids showed depletion at lower elevation. This decreasing δ(15)N pattern was primarily controlled by the higher relative availability of organic versus inorganic N and, only for the ericoids, by an increased proportion of fungi to bacteria in soil. Our space-for-time approach demonstrates that a change in abundance of PGFs is associated with a different strategy of nutrient acquisition (i.e. transfer via mycorrhizal symbiosis versus direct fine-root uptake), which could likely promote observed and predicted dwarf shrub expansion under climate change.

  13. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    SciTech Connect

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-07-22

    Here, methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  14. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures.

    PubMed

    Loyd, S J; Sample, J; Tripati, R E; Defliese, W F; Brooks, K; Hovland, M; Torres, M; Marlow, J; Hancock, L G; Martin, R; Lyons, T; Tripati, A E

    2016-07-22

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  15. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-07-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  16. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    PubMed Central

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  17. Dynamics of carbon in deep soils inferred from carbon stable isotopes signatures : a worldwide meta-analysis

    NASA Astrophysics Data System (ADS)

    Balesdent, Jérôme; Basile-Doelsch, Isabelle; Chadoeuf, Joël; Cornu, Sophie; Derrien, Delphine; Fekiacova, Zuzana; Hatté, Christine

    2014-05-01

    The contribution of soil carbon deeper than 30 cm to the atmospheric carbon balance is still poorly understood. A very straightforward quantification of the gross exchange of carbon between the atmosphere and soil organic matter can be obtained at places where the 13C/12C signature of vegetation has been changed for known durations, due to switch of the photosynthetic metabolism (C3 or C4) or to Free Air Carbon Enrichment experiments. We compiled C and 13C profile data of 113 sites of this type, either gahered from the literature or from our own measurements. Each site comprised two profiles : one where the 13C/12C of the vegetation had been changed, and a reference profile with unchanged vegetation 13C/12C. An isotope mixing equation was used, which takes into account the natural isotope enrichments with depth and decay. Three main variables were calculated at any depth from 0 to 100 cm and in a few sites down to 200 cm : the carbon content, the proportion of new carbon (aged less than the duration of change t) and the amount of new carbon. The database concerned 23 countries, various climates (58% intertropical and 42% between 23° to 56° latitude) and various soil types and textures. Landuses and vegetation consisted in 26% of forests and woodlands, 35% of grasslands and 38% of cropped systems. The duration of the natural labelling t ranged from 2 years to ca. 4000 years. Peatlands, boreal, and desert environments were absent from the database. Non-linear regressions with time across the dataset yielded kinetic parameters of the age distribution on one hand and of the flux of new carbon incorporation (kg C m-2 yr-1) on the other, each calculated by 10 cm depth increments. On the average, the median ages of carbon increase from ca. 15 years at 0 cm to more than 1000 years at 100 cm. Turnover is on the average 2 to 3 times slower for the subsoil (30-100 cm) than for the topsoil (0-30 cm). Based on the incorporation of new C in the first decades, the carbon input

  18. Partial mycoheterotrophy in Pyroleae: nitrogen and carbon stable isotope signatures during development from seedling to adult.

    PubMed

    Johansson, Veronika A; Mikusinska, Anna; Ekblad, Alf; Eriksson, Ove

    2015-01-01

    Mycoheterotrophic plants (MHP) are divided into non-photosynthesizing full MHP and green-leaved partial or initial MHP. We investigated (13)C and (15)N isotope enrichment in five putatively partial MHP species in the tribe Pyroleae (Ericaceae): Chimaphila umbellata, Moneses uniflora, Orthilia secunda, Pyrola chlorantha and Pyrola minor, sampled from forest sites on Öland, Sweden. For M. uniflora and P. chlorantha, we investigated isotope signatures of subterranean seedlings (which are mycoheterotrophic), to examine how the use of seedlings instead of full MHP species (Hypopitys monotropa) as reference species affects the assessment of partial mycoheterotrophy. Our main findings were as follows: (1) All investigated Pyroleae species were enriched in (15)N compared to autotrophic reference plants. (2) significant fungal-derived C among the Pyroleae species was found for O. secunda and P. chlorantha. For the remaining species of C. umbellata, M. uniflora and P. minor, isotope signatures suggested adult autotrophy. (3) C and N gains, calculated using seedlings as a full MHP reference, yielded qualitatively similar results as when using H. monotropa as a reference. However, the estimated differences in C and N gains became larger when using seedlings as an MHP reference. (4) A previously unknown interspecific variation in isotope signature occurs during early ontogeny, from seed production to developing seedlings. Our findings suggest that there is a variation among Pyroleae species concerning partial mycoheterotrophy in adults. Adult autotrophy may be most common in Pyroleae species, and these species may not be as dependent on fungal-derived nutrients as some green orchids.

  19. The Importance of CO2 Utilizing Chemolithoautotrophic Microorganisms for Carbon Sequestration and Isotope Signatures of SOM in Tropical Rainforest Soils

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Behrendt, T.; Quesada, B.; Yanez Serrano, A. M.; Trumbore, S.

    2015-12-01

    Soil organic matter (SOM) is a major compartment of the tropical carbon cycle with up to 26 % of global carbon stocks stored in tropical soils. Understanding factors and processes driving SOM dynamics under changing climate conditions is crucial for predicting the role of tropical forest ecosystems to act as a carbon sink or source. Soil microorganisms are major drivers of the belowground carbon cycle by releasing CO2 by soil respiration but also by stabilizing and storing SOM, as indicated by recent research. Our investigations focus on chemolithoautotrophic microorganisms, a group that relies on CO2 as their carbon source. Chemolithoautotrophic microorganisms have been shown to be highly abundant in soils, whereas their role in SOM sequestration is still poorly understood. In tropical soils, the activity of chemolithoautotropic microbes might be important for generating and stabilizing carbon, especially in the deeper soil, which is rich in CO2 and reduced energy sources like Fe2+. They further might impact carbon isotope signatures (13C and 14C) of SOM, because of enzymatic fractionation during carboxylation and the use of carbon, which has a distinct isotopic composition than other carbon sources at the same depth. In order to study the activity of chemolithoautotropic microbes and their importance for SOM, we conducted isotope and isotope-labelling studies, gas measurements as well as molecular analyses at soils from the Atto site from 0 to 1 meter depth. These soils are classified as Ferralsols and Alisols and represent the most abundant soil types in the Amazon. With this we will be able to gain knowledge about the function and identity of an important group of microorganisms and their contribution to crucial biogeochemical cycles in the world`s most important ecosystem.

  20. Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration

    NASA Astrophysics Data System (ADS)

    Zazzeri, Giulia; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Lanoisellé, Mathias; Kelly, Bryce F. J.; Necki, Jaroslaw M.; Iverach, Charlotte P.; Ginty, Elisa; Zimnoch, Miroslaw; Jasek, Alina; Nisbet, Euan G.

    2016-11-01

    Currently, the atmospheric methane burden is rising rapidly, but the extent to which shifts in coal production contribute to this rise is not known. Coalbed methane emissions into the atmosphere are poorly characterised, and this study provides representative δ13CCH4 signatures of methane emissions from specific coalfields. Integrated methane emissions from both underground and opencast coal mines in the UK, Australia and Poland were sampled and isotopically characterised. Progression in coal rank and secondary biogenic production of methane due to incursion of water are suggested as the processes affecting the isotopic composition of coal-derived methane. An averaged value of -65 ‰ has been assigned to bituminous coal exploited in open cast mines and of -55 ‰ in deep mines, whereas values of -40 and -30 ‰ can be allocated to anthracite opencast and deep mines respectively. However, the isotopic signatures that are included in global atmospheric modelling of coal emissions should be region- or nation-specific, as greater detail is needed, given the wide global variation in coal type.

  1. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    DOE PAGES

    Loyd, S. J.; Sample, J.; Tripati, R. E.; ...

    2016-07-22

    Here, methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixingmore » of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.« less

  2. Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation of hydrogen and carbon isotope signatures

    USGS Publications Warehouse

    Vinson, David S.; Blair, Neal E.; Martini, Anna M.; Larter, Steve; Orem, William H.; McIntosh, Jennifer C.

    2017-01-01

    Stable carbon and hydrogen isotope signatures of methane, water, and inorganic carbon are widely utilized in natural gas systems for distinguishing microbial and thermogenic methane and for delineating methanogenic pathways (acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis). Recent studies of coal and shale gas systems have characterized in situ microbial communities and provided stable isotope data (δD-CH4, δD-H2O, δ13C-CH4, and δ13C-CO2) from a wider range of environments than available previously. Here we review the principal biogenic methane-yielding pathways in coal beds and shales and the isotope effects imparted on methane, document the uncertainties and inconsistencies in established isotopic fingerprinting techniques, and identify the knowledge gaps in understanding the subsurface processes that govern H and C isotope signatures of biogenic methane. We also compare established isotopic interpretations with recent microbial community characterization techniques, which reveal additional inconsistencies in the interpretation of microbial metabolic pathways in coal beds and shales. Collectively, the re-assessed data show that widely-utilized isotopic fingerprinting techniques neglect important complications in coal beds and shales.Isotopic fingerprinting techniques that combine δ13C-CH4 with δD-CH4 and/or δ13C-CO2have significant limitations: (1) The consistent ~ 160‰ offset between δD-H2O and δD-CH4 could imply that hydrogenotrophic methanogenesis is the dominant metabolic pathway in microbial gas systems. However, hydrogen isotopes can equilibrate between methane precursors and coexisting water, yielding a similar apparent H isotope signal as hydrogenotrophic methanogenesis, regardless of the actual methane formation pathway. (2) Non-methanogenic processes such as sulfate reduction, Fe oxide reduction, inputs of thermogenic methane, anaerobic methane oxidation, and/or formation water interaction can cause the apparent carbon

  3. [Effect of temperature on methanogenic pathway during household waste anaerobic digestion by stable carbon isotopic signature of CH4].

    PubMed

    Qu, Xian; He, Pin-Jing; Mazéas, Laurent; Bouchez, Théodore

    2008-11-01

    The methanogenic pathway during anaerobic digestion of household waste was investigated by stable carbon isotopic signature analysis, and testified by the analysis of gas production, leachate characteristics and microbial fluorescence in situ hybridization (FISH) methods. Furthemore, the difference of methanogenic pathway between mesophilic and thermophilic anaerobic digestion was also discussed. Results showed that under mesophilic conditions, the isotopic stable carbon signature of CH4 (delta13 CH4) initially decreased to -69.5 per thousand, indicating that CH4 was produced from CO2 and H2 by hydrogenotrophic methanogens. When active CH4 production phase started, the delta13 CH4 values quickly increased to -23.8 per thousand, which indicated more and more CH4 were formed by aceticlastic methanogens, dominantly the family of Methanosarcinaceae, shown by the FISH results. The delta13 CH4 values decreased successively and ultimately remained at -55 per thousand, indicating that the fraction of aceticlastic methanogenesis finally decreased to a steady level comparative with CO2-derived methanogenesis at the steady slow methane production phase. Under thermophilic conditions, the delta13 CH4 values remained at a level about -70 per thousand, showing that methane were solely produced from CO2 reduction, and acetate syntrophic oxidation happened during the active methane production phase.

  4. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers.

    PubMed

    McKellar, Ryan C; Wolfe, Alexander P; Muehlenbachs, Karlis; Tappert, Ralf; Engel, Michael S; Cheng, Tao; Sánchez-Azofeifa, G Arturo

    2011-11-07

    Despite centuries of research addressing amber and its various inclusions, relatively little is known about the specific events having stimulated the production of geologically relevant volumes of plant resin, ultimately yielding amber deposits. Although numerous hypotheses have invoked the role of insects, to date these have proven difficult to test. Here, we use the current mountain pine beetle outbreak in western Canada as an analogy for the effects of infestation on the stable isotopic composition of carbon in resins. We show that infestation results in a rapid (approx. 1 year) (13)C enrichment of fresh lodgepole pine resins, in a pattern directly comparable with that observed in resins collected from uninfested trees subjected to water stress. Furthermore, resin isotopic values are shown to track both the progression of infestation and instances of recovery. These findings can be extended to fossil resins, including Miocene amber from the Dominican Republic and Late Cretaceous New Jersey amber, revealing similar carbon-isotopic patterns between visually clean ambers and those associated with the attack of wood-boring insects. Plant exudate δ(13)C values constitute a sensitive monitor of ecological stress in both modern and ancient forest ecosystems, and provide considerable insight concerning the genesis of amber in the geological record.

  5. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers

    PubMed Central

    McKellar, Ryan C.; Wolfe, Alexander P.; Muehlenbachs, Karlis; Tappert, Ralf; Engel, Michael S.; Cheng, Tao; Sánchez-Azofeifa, G. Arturo

    2011-01-01

    Despite centuries of research addressing amber and its various inclusions, relatively little is known about the specific events having stimulated the production of geologically relevant volumes of plant resin, ultimately yielding amber deposits. Although numerous hypotheses have invoked the role of insects, to date these have proven difficult to test. Here, we use the current mountain pine beetle outbreak in western Canada as an analogy for the effects of infestation on the stable isotopic composition of carbon in resins. We show that infestation results in a rapid (approx. 1 year) 13C enrichment of fresh lodgepole pine resins, in a pattern directly comparable with that observed in resins collected from uninfested trees subjected to water stress. Furthermore, resin isotopic values are shown to track both the progression of infestation and instances of recovery. These findings can be extended to fossil resins, including Miocene amber from the Dominican Republic and Late Cretaceous New Jersey amber, revealing similar carbon-isotopic patterns between visually clean ambers and those associated with the attack of wood-boring insects. Plant exudate δ13C values constitute a sensitive monitor of ecological stress in both modern and ancient forest ecosystems, and provide considerable insight concerning the genesis of amber in the geological record. PMID:21429925

  6. Carbon Isotope Signatures of Microbial Mats in the Jackson Mountain Hot Spring, Nevada

    NASA Astrophysics Data System (ADS)

    Mills, G. L.; Li, Y.; Jones, M.; Paddock, L.; Romanek, C. S.; Zhang, C. L.; Wiegel, J.

    2004-12-01

    The long-term goal of this study is to determine the diversity, ecological function, and CO2 fixation pathways of novel microorganisms in Nevada hot springs. A survey of 16 hot springs in Nevada in May 2004 showed large variations in pH (5.5-9.4) and temperature (36-96°C), which may have significant impact on microbial diversity and primary production by autotrophs. In this study, we select the Jackson Mountain hot spring for a detailed carbon-isotope study along a temperature-and-pH gradient during the formation of travertine (carbonate) deposits. Field measurements indicated that temperature decreased from 68.8-72.3 °C at the vents to 44 °C at the end of slope; the corresponding pH increased from 7.3-7.4 at the vents to 8.3 at the base of slope. Isotopic compositions of dissolved inorganic carbon increased slightly from -3.77 per mil at the vent to -3.2 per mil down gradient. Mat materials were collected along the temperature-and-pH gradient for analyses of bacterial phospholipid fatty acids (PLFA). We expect that temperature will be a major control on the distribution of PLFA in the changing microbial communities because microbial lipid compositions are sensitive to temperature variation. Isotopic fractionations between lipid biomarkers and total biomass are expected to provide insight about the dominant CO2 fixation pathways in different microbial communities growing in different temperature environments.

  7. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; Mazo D'Affonseca, Fernando

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (> 1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  8. Fertilizer nitrogen isotope signatures.

    PubMed

    Bateman, Alison S; Kelly, Simon D

    2007-09-01

    There has been considerable recent interest in the potential application of nitrogen isotope analysis in discriminating between organically and conventionally grown crops. A prerequisite of this approach is that there is a difference in the nitrogen isotope compositions of the fertilizers used in organic and conventional agriculture. We report new measurements of delta15N values for synthetic nitrogen fertilizers and present a compilation of the new data with existing literature nitrogen isotope data. Nitrogen isotope values for fertilizers that may be permitted in organic cultivation systems are also reported (manures, composts, bloodmeal, bonemeal, hoof and horn, fishmeal and seaweed based fertilizers). The delta15N values of the synthetic fertilizers in the compiled dataset fall within a narrow range close to 0 per thousand with 80% of samples lying between-2 and 2 per thousand and 98.5% of the data having delta15N values of less than 4 per thousand (mean=0.2 per thousand n=153). The fertilizers that may be permitted in organic systems have a higher mean delta15N value of 8.5 per thousand and exhibit a broader range in delta15N values from 0.6 to 36.7 per thousand (n=83). The possible application of the nitrogen isotope approach in discriminating between organically and conventionally grown crops is discussed in light of the fertilizer data presented here and with regard to other factors that are also important in determining crop nitrogen isotope values.

  9. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers.

    PubMed

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; D'Affonseca, Fernando Mazo

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (>1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  10. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature

    NASA Astrophysics Data System (ADS)

    Kéraval, Benoit; Lehours, Anne Catherine; Colombet, Jonathan; Amblard, Christian; Alvarez, Gaël; Fontaine, Sébastien

    2016-11-01

    Soil heterotrophic respiration is a major determinant of the carbon (C) cycle and its interactions with climate. Given the complexity of the respiratory machinery, it is traditionally considered that oxidation of organic C into carbon dioxide (CO2) strictly results from intracellular metabolic processes. Here we show that C mineralization can operate in soils deprived of all observable cellular forms. Moreover, the process responsible for CO2 emissions in sterilized soils induced a strong C isotope fractionation (up to 50 ‰) incompatible with respiration of cellular origin. The supply of 13C glucose in sterilized soil led to the release of 13CO2 suggesting the presence of respiratory-like metabolism (glycolysis, decarboxylation reaction, chain of electron transfer) carried out by soil-stabilized enzymes, and by soil mineral and metal catalysts. These findings indicate that CO2 emissions from soils can have two origins: (1) from the well-known respiration of soil heterotrophic microorganisms and (2) from an extracellular oxidative metabolism (EXOMET) or, at least, catabolism. These two metabolisms should be considered separately when studying effects of environmental factors on the C cycle because the likelihood is that they do not obey the same laws and they respond differently to abiotic factors.

  11. Carbon and Nitrogen Stable Isotopes in Fastfood: Signatures of Corn and Confinement

    NASA Astrophysics Data System (ADS)

    Jahren, H.; Kraft, R.

    2008-12-01

    Americans spend more than one hundred billion dollars on restaurant fastfood each year; fastfood meals comprise a disproportionate amount of both meat and calories within the U.S. diet. Frustrated by futile attempts to gain information about the origin and production of fastfood from the companies themselves, we used carbon and nitrogen stable isotopes to infer the source of feed to meat animals, the source of fat within fries, and the extent of fertilization and confinement inherent to production. We sampled food from McDonald's, Burger King and Wendy's chains, purchasing more than 480 servings of hamburgers, chicken sandwiches and fries within geographically-distributed U.S. cities: Los Angeles, San Francisco, Denver, Detroit, Boston and Baltimore. From the entire sample set of beef and chicken, only 12 servings of beef had δ13C < -21 ‰; for these animals only was a food source other than corn possible. We observed remarkably invariant values of δ15N in both beef and chicken, reflecting uniform confinement and exposure to heavily fertilized feed for all animals. The δ13C value of fries differed significantly among restaurants indicating that the chains employed different protocols for deep- frying: Wendy's clearly employed only corn oil, while McDonald's and Burger King favored other vegetable oils; this differed from ingredient reports. Our results highlighted the overwhelming importance of corn agriculture within virtually every aspect of fastfood manufacture.

  12. Carbon and nitrogen stable isotopes in fast food: Signatures of corn and confinement

    PubMed Central

    Jahren, A. Hope; Kraft, Rebecca A.

    2008-01-01

    Americans spend >100 billion dollars on restaurant fast food each year; fast food meals comprise a disproportionate amount of both meat and calories within the U.S. diet. We used carbon and nitrogen stable isotopes to infer the source of feed to meat animals, the source of fat within fries, and the extent of fertilization and confinement inherent to production. We sampled food from McDonald's, Burger King, and Wendy's chains, purchasing >480 servings of hamburgers, chicken sandwiches and fries within geographically distributed U.S. cities: Los Angeles, San Francisco, Denver, Detroit, Boston, and Baltimore. From the entire sample set of beef and chicken, only 12 servings of beef had δ13C < −21‰; for these animals only was a food source other than corn possible. We observed remarkably invariant values of δ15N in both beef and chicken, reflecting uniform confinement and exposure to heavily fertilized feed for all animals. The δ13C value of fries differed significantly among restaurants indicating that the chains used different protocols for deep-frying: Wendy's clearly used only corn oil, whereas McDonald's and Burger King favored other vegetable oils; this differed from ingredient reports. Our results highlighted the overwhelming importance of corn agriculture within virtually every aspect of fast food manufacture. PMID:19001276

  13. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available

  14. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; Cady, Sherry L.; DesMarais, David J.; Hope, Janet M.; Summons, Roger E.

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarker and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber, Thermocrinis sp. HI, Hydrogenobacter thermophilus, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyl moieties. The fatty acids of all cultured organisms were dominated by very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as C-18:0 monoethers with the exception of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known "pink-streamer community" (PSC), siliceous filaments of a microbial consortia growing in the outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono- and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic. Additional information is contained in the original extended abstract.

  15. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; Cady, Sherry L.; DesMarais, David J.; Hope, Janet M.; Summons, Roger E.

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarker and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber, Thermocrinis sp. HI, Hydrogenobacter thermophilus, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyl moieties. The fatty acids of all cultured organisms were dominated by very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as C-18:0 monoethers with the exception of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known "pink-streamer community" (PSC), siliceous filaments of a microbial consortia growing in the outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono- and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic. Additional information is contained in the original extended abstract.

  16. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  17. Compound-specific stable carbon isotopic signature of carbohydrate pyrolysis products from C3 and C4 plants.

    PubMed

    González-Pérez, José A; Jiménez-Morillo, Nicasio T; de la Rosa, José M; Almendros, Gonzalo; González-Vila, Francisco J

    2016-02-01

    Pyrolysis-compound specific isotopic analysis (Py-CSIA: Py-GC-(FID)-C-IRMS) is a relatively novel technique that allows on-line quantification of stable isotope proportions in chromatographically separated products released by pyrolysis. Validation of the Py-CSIA technique is compulsory for molecular traceability in basic and applied research. In this work, commercial sucrose from C4 (sugarcane) and C3 (sugarbeet) photosystem plants and admixtures were studied using analytical pyrolysis (Py-GC/MS), bulk δ(13)C IRMS and δ(13)C Py-CSIA. Major pyrolysis compounds were furfural (F), furfural-5-hydroxymethyl (HMF) and levoglucosan (LV). Bulk and main pyrolysis compound δ(13)C (‰) values were dependent on plant origin: C3 (F, -24.65 ± 0.89; HMF, -22.07 ± 0.41‰; LV, -21.74 ± 0.17‰) and C4 (F, -14.35 ± 0.89‰; HMF, -11.22 ± 0.54‰; LV, -11.44 ± 1.26‰). Significant regressions were obtained for δ(13)C of bulk and pyrolysis compounds in C3 and C4 admixtures. Furfural (F) was found (13)C depleted with respect to bulk and HMF and LV, indicating the incorporation of the light carbon atom in position 6 of carbohydrates in the furan ring after pyrolysis. This is the first detailed report on the δ(13)C signature of major pyrolytically generated carbohydrate-derived molecules. The information provided by Py-CSIA is valuable for identifying source marker compounds of use in food science/fraud detection or in environmental research. © 2015 Society of Chemical Industry.

  18. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, Robert; Hinrichs, K-U.; Hayes, J. M.; DesMarais, D. J.; Cady, S. L.; Hope, J. M.; Summons, R. E.

    2001-01-01

    This paper describes a study of lipid biomarker composition and carbon isotopic fractionation in cultured Aquificales and natural analogues from Yellowstone National Park. Additional information is contained in the original extended abstract.

  19. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, Robert; Hinrichs, K-U.; Hayes, J. M.; DesMarais, D. J.; Cady, S. L.; Hope, J. M.; Summons, R. E.

    2001-01-01

    This paper describes a study of lipid biomarker composition and carbon isotopic fractionation in cultured Aquificales and natural analogues from Yellowstone National Park. Additional information is contained in the original extended abstract.

  20. Carbon and oxygen isotope signatures in conifers from the Swiss National Park

    NASA Astrophysics Data System (ADS)

    Churakova (Sidorova), Olga; Saurer, Matthias; Siegwolf, Rolf; Bryukhanova, Marina; Bigler, Christof

    2015-04-01

    Our study investigates the physiological response and plasticity of trees under climatic changes for larch (Larix decidua) and mountain pine (Pinus mugo var. uncinata) in the Swiss National Park.This research was done in the context of investigation tree mortality and their potential to survive under the harsh mountainous conditions. For the stable isotope analysis we selected four mountain pine and four larch trees from each a south- and north-facing slope. Oxygen isotope ratios can give insight into water sources and evaporative processes. To understand the differential response of mountain pine and larch to short-term climatic changes we measured 18O/16O in water extracted from twigs and needles as well as soil samples for each species at both sites. The seasonal variabilities in 18O/16O needles and twigs of mountain pine and larch trees as well as soil samples were related to changes in climate conditions from end of May until middle of October. To reveal the main climatic factors driving tree growth of pine and larch trees in the long-term, tree-ring width chronologies were built and bulk 18O/16O, 13C/12C wood chronologies were analyzed and correlated with climatic parameters over the last 100 years. The results indicate a strong influence of spring and summer temperatures for larch trees, while variation of spring and summer precipitations is more relevant for mountain pine trees. This work is supported by the Swiss National Science Foundation, Marie-Heim Vögtlin Program PMPDP-2 145507

  1. Identification of Lichen Metabolism in an Early Devonian Terrestrial Fossil using Carbon Stable Isotope Signature

    NASA Astrophysics Data System (ADS)

    Porter, S.; Jahren, H.

    2002-05-01

    The fossil organismSpongiophyton minutissimum is commonly found in early terrestrial assemblages (Devonian age, 430-340 Ma). Suites of morphological descriptions of this fossil have been published, starting in 1954, and have led to two competing hypotheses: 1.) that this early colonizer of land was a primitive bryophyte, and therefore a precursor to modern plant organisms, and 2.) thatS. minutissimum was a lichen: a close association between an alga and a fungus. Because the ultimate mechanisms for carbon supply to the carboxylating enzyme in bryophytes and lichens differ fundamentally, we expect these two types of organisms to exhibit separate ranges of δ 13Ctissue value. In bryophytes, gaseous carbon dioxide diffuses through perforations in cuticle (resulting in δ 13Catmosphere - δ 13Cbryophyte = ~20 ‰ ). Within the lichen, carbon is supplied to the carboxylating enzyme of the photobiont as carbon dioxide dissolved in fungal cell fluids (resulting in δ 13Catmosphere - δ 13Clichen = ~15 ‰ ). By comparing the δ 13Ctissue value ofS. minutissimum (mean = -23 ‰ ;n = 75) with δ 13Ctissue values in twenty-five lichens, representative of the four different phylogenetic clades (mean = -23 ‰ ;n = 25) and thirty different genera of bryophytes including mosses, liverworts, and hornworts (mean = -28 ‰ ;n = 30), we conclude thatS. minutissimum was cycling carbon via processes that much more closely resembled those of lichens, and not bryophytes. We discuss the general strategies associated with lichen biology, such as the ability to withstand dessication during reproduction, and how they may have contributed to the successful colonization of terrestrial environments.

  2. Interannual Variability in Carbon and Nitrogen Stable Isotopic Signatures of Size-Fractionated POM from the South Florida Coastal Zone

    NASA Astrophysics Data System (ADS)

    Evans, S. L.; Anderson, W. T.; Jochem, F. J.; Fourqurean, J. W.

    2004-12-01

    Environmental conditions in South Florida coastal waters have been of local and national concern over the past 15 years. Attention has focused on the ecosystem impacts of salinity increases, seagrass die-off, increased algal bloom frequency, waste water influence, groundwater discharge, and exchange between Florida Bay, the Gulf of Mexico, and the Atlantic Ocean. Changes in water quality and productivity levels may be reflected in the isotopic signatures of coastal zone primary producers. Recent work with seagrasses in South Florida has demonstrated high seasonal and spatial variability in C and N isotopic signatures and decoupling between the two isotopic systems as they vary. To better understand the sources of seasonal and spatial fluctuation, size fractionated POM (particulate organic matter) samples have been collected on a quarterly basis since Sept. 2002. Fractions collected include >150μ m, 50-150μ m, and 0.1-50μ m using Nitex mesh sieves and a portable pump system deployed from a small boat at 10 sites around the Florida Keys and Florida Bay. It was hypothesized that planktonic groups respond more quickly to changes in water quality then seagrasses, and thus variations may be more clearly attributed to environmental parameters. Significant spatial and temporal variability is evident both within site between size fractions and between sites. Seasonal oscillations of up to 4‰ were observed in N isotopic values and 6‰ in C isotopic values of the 50-150μ m size fraction, which is dominated by diatoms and dinoflagellates. δ 13C values are depleted in the late winter/early spring sampling period possibly reflecting decreased productivity stress on available C pools. 13C depletion is generally coincident with δ 15N enrichment in the late winter/early spring, possibly demonstrating changes in DIN pools (NO3- and NH4+ concentrations) or changes in decomposition or denitrification rates. Broad groupings appear to separate Atlantic coral reef sites

  3. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    PubMed

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  4. Leaf oxygen and Carbon Isotopic Signatures Reflect Drought Resistance and Water Use Efficiency in the C4 Grass, Setaria viridis

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.; Cousins, A. B.

    2014-12-01

    Low water availability is a major constraint in crop production, especially as agriculture is pushed to marginal lands. Therefore, improving drought resistance such as increasing water use efficiency (WUE) through plant breeding is needed to expand the range of soil water availability adequate for food production. With the goal of finding the genomic basis for WUE in C4 grasses, Setaria viridis makes an ideal model species because of its small size, short lifespan, and sequenced genome. Also it is part of the panicoid grass clade, which is one of the most important clades for food and biofuel production. In plant breeding programs, large numbers of genotypes must be quickly screened for drought resistance traits, but there is no well-defined method of screening for WUE in C4 grasses. However, bulk leaf oxygen (Δ18OBL) and carbon (δ13C) isotopic signatures have shown potential as recorders of transpiration rate (E) and stomatal conductance (gs), and combined with biomass production potentially serve as a measure of WUE. Values of Δ18OBL record differences in transpiration rate because leaf water becomes more enriched as transpiration rate decreases, and leaf tissue records the isotopic composition of leaf water in which it is synthesized. Additionally, in C4 plants δ13C values decrease as gs decreases but the change in δ13C in response to gs may not be adequate to tease apart differences in WUE. In this study, we grew S. viridis plants under well-watered and water-limited conditions to determine if Δ18OBL and δ13C could be used as proxies for E and gs, and be used to screen S. viridis for differences in WUE in breeding programs. The Δ18OBL and δ13C were significantly different between well-watered and water-limited plants and correlated with each other and with E, gs, and instantaneous water use efficiency (Anet/gs). Therefore, Δ18OBL and δ13C can be useful proxies to screen genotypes for drought resistance by recording differences in E, gs, and WUE

  5. Factors influencing the stable carbon isotopic signature of methane from combustion and biomass burning

    NASA Astrophysics Data System (ADS)

    Chanton, Jeffrey P.; Rutkowski, Christine M.; Schwartz, Candace C.; Ward, Darold E.; Boring, Lindsay

    2000-01-01

    Factors controlling the δ13C of methane released by combustion include the combustion efficiency of the fire and the δ13C of the fuel. Smoldering fires produced 13C-depleted methane relative to hot, flaming fires in controlled forest and grassland burns and within a wood stove. Pine forest burns in the southeastern United States produced methane which ranged from -21 to -30‰, while African grassland burns varied from -17 to -26‰, depending upon combustion phase. African woodland burns produced methane at -30‰. In forest burns in the southeastern United States, the δ13C of methane released with smoldering was significantly 13C depleted relative to methane released under hot flaming conditions. Methane released with smoldering was depleted by 2-3‰ relative to the fuel δ13C, but this difference was not significant. The δ13C of methane produced in a variety of wood stove conditions varied from -9 to -25‰ and also depended upon combustion efficiency. Similar results were found for methane produced by gasoline automobile engines, where the δ13C of methane varied from -9 to -22‰. For combustion occurring within the confining chamber of a wood stove or engine the δ13C of methane was clearly 13C enriched relative to the δ13C of the fuel, possibly because of preferential combustion of 12CH4 in the gas phase. Significant quantities of ethylene (up to 25 to 50% of methane concentrations) were produced in southeastern U.S. forest fires, which may have consequences for physiological and reproductive responses of plants in the ecosystem. Methane production in these fires varied from 0.2 to 8.5% of the carbon dioxide production.

  6. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  7. Tracing the source of sedimentary organic carbon in the Loess Plateau of China: An integrated elemental ratio, stable carbon signatures, and radioactive isotopes approach.

    PubMed

    Liu, Chun; Dong, Yuting; Li, Zhongwu; Chang, Xiaofeng; Nie, Xiaodong; Liu, Lin; Xiao, Haibing; Bashir, Hassan

    2017-02-01

    Soil erosion, which will induce the redistribution of soil and associated soil organic carbon (SOC) on the Earth's surface, is of critically importance for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). This study used natural abundance levels of the stable isotope signature ((13)C) and radioactive isotopes ((137)Cs and (210)Pbex), along with elements ratio (C/N) based on a two end member mixing model to qualitatively and quantitatively identify the sources of sedimentary OC retained by check dam in the Qiaozigou small watershed in the Loess Plateau, China. Sediment profiles (0-200 cm) captured at natural depositional area of the basin was compared to possible source materials, which included: superficial Loess mineral soils (0-20 cm) from three land use types [i.e., grassland (Medicago sativa), forestland (Robinia pseudoacacia.), shrubland (Prunus sibirica), and gully land (Loess parent material.)]. The results demonstrated that SOC in sediments showed significantly negative correlation with pH (P < 0.01), and positive correlation with soil water content (SWC) (P < 0.05). The sedimentary OC was not derived from grasslands or gullies. Forestland and shrubland were two main sources of eroded organic carbon within the surface sediment (0-60 cm deep), except for that in the 20-40 cm soil layer. Radionuclides analyses also implied that the surface sediments retained by check-dams mainly originated from soils of forestland and shrubland. Results of the two end-member mixing model demonstrated that more than 50% SOC (mean probability estimate (MPE) 50.13% via (13)C and 60.53% via C/N) in surface sediment (0-20 cm deep) derived from forestland, whereas subsurface sedimentary SOC (20-200 cm) mainly resulted from shrubland (MPE > 50%). Although uncertainties on the sources of SOC in deep soils exist, the soil

  8. Evaluating Carbon Isotope Signature of Bulk Organic Matter and Plant Wax Derived n-alkanes from Lacustrine Sediments as Climate Proxies along the Western Side of the Andes

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Werne, J. P.; Araneda, A.; Conejero, C. A.

    2015-12-01

    Sedimentary carbon isotope values (δ13C) of bulk organic matter and long chain (C25 to C35) n-alkanes are among the most long-lived and widely utilized proxies of organic matter and vegetation source. The carbon distribution (e.g. average carbon chain length, ACL) and isotope signature from long chain n-alkanes had been intensively used on paleoclimate studies because they are less influenced by diagenesis, differential preservation of compound classes, and changes in the sources of organic matter than bulk δ13C values. Recently, studies of modern plant n-alkanes have challenged the use of carbon distribution and carbon isotope signature from sedimentary n-alkanes as reliable indicators of vegetation and climate change. The climate in central-south western South America (SA) is projected to become significantly warmer and drier over the next several decades to centuries in response to anthropogenically driven warming. Paleolimnological studies along western SA are critical to obtain more realistic and reliable regional reconstructions of past climate and environments, including vegetation and water budget variability. Here we discuss bulk δ13C, distribution and δ13C in long chain n-alkanes from a suite of ~40 lake surface sediment (core-top) samples spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest. Data are compared to the latitudinal and orographic climatic trends of the Andes based on the climatology (e.g. precipitation and temperature) of the locations of all lakes involved in this study, using monthly gridded reanalysis products of the Climate Forecast System Reanalysis (CFSR), based on the NCEP global forecast model and meteorological stations available in the region, from January 1979 to December 2010 with a 0.5° horizontal resolution.

  9. Interpretation of the origin of massive replacive dolomite within atolls and submerged carbonate platforms: strontium isotopic signature ODP Hole 866A, Resolution Guyot, Mid-Pacific Mountains

    NASA Astrophysics Data System (ADS)

    Flood, P. G.; Fagerstrom, J. A.; Rougerie, F.

    1996-01-01

    Endo-upwelling is a geothermally driven convective process operating within the upper part of the volcanic foundation and overlying carbonate pile, in atolls and guyots. By this process deep oceanic water, rich in CO 2 and dissolved nitrates, phosphates and silicates is drawn into the pile, circulates slowly upward through the porous-permeable carbonate interior and emerges at either the reef crest or lagoon on atolls to support the primary productivity of the surficial communities, or towards the interior of the platform surface on guyots. Continuous operation of the endo-upwelling process requires: (a) heat from the volcanic foundation; (b) an external impermeable apron on the submerged flanks to confine the convective flow within the pile; and (c) a porous cap from which water exiting the plumbing system returns to the ocean. At ODP Hole 866A on Resolution Guyot, Mid-Pacific Mountains, the Sr isotopic signature of massive white-coloured, coarsely crystalline dolomite indicates a considerable time delay of approximately 100 Ma between carbonate deposition and dolomitization. This time delay is determined by comparing the Sr isotopic value of the dolomite and the time that ocean seawater displayed a similar Sr isotopic value. This interpretation of the Sr isotopic values assumes that all of the Sr is viewed as coming from seawater and none from any precursor limestone. The massive white replacement dolomite from Resolution Guyot possibly provides confirmation of the origin of dolomite by way of thermally driven convective flow within submerged carbonate platforms. Endo-upwelling seawater probably enters the carbonate pile at some depth, thermally circulates upwards, and produces carbonate dissolution and could conceivably produce massive dolomite replacement.

  10. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  11. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  12. Stable carbon isotope signatures of chloromethane in emissions from decaying organic matter and its implications for constraining the atmospheric chloromethane budget

    NASA Astrophysics Data System (ADS)

    Kalin, R. M.; Keppler, F.; Harper, D. B.; McRoberts, C. W.; Redeker, K. R.; Hamilton, J. T.

    2004-12-01

    Atmospheric chloromethane plays an important role in stratospheric ozone destruction, but many uncertainties exist regarding strengths of both sources and sinks and in particular the processes leading to formation of this naturally occurring gas. Previously, we have identified a new source of chloromethane (Hamilton et al. 2003), which can explain chloromethane formation in a variety of terrestrial environments. We have shown that chloromethane can be produced abiotically during decay of organic matter (e.g. leaf litter) at both ambient and elevated temperatures. A potentially useful tool in validating chloromethane emission flux estimates is comparison of the carbon isotope ratio of atmospheric chloromethane with those of chloromethane originating from various sources and sinks (Harper et al. 2001, Thompson et al. 2002, Harper et al. 2003, Keppler et al. 2004). We present carbon isotope signatures of chloromethane in emissions from various plant species. The effect of temperature (40° -300° C) on emission rate and isotope fractionation was investigated. In most cases δ 13C values of chloromethane were extremely depleted relative to bulk biomass. The most depleted δ 13C values were found for emissions of chloromethane released by C3 plants at the lowest temperature of 40° (δ 13C values were in the range of -110‰ to -150‰ ). We suggest that, if decaying plants contribute to the bulk of atmospheric chloromethane, (which has an isotopic composition of around -36‰ , Thompson et al. 2002) there must be either a huge microbial sink for chloromethane in soil or a very large kinetic isotope effect associated with the reaction of chloromethane and OH radicals in the atmosphere. These observations are of potential biogeochemical significance in the application of carbon isotope ratios to constrain the atmospheric chloromethane budgets. REFERENCES Hamilton J.T.G., McRoberts W.C., Keppler F., Kalin R.M., Harper D.B., Science 301, 206-209 (2003). Harper D.B., Kalin

  13. Stable Isotope Signatures for Microbial Forensics

    SciTech Connect

    Kreuzer, Helen W.

    2012-01-03

    The isotopic distribution of the atoms composing the molecules of microorganisms is a function of the substrates used by the organisms. The stable isotope content of an organism is fixed so long as no further substrate consumption and biosynthesis occurs, while the radioactive isotopic content decays over time. The distribution of stable isotopes of C, N, O and H in heterotrophic microorganisms is a direct function of the culture medium, and therefore the stable isotope composition can be used to associate samples with potential culture media and also with one another. The 14C content depends upon the 14C content, and therefore the age, of the organic components of the culture medium, as well as on the age of the culture itself. Stable isotope signatures can thus be used for sample matching, to associate cultures with specific growth media, and to predict characteristics of growth media.

  14. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Werner, R. A.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Neubert, R. E. M.

    2011-02-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio-chemical compounds to

  15. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Neubert, R. E. M.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Werner, R. A.

    2008-11-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects in the order of about 26‰ became obvious, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original 18O signature of the material appeared to have little or no influence.

  16. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    Treesearch

    Scott F. Pearson; Douglas J. Levey; Cathryn H. Greenberg; Carlos Martinez del Rio

    2003-01-01

    The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped...

  17. Copper isotope signatures in modern marine sediments

    NASA Astrophysics Data System (ADS)

    Little, Susan H.; Vance, Derek; McManus, James; Severmann, Silke; Lyons, Timothy W.

    2017-09-01

    The development of metal stable isotopes as tools in paleoceanography requires a thorough understanding of their modern marine cycling. To date, no Cu isotope data has been published for modern sediments deposited under low oxygen conditions. We present data encompassing a broad spectrum of hydrographic and redox regimes, including continental margin and euxinic (sulphide-containing) settings. Taken together with previously published data from oxic settings, these data indicate that the modern oceanic sink for Cu has a surprisingly homogeneous isotopic composition of about +0.3‰ (δ65Cu, relative to NIST SRM976). We suggest that this signature reflects one of two specific water-column processes: (1) an equilibrium isotope fractionation between soluble, isotopically heavy, Cu complexed to strong organic ligands and an isotopically light pool sorbed to particles that deliver Cu to the sediment, or (2) an equilibrium isotope fractionation between the same isotopically heavy ligand-bound pool and the particle reactive free Cu2+ species, with the latter being scavenged by particulates and thereby delivered to the sediment. An output flux of about +0.3‰ into sediments is isotopically light relative to the known inputs to the ocean (at around +0.6‰) and the seawater value of +0.6 to +0.9‰, suggesting the presence of an as yet unidentified isotopically light source of Cu to the oceans. We hypothesize that this source may be hydrothermal, or may result from the partial dissolution of continentally derived particles.

  18. Enantiomer signature and carbon isotope evidence for the migration and transformation of DDTs in arable soils across China

    NASA Astrophysics Data System (ADS)

    Niu, Lili; Xu, Chao; Zhu, Siyu; Bao, Huiming; Xu, Yang; Li, Hongyi; Zhang, Zhijian; Zhang, Xichang; Qiu, Jiguo; Liu, Weiping

    2016-12-01

    Due to the adverse impact of DDTs on ecosystems and humans, a full fate assessment deems a comprehensive study on their occurrence in soils over a large region. Through a sampling campaign across China, we measured the concentrations, enantiomeric fractions (EFs), compound-specific carbon isotope composition of DDT and its metabolites, and the microbial community in related arable soils. The geographically total DDT concentrations are higher in eastern than western China. The EFs and δ13C of o,p’-DDT in soils from western China show smaller deviations from those of racemic/standard compound, indicating the DDT residues there mainly result from atmospheric transport. However, the sources of DDT in eastern China are mainly from historic application of technical DDTs and dicofol. The inverse dependence of o,p’-DDT and p,p’-DDE on temperature evidences the transformation of parent DDT to its metabolites. Initial usage, abiotic parameters and microbial communities are found to be the main factors influencing the migration and transformation of DDT isomers and their metabolites in soils. In addition, a prediction equation of DDT concentrations in soils based on stepwise multiple regression analysis is developed. Results from this study offer insights into the migration and transformation pathways of DDTs in Chinese arable soils, which will allow data-based risk assessment on their use.

  19. Enantiomer signature and carbon isotope evidence for the migration and transformation of DDTs in arable soils across China

    PubMed Central

    Niu, Lili; Xu, Chao; Zhu, Siyu; Bao, Huiming; Xu, Yang; Li, Hongyi; Zhang, Zhijian; Zhang, Xichang; Qiu, Jiguo; Liu, Weiping

    2016-01-01

    Due to the adverse impact of DDTs on ecosystems and humans, a full fate assessment deems a comprehensive study on their occurrence in soils over a large region. Through a sampling campaign across China, we measured the concentrations, enantiomeric fractions (EFs), compound-specific carbon isotope composition of DDT and its metabolites, and the microbial community in related arable soils. The geographically total DDT concentrations are higher in eastern than western China. The EFs and δ13C of o,p’-DDT in soils from western China show smaller deviations from those of racemic/standard compound, indicating the DDT residues there mainly result from atmospheric transport. However, the sources of DDT in eastern China are mainly from historic application of technical DDTs and dicofol. The inverse dependence of o,p’-DDT and p,p’-DDE on temperature evidences the transformation of parent DDT to its metabolites. Initial usage, abiotic parameters and microbial communities are found to be the main factors influencing the migration and transformation of DDT isomers and their metabolites in soils. In addition, a prediction equation of DDT concentrations in soils based on stepwise multiple regression analysis is developed. Results from this study offer insights into the migration and transformation pathways of DDTs in Chinese arable soils, which will allow data-based risk assessment on their use. PMID:27922096

  20. Martian Volatiles and Isotopic Signatures

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    1997-01-01

    Data on martian volatiles gathered from Viking atmosphere measurements, modest groundbased spectra, shock-implanted atmospheric gases in martian (SNC) meteorites, trapped mantle gases in martian meteorites, and volatile-rich solid phases in martian meteorites, are presented. Atmospheric volatiles, surface volatiles, and isotopic chronologies are discussed, along with energetic particle interactions.

  1. Si Isotopic Signatures of Diatoms in the Spring Southern Ocean

    NASA Astrophysics Data System (ADS)

    Cardinal, D.; Alleman, L. Y.; Savoye, N.; Dehairs, F.; Trull, T. W.; André, L.

    2004-12-01

    Marine Si isotopic signatures have been shown to be of great relevance in quantifying the diatoms nutrient utilization efficiency, a key factor for many studies related to oceanic carbon sequestration (De La Rocha et al., 1998; Brzezinski et al., 2002). In order to better constrain and apply this new tool, spring diatoms and seawater have been sampled at five stations distributed in different biogeochemical provinces of the Southern Ocean's Australian sector: Polar Front Zone (PFZ), Antarctic Zone (AZ), Sea Ice Zone (SIZ). Total (>0.45um), medium-sized (20< <70um), and large diatoms (>70um) have been sampled at 2-4 depths in the upper 150m. Biogenic silica (BSi) was first digested in a hot diluted NaOH solution. After purification, silicon isotopic compositions of diatoms and seawater were then measured by MC-ICP-MS, in dry plasma mode using external Mg doping, with an overall repeatability of 0.08 p.mil (Cardinal et al., 2003). Results are expressed as \\delta29Si relatively to NBS28 standard. The isotopic composition of diatoms is generally homogeneous in the mixed layer and does not seem to exhibit an isotopic fractionation linked to a size effect. Diatoms \\delta29Si are systematically lighter than the ambient seawater signature, reflecting their preferential uptake of light isotopes (De La Rocha et al., 1997). We observe a trend of lighter isotopic signatures southward, both in diatoms and seawater samples, but the BSi isotopic gradient is much steeper with a diatoms \\delta29Si signature as low as -0.26 p.mil in the southernmost SIZ station, which strongly contrasts with the +0.65 p.mil signature measured on PFZ diatoms. Such latitudinal variation of diatom isotopic signature is well in accordance with the one observed in summer by Varela et al. (2004). In contrast, our spring samples display a difference between the ambient seawater and diatom isotopic signatures that strongly increases southward: it goes from 0.45 in the PFZ up to 1.08 p. mil in the SIZ

  2. Nitrogen isotopic signatures in the Acapulco meteorite

    NASA Technical Reports Server (NTRS)

    Sturgeon, G.; Marti, K.

    1991-01-01

    N isotopic abundances are reported for a bulk sample of the unique meteorite Acapulco. Although the mineral chemistry indicates a high degree of recrystallization under redox conditions between those of H and E chondrites (Palme et al., 1981), the presence of two distinct N isotopic signatures shows that the carriers of these N components were not equilibrated. In stepwise pyrolysis, the larger (65 percent) N component is released mostly below 1000 C and reveals a signature of delta(N-15) = 8.9 + or - 1.2 per mil, which is within the range observed in chondrites. A second 'light' component appears above 1000 C and has a signature of delta(N-15) less than or equal to -110.5 + or - 4.0 per mil (uncorrected for spallation N-15).

  3. Differences in hydrophyte life forms induce spatial heterogeneity of CH4 production and its carbon isotopic signature in a temperate bog peatland

    NASA Astrophysics Data System (ADS)

    Itoh, Masayuki; Shimamura, Tetsuya; Ohte, Nobuhito; Takemon, Yasuhiro

    2015-07-01

    To clarify the effect of differences in hydrophyte life forms on methane (CH4) production and its carbon stable isotopic signature (δ13C-CH4), we analyzed CH4 and carbon dioxide (CO2) concentrations, their stable carbon isotope values, and chemical constituents dissolved in pore water in a small floating peat bog in Japan. Because eutrophication has modified the surrounding water quality, the bog vegetation on the mat has been, in part, replaced by fen-type vegetation. We hypothesized that differences in hydrophyte habitats affect redox conditions, including dissolved oxygen (DO) in water and therefore the amounts and carbon isotopic values of CH4 and CO2 dissolved in pore water. Between the habitats of two Sphagnum species, DO was considerably higher, and CH4 concentrations were significantly lower in Sphagnum cuspidatum Ehrh. habitats in hollow (DO: 0.62 ± 0.20 mg/L (standard error (SE)) and CH4: 0.18 ± 0.02 mmol/L) than in Sphagnum palustre L. habitats in hummock (DO: 0.29 ± 0.08 and CH4: 0.82 ± 0.06) in pore water (10 cm depth). Both DO and CH4 concentrations in three vascular plant habitats (Rhynchospora fauriei Franch., Phragmites australis [reed], and Menyanthes trifoliata L.) in pore water (10 cm depth) were intermediate relative to the two Sphagnum species. However, CH4 flux in M. trifoliata site was significantly higher than that at both Sphagnum sites, suggesting that the type of gas transport (diffusive or convective via root and stem) affected the depth profile of CH4 concentrations and its flux. δ13C-CH4 values in pore water also varied among the vegetation types, even within Sphagnum species (e.g., at 10 cm depth, δ13C-CH4: R. fauriei, -55.3 ± 1.8‰ (SE); P. australis, -57.5 ± 1.6‰; M. trifoliata, -56.7 ± 1.5‰; S. cuspidatum, -71.2 ± 1.4‰; and S. palustre, -60.4 ± 0.6‰). Our results suggest that significant differences arise in CH4 concentration and δ13C-CH4 values among the hydrophyte habitats even within a small peat bog and

  4. Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas; Bouloubassi, Ioanna; Stadnitskaia, Alina; Taphanel, Marie-Hélène; Sinninghe Damsté, Jaap S.

    2014-06-01

    Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of -57 to -136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of -43 to -133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the

  5. Signature Lipids and Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic Communities Compared with Those of Aquificales Representatives

    PubMed Central

    Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hope, Janet M.; Hinrichs, Kai-Uwe; Hayes, John M.; Des Marais, David J.; Cady, Sherry L.; Summons, Roger E.

    2001-01-01

    The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 and cy-C21 fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 and cy-C21, plus a series of iso-branched fatty acids (i-C15:0 to i-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in 13C relative to source water CO2 by 10.9 and 17.2‰, respectively. The C20–21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6‰, respectively. The biomass of T. ruber grown on CO2 was depleted in 13C by only 3.3‰ relative to C source. In contrast, biomass was depleted by 19.7‰ when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3‰). The depletion in the C20–21 fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region. PMID:11679343

  6. Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, R.; Hope, J. M.; Hinrichs, K. U.; Hayes, J. M.; Des Marais, D. J.; Cady, S. L.; Summons, R. E.

    2001-01-01

    The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C(20:1) and cy-C(21) fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C(18:0). These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C(18) and C(20) alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C(20:1) and cy-C(21), plus a series of iso-branched fatty acids (i-C(15:0) to i-C(21:0)), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in (13)C relative to source water CO(2) by 10.9 and 17.2 per thousand, respectively. The C(20-21) fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6 per thousand, respectively. The biomass of T. ruber grown on CO(2) was depleted in (13)C by only 3.3 per thousand relative to C source. In contrast, biomass was depleted by 19.7 per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3 per thousand). The depletion in the C(20-21) fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO(2). Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.

  7. Latitudinal Trends in Stable Isotope Signatures of Northeast Atlantic Rhodoliths

    NASA Astrophysics Data System (ADS)

    Hofmann, Laurie

    2017-04-01

    Rhodoliths are free-living calcifying red algae that form extensive beds in shallow marine benthic environments (< 200 m) that provide important habitats and nurseries for marine organisms and contribute to carbonate sediment accumulation. There is growing concern that these organisms are sensitive to global climate change, which will have important consequences for coastal productivity and stability. Despite their significance and sensitivity, their basic photosynthetic and calcification mechanisms are not well understood. The goal of this study was to determine the plasticity of dissolved inorganic carbon (DIC) uptake mechanisms of rhodoliths along a latitudinal gradient in the Northeast (NE) Atlantic using natural stable isotope signatures. The delta 13C signature of macroalgae can be used to provide an indication of the preferred inorganic carbon source (CO2 vs. HCO3-). Here we present the total and organic delta 13C signatures of NE Atlantic rhodoliths with respect to changing temperature and light along the latitudinal gradient from the Canary Islands to Spitsbergen. A decreasing trend in delta 13C signatures with increasing latitude suggests that rhodoliths rely solely on CO2 as an inorganic carbon source at mid latitudes, while those at low latitudes may be able to utilize HCO3-. Polar rhodoliths deviate from this trend, suggesting they may have unique physiological mechanisms related to inorganic carbon acquisition and assimilation, which may have important implications for calcification in an environment undergoing rapid changing ocean chemistry.

  8. Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: Evidence from carbon, helium, and chlorine

    NASA Astrophysics Data System (ADS)

    Genereux, David P.; Webb, Mathew; Solomon, D. Kip

    2009-08-01

    C, He, and Cl concentrations and isotopes in groundwater and surface water in a lowland Costa Rican rain forest are consistent with the mixing of two distinct groundwaters: (1) high-solute bedrock groundwater representing interbasin groundwater flow (IGF) into the rain forest and (2) low-solute local groundwater recharged in the lowlands. In bedrock groundwater, high δ13C (-4.89‰), low 14C (7.98 pM), high R/RA for He (6.88), and low 36Cl/Cl (17 × 10-15) suggest that elevated tracer concentrations are derived from magmatic outgassing and/or weathering of volcanic rock beneath nearby Volcan Barva. In local groundwater, the magmatic signature is absent, and data suggest atmospheric sources for He and Cl and a biogenic soil gas CO2 source for dissolved inorganic carbon. Dating of 14C suggests that the age of bedrock groundwater is 2400-4000 years (most likely at the lower end of the range). Local groundwater has 14C > 100 pM, indicating the presence of "bomb carbon" and thus ages less than ˜55 years. Overall, data are consistent with a conceptual hydrologic model originally proposed on the basis of water budget and major ion data: (1) large variation in solute concentrations can be explained by mixing of the two distinct groundwaters, (2) bedrock groundwater is much older than local groundwater, (3) elevated solute concentrations in bedrock groundwater are derived from volcanic fluids and/or rock, and (4) local groundwater has not interacted with volcanic rock. Tracers with different capabilities converge on the same hydrologic interpretation. Also, transport of magmatic CO2 into the lowland rain forest via IGF seems to be significant relative to other large ecosystem-level carbon fluxes.

  9. Linkages Between Upwelling and Shell Characteristics of Mytilus californianus: Morphology and Stable Isotope (δ13C, δ18O) Signatures of a Carbonate Archive from the California Current

    NASA Astrophysics Data System (ADS)

    Hosfelt, J. D.; Hill, T. M.; Russell, A. D.; Bean, J. R.; Sanford, E.; Gaylord, B.

    2014-12-01

    Many calcareous organisms are known to record the ambient environmental conditions in which they grow, and their calcium carbonate skeletons are often valuable archives of climate records. Mytilus californianus, a widely distributed species of intertidal mussel, experiences a spatial mosaic of oceanographic conditions as it grows within the California Current System. Periodic episodes of upwelling bring high-CO2 waters to the surface, during which California coastal waters are similar to projected conditions and act as a natural analogue to future ocean acidification. To examine the link between upwelling and shell characteristics of M. californianus, we analyzed the morphology and stable isotope (δ13C, δ18O) signatures of mussel specimens collected live from seven study sites within the California Current System. Morphometric analyses utilized a combination of elliptic Fourier analysis and shell thickness measurements to determine the influence of low pH waters on the growth morphology and ecological fitness of M. californianus. These geochemical and morphological analyses were compared with concurrent high-resolution environmental (T, S, pH, TA, DIC) records from these seven study sites from 2010-2013. With appropriate calibration, new archives from modern M. californianus shells could provide a valuable tool to enable environmental reconstructions within the California Current System. These archives could in turn be used to predict the future consequences of continuing ocean acidification, as well as reconstruct past (archeological) conditions.

  10. Carbon isotope signature of environmental change found in fossil ratite eggshells from a South Asian Neogene sequence

    NASA Astrophysics Data System (ADS)

    Stern, Libby A.; Johnson, Gary D.; Page Chamberlain, C.

    1994-05-01

    A >10-m.y.-long sequence of ratite (e.g., ostrich) eggshells from Siwalik Group sedimentary deposits of northern Pakistan and India shows a dramatic (˜8‰) increase in the δ13C in biomineralogic calcite by ˜4 Ma. Values of δ13C from ratite eggshell carbonate older than 7 Ma are about the same as those from carbonate from contemporaneous fossil mammal tooth enamel and paleosols. However, after 4 Ma, the ratite eggshell carbonate δ13C values are ˜5‰ less than these coexisting materials. These findings are evidence of the development of a C3-C4 vegetative mosaic probably mirroring the sedimentologic-edaphic mosaic of the aggrading alluvial plain of the Siwalik depositional system.

  11. Correlated carbon and oxygen isotope signatures in eclogitic diamonds with coesite inclusions: A SIMS investigation of diamonds from Guaniamo, Argyle and Orapa mines

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.; Page, Z.; Harte, B.; Valley, J.; Channer, D.; Jaques, L.

    2006-12-01

    Using ion microprobes and secondary-ion mass spectrometry we have analyzed the carbon and oxygen isotopic composition of eclogite-suite diamonds and their coesite inclusions, respectively, from three suites of diamonds of Proterozoic age. Extremely high (for the mantle) oxygen isotope values (delta 18O of +10.2 to +16.9 per mil VSMOW) are preserved in coesites included in eclogitic diamonds from Guaniamo, Venezuela (Schulze et al., Nature, 2003), providing compelling evidence for an origin of their eclogite hosts by subduction of sea water altered ocean floor basalts. In situ SIMS analyses of their host diamonds yield carbon isotope values (delta 13C) of -12 to -18 per mil PDB. SIMS analyses of coesite inclusions from Argyle, Australia diamonds previously analyzed by combustion methods for d13C composition (Jaques et al., Proc. 4th Kimb. Conf, 1989), also yield anomalously high d18O values (+6.8 to +16.0 per mil VSMOW), that correlate with the anomalously low carbon isotope values (-10.3 to -14.1 per mil PDB). One coesite-bearing diamond from Orapa, Botswana analyzed in situ by SIMS has a d18O value of the coesite of +8.5 per mil VSMOW and a d13C value of the adjacent diamond host of -9.0 per mil PDB. A second Orapa stone has a SIMS carbon isotope compositional range of d13C = -14 to -16 per mil PDB, but the coesite is too small for ion probe analysis. At each of these localities, carbon isotope values of coesite-bearing diamonds that are lower than typical of mantle carbon are correlated with oxygen isotope compositions of included coesites that are substantially above the common mantle oxygen isotope range. Such results are not in accord with diamond genesis models involving formation of eclogitic diamonds from igneous melts undergoing fractionation in the mantle or by crystallization from primordial inhomogeneities in Earth's mantle. By analogy with the oxygen isotope compositions of altered ocean floor basalts and Alpine (subduction zone) eclogites they are

  12. Carbon cycling and carbon metabolism by soil fungi in a boreal forest: impacts of wildfire and permafrost on functional genes, isotope signatures, and ectomycorrhizae

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.

    2006-12-01

    Understanding the mechanisms that control the stabilization and destabilization of soil carbon within boreal forest ecosystems is of great importance to the global carbon budget. Much is currently known about boreal soil carbon dynamics in relation to biophysical and landscape variables such as temperature, moisture, wildfire intensity, and stand age. We have less information regarding the controls on decomposition at the molecular scale, where interactions between microbial communities, their genetic `potential' for decomposition, functional genes, enzyme synthesis, and organic matter transformations occur. We have entered an age in which these connections can be made at the molecular scale, but what form do they take, and can they scale up to affect carbon dynamics at the level of the ecosystem? We examined these molecular scale processes in mature boreal forest soils and soils that had been impacted by wildfire near Delta Junction, Alaska. We also examined the interactive effect of permafrost presence, which reduces soil drainage, with wildfire. We focused on three themes: linking microbial communities and laccase functional genes to soil laccase enzyme activity and lignin decomposition, assessing substrate availability using the natural abundance δ13C isotope ratios of microbial biomass, and the influence of ectomycorrhizal mats on decomposition. Wildfire reduced fungal biomass, laccase functional gene abundance, laccase activity, and δ13C-lignin decomposition. Relationships between gene abundance and microbial activity were significant and logarithmic in form. Soil drainage, which is mediated by the presence of permafrost, had little effect on the abundance of fungi, functional genes, or potential process rates. Microbial biomass δ13C was always enriched relative to soil organic matter, and this difference was greater in control soils compared to wildfire-affected soils, indicating that ÄΔδ13C MB-SOIL may indicate the level of bioavailability of soil

  13. Stable isotope signatures confirm carbon and nitrogen gain through ectomycorrhizas in the ghost orchid Epipogium aphyllum Swartz.

    PubMed

    Liebel, H T; Gebauer, G

    2011-03-01

    Epipogium aphyllum is a rare Eurasian achlorophyllous forest orchid known to associate with fungi that form ectomycorrhizas, while closely related orchids of warm humid climates depend on wood- or litter-decomposer fungi. We conducted (13) C and (15) N stable isotope natural abundance analyses to identify the organic nutrient source of E. aphyllum from Central Norway. These data for orchid shoot tissues, in comparison to accompanying autotrophic plants, document C and N flow from ectomycorrhizal fungi to the orchid. DNA data from fungal pelotons in the orchid root cortex confirm the presence of Inocybe and Hebeloma, which are both fungi that form ectomycorrhizas. The enrichment factors for (13) C and (15) N of E. aphyllum are used to calculate a new overall average enrichment factor for mycoheterotrophic plants living in association with ectomycorrhizal fungi (ε(13) C ± 1 SD of 7.2 ± 1.6 ‰ and ε(15) N ± 1 SD of 12.8 ± 3.9 ‰). These can be used to estimate the fungal contribution to organic nutrient uptake by partially mycoheterotrophic plants where fully mycoheterotrophic plants are lacking. N concentrations in orchid tissue were unusually high and significantly higher than in accompanying autotrophic leaf samples. This may be caused by N gain of E. aphyllum from obligate ectomycorrhizal fungi. We show that E. aphyllum is an epiparasitic mycoheterotrophic orchid that depends on ectomycorrhizal Inocybe and Hebeloma to obtain C and N through a tripartite system linking mycoheterotrophic plants through fungi with forest trees.

  14. Biomarker and stable carbon isotopic signatures for 100-200 year sediment record in the Chaihe catchment in southwest China.

    PubMed

    Wang, Yanhua; Yang, Hao; Zhang, Jixiang; Xu, Meina; Wu, Changbin

    2015-01-01

    Natural inputs and anthropogenic influences on lakes and their catchments are reflected in the sediment record. In the present study, the extractable organic compounds from sediments in the Chaihe catchment of the Dianchi watershed were analyzed to characterize source inputs. Results show that the sediments are dominated by odd numbered n-alkanes (n-C16-n-C33), maximizing at n-C17, n-C29 and n-C31. Aliphatic hydrocarbon may be composed of terrestrial plants and bacteria. The values of δ(13)C27, δ(13)C29 and δ(13)C31 of n-alkanes exhibit a range from -33.27‰ to -25.46‰, from -35.76‰ to -28.47‰ and from -33.67‰ to -27.42‰, respectively and three records strongly covary with depth, falling within the range of C3 plants in the study area. An isotopic model revealed C3 plant contribution to sedimentary organic matter (OM) ranging from 40.75% to 97.22%. The values of ACL27-33, CPI27-33, OEP, Paq, Pr/Ph, (C27+C29)/2C31, (C21+C23+C25)/3C17 and nC26(-)/nC27(+) are consistent with the C3 plant predominance. A constant CRS model gave the accumulation rates ranging from 2.69 to 8.46mma(-1) spanning 1885-2010. It was concluded that OM transport in the Chaihe catchment was influenced strongly by human activities resulting in enhanced eutrophication.

  15. Compound- and position-specific carbon isotopic signatures of abiogenic hydrocarbons from on-land serpentinite-hosted Hakuba Happo hot spring in Japan

    NASA Astrophysics Data System (ADS)

    Suda, Konomi; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Ueno, Yuichiro

    2017-06-01

    It has been proposed that serpentinite-hosted hydrothermal/hot spring systems played a significant role in the origin and early evolution of life on early Earth because abiogenic synthesis of organic compounds may accompany serpentinization. However, production mechanisms for apparently abiogenic hydrocarbons that have been observed in the ongoing serpentinizing systems are still poorly constrained. We report a new geochemical study of hydrocarbons in an on-land serpentinite-hosted hot spring in Hakuba Happo, Japan. We have conducted both compound-specific and position-specific carbon isotopic analyses of the observed C1 to C5 hydrocarbons. A positive linear relationship between the δ13C values and the inverse carbon number is found in C1 to C5 straight-chain alkanes in the Happo sample. This isotopic trend is consistent with a simple polymerization model developed in this study. Our model assumes that, for any particular alkane, all of the subsequently added carbons have the same isotopic composition, and those are depleted in 13C with respect to the first carbon in the growing carbon chain. The fit of this model suggests that Happo alkanes can be produced via polymerization from methane with a constant kinetic isotopic fractionation of -8.9 ± 1.0‰. A similar carbon isotopic relationship among alkanes has been observed in some serpentinite-hosted seafloor hydrothermal systems, indicating that the same process is responsible for the abiological hydrocarbon in general serpentinization fields, not only in the Hakuba Happo hot spring. Moreover, our model is also applicable to other potentially abiogenic natural gases and experimentally synthesized hydrocarbon products. For the first time, the intramolecular 13C composition of propane from a natural sample derived from a serpentinite-hosted system was determined. The intramolecular 13C distribution in propane shows the important potential to identify different polymerization mechanisms that cannot be discriminated

  16. Linking carbon isotope signatures of nighttime leaf-respiratory and daytime assimilatory CO2 fluxes observed with laser spectrometry under field conditions

    NASA Astrophysics Data System (ADS)

    Gentsch, Lydia; Ogée, Jérôme; Wingate, Lisa; Sturm, Patrick; Siegwolf, Rolf; Werner, Roland A.; Buchmann, Nina; Knohl, Alexander

    2015-04-01

    The 13C/12C ratio (δ13C) of atmospheric CO2 is a valuable tool for constraining the impact of the terrestrial biosphere on atmospheric CO2 dynamics. Alterations of the 13C signal of terrestrial net CO2 fluxes are generally attributed to variations in photosynthetic 13C discrimination. Yet, over the past decade, evidence has emerged that plant metabolism and respiration modify the initial δ13C signature of recent photosynthetic assimilates. Such postphotosynthetic δ13C modifications were reported for all plant organs, but leaf respiratory metabolism may play a central role as it impacts carbon turnover in other plant tissues. Leaf-respired CO2 is frequently 13C enriched with respect to leaf organic matter. Mechanisms potentially explaining this enrichment include the differential use of carbon sources, metabolite fragmentation or the expression of kinetic isotope effects of respiratory enzymes. For global and ecosystem-scale applications of δ13C, it is now important to study, under field conditions, the variability of δ13C in leaf-respired CO2 (δ13CRES) and the deviation of the latter from δ13C of recent assimilates (δ13CAS). Here, we present 74 days of hourly δ13C measurements for daytime assimilatory and nighttime respiratory CO2 fluxes on leafy branches of three mature Fagus sylvatica trees in a temperate forest. Measurements were conducted with a laser spectrometer (QCLAS-ISO, Aerodyne Research Inc.) measuring CO2 isotopologue mixing ratios in ambient and sampling air from photosynthetic gas exchange chambers. We used daytime measurements of photosynthetic 13C discrimination for diurnally flux-weighted estimates of δ13CAS, and found that flux-weighted δ13CRES roughly tracked previous-day shifts in δ13CAS. Deviations between flux-weighted δ13CAS and δ13CRES were further robustly predicted by previous-day assimilation, with δ13CRES displaying 13C enrichment on low and 13C depletion on high assimilation days. On the hourly timescale, δ13CRES either

  17. Structural Controls on Helium, Nitrogen and Carbon Isotope Signatures in Geothermal Fluids Along the Liquiñe-Ofqui Fault System, Southern Chile.

    NASA Astrophysics Data System (ADS)

    Tardani, D.; Reich, M.; Roulleau, E.; Sano, Y.; Takahata, N.; Perez-Flores, P.; Sanchez-Alfaro, P.; Cembrano, J. M.; Arancibia, G.

    2016-12-01

    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are spatially controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, d13C-CO2 and d15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), d13C-CO2 values (-7.44‰ to -49.41‰) and d15N values (0.02‰to 4.93‰). The regional variations in 3He/4He, d13C-CO2 and d15N values are consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are controlled by the regional faults distribution. Two samples associated with the northern transtensional termination of the LOFS are the only datapoints showing pure MORB-like helium signatures. Whereas, towards the south the mantle-derived helium mixed with radiogenic component derived from magmatic assimilation of 4He-rich country rocks or contamination during the passage of the fluids through the upper crust. The degree of 4He contamination is related with the faults controlling the occurrence of volcanic and geothermal systems, with the most contaminated values associated with NW-striking structures. This is confirmed by d15N values that show increased mixing with crustal sediments and meteoric waters along NW faults (AFLS), while d13

  18. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    PubMed

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  19. Isotopic Signature of the Ancient Biosphere

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The age distribution of 261 field localities, sampled for their well-preserved Archean and Proterozoic sedimentary rocks, revealed a 500-700 Ma episodicity. Assuming that the numbers of sites are a proxy for mass of sediments, the record of well-preserved sediments is more abundant in the intervals 3.5-3.3, 2.8-2.5, 2.1-1.8, 1.5-1.3, and 1.0-0.54 Ga than in the intervening intervals. It is proposed that the crustal inventory of photosynthetic organic carbon was modulated by the volume of sedimentation in sites favorable for the burial and long-term preservation of organic carbon. Tectonic processes controlled this sediment volume. Episodic increases in the organic inventory led to stepwise increases in oxidized reservoirs (e.g., O2, SO4(2-), Fe(3+). The interval 2.9-2.5 Ga recorded a large rise in seawater Sr-87/Sr-86, the oldest-known extensive banded iron formations, and the first evidence (C-13-depleted kerogens) of O2 use by methylotrophic bacteria. The interval 2.2-1.8 Ga has both carbon isotopic evidence for a stepwise increase in the organic reservoir and also paleosol evidence for an O2 increase. The interval 1.1-0.6 Ga shows isotopic evidence for another organic carbon increase. The interval 1.5-1.3 Ga revealed no such increases as yet, perhaps because incomplete rifting of the mid-Proterozoic supercontinent was associated with extensive sedimentation in oxidized continental basins, producing redbeds, coarse clastics, etc. Such sedimentation did not promote the burial of reduced carbon.

  20. Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system

    NASA Astrophysics Data System (ADS)

    Tardani, Daniele; Reich, Martin; Roulleau, Emilie; Takahata, Naoto; Sano, Yuji; Pérez-Flores, Pamela; Sánchez-Alfaro, Pablo; Cembrano, José; Arancibia, Gloria

    2016-07-01

    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. For example, in geothermal systems and epithermal gold deposits, optimally oriented faults and fractures play a key role in promoting fluid flow through high vertical permeability pathways. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are strongly controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, δ13C-CO2 and δ15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), δ13C-CO2 values (-7.44‰ to -49.41‰) and δ15N values (0.02‰ to 4.93‰). The regional variations in 3He/4He, δ13C-CO2 and δ15N values are remarkably consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are strongly controlled by the regional spatial distribution of faults. Two fumaroles gas samples associated with the northern ;horsetail; transtensional termination of the LOFS are the only datapoints showing uncontaminated MORB-like 3He/4He signatures. In contrast, the dominant mechanism controlling helium isotope ratios of hydrothermal systems towards the south appears to be the mixing between mantle-derived helium and a radiogenic component derived from, e.g., magmatic assimilation of 4He-rich country rocks or contamination during the

  1. A menagerie of graphite morphologies in the Acapulco meteorite with diverse carbon and nitrogen isotopic signatures: Implications for the evolution history of acapulcoite meteorites

    NASA Astrophysics Data System (ADS)

    El Goresy, Ahmed; Zinner, Ernst; Pellas, Paul; Caillet, Catherine

    2005-09-01

    Morphologies, petrographic settings and carbon and nitrogen isotopic compositions of graphites in the Acapulco meteorite, the latter determined by secondary ionization mass spectrometry, are reported. Seven different graphite morphologies were recognized, the majority of which occur enclosed exclusively in kamacite. Individual graphite grains also rarely occur in the silicate matrix. Kamacite rims surrounding taenite cores of metal grains are separated from the Ni-rich metal cores by graphite veneers. These graphite veneers impeded or prevented Ni-Fe interdiffusion during cooling. In addition, matrix FeNi metal contains considerable amounts of phosphorous (≈ 700 ppm) and silicon (≈ 300 ppm) ( Pack et al., 2005 in preparation) thus indicating that results of laboratory cooling experiments in the Fe-Ni binary system are inapplicable to Acapulco metals. Graphites of different morphologies display a range of carbon and nitrogen isotopic compositions, indicating a diversity of source regions before accretion in the Acapulco parent body. The isotopic compositions point to at least three isotopic reservoirs from which the graphites originated: (1) A reservoir with heavy carbon, represented by graphite in silicates (δ 13C = 14.3 ± 2.4 ‰ and δ 15N = -103.4 ± 10.9 ‰), (2) A reservoir with isotopically light carbon and nitrogen, characteristic for the metals. Its C- and N-isotopic compositions are probably preserved in the graphite exsolutions that are isotopically light in carbon and lightest in nitrogen (δ 13C = -17 to -23 ‰ δ 15N = -141 to -159 ‰). (3) A reservoir with an assumed isotopic composition (δ 13C ˜ -5 ‰; δ 15N ˜ -50 ‰). A detailed three-dimensional tomography in reflected light microscopy of the decorations of metal-troilite spherules in the cores of orthopyroxenes and olivines and metal-troilite veins was conducted to clarify their origin. Metal and troilite veins are present only near the fusion crust. Hence, these veins are not

  2. Microbial influences on local carbon isotopic ratios and their preservation in carbonate.

    PubMed

    Sumner, D Y

    2001-01-01

    Analysis of the carbon isotopic composition of carbonates is a valuable tool for studying microbial processes and looking for evidence of life. Microbial fixation of CO2 and conversion of organic carbon to CO2 can produce measurable delta 13C shifts in a microbial mat environment. Diffusion modeling demonstrates that substantial isotopic shifts can develop within the mat and in the diffusion boundary layer in the fluid when CO2 fixation is rapid and prolonged for several hours. Carbonates that precipitate during rapid CO2 fixation can preserve these microbially produced isotopic shifts. However, continued precipitation during intervals when respiration dominates or after the cessation of active microbial growth commonly dilutes autotrophic isotopic signatures. Thus, preserved isotopic signatures rarely reflect the magnitude of isotopic shifts within the mat. Interpretation of observed isotopic shifts in microbial mat carbonate depends on fully characterizing ambient delta 13C and eliminating other origins for isotopic shifts. The carbon isotopic composition of reservoirs can vary substantially, both on Earth and on other planets. Characterizing the reservoir composition and any changes through time is critical to evaluating microbially induced shifts. In addition, careful evaluation of non-microbial causes for shifts in isotopic composition is essential for a reliable interpretation. Complicating processes include recrystallization, calcite precipitation over extended periods of time, variable precipitation rates and water chemistry, and mixing of carbonates having different isotopic signatures.

  3. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures.

    PubMed

    Gao, Xuelu; Yang, Yuwei; Wang, Chuanyuan

    2012-06-01

    Total organic carbon (TOC), total nitrogen (TN) and their δ(13)C and δ(15)N values were determined for 42 surface sediments from coastal Bohai Bay in order to determine the concentration and identify the source of organic matter. The sampling sites covered both the marine region of coastal Bohai Bay and the major rivers it connects with. More abundant TOC and TN in sediments from rivers than from the marine region reflect the situation that most of the terrestrial organic matter is deposited before it meets the sea. The spatial variation in δ(13)C and δ(15)N signatures implies that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Taking the area as a whole, surface sediments in the marine region of coastal Bohai Bay are dominated by marine derived organic carbon, which on average accounts for 62±11% of TOC.

  4. Organic and Isotopic Signatures of Life: Lessons from the Early Earth

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.; Eigenbrode, J. L.; House, C. H.

    2002-12-01

    In the study of life on earth, isotopic analyses of organic biomarkers provide essential insight to their biological and environmental provenance. Isotopic analyses of organic materials on other planets present a number of challenges, both analytical and interpretive. Prebiotic planetary organic materials can derive from condensation reactions and by delivery through meteorites or interplanetary dust, with the relative importance of each influenced by the oxidation state of the atmosphere. Material delivered to planets can have an interstellar origin, although it is dominated by compounds influenced by the formation of the solar system. Each of these processes impact molecular isotopic signatures and must be considered in life-detection strategies. Pronounced effects are observed for hydrogen isotopes, with smaller fractionations observed for other elements. Theoretical, laboratory and observational studies of non-terrean materials are essential to further understand molecular isotopic heterogeneity associated with these exclusively abiotic processes. Studies of Archean-aged samples provide an important resource for interpreting molecular isotopic patterns as signatures of life processes. Carbon assimilation and biomass synthesis from simple precursor compounds typically discriminate against 13C. This generality, however, is complicated by the observations of a wide range of fractionation factors associated with important microbial carbon-uptake processes. Metabolic processes further distribute isotopic signatures, such that wide isotopic heterogeneity is observed among cellular biochemical constituents. In addition, preservation/contamination concerns dominate studies of very ancient organic matter, as they likely will in life-detection studies. However, both biochemical heterogeneity and sample integrity can be addressed by considering patterns from different paleoenvironments. Molecular results demonstrate that Late Archean microbial life on this planet was

  5. Carbon isotopes in comets

    NASA Technical Reports Server (NTRS)

    Wehinger, Peter A.

    1990-01-01

    The progress is reported of high resolution spectra of selected bright comets with the aim of determining the carbon isotope abundance ratio, C-12/C-13. The ratio was determined for various Solar System objects (in the atmospheres of the giant planets, meteorites, the Earth, and the solar photosphere), where the C-12/C-13 = 89/1. In the interstellar medium, optical and radio observations give a range of C-12/C-13 = 43-67/1 depending on the observing techniques used and the specific interstellar cloud observed. The echelle spectra is presented of the CN(0,0) violet system in three comets: P/Brorsen-Metcalf, C/Okazaki-Levy-Rudenko, and C/Austin. P/Brorsen-Metcalf has a period of 70 y (prograde) compared with P/Halley which is 76 y (retrograde). The similar periods made P/Brorsen-Metcalf of special interest for comparison with P/Halley.

  6. Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2

    NASA Astrophysics Data System (ADS)

    Agrawal, Shailesh; Verma, Poonam; Rao, M. R.; Garg, Rahul; Kapur, Vivesh V.; Bajpai, Sunil

    2017-09-01

    This study presents new results of combined palynological and stable carbon isotope (δ13C) investigations carried out in the well known lignite sequence at Panandhro, District Kutch, in the Gujarat state of western India. Dinoflagellate cysts and associated spore-pollen assemblage assign an early Eocene (Ypresian) age to the lignitic succession at Panandhro. Furthermore, a pronounced negative Carbon Isotope Excursion (CIE) of about 2.7‰, correlated to the Second Eocene Thermal Maximum (53.7 Ma), a globally recognized hyperthermal event, was discovered in the middle part of the succession, consistent with the palynological constraints. This is the first record of an Eocene hyperthermal event (ETM2) from the Kutch Basin. Our data has regional implications for the age of the lignitic sequences across western India as it demonstrates that there is no significant age difference between the lignite deposits of the Kutch and Cambay basins. Our results also support a Lutetian age for the previously described vertebrate fossils, including whales, from the Panandhro mine section.

  7. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology

    Treesearch

    Jeffrey F. Kelly

    2000-01-01

    Differential fractionation of stable isotopes of carbon during photosynthesis causes C4 plants and C3 plants to have distinct carbon-isotope signatures. In addition, marine C3 plants have stable-isotope ratios of carbon that are intermediate between C4 and terrestrial C3 plants. The direct incorporation of the carbon-isotope ratio (13C/12C) of plants into consumers...

  8. The Chemical and Isotopic Signature of Old Groundwater and Magmatic Solutes in a Costa Rican Rainforest: Evidence From Carbon, Helium, and Chlorine

    NASA Astrophysics Data System (ADS)

    Webb, M. D.; Genereux, D. P.; Solomon, D. K.

    2008-12-01

    Major ion, 18O, and water budget data from previous hydrologic studies at a Costa Rica lowland rainforest site, La Selva Biological station at the foot of Volcan Barva, indicate the presence and mixing of two distinct groundwaters: - bedrock groundwater: relatively high-solute groundwater that represents interbasin groundwater flow into the lowland rainforest watersheds, and - local groundwater: more dilute groundwater recharged locally in the lowlands. In this study we found that C, He, and Cl concentrations and isotope data (ä13C, 14C, 3He/4He, 36Cl/Cl), in groundwater and surface water at La Selva and upslope in Braulio Carillo National Park, are strongly consistent with the mixing hypothesis and provide insight into the age and origin of the two groundwaters. Highly significant linear trends on plots of isotopic abundance vs. the inverse of concentration support the mixing of two groundwaters. High ä13C (-4.89), low 14C (7.98 pmC), high R/RA for He (6.88), and low 36Cl/Cl (17 x 10-15) of bedrock groundwater indicate that elevated C, He, and Cl concentrations in this groundwater are derived from magmatic outgassing and/or weathering of volcanic rock, most likely beneath nearby Volcan Barva. The estimated ä13C of magmatic CO2 was -2.6 , almost identical to the previously- measured ä13C of CO2 in high-temperature gases from two volcanoes in the region (-2.9 at Momotombo in Nicaragua and -2.7 at Arenal in Costa Rica). Concentrations and isotopic ratios of C, He, and Cl in local water are consistent with atmospheric/precipitation sources for He and Cl and a biogenic soil-gas CO2 source for DIC. 14C dating, using NETPATH (a geochemical mass-balance model), indicate an apparent age of bedrock groundwater in the range 2700-4300 years. Local groundwater has 14C concentrations >100 pmC, indicating the presence of anthropogenic "bomb carbon" and thus ages less than ~55 years for these samples collected in 2006. Overall the data are fully consistent with the conceptual

  9. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  10. Relationships between tree height and carbon isotope discrimination

    Treesearch

    Nate G. McDowell; Barbara J. Bond; Lee T. Dickman; Michael G. Ryan; David Whitehead

    2011-01-01

    Understanding how tree size impacts leaf- and crown-level gas exchange is essential to predicting forest yields and carbon and water budgets. The stable carbon isotope ratio of organic matter has been used to examine the relationship of gas exchange to tree size for a host of species because it carries a temporally integrated signature of foliar photosynthesis and...

  11. Ontogenetic changes in isotopic signatures of an omnivorous fish Cultrichthys erythropterus in East Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Li, Yunkai; Zhang, Miao

    2015-05-01

    The relationship between body size and stable isotopic signatures of the omnivorous Redfin Culter ( Cultrichthys erythropterus), commonly found in East Lake Taihu, was investigated. Previous analyses of C. erythropterus stomach contents have shown that this species undergoes a diet switch from being predominantly zooplanktivorous to piscivorous during its life history. This was confirmed by stable carbon isotopic signature (δ13C) in this study, in which δ13C was positively correlated with both standard length and weight. The importance of littoral-benthic resources in supporting C. erythropterus during its lifespan was also demonstrated using a two-source mixing model, the results of which showed a significant increasing trend in the contribution of littoral-benthic energy. However, the stable nitrogen isotopic signature (δ15N) exhibited an unusual pattern compared with previous studies. The δ15N of C. erythropterus showed no relationship with body size, even though dietary changes were observed. This indicated that δ15N alone cannot fully reflect a diet shift in a species and possible variability in isotopic signatures over its life history. This should be considered when using stable isotopic signatures to investigate intra-specific variations and the timing of life-history events, such as estimating the trophic positions of fish species.

  12. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  13. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  14. Aerosol carbon isotope composition over Baltic Sea

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Pabedinskas, Algirdas; Masalaite, Agne; Petelski, Tomasz; Gorokhova, Elena; Sapolaite, Justina; Ezerinskis, Zilvinas; Remeikis, Vidmantas

    2017-04-01

    Particulate carbonaceous matter is significant contributor to ambient particulate matter originating from intervening sources which contribution is difficult to quantify due to source diversity, chemical complexity and processes during atmospheric transport. Carbon isotope analysis can be extremely useful in source apportionment of organic matter due to the unique isotopic signatures associated with anthropocentric (fossil fuel), continental (terrestrial plants) and marine sources, and is particularly effective when these sources are mixed (Ceburnis et al., 2011;Ceburnis et al., 2016). We will present the isotope ratio measurement results of aerosol collected during the cruise in the Baltic Sea. Sampling campaign of PM10 and size segregated aerosol particles was performed on the R/V "Oceania" in October 2015. Air mass back trajectories were prevailing both from the continental and marine areas during the sampling period. The total carbon concentration varied from 1 µg/m3 to 8 µg/m3. Two end members (δ13C = -25‰ and δ13C = -28 ‰ ) were established from the total stable carbon isotope analysis in PM10 fraction. δ13C analysis in size segregated aerosol particles revealed δ13C values being highest in the 1 - 2.5 µm range (δ13C = -24.9 ‰ ) during continental transport, while lowest TC δ13C values (δ13C ≈ -27 ‰ ) were detected in the size range D50 <1 µm during stormy weather when air mass trajectory prevailed from the western direction. These measurements revealed that simplified isotope mixing model can not be applied for the aerosol source apportionment (Masalaite et al., 2015) in the perturbed marine environment. Additionally, concentration of bacteria and fungi were measured in size segregated and PM10 aerosol fraction. We were able to relate aerosol source δ13C end members with the abundance of bacteria and fungi over Baltic Sea combining air mass trajectories, stable isotope data, fungi and bacteria concentrations. Ceburnis, D., Garbaras, A

  15. Global Isotopic Signatures of Oceanic Island Basalts.

    DTIC Science & Technology

    1991-08-01

    Appendix). Samples in the data set are mainly basalt. with some gabbros and trachybasalts, trachytes and other silica-rich rocks relative to basalt...Hart (1984) contoured world maps of OIB isotope data for his three DUPAL anomaly criteria [ASr> 40; A7/4 > 3; A8/4 > 401. These maps show a

  16. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic ({sup 13}C and {sup 14}C) signatures

    SciTech Connect

    Guo, L.; Santschi, P.H.; Cifuentes, L.A.

    1996-09-01

    Carbon isotopes ({sup 13}C and {sup 14}C) and elemental composition (C and N) in two fractions of colloidal organic matter (COM) were measured to study the origin and cycling of dissolved organic matter (DOM) in the Middle Atlantic Bight (MAB). COM{sub 1} (1 kDa-0.2 {mu}m) was 59% of the bulk DOM in surface Chesapeake Bay waters and decreased to 30-35% in water of the MAB. COM{sub 10} (10 kDa-0.2 {mu}m), which was the high-molecular-weight (HMW) component of COM{sub 1}, comprised 3-12% of the bulk DOM, with highest concentrations in Chesapeake Bay waters and the lowest in deep waters in the MAB. {Delta}{sup 14}C values of COM{sub 1} decreased from nearshore (-21 to +12%) to offshore and from surface (-166 to -85{per_thousand}) to bottom waters (-400 to -304{per_thousand}). Although {Delta}{sup 14}C values of surface-water HMW COM{sub 10} were generally high (-2 to -7{per_thousand}), values for bottom-water COM{sub 10} were much lower (-129 to -709{per_thousand}). The high {Delta}{sup 14}C values in the surface water suggest a particulate origin of pelagic COM, consistent with the contemporary {Delta}{sup 14}C values of particulate organic matter (POM). The very low {Delta}{sup 14}C values of bottom-water COM{sub 10} imply that in addition to the pelagic origin, sedimentary organic C may serve as an important source for the benthic colloids in the bottom nepheloid layer. The general flow direction of organic carbon is from POM to HMW and to LMW DOM. Three colloidal end-members were identified in the MAB as well as in the Gulf of Mexico: estuarine colloids with high {Delta}{sup 14}C values, high C:N ratios, and lower {delta}{sup 13}C values; offshore surface water colloids with intermediate {Delta}{sup 14}C values, lower C:N ratios, and higher {delta}{sup 13}C values; and offshore deep-water colloids with low {Delta}{sup 14}C values, intermediate C:N ratios, and variable {delta}{sup 13}C values. 40 refs., 10 figs., 3 tabs.

  17. Distinguishing Biotic from Abiotic Phosphate Oxygen Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Blake, R.; Moyer, C.; Colman, A.; Liang, Y.; Dogru, D.

    2006-05-01

    On earth, phosphate has a strong biological oxygen isotope signature due to its concentration and intense cycling by living organisms as an essential nutrient. Phosphate does not undergo oxygen isotope exchange with water at low temperature without enzymatic catalysis, making the oxygen isotope ratio (18O/16O) of phosphate, δ18OP, an attractive biosignature in the search for early and extraterrestrial life. Recent laboratory and field studies have demonstrated that the δ18OP value of dissolved inorganic phosphate (PO4) records specific microbial activity and enzymatic reaction pathways in both laboratory cultures and natural waters/sediments (Blake et al., 2005; Colman et al 2005; Liang and Blake, 2005). Phosphate oxygen isotope biosignatures may be distinguished from abiotic signatures by: (1) evaluating the degree of temperature-dependent PO4-water oxygen isotope exchange in aqueous systems and deviation from equilibrium; and (2) evolution from an abiotic P reservoir signature towards a biotic P reservoir signature. Important abiotic processes potentially affecting phosphate δ18OP values include dissolution/precipitation, adsorption/desorption, recrystallization of PO4 mineral phases, diagenesis and metamorphism. For most of these processes, the recording, retention and alteration of δ18OP biosignatures have not been evaluated. Deep-sea hydrothermal vent fields are an ideal system in which to study the preservation and alteration of δ18OP biosignatures, as well as potential look-alikes produced by heat-promoted PO4 -water oxygen isotope exchange. Results from recent studies of δ18OP biosignatures in hydrothermal deposits near 9 and 21 degrees N. EPR and at Loihi seamount will be presented.

  18. Impact of amorphous precursor phases on magnesium isotope signatures of Mg-calcite

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Purgstaller, Bettina; Dietzel, Martin; Buhl, Dieter; Immenhauser, Adrian; Schott, Jacques

    2017-04-01

    Various marine calcifiers form exoskeletons via an amorphous calcium carbonate (ACC) precursor phase and magnesium plays an important role in the temporary stabilization of this metastable phase. Thus, the use of Mg isotope ratios of marine biogenic carbonates as a proxy to reconstruct past seawater chemistry calls for a detailed understanding of the mechanisms controlling Mg isotope signatures during the formation and transformation of ACC to the final crystalline carbonate mineral. For this purpose we have investigated the Mg isotope fractionation between (Ca,Mg)CO3 solids and aqueous fluids at 25 °C and pH = 8.3 during (i) the direct precipitation of crystalline Mg-calcite and (ii) the formation of Mg-rich ACC (Mg-ACC) and its transformation to Mg-calcite. The outcome documents that the small Mg isotope fractionation between Mg-ACC and reactive fluid (ΔMg26ACC-fluid = - 1.0 ± 0.1 ‰) is not preserved during the transformation of the ACCs into Mg-calcite. Following a pronounced isotopic shift accompanying the transformation of Mg-ACC into Mg-calcite, Δ26Mgcalcite-fluid progressively decreases with reaction progress from ∼ - 3.0 ‰ to - 3.6 ‰, reflecting both the approach of isotopic equilibrium and the increase of calcite Mg content (to near 20 mol % Mg). In contrast the crystalline Mg-calcite precipitated directly from the reacting fluid, i.e. lacking a discernable formation of an amorphous precursor, exhibits only small temporal variations in Δ26Mgcalcite-fluid which overall is affected by the precipitation kinetics. The values found in this study at the onset of Mg-ACC precipitation for Mg isotope fractionation between Mg-ACC and the fluid (ΔMg26ACC-fluid = - 1.0 ‰) and between Mg-ACC and Mg2+(aq) (Δ(aq) 26 Mg ACC-Mg2+ = + 2.0 ‰) are consistent with the formation of a hydrated Ca nanoporous solid accommodating Mg bicarbonate/carbonate species in combination with hydrated magnesium. This material crossed by percolating channels filled with the

  19. Isotopic signatures of anthropogenic CH4 sources in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Sherwood, O. A.; Dlugokencky, E. J.; Kessler, R.; Giroux, L.; Worthy, D. E. J.

    2017-09-01

    A mobile system was used for continuous ambient measurements of stable CH4 isotopes (12CH4 and 13CH4) and ethane (C2H6). This system was used during a winter mobile campaign to investigate the CH4 isotopic signatures and the C2H6/CH4 ratios of the main anthropogenic sources of CH4 in the Canadian province of Alberta. Individual signatures were derived from δ13CH4 and C2H6 measurements in plumes arriving from identifiable single sources. Methane emissions from beef cattle feedlots (n = 2) and landfill (n = 1) had δ13CH4 signatures of -66.7 ± 2.4‰ and -55.3 ± 0.2‰, respectively. The CH4 emissions associated with the oil or gas industry had distinct δ13CH4 signatures, depending on the formation process. Emissions from oil storage tanks (n = 5) had δ13CH4 signatures ranging from -54.9 ± 2.9‰ to -60.6 ± 0.6‰ and non-detectable C2H6, characteristic of secondary microbial methanogenesis in oil-bearing reservoirs. In contrast, CH4 emissions associated with natural gas facilities (n = 8) had δ13CH4 signatures ranging from -41.7 ± 0.7‰ to -49.7 ± 0.7‰ and C2H6/CH4 molar ratios of 0.10 for raw natural gas to 0.04 for processed/refined natural gas, consistent with thermogenic origins. These isotopic signatures and C2H6/CH4 ratios have been used for source discrimination in the weekly atmospheric measurements of stable CH4 isotopes over a two-month winter period at the Lac La Biche (LLB) measurement station, located in Alberta, approximately 200 km northeast of Edmonton. The average signature of -59.5 ± 1.4‰ observed at LLB is likely associated with transport of air after passing over oil industry sources located south of the station.

  20. Isotopic signatures of sulfur in shallow Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Patris, Nicolas; Delmas, Robert J.; Jouzel, Jean

    2000-03-01

    Sulfur stable isotopes from Antarctic snow samples have been used to assess sources of sulfate. The novel experimental procedure presented here is suitable for the determination of sulfur isotopic composition at the micromolar level and has been adapted to polar ice samples. Measurements were carried out on three contiguous firn cores (PS6, PS7, and PS8) collected near Amundsen-Scott Station (South Pole), covering the record of the Agung eruption (March 1963). Taking into account the minimum amount of sulfate required for the isotope analysis, it has been possible to delineate three time periods along the cores: pre-1964 years (background sulfate level), 1964-1965 (volcanic deposition peak), and 1966-1968 (volcanic peak tail). A deeper part of another core (PS12) has been used to extend the background picture. Assuming the conservation of isotopic signatures during long-range transport and deposition processes, results demonstrate the significant volcanic contribution to sulfate deposition on the central Antarctic ice cap a few months after a major low-latitude eruption. They also confirm the marine biogenic origin of present background sulfate. Isotopic signatures (δ34S) of marine biogenic sulfate and volcanic sulfate from Mt. Agung have been found to be +18.6±0.9‰ and +2.7± .1‰, respectively.

  1. Investigating isotopic signatures of atmospheric nitrous acid (HONO)

    NASA Astrophysics Data System (ADS)

    Chai, J.; Miller, D. J.; Hastings, M. G.

    2016-12-01

    Nitrous acid (HONO) is an important reactive nitrogen species that can be easily photolyzed to nitrogen oxide and hydroxyl radical in the troposphere. HONO greatly influences atmospheric oxidation capacity, affecting the formation of tropospheric ozone (O3) and secondary aerosol. Recent studies have indicated that in addition to heterogeneous NOx reactions, biomass burning, soil emission and photolysis of nitric acid (HNO3) on surfaces (e.g. aerosol particles and soot) are also important sources of HONO. However, these sources have not yet been well constrained. The stable isotope ratios in nitrate have been successfully used to trace NOx sources and oxidation chemistry in the atmosphere. Can the isotopic signatures of HONO be used to trace NOx oxidation and renoxification pathways? For this purpose, we have built an annular denuder HONO collection system for the stable isotope study of HONO. Preliminary tests show successful collection and recovery of HONO synthesized in our lab. Nitrogen and oxygen isotopic analysis of the recovered HONO also shows consistent isotopic signatures. Results from field applications of this method in near road and on road environments, agricultural settings, and laboratory based biomass burns will be presented.

  2. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Jickells, T. D.; Baker, A. R.; Marca, A.; Johnson, M. T.

    2016-05-01

    We report aerosol ammonium 15N signatures for samples collected from research cruises on the South Atlantic and Caribbean using a new high sensitivity method. We confirm a pattern of isotopic signals from generally light (δ15N -5 to -10‰), for aerosols with very low (<2 nmol m-3) ammonium concentrations from the remote high latitude ocean, to generally heavier values (δ15N +5 to +10‰), for aerosols collected in temperate and tropical latitudes and with higher ammonium concentrations (>2 nmol m-3). We discuss whether this reflects a mixing of aerosols from two end-members (polluted continental and remote marine emissions), or isotopic fractionation during aerosol transport.

  3. Metal stable isotope signatures as tracers in environmental geochemistry.

    PubMed

    Wiederhold, Jan G

    2015-03-03

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.

  4. Isotopic signatures: An important tool in today`s world

    SciTech Connect

    Rokop, D.J.; Efurd, D.W.; Benjamin, T.M.; Cappis, J.H.; Chamberlin, J.W.; Poths, H.; Roensch, F.R.

    1995-12-01

    High-sensitivity/high-accuracy actinide measurement techniques developed to support weapons diagnostic capabilities at the Los Alamos National Laboratory are now being used for environmental monitoring. The measurement techniques used are Thermal Ionization Mass Spectrometry (TIMS), Alpha Spectrometry(AS), and High Resolution Gamma Spectrometry(HRGS). These techniques are used to address a wide variety of actinide inventory issues: Environmental surveillance, site characterizations, food chain member determination, sedimentary records of activities, and treaty compliance concerns. As little as 10 femtograms of plutonium can be detected in samples and isotopic signatures determined on samples containing sub-100 femtogram amounts. Uranium, present in all environmental samples, can generally yield isotopic signatures of anthropogenic origin when present at the 40 picogam/gram level. Solid samples (soils, sediments, fauna, and tissue) can range from a few particles to several kilograms in size. Water samples can range from a few milliliters to as much as 200 liters.

  5. The separation of stable isotopes of carbon

    NASA Astrophysics Data System (ADS)

    Oziashvili, E. D.; Egiazarov, A. S.

    1989-04-01

    The present state of work on the separation of carbon isotopes by diffusion, fractional distillation, chemical isotopic exchange, and the selective excitation and dissociation of molecules in electrical discharges or in the field of laser radiation has been examined. The characteristics of new laboratory and industrial assemblies for separating carbon isotopes have been described. Promising directions of study aimed at developing effective technological processes for separating carbon isotopes have been noted. The bibliography contains 148 references.

  6. Kinetic control on Zn isotope signatures recorded in marine diatoms

    NASA Astrophysics Data System (ADS)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that

  7. Kinetic and equilibrium Ba isotope fractionation during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    van Zuilen, Kirsten; Mavromatis, Vasileios; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2017-04-01

    Variations in stable isotope ratios recorded in carbonates are widely used to reconstruct the physicochemical conditions, e.g., pH, temperature and redox conditions, prevailing at the time of carbonate mineral formation. Knowledge of isotope fractionation factors during mineral precipitation under varying environmental conditions is irremissible for the interpretation of isotope variations in natural sedimentary archives. However, experimentally derived fractionation factors, of for instance Ca isotopes, are often ambiguous and incommensurable due to differences in experimental parameters. Here, Ba isotope fractionation during carbonate mineral formation was investigated [1]. Time-resolved experiments of witherite (BaCO3) precipitation revealed an initial kinetic isotope effect with increasing Δ137/134Ba values of the ambient solution, following Rayleigh fractionation (αwitherite-fluid = 0.99993 ± 0.00004). After precipitation, the witherite crystals remained in contact with the ambient solution for about nine days. During this time, chemical steady state was achieved between solution and witherite; however, the Δ137/134Ba values of the solution decreased. At isotopic equilibrium, the ambient solution and the witherite crystals exhibited identical δ137/134Ba values, within the analytical uncertainty of ±0.04 ‰Ṫhis observation is interpreted as the result of continuous exchange of Ba2+ ions between witherite and solution after initial preferential uptake of the lighter Ba isotopes in the precipitating carbonates. Mass balance calculations indicate that the ion exchange affects several subsurface layers of the crystals. In summary, Ba isotope exchange between carbonate and ambient solution occurs at chemical equilibrium, and pristine isotopic signatures in carbonates may thus be reset at low temperatures. [1] Mavromatis et al. (2016) Geochim. Cosmochim. Acta 190, 72-84.

  8. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    NASA Astrophysics Data System (ADS)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  9. The isotopic characterization of carbon monoxide in the troposphere

    NASA Astrophysics Data System (ADS)

    Conny, Joseph M.

    The distributions of stable isotopes in trace atmospheric species are controlled mainly by the isotopic compositions of precursor molecules and isotope fractionation effects during production and removal of the species. Distributions of radioactive isotopes are controlled mainly by the isotopic compositions of precursor molecules and radioactive decay processes. As a result, through their isotopic compositions, atmospheric species are traceable to sources and sinks. Thus, isotopic compositions provide useful information for estimating source strengths and for understanding the importance of removal processes in the cycling of the species. The use of radioactive 14C and the stable isotopes ( 13C and 18O) are reviewed here for understanding production and removal processes of CO in the troposphere. Carbon monoxide is a critical component in atmospheric chemistry because of its large effect on levels of OH, the principal oxidant in the atmosphere. In the troposphere, this is due to relatively high concentrations of CO and a short lifetime (2-4 months). Initially, 14CO measurements were instrumental in estimating accurately the tropospheric lifetime. Since seasonal 14CO variation is controlled largely by OH, 14CO serves as an important surrogate measure of tropospheric OH. Global 14CO measurements have also been used to estimate the biogenic component of the global CO budget, specifically contributions from biomass burning, oxidized non-methane hydrocarbon (NMHC) emissions, oceans and plants. Research using 14CO measurements is also active in quantifying fossil and non-fossil urban emissions. Kinetic isotopic fractionation during production of 13CO and C 18O from reduced precursors allows one to distinguish, at least qualitatively, different varieties of CO based on seasonal tropospheric isotopic measurements. Difficulties in interpreting the stable isotopic record arise from large fractionation effects that obscure source isotopic signatures (in particular the oxygen

  10. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  11. Oxygen Isotope Signatures of Biogenic Manganese(III/IV) Oxides

    NASA Astrophysics Data System (ADS)

    Sutherland, K. M.; Hansel, C. M.; Wankel, S. D.

    2015-12-01

    Manganese (Mn) oxide minerals are pervasive throughout a number of surface earth environments as rock varnishes, ferromanganese nodules, crusts around deep-sea vents, and cave deposits among many other marine, freshwater, and terrestrial deposits. Mn(III,IV) oxides are also among the strongest sorbents and oxidants in surface earth environments and are crucial to understanding the fate of organic matter in sedimentary environments. The precipitation of Mn oxide minerals proceeds via both abiotic and biotic oxidation pathways, the latter due to the indirect or direct activity of Mn(II)- oxidizing microorganisms, including bacteria and fungi. Although the precipitation of Mn oxides is believed to be primarily controlled by Mn(II)-oxidizing organisms in most surface earth environments, confirmation of this generally held notion has remained illusive and limits our understanding of their formation on Earth and beyond (e.g., Mars). Previous work provided evidence that O atom incorporation by specific Mn oxidation pathways may exhibit unique and predictable isotopic fractionation. In this study, we expand upon this evidence by measuring the oxygen isotope signature of several biogenic and abiogenic Mn oxide minerals synthesized under a range of oxygen-18 labeled water. These results allow us to determine the relative amount oxygen atoms derived from water and molecular oxygen that are incorporated in the oxide and shed light on corresponding isotope fractionation factors. Additionally, we show that, once precipitated, Mn oxide isotope signatures are robust with respect to aqueous oxygen isotope exchange. The study provides a foundation on which to study and interpret Mn oxides in natural environments and determine which environmental controls may govern Mn(II) oxidation.

  12. Unraveling the nitrogen isotopic signature of symbiotic corals

    NASA Astrophysics Data System (ADS)

    Devlin, Q.; Swart, P. K.; Altabet, M. A.

    2013-12-01

    Coral reefs thrive in shallow, tropical, low nutrient waters. Nutrient inputs to a reef environment are often interpreted by measuring the nitrogen isotopic composition of reef organisms. The δ15N signature of scleractinian corals has been historically measured to assess the presence of anthropogenic influences such as sewage and fertilizer runoff. The majority of reef building corals form a symbiotic partnership with the dinoflagellate algae, Symbiodinium microadriaticum. The δ15N signature of symbiotic corals is complex as it is not only dependent on nitrogen acquisition by the coral, but also by the algal symbionts that reside within the gastrodermal tissue layer. The relationship between the δ15N of dissolved inorganic nitrogen (DIN) and the δ15N of coral tissue has not been established. The aim of this study is to identify considerations necessary when interpreting nitrogen sources based on δ15N of coral tissue. Incubations were carried out in order to measure isotopic fractionation associated with nitrate and ammonium incorporation by the Pacific branching coral, Pocillopora damicornis. We investigated the dependence of nitrogen isotope fractionation on species of DIN (nitrate or ammonium), concentration of DIN (range: 1-50 μM N), genetic diversity of algal symbionts (clade C or clade D) and light levels.

  13. Water evaporation characterization by its isotopic signature in controlled conditions

    NASA Astrophysics Data System (ADS)

    Biron, Philippe; Richard, Patricia; Delay, Frederick; Ackerer, Philippe; Durand, Jean-Louis; Bariac, Thierry

    2017-04-01

    Water balance closure remains a critical problem in studies of the continental hydrological cycle. This is especially emphasized regarding the various components of evapotranspiration, that are difficult to measure all the more they concern evaporation fluxes from open water bodies. The natural isotopic tracing of water is increasingly used to better understand the water balance and to measure the signatures of the different vapour sources. However, this approach needs for a sharp characterization of the source signatures and of the products in the vapour-liquid exchanges. Therefore, it is necessary to determine the isotopic composition of the vapour from open water reservoirs before it exchanges and mixes its own components with the ambient atmosphere. In our work, we conducted the characterization of water vapour above open water tanks for different experiments under controlled conditions in a biogeochemical reactor, the aim being to validate an isotopic evaporation-condensation model coupled with mass balance equations. This work should be further extended to the other components of the evapotranspiration flux as the soil evaporation and plant transpiration.

  14. Sediment Tracking Using Carbon and Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Papanicolaou, A.

    2002-12-01

    As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to

  15. Carbon isotope fractionation in wood during carbonization

    NASA Astrophysics Data System (ADS)

    Turney, C. S. M.; Wheeler, D.; Chivas, Allan R.

    2006-02-01

    A significant uncertainty exists as to whether δ 13C values in charcoal meaningfully represent the stable isotopic content of the original material, with studies suggesting variable responses to both natural and laboratory heating. An extensive study was undertaken using fully homogenised samples of wood taken from Eucalyptus spp., Quercus robur and Pinus radiata. The results demonstrate that the duration of heating had no tangible effect on the final composition of the charred material, with the δ 13C and carbon content of wood fixed after 30 min of heating. Furthermore, all three wood types become progressively depleted in 13C with increasing temperature. The results demonstrate that even at temperatures commonly reached in natural fires (<450 °C) isotopic fractionation of up to 1.3‰ can take place indicating that the absolute values obtained from charcoal extracted for paleoenvironmental reconstruction must be interpreted with caution.

  16. Cadmium Isotope Fractionation in Seawater - A Signature of Nutrient Utilization

    NASA Astrophysics Data System (ADS)

    Wichtlhuber, S.; Rehkaemper, M.; Halliday, A. N.

    2005-12-01

    .0005. The isotopic variations observed for seawater are likely to reflect isotope fractionation during uptake of Cd by phytoplankton, as recently reported by Lacan et al. (2005), because inorganic geological processes (other than evaporation/condensation) do not appear to generate isotope effects as large as those observed in the present study (Wombacher et. al, 2003). These preliminary results suggest that Cd isotopes have the potential to become a useful proxy of nutrient utilization, which could supplement the Cd/Ca and δ13C records of previous studies, if suitable sedimentary archives can be identified that preserve the Cd isotope signatures of past seawater. References: Lacan F., Francois R., Ji Y. and Sherrell R., 2005. Does oceanic productivity production lead to a cadmium isotope fractionation? Geophys. Res. Abstr. 7, 07657. Wombacher F., Rehkämper M., Mezger K. and Münker C., 2003. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple collector-ICPMS. Geochim. Cosmochim. Acta, 67, 4639-4654.

  17. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  18. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  19. Effect of native and invasive cordgrass on Macoma petalum density, growth, and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Brusati, Elizabeth D.; Grosholz, Edwin D.

    2007-02-01

    Ecosystem engineers can influence community and ecosystem dynamics by controlling resources, modifying the flow of energy or biomass, or changing physical characteristics of the habitat. Invasive hybrid cordgrass ( Spartina alterniflora × Spartina foliosa ) is an ecosystem engineer in salt marshes in San Francisco Bay, California, U.S.A. that raises intertidal elevations and may be either increasing C4 plant carbon input into food webs or tying up carbon in a form that is not usable by consumers. A manipulative experiment compared abundance, growth, and stable isotope (δ 13C and δ 15N) composition of the clam Macoma petalum (= M. balthica) among native marsh, hybrid Spartina, and mudflats in central San Francisco Bay. We found higher densities (individuals m -2) of M. petalum on mudflats compared to either native or hybrid Spartina ( p < 0.001). Macoma petalum shell growth was significantly greater in mudflats than in either vegetation type in 2002 ( p = 0.005) but not 2003. Differences in shell growth between native and hybrid Spartina were not significant. Stable isotope results showed differences between habitats in δ 13C but not δ 15N. Carbon signatures of M. petalum placed in Spartina were much more depleted than the isotopic signature of Spartina. Neither native nor hybrid Spartina appears to be a significant carbon source for M. petalum in San Francisco Bay, and we found no evidence that hybrid Spartina contributes carbon to M. petalum beyond what is provided by S. foliosa, despite the hybrid's much greater biomass. Our results show that loss of mudflat habitat, rather than increased input of C4 carbon, is the greatest effect of the invasion of hybrid Spartina on M. petalum.

  20. Stable Isotopic Signatures of CO Uptake and Emission by Soil

    NASA Astrophysics Data System (ADS)

    Popa, E.; Röckmann, T.

    2015-12-01

    CO is important for atmospheric chemistry, is a pollutant, and it has been recognized as an important indirect greenhouse gas. Globally, soil uptake is one of main sinks of CO. On local scale, soil can be either a net sink or a net source of CO, due to the fact that both consumption and production of CO take place in soil concomitantly. These two phenomena are independent: while the uptake is microbial, the production is from abiotic oxidation of organic matter. In order to determine the isotopic signature of the exchange of CO between soil and atmosphere, soil chamber experiments were performed at a forest site in the Netherlands. Flaks samples were filled from the soil chamber, and analyzed for the stable isotopes 13C and 18O using the high precision measurement facility at IMAU. We found that the uptake of CO by soil is associated with a small positive fractionation, i.e. the lighter CO is taken up faster. Although the soil at this site was a strong sink for CO, the isotopic data show that a small emission flux was also present in all cases. The isotopic composition of the emitted CO is depleted in 13C compared to atmospheric CO, and compatible with a source from plant and soil organic matter oxidation.

  1. Carbon isotopic composition of Amazon shelf sediments

    SciTech Connect

    Showers, W.J.; Angle, D.G.; Nittrouer, C.A.; Demaster, D.J.

    1985-02-01

    The distribution of carbon isotopes in Amazon shelf sediment is controlled by the same processes that are forming the modern subaqueous delta. The terrestrial (-27 to -25 per thousand) isotopic carbon signal observed in surficial sediments near the river mouth extends over 400 km northwest along the shelf. Terrestrial carbon is associated with areas of rapid sediment accumulation (topset and foreset regions). A sharp boundary between terrestrial (-27 to -25 per thousand) and marine (-23 to -22 per thousand) isotopic carbon values in surficial sediments is associated with a change in depositional conditions (foreset to bottomset regions) and a decrease in sediment accumulation rate. POC water-column isotopic values (-27 per thousand) near the river mouth are similar to the underlying surficial-sediment TOC isotopic values, but POC water-column samples collected 20 km off the river mouth have marine carbon isotopic values (-22 to -19 per thousand) and differ from the underlying surficial-sediment TOC isotopic values. These water column observations are related to variations in turbidity and productivity. Down-core isotopic variation is only observed in cores taken in areas of lower sediment accumulation rates. These observations indicate that the organic carbon in Amazon shelf sediment is dominantly terrestrial in composition, and the location of deposition of this carbon is controlled by modern processes of sediment accumulation. The modern Amazon shelf is similar to large clinoform shale deposits of the Cretaceous in North America. Thus, the stratigraphic setting may help predict the isotopic variations of carbon in ancient deposits.

  2. Carbon isotope controlled molecular switches

    NASA Astrophysics Data System (ADS)

    Foster, Brian K.

    Single molecules represent one fundamental limit to the downscaling of electronics. As a prototype element for carbon-based nanoscale science and technology, the detailed behavior of carbon monoxide (CO) on the copper surface Cu(111) has been investigated. These investigations span from individual carbon isotope resolution, to single molecules, to compact clusters assembled by molecular manipulation via a homemade scanning tunneling microscope (STM). Sub-nanoscale devices, composed of only a few molecules, which exploit both lone CO properties and molecule-molecule interaction, have been designed and assembled. The devices function as bi-stable switches and can serve as classical bits with densities > 50 Tbits/cm2. Operated in the nuclear mass sensitive regime, each switch can also function as a molecular "centrifuge" capable of identifying the isotope of a single carbon atom in real-time. A model, based on electron-vibron couping and inelastic tunneling, has been developed and explains the dynamic behavior of the switch. The interaction between pairs of switches was also explored and it was found that their behavior ranges from completely independent to strongly coupled. Larger nanostructures, which were composed of many sub-switches organized to leverage the fully coupled interaction, link two spatially separated "bits" on the surface. Such a linked system can set or read a state non-locally, which is equivalent to bidirectional information transfer. The linked system has also exhibited logic functionality. These experiments demonstrate scalable molecular cells for information storage, and for information processing through cellular automata logic schemes.

  3. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  4. Carbon isotope effects in carbonate systems

    NASA Astrophysics Data System (ADS)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  5. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1991-04-01

    This is the final report which was a thirty-four month project conducted to develop and demonstrate stable carbon isotope analysis as a method to quantitatively distinguish the source of carbon in products of coal/petroleum coprocessing. The work included assessing precision, accuracy, the range of application and the significance of selective isotopic fractionation effects. A method was devised to correct for selective isotopic fractionation errors. The method was demonstrated through application with samples from twelve continuous-unit coprocessing tests. A data base of carbon isotope analyses is appended. 21 refs.

  6. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics

    NASA Technical Reports Server (NTRS)

    Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III

    2012-01-01

    Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.

  7. Isotopic signature of atmospheric phosphate emitted from coal combustion

    NASA Astrophysics Data System (ADS)

    Weinberger, Roi; Weiner, Tal; Angert, Alon

    2016-07-01

    Atmospheric deposition of phosphorus (P) serves as an important nutrient input for many terrestrial, marine and freshwater ecosystems, influencing their biogeochemistry and primary production. Fossil fuel combustion, principally coal, is estimated to be a major source of atmospheric-P in industrialized regions. In this research, we aim to find a distinct isotopic signature for fly coal ash, the by-product of coal combustion that is emitted to the atmosphere. This signature could be used to identify coal's contribution to atmospheric-P. For this aim, ten fly coal ash samples from different coal sources, collected by power station filters, were analyzed for P concentrations and stable oxygen isotopic composition (δ18OP). Two inorganic phosphate fractions were analyzed: HCl-extractable and resin-extractable (bioavailable P). High HCl-P concentrations of up to 3500 μg P/g ash were found with a distinct δ18OP range of 17.1-20.5‰. The resin-P concentrations were substantially lower (<8 μg/g) with a wider and significantly lower δ18OP range of 10.6-16.5‰. The ash samples were found to have HCl-P δ18OP higher in ∼0-∼9‰ relative to the source coal. Similar isotopic values were found for ash with the same coal source country, regardless of the power station. Despite the low bioavailable P concentrations, fly ash could still be an important atmospheric P source to the biosphere since these combustion products likely acidify in the atmosphere to become bioavailable. This is also supported by our finding that smaller particles, which are more indicative of the particles actually emitted to the atmosphere, are significantly P-richer. Natural dust sources' δ18OP overlap fly ash's range, complicating the assessment of coal's contribution. Nonetheless, our results provide a new tool for identification of fossil fuel combustion sources in local and global atmospheric P deposition.

  8. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  9. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  10. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-04-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb/ppb and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2/ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  11. Impact of environmental curium on plutonium migration and isotopic signatures.

    PubMed

    Kurosaki, Hiromu; Kaplan, Daniel I; Clark, Sue B

    2014-12-02

    Plutonium (Pu), americium (Am), and curium (Cm) activities were measured in sediments from a former radioactive waste disposal basin located on the Savannah River Site, South Carolina, and in subsurface aquifer sediments collected downgradient from the basin. In situ Kd values (Pu concentration ratio of sediment/groundwater) derived from this field data and previously reported groundwater concentration data compared well to laboratory Kd values reported in the literature. Pu isotopic signatures confirmed multiple sources of Pu contamination. The ratio of (240)Pu/(239)Pu was appreciably lower for sediment samples compared to the associated groundwater. This isotopic ratio difference may be explained by the following: (1) (240)Pu produced by decay of (244)Cm may exist predominantly in high oxidation states (Pu(V)O2(+) and Pu(VI)O2(2+)) compared to Pu derived from the disposed waste effluents, and (2) oxidized forms of Pu sorb less to sediments than reduced forms of Pu. Isotope-specific Kd values calculated from measured Pu activities in the sediments and groundwater indicated that (240)Pu, which is derived primarily from the decay of (244)Cm, had a value of 10 ± 2 mL g(-1), whereas (239)Pu originating from the waste effluents discharged at the site had a value of 101 ± 8 mL g(-1). One possible explanation for the isotope-specific sorption behavior is that (240)Pu likely existed in the weaker sorbing oxidation states, +5 or +6, than (239)Pu, which likely existed in the +3 or +4 oxidation states. Consequently, remediation strategies for radioactively contaminated systems must consider not only the discharged contaminants but also their decay products. In this case, mitigation of Cm as well as Pu will be required to completely address Pu migration from the source term.

  12. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  13. The carbon isotopic composition of ecosystem breath

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance

  14. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application an authentic continuous-unit products. The experimental details used for stable carbon isotope analyses by the organization that performs most of those analyses under this contract are described. A method was developed previously under this contract to correct the carbon sourcing calculations performed from stable carbon isotope analyses for selective isotopic fractionation. The method relies on three assumptions. This quarter, a study was completed to define the sensitivity of the carbon sourcing results to errors in the assumptions. Carbon contents and carbon isotope ratios were determined for the available feeds and product fractions from HRI bench-scale coprocessing Run 238-10 (Texas lignite/Hondo vacuum still bottoms (VSB), Texas lignite/Cold Lake VSB and Westerholt coal/Cold Lake VSB). These data were used for carbon sourcing calculations and individual feedstock conversion calculations. A previously devised means for correcting for selective isotope fractionation was applied. 6 refs., 30 figs., 16 tabs.

  15. The zinc stable isotope signature of waste rock drainage in Arctic Canada

    NASA Astrophysics Data System (ADS)

    Matthies, Romy; Blowes, David

    2014-05-01

    Leachate emerging from a pilot-scale waste rock pile of the Diavik diamond mine, Northwest Territories, was monitored. The well-characterized waste rock consists of granite, pegmatitic granite and biotite schist with an average total sulfur and carbonate carbon concentration of 0.053 and 0.027 wt. %, respectively. During the field seasons of 2011 and 2012, the Zn stable isotope footprint was characterized alongside standard monitoring parameters. pH ranged between 4.3 and 6.8 and carbonate alkalinity was low or undetectable. Al and Fe concentrations averaged 6.78 mg L-1 and 175 µg L-1, respectively. The pH and metal mobility were governed by sulfide oxidation and sorption and co-precipitation onto iron and aluminium hydroxides. The main processes controlling zinc mobility in the range of 0.4 and 4.7 mg L-1 was the oxidative dissolution of sphalerite (ZnS) in the biotite schist and the attenuation of zinc onto secondary iron and aluminium hydroxides and desorption upon the pH declining below the pHpzc. The isotope ratios between -0.16 and +0.19 ‰ (δ66Zn, avg = +0.05 ‰, n = 43) are consistent with values reported from other sphalerite containing deposits. Zn isotope ratios and concentrations were largely uncorrelated suggesting that the processes affecting Zn mobility had little or no impact on the Zn isotope signature. Data indicate, that the Zn isotope ratios of the waste rock leachate may be used as a fingerprint to track anthropogenic, mine-derived Zn sources under varying environmental conditions.

  16. Isotopic source signatures for atmospheric lead: the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Bollhöfer, A.; Rosman, K. J. R.

    2000-10-01

    Aerosols collected between 1994 and 1999 at more than 70 different sites affecting the Southern Hemisphere have been measured for their 206Pb/ 207Pb, 208Pb/ 207Pb and 206Pb/ 204Pb ratios and Pb concentrations. Lower ratios are found at the southern tips of Africa, Australia and South America probably due to the supply of alkyllead from a common supplier such as Associated Octel. The ratios increase in a northerly direction probably due to a changing market share in alkyllead or an increasing industrial Pb contribution. The geographical variations in isotopic signatures made it possible to broadly characterize the different regions that influence the Southern Hemisphere. Brazil and Argentina exhibited 206Pb/ 207Pb, 208Pb/ 207Pb and 206Pb/ 204Pb ratios in aerosols of 1.141-1.184, 2.416-2.442 and 17.77-18.57, respectively. Mexican aerosols had values of 1.188-1.197, 2.452-2.463 and 18.46-18.73. Aerosols sampled in Chile had low ratios in the South of 1.063-1.094, 2.337-2.373 and 16.46-17.13 which increased in a northerly direction. Emissions from South Africa were characterized by ratios 1.067-1.090, 2.340-2.358 and 16.53-16.99. In 1994-1995 Australia and New Zealand had ratios of 1.060-1.193, 2.324-2.445 and 16.08-18.54. In 1997 however, the range was narrower: 1.072-1.112, 2.342-2.398 and 16.55-17.36, respectively. These isotopic signatures are potentially useful for tracing sources of pollution and the movement of air-masses on a global scale.

  17. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-07

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.

  18. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Colman, Albert; Olack, Gerard; Waniek, Joanna J.; Hodell, David

    2015-06-01

    Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 δ18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, δD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5‰ for δ18O and 0 to 2‰ for δD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high δ18O (0.5-1.1‰) and δD (3-6‰) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (δ18O: -0.1 to 0.5‰; δD: -1 to 4‰) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed δ18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0

  19. Mechanistic studies of sesquiterpene cyclases based on their carbon isotope ratios at natural abundance.

    PubMed

    Tan, Wenhua; Bartram, Stefan; Boland, Wilhelm

    2017-01-03

    During the process of terpene biosynthesis, C-C bond breaking and forming steps are subjected to kinetic carbon isotope effects, leading to distinct carbon isotopic signatures of the products. Accordingly, carbon isotopic signatures could be used to reveal the 'biosynthetic history' of the produced terpenoids. Five known sesquiterpene cyclases, regulating three different pathways, representing simple to complex biosynthetic sequences, were heterologously expressed and used for in vitro assays with farnesyl diphosphate as substrate. Compound specific isotope ratio mass spectrometry measurements of the enzyme substrate farnesyl diphosphate (FDP) and the products of all the five cyclases were performed. The calculated δ(13) C value for FDP, based on δ(13) C values and relative amounts of the products, was identical with its measured δ(13) C value, confirming the reliability of the approach and the precision of measurements. The different carbon isotope ratios of the products reflect the complexity of their structure and are correlated with the frequency of carbon-carbon bond forming and breaking steps on their individual biosynthetic pathways. Thus, the analysis of carbon isotopic signatures of terpenes at natural abundance can be used as a powerful tool in elucidation of associated biosynthetic mechanisms of terpene synthases and in future in vivo studies even without 'touching' the plant. © 2017 John Wiley & Sons Ltd.

  20. Carbon isotope geochemistry of the Santa Clara River

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline A.; Druffel, Ellen R. M.

    2001-06-01

    The Santa Clara River is a prototypical small mountainous river, with a headwater height greater than 1000 m and a basin area smaller than 10,000 m 2. Although individual small mountainous rivers export trivial amounts of sediment and carbon to the ocean, as a group these rivers may export a major fraction (as much as 50%) of the total global river sediment flux [Milliman and Syvitski, 1992], making their geochemistry relevant the study of the ocean's carbon cycle. In addition, many small rivers export sediment in a few high flux events, causing massive, sporadic discharge of carbon onto coastal shelves, discharge conditions very different from those of large rivers. This class of rivers is an end-member of the river-ocean carbon exchange system,. opposite the Earth's largest river, the Amazon. The carbon mass and isotopic properties of the Santa Clara River are significantly different from previously studied large rivers. During the 1997-1998 winter, all Santa Clara carbon pools were old, with flux-weighted average Δl4C values of-428±76‰ for particulate organic carbon, -73±31‰ for dissolved organic carbon, and-644±58‰ for black carbon. The age of exported carbon is primarily due to the deep erosion of old soils and not to inclusion of fossil fuel carbon. Additionally, the δ13C signatures of exported carbon pools were high relative to terrestrial carbon, bearing a signature quite similar to marine carbon (average particulate organic carbon (POC) δ13C = -22.2±0.8‰). The Santa Clara's estuary is small and drains onto the narrow eastern Pacific coastal margin, exporting this old soil organic matter directly into the ocean. If the Santa Clara export patterns are representative of this class of rivers, they may be a significant source of refractory terrestrial carbon to the ocean.

  1. THE CD ISOTOPE SIGNATURE OF THE SOUTHERN OCEAN

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Middag, R.; de Baar, H.; Andreae, M. O.; Feldmann, H.; Raczek, I.

    2009-12-01

    The availability of micronutrients can limit and control plankton ecosystems, notably in the Southern Ocean which plays a major role in regulating the CO2 biological pump. Cadmium has a nutrient-like distribution in seawater - it is directly incorporated into living plankton in the upper water column and re-mineralised at depth. The nutritional role of Cd (Price and Morel, 1990) makes it a potentially useful tracer of biological productivity. We report Cd concentration and Cd stable isotope data obtained using a double-spike TIMS method on seawater samples collected during the Zero and Drake Passage cruise (ANTXXIV-III, IPY-GEOTRACES 2008). Four vertical profiles were collected from 40 to 70°S across the Polar Front using the ultra-clean Titan frame (De Baar et al., 2008), providing a record of changes in biological productivity from the Subantarctic to the Antarctic region. Data from two profiles from the SE Atlantic (47.66°S, 4.28W) and Drake Passage (55.13°S, 65.53°W) obtained on 1 litre-sized samples are presented. Both profiles show a increase in Cd concentration with depth, with noticeably higher concentrations in the SE Atlantic. Cd and PO4 are positively correlated with distinct slopes for the two profiles. The Cd isotope data are expressed as ɛ112/110Cd relative to our JMC Mainz standard (± 8ppm, 2SD, N=17). ɛ112/110Cd values show a continuous decrease with increasing depth and a significant shift towards heavier values in the upper 400m at both stations resolvable outside analytical error (2SE ≤ 20ppm). The sense of Cd isotope fractionation confirms previous findings of uptake of “light” Cd by phytoplankton in the upper water column (Lacan et al., 2006; Ripperger et al., 2007; Schmidt et al., 2009). Most important is the evidence for a distinctive heavier Cd isotope signature in AASW relative to AAIW. This result demonstrates that different water masses carry distinct Cd isotopic compositions reflecting changes in Cd uptake by phytoplankton

  2. Development of a Field-Deployable Methane Carbon Isotope Analyzer

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Methane is a potent greenhouse gas, whose atmospheric surface mixing ratio has almost doubled compared with preindustrial values. Methane can be produced by biogenic processes, thermogenic processes or biomass, with different isotopic signatures. As a key molecule involved in the radiative forcing in the atmosphere, methane is thus one of the most important molecules linking the biosphere and atmosphere. Therefore precise measurements of mixing ratios and isotopic compositions will help scientists to better understand methane sources and sinks. To date, high precision isotope measurements have been exclusively performed with conventional isotope ratio mass spectrometry, which involves intensive labor and is not readily field deployable. Optical studies using infrared laser spectroscopy have also been reported to measure the isotopic ratios. However, the precision of optical-based analyses, to date, is typically unsatisfactory without pre-concentration procedures. We present characterization of the performance of a portable Methane Carbon Isotope Analyzer (MCIA), based on cavity enhanced laser absorption spectroscopy technique, that provides in-situ measurements of the carbon isotope ratio (13C/12C or del_13C) and methane mixing ratio (CH4). The sample is introduced to the analyzer directly without any requirement for pretreatment or preconcentration. A typical precision of less than 1 per mill (< 0.1%) with a 10-ppm methane sample can be achieved in a measurement time of less than 100 seconds. The MCIA can report carbon isotope ratio and concentration measurements over a very wide range of methane concentrations. Results of laboratory tests and field measurements will be presented.

  3. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  4. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-12-31

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  5. Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, J.; Randall, Michael; Dennis, George D.; Brooks, R.A.

    2008-01-01

    The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.

  6. Isotope engineering of carbon nanotube systems.

    PubMed

    Simon, F; Kramberger, Ch; Pfeiffer, R; Kuzmany, H; Zólyomi, V; Kürti, J; Singer, P M; Alloul, H

    2005-07-01

    The synthesis of a unique isotope engineered system, double-wall carbon nanotubes with natural carbon outer and highly 13C enriched inner walls, is reported from isotope enriched fullerenes encapsulated in single-wall carbon nanotubes (SWCNTs). The material allows the observation of the D line of the highly defect-free inner tubes that can be related to a curvature induced enhancement of the electron-phonon coupling. Ab initio calculations explain the inhomogeneous broadening of inner tube Raman modes due to the distribution of different isotopes. Nuclear magnetic resonance shows a significant contrast of the isotope enriched inner SWCNTs compared to other carbon phases and provides a macroscopic measure of the inner tube mass content. The high curvature of the small diameter inner tubes manifests in an increased distribution of the chemical shift tensor components.

  7. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  8. Carbon isotopic fractionation in heterotrophic microbial metabolism

    SciTech Connect

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-10-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. 38 references.

  9. Carbon isotopic fractionation in heterotrophic microbial metabolism.

    PubMed Central

    Blair, N; Leu, A; Muñoz, E; Olsen, J; Kwong, E; Des Marais, D

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. PMID:2867741

  10. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  11. Isotope Engineering of Carbon Nanotube Systems

    NASA Astrophysics Data System (ADS)

    Simon, F.; Kramberger, Ch.; Pfeiffer, R.; Kuzmany, H.; Zólyomi, V.; Kürti, J.; Singer, P. M.; Alloul, H.

    2005-06-01

    The synthesis of a unique isotope engineered system, double-wall carbon nanotubes with natural carbon outer and highly 13C enriched inner walls, is reported from isotope enriched fullerenes encapsulated in single-wall carbon nanotubes (SWCNTs). The material allows the observation of the D line of the highly defect-free inner tubes that can be related to a curvature induced enhancement of the electron-phonon coupling. Ab initio calculations explain the inhomogeneous broadening of inner tube Raman modes due to the distribution of different isotopes. Nuclear magnetic resonance shows a significant contrast of the isotope enriched inner SWCNTs compared to other carbon phases and provides a macroscopic measure of the inner tube mass content. The high curvature of the small diameter inner tubes manifests in an increased distribution of the chemical shift tensor components.

  12. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1990-05-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Activities for this quarter include: method development -- investigation of selective fractionation. Three petroleum atmospheric still bottoms (ASBs) were separated by distillation and solubility fractionation to determine the homogeneity of the carbon isotope ratios of the separated fractions. These same three petroleum ASBs and three geographically distinct coals were pyrolyzed at 800{degree}F for 30 min and hydrogenated over a CoMo catalyst at 750{degree}F for 60 min to determine the effects of these treatments on the isotopic compositions of the produce fractions. Twelve coal liquefaction oils were analyzed for carbon isotope ratios. These oils were derived from subbituminous and bituminous coals from the first- and second-stage reactors in the thermal/catalytic and modes; validation and application, analysis. Carbon isotope analyses of samples from HRI bench unit coprocessing run 238-2 (Taiheiyo coal/Maya VSB) were analyzed. A method to correct for selective isotopic fractionation was developed and applied to the data. Five coprocessing samples were analyzed at the request of SRI International. 12 refs., 15 figs., 24 tabs.

  13. Stable isotope signature of philopatry and dispersal in a migratory songbird.

    PubMed

    Graves, Gary R; Romanek, Christopher S; Rodriguez Navarro, Alejandro

    2002-06-11

    Stable isotope analysis is widely promoted as a practical method for tracing the geographic origins of migratory birds. However, the extent to which geospatial patterns of isotope ratios in avian tissues are influenced by age-specific, altitudinal, and temporal factors remains largely unexplored. We measured carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotope ratios in feathers of black-throated blue warblers (Dendroica caerulescens) breeding along a relatively steep altitudinal gradient in the Appalachian Mountains to evaluate the effects of altitude and year on the isotopic signatures of yearling (first breeding season) and older males (>2 years). Breeding males (n = 302) collected during 7 consecutive years exhibited significant age-specific and altitudinal effects in delta(13)C values and age-specific and temporal effects in delta(15)N values. The delta(13)C values of older males increased with altitude at the rate of approximately 1.3 per thousand per 1,000 m, suggesting a high degree of year-to-year philopatry to narrow altitudinal zones, if not to breeding territories. In contrast, absence of altitudinal patterns in yearlings most likely reflects natal dispersal. Carbon isotope variation (delta(13)C = -26.07 to -20.86 per thousand) observed along a single altitudinal transect (755 m) nearly brackets the range of delta(13)C values recorded in feathers across the North American breeding range of the warbler from Georgia to New Brunswick (11 degrees of latitude) and from New Brunswick to Michigan (22 degrees of longitude). These data indicate that age-specific and altitudinal effects must be considered when using delta(13)C values to delineate the geographic origin of avian species with large altitudinal and latitudinal ranges.

  14. Isotopic Signatures for Source Apportionment of Ammonia in Urban Atmosphere

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Liu, X.

    2016-12-01

    Stable nitrogen isotope composition (δ15N) offers new opportunities to address the long-standing and ongoing controversy regarding the origins of ambient ammonia (NH3), a vital precursor of PM2.5 inorganic components, in the urban atmosphere. In this study, the δ15N values of NH3 samples collected from various sources were constrained using a novel and robust chemical method coupled with standard elemental analysis procedures. Independent of the wide variation in mass concentrations (ranging from 33 (vehicle) to over 6000 (human excreta) μg m-3), different NH3 sources have generally different δ15N values (ranging from -52.0 to -9.6‰). Significantly high δ15N values are seen as a characteristic feature of all vehicle-derived NH3 samples (-14.2±2.8‰), which can be distinguished from other sources emitted at environmental temperature (-29.1±1.7, -37.8±3.6, and -50.0±1.8‰ for livestock, waste, and fertilizer, respectively). The isotope δ15N signatures for a range of NH3 emission sources were used to evaluate the contributions of the different sources within measured ambient NH3 in Beijing, using an isotope mixing model (IsoSource). The method was used to quantify the sources of ambient NH3 before, during and after the 2014 APEC summit, when a set of stringent air quality control measures were implemented. Results show that the average NH3 concentrations (the overall contributions of traffic, waste, livestock, and fertilizer) during the three periods were 9.1 (15.1, 31.2, 23.7, and 30.0%), 7.3 (8.8, 24.9, 14.3, and 52.0%), and 12.7 (29.4, 23.6, 31.7, and 15.4%) μg m-3, respectively, representing a 20.0% decrease first and then a 74.5% increase in overall NH3 mass concentrations. During (after) the summit, the contributions of traffic, waste, livestock, and fertilizer decreased (increased) by 58.7 (234.2), 0.9 (-5.0), 41.0 (120.8), and -87.6% (-70.5%) when compared with periods before (during) the summit, respectively, signifying that future NH3 control

  15. Oxygen isotope signatures of transpired water vapor - the role of isotopic non-steady-state transpiration of Mediterranean cork-oaks (Quercus suber L.)under natural conditions

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Werner, Christiane

    2014-05-01

    Oxygen isotope signatures of transpired water vapor (δT) are a powerful tracer of water movement from plants to the global scale, but little is known on short-term variability of δT as direct high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes and δT to evaluate a modeling approach and investigate the role of isotopic non-steady-state transpiration under natural conditions in distinct seasons in cork-oaks (Quercus suber L.). The isotope signature of transpiration (δT) always deviated from steady-state predictions (ΔT) throughout most of the day even when leaf water at the evaporating sites is near isotopic steady-state. Thus, ΔT is further amplified compared to deviations of leaf water isotopes from steady-state, specifically in dry conditions. High agreement was found for direct estimates and modeled ΔT assuming non-steady-state conditions of leaf-water at the evaporating sites. Strong isoforcing on the atmosphere of transpiration in isotopic non-steady-state imply that short-term variations in δT have likely consequences for large-scale applications, e.g. partitioning of ecosystem evapotranspiration or carbon fluxes using C18O16O, or satellite-based applications.

  16. A Carbonate Li Isotope Record Through Earth's History

    NASA Astrophysics Data System (ADS)

    Asael, D.; Kalderon-Asael, B.; Planavsky, N.

    2016-12-01

    Lithium (Li) isotopes emerge as a powerful geochemical proxy for tracking continental weathering through time. Extensive work on Li fractionation in modern systems has brought to a profound understanding of the modern Li budget as well as to a consensus that marine carbonates faithfully record seawater Li isotope signature. As such record is essential in order to track global-scale changes in weathering processes and intensity through Earth's history, we have generated Li isotope data from marine carbonates from over 40 units, ranging in age from 3.0 Ga to modern. Preliminary results provide evidence for strongly inhibited weathering-mediated clay formation prior to the Paleozoic, which we attribute to the pre-Paleozoic lack of land plants. The initial rise in the Li isotope values is observed during the Ordovician, which is followed by a subsequent drop to background values and then begins the generally increasing trend that is already well reported. These findings are open for interpretation but they still support the view that the emergence of land plants dramatically changed the process of weathering and it seems that biomass has a potentially significant role in mineral breakdown in soils. Li isotopes provide a novel perspective on weathering and the impact on the Earth system of the rise of land plants - one of the most significant transitions in Earth's history.

  17. The magnesium isotope (δ26Mg) signature of dolomites

    NASA Astrophysics Data System (ADS)

    Geske, A.; Goldstein, R. H.; Mavromatis, V.; Richter, D. K.; Buhl, D.; Kluge, T.; John, C. M.; Immenhauser, A.

    2015-01-01

    Dolomite precipitation models and kinetics are debated and complicated due to the complex and temporally fluctuating fluid chemistry and different diagenetic environments. Using well-established isotope systems (δ18O, δ13C, 87Sr/86Sr), fluid inclusions and elemental data, as well as a detailed sedimentological and petrographic data set, we established the precipitation environment and subsequent diagenetic pathways of a series of Proterozoic to Pleistocene syn-depositional marine evaporative (sabkha) dolomites, syn-depositional non-marine evaporative (lacustrine and palustrine) dolomites, altered marine ("mixing zone") dolomites and late diagenetic hydrothermal dolomites. These data form the prerequisite for a systematic investigation of dolomite magnesium isotope ratios (δ26Mgdol). Dolomite δ26Mg ratios documented here range, from -2.49‰ to -0.45‰ (δ26Mgmean = -1.75 ± 1.08‰, n = 42). The isotopically most depleted end member is represented by earliest diagenetic marine evaporative sabkha dolomites (-2.11 ± 0.54‰ 2σ, n = 14). In comparing ancient compositions to modern ones, some of the variation is probably due to alteration. Altered marine (-1.41 ± 0.64‰ 2σ, n = 4), and earliest diagenetic lacustrine and palustrine dolomites (-1.25 ± 0.86‰ 2σ, n = 14) are less negative than sabkha dolomites but not distinct in composition. Various hydrothermal dolomites are characterized by a comparatively wide range of δ26Mg ratios, with values of -1.44 ± 1.33‰ (2σ, n = 10). By using fluid inclusion data and clumped isotope thermometry (Δ47) to represent temperature of precipitation for hydrothermal dolomites, there is no correlation between fluid temperature (∼100 to 180 °C) and dolomite Mg isotope signature (R2 = 0.14); nor is there a correlation between δ26Mgdol and δ18Odol. Magnesium-isotope values of different dolomite types are affected by a complex array of different Mg sources and sinks, dissolution/precipitation and non

  18. Stable carbon isotope fractionation by sulfate-reducing bacteria

    NASA Technical Reports Server (NTRS)

    Londry, Kathleen L.; Des Marais, David J.

    2003-01-01

    Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

  19. Stable carbon isotope fractionation by sulfate-reducing bacteria

    NASA Technical Reports Server (NTRS)

    Londry, Kathleen L.; Des Marais, David J.

    2003-01-01

    Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

  20. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  1. Imprint of Serpentinization Processes on Calcium Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, E. M.; Gussone, N. C.; John, T.

    2016-12-01

    Serpentinization of ultramafic rocks has major implications on many global geochemical cycles and controls the transport of various elements (e.g. C, S, B, H2O) from the surficial reservoirs into the mantle. The interaction of water with ultramafic rocks results in Ca-rich (up to 120 mg/L), alkaline (pH 9-12) fluids that support chemolithoautotrophy through the production of hydrogen and methane. In addition, the unique fluid chemistry causes extensive carbonate precipitation in both oceanic peridotite-hosted hydrothermal systems and in continental serpentinization environments. Thus, serpentinization has a major impact on the global carbon cycle, which itself is strongly coupled to the calcium cycle. However, the source of calcium in peridotite-hosted hydrothermal systems is still unclear, and ultramafic rocks typically have low calcium concentrations. Here, we use calcium stable isotope systematics to identify fluid reaction pathways and fluid sources in peridotite-hosted hydrothermal systems. Calcite-veined serpentinites from the Iberian Margin (Ocean Drilling Program (ODP) Leg 149) have a large variation in δ44/40Ca values, which increase with depth and correlate negatively with total carbon contents. In contrast, serpentinites from the 15°20'N Fracture Zone (ODP Leg 209) show a narrow range in δ44/40Ca values. The δ44/40Ca values are overall higher than altered MOR basalts and high pressure serpentinites. These calcium isotope data provide new constraints on fluid cycling in peridotite-hosted hydrothermal systems and sheds new light on the importance of mafic intrusions within seawater-exposed ultramafic rocks.

  2. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.

  3. Clumped isotope thermometry of cryogenic cave carbonates

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Spötl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 °C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate δ18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing

  4. Influence of paleoenvironment on the carbon isotope compositions of pedogenic carbonate formed in Paleozoic vertic paleosols

    SciTech Connect

    Mora, C.I.; Driese, S.G.; Seager, P.G. . Dept. of Geological Sciences)

    1992-01-01

    Pedogenic carbonate occurs in numerous vertic-featured paleosols developed in Paleozoic red bed successions of the southern and central Appalachians. The authors note systematic differences in the delta C-13 values of soil carbonate developed during pedogenesis in coastal-marine and distal alluvial plain environments as compared to pedogenesis in proximal alluvial plain environments. These differences have been measured in pedogenic carbonate occurring in late Silurian (Bloomsburg Fm.) vertic-featured paleosols. Evidence for pre-existing marine skeletal material in these paleosols has been observed only in the lowermost portions of the Bloomsburg Fm.; other paleosols were apparently devoid of any precursor carbonate phase. Therefore, the heavier isotopic signatures of pedogenic carbonate within coastal-marine and distal alluvial plain environments may be due to contributions from marine spray, marine or brackish groundwaters, or to less-extensive biological activity. Although carbonate nodules are commonly developed in all environments, rhizoliths appear to be more abundant in paleosols developed in proximal alluvial plain environments. Despite the large differences in carbon isotope compositions attributed to paleoenvironment, these vertic-featured paleosols share common patterns of carbonate cementation and isotopic trends (nodules enriched in C-13 relative to rhizoliths). Thus, despite the different pedogenic paleoenvironments, there were similar physico-chemical controls on soil carbonate precipitation. Better understanding of the paleoclimatic information retained in paleosols will require thorough petrographic, sedimentologic and geochemical studies.

  5. Exotic Structure of Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-12-01

    Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.

  6. Carbonate clumped isotope thermometry in continental tectonics

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, Δ47) and provides estimates of the carbonate formation temperature independent of the δ18O value of the water from which the carbonate grew; Δ47 is measured simultaneously with conventional measurements of carbonate δ13C and δ18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 °C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of Δ47 values to a sample's thermal history. However, the thermometer is

  7. Constraining the global bromomethane budget from carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank

    2016-04-01

    Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition

  8. Stable Isotope Signatures Suggest Different Feeding Strategies for Atlantic and Gulf Menhaden

    NASA Astrophysics Data System (ADS)

    Perez-Perez, N.; Smith, S. L.; Gonsalves, L. C.; Lamb, M.

    2016-02-01

    Atlantic menhaden (Brevoortia tyrannus) is a keystone forage species that ranges on the Atlantic Coast from Nova Scotia to Florida. A related species, the Gulf menhaden (Brevoortia patronus) is found in the northern Gulf of Mexico from Florida to Texas. They each serve as prey for important recreational and commercial fish, such as blue fish, tuna and striped bass. Menhaden are filter feeders whose diets consist mostly of phytoplankton and zooplankton, and menhaden act as direct links between primary producers and larger valuable predators. In this study, we investigated and compared the isotopic signatures of water column nitrate (δ15N), bulk plankton and juvenile menhaden (δ 15N and δ 13C) collected from 5 sites in both the Choptank River, MD, and Apalachicola Bay, FL. We determined that menhaden inhabiting the temperate zone versus the sub-tropical region exhibited statistically different isotopic signatures, suggesting different feeding strategies. Choptank River menhaden were enriched 4‰ in δ 15N over Apalachicola Bay menhaden. Choptank River menhaden are mostly likely obtaining their diet from a higher trophic level (copepods, primary consumers) than Apalachicola Bay fish, who may consume more phytoplankton. The Choptank River menhaden also may be consuming more allochthonous material, and those from the Gulf area eat a more authochthonous diet. In addition, Atlantic menhaden collected from fresh water creeks versus those collected closer to the bay differed in their δ 13C compositions, depending on site collection, with creek fish being more depleted in the heavier carbon isotope. The δ 15N values of water column nitrate were similar at Choptank and Apalachicola sites.

  9. Carbon isotope anomalies in carbonates of the Karelian series

    NASA Astrophysics Data System (ADS)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  10. Site-Specific Carbon Isotopes in Organics

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2012-12-01

    Natural organic molecules exhibit a wide range of internal site-specific isotope variation (i.e., molecules with same isotopic substitution type but different site). Such variations are generally unconstrained by bulk isotopic measurements. If known, site-specific variations might constrain temperatures of equilibrium, mechanisms of formation or consumption reactions, and possibly other details. For example, lipids can exhibit carbon isotope differences of up to 30‰ between adjacent carbon sites as a result of fractionations arising during decarboxylation of pyruvate and other steps in lipid biosynthesis(1). We present a method for site-specific carbon isotope analysis of propane, based on high-resolution, multi-collector gas source mass spectrometry, using a novel prototype instrument - the Thermo MAT 253 Ultra. This machine has an inlet system and electron bombardment ion source resembling those in conventional stable isotope gas source mass spectrometers, and the energy filter, magnet, and detector array resembling those in multi-collector ICPMS and TIMS. The detector array has 7 detector positions, 6 of which are movable, and each of which can collect ions with either a faraday cup (read through amplifiers ranging from 107-1012 ohms) or an SEM. High mass resolving power (up to 27,000, MRP = M/dM definition) is achieved through a narrow entrance slit, adjustable from 250 to 5 μm. Such resolution can cleanly separate isobaric interferences between isotopologues of organic molecules having the same cardinal mass (e.g., 13CH3 and 12CH2D). We use this technology to analyze the isotopologues and fragments of propane, and use such data to solve for the site-specific carbon isotope fractionation. By measuring isotopologues of both the one-carbon (13CH3) and the two-carbon (13C12CH4) fragment ion, we can solve for both bulk δ13C and the difference in δ13C between the terminal and central carbon position. We tested this method by analyzing mixtures between natural

  11. Isotopic and structural signature of experimentally irradiated organic matter

    NASA Astrophysics Data System (ADS)

    Laurent, Boris; Roskosz, Mathieu; Remusat, Laurent; Leroux, Hugues; Vezin, Hervé; Depecker, Christophe

    2014-10-01

    The effects of electron irradiation on the structure and the D/H signature of a synthetic analogue of extraterrestrial insoluble organic matter (IOM) were studied. Polyethylene terephthalate (PET) was chosen because it contains both aliphatic and aromatic functional groups. A 900 nm-thick film was irradiated with electrons within the energy range 4-300 keV, for different run durations. Temperature influence was also tested. Irradiated residues were structurally and isotopically characterized by infrared spectroscopy (IR), electronic paramagnetic resonance (EPR), and Secondary Ion Mass Spectrometry (SIMS). With increasing energy deposition, spectroscopic results indicate (i) a gradual amorphization with chain scissions, (ii) an increase of CH2/CH3 and (iii) the formation of quinones. The EPR study shows that mono- and biradicals (organic species with one or several unpaired valence electrons) are also formed during irradiation. As these structural modifications occur, the δD (initially at -33‰ relative to SMOW) decreases first during a transient step and then stabilizes at ∼+300‰. There is a strong correlation between the changes recorded by the different methods and the electron dose. Deposited energy appears to be the key parameter to induce these modifications. In this respect a low-energy electron irradiation causes more damages than high energy ones. Based on our data and considering the current solar electron flux, the irradiation at moderate energy (1-10 keV) can produce significant D-enrichments of the IOM in a timescale compatible with the evolution of a typical protoplanetary disk.

  12. Carbonate abundances and isotopic compositions in chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.; Bowden, R.; Fogel, M. L.; Howard, K. T.

    2015-04-01

    We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25-75‰ and δ18O ≈ 15-35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0-130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH4 (δ13C ≈ -33‰ or -20‰ for CO- or CH4-dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ -5.5‰, and δ13C ≈ -31‰ or -17‰ for CO- or CH4-dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10-40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65-80‰) and less altered samples (δ13C ≈ 30-40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic

  13. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1990-07-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. The program is designed to address a substantial, demonstrated need of coprocessing research (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique currently is in routine use for other applications. Progress is discussed. 7 refs., 7 figs., 12 tabs.

  14. Shear heating and clumped isotope reordering in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  15. Carbon Isotopic Studies of Assimilated and Ecosystem Respired CO2 in a Southeastern Pine Forest. Final Report and Conference Proceedings

    SciTech Connect

    Conte, Maureen H

    2008-04-10

    Carbon dioxide is the major “greenhouse” gas responsible for global warming. Southeastern pine forests appear to be among the largest terrestrial sinks of carbon dioxide in the US. This collaborative study specifically addressed the isotopic signatures of the large fluxes of carbon taken up by photosynthesis and given off by respiration in this ecosystem. By measuring these isotopic signatures at the ecosystem level, we have provided data that will help to more accurately quantify the magnitude of carbon fluxes on the regional scale and how these fluxes vary in response to climatic parameters such as rainfall and air temperature. The focus of the MBL subcontract was to evaluate how processes operating at the physiological and ecosystem scales affects the resultant isotopic signature of plant waxes that are emitted as aerosols into the convective boundary layer. These wax aerosols provide a large-spatial scale integrative signal of isotopic discrimination of atmospheric carbon dioxide by terrestrial photosynthesis (Conte and Weber 2002). The ecosystem studies have greatly expanded of knowledge of wax biosynthetic controls on their isootpic signature The wax aerosol data products produced under this grant are directly applicable as input for global carbon modeling studies that use variations in the concentration and carbon isotopic composition of atmospheric carbon dioxide to quantify the magnitude and spatial and temporal patterns of carbon uptake on the global scale.

  16. Argon Isotopes Provide Robust Signature of Atmospheric Loss

    NASA Image and Video Library

    2013-04-08

    This image, made by the quadrupole mass spectrometer in the SAM suite of instruments in NASA Curiosity Mars rover. shows the ratio of the argon isotope argon-36 to the heavier argon isotope argon-38, in various measurements.

  17. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  18. Examining the Role of Multiple Carbon Sources in Isoprene Synthesis in Plants Using Stable Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Funk, J. L.; Mak, J. E.; Lerdau, M. T.

    2001-12-01

    The carbon source for phytogenc isoprene is an issue with important ramifications for both atmospheric and biological science because of its impact on the isotopic signature of isoprene and its oxidation products and because it lends insight into the function that isoprene serves within leaves. Although recently assimilated carbon is believed to be the primary carbon source for isoprene production in plants, variation in diurnal and seasonal isoprene fluxes that cannot be explained by temperature, light, and leaf development have led to the suggestion that alternative carbon sources may contribute. Stable isotopes of carbon can be used to identify changes in carbon partitioning into isoprene synthesis, and mixing models can assess the relative importance of each source. In preliminary studies, we document an additional 8-10 \\permil discrimination in isoprene emitted in the absence of photosynthesis. This change in signature suggests that the carbon source is switched from recently obtained photosynthate to a source more depleted in 13C. We propose that intermediates from carbohydrate degradation and/or re-fixation of CO2 from mitichondrial respiration and photorespiration can contribute to isoprene production. In addition, we expect alternative carbon sources to be most important when photosynthate is limiting (e.g. during water stress events). Photosynthesis, respiration, and isoprene emission measurements are used to calculate the isotopic signatures of the three potential carbon pools: photosynthate derived from ambient CO2, photosynthate derived from respired CO2, and carbohydrate-derived intermediates.

  19. Stable isotope deltas: tiny, yet robust signatures in nature.

    PubMed

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  20. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  1. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  2. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  3. Carbon isotope fractionation of methyl bromide during agricultural soil fumigations

    USGS Publications Warehouse

    Bill, M.; Miller, L.G.; Goldstein, Allen H.

    2002-01-01

    The isotopic composition of methyl bromide (CH3Br) has been suggested to be a potentially useful tracer for constraining the global CH3Br budget. In order to determine the carbon isotopic composition of CH3Br emitted from the most significant anthropogenic application (pre-plant fumigation) we directly measured the ??13C of CH3Br released during commercial fumigation. We also measured the isotopic fractionation associated with degradation in agricultural soil under typical field fumigation conditions. The isotopic composition of CH3Br collected in soil several hours after injection of the fumigant was -44.5??? and this value increased to -20.7??? over the following three days. The mean kinetic isotope effect (KIE) associated with degradation of CH3Br in agricultural soil (12???) was smaller than the reported value for methylotrophic bacterial strain IMB-1, isolated from previously fumigated agricultural soil, but was similar to methylotrophic bacterial strain CC495, isolated from a pristine forest litter zone. Using this fractionation associated with the degradation of CH3Br in agricultural soil and the mean ??13C of the industrially manufactured CH3Br (-54.4???), we calculate that the agricultural soil fumigation source has a carbon isotope signature that ranges from -52.8??? to -42.0???. Roughly 65% of industrially manufactured CH3Br is used for field fumigations. The remaining 35% is used for structural and post-harvest fumigations with a minor amount used during industrial chemical manufacturing. Assuming that the structural and post-harvest fumigation sources of CH3Br are emitted without substantial fractionation, we calculate that the ??13C of anthropogenically emitted CH3Br ranges from -53.2??? to -47.5???.

  4. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    EPA Pesticide Factsheets

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  5. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  6. Dynamic and transfert of carbon in Loire catchment using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Coularis, Cindy; Fontugne, Michel; Tisnérat-Laborde, Nadine; Pastor, Lucie; Siclet, Françoise

    2014-05-01

    Rivers have a major role in carbon transfer between continent and ocean. The organic matter exported from land represents a major source of DOC and POC in oceans. The composition and reactivity of this matter will influence its behavior and fate within the coastal areas and continental shelf. It is thus important to characterize the exported matter and its temporal variability. Stable carbon isotope ratios (d13C) and 14C activity can provide unique information on carbon sources, turnover and exchange processes. We present here a study of the carbon cycle in the Loire River and its major tributaries by combining carbon isotopes measurements and classical biogeochemical parameters (DOC, POC, DIC, pH, Temperature, Alkalinity, pH, chlorophyll …). Three campaigns were performed in April, July and October 2013. The changes in 14C signature due to the controlled liquid release of five nuclear power plants are used to get additional information on the carbon dynamics within the river. First results show a conservative behavior of the organic carbon concentrations contrary to the inorganic carbon all along the Loire River. However, the reactivity of the organic matter varies with rivers catchments and seasons. An inventory of the distribution of the different carbon phases within the Loire River and its tributaries is presented.

  7. Clumped isotope compositions of authigenic carbonate recovered from cored marine sediments

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Smirnoff, M. N.; Tripati, A. K.

    2016-12-01

    Authigenic carbonates frequently occur in marine sediments under productive water columns. These carbonates likely form as the result of anaerobic microbial processes that degrade organic matter and consequently increase local pore water alkalinity. Stable carbon isotope analyses of these authigenic carbonates indicate potentially variable degradation mechanisms including but not limited to sulfate reduction, methanogenesis, the anaerobic oxidation of methane and metal oxide reduction. Given that these proposed reactions are microbially mediated, mineral precipitation temperature reconstructions would be very useful particularly in the context of determining recent versus ancient mineralization. Clumped isotope compositions have been determined for limited ancient authigenic carbonates preserved in outcrop (i.e., concretions) that exhibit geochemical signatures reflecting the above mentioned degradation mechanisms. However, recent investigation indicates that some microbial processes can impart clumped isotope signatures that do not accurately reflect ambient temperatures. Similar clumped isotope analyses of marine sediment authigenic carbonates and comparison to known geothermal gradients can provide insight into 1) the regularity of inaccurate temperature reconstructions as they relate to other microbial degradation mechanisms and/or 2) the likelihood of modern authigenesis. Ultimately, our findings have implications for microbial sedimentary processes, associated impacts on geochemical signatures preserved in rocks and diagenetic mineral formation.

  8. Stable isotope ratios in Cape gannets around the southern coasts of Africa reveal penetration of biogeographic patterns in oceanic signatures

    NASA Astrophysics Data System (ADS)

    Jaquemet, Sébastien; McQuaid, Christopher

    2008-11-01

    The southern coasts of Africa are influenced by two major oceanic currents, leading to biogeographic patterns in inshore and offshore species assemblages, and in the stable isotope signatures of suspended particulate matter and filter-feeding mussels. We used the stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N) from the blood and feathers of adult and chick Cape gannets ( Morus capensis) to investigate whether the geographic differences observed at the lower levels in the marine communities are deep penetrating effects that reach top predators. Additionally, we evaluated whether trophic segregation occurs between adult and reared chick gannets, and whether a shift to wintering habitat occurs in adults. The study was conducted during the 2006 breeding season on Bird Island in the Agulhas system, and on Malgas and Ichaboe Islands, in the south and north Benguela respectively. Our results showed significant differences in the isotope ratios of members of different colonies, but no intra-colony differences between tissues or age groups. These results indicate that there is neither age-related nor temporal segregation in the diet of members of the same colony. Feather isotopic values suggest that adults remain all year round in the same habitats, and do not undertake long migration after reproduction. Since all gannets tend to target similar prey, we attributed among-colony differences in isotope signatures mostly to the oceanic conditions experienced by the main prey of birds rather than substantial differences in diet composition. Overall, isotopic signatures segregate the two current systems, with depleted carbon values in the Agulhas and enriched nitrogen values in the upwelled waters of the Benguela. Within the Benguela birds from Ichaboe in the north had higher δ 15N values than those from Malgas in the south, which we attributed to differences in the functioning of the upwelling cells in the vicinity of the two colonies. Finally, slight

  9. Triple oxygen isotopes in biogenic and sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  10. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  11. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-03-01

    Research on coprocessing materials/products continued. Major topics reported here are described below. Microautoclave runs are described in which gases and insoluble organic matter produced from five coals and gases produced from three petroleum resids were analyzed to study feedstock/product selective isotopic fractionation. Selective isotopic fractionation was further explored through isotope analysis of the feed New Mexico coal and products from a continuous coal liquefaction run (HRI CC-10 or 227-68). Feeds (Texas lignite/Maya VSB) and products from two HRI continuous coprocessing runs (227-54 and 238-12) were analyzed. The results were corrected for selective isotopic fractionation and carbon sourcing was performed for the product fractions. {sup 1}H-NMR and phenolic -OH determinations are reported for all continuous unit samples obtained under this contract. 13 refs., 17 figs., 40 tabs.

  12. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    NASA Astrophysics Data System (ADS)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  13. Soil Carbon: Compositional and Isotopic Analysis

    SciTech Connect

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  14. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1989-06-01

    The program is designed to address a substantial, demonstrated need of the coprocessing community (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique is currently in routine use for other applications. Results achieved this quarter include: Feed and product fractions from a Kentucky 9 coal/Kentucky tar sand bitumen coprocessing bench unit run at the Kentucky Center for Applied Energy Research (CAER) were analyzed for carbon isotope ratios. Corrections were made to the coal carbon recoveries and selectivities from the products of HRI Run 227-53. Feeds (Westerholt coal/Cold Lake VSB) and products from two periods of HRI coprocessing Run 238-1 were analyzed. Three petroleum samples and three coal samples were pyrolyzed at 800{degree}F for 30 min to determine the effect of pyrolysis on the isotopic homogeneity of each petroleum and coal sample. Products from each pyrolysis test were separated into five fractions; an additional set of coprocessing samples and a set of two-stage coal liquefaction samples were obtained from HRI for future work; work performed by the Pennsylvania State University show that microscopy is a promising method for distinguishing coal and petroleum products in residual coprocessing materials; and coal and petroleums that have large differences in carbon isotope ratios were identified for Auburn University. 7 refs., 2 figs., 12 tabs.

  15. Carbon isotopes as indicators of peatland growth?

    NASA Astrophysics Data System (ADS)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  16. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Hangx, S.; Pijnenburg, R. P.; Niemeijer, A. R.; Bakker, E.; Samuelson, J. E.; Spiers, C. J.

    2014-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  17. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  18. Carbon isotopic exchange between dissolved inorganic and organic carbon

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Freeman, K. H.; House, C. H.; Arthur, M. A.

    2009-12-01

    The pools of inorganic and organic carbon are often considered to be separate and distinct. Isotopic exchange between the inorganic and organic carbon pools in natural waters is rarely considered plausible at low temperatures owing to kinetic barriers to exchange. In certain circumstances, however carboxyl carbon of dissolved organic matter (DOM) may be subject to exchange with the dissolved inorganic carbon (DIC) pool. We report results from an isotopic labeling experiment that resulted in rapid methanogen-catalyzed isotopic exchange between DIC and the carboxyl carbon of acetate. This exchange rapidly mixes the isotopic composition of the DIC pool into the dissolved organic carbon (DOC) acetate pool. This exchange is likely associated with the reversible nature of the carbon monoxide dehydrogenase enzyme. In nature, many decarboxylase enzymes are also reversible and some can be shown to facilitate similar exchange reactions. Those decarboxylase enzymes that are important in lignin decomposition and other organic carbon (OC) transformations may help to mask the isotopic composition of the precursor DOC with as much as 15% contribution from DIC. Though this dilution is unlikely to matter in soils where DOC and DIC are similar in composition, this exchange may be extremely important in systems where the stable or radioisotope composition of DOC and DIC differ significantly. As an example of the importance of this effect, we demonstrate that the stable and radiocarbon isotopic composition of fluvial DOC could be altered by mixing with marine DIC to produce a DOC composition similar to those observed in the deep marine DOC pool. We hypothesize that this exchange resolves the conundrum of apparently old (>5 kyr) marine-derived DOC. If most of the carboxyl carbon of pre-aged, terrestrial-derived DOC (15% of total carbon) is subject to exchange with marine DIC, the resulting carbon isotopic composition of deep DOC will be similar to that observed in deep marine studies

  19. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  20. Oxygen isotopic composition of carbon dioxide in the middle atmosphere.

    PubMed

    Liang, Mao-Chang; Blake, Geoffrey A; Lewis, Brenton R; Yung, Yuk L

    2007-01-02

    The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO(2) in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO(2) can be satisfactorily explained by the exchange reaction with O((1)D). In the stratosphere, the major source of O((1)D) is O(3) photolysis. Higher in the mesosphere, we discover that the photolysis of (16)O(17)O and (16)O(18)O by solar Lyman-alpha radiation yields O((1)D) 10-100 times more enriched in (17)O and (18)O than that from ozone photodissociation at lower altitudes. This latter source of heavy O((1)D) has not been considered in atmospheric simulations, yet it may potentially affect the "anomalous" oxygen signature in tropospheric CO(2) that should reflect the gross carbon fluxes between the atmosphere and terrestrial biosphere. Additional laboratory and atmospheric measurements are therefore proposed to test our model and validate the use of CO(2) isotopic fractionation as a tracer of atmospheric chemical and dynamical processes.

  1. Seasonal variations in CH_{4} emissions and stable isotope signatures from an ombrotrophic peat bog

    NASA Astrophysics Data System (ADS)

    Takriti, Mounir; Ward, Sue; Wynn, Peter; Rose, Rob; Dodd, Beverly; Chadwick, Alexander; Oakley, Simon; McNamara, Niall

    2017-04-01

    Natural wetlands are the largest source of CH4 emissions globally. However, despite a wealth of literature and field measurements, there is still considerable uncertainty about total emissions, largely due to the high seasonal and inter-annual variability in fluxes. The use of Stable isotopes provides a powerful technique for investigating CH4 biogeochemistry. In order to better constrain wetland greenhouse gas emissions we need to improve our understanding of how emissions and their isotopic signatures respond to seasonal changes in environmental controls. In peatlands, part of the CH4 produced under anaerobic conditions may be oxidised by methanotrophic bacteria in the top aerobic layer of the peat. Both microbial CH4 production and oxidation will be driven by environmental conditions, but may show independent responses, while their relative magnitude will affect total emissions and their isotopic signature. In order to improve our understanding of these important processes in wetland CH4 emissions we set up a 12-month study at an ombrotrophic peat bog in northern England. Weekly chamber flux measurements were combined with monthly stable isotope (13C/12C, 2H/1H) measurements, climate, and soil parameters to investigate how seasonal changes in environmental conditions affect CH4 fluxes and their isotopic signatures as an indicator of the balance between CH4 production and oxidation. We show a seasonal pattern in total emissions with higher fluxes in summer and autumn, and expect to find a concomitant seasonal pattern in isotope signatures due to changes in the relative activity of methanotrophs.

  2. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    USGS Publications Warehouse

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  3. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  4. Groundwater chemistry and isotope signatures of potential CCS sites in Korea - A baseline study for leakage detection

    NASA Astrophysics Data System (ADS)

    Choi, H.; Jeong, T.; Woo, N. C.

    2013-12-01

    This research aimed at drawing a baseline of groundwater chemistry and its stable isotope signatures of hydrogen, oxygen and carbon from the deep groundwater above the CO2 sequestration layer, in which physico-chemical conditions are conceived as temperature over 40 degree Celcius and high total dissolved solids. Samples were collected from hot springs (at surface and from seep wells) and high-carbonate springs. Based on water compositions, three groups were identified as saline, alkali-carbonate and soda spring types. Saline type hot springs at the west coastline area contain -14.5‰ δ13C of CO2. Before and after rainfall events, δ13C value of samples shows no change. Hot springs at Suanbo region, located at the center are of the Korean Peninsular, were collected from deep wells of 750 m in depth, and they show the alkali-carbonate type water having δ13C values (-11.3~-10.9‰) and ECs (364~431μS/cm). Both saline and alkali-carbonate type waters show no significant change in composition, indicating that recharge by precipitation has no effect on these groundwater. All the high-carbonate springs were collected at ground surface, and enriched with Ca, Mg and HCO3., probably caused by the dissolution of CO2, and high EC values of 1,016 μS/cm. Soda springs located in Chungcheongbuk-do region have -6.8~-6.7‰ δ13C of CO2, indicating that the source of CO2 could be the upper mantle affected by the carbonate minerals in the Quaternary sedimentary bedrock. On the contrary, carbonate waters in the Gangwon-do region have -3.9~-3.7‰ δ13C of CO2, clearly indicating the source of CO2 being the upper mantle (Gerlach and Taylor, 1990). More detailed chemical and isotopic signatures of the sampled waters will be discussed in presentation.

  5. Stable isotopic signature of Australian monsoon controlled by regional convection

    NASA Astrophysics Data System (ADS)

    Zwart, C.; Munksgaard, N. C.; Kurita, N.; Bird, M. I.

    2016-11-01

    The aim of this study was to identify the main meteorological drivers of rainfall isotopic variation in north Australia in order to improve the interpretation of isotopic proxy records in this region. An intense monitoring program was conducted during two monsoonal events that showed significant and systematic isotopic change over time. The results showed a close link between isotopic variation in precipitation and variability in monsoon conditions, associated with the presence of large convective envelopes propagating through the study site. The largest negative amplitudes in the isotopic signal were observed when eastward and westward moving precipitation systems within the convective envelope merged over the measurement site. This suggests that the amplitude of the isotopic signal is related to the size and activity of the convective envelope. The strong correlation between rainfall isotopic variation, regional outgoing longwave radiation and regional rainfall amount supports this conclusion. This is further strengthened by the strong relationship between isotopic variation and the integrated rainfall history of air masses prior to arriving at the measurement locations. A local amount effect was not significant and these findings support the interpretation of δ18O as proxy for regional climatic conditions rather than local rainfall amount. Meteorological parameters that characterize intra-seasonal variability of monsoon conditions were also found to be strongly linked to inter-seasonal variability of the monthly based δ18O values in the Global Network of Isotopes in Precipitation (GNIP) database. This leads to the conclusion that information about the Australian monsoon variability can likely be inferred from the isotopic proxy record in North Australia on short (intra seasonal) and long (inter seasonal or longer) timescales.

  6. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-02-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, when necessary, corrections are applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. Previously reported data on samples from HRI bench-scale coprocessing Runs 227-53 (Texas lignite/Maya ASB and Texas lignite/Maya VSB) and 238-1 (Westerholt coal/Cold Lake VSB) were corrected for selective isotopic fractionation. Carbon sourcing was performed on samples from HRI bench-scale coprocessing Run 227-60 (Texas lignite/Maya VSB) and samples from UOP bench-scale coprocessing Run 26 (Illinois 6 coal/Lloydminster vacuum resid); the latter data were corrected for isotopic fractionation, though the former could not be corrected. A paper presented at the 1990 DOE Direct Liquefaction Contractor's Review Meeting is appended. 15 refs., 21 figs., 22 tabs.

  7. Deconvolving the Carbon Isotope Record

    NASA Astrophysics Data System (ADS)

    Cramer, B. S.

    2003-12-01

    The evolution of the whole-ocean δ 13C value, under an assumption of steady state with respect to mass, can be modeled as: \\[ {d \\over dt}\\delta_\\Sigma(t)+{\\delta_\\Sigma(t) \\over \\tau_C}={1 \\over \\tau_C}\\delta_F(t) \\] where δ Σ is the whole-ocean δ 13C value, τ C is the residence time of carbon and a net instantaneous δ 13C forcing function is defined: \\[ \\delta_F=\\delta_i-f_{carb}\\Delta_{carb}-\\(1-f_{carb}\\)\\Delta_{org} \\] where δ i is the δ 13C value of carbon input (e.g. weathering and volcanism), fcarb is the fraction of carbon removed through burial of carbonates as opposed to organic carbon, and Δ carb and Δ org are the differences between δ Σ and δ 13C values for buried carbonate and organic carbon. The solution to this differential equation is: \\[ \\delta_\\Sigma\\(t\\)={1 \\over \\tau_C}\\int_0^t{{\\delta_F\\(t^\\prime\\)}e^{\\(-{t-t^\\prime \\over \\tau_C}\\)}dt^\\prime} \\] which can be expressed as a convolution \\[ \\delta_\\Sigma\\(t\\)={1 \\over \\tau_C} {{\\delta_F\\(t^\\prime\\)} \\otimes e^{\\(-{t-t^\\prime \\over \\tau_C}\\)}} \\] revealing that the evolution of the whole ocean δ 13C value is determined by the instantaneous δ 13C forcing (δ F) subjected to a causal (i.e. phase-shifting) low-pass filter whose frequency response is dependent only on the carbon residence time. One consequence of this observation is that variance in δ 13C records should be concentrated at wavelengths >0.1 m.y., thereby explaining the persistent appearance of cyclicity dependent on orbital eccentricity ( ˜0.1~and ˜0.4 m.y.~periods) in δ 13C records. I demonstrate that an assumption of non-linear forcing of fcarb by orbitally-forced variations in insolation can explain most of the structure of high-resolution δ 13C records throughout the Cenozoic. A second consequence is that τ C and δ F should be separable by numerical manipulation of δ 13C records. Two applications are 1) estimation of the residence time of carbon at

  8. Site-specific carbon isotope analysis of aromatic carboxylic acids by elemental analysis/pyrolysis/isotope ratio mass spectrometry.

    PubMed

    Oba, Yasuhiro; Naraoka, Hiroshi

    2006-01-01

    Site-specific carbon isotope composition of organic compounds can provide useful information on their origin and history in natural environments. Site-specific isotope analyses of small amounts of organic compounds (sub-nanomolar level), such as short-chain carboxylic acids and amino acid analogues, have been performed using gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/pyrolysis/IRMS). These analyses were previously limited to volatile compounds. In this study, site-specific carbon isotope analysis has been developed for non-volatile aromatic carboxylic acids at sub-micromolar level by decarboxylation using a continuous flow elemental analysis (EA)/pyrolysis/IRMS technique. Benzoic acid, 2-naphthylacetic acid and 1-pyrenecarboxylic acid were pyrolyzed at 500-1000 degrees C by EA/pyrolysis/IRMS to produce CO2 for delta13C measurement of the carboxyl group. These three aromatic acids were most efficiently pyrolyzed at 750 degrees C. Conventional sealed-tube pyrolysis was also conducted for comparison. The delta13C values of CO2 generated by the continuous flow technique were within 1.0 per thousand of those performed by the conventional technique, indicating that the new continuous flow technique can accurately analyze the carbon isotopic composition of the carboxyl group in aromatic carboxylic acids. The new continuous flow technique is simple, rapid and uses small sample sizes, so this technique will be useful for characterizing the isotopic signature of carboxyl groups in organic compounds. Copyright 2006 John Wiley & Sons, Ltd.

  9. Stable carbon and nitrogen isotope analysis of TNT: two-dimensional source identification.

    PubMed

    Coffin, R B; Miyares, P H; Kelley, C A; Cifuentes, L A; Reynolds, C M

    2001-12-01

    Data from a combination of laboratory and fieldwork is presented to initiate testing of stable carbon and nitrogen isotope ratios to trace sources of TNT in contaminated soil and groundwater. Evaluation of these extraction methods resulted in 99.9 and 99.8% recovery of TNT with Soxhlet and solid-phase extraction (SPE), respectively. As a result of the high extraction efficiency, isotope fractionation did not occur, thus providing an accurate stable isotope value on TNT from laboratory and field samples. Subsequent experiments evaluated the stability of isotope signatures through incubations lasting up to four weeks with a 70% decline in the TNT concentration. During these experiments, no significant variation in stable carbon and nitrogen isotope ratios was measured. Five different sources of TNT, compared for stable carbon and nitrogen isotope ratios, showed a range of 4.2 and 15%, respectively. This large range in the isotope ratios suggests excellent potential to trace sources in a complex environment. Finally, a site was surveyed for concentrations and isotope values of TNT extracted from groundwaters. Values from this site were substantially different relative to the variation measured on standards and in laboratory incubation experiments. The data set indicates good potential to use stable isotopes to determine TNT sources and fate in the environment.

  10. Source Signature of Sr Isotopes in Fluids Emitting From Mud volcanoes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chung, C.; You, C.; Chao, H.

    2003-12-01

    Located at the boundary between the Philippine Sea Plate and the Asia Continental Plate, abundance of mud volcanoes were erupted on land in Taiwan. According to their occurrences and associated tectonic settings, these mud volcanoes were classified into four groupies. The group (I) mud volcanoes are located in the western coastal plane, whereas group (II) and (III) are situated near the Kutinkung anticline axis and the Chishan fault respectively. The group (IV) mud volcanoes are discovered at the Coastal Range. Although there are numerous studies focused on morphology, possible fluid migration paths and sources are poorly understood. We have collected and analyzed major ions and Sr isotopic ratios in fluids separated from various mud volcanoes in Taiwan. Chemical contents of these fluids were measured by IC and the emitted gasses were analyzed by GC. The Sr concentrations in these fluids were determined using AA and the isotopic compositions were analyzed by TIMS. The dominated ions in fluids are Na and Cl which account for 98% of dissolved materials. All fluids show similar Na/Cl ratios(0.7-0.8), slightly higher than seawater but each group has unique Sr isotopic signature. Waters expelled from group I mud volcanoes featured with low salinity and high Sr isotopic ratios ranged from 0.71150 to 0.71175. Groups II and III were outcroped in the Kutinkung formation but show distinctive chemical compositions. Group II fluids have four times Cl concentrations(358-522mM) compared with those of group III(85-162mM). The latter fluids appear to be more radiogenic(0.71012- 0.71075) indicating possible influence due to water-rock interactions. Low 87Sr/86Sr(0.70692-0.70939) is typical characteristic of mud volcano fluids in group IV where large Mg and K depletion were discovered, suggesting effects due to sediment diagenetic processes. The chemical compositions of mud volcano associated gasses show similar distribution pattern. The major gas constituents in mud volcano zones

  11. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  12. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  13. Carbon isotopic composition of individual Precambrian microfossils.

    PubMed

    House, C H; Schopf, J W; McKeegan, K D; Coath, C D; Harrison, T M; Stetter, K O

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  14. Carbon isotopic composition of individual Precambrian microfossils

    NASA Astrophysics Data System (ADS)

    House, Christopher H.; Schopf, J. William; McKeegan, Kevin D.; Coath, Christopher D.; Harrison, T. Mark; Stetter, Karl O.

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the ˜850 Ma Bitter Springs Formation, Australia, and the ˜2100 Ma Gunflint Formation, Canada. The δ13CPDB values from individual microfossils of the Bitter Springs Formation ranged from -21.3 ± 1.7‰ to -31.9 ± 1.2‰, and the δ13CPDB values from microfossils of the Gunflint Formation ranged from -32.4 ± 0.7‰ to -45.4 ± 1.2‰. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  15. Nitrogen isotopic signatures in agglutinates from breccia 79035

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.; Kim, Yoosook; Kim, Jin S.; Marti, Kurt

    1993-01-01

    Agglutinates in the size range 125-175 microns from regolith breccia 79035 are substantially depleted in N compared with bulk 79035. Isotopically, agglutinate N closely resembles that found previously in ilmenite separates. The minimum (delta)N-15 value found during stepwise pyrolysis of agglutinates is significantly heavier than that observed for bulk 79035. The major host phase for trapped N in 79035, and the host phase of the lightest isotopic component(s), remain unidentified.

  16. Through a temporal window, we see isotopic signatures

    SciTech Connect

    Mizutani, Hiroshi

    1995-12-31

    Stable isotope composition of bioelements is different between diet and assimilated tissues. Furthermore, the apparent fractionation factors from diet to tissues seem to differ among different tissues: each tissue of an organism reflects the isotope abundances of diet in a different manner. The turnover rate of a tissue, its biochemical composition, its immediate source, and distribution of available resources within an individuals body are among the possible factors that would affect the fractionation factor. Stable isotope composition of an animal tissue or particular biochemical molecules would give a glimpse of the animal itself and its environments only through a particular window, whose width and height are dependent on many factors including animal age. Some tissues that form in a relatively short period during which material exchanges in an animal body can be considered nearly in a steady state would give a clearly defined window frame. One example is feathers of adult birds: the change in the isotope composition from diet to the tissue has been shown stable with time. Tissues formed during a rapid growth of animal body or during a metamorphosis would be an example of another extreme, the window frame being subject to a rapid change with time in its shape. Isotopic knowledge on characteristics of the window is needed to extend the applicability of stable isotope study into researches in ecogeochemistry and environmental chemistry.

  17. Ecologically and geologically relevant isotope signatures of C, N, and S: okenone producing purple sulfur bacteria Part I.

    PubMed

    Smith, D A; Steele, A; Bowden, R; Fogel, M L

    2015-05-01

    Purple sulfur bacteria (PSB) are known to couple the carbon, nitrogen, and sulfur cycling in euxinic environments. This is the first study with multiple strains and species of okenone-producing PSB to examine the carbon (C), nitrogen (N), and sulfur (S) metabolisms and isotopic signatures in controlled laboratory conditions, investigating what isotopic fractionations might be recorded in modern environments and the geologic record. PSB play an integral role in the ecology of euxinic environments and produce the unique molecular fossil okenane, derived from the diagenetic alteration of the carotenoid pigment okenone. Cultures of Marichromatium purpuratum 1591 (Mpurp1591) were observed to have carbon isotope fractionations ((13)ε biomass - CO2), via RuBisCO, ranging from -16.1 to -23.2‰ during exponential and stationary phases of growth. Cultures of Thiocapsa marina 5653 (Tmar5653) and Mpurp1591 had a nitrogen isotope fractionation ((15)ε biomass - NH 4) of -15‰, via glutamate dehydrogenase, measured and recorded for the first time in PSB. The δ(34) SVCDT values and amount of stored elemental sulfur for Mpurp1591 cells grown autotrophically and photoheterotrophically were dependent upon their carbon metabolic pathways. We show that PSB may contribute to the isotopic enrichments observed in modern and ancient anoxic basins. In a photoheterotrophic culture of Mpurp1591 that switched to autotrophy once the organic substrate was consumed, there were bulk biomass δ(13)C values that span a broader range than recorded across the Late Devonian, Permian-Triassic, Triassic-Jurassic, and OAE2 mass extinction boundaries. This finding stresses the complexities in interpreting and assigning δ(13)C values to bulk organic matter preserved in the geologic record.

  18. The manifold ways to use isotopic signatures as soil degradation and sediment transport indicators

    NASA Astrophysics Data System (ADS)

    Meusburger, Katrin; Arata, Laura; Birkholz, Axel; Ketterer, Michael; Mabit, Lionel; Porto, Paolo; Alewell, Christine

    2017-04-01

    This contribution summarizes our experiences gained during several studies that explored the potential of using isotopic signatures as indicators for soil degradation and lateral soil fluxes. Firstly, the potential use of stable isotopes to indicate soil degradation will be presented. Long-term disturbance of oxic soils can be identified through decreasing correlations between δ13C and soil organic carbon (SOC) content, δ15N and C:N ratio. For this purpose, stable landscape positions (i.e. reference sites), which are neither affected by erosion nor deposition are compared with disturbed agricultural sites. For undisturbed soils, we demonstrate that the enrichment of 15N and 13C with soil depth, due to fractionation during decomposition, goes in parallel with a decrease in N and SOC content. In contrast, for the eroding sites this relationship is not significant. Further, δ15N is functionally related to the C:N ratio. In undisturbed sites, δ15N values cover a relatively narrow range at any particular C:N ratio while substantial loss, or gain of N, mostly results in larger or smaller δ15N values than usual at the observed C:N ratio, which is qualitatively indicating soil disturbance. Secondly, the applicability of the fallout radionuclides (FRNs) Caesium-137, excess Lead-210 and Plutonium-239+240 as quantitative soil redistribution tracers will be discussed. Pros and cons as well as potential pitfalls of the different FRNs will be highlighted based on our studies conducted in South Korea and in the Alps. To date, the comparison among the different FRNs highlights Pu-239+240 as the most promising tracer, because of its less preferential transport compared to Cs-137 and the possibility to gain information regarding the origin of the fallout. Still, the Pu-239+240 application is limited to a few studies and since its behaviour i.e. vertical migration in the soil and lateral transport during water erosion differs from that of Cs-137, there is a clear need for a

  19. Zinc Isotopic Signatures of the Upper Continental Crust

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Zhang, X.; Zhang, H.; Huang, F.

    2016-12-01

    To examine the Zn isotope systematics within the Upper Continental Crust (UCC), and isotope fractionation during chemical weathering in large spatial and temporal scales, we analyzed Zn isotopic compositions of loess, glacial diamictites, river sediments, and igneous rocks (samples in total 77). The Zn isotopic compositions (δ66Zn relative to JMC-Lyon) of loess display a limited variation (0.17‰ to 0.29‰), which is negatively correlated with Zn content and proxies for chemical weathering (e.g. CIA values), reflect the impact of chemical weathering. Glacial diamictites have more variable δ66Zn (0.09‰ to 0.48‰), but the average δ66Zn (0.29±0.03‰, 2SD) is similar to loess. δ66Zn of glacial diamictites correlate roughly negatively with CIA values, but have no correlation with Zn content, implying source heterogeneity and effect from chemical weathering. δ66Zn of A-type (0.39‰ to 0.45‰) and S-type (0.28‰ to 0.35‰) granites are both homogeneous, but the latter have systematically lighter δ66Zn. This may reflect no Zn isotopic fractionation during magmatic processes and involvement of isotopically light meta-sedimentary into the sources of S-type granites. Furthermore, δ66Zn in riverine sediments display a small variation from 0.23‰ to 0.37‰, while δ66Zn of the the shales vary from 0.14‰ to 0.53‰, which could result from a combination of processes, such as biological cycling and chemical weathering. Overall, our data suggest that incipient chemical weathering can fractionate Zn isotopes significantly, meanwhile, during this process, heavy Zn are released preferentially. The UCC is estimated to have an average δ66Zn of 0.30 ±0.03‰ (2SD) with data collected in this study, which is similar to the estimated value of Bulk Silicate Earth (0.28±0.05‰)[1] and mean dissolved riverine flux (0.33‰)[2], but distinctly lighter than the bulk composition of dissolved Zn in the ocean (0.51‰)[2]. [1] Chen et al., Zinc isotope fractionation

  20. (Carbon isotope fractionation in plants: Progress report)

    SciTech Connect

    Not Available

    1987-01-01

    The purpose of this work is to use carbon isotope fractionation as a means of studying photosynthetic efficiency in plants. During the past year we have developed a new short-term method for measuring the isotope fractionation over a period of about an hour. This method is being used to study a variety of environmental and developmental effects in both C/sub 3/ and C/sub 4/ plants, and these results are being compared with results of the traditional combustion method. We have made extensive studies of aspartic acid, malic acid, and citric acid as possible indicators of the functioning of phosphoenolpyruvate carboxylase in C/sub 3/ plants. We find that most of the aspartic acid in proteins in C/sub 3/ plants is synthesized by action of phosphoenolpyruvate carboxylase on atmospheric CO/sub 2/ and phosphoenolpyruvate produced by glycolysis. The metabolically active pool of malate, aspartate, and citrate, on the other hand, appear not to be principally synthesized by this route. Studies of C/sub 4/ plants are in progress. During deacidification, CAM plants lose CO/sub 2/ to the atmosphere, and this material is highly enriched in carbon-13. Field-grown and growth-chamber grown CAM plants show similar isotope fractionations. Ploidy effects on isotope fractionation in alfalfa are extremely small.

  1. Carbon Reservoir History of Mars Constrained by Atmospheric Isotopic Measurements and Carbonate Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hu, R.; Kass, D. M.; Ehlmann, B. L.; Yung, Y. L.

    2015-12-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars's atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. We derive new quantitative constraints on the amount of carbonate deposition and the atmospheric pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars's atmosphere, recent orbiter, lander, and rover measurements of Mars's surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a fractionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars's atmosphere during the Amazonian. This enrichment is partially compensated by moderate carbonate precipitation during the late Noachian and/or Hesperian. The current atmospheric 13C/12C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure less than 1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bars. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time.

  2. BOREAS TE-5 Leaf Carbon Isotope Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This documentation describes leaf carbon isotope data that were collected in 1993 and 1994 at the NSA and SSA OJP sites, the SSA OBS site, and the NSA UBS site. In addition, leaf carbon isotope data were collected in 1994 only at the NSA and SSA OA sites. These data was collected to provide seasonal integrated physiological information for 10 to 15 common species at these 6 BOREAS sites. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet.

    PubMed

    Ayliffe, L K; Cerling, T E; Robinson, T; West, A G; Sponheimer, M; Passey, B H; Hammer, J; Roeder, B; Dearing, M D; Ehleringer, J R

    2004-03-01

    Temporal stable isotope records derived from animal tissues are increasingly studied to determine dietary and climatic histories. Despite this, the turnover times governing rates of isotope equilibration in specific tissues following a dietary isotope change are poorly known. The dietary isotope changes recorded in the hair and blood bicarbonate of two adult horses in this study are found to be successfully described by a model having three exponential isotope pools. For horse tail hair, the carbon isotope response observed following a dietary change from a C3 to a C4 grass was consistent with a pool having a very fast turnover rate ( t1/2 approximately 0.5 days) that made up approximately 41% of the isotope signal, a pool with an intermediate turnover rate ( t1/2 approximately 4 days) that comprised approximately 15% of the isotope signal, and a pool with very slow turnover rate ( t1/2 approximately 140 days) that made up approximately 44% of the total isotope signal. The carbon isotope signature of horse blood bicarbonate, in contrast, had a different isotopic composition, with approximately 67% of the isotope signal coming from a fast turnover pool ( t1/2 0.2 days), approximately 17% from a pool with an intermediate turnover rate ( t1/2 approximately 3 days) and approximately 16% from a pool with a slow turnover rate ( t1/2 approximately 50 days). The constituent isotope pools probably correspond to one exogenous and two endogenous sources. The exogenous source equates to our fast turnover pool, and the pools with intermediate and slow turnover rates are thought to derive from the turnover of metabolically active tissues and relatively inactive tissues within the body, respectively. It seems that a greater proportion of the amino acids available for hair synthesis come from endogenous sources compared to the compounds undergoing cellular catabolism in the body. Consequently, the isotope composition of blood bicarbonate appears to be much more responsive to

  4. [Relationship of intramolecular carbon isotopes in pyruvate decarboxylation].

    PubMed

    Ivlev, A A; Kniazev, D A; Kaloshin, A G

    1982-01-01

    Relationships were obtained which made possible to calculate isotope content of carbon atoms in the products and reaction compound in the course of piruvate decarboxilation. Isotope composition was determined from kinetic isotope effect accompanying the destruction of carbon bonds. Some applications of the expressions obtained are presented.

  5. Distinct iron isotopic signatures and supply from marine sediment dissolution.

    PubMed

    Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.

  6. Distinct iron isotopic signatures and supply from marine sediment dissolution

    PubMed Central

    Homoky, William B.; John, Seth G.; Conway, Tim M.; Mills, Rachel A.

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from ‘non-reductive’ dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean. PMID:23868399

  7. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  8. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  9. Stable carbon, nitrogen and sulfur isotopes in non-carbonate fractions of cold-seep carbonates

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Peng, Yongbo; Peckmann, Jörn; Roberts, Harry; Chen, Duofu

    2017-04-01

    Sulfate-driven anaerobic oxidation of methane (AOM) supports chemosynthesis-based communities and limits the release of methane from marine sediments. This process promotes the formation of carbonates close to the seafloor along continental margins. The geochemical characteristics of the carbonate minerals of these rocks are increasingly understood, questions remain about the geochemical characteristics of the non-carbonate fractions. Here, we report stable carbon, nitrogen and sulfur isotope patterns in non-carbonate fractions of seep carbonates. The authigenic carbonates were collected from three modern seep provinces (Black Sea, Gulf of Mexico, and South China Sea) and three ancient seep deposits (Marmorito, northern Italy, Miocene; SR4 deposit of the Lincoln Creek Formation and Whiskey Creek, western Washington, USA, Eocene to Oligocene). The δ13C values of non-carbonate fractions range from ˜-25‰ to -80‰ VPDB. These values indicate that fossil methane mixed with varying amounts of pelagic organic matter is the dominant source of carbon in these fractions. The relatively small offset between the δ34S signatures of the non-carbonate fractions and the respective sulfide minerals suggests that locally produced hydrogen sulfide is the main source of sulfur in seep environments. The δ15N values of the non-carbonate fractions are generally lower than the corresponding values of deep-sea sediments, suggesting that organic nitrogen is mostly of a local origin. This study reveals the potential of using δ13C, δ15N, δ34S values to discern seep and non-seep deposits. In cases where δ13Ccarbonate values are only moderately low due to mixing processes and lipid biomarkers have been erased in the course of burial, it is difficult to trace back AOM owing to the lack of other records. This problem is even more pronounced when authigenic carbonate is not available in ancient seep environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support

  10. Can soil gas VOCs be related to groundwater plumes based on their isotope signature?

    PubMed

    Jeannottat, S; Hunkeler, D

    2013-01-01

    The isotope evolution of tetrachloroethene (PCE) during its transport from groundwater toward the soil surface was investigated using laboratory studies and numerical modeling. During air-water partitioning, carbon and chlorine isotope ratios evolved in opposite directions, with a normal isotope effect for chlorine (ε = -0.20‰) and an inverse effect for carbon (ε = +0.46‰). During the migration of PCE from groundwater to the unsaturated zone in a 2D laboratory system, small shifts of carbon and chlorine isotope ratios (+0.8‰) were observed across the capillary fringe. Numerical modeling showed that these shifts are due to isotope fractionation associated with air-water partitioning and gas-phase diffusion. Carbon and chlorine isotope profiles were constant throughout the unsaturated zone once a steady state was reached. However, depending on the thickness of the unsaturated zone and its lithology, depletion in heavy isotopes may occur with distance during the transient migration of contaminants. Additionally, variations of up to +1.5‰ were observed in the unsaturated zone for chlorine isotopes during water table fluctuations. However, at steady state, it is possible to link a groundwater plume to gas-phase contamination and/or to differentiate sources of contamination based on isotope ratios.

  11. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  12. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  13. Separating Terrestrial, Oceanic and Stratospheric Signals in Atmospheric N2O: Seasonal Cycles and Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.

    2004-12-01

    Seasonal cycles in atmospheric N2O provide potentially important information about surface source distributions. Previous attempts to reproduce observed N2O seasonal cycles in atmospheric transport models (ATMs) were largely unsuccessful, for reasons that may include the following: 1) The observed cycles are very small. 2) The influence of the backflux of N2O-depleted air from the stratosphere was neglected. Here, an interpretation of the observed atmospheric N2O seasonal cycle at Cape Grim, Tasmania is presented and successfully compared to the results of an ATM run with prescribed surface sources. The exercise suggests that the observed N2O seasonal cycle can be partitioned into distinct oceanic and stratospheric components, and offers a model for future exercises at northern hemisphere monitoring stations, where terrestrial sources are also likely to influence observed seasonal cycles. Like seasonal cycles, the observed isotopic signature of tropospheric N2O represents a combination of terrestrial, oceanic, and stratospheric influences, all of which have distinct isotopic characteristics. A simple box model is used to predict the effect of seasonality on the isotopic signature of tropospheric N2O and to examine how isotopic data might complement mixing ratio measurements. Some speculations on the oceanic influence on the isotopic signature of tropospheric N2O will also be presented.

  14. Storage-discharge hysteresis and its impact on stream flow O-18 and D isotope signatures

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; Klaus, Julian; Carrer, Gwenael; Hissler, Christophe; Martínez-Carreras, Núria; Rodriguez, Nicolas; McDonnell, Jeffrey J.

    2017-04-01

    Catchment storage-discharge relationships are known to be non-linear and to exhibit hysteretic patterns. Antecedent storage and catchment scale largely control the degree of the hysteresis - as a translation of differences in velocities and celerities differently in each individual catchment. Following up on recent calls in the literature for a more systematic combination of hydrograph and stable isotope investigations, here we focus on catchment storage dynamics and how these may be correlated with isotopic signatures of O-18 and D in stream flow. Our study area is located in the Alzette River basin and consists of 12 nested catchments, covering a wide range of physiographic settings with clean and mixed bedrock geology, landuse, soil types, and topography. First, we used daily water balance calculations over an 8-year period (2006-2014) to estimate daily storage deficits. The daily storage deficit-discharge pairs were found to evolve along an envelope line that is tangential to hysteretic loops of these same variables. Each catchment's envelope line was found to have a distinct slope - the variety of slopes being controlled by bedrock type and its subsequent permeability. Next, we investigated the dynamics of isotopic signatures of O-18 and D in stream flow along the complete range of observed daily discharge and storage deficit values. A common feature in most (but not all) of our study catchments is that isotopic signals became more and more depleted as storage deficits tended to zero (i.e. saturation). Likewise, isotopic depletion in streamflow O-18 and D was highest when storage deficits were smallest and discharge values highest. Our investigation of isotopic signatures in stream flow across 12 catchments through multiple wetting-up and drying cycles has revealed relationships between catchment bedrock geology, storage and isotopic signatures of O-18 and D in stream flow. These signatures are largely (but not exclusively) controlled by storage dynamics on a

  15. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno.

    PubMed

    Posth, N R; Bristow, L A; Cox, R P; Habicht, K S; Danza, F; Tonolla, M; Frigaard, N-U; Canfield, D E

    2017-09-03

    Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2 . In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive the sulfur cycle. PSB and GSB fix carbon utilizing different enzymatic pathways and these fractionate C-isotopes to different extents. Here, these differences in C-isotope fractionation are used to constrain the relative input of various anoxygenic phototrophs to the bulk community C-isotope signal in the chemocline. We sought to determine whether a distinct isotopic signature of GSB and PSB in the chemocline persists in the settling fraction and in the sediment. To answer these questions, we also sought investigated C-isotope fractionation in the water column, settling material, and sediment of Lake Cadagno, compared these values to C-isotope fractionation of isolated anoxygenic phototroph cultures, and took a mass balance approach to investigate relative contributions to the bulk fractionation signature. We found a large C-isotope fractionation between dissolved inorganic carbon (DIC) and particulate organic carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C-isotope fractionation, but the influence of GSB and PSB differed with season. Furthermore, the contribution of PSB and GSB to bulk C-isotope fractionation in the chemocline could be traced in the settling fraction and in the sediment. Taken together with other studies, such as lipid biomarker analyzes and investigations of other stratified lakes, these results offer a firmer understanding of diagenetic influences on bacterial biomass. © 2017 John Wiley & Sons Ltd.

  16. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    SciTech Connect

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  17. Stable isotope signatures in bulk samples from two soils with contrasting characteristics. What do they tell about ongoing pedogenic processes?

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; dos Anjos Leal, Otávio; Knicker, Heike; Pinheiro Dick, Deborah; González-Vila, Francisco J.; González-Pérez, José A.

    2014-05-01

    Isotopic ratio mass spectrometry (IRMS) has been proven as a promising tool for the monitoring of biogeochemical processes in soil. In this work, stable isotope signatures of light elements δ15N, δ13C, δ18O and δD were determined for two soils with contrasting characteristics in terms of climate, vegetation, land use and management. The studied soils were a Cambisol from a subtropical area (Paraná region, South Brazil) and an Arenosol from a Mediterranean climate (Andalusia, South Spain). A Flash 2000 HT (N, C, S, H and O) elemental analyzer (Thermo Scientific) coupled to a Delta V Advantage IRMS (Thermo Scientific) was used. Isotopic ratios are reported as parts per thousand (o ) deviations from appropriate standards recognized by the international atomic energy agency (IAEA). In a first approach we took advantage of the well-known different δ13C signature between plants using either the C4 or C3 carbon fixation pathway (O'Leary, 1981). The Arenosol (Spain) revealed a δ13C signature which is clearly in the range of C3 plants (-26 to -30 o ). Different plant canopies (tree, shrubs or ferns) caused only slight variations δ13C (STD= 0.98). In contrast, the Cambisol (Brazil) showed less depletion of the heavier carbon isotope corresponding to C4 predominant vegetation. In addition an increase from -19 o in the soil surface (0 - 5 cm) to -16 o in the subsoil (20 - 30 cm) was observed in line with a recent (2 years old) shift of the land use from the predominant C4 grassland to eucalypt (C3) cultivation. Crossplots of δ15N vs. δ18O may provide information about nitrate (NO3-) sources and N cycling (Kendall, 1998). In the Mediterranean Arenosol this signal (δ18O = 30o δ15N = 2o ) was found compatible with a predominant nitrate atmospheric deposition, whereas the signal in the Brazilian Cambisol pointed to the use of a mineral N fertilization with signs of denitrification processes (δ18O = 13o δ15N = 9o ). No conclusive results could be obtained from the

  18. Monsoonal influence on variation of hydrochemistry and isotopic signatures: Implications for associated arsenic release in groundwater

    NASA Astrophysics Data System (ADS)

    Majumder, Santanu; Datta, Saugata; Nath, Bibhash; Neidhardt, Harald; Sarkar, Simita; Roman-Ross, Gabriela; Berner, Zsolt; Hidalgo, Manuela; Chatterjee, Debankur; Chatterjee, Debashis

    2016-04-01

    The present study examines the groundwater and surface water geochemistry of two different geomorphic domains within the Chakdaha block, West Bengal, in an attempt to decipher potential influences of groundwater abstraction on the hydrochemical evolution of the aquifer, the effect of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and concomitant As release. A low-land flood plain and a natural levee have been selected for this purpose. Although the stable isotopic signatures of oxygen (δ18O) and hydrogen (δ2H) are largely controlled by local precipitation, the isotopic composition falls sub-parallel to the Global Meteoric Water Line (GMWL). The Cl/Br molar ratio indicates vertical recharge into the wells within the flood plain area, especially during the post-monsoon season, while influences of both evaporation and vertical mixing are visible within the natural levee wells. Increase in mean DOC concentrations (from 1.33 to 6.29 mg/L), from pre- to post-monsoon season, indicates possible inflow of organic carbon to the aquifer during the monsoonal recharge. Concomitant increase in AsT, Fe(II) and HCO3- highlights a possible initial episode of reductive dissolution of As-rich Fe-oxyhydroxides. The subsequent sharp increase in the mean As(III) proportions (by 223%), particularly in the flood plain samples during the post-monsoon season, which is accompanied by a slight increase in mean AsT (7%) may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without triggering additional As release from the aquifer sediments.

  19. Preparation of starch and other carbon fractions from higher plant leaves for stable carbon isotope analysis.

    PubMed

    Wanek, W; Heintel, S; Richter, A

    2001-01-01

    The measurement of the carbon isotope composition of starch and cellulose still relies on chemical isolation of these water-insoluble plant constituents and subsequent elemental analysis by isotope ratio mass spectrometry (EA/IRMS) of the purified fractions, while delta(13)C values of low-molecular-weight organic compounds are now routinely measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we report a simple and reliable method for processing milligram quantities of dried plant material for the analysis of the carbon isotope composition of lipids, soluble sugars, starch and cellulose from the same sample. We evaluated three different starch preparation methods, namely (1) enzymatic hydrolysis by alpha-amylase, (2) solubilization by dimethyl sulfoxide (DMSO) followed by precipitation with ethanol, and (3) partial hydrolysis by HCl followed by precipitation of the resulting dextrins by ethanol. Starch recovery for three commercially available native starches (from potato, rice and wheat) varied from 48 to 81% for the techniques based on precipitation, whereas the enzymatic technique exhibited yields between 99 and 105%. In addition, the DMSO and HCl techniques introduced a significant (13)C fractionation of up to 1.9 per thousand, while the carbon isotope composition of native starches analyzed after enzymatic digestion did not show any significant difference from that of untreated samples. The enzymatic starch preparation method was then incorporated into a protocol for determination of delta(13)C signatures of lipids, soluble carbohydrates, starch and crude cellulose. The procedure is based on methanol/chloroform/water extraction of dried and ground leaf material. After recovery of the chloroform phase (lipid fraction), the methanol/water phase was deionized by ion exchange (soluble carbohydrate fraction) and the pellet treated with heat-stable alpha-amylase (starch fraction). The remaining insoluble material was subjected

  20. Mg Isotopic Compositions of Modern Marine Carbonates

    NASA Astrophysics Data System (ADS)

    Krogstad, E.; Bizzarro, M.; Hemming, N.

    2003-12-01

    We have used a MC-ICP-MS to measure the isotopic composition of magnesium in a number of samples of modern marine carbonate. Due to the large mass difference between 26Mg and 24Mg (similar to that between 13C and 12C), there is potential for mass fractionation during geologic and biologic processes that may make this isotope system useful for geochemical studies. These samples are from the study of Hemming and Hanson (1992, GCA 56: 537-543). The carbonate minerals analyzed include aragonite, low-Mg calcite, and high-Mg calcite. The samples include corals, echinoderms, ooids, etc., from subtropical to Antarctic settings. Mg purification was accomplished by ion-exchange chromatography, using Bio-Rad AG50W-X12 resin on which greater than 99 percent recovery of Mg is achieved. Samples were introduced into the MC-ICP-MS (VG Axiom) using a Cetac MCN-6000 nebuliser. We use a standard-sample-standard bracketing technique, and samples are analysed at least three times. For lab standards we find that the reproducibility on the 26Mg/24Mg to be about ñ 0.12 permil (2 s.d.). We monitored our separated samples for Na and Ca, as we have found that high Ca/Mg and Na/Mg produce variable magnesium isotopic fractionation during mass spectrometry due to as yet unclear matrix effects. We have normalized our results to our measured values for seawater. We observed a d26Mg(s.w.) range of -1.4 to -2.4 permil in our modern carbonate samples relative to present day seawater. Due to the long residence time of Mg in the oceans (ca. 50 my), this must be due to kinetic or biologic effects. Our d25Mg(s.w.) variations as a function of d26Mg(s.w.) plot along the terrestrial fractionation trend. With an average d26Mg(s.w.) of ca. +0.5 permil in all samples of mantle lithologies and mantle-derived igneous rocks (Bizzarro et al., Goldschmidt abs., 2003), we can assume that the Mg isotopic composition of Earth's river water lies between ca. -2.4 and +0.5 permil (relative to seawater). The actual

  1. Decoupling of carbon isotope records between organic matter and carbonate prior to the Toarcian Oceanic Anoxic Event (Early Jurassic)

    NASA Astrophysics Data System (ADS)

    Bodin, Stephane; Kothe, Tim; Krencker, Francois-Nicolas; Suan, Guillaume; Heimhofer, Ulrich; Immenhauser, Adrian

    2014-05-01

    -dominated deposits. Before the P-To event, vigorous shallow-water carbonate factories were responsible for the bulk of carbonate production and export into the basin. Being dominated by aragonite precipitation, they tend to have a more positive carbon isotope signature than carbonate produced offshore. The demise of the shallow water platforms during the P-To event has led to a drastic reduction in the amount of carbonate in the rock record (indicated by the switch from limestone-marl alternations to a marl-dominated sequence), as well as to a marked decrease in the production and export of isotopically heavy carbon, ultimately recorded by a negative shift in the isotopic signature of the bulk carbonate fraction. This study highlights the need of paired organic-inorganic carbon isotope record in order to fully distinguish regional from global perturbation in the carbon cycle.

  2. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  3. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  4. Evaluation of bioremediation systems utilizing stable carbon isotope analysis

    SciTech Connect

    Van de Velde, K.; Nowell, C.; Marley, M.C.

    1994-12-31

    Carbon, whether in an organic or inorganic form, is composed primarily of two stable isotopes, carbon-12 and carbon-13. The ratio of carbon-12 to carbon-13 is approximately 99:1. The stable carbon isotope ratios of most natural carbon materials of biological interest range from approximately 0 to {minus}110 per mil ({per_thousand}) versus the PDB standard. Utilizing stable carbon isotope analysis, it is often possible to determine the source(s) of the liberated carbon dioxide, thereby confirming successful mineralization of the targeted carbon compound(s) and, if the carbon dioxide results from multiple carbon compounds, in what ratio the carbon compounds are mineralized. Basic stable isotope `theory` recommended sampling procedures and analysis protocols are reviewed. A case study involving fuel oil presented on the application of stable carbon isotope analysis for the monitoring and evaluation of in situ bioremediation. At the site, where a field bioventing study was being conducted, multiple potential sources of carbon dioxide production existed. Additional potential applications of stable carbon isotope analysis for bioremediation evaluation and monitoring are discussed.

  5. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  6. Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions.

    PubMed

    Dubbert, Maren; Cuntz, Matthias; Piayda, Arndt; Werner, Christiane

    2014-09-01

    The oxygen isotope signature of water is a powerful tracer of water movement from plants to the global scale. However, little is known about the short-term variability of oxygen isotopes leaving the ecosystem via transpiration, as high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes in order to evaluate the short-term variability of the isotopic composition of transpiration (δE ) and to investigate the role of isotopic non-steady-state transpiration under natural conditions in cork-oak trees (Quercus suber) during distinct Mediterranean seasons. The measured δ(18) O of transpiration (δE ) deviated from isotopic steady state throughout most of the day even when leaf water at the evaporating sites was near isotopic steady state. High agreement was found between estimated and modeled δE values assuming non-steady-state enrichment of leaf water. Isoforcing, that is, the influence of the transpirational δ(18) O flux on atmospheric values, deviated from steady-state calculations but daily means were similar between steady state and non-steady state. However, strong daytime isoforcing on the atmosphere implies that short-term variations in δE are likely to have consequences for large-scale applications, for example, partitioning of ecosystem fluxes or satellite-based applications.

  7. Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures

    NASA Astrophysics Data System (ADS)

    Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben

    2014-07-01

    Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and

  8. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    PubMed

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen.

  9. Detailed Carbon Isotopic Characterization of Aerosol-Derived Organic Carbon Deposited to two Temperate Watersheds

    NASA Astrophysics Data System (ADS)

    Wozniak, A. S.; Bauer, J. E.; Keesee, E. E.; McNichol, A. P.; Xu, L.; Dickhut, R. M.

    2008-12-01

    Atmospheric deposition of carbonaceous aerosols can be a quantitatively significant flux in the carbon budgets of temperate watersheds. Characterizing the sources and fates of this material is therefore critical for assessing its role in carbon and organic matter cycling in these systems. Aerosol samples were collected in the Hudson and York River watersheds throughout 2006-2007 and analyzed for quantities and isotopic signatures (δ13C, Δ14C) of total and water-soluble organic carbon (TOC, WSOC, respectively). On average ~2.4 and 2.1 mg m-2 d-1 of aerosol TOC were deposited to the Hudson and York River watersheds, respectively, and nearly half of this material was water-soluble. δ13C analyses indicated that both the TOC and the WSOC were primarily terrestrial in nature. TOC Δ14C signatures covered a broad range for both watersheds, with calculated contributions from fossil sources (e.g., anthropogenic combustion of petroleum, coal, etc.) ranging from 0% for samples collected during the summer of 2007 to approximately 50% for samples collected in the winter of 2007. Aerosol-derived WSOC Δ14C values were less variable and were nearly always enriched in 14C with respect to the corresponding TOC, indicating that contemporary aerosol material tends to partition into the aqueous phase, while fossil-derived aerosol OC is more likely to remain insoluble. However, WSOC still often showed considerable contributions from fossil OC (up to 20%). Thus, some portion of the anthropogenic fossil-derived aerosol OC is relatively soluble and may be transported hydrologically through watersheds and aquatic systems. A subset of aerosol samples from each watershed was selected for more thorough isotopic analysis of operationally-defined components of the carbonaceous material. Isotopic signatures were obtained for TOC, WSOC, total solvent-extract, and the aliphatic, aromatic, and polar components. Isotopic information on these fractions allows us to determine which components

  10. Vehicle NOx emission plume isotopic signatures: Spatial variability across the eastern United States

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Wojtal, Paul K.; Clark, Sydney C.; Hastings, Meredith G.

    2017-04-01

    On-road vehicle nitrogen oxide (NOx) sources currently dominate the U.S. anthropogenic emission budgets, yet vehicle NOx emissions have uncertain contributions to oxidized nitrogen (N) deposition patterns. Isotopic signatures serve as a potentially valuable observational tool to trace source contributions to NOx chemistry and N deposition, yet in situ emission signatures are underconstrained. We characterize the spatiotemporal variability of vehicle NOx emission isotopic signatures (δ15N-NOx) representative of U.S. vehicle fleet-integrated emission plumes. A novel combination of on-road mobile and stationary urban measurements is performed using a field and laboratory-verified technique for actively capturing NOx in solution to quantify δ15N-NOx at hourly resolution. On-road δ15N-NOx upwind of Providence, RI, ranged from -7 to -3‰. Simultaneous urban background δ15N-NOx observations showed comparable range and variations with on-road measurements, suggesting that vehicles dominate NOx emissions in the Providence area. On-road spatial δ15N-NOx variations of -9 to -2‰ were observed under various driving conditions in six urban metropolitan areas and rural interstate highways during summer and autumn in the U.S. Northeast and Midwest. Although isotopic signatures were insensitive to on-road driving mode variations, statistically significant correlations were found between δ15N-NOx and NOx emission factor extremes associated with heavy diesel emitter contributions. Overall, these results constrain an isotopic signature of fleet-integrated roadway NOx emission plumes, which have important implications for distinguishing vehicle NOx from other sources and tracking emission contributions to NOx chemistry and N deposition.

  11. A Predictable Terrestrial Signature to Riverine Dissolved Organic Carbon?

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Amundson, R.; Baldock, J. A.

    2007-12-01

    In small mountainous watersheds, the majority of dissolved organic carbon (DOC) is derived from terrigenous sources; however, there is much debate over the age and recalcitrance of these organic materials. To determine controls on the age and recalcitrance of DOC found in stream waters, we measured DOC composition in stream and soil water samples, using isotopic (13C and 14C) and spectroscopic (UV and 13C NMR) analyses, in conjunction with soil hydrometric conditions in two first-order watersheds with contrasting vegetation in northern California. In a low-gradient coastal prairie stream, we found low concentrations of old (Δ14C = -200 permil) DOC that most resembled stabilized soil organic matter found deep within the mineral soil during baseflow. In contrast, during storm events where saturation overland flow dominated runoff, we found high concentrations of young (Δ14C = +75 permil) DOC resembling fresher organic matter. These results contrast with observations from a high-gradient coniferous forest where there is a much narrower range in age and chemistry of stream DOC over time. In the forest, runoff generation is dominated by subsurface stormflow with little if any overland flow and there is a much narrower range of stream DOC concentration, age and chemistry DOC, all of which is comparable to that of older, stabilized soil organic matter. At both of these locations DOC in soil water varies with increasing depth: young to old and labile to recalcitrant - due to rapid exchange with surficially-bound organic matter on soil solids. Given this range in soil DOC properties, it appears that the flowpath of water through soils determines the age and composition of DOC as water enters the stream network. During throughflow conditions, the soil acts as a filter for fresh plant-derived DOC, releasing only aged and highly altered DOC to the stream. Shallow flowpaths will largely bypass this filter, resulting in the export of high concentrations of young and labile DOC

  12. Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU" in ancient lithospheric mantle: Distinguishing source from process

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Bennett, Vickie C.; Amelin, Yuri

    2016-08-01

    Chemical and isotopic heterogeneities in the lithospheric mantle are increasingly being recognised on all scales of examination, although the mechanisms responsible for generating this variability are still poorly understood. To investigate the relative behaviour of different isotopic systems in off-cratonic mantle, and specifically the origin of the regional southwest Pacific "HIMU" (high time integrated 238U/204Pb) Pb isotopic signature, we present the first U-Th-Pb, Rb-Sr, Sm-Nd and Re-Os isotopic dataset for spinel peridotite xenoliths sampling the subcontinental lithospheric mantle (SCLM) beneath Zealandia. Strongly metasomatised xenoliths converge to a restricted range of Sr and Nd isotopic compositions (87Sr/86Sr = 0.7028-0.7033; εNd ≈ +3-+6) reflecting pervasive overprinting of their original melt depletion signatures by carbonatite-rich melts. In contrast, rare, weakly metasomatised samples possess radiogenic Nd isotopic compositions (εNd > +15) and unradiogenic Sr isotopic compositions (87Sr/86Sr < 0.7022). This is consistent with melt extraction at ca. 2.0 Ga and in accord with widespread Paleoproterozoic Re-Os model ages from both weakly metasomatised and the more numerous, strongly metasomatised xenoliths. The coupling of chalcophile (Os), and lithophile (Sr and Nd) melt depletion ages from peridotite xenoliths on a regional scale under Zealandia argues for preservation of a significant mantle keel (⩾2 million km3) associated with a large-scale Paleoproterozoic melting event. Lead isotopic compositions are highly variable with 206Pb/204Pb = 17.3-21.3 (n = 34) and two further samples with more extreme compositions of 22.4 and 25.4, but are not correlated with other isotopic data or U/Pb and Th/Pb ratios in either strongly or weakly metasomatised xenoliths; this signature is thus a recent addition to the lithospheric mantle. Lead model ages suggest that this metasomatism occurred in the last 200 m.y., with errorchrons from individual localities

  13. 13CH3D kinetic isotope effects for methane oxidation by OH - predicting the "clumped" isotopic signature of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Joelsson, L. M. T.; Wang, D. T.; Johnson, M. S.; Ono, S.

    2015-12-01

    Methane is a significant long-lived greenhouse gas, but the tropospheric methane budget is not entirely constrained. "Clumped" isotopologues of methane, including 13CH3D, can provide additional constraints on the atmospheric methane cycle. Interpretation of these novel isotope tracers requires an understanding of the "clumped" isotopic signature of various methane sources, as well as the kinetic isotope effects of the methane sink reactions. We performed a series of photochemical experiments to measure the isotopic fractionation during the CH4+OH reaction. Experiments were carried out in a 100 L quartz photochemical reactor. Photolysis of ozone (O3) in the presence of water (H2O) was used to produce OH radicals. Experiments were performed in a helium bath gas. Fourier transform infrared spectroscopy (FTIR) was used to monitor reaction progress. At various intervals during the reaction, methane was sampled from the cell and analyzed for isotope ratios by tunable infrared laser direct absorption spectroscopy (TILDAS). By simultaneously measuring four different isotopologues of methane (12CH4,12CH3D, 13CH4, 13CH3D), we were able to constrain the kinetic isotope effects for 12CH3D, 13CH4, and the doubly-substitued isotopologue 13CH3D. These results are combined with published clumped isotope data from different methane sources to model the Δ13CH3D (i.e. deviation from "stochastic" distribution of isotopes) of tropospheric methane and its sensitivity to different sources. The Δ13CH3D value of tropospheric methane does not strongly depend upon isotope fractionation during the OH sink reaction. Rather, the Δ13CH3D value of tropospheric methane reflects a mixing of different source signatures. Due to nonlinearity in mixing of Δ13CH3D, the Δ13CH3D value of tropospheric methane will be larger than the weighted average of the Δ13CH3D value of the sources. A first order interpretation of variations in the Δ13CH3D value of tropospheric methane is that it reflects changes

  14. Stable isotope signatures and element stoichiometry of Fucus vesiculosus as indicators for environmental conditions in the Kiel Bight, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Winde, Vera; Mahler, Annika; Voss, Maren; Böttcher, Michael E.

    2014-05-01

    In the frame of the BMBF project BIOACID II we aim for an understanding of the natural distribution and variation of isotopic composition and C-N-S stoichiometry in Fucus vesiculosus growing around the coast line of the Kiel fjord (part of the Kiel bight). Environmental conditions (aquatic chemistry, temperature, salinity) were monitored, too. Some changes in aquatic chemistry are related to stress factors like human activity (e.g., waste input) and further factors leading to specific changes in the composition of Fucus vesiculosus. Sampling was carried out at different stations at the west and east coast of the Kiel Fjord. For each sampling station the aquatic chemistry (TA, pH, salinity, d13C(DIC), main and trace elements and nutrients) as well as the composition of the Fucus organic tissues (stoichiometry and stable isotope composition of carbon, nitrogen) are analysed. The Fucus tissue was sampled in three size classes (small, medium, large). It is shown, that Fucus vesiculosus indicates clear differences in the N contents and stable isotopes between the west and the east site of the Kiel Fjord. Stable nitrogen isotope signatures in Fucus vesiculosus, are useful proxies to identify the influence factors in the Fucus habitat. From the data it is obtained that the influence of human activity (wastewater treatment plant, harbour), small stream and drainage channels, which flow from the near coastal area into the bight, leads to different Fucus vesiculosus compositions. In future work, it is intended to extend the investigation to trace element signatures to further estimate environmental impacts.

  15. Unique Hg stable isotope signatures of compact fluorescent lamp-sourced Hg.

    PubMed

    Mead, Chris; Lyons, James R; Johnson, Thomas M; Anbar, Ariel D

    2013-03-19

    The recent widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Stable isotope analysis can identify the sources of environmental Hg, but the isotopic composition of Hg from CFL is not yet known. Results from analyses of CFL with a range of hours of use show that the Hg they contain is isotopically fractionated in a unique pattern during normal CFL operation. This fractionation is large by comparison to other known fractionating processes for Hg and has a distinctive, mass-independent signature, such that CFL Hg could be uniquely identified from other sources. The fractionation process described here may also explain anomalous fractionation of Hg isotopes in precipitation.

  16. Isotopic Signatures of Meteorolgoical Drivers of Inflow Variability in Apline Areas of the Snowy Mountains, Australia

    NASA Astrophysics Data System (ADS)

    Callow, J. N.; McGowan, H. A.; Denholm, J.

    2011-12-01

    Hydrometeorological instrument records in Australia are particularly short, rarely spanning more than 100-150 years. Analysis of these records has revealed the impact of short term climate variability cycles such as the El Niño - Southern Oscillation (ENSO) on drought and flood frequency. The impacts of longer-term climate cycles not repetitively recorded in the instrument record are less well understood. Palaeoclimate archives have begun to reveal the significance of cycles such as the Pacific Decadal Oscillation (PDO) and their interaction with ENSO as a driver of flood and drought. Our research is focused on field data collection and atmospheric modelling studies to build an archive of distinctive meteorological events and their characteristic precipitation stable oxygen isotope signature. Characteristic isotope signatures of particular weather systems were identified from analysis of real time precipitation and snowpack samples. Together with water vapour trajectory modelling, this study has shown strong agreement of with conventional models of isotopic behaviour associated with temperature/uplift and circulatory isotopic fractionation. More depleted signatures have been associated with "East-Coast Lows" and neutral signatures with localised convective activity associated with warm air masses originating in central Australia. Cold fronts are associated with cool air masses and water vapour trajectories from higher latitudes the Southern Ocean and have an intermediate signature. The overall objective of this research is to understand dominant drivers of precipitation variability such as ENSO-PDO (and other) cycles and their impacts on the hydrology of the Snowy Mountains region. Development of this capability would provide for better informed water resource planning and decision making in the Snowy Mountains region. As we continue to build our database of isotopic signatures of distinct precipitation events, we will build our capacity to interpret dominant

  17. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for

  18. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars

    PubMed Central

    Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.

    2010-01-01

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  19. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.

  20. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  1. Carbon-isotopic analysis of dissolved acetate.

    PubMed

    Gelwicks, J T; Hayes, J M

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  2. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  3. Isotopic signatures of CH 4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Lacrampe-Couloume, G.; Voglesonger, K.; Onstott, T. C.; Pratt, L. M.; Slater, G. F.

    2008-10-01

    Previous studies of methane and higher hydrocarbon gases in Precambrian Shield rocks in Canada and the Witwatersrand Basin of South Africa identified two major gas types. Paleometeoric waters were dominated by hydrocarbon gases with compositional and isotopic characteristics consistent with production by methanogens utilizing the CO 2 reduction pathway. In contrast the deepest, most saline fracture waters contained gases that did not resemble the products of microbial methanogenesis and were dominated by both high concentrations of H 2 gas, and CH 4 and higher hydrocarbon gases with isotopic signatures attributed to abiogenic processes of water-rock reaction in these high rock/water ratio, hydrogeologically-isolated fracture waters. Based on new data obtained for the higher hydrocarbon gases in particular, a model is proposed to account for carbon isotope variation between CH 4 and the higher hydrocarbon gases (specifically ethane, propane, butane, and pentane) consistent with abiogenic polymerization. Values of δ 13C for CH 4 and the higher hydrocarbon gases predicted by the model are shown to match proposed abiogenic hydrocarbon gas end-members identified at five field sites (two in Canada and three in South Africa) suggesting that the carbon isotope patterns between the hydrocarbon homologs reflect the reaction mechanism. In addition, the δ 2H isotope data for these gases are shown to be out of isotopic equilibrium, suggesting the consistent apparent fractionation observed between the hydrocarbon homologs may also reflect reaction mechanisms involved in the formation of the gases. Recent experimental and field studies of proposed abiogenic hydrocarbons such as those found at mid-ocean spreading centers and off-axis hydrothermal fields such as Lost City have begun to focus not only on the origin of CH 4, but on the compositional and isotopic information contained in the higher hydrocarbon gases. The model explored in this paper suggests that while the extent of

  4. Li isotopes in foraminifera: a new proxy for past ocean dissolved inorganic carbon

    NASA Astrophysics Data System (ADS)

    Vigier, N.; Rollion-Bard, C.; Erez, J.

    2009-12-01

    Past ocean pH and pCO2 are critical parameters for establishing relationships between Earth climate and carbon cycle. For the Miocene-Pleistocene period, two main proxies have been used: carbon isotopes of di-unsaturated alkenones extracted from sea cores, and boron isotope signatures of marine carbonates [1, 2]. Both techniques lead to selfconsistent palaeooceanic pH or pCO2 estimates, but are associated with large uncertainties. Moreover, the paleovariations calculated from boron isotope measurements are a matter of debate. Additional proxies are therefore needed. Based on an in-situ analytical technique recently developed [3], we analysed a series of foraminifera - Amphistegina - cultured under various conditions (in pH, T and Dissolved Inorganic Carbon). We show that the lithium isotope signature of the foraminifera correlates with the DIC (r2 = 0.93). Conversely, there is no dependency of Li isotope signature on pH or T. A simple model of biomineralization in which growth rate is a key parameter can fit the whole dataset, including published values for other foraminifera species [4, 5]. This strongly suggests that the DIC-δ7Li correlation highlighted by the cultured Amphistegina can also be applied to other species. These results, combined with the published oceanic Li and B isotope paleovariations [2, 4, 5], allow us to estimate the ocean DIC and pCO2 evolution for the past 18Ma. The similarity with the pCO2 curve given by carbon isotopes measured in di-unsaturated alkenones is striking. This supports the use of Li isotopes as a new proxy and adds support to the existing data. It also suggests, in contrast with the common view, a less significant role of river input on the variation of the ocean Li isotope composition, at least for the period considered. [1] Pagani et al. (2005) Science 309, 600-603. [2] Pearson & Palmer (2000) Nature 406, 695-699. [3] Vigier et al. (2007) G-cubed 8, Q01003 [4] Hall et al. (2005) Mar. Geology 217, 255-265 [5] Hathorne

  5. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  6. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  7. Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources.

    PubMed

    Wiederhold, Jan G; Skyllberg, Ulf; Drott, Andreas; Jiskra, Martin; Jonsson, Sofi; Björn, Erik; Bourdon, Bernard; Kretzschmar, Ruben

    2015-01-06

    Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 99 μg g(-1), consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF δ(202)Hg: -0.2‰ to -0.5‰; MIF Δ(199)Hg: -0.05‰ to -0.10‰). In contrast, the four sites contaminated with elemental Hg displayed much greater variations (δ(202)Hg: -2.1‰ to 0.6‰; Δ(199)Hg: -0.19‰ to 0.03‰) but with distinct ranges for the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 1‰ heavier in δ(202)Hg than organically-bound Hg. The selectivity of the sequential extraction was tested on standard materials prepared with enriched Hg isotopes, which also allowed assessing isotope exchange between different Hg pools. Our results demonstrate that different industrial pollution sources can be distinguished on the basis of Hg isotope signatures, which may additionally record fractionation processes between different Hg pools in the sediments.

  8. Tropical-Depression Precipitation In Southwestern North America: An Isotope Record From Arizona, And Isotope Signatures In Baja California Groundwater

    NASA Astrophysics Data System (ADS)

    Eastoe, C. J.; Hess, G.; Mahieux, S.

    2011-12-01

    A 30-year data set of O and H isotopes in individual precipitation events in Tucson, Arizona, includes entries identified with rainfall associated with tropical depressions, which occasionally pass through southern Arizona. Tropical-depression rain events yielding > 7 mm have a δ18O range -9 to -16 per mil, compared to volume-weighted average summer rainfall with δ18O = -6 per mil, a set of isotope effects similar to those observed in south Texas. The isotope signature of tropical-depression rain is present in groundwater of central and southern Baja California (BC), where summer and fall rain make up at least 50% of annual precipitation. Tritium-bearing groundwater at Todos los Santos (southern BC) has a δ18O range of -8 to -11 per mil and d-parameters near 10. Altitude effects related to adjacent, 1800 m mountains do not explain the isotope data. Groundwater of similar isotope character is present near the Tres Virgenes geothermal field (central BC), but not at Santo Tomas (northern BC). Large deuterium excess (d > 15) is not observed in any of the data.

  9. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    SciTech Connect

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organic carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.

  10. Toward estimation of origin of methane at ancient seeps — Carbon isotopes of seep carbonates, lipid biomarkers, and adsorbed gas

    NASA Astrophysics Data System (ADS)

    Miyajima, Yusuke; Watanabe, Yumiko; Ijiri, Akira; Goto, Akiko; Jenkins, Robert; Hasegawa, Takashi; Sakai, Saburo; Matsumoto, Ryo

    2017-04-01

    Methane is generated mainly by microbial or thermal degradation of organic matter, and the origin of methane can be estimated based on its stable carbon isotopic signature. Seafloor seepages of methane-charged fluids have been a major source of methane to the ocean, and knowing the origin of methane at the methane seeps can provide valuable insights into the subsurface fluid circulation and biogeochemical processes. Methane seeps in the geological past are archived as authigenic methane-derived carbonate rocks, which precipitate via an alkalinity increase facilitated by microbially mediated anaerobic oxidation of methane. Here we attempted to estimate origins of methane at ancient seeps, based on several proxies preserved within the seep carbonates. We examined methane-seep carbonate rocks in the Japan Sea region, collected from lower Miocene to middle Pleistocene sediments at 11 sites on land, and also carbonate nodules collected from the seafloor off Joetsu, where thermogenic methane is seeping. Carbon isotopic compositions of the carbonates and lipid biomarkers of methane-oxidizing archaea within them were analyzed. In order to directly know original isotopic signatures of methane, we also attempted to extract adsorbed methane through acid dissolution of the powdered carbonates. Early-diagenetic carbonate phases show various δ13C values between -64.7 and -4.7‰ vs. VPDB, suggesting either biogenic or thermogenic, or both origins of methane. A lipid biomarker pentamethylicosane (PMI) extracted from the ancient carbonates has δ13C values mostly lower than -100‰ , whereas that from the modern methane-derived carbonate nodule has a higher value (-80‰ ). The δ13C values of the seeping methane (-36‰ ) and PMI in the modern Joetsu seep carbonate shows an offset of -44‰ . If this carbon isotope offset was similar at the ancient seeps, the δ13C values of PMI indicate that methane at ancient seeps in the Japan Sea region was biogenic in origin, with δ13C

  11. Food sources of macro-invertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures

    NASA Astrophysics Data System (ADS)

    Tue, Nguyen Tai; Hamaoka, Hideki; Sogabe, Atsushi; Quy, Tran Dang; Nhuan, Mai Trong; Omori, Koji

    2012-08-01

    Dual stable isotope signatures (δ13C and δ15N) were applied to determine the contribution of mangrove materials and other organic carbon sources to the invertebrate community in an ecologically important mangrove ecosystem of Vietnam. We have analyzed 181 specimens of 30 invertebrate species and found δ13C and δ15N ranging from - 14.5 to - 26.8‰ and from 1.3 to 12.1‰, respectively. From taxa measured for stable isotopes, polychaete, gastropods, bivalves, and grapsid crabs living in mangrove forest showed relative low δ13C values, while fiddler crabs inhabiting in the land-water ecotone showed the highest δ13C values. The δ13C showed that just a few mangrove inhabitants directly relied on the mangrove materials. The wide ranges of δ13C and δ15N signatures indicated that the invertebrates utilized heterogeneous diets, comprising benthic microalgae, marine phytoplankton, particulate organic matter, sediment organic matter, mangrove detritus, and meiofauna and rotten animal tissues as the supplemental nutrient food sources. Moreover, the significant correlation between δ13C values and body sizes of invertebrates showed that snails Littoraria melanostoma and Terebralia sulcata, bivalve Glauconome virens, and portunid crab Scylla serrata exhibited ontogenetic shifts in diets. The present study showed that adjacent habitats such as tidal flat and mangrove creeks seem to contribute an important microalgal food resource for invertebrates and highlighted the need for conservations of mangrove forests and the adjacent habitats.

  12. Methane and its Stable Isotope Signature Across Pennsylvania: Assessing the Potential Impacts of Natural Gas Development and Agriculture

    NASA Astrophysics Data System (ADS)

    Ramos-Garcés, F.; Fuentes, J. D.; Grannas, A. M.; Martins, D. K.

    2012-12-01

    Methane is an important greenhouse gas with a global warming potential 72 times that of carbon dioxide (20 year time horizon). Many recent efforts have been focused on improving our understanding of methane sources to the atmosphere and better quantifying the atmospheric methane budget. Increased natural gas exploration, particularly associated with shale gas drilling, has been hypothesized to be a potential source of atmospheric methane during well development and also due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, measurements of methane and its stable isotope signature were obtained from a mobile measurement platform using cavity ringdown spectroscopy. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and well-impacted sites. Particular emphasis was placed on performing air sampling in the vicinity of natural gas wells under development, just completed, and in full operation. In the rural atmosphere, away from cattle farms and natural gas systems, the ambient levels of methane were around 1.75 ppm. Near and around gas wells under development, ambient methane levels resembled those found in the rural atmosphere. In some cases, the atmosphere was enriched with methane (up to 2.2 ppm) in areas near old wells and existing pipelines. Ambient methane levels around cattle farms were significantly enhanced, with mixing ratios reaching about 4 ppm. We will discuss here the impact of both gas well development and agricultural activities on observed methane concentrations and stable isotope signatures.

  13. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    PubMed

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing.

  14. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  15. Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg mine.

    PubMed

    Wiederhold, Jan G; Smith, Robin S; Siebner, Hagar; Jew, Adam D; Brown, Gordon E; Bourdon, Bernard; Kretzschmar, Ruben

    2013-06-18

    Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes provides a new tool for tracing Hg in contaminated environments such as mining sites, which represent major point sources of Hg pollution into surrounding ecosystems. Here, we present Hg isotope ratios of unroasted ore waste, calcine (roasted ore), and poplar leaves collected at a closed Hg mine (New Idria, CA, U.S.A.). Unroasted ore waste was isotopically uniform with δ(202)Hg values from -0.09 to 0.16‰ (± 0.10‰, 2 SD), close to the estimated initial composition of the HgS ore (-0.26‰). In contrast, calcine samples exhibited variable δ(202)Hg values ranging from -1.91‰ to +2.10‰. Small MIF signatures in the calcine were consistent with nuclear volume fractionation of Hg isotopes during or after the roasting process. The poplar leaves exhibited negative MDF (-3.18 to -1.22‰) and small positive MIF values (Δ(199)Hg of 0.02 to 0.21‰). Sequential extractions combined with Hg isotope analysis revealed higher δ(202)Hg values for the more soluble Hg pools in calcines compared with residual HgS phases. Our data provide novel insights into possible in situ transformations of Hg phases and suggest that isotopically heavy secondary Hg phases were formed in the calcine, which will influence the isotope composition of Hg leached from the site.

  16. Biotic and abiotic experimental identification of bacterial influence on calcium isotopic signatures.

    PubMed

    Cobert, Florian; Schmitt, Anne-Désirée; Calvaruso, Christophe; Turpault, Marie-Pierre; Lemarchand, Damien; Collignon, Christelle; Chabaux, François; Stille, Peter

    2011-10-15

    In this study, we tested experimentally the influence of plant and bacterial activities on the calcium (Ca) isotope distribution between soil solutions and plant organs. Abiotic apatite weathering experiments were performed under two different pH conditions using mineral and organic acids. Biotic experiments were performed using either apatite or Ca-enriched biotite substrates in the presence of Scots pines, inoculated or not with the rhizosphere bacterial strain Bulkholderia glathei PML1(12), or the B. glathei PML1(12) alone. For each experiment, the percolate was collected every week and analyzed for Ca concentrations and Ca isotopic ratios. No Ca isotopic fractionation was observed for the different abiotic experimental settings. This indicates that no Ca isotopic fractionation occurs during apatite dissolution, whatever the nature of the acid (mineral or organic). The main result of the biotic experiments is the 0.22 ‰ (44)Ca enrichment recorded for a solution in contact with Scots pines grown on the bacteria-free apatite substrate. In contrast, the presence of bacteria did not cause Ca isotopic fractionation of the solution collected after 14 weeks of the experiments. These preliminary results suggest that bacteria influence the Ca isotopic signatures by dissolving Ca from apatite more efficiently. Therefore, Ca isotopes might be suitable for detecting bacteria-mediated processes in soils. Copyright © 2011 John Wiley & Sons, Ltd.

  17. A Clumped Isotope Calibration for Lacustrine Carbonates

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B. A.; Mering, J. A.; Petryshyn, V. A.; Dunbar, R. B.; Cohen, A. S.; Liu, X.; Kaufman, D. S.; Eagle, R.; Tripati, A.

    2014-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of past climate reconstructions. Unfortunately, many terrestrial proxies—tree rings, speleothems, leaf margin analyses, etc.—are influenced by the effects of both temperature and precipitation. Methods that can isolate the effects of temperature alone are needed, and clumped isotope thermometry has the potential to be a useful tool for determining terrestrial climates. Multiple studies have shown that the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed and may be a useful proxy for reconstructing temperatures on land. An in-depth survey of lacustrine carbonates, however, has not yet been published. Therefore we have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of modern lake samples' carbonate minerals in phosphoric acid and comparing results to independently known estimates of lake water temperature and air temperature. Some of the sample types we have investigated include endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  18. The carbon and oxygen isotopic composition of meteoritic carbonates

    SciTech Connect

    Grady, M.M.; Wright, I.P.; Swart, P.K.; Pillinger, C.T. )

    1988-12-01

    The {sup 13}C/{sup 12}C and {sup 18}O/{sup 16}O isotopic ratios of carbonates from carbonaceous and ordinary chondrites have been measured on CO{sub 2} released by the action of H{sub 3}PO{sub 4} on whole-rock samples. Carbonates from CI, CM and CR carbonaceous chondrites exhibit a range in {delta}{sup 18}O of ca. 15{per thousand} (+20.5{per thousand} to +35.1{per thousand} relative to SMOW). Limited data from CO{sub 2}-water equilibration experiments suggest that meteoritic carbonates do not possess grossly anomalous {sup 17}O isotopic compositions; therefore, they are truly enriched in {sup 13}C, with {delta}{sup 13}C between +23.7{per thousand} and +80.7{per thousand} relative to PDB. Large internal variations in {delta}{sup 13}C and {delta}{sup 18}O were found in individual meteorites and suggest that two or more isotopically distinct carbonates of different origin may be present. The abundance, {delta}{sup 13}C and {delta}{sup 18}O of carbonate in CM2 chondrites may be related to the extent of aqueous alteration of the meteorites. Carbonates in CI and CR chondrites have a median {delta}{sup 13}C ca. +50 to +60{per thousand}, whereas {delta}{sup 13}C of CM meteorites lie in the range +40 to +50 {per thousand}, although exceptions exist in both sets of samples. CV3 and CO3 carbonaceous chondrites and unequilibrated ordinary chondrites release small amounts of CO{sub 2} on acid treatment, which might be from carbonate dissolution, but which is not enriched in {sup 13}C, exhibiting {delta}{sup 13}C values ca. 0 {plus minus} 10{per thousand}. The exception to this is Bishunpur, with {delta}{sup 13}C ca. {minus}23.5{per thousand}. The difference in {delta}{sup 13}C of the CI, CM and CR vs. CV, CO and ordinary chondrite carbonates may be a result of the progressive enrichment in {sup 13}C of percolating fluids, brought about by increasing solubilization of exotic {sup 13}C-enriched grains.

  19. Compound-Specific Stable Carbon Isotope Analysis of Chlorofluorocarbons in Groundwater.

    PubMed

    Horst, Axel; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2015-10-20

    Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), controlled substances due to their role in stratospheric ozone loss, also occur as dissolved contaminants in groundwaters. Stable carbon isotopic signatures may provide valuable new information on the fate of these compounds as has been seen for other priority hydrocarbon contaminants, but to date no method for extraction and isotopic analysis of dissolved CFCs from groundwaters has been developed. Here we describe a cryogenic purge and trap system coupled to continuous flow compound-specific stable carbon isotope analysis mass spectrometry for concentrations as low as 35 μg/L. The method is validated by comparing isotopic signatures from water extracted CFCs against a new suite of isotopic CFC standards. Fractionation of CFCs in volatilization experiments from pure-phase CFC-11 and CFC-113 resulted in enrichment factors (ε) of +1.7 ± 0.1‰ and +1.1 ± 0.1‰, respectively, indicating that such volatile loss, if significant, would produce a more (13)C depleted signature in the remaining CFCs. Importantly, no significant fractionation was observed during volatile extraction of dissolved CFCs from aqueous solutions. δ(13)C values for groundwaters from a CFC-contaminated site were, on average, more enriched than δ(13)C values for pure compounds. Such enriched δ(13)C values have been seen in other hydrocarbon contaminants such as chlorinated ethenes and ethanes due to in situ degradation, but definitive interpretation of such enriched signatures in field samples requires additional experiments to characterize fractionation of CFCs during biodegradation. The establishment of a robust and sensitive method of extraction and analysis, as described here, provides the foundation for such future directions.

  20. Spatio-temporal variability in isotopic signatures of atmospheric NOx emissions from vehicles

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Wojtal, P.; O'Connor, M.; Clark, S.; Hastings, M. G.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry and radiative forcing. Their oxidation products, nitric acid or nitrate, have significant contributions to nitrogen (N) deposition, with implications for ecosystem health. On-road vehicle NOx sources currently dominate U.S. anthropogenic emission budgets, yet vehicle NOx emissions contributions to local and regional N deposition patterns are highly uncertain. NOx isotopic signatures offer a potentially valuable observational tool to trace source contributions to N deposition. We characterize the spatio-temporal variability of vehicle NOx emission isotopic signatures with a field and laboratory-verified technique for actively capturing NOx in solution to quantify the nitrogen isotopic composition (δ15N-NOx) to within ±1.5‰ (1σ) precision. We present a novel combination of on-road mobile and stationary urban δ15N-NOx measurements at minutes to hourly resolution along with NOx and CO2 concentration measurements. We evaluate spatial gradients of δ15N-NOx on U.S. Northeast and Midwest highways, including six urban metropolitan areas and rural interstate highways during summer and autumn. We also assess on-road diurnal δ15N-NOx variations over ~800 km driving distance in Providence, RI by targeting the upwind footprint of urban background measurements to distinguish background and source NOx. We observe on-road δ15N-NOx signatures range from -3 to -10‰ under different traffic conditions in the U.S. Northeast and Midwest. On-road δ15N-NOx daytime variations from -3 to -6‰ agree well with simultaneous urban background sampling in Providence, RI, suggesting that vehicles dominate NOx emissions in this region. We use these datasets to estimate the range of representative δ15N-NOx source signatures for U.S. vehicle fleet-integrated emission plumes. Our novel approach suggests that previously reported isotopic signatures for vehicle NOx are not necessarily representative. These

  1. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  2. Lead isotope signatures of epithermal and porphyry-type ore deposits from the Romanian Carpathian Mountains

    NASA Astrophysics Data System (ADS)

    Marcoux, Eric; Grancea, Luminita; Lupulescu, Marian; Milési, Jean

    2002-03-01

    Lead isotope analyses have been performed on the two major Miocene mining districts of Romania, Baia Mare and Apuseni Mountains. These two districts have different non-overlapping 206Pb/204Pb isotopic signatures ranging from 18.752 to 18.876 and 18.497 to 18.740. In the Baia Mare district, epithermal deposits are overall homogeneous in their lead isotopic compositions and have values similar to the average of the calc-alkaline volcanic rocks. These results suggest a magmatic signature for the Pb (and possibly other metals) in the hydrothermal fluids. However, magmas in this district show isotopic evidence of crustal assimilation. In the southern Apuseni Mountains, the lead isotope compositions of sulfide minerals in porphyry copper deposits are clustered, confirming that Pb, and probably other metals, were derived principally from associated porphyry stocks. On the other hand, lead isotope data on sulfides in epithermal ore deposits are much more scattered, indicating a notable contribution of Pb from local country rocks. In the Apuseni Mountains, 'fertile' volcanics are few and appear to come from a more primitive mantle-derived source. Most of the analysed volcanic rocks seem 'barren'. Differences in lead isotopic compositions between the Baia Mare district and the Apuseni Mountains are due to a different basement, and probably to variations in crustal assimilation superimposed on variations in the mantle source composition. In the Apuseni Mountains, Pb may be partly inherited from the previous Mesozoic magmatic-hydrothermal stage. From a geodynamic point of view, it seems that the nature and the source of volcanic rocks and their position related to the collision area of the Carpathian arc are not the only factors controlling the 'fertility' of a volcanic district.

  3. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils

    PubMed Central

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-01-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  4. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  5. Variations of Carbon Isotopes during Shale Gas Production from the Horn River Basin, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Norville, G.; Muehlenbachs, K.

    2014-12-01

    Chemical and stable isotope compositions of natural gases are key parameters for characterizing gas and hydrocarbon reservoirs. Produced gases were obtained from eight wells at multi-well pad sites located in the Horn River Basin (HRB), NE British Columbia. Shale gas wells were drilled and completed in the Devonian Muskwa, Otter Park and Evie Formations of the HRB, and gases collected as time series over short term (~50 days) and long term periods (~ 1250 days). δ13C of gases from HRB formations confirm high thermal maturity and the shale gases frequently showed partial or full isotope reversals among hydrocarbon components. A 10‰ variation in δ13C values of methane was observed during production. In general, during early phases of production shale gases appear enriched in 12C compared to gases sampled at later stages and δ13Cmethane values were approximately between -38‰ and -35‰ during times up to 50 days. The majority of cases of carbon isotope reversals between methane and ethane components of gases (δ13Cmethane > δ13Cethane) were observed at times greater than 100 days, while ethane and propane reversals were common throughout production. Gas production rates differed significantly among the sampled wells from ~ 50 to 400 e3m3/d. Higher rates were frequently associated with gases showing 12Cmethane enrichment. Subsequent to periods of well 'shut in' a change in the carbon isotope composition was detected with enrichment in 13Cmethane of gases. Carbon isotope signatures of produced gases likely reflect a combination of both the in-situ shale gas isotope signature as well as effects of isotope fractionation which may occur during transport through pores and fractures of the shale.

  6. Investigation into nitrogen attenuation in groundwater pathways in Irish RBDs through the use of stable isotopic signature analysis

    NASA Astrophysics Data System (ADS)

    Orr, Alison; Ofterdinger, Ulrich; Flynn, Raymond

    2010-05-01

    Nitrogen has been identified by the Water Framework Directive as a major pollutant of concern in terms of water quality. Nitrogen contamination can pose a threat to human health and excessive loading into surface waters can lead to eutrophication. This research aims to investigate groundwater pathways from diffuse sources of nitrogen contamination and attenuation processes in various geological settings in Ireland. As part of the EPA Strive Pathways Project, the overall purpose of this research is to improve the understanding of nitrogen attenuation processes in groundwater for the development of a catchment management tool to assess the risk posed by diffuse contamination to surface and groundwater receptors. This will be undertaken through examining nitrogen attenuation pathways in various geological settings in distinctly different catchments in Ireland. These catchments include Gortinlieve in Co. Donegal and Mattock in Co. Louth which are both poorly drained catchments and Nuenna in Co. Kilkenny which is a well drained limestone catchment. This research will be useful to develop further ongoing research carried out into the natural chemistry of the Gortinlieve catchment. The research will focus mainly on characterising the fractionation of stable nitrogen isotopes in groundwater. The use of the stable isotopes δ15N and δ18O in the study of denitrification has been well documented in literature. In addition, the isotopes δ13C and δ34S have also been shown to be useful in evaluating the influence of sulphur and carbon as electron donors in denitrification. For example FeS2 produced as a result of denitrification has a different isotopic signature than FeS2 produced from other processes. This research aims to apply these established stable isotope signatures to a new context in terms of the catchment geology and the broader integrated approach of the Pathways project. Furthermore factors influencing the rate of attenuation will be explored, such as: strata

  7. Carbon isotope stratigraphy of the upper Kharaib and Shuaiba formations: Implications for the Early Cretaceous evolution of the Arabian Gulf Region

    SciTech Connect

    Vahrenkamp, V.C.

    1996-05-01

    The carbon isotope profiles of shallow-marine carbonates from the Barremian-Aptian Kharaib and Shuaiba formations of the Arabian Gulf region range between 0.5 and 7{per_thousand} {delta}{sup 13}C PDB (Peedee belemnite). Systematic variations can be correlated with isotope profiles reported from Tethyan pelagic limestone sequences. The detailed correspondence between the isotopic signature of the relatively well-dated pelagic limestones and the poorly dated shallow-water limestones from the Arabian Gulf region suggests that global marine carbon isotope changes apparently affected deep-sea and shallow-water carbonate sediments similarly and at a similar time resolution. Although oxygen isotopes have been reset during diagenesis, carbon isotopes appear to have maintained their primary marine signature through time. No evidence has been found to connect carbon isotope trends to subaerial exposure or later meteoric diagenesis. In combination with other data, the investigated carbon isotope profiles can be used for basin-to-platform and regional correlations beyond the current resolution of biostratigraphy in shallow-water limestones. Carbon isotope stratigraphy confirms significant hiatuses in the investigated shallow-water carbonate sequences. Using carbon isotope trends as a proxy for sea level fluctuations, the carbon isotope cycles of the late Early Cretaceous of the Arabian Gulf region may represent four cycles of rising and falling sea level with a duration corresponding to that of third-order sea level fluctuations. Regional correlations derived from isotope trends provide a scenario for the larger scale stratigraphic evolution of the Arabian peninsula during the end of the Early Cretaceous.

  8. Genetic Effect on Carbon-Isotope Composition of a Plant

    NASA Astrophysics Data System (ADS)

    Yeh, H.

    2005-05-01

    Stable carbon isotopes of organic sediments are potential tools in investigating a wide spectrum of geological problems. These include paleoclimate, paleoecology, and the origin of life. The quality of the information the tools provides depends largely on our knowledge on the factors determining the isotopic composition of a plant. This is because most biogenic organic sediments are derived from plants. The factors can be grouped into internal and external. The internal factors are ultimately attributable to the genetic make-up of a plant. The most well known internal factor is the photosynthetic pathway. Others include structure of the leave tissue and metabolic characteristics of a plant. External factors are concentration and the isotopic composition of the source CO2 and the physical and chemical conditions of the plant's growth environments. This study addresses primarily the genetic effect, the internal factors. Based on the results of two suites of natural plant samples, it is concluded that the difference in photosynthetic pathway entails about 20.0 % of spread in terms of ä13CPDB values. Genetic effect is also accountable for up to 7.0 to 8.0 % spread in ä13CPDB values within a single category of photosynthetic pathway (i.e. the Calvin cycle). With constrains from the relevant known knowledge, it is concluded that the ä13CPDB values of terrestrial plants are probably ranging from - 8.0 to equal or less than -44.9 %. This range of ä13CPDB values may also be considered the bio-signature of organic sediments of great antiquity.

  9. Shergottite Lead Isotope Signature in Chassigny and the Nakhlites

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Simon, J. I.

    2017-01-01

    The nakhlites/chassignites and the shergottites represent two differing suites of basaltic martian meteorites. The shergottites have ages less than or equal to 0.6 Ga and a large range of initial Sr-/Sr-86 and epsilon (Nd-143) ratios. Conversely, the nakhlites and chassignites cluster at 1.3-1.4 Ga and have a limited range of initial Sr-87/Sr-86 and epsilon (Nd-143). More importantly, the shergottites have epsilon (W-182) less than 1, whereas the nakhlites and chassignites have epsilon (W-182) approximately 3. This latter observation precludes the extraction of both meteorite groups from a single source region. However, recent Pb isotopic analyses indicate that there may have been interaction between shergottite and nakhlite/chassignite Pb reservoirs.Pb Analyses of Chassigny: Two different studies haveinvestigated 207Pb/204Pb vs. 206Pb/204Pb in Chassigny: (i)TIMS bulk-rock analyses of successive leaches and theirresidue [3]; and (ii) SIMS analysis of individual minerals[4]. The bulk-rock analyses fall along a regression of SIMSplagioclase analyses that define an errorchron that is olderthan the Solar System (4.61±0.1 Ga); i.e., these define amixing line between Chassigny’s principal Pb isotopic components(Fig. 1). Augites and olivines in Chassingy (notshown) also fall along or near the plagioclase regression [4].This agreement indicates that the whole-rock leachateslikely measure indigenous, martian Pb, not terrestrial contamination[5]. SIMS analyses of K-spars and sulfides definea separate, sub-parallel trend having higher 207Pb/206Pbvalues ([4]; Fig. 1). The good agreement between the bulkrockanalyses and the SIMS analyses of plagioclases alsoindicates that the Pb in the K-spars and sulfides cannot be amajor component of Chassigny.The depleted reservoir sampled by Chassigny plagioclaseis not the same as the solar system initial (PAT) andrequires a multi-stage origin. Here we show a two-stagemodel (Fig. 1) with a 238U/204Pb (µ) of 0.5 for 4.5-2.4 Gaand a µ of

  10. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae.

    PubMed

    Derse, Elizabeth; Knee, Karen L; Wankel, Scott D; Kendall, Carol; Berg, Carl J; Paytan, Adina

    2007-08-01

    Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (delta(15)N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low delta(15)N values (average -0.5% per hundred) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impact this coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans.

  11. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae

    USGS Publications Warehouse

    Derse, E.; Knee, K.L.; Wankel, Scott D.; Kendall, C.; Berg, C.J.; Paytan, A.

    2007-01-01

    Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (??15N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low ??15N values (average -0.5???) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impactthis coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans. ?? 2007 American Chemical Society.

  12. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was

  13. Temporal stability of the neodymium isotope signature of the Holocene to glacial North Atlantic

    NASA Astrophysics Data System (ADS)

    van de Flierdt, Tina; Robinson, Laura F.; Adkins, Jess F.; Hemming, Sidney R.; Goldstein, Steven L.

    2006-12-01

    The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial timescales. Unlike nutrient proxies such as δ13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus they can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th-dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address long-standing concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end-member during this interval and substantiate the applicability of this novel tracer on millennial timescales for paleoceanography research.

  14. Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Estep, Marilyn L. F.

    1984-03-01

    Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO 2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ 13C of organic carbon was ˜ -12%., whereas at 900 ppm total inorganic C, the δ 13C of similar species was ˜ -25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ 13C values were ˜ -18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ 13C values (to -30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ 13C of the original organic matter. The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to -74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO 2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of

  15. Carbon isotope analyses of n-alkanes released from rapid pyrolysis of oil asphaltenes in a closed system.

    PubMed

    Chen, Shasha; Jia, Wanglu; Peng, Ping'an

    2016-08-15

    Carbon isotope analysis of n-alkanes produced by the pyrolysis of oil asphaltenes is a useful tool for characterizing and correlating oil sources. Low-temperature (320-350°C) pyrolysis lasting 2-3 days is usually employed in such studies. Establishing a rapid pyrolysis method is necessary to reduce the time taken for the pretreatment process in isotope analyses. One asphaltene sample was pyrolyzed in sealed ampoules for different durations (60-120 s) at 610°C. The δ(13) C values of the pyrolysates were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The molecular characteristics and isotopic signatures of the pyrolysates were investigated for the different pyrolysis durations and compared with results obtained using the normal pyrolysis method, to determine the optimum time interval. Several asphaltene samples derived from various sources were analyzed using this method. The asphaltene pyrolysates of each sample were similar to those obtained by the flash pyrolysis method on similar samples. However, the molecular characteristics of the pyrolysates obtained over durations longer than 90 s showed intensified secondary reactions. The carbon isotopic signatures of individual compounds obtained at pyrolysis durations less than 90 s were consistent with those obtained from typical low-temperature pyrolysis. Several asphaltene samples from various sources released n-alkanes with distinct carbon isotopic signatures. This easy-to-use pyrolysis method, combined with a subsequent purification procedure, can be used to rapidly obtain clean n-alkanes from oil asphaltenes. Carbon isotopic signatures of n-alkanes released from oil asphaltenes from different sources demonstrate the potential application of this method in 'oil-oil' and 'oil-source' correlations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-04-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. The last part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  17. Equilibrium carbon and hydrogen isotope fractionation in iron

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2009-12-01

    Recent theoretical and experimental studies (e.g., [1-3]) have suggested that Si- and Fe-isotopic signatures can be used to characterize the compositions and conditions of segregation of metallic cores in planetary interiors. This study expands the theoretical framework to include carbon and hydrogen, which may also be alloying elements. Hydrogen (D/H) and carbon (13C/12C) fractionations in iron-rich metallic melts are estimated by modeling analogous iron-rich crystals, i.e., dhcp-FeH and η-Fe2C. C- and H-atoms in these crystals are completely coordinated by iron. The driving energy for equilibrium fractionation is assumed to come from the reduction of vibrational frequencies when heavy isotopes are substituted for light ones; vibrations are assumed to be harmonic. This treatment is crude at high temperature, and for the relatively anharmonic vibrations typical of hydrogen-bearing substances, but may provide a reasonably accurate, semi-quantitative approximation of real fractionation behavior. Vibrational frequencies of all crystals are modeled with density functional theory, using gradient-corrected functionals and ultrasoft pseudopotentials. For both carbon and hydrogen, the models suggest that the metal phase will be strongly depleted in heavy isotopes. At 2000 K, 1 atm, η-Fe2C will have 3‰ lower 13C/12C than coexisting diamond. Combining this result with previous high-temperature theoretical and experimental studies (e.g., [4]), metal-graphite fractionation is expected to be very similar, while metal-CO2 fractionation will be almost twice as large, ca. -5‰. Deuterium/hydrogen fractionations are expected to be an order of magnitude larger, with 50-70‰ lower D/H in dhcp-FeH than in coexisting H2 gas at 2000 K, and approximately 100‰ lower D/H than water vapor. These fractionations are much larger than those inferred for silicon and iron, as expected given the differences in atomic mass. References: 1. Georg et al. (2007) Nature 447:1102; 2. Rustad & Yin

  18. Changes in atmospheric CO2 levels recorded by the isotopic signature of n-alkanes from plants

    NASA Astrophysics Data System (ADS)

    Machado, Karina Scurupa; Froehner, Sandro

    2017-01-01

    The isotopic signature of sedimentary organic matter acts as a tracer for past changes in the terrestrial and aquatic carbon cycles. The temporal variation in δ13C values of n-alkanes from plants was assigned as resulting from changes in atmospheric composition in the study area, due to both global and local influences. Two rises in atmospheric CO2 concentration were assigned from the variation in n-alkane δ13C values for the periods between 1600 and 1880 and from 1930 to the present. In the first period, the sources of excess CO2 were predominantly natural, mainly volcanism, while in the second period local anthropogenic emissions were the major reason.

  19. Isotopic and geochemical signatures of Late Quaternary sediments in the Fram Strait area

    NASA Astrophysics Data System (ADS)

    Maccali, J.; Hillaire-Marcel, C.; Carignan, J.; Reisberg, L. C.

    2010-12-01

    Arctic freshwater/sea-ice export through Fram Strait contributes to the Atlantic Meridional Overturning Circulation (AMOC) and acts as a trigger or feedback mechanism in the climate/ocean system. Here, geochemical and isotopic analyses of cores raised along a transect through the Strait are used to document changes in sediment sources and sea-ice transport since the LGM. Radiogenic isotope and elemental data in leachable fractions vs residues are used as proxies for water mass vs sediment source signatures, respectively. Unequivocal linkage between leachates and water-mass properties are illustrated by the anthropogenic-lead overprint in leachates from core-top sediments. Below this polluted layer, leachates and residues from late Holocene sediments carry distinct geochemical signatures E and W of the Strait. Eastward, below the North Atlantic Water (NAW) mass flowing northward, Th/Zr and Th/Pb concentration ratios ranging 0.040-0.041 and 0.85-0.90, respectively, label GIN seas and western Spitzbergen sediment-sources. Westward, below outflowing Arctic waters and sea-ice routes, these ratios range 0.032-0.035 and 0.72-0.75, respectively, and label NE Greenland and Arctic sediment sources. Pb-isotopes exhibit a similar pattern with sediment carrying a mixed Variscan-Pan-African signature below the NAW route, and a mixture of less radiogenic sources in sediments deposited below the outflowing Arctic waters and sea-ice route. Back in time, divergent trends in some radiogenic isotope values are recorded westward, below the outflowing Arctic waters and sea-ice route. Whereas isotopic properties of residues suggest sedimentary supplies originating from the Canadian Arctic and/or the NW Greenland margin, lead data from leachates bear an "Arctic Ocean" signature illustrating variable relative contributions from the Russian vs Canadian ice-margins and/or rivers. During deglacial times, a significant change in sedimentary supplies is recorded at ~ 14 ka along with some

  20. Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed.

    PubMed

    Brunet, F; Potot, C; Probst, A; Probst, J-L

    2011-10-15

    The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the

  1. Benthic foraminiferal stable isotope record of organic carbon fluxes during deposition of Mediterranean sapropel S1

    NASA Astrophysics Data System (ADS)

    Theodor, Marc; Schmiedl, Gerhard; Mackensen, Andreas

    2016-04-01

    We integrated Late Glacial to Holocene stable isotope records for different epi- and endobenthic foraminifera from the Mediterranean Sea in order to document the sequence of environmental changes across formation of the most recent sapropel S1. The stable carbon isotope record of epibenthic taxa corroborates results from model experiments indicating a Late Glacial onset of deep-water stagnation with short-term reventilation events during cold intervals of the Heinrich event 1, the Younger Dryas, and the 8.2 event. The stable carbon isotope difference between epi- and shallow endobenthic foraminifera exhibits marked temporal fluctuations linked to microhabitat shifts and changes in organic matter fluxes. We generated a transfer function for organic carbon fluxes based on a correlation between the stable carbon isotope signature of modern benthic foraminifera and observed organic carbon flux rates from different Mediterranean basins. Application of this transfer function to the down-core data reveals generally elevated organic matter fluxes during the Last Glacial Maximum and the Younger Dryas, while values drop significantly during the Bølling-Allerød interstadial and with onset of the Holocene. Our results support a scenario where average organic matter fluxes in the eastern Mediterranean Sea were not significantly enhanced during formation of sapropel S1. Instead, our data corroborate earlier results from benthic foraminiferal faunal successions and model experiments suggesting that sufficient amounts of organic matter are buried under oligotrophic conditions in an intermittently hypoxic water column.

  2. [Stable isotopes of carbon and nitrogen in soil ecological studies].

    PubMed

    Tiunov, A V

    2007-01-01

    The development of stable isotope techniques is one of the main methodological advances in ecology of the last decades of the 20th century. Many biogeochemical processes are accompanied by changes in the ratio between stable isotopes of carbon and nitrogen (12C/13C and 14N/15N), which allows different ecosystem components and different ecosystems to be distinguished by their isotopic composition. Analysis of isotopic composition makes it possible to trace matter and energy flows through biological systems and to evaluate the rate of many ecological processes. The main concepts and methods of stable isotope ecology and patterns of stable isotope fractionation during organic matter decomposition are considered with special emphasis on the fractionation of isotopes in food chains and the use of stable isotope studies of trophic relationships between soil animals in the field.

  3. Mass transfer and carbon isotope evolution in natural water systems

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, L.N.; Pearson, F.J.

    1978-01-01

    This paper presents a theoretical treatment of the evolution of the carbon isotopes C13 and C14 in natural waters and in precipitates which derive from such waters. The effects of an arbitrary number of sources (such as dissolution of carbonate minerals and oxidation of organic material) and sinks (such as mineral precipitation, CO2 degassing and production of methane), and of equilibrium fractionation between solid, gas and aqueous phases are considered. The results are expressed as equations relating changes in isotopic composition to changes in conventional carbonate chemistry. One implication of the equations is that the isotopic composition of an aqueous phase may approach a limiting value whenever there are simultaneous inputs and outputs of carbonate. In order to unambiguously interpret isotopic data from carbonate precipitates and identify reactants and products in reacting natural waters, it is essential that isotopic changes are determined chiefly by reactant and product stoichiometry, independent of reaction path. We demonstrate that this is so by means of quantitative examples. The evolution equations are applied to: 1. (1) carbon-14 dating of groundwaters; 2. (2) interpretation of the isotopic composition of carbonate precipitates, carbonate cements and diagenetically altered carbonates; and 3. (3) the identification of chemical reaction stoichiometry. These applications are illustrated by examples which show the variation of ??C13 in solutions and in precipitates formed under a variety of conditions involving incongruent dissolution, CO2 degassing, methane production and mineral precipitation. ?? 1978.

  4. Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic.

    PubMed

    Pereira, N S; Voegelin, A R; Paulukat, C; Sial, A N; Ferreira, V P; Frei, R

    2016-01-01

    Chromium-isotope compositions (expressed as δ(53) Cr) of recent and ancient skeletal and non-skeletal carbonates are currently explored as a (paleo-) redox-proxy for shallow seawater. The idea behind this approach is that biogenic and non-biogenic carbonates could potentially be used as archives recording the Cr-isotope composition of seawater in which they formed, and with this contribute to the reconstruction of past paleo-environmental changes in the marine realm, and potentially to climate changes on land. However, investigations addressing the behavior and uptake mechanism of Cr, and the potential isotope fractionations between seawater and biogenic carbonates are scarce. Here, we present a study of Cr-isotope variations in three species of corals and contemporary seawater from the Rocas Atoll, NE, Brazil. Cr-isotope values of the studied coral species (Siderastrea stellata, Porites sp., and Montastrea cavernosa) vary from -0.5 to +0.33‰ and point to significant isotopic disequilibrium with coexisting seawater characterized by a Cr-isotope value of +0.92 ± 0.2‰. This isotopic offset requires reduction of hexavalent Cr(VI) in the sequestration process of all the studied coral species. Cr-isotope values in a profile across an S. stellata colony returned homogeneous, slightly positively fractioned δ(53) Cr values of +0.07 ± 0.08‰ (n = 8, 2σ), which we interpret to reflect a constant reductive uptake during the 20-year growth period recorded in this coral. In contrast, samples across a 12-year growth profile from Porites sp. display rather heterogeneous Cr-isotope values with δ(53) Cr varying from -0.50 to +0.10‰, indicating Cr incorporation under changing redox processes during its growth intervals. We propose a mechanism whereby initial photoreduction of isotopically heavy Cr(VI) to isotopically lighter Cr(III) in the endodermal layer of corals must be followed by efficient and effective re-oxidation of reduced Cr species to favor subsequent

  5. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    SciTech Connect

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

  6. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    PubMed

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  7. Evaluating North Sea carbon sources using radiogenic (224Ra and 228Ra) and stable carbon isotope (DI13C) tracers

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Paetsch, Johannes; Clargo, Nikki

    2015-04-01

    In the North Sea, much uncertainty still exists regarding the role of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) in the overall biogeochemical cycling of the system. The stable carbon isotope signature of dissolved inorganic carbon (δ13C-DIC) is a common tool for following transformations of carbon in the water column and identifying carbon sources and sinks. Here, analyses of the first basin-wide observations of δ13C-DIC reveal that a balance between biological production and respiration, as well as a freshwater input near the European continental coast, predominantly control surface distributions in the North Sea. A strong relationship between the biological component of DIC (DICbio) and δ13C-DIC is then used to quantify the metabolic DIC flux associated with changes in the carbon isotopic signature. Correlations are also found between δ13C-DIC and naturally-occurring Radium isotopes (224Ra and 228Ra), which have well-identified sources from the seafloor and coastal boundaries. The relationship between δ13C-DIC and the longer-lived 228Ra isotope (half-life = 5.8 years) is used to derive a metabolic DIC flux from the European continental coastline. 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (TA) compared to the more conventional use of salinity as a tracer. Coastal alkalinity inputs are calculated using relationships with 228Ra, and ratios of DIC and TA suggest denitrification as the main metabolic pathway for the formation of these coastal inputs. Finally, coastal TA inputs are translated into inputs of protons to quantify their impact on the buffering capacity of the Southern North Sea.

  8. Use of Carbon Isotopes in the Analysis of the Tropospheric Carbon Monoxide Budget

    NASA Astrophysics Data System (ADS)

    Emmons, L. K.; Hess, P.; Lamarque, J.; Mak, J.; Orlando, J.; Granier, C.

    2003-12-01

    The budget of carbon monoxide (CO) includes emissions from combustion of fossil fuels and biomass, as well as chemical production from the oxidation of methane and higher hydrocarbons, with the primary sink being reaction with OH. The lifetime of CO is on the order of months, so CO serves as a good tracer of pollution long distances from source regions. The CO isotopic signature varies depending on the type of emissions, and thus can provide additional information about the contributions of different emissions. Measurements of 13CO have been made at a number of locations, showing distinct seasonal and interannual variations. We have added 13CO and its precursors (CH4 and other hydrocarbons) to the NCAR/MPI/GFDL global chemical transport model MOZART, including the 13C emissions and fractionation rates, to assist in the interpretation of the 13CO measurements. The individual emission types have been `tagged' for different regions, to further quantify the CO budget.

  9. Carbon and its isotopes in mid-oceanic basaltic glasses

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Moore, J. G.

    1984-01-01

    Sample surface carbon, mantle carbon dioxide in vesicles, and mantle carbon dissolved in glasses, are the three carbon components evident in the 11 mid-oceanic basalts presently analyzed. The total carbon content may be controlled by the depth of the shallowest ridge magma chamber, and carbon isotopic fractionation accompanies magma degassing. Using He-3 and carbon data for submarine hydrothermal fluids, the present day midoceanic ridge carbon flux is approximately estimated to be 1.0 x 10 to the 13th g C/yr, requiring 8 Gyr to accumulate the earth's present crustal carbon inventory.

  10. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Blättler, Clara L.; Miller, Nathaniel R.; Higgins, John A.

    2015-06-01

    Authigenic carbonates in marine sediments frequently have carbon isotope ratios that reflect local organic carbon processing rather than the δ13C of the global DIC (dissolved inorganic carbon) reservoir, but their contributions to ancient sedimentary sections are difficult to assess. In this study of authigenic dolomite from the Miocene-age Monterey Formation of offshore California, Mg and Ca isotopes are shown to vary with stratigraphic depth as a result of early diagenetic processes. The dolomite is a pre-compaction authigenic phase that occurs as beds and nodules with δ13C ranging from -16 to + 9 ‰. Light δ13C values were likely acquired from the sedimentary zone of microbial sulfate reduction, while heavy δ13C values were acquired from the zone of methanogenesis. Mg and Ca isotopes are roughly anti-correlated, with intervals of negative δ13C associated with low δ26Mg and higher δ 44/40Ca values. The variability is observed over a wide range of length-scales, from 10-2 meters within individual authigenic beds/nodules, to 102 meters over the entire stratigraphic column, and can be understood as the consequence of dolomite precipitation in pore fluids where Mg supply is limited by diffusive transport. The relationship of δ26Mg and δ 44/40Ca to the more common stable isotope measurements of δ13C and δ18O represents a new, diagenetically robust, geochemical fingerprint for identifying synsedimentary authigenic carbonates in the geological record.

  11. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  12. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  13. Calculation of site-specific carbon-isotope fractionation in pedogenic oxide minerals.

    PubMed

    Rustad, James R; Zarzycki, Piotr

    2008-07-29

    Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO(2)(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO(2)(m) into (oxy)hydroxide crystal structures: one in which the C(4+) substitutes for four H(+) [CO(2)(m)(A)] and another in which C(4+) substitutes for (Al(3+),Fe(3+)) + H(+) [CO(2)(m)(B)]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO(2)(m)(A) being isotopically lighter than CO(2)(m)(B) by approximately 10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO(2)(m)(B) structure in goethite differs from CO(2)(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO(2)(m)(A) and CO(2)(m)(B) structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.

  14. Calculation of site-specific carbon-isotope fractionation in pedogenic oxide minerals

    PubMed Central

    Rustad, James R.; Zarzycki, Piotr

    2008-01-01

    Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO2(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO2(m) into (oxy)hydroxide crystal structures: one in which the C4+ substitutes for four H+ [CO2(m)A] and another in which C4+ substitutes for (Al3+,Fe3+) + H+ [CO2(m)B]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO2(m)A being isotopically lighter than CO2(m)B by ≈10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO2(m)B structure in goethite differs from CO2(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO2(m)A and CO2(m)B structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous. PMID:18641124

  15. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M.

    2016-11-01

    Magnesium carbonate minerals produced by reaction of H2O-CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO2 into magnesium carbonates in these settings is difficult because the fluids are usually not preserved. Clumped-isotope compositions of magnesium carbonates provide a means to determine primary mineralization or (re)equilibration temperature, which permits the reconstruction of geologic processes that govern magnesium carbonate formation. We first provide an evaluation of the acid fractionation correction for magnesium carbonates using synthetic magnesite and hydromagnesite, along with natural metamorphic magnesite and low-temperature hydromagnesite precipitated within a mine adit. We show that the acid fractionation correction for magnesium carbonates is virtually indistinguishable from other carbonate acid fractionation corrections given current mass spectrometer resolution and error. In addition, we employ carbonate clumped-isotope thermometry on natural magnesium carbonates from various geologic environments and tectonic settings. Cryptocrystalline magnesite vein deposits from California (Red Mountain magnesite mine), Austria (Kraubath locality), Turkey (Tutluca mine, Eskişehir district) and Iran (Derakht-Senjed deposit) exhibit broadly uniform Δ47 compositions that yield apparent clumped-isotope temperatures that average 23.7 ± 5.0 °C. Based on oxygen isotope thermometry, these clumped-isotope temperatures suggest

  16. Iron Isotopes in the Amazon River System: Weathering and Transport Signatures

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; Boyle, E. A.

    2004-12-01

    Fractionation of iron isotopes will be an effective tool to investigate and quantify the environmental geochemistry of iron. Initial studies of stable iron isotopes show measurable fractionation in both field samples and laboratory studies spanning over 4‰ in the 56/54 ratio. In this study, trace metal clean plankton tows, river samples, aerosol leachates, and porewater samples were measured for their iron isotopic composition using a GV Instruments IsoProbe Multi-collector ICPMS. This system uses a hexapole collision cell to reduce molecular interferences and improve transmission. A plankton tow collected in a low salinity Amazon River plume in the open ocean had a δ 56Fe value of -0.34‰ relative to igneous rocks and a Fe:C ratio of ˜ 600 μ mol/mol. It was inferred from the high Fe:C ratio that a majority of the Fe collected in the plankton tow was extracellular Fe and that the δ 56Fe might reflect the composition of particles and Fe attached to the surface of the plankton. In order to investigate the source of Fe to the Amazon plume water, samples were collected from the Amazon River and region including filtered river water, suspended sediment, and a shelf porewater. River water-seawater mixing experiments were also performed to assess whether Fe flocculation in estuaries affects isotopic composition of the dissolved flux to the ocean. The overall Fe isotopic variation observed in the Amazon River system was 1.5‰ . The Fe from the dissolved and suspended loads of two main channel river sites was isotopically similar ( ˜ -0.2 to -0.45‰ ). The most depleted sample was the Amazon shelf porewater (-1.4‰ ). The isotopically heaviest sample collected was the dissolved Fe from an organic rich tributary, the Negro River, in the Amazon River system (+0.16‰ ). Although the Negro River dissolved phase was isotopically heavy relative to igneous rock, its suspended sediment Fe was isotopically light (-1‰ ). The signature of the Negro was not observed

  17. Developing a methodology for carbon isotope analysis of lacustrine diatoms.

    PubMed

    Hurrell, Elizabeth R; Barker, Philip A; Leng, Melanie J; Vane, Christopher H; Wynn, Peter; Kendrick, Chris P; Verschuren, Dirk; Street-Perrott, F Alayne

    2011-06-15

    Stable isotope analysis of sedimentary carbon in lakes can help reveal changes in terrestrial and aquatic carbon cycles. A method based on a single, photosynthetic organism, where host effects are minimised, should offer more precision than carbon isotope studies of bulk lake sediments. Here we report the development of a systematic method for use on fossil lacustrine diatom frustules, adapted from previous studies in marine environments. A step-wise cleaning experiment on diatomaceous lake sediments from Lake Challa, near Mount Kilimanjaro, was made to demonstrate the necessary treatment stages to remove external sedimentary carbon. Changes in soluble carbon compounds during these cleaning experiments were measured using gas chromatography/mass spectrometry (GC/MS). The mass spectrometry methods were refined to measure the small percentage of carbon in these samples and details of these methods are presented. Samples of cleaned diatoms containing <1% carbon yielded robust results. Carbon isotope analyses of diatom samples containing different species mixtures were performed and suggested that differences existed, although the effects lay within current experimental error and require further work. Unlike what was found in work on oxygen and silicon isotopes from diatom frustules, mineral contamination had no discernible impact on the diatom carbon isotope ratios from these sediments. The range of values found in the lakes investigated thus far can be interpreted with reference to the supply and nature of carbon from the catchment as well as to the demand generated from lake primary productivity. Copyright © 2011 John Wiley & Sons, Ltd.

  18. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Jiang, B.; Guo, H.; Ono, S.

    2015-02-01

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism responsible for the production and preservation of these signatures is debated. In order to identify the origin and the mechanism of preservation for these signatures, a series of laboratory photochemical experiments were carried out to investigate the effect of temperature and added O2 on the S-MIF produced by two absorption band systems of SO2: photolysis in the 190 to 220 nm region and photoexcitation in the 250 to 350 nm region. The SO2 photolysis (SO2 + hν → SO + O) experiments showed S-MIF signals with large 34S/34S fractionations, which increases with decreasing temperature. The overall S-MIF pattern observed for photolysis experiments, including high 34S/34S fractionations, positive mass-independent anomalies in 33S, and negative anomalies in 36S, is consistent with a major contribution from optical isotopologue screening effects and data for stratospheric sulfate aerosols. In contrast, SO2 photoexcitation produced products with positive S-MIF anomalies in both 33S and 36S, which is different from stratospheric sulfate aerosols. SO2 photolysis in the presence of O2 produced SO3 with S-MIF signals, suggesting the transfer of the S-MIF anomalies from SO to SO3 by the SO + O2 + M → SO3 + M reaction. This is supported with energy calculations of stationary points on the SO3 potential energy surfaces, which indicate that this reaction occurs slowly on a single adiabatic surface, but that it can occur more rapidly through intersystem crossing. Based on our experimental results, we estimate a termolecular rate constant on the order of 10-37 cm6 molecule-2 s-1. This rate can explain the preservation of mass independent isotope signatures in stratospheric sulfate

  19. Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds.

    PubMed

    Williams, Cory T; Buck, C Loren; Sears, Justine; Kitaysky, Alexander S

    2007-08-01

    When using stable isotopes as dietary tracers it is essential to consider effects of nutritional state on isotopic fractionation. While starvation is known to induce enrichment of (15)N in body tissues, effects of moderate food restriction on isotope signatures have rarely been tested. We conducted two experiments to investigate effects of a 50-55% reduction in food intake on delta(15)N and delta(13)C values in blood cells and whole blood of tufted puffin chicks, a species that exhibits a variety of adaptive responses to nutritional deficits. We found that blood from puffin chicks fed ad libitum became enriched in (15)N and (13)C compared to food-restricted chicks. Our results show that (15)N enrichment is not always associated with food deprivation and argue effects of growth on diet-tissue fractionation of nitrogen stable isotopes (Delta(15)N) need to be considered in stable isotope studies. The decrease in delta(13)C of whole blood and blood cells in restricted birds is likely due to incorporation of carbon from (13)C-depleted lipids into proteins. Effects of nutritional restriction on delta(15)N and delta(13)C values were relatively small in both experiments (delta(15)N: 0.77 and 0.41 per thousand, delta(13)C: 0.20 and 0.25 per thousand) compared to effects of ecological processes, indicating physiological effects do not preclude the use of carbon and nitrogen stable isotopes in studies of seabird ecology. Nevertheless, our results demonstrate that physiological processes affect nitrogen and carbon stable isotopes in growing birds and we caution isotope ecologists to consider these effects to avoid drawing spurious conclusions.

  20. Biomarker and molecular isotope approaches to deconvolve the terrestrial carbon isotope record: modern and Eocene calibrations

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S.; Currano, E. D.

    2010-12-01

    Climate, biome, and plant community are important predictors of carbon isotope patterns recorded in leaves and leaf waxes. However, signatures recorded by terrestrial organic carbon and lipids that have mixed floral sources (e.g., n-alkanes) potentially reflect both plant community changes and climate. More taxonomically specific proxies for plants (i.e., di- and tri-terpenoids for conifers and angiosperms, respectively), can help to resolve the relative influences of changing community and climate, provided differences in biomarker production and lipid biosynthetic fractionation among plants can be better constrained. We present biomarker abundance and carbon isotope values for lipids from leaves, branches and bark of 44 tree species, representing 21 families including deciduous and evergreen conifers and angiosperms. n-alkane production differs greatly between conifer and angiosperm leaves. Both deciduous and evergreen angiosperms make significantly more n-alkanes than conifers, with n-alkanes not detected in over half of the conifers in our study. Terpenoid abundances scale strongly with leaf habit: evergreen species have significantly higher abundances. We combine these relative differences in lipid production with published estimates of fluxes for leaf litter from conifer and angiosperm trees to develop a new proxy approach for estimating paleo plant community inputs to ancient soils and sediments. To test our modern calibration results, we have evaluated n-alkanes and terpenoids from laterally extensive (~18 km) carbonaceous shales and mudstones in Eocene sediments (52.6 Ma) at Fifteenmile Creek in the Bighorn Basin (WY, USA). Our terpenoid-based proxy predicts on average a 40% conifer community, which is remarkably close in agreement with a fossil-based estimate of 36%. n-alkane carbon isotope fractionation (leaf-lipid) differs among plant types, with conifer n-alkanes about 2-3‰ 13C enriched relative to those in angiosperms. Since conifer leaves are

  1. Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Lough, A. J. M.; Klar, J. K.; Homoky, W. B.; Comer-Warner, S. A.; Milton, J. A.; Connelly, D. P.; James, R. H.; Mills, R. A.

    2017-04-01

    Iron is a scarce but essential micronutrient in the oceans that limits primary productivity in many regions of the surface ocean. The mechanisms and rates of Fe supply to the ocean interior are still poorly understood and quantified. Iron isotope ratios of different Fe pools can potentially be used to trace sources and sinks of the global Fe biogeochemical cycle if these boundary fluxes have distinct signatures. Seafloor hydrothermal vents emit metal rich fluids from mid-ocean ridges into the deep ocean. Iron isotope ratios have the potential to be used to trace the input of hydrothermal dissolved iron to the oceans if the local controls on the fractionation of Fe isotopes during plume dispersal in the deep ocean are understood. In this study we assess the behaviour of Fe isotopes in a Southern Ocean hydrothermal plume using a sampling program of Total Dissolvable Fe (TDFe), and dissolved Fe (dFe). We demonstrate that δ56Fe values of dFe (δ56dFe) within the hydrothermal plume change dramatically during early plume dispersal, ranging from -2.39 ± 0.05‰ to -0.13 ± 0.06‰ (2 SD). The isotopic composition of TDFe (δ56TDFe) was consistently heavier than dFe values, ranging from -0.31 ± 0.03‰ to 0.78 ± 0.05‰, consistent with Fe oxyhydroxide precipitation as the plume samples age. The dFe present in the hydrothermal plume includes stabilised dFe species with potential to be transported to the deep ocean. We estimate that stable dFe exported from the plume will have a δ56Fe of -0.28 ± 0.17‰. Further, we show that the proportion of authigenic iron-sulfide and iron-oxyhydroxide minerals precipitating in the buoyant plume exert opposing controls on the resultant isotope composition of dissolved Fe passed into the neutrally buoyant plume. We show that such controls yield variable dissolved Fe isotope signatures under the authigenic conditions reported from modern vent sites elsewhere, and so ought to be considered during iron isotope reconstructions of past

  2. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Popp, Brian N.; Takigiku, Ray; Johnson, Marcus W.

    1989-01-01

    Carbon-isotopic compositions of total carbonate, inoceramid carbonate, micritic carbonate, secondary cements, total organic carbon, and geoporphyrins have been measured in 76 different beds within a 17-m interval of a core through the Greenhorn Formation, an interbedded limestone and calcareous shale unit of Cretaceous age from the Western Interior Seaway of North America. Results are considered in terms of variations in the processes of primary production and in secondary processes. It is shown that the porphyrin isotopic record reflects primary isotopic variations more closely than the TOC isotopic record and that, in these sediments, TOC is enriched in C-13 relative to its primary precursor by 0.6 to 2.8 percent. This enrichment is attributed to isotope effects within the consumer foodweb and is associated with respiratory heterotrophy. Variation in this secondary enrichment are correlated with variations in the isotopic composition of marine carbonate.

  3. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Popp, Brian N.; Takigiku, Ray; Johnson, Marcus W.

    1989-01-01

    Carbon-isotopic compositions of total carbonate, inoceramid carbonate, micritic carbonate, secondary cements, total organic carbon, and geoporphyrins have been measured in 76 different beds within a 17-m interval of a core through the Greenhorn Formation, an interbedded limestone and calcareous shale unit of Cretaceous age from the Western Interior Seaway of North America. Results are considered in terms of variations in the processes of primary production and in secondary processes. It is shown that the porphyrin isotopic record reflects primary isotopic variations more closely than the TOC isotopic record and that, in these sediments, TOC is enriched in C-13 relative to its primary precursor by 0.6 to 2.8 percent. This enrichment is attributed to isotope effects within the consumer foodweb and is associated with respiratory heterotrophy. Variation in this secondary enrichment are correlated with variations in the isotopic composition of marine carbonate.

  4. Use of stable isotope signatures to determine mercury sources in the Great Lakes

    USGS Publications Warehouse

    Lepak, Ryan F.; Yin, Runsheng; Krabbenhoft, David P.; Ogorek, Jacob M.; DeWild, John F.; Holsen, Thomas M.; Hurley, James P.

    2015-01-01

    Sources of mercury (Hg) in Great Lakes sediments were assessed with stable Hg isotope ratios using multicollector inductively coupled plasma mass spectrometry. An isotopic mixing model based on mass-dependent (MDF) and mass-independent fractionation (MIF) (δ202Hg and Δ199Hg) identified three primary Hg sources for sediments: atmospheric, industrial, and watershed-derived. Results indicate atmospheric sources dominate in Lakes Huron, Superior, and Michigan sediments while watershed-derived and industrial sources dominate in Lakes Erie and Ontario sediments. Anomalous Δ200Hg signatures, also apparent in sediments, provided independent validation of the model. Comparison of Δ200Hg signatures in predatory fish from three lakes reveals that bioaccumulated Hg is more isotopically similar to atmospherically derived Hg than a lake’s sediment. Previous research suggests Δ200Hg is conserved during biogeochemical processing and odd mass-independent fractionation (MIF) is conserved during metabolic processing, so it is suspected even is similarly conserved. Given these assumptions, our data suggest that in some cases, atmospherically derived Hg may be a more important source of MeHg to higher trophic levels than legacy sediments in the Great Lakes.

  5. Mesozoic black shales, source mixing and carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  6. The magnesium isotope record of cave carbonate archives

    NASA Astrophysics Data System (ADS)

    Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Spötl, C.; Immenhauser, A.

    2012-11-01

    Here we explore the potential of magnesium (δ26Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: -4.26 ± 0.07‰ and HK3: -4.17 ± 0.15‰), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: -3.96 ± 0.04‰) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: -4.01 ± 0.07‰; BU 4 mean δ26Mg: -4.20 ± 0.10‰) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: -3.00 ± 0.73‰; SPA 59: -3.70 ± 0.43‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several δ26Mg values of the Austrian and two

  7. The magnesium isotope record of cave carbonate archives

    NASA Astrophysics Data System (ADS)

    Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Spötl, C.; Immenhauser, A.

    2012-05-01

    Here we explore the potential of time-series magnesium (δ26Mg) isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: -4.26 ± 0.07 ‰ and HK3: -4.17 ± 0.15 ‰) and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: -3.96 ± 0.04 ‰) but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: -4.01 ± 0.07 ‰; BU 4 mean δ26Mg: -4.20 ± 0.10 ‰) record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: -3.00 ± 0.73 ‰; SPA 59: -3.70 ± 0.43 ‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several data points in the Austrian and two data points in the

  8. Relationship between carbon isotope composition and crystal morphology of coated and polycrystalline diamonds

    NASA Astrophysics Data System (ADS)

    Janson, G. F.; Muehlenbachs, K.; Stachel, T.

    2009-12-01

    The carbon isotope composition of diamond coats from Diavik Mine, Canada was measured by secondary ion mass spectrometry (SIMS). In most cases, carbon isotope ratio increases outwards from approximately -8.5 to approximately -6.5‰. Although it has not been widely noted in the literature due to sparse data coverage, this trend is consistent with measurements by other researchers at other sampling localities and therefore represents a unique insight into fluid evolution during the formation of diamond coat. We model the outwards increase in carbon isotope ratio by Rayleigh fractionation during growth of diamond coat in a closed system from an oxidized, carbon supersaturated fluid with a mantle-like carbon isotope signature. The carbon may have been exsolved as a volatile-rich fluid from upwelling kimberlite magma at depths greater than 120 km. The fluid either encountered preexisting diamond ‘seed’ crystals which served as nuclei for the coats or, in the absence of such seeds, precipitated opaque cuboid crystals. Reduction of oxidized carbon to diamond would be driven by the reduced character of the depleted lithosphere (Haggerty and Tompkins, 1983). Several polycrystalline diamonds were also studied by SIMS. These are homogeneous with respect to δ13C and therefore show no isotopic evidence of fluid evolution during their growth. The degree of supersaturation of a fluid commonly determines the crystal habit of minerals precipitated from the fluid. In the case of diamonds, dendritic coat is interpreted as a product of conditions intermediate between the low degree carbon supersaturation that produces polyhedral and hopper morphologies, and the very high supersaturation responsible for the growth of polycrystalline diamond. During closed system growth, precipitation of diamond depletes the fluid reservoir of carbon, resulting in isotopic profiles consistent with Rayleigh fractionation. This depletion necessarily reduces the chemical potential between fluid and

  9. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  10. Measurements of CO2 Carbon Stable Isotopes at Artificial and Natural Analog Sites

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Clegg, S. M.; Rahn, T.; Fessenden, J. E.; Dobeck, L.; Spangler, L.; McLing, T. L.

    2010-12-01

    Carbon storage in geologic formations is one method to prevent carbon dioxide (CO2), produced by fossil fuel combustion, from entering the Earth's atmosphere. The monitoring, verification and accounting (MVA) of geologically sequestered CO2 is critical to the operation of a geologic storage site. Surface MVA techniques need to identify seepage from the sequestration reservoir at or below ambient CO2 concentrations. The CO2 carbon stable isotope ratio of is a sensitive diagnostic signature that can distinguish between anthropogenic and natural sources of CO2. Frequency Modulated spectroscopy (FMS) is an ultra-sensitive version of absorption spectroscopy that is capable of detecting the CO2 carbon stable isotope ratios. The technique involves phase modulation of the laser such that two side bands, spaced wider than the absorption feature of interest (in this case +/-2 GHz) are created. The signal is mixed with the local oscillator yielding a signal proportional to the species concentration. This FMS signature is recorded at multiple wavelengths to obtain the CO2 carbon isotope ratio.Two instruments using the FMS technique have been built and tested at LANL. One instrument draws ambient air into a multi-pass cell for a measurement, point source measurements. The other instrument uses an open-air path, tested up to 160 m (round trip), to measure the CO2 carbon isotopic ratio along the beam path, column average measurements. In this paper, results from multiple field deployments of one or both of the instruments will be presented. The Zero Emissions Research & Technology (ZERT) group at Montana State University established a field test site where controlled amounts of CO2 are released to test the performance of CO2 detection instruments and measurement techniques. The field site allows a controlled flow rate of CO2 to be released into the near surface through a 100 m long horizontal pipe. In July of 2009, a release was conducted, with a uniform flow rate of 0.2 tons per

  11. Carbon Monoxide Isotopes: On the Trail of Galactic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1995-01-01

    From the early days of the discovery of radio emission from carbon monoxide it was realized that it offered unusual potential for under- standing the chemical evolution of the Galaxy and external galaxies through measurements of molecular isotopes. These results bear on stellar nucleosynthesis, star formation, and gases in the interstellar medium. Progress in isotopic radio measurements will be reviewed.

  12. Bromine and carbon isotope effects during photolysis of brominated phenols.

    PubMed

    Zakon, Yevgeni; Halicz, Ludwik; Gelman, Faina

    2013-12-17

    In the present study, carbon and bromine isotope effects during UV-photodegradation of bromophenols in aqueous and ethanolic solutions were determined. An anomalous relatively high inverse bromine isotope fractionation (εreactive position up to +5.1‰) along with normal carbon isotope effect (εreactive position of -12.6‰ to -23.4‰) observed in our study may be attributed to coexistence of both mass-dependent and mass-independent isotope fractionation of C-Br bond cleavage. Isotope effects of a similar scale were observed for all the studied reactions in ethanol, and for 4-bromophenol in aqueous solution. This may point out related radical mechanism for these processes. The lack of any carbon and bromine isotope effects during photodegradation of 2-bromophenol in aqueous solution possibly indicates that C-Br bond cleavage is not a rate-limiting step in the reaction. The bromine isotope fractionation, without any detectable carbon isotope effect, that was observed for 3-bromophenol photolysis in aqueous solution probably originates from mass-independent fractionation.

  13. Carbon Monoxide Isotopes: On the Trail of Galactic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1995-01-01

    From the early days of the discovery of radio emission from carbon monoxide it was realized that it offered unusual potential for under- standing the chemical evolution of the Galaxy and external galaxies through measurements of molecular isotopes. These results bear on stellar nucleosynthesis, star formation, and gases in the interstellar medium. Progress in isotopic radio measurements will be reviewed.

  14. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers

    PubMed Central

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-01-01

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions. PMID:27151563

  15. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-05-01

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions.

  16. BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES

    EPA Science Inventory

    The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...

  17. Origin of petroporphyrins. 2. Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.

    1990-01-01

    Compared with the carbon-13 isotopic composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 isotopic composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 isotopic composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 isotopic composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.

  18. BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES

    EPA Science Inventory

    The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...

  19. Nanoscale detection of organic signatures in carbonate microbialites.

    PubMed

    Benzerara, Karim; Menguy, Nicolas; López-García, Purificación; Yoon, Tae-Hyun; Kazmierczak, Józef; Tyliszczak, Tolek; Guyot, François; Brown, Gordon E

    2006-06-20

    Microbialites are sedimentary deposits associated with microbial mat communities and are thought to be evidence of some of the oldest life on Earth. Despite extensive studies of such deposits, little is known about the role of microorganisms in their formation. In addition, unambiguous criteria proving their biogenicity have yet to be established. In this study, we characterize modern calcareous microbialites from the alkaline Lake Van, Turkey, at the nanometer scale by combining x-ray and electron microscopies. We describe a simple way to locate microorganisms entombed in calcium carbonate precipitates by probing aromatic carbon functional groups and peptide bonds. Near-edge x-ray absorption fine structure spectra at the C and N K-edges provide unique signatures for microbes. Aragonite crystals, which range in size from 30 to 100 nm, comprise the largest part of the microbialites. These crystals are surrounded by a 10-nm-thick amorphous calcium carbonate layer containing organic molecules and are embedded in an organic matrix, likely consisting of polysaccharides, which helps explain the unusual sizes and shapes of these crystals. These results provide biosignatures for these deposits and suggest that microbial organisms significantly impacted the mineralogy of Lake Van carbonates.

  20. Isotopically enriched N-MORB: a new geochemical signature for plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Yang, A. Y.; Zhao, T.; Zhou, M. F.

    2016-12-01

    The presence of E-MORB (mid-ocean ridge basalts with enrichments in light rare earth elements (LREE)) at MOR has long been considered as the necessary geochemical evidence for plume-ridge interaction, because plume materials are normally more enriched in both trace elements and isotopic compositions than the source of N-MORB (normal-MORB). However, global MORB compilation indicates that MORB erupted on the ridge segments within 200 km of hotspots do not always show obvious E-MORB signatures. Therefore, is it true that E-MORB is the only possible geochemical signature of such interaction? Alternatively, isotopic enriched N-MORB in this study, combined with MORB of such kind worldwide, would potentially provide a new perspective on our understanding on the geochemical expression of plume-ridge interactions. Interaction between the Southwest Indian Ridge (46°E and 52°20'E) and Crozet hotspot has been proposed by geophysical studies, but remains controversial mostly due to the lack of E-MORB. 47 new samples collected from this region during the RV Dayang Yihao Cruise, including 15 from the segment 27 centered at 50°28'E with 10-km thick crust, are all N-MORB and can be classified into two groups: a high-Al group only at 50°28'E and a Main group widespread. The former, with higher Al2O3 and lower TiO2 and SiO2, have slightly enriched Sr-Nd-Hf-Pb isotopic compositions. Considering almost twice the thickness of the segment 27 than nearby segments for at least 3 Ma, the enriched isotopic compositions call for the presence of a hot and isotopically enriched source with previous melt extraction to deplete the incompatible elements. Neither melting residue related to the Madagascar and Karoo flood basalts nor local mantle heterogeneity can meet such requirements. The Crozet plume melting residues, alternatively, are the likely source. The isotopically enriched N-MORB formed by re-melting of the Crozet hotspot with previous melt extraction likely during transportation

  1. From the Arctic Lake to the Arctic Ocean: Radiogenic Isotope Signature of Transitional Sediments

    NASA Astrophysics Data System (ADS)

    Poirier, A.; Hillaire-Marcel, C.; Veron, A. J.; Stevenson, R.; Carignan, J.

    2011-12-01

    The Arctic Ocean was once an enclosed basin with fresh surface water conditions during the Paleocene and most of the Eocene epochs (e.g. Moran et al. 2004), until a readjustment in high latitude plate tectonics allowed North Atlantic marine water to flow into the Arctic basin some 36 Ma ago (Poirier and Hillaire-Marcel, 2011). This first input was sufficient to overprint the earlier osmium isotopic composition in the basin (ibid.) and deposit marine sediments on the Lomonosov Ridge between 36 Ma and present day. Here, we present Sr and Pb isotope signatures in the transitional layers of the same ACEX sequence from Lomonosov Ridge (ca. 190 to 210 mcd). Bulk sediment samples were leached prior to total dissolution in order to remove the hydrogeneous Sr fraction of the sediment. The Sr isotopic signature of the residual fraction is thought to reflect the origin of the sedimentary load that was deposited before, during, and after the transition (source tracing). Leaching was not required for the Pb isotope analyses as leached residues and bulk sediments yielded similar isotopic composition for the oxic sediments. Moreover, correction for in-situ production is needed within the anoxic lacustrine section (see below), so bulk sediments were measured. Above and below the lacustrine/marine boundary, we note relatively constant source provenances (or mixture of sources). This implies that the relative contributions from regional detrital sedimentary sources, and thus relative erosion rates over surrounding continents, did not change much on the long term scale. On the other hand, a sharp change in the isotopic compositions highlights the transition level itself, with an abrupt shift to low 87Sr/88Sr isotope compositions and by a smaller excursion in all three 204Pb-normalised lead isotopes compositions (corrected for in-situ decay of U). In the light of the recently revised age of the transitional layer (~36 Ma at the lacustrine/marine transition), this isotopic excursion

  2. Signatures of shape transitions in odd-A neutron-rich rubidium isotopes

    SciTech Connect

    Rodriguez-Guzman, R.; Sarriguren, P.; Robledo, L. M.

    2010-12-15

    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We use a self-consistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M, and implemented with the equal-filling approximation. We find clear signatures of a sharp shape transition at N=60 in both the charge radii and spin parity of the ground states, which are robust, consistent with each other, and in agreement with experiment. We point out that the combined analysis of these two observables could be used to predict unambiguously new regions where shape transitions might develop.

  3. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures

    PubMed Central

    Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W. N.; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn

    2013-01-01

    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ199Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude. PMID:24270081

  4. Isotopic signature of N(2)O produced by marine ammonia-oxidizing archaea.

    PubMed

    Santoro, Alyson E; Buchwald, Carolyn; McIlvin, Matthew R; Casciotti, Karen L

    2011-09-02

    The ocean is an important global source of nitrous oxide (N(2)O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N(2)O, but the isotopic signatures of N(2)O produced by these processes are not consistent with the marine contribution to the global N(2)O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N(2)O. Natural-abundance stable isotope measurements indicate that the produced N(2)O had bulk δ(15)N and δ(18)O values higher than observed for ammonia-oxidizing bacteria but similar to the δ(15)N and δ(18)O values attributed to the oceanic N(2)O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N(2)O source.

  5. Assessment of the clumped isotope composition of fossil bone carbonate as a recorder of subsurface temperatures

    NASA Astrophysics Data System (ADS)

    Suarez, Marina B.; Passey, Benjamin H.

    2014-09-01

    Bone is susceptible to early diagenesis, and its carbon and oxygen isotopic compositions have been suggested to reflect conditions in the soil environment and shallow subsurface during fossilization. This implies open-system recrystallization involving mass exchange of carbon and oxygen among bioapatite, soil water, and DIC. Such recrystallization would also redistribute isotopic clumping (including 13C-18O bonds), leading to the possibility that the carbonate clumped isotope compositions of fossil bone record ground temperature during early diagenesis. We assess this possibility by studying Quaternary mammalian fossil bone from subtropical to polar latitudes: if recrystallization is early and pervasive, clumped isotope derived temperatures, T(Δ47), should closely mirror latitudinal gradients in ground temperature. Excluding results from a mummified specimen yielding T(Δ47) = 38 °C (that is, indistinguishable from mammalian body temperature), we find that T(Δ47) values are intermediate between mammalian body temperature and ground temperature, suggesting partial recrystallization of bone carbonate. XRD analyses show that the nature and extent of diagenesis varies among the samples and does not relate in a straightforward manner to T(Δ47). No clear correlation exists between T(Δ47) and mean annual temperature or mean warm season temperature. Furthermore, bone tends to retain the 18O-enriched signature of body water, suggesting incomplete oxygen isotope exchange with meteoric waters. Incomplete carbon and oxygen isotope exchange between bone carbonate and soil waters is also indicated for a set of late Miocene bone-enamel pairs from a sequence of stacked paleosols in northern China. Analysis of bone as old as Early Cretaceous shows that bone carbonate is susceptible to later diagenesis at elevated burial temperatures, although T(Δ47) does not closely conform to maximum burial temperature, again suggesting partial recrystallization, or recrystallization during

  6. Global carbon isotope records and carbon cycle feedbacks following the PETM perturbation (Invited)

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.

    2009-12-01

    Global warming during the Paleocene-Eocene Thermal Maximum is associated with a transient, multi-phase negative carbon isotope excursion documented throughout the global exogenic carbon cycle. The precipitous drop in carbon isotope ratios at the onset of the event is widely accepted to reflect a massive addition of 13C-depleted carbon to the ocean/atmosphere system and resultant increases in atmospheric pCO2 and ocean water acidity. But what, if anything, does the pattern of continued carbon isotope change tell us about the patterns and mechanisms of carbon cycle change during the subsequent 170 kyr? Carbon isotope ratios remain relatively stable and low for some 60 kyr following the initiation of the event, suggesting either continued perturbation of the system away from its pre-PETM state or a change in the rate or net isotopic composition of the carbon burial flux during this interval. The interval of δ13C stability ended abruptly ca. 80 kyr after the beginning of the PETM, when carbon isotope ratios rapidly increased by at least 2‰ over no more than 30 kyr. The rebound rate of δ13C values was an order of magnitude faster than expected based on the residence time of carbon in the exogenic system, and implies either a dramatic decrease in residence time or a substantial change in the isotopic composition of carbon fluxes between this system and the lithosphere. The isotopic record of the PETM carbon cycle oscillates between stability and instability, suggesting discrete changes in global carbon fluxes at points throughout the event. Understanding whether these changes were driven by variation in bulk carbon fluxes or ‘isofluxes’ will be necessary to accurately interpret the carbon isotope record to better understand lithospheric carbon burial feedbacks, CO2 drawdown, and the termination of the PETM hyperthermal climate.

  7. Carbon isotope fractionation during calcium carbonate precipitation induced by ureolytic bacteria

    NASA Astrophysics Data System (ADS)

    Millo, Christian; Dupraz, S.; Ader, M.; Guyot, F.; Thaler, C.; Foy, E.; Ménez, B.

    2012-12-01

    Ureolytic bacteria have been proposed as model organisms to investigate the potential of subsurface microorganisms to enhance carbon capture and storage through solubility- and mineral-trapping of CO2 induced by bacterial ureolysis and carbonate formation. Ideally, CO2 incorporation into carbonates can be readily traced using carbon isotope measurements. However, the carbon isotope systematics of bacterial ureolysis and associated carbonate precipitation is still poorly known. We determined the carbon isotope fractionations expressed during ureolysis and carbonate precipitation induced by Sporosarcina pasteurii at 30 °C. Our results indicate that bacterial ureolysis proceeds as a Rayleigh distillation characterized by a 13C-enrichment factor equal to -12.5‰. As precipitation proceeds, the δ13C value of CaCO3, initially 1-2.1‰ lower than that of dissolved inorganic carbon (DIC), evolves progressively until it is 0.5‰ higher than that of the DIC, i.e. close to the value predicted for isotopic equilibrium. The minor isotope disequilibrium at the onset of precipitation and its rapid evolution towards isotopic equilibrium point to bacterial carbonates as reliable recorders of the carbon isotope composition of DIC. This corroborates the potential utility of 13C-tracing for the quantification of microbially-induced CO2 sequestration into solid carbonates and DIC.

  8. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    PubMed

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  9. Searching for signatures of life on Mars: an Fe-isotope perspective.

    PubMed

    Anand, M; Russell, S S; Blackhurst, R L; Grady, M M

    2006-10-29

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.

  10. Searching for signatures of life on Mars: an Fe-isotope perspective

    PubMed Central

    Anand, M; Russell, S.S; Blackhurst, R.L; Grady, M.M

    2006-01-01

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars. PMID:17008212

  11. Oxygen isotopic signature of N2O for distinguishing between bacterial and fungal denitrification

    NASA Astrophysics Data System (ADS)

    Rohe, L.; Well, R.; Lewicka-Szczebak, D.; Anderson, T. H.; Giesemann, A.

    2015-12-01

    The isotopic composition of the greenhouse gas N2O (δ15Nbulk, δ18O and 15N site preference (SP) of N2O) can be used to distinguish N2O production pathways. So far, controls of δ18O values are not sufficiently explored due to complex fractionation processes and varying extent of O-exchange with soil water. However, it can potentially serve as another isotopic parameter, beside SP values, enabling to differentiate between bacterial and fungal N2O production. In the study presented here, natural isotopic signature of N2O and O-exchange between denitrification intermediates and water for the first time was analyzed simultaneously from three bacterial and three fungal pure cultures. Anaerobic incubations with nitrite for fungi and nitrate for bacteria as electron acceptors were conducted. Treatments with three waters differing in 18O signature were used to determine O-exchange. 15N labeled electron acceptors served to determine the ongoing production pathway. After an incubation time of five, ten and 14 days gas samples were taken and analyzed with GC-IRMS. Aside from one fungus all others produced N2O by denitrification only. As expected, SP values of N2O produced by fungi were much higher compared to bacterial N2O. During fungal denitrification O-exchange was high (78 to 93%) and O isotope effects were stable over time and species and depended on O signature of water (42 to 48‰). In contrast, bacteria showed a much larger range of O-exchange (15 to 86%) with varying O isotope effects (14 to 39‰). Modelling O fractionation during denitrification revealed that O-exchange occurring by different enzymatic steps (nitrite reductase or nitric oxide reductase) could be responsible for the observed inconsistent O fractionation effects of bacteria compared to fungi. Thus, O fractionation of bacteria seems to be very complex and needs further investigation. Generally, fungal denitrification seems to be characterized by higher O fractionation effect than bacterial

  12. Searching for isovector signatures in the neutron-rich oxygen and calcium isotopes

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Piekarewicz, Jorge

    2015-04-01

    We search for potential isovector signatures in the neutron-rich oxygen and calcium isotopes within the framework of a relativistic mean-field theory with an exact treatment of pairing correlations. To probe the isovector sector we calibrate a few relativistic density functionals using the same isoscalar constraints but with one differing isovector assumption. It is found that under certain conditions, the isotopic chain in oxygen can be made to terminate at the experimentally observed 24 O isotope. In the case of the calcium isotopes, the drip line is predicted to be reached beyond 60 Ca. To produce such behavior, the resulting symmetry energy must be soft, with predicted values for the symmetry energy and its slope at saturation density being J = (30 . 92 +/- 0 . 47) MeV and L = (51 . 0 +/- 1 . 5) MeV, respectively. As a consequence, the neutron-skin thickness of 208 Pb is rather small: Rskin208 = (0 . 161 +/- 0 . 011) fm. This same model, labelled FSUGarnet , predicts R1 . 4 = (13 . 1 +/- 0 . 1) km for the radius of a ``canonical'' 1.4M⊙ neutron star, yet is also able to support a two-solar-mass neutron star.

  13. Zinc concentrations and isotopic signatures of an aquatic insect (mayfly, Baetis tricaudatus)

    USGS Publications Warehouse

    Wesner, Jeff S; Walters, David; Schmidt, Travis S.; Kraus, Johanna M.; Stricker, Craig A.; Clements, William H.

    2017-01-01

    Insect metamorphosis often results in substantial chemical changes that can fractionate isotopes and alter contaminant concentrations. We exposed larval mayflies (Baetis tricaudatus) to an aqueous zinc gradient (3-340 µg Zn/l) and measured the change in zinc tissue concentrations at different stages of metamorphosis. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed B. tricaudatus. Zinc concentrations in larvae were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Zinc concentrations in adults were also positively related to aqueous concentrations, but were 7-fold lower than larvae. However, this relationship varied according to adult substage (subimago vs imago) and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage by sex combinations. Metamorphosis also altered isotopic ratios, increasing δ15N, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with enriched δ15N signatures. For zinc, this change is largely consistent across the aqueous exposure gradient. However, the differences among sexes and stages suggest that caution is warranted when using isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).

  14. Quantification of insect nitrogen utilization by the venus fly trap Dionaea muscipula catching prey with highly variable isotope signatures.

    PubMed

    Schulze, W; Schulze, E D; Schulze, I; Oren, R

    2001-05-01

    Dionaea is a highly specialized carnivorous plant species with a unique mechanism for insect capture. The leaf is converted into an osmotically driven trap that closes when an insect triggers sensory trichomes. This study investigates the significance of insect capture for growth of Dionaea at different successional stages after a fire, under conditions where the prey is highly variable in its isotope signature. The contribution of insect-derived nitrogen (N) was estimated using the natural abundance of 15N. In contrast to previous 15N studies on carnivorous plants, the problem emerges that delta15N values of prey insects ranged between -4.47 per thousand (grasshoppers) and +7.21 per thousand (ants), a range that exceeds the delta15N values of non carnivorous reference plants (-4.2 per thousand) and soils (+3 per thousand). Thus, the isotope-mixing model used by Shearer and Kohl to estimate the amount of insect-derived N is not applicable. In a novel approach, the relationships of delta15N values of different organs with delta15N of trapping leaves were used to estimate N partitioning within the plant. It is estimated that soon after fire approximately 75% of the nitrogen is obtained from insects, regardless of plant size or developmental stage. The estimates are verified by calculating the average isotope signatures of insects from an isotope mass balance and comparing this with the average measured delta15N values of insects. It appears that for Dionaea to survive and reach the flowering stage, seedlings must first reach the 6th-leaf rosette stage, in which trap surface area nearly doubles and facilitates the capture of large insects. Large amounts of nitrogen thus made available to plants may facilitate an enhanced growth rate and the progressive production of additional large traps. Dionaea reaches a maximum abundance after fire when growth of the competing vegetation is suppressed. About 10 years after fire, when grasses and shrubs recover, Dionaea becomes

  15. Identification and quantification of base flow using carbon isotopes.

    PubMed

    Meredith, Elizabeth L; Kuzara, Shawn L

    2012-01-01

    Six surface water samples from locations along Otter Creek in Southeastern Montana and a groundwater sample from a nearby monitoring well completed in the Knobloch coal were analyzed for stable carbon isotope ratios. Along the length of its perennial reach, between the towns of Otter and Ashland, Otter Creek crosses several coal outcrops, including the Knobloch coal zone. The carbon isotope ratio of the creek becomes progressively more similar to that of the Knobloch coal aquifer groundwater in samples collected downgradient from the town of Otter. The isotope ratio of the stream changes from -10.5 to -8.9‰ reflecting the influence of the coal-aquifer base flow contribution, as represented by Knobloch coal groundwater, which has a carbon isotope value of +3.9‰. The dissolved inorganic carbon concentrations of the groundwater and surface water are similar (~100 mg/L), which allowed the use of the simplified, first-order, two-end-member mixing equation. Using carbon isotope ratios, calculations of the fraction of water contributed by coal aquifers indicate that approximately 11% of the surface water in Otter Creek at its mouth near Ashland was supplied by groundwater from the coal aquifers that crop out between Otter and Ashland. This study was conducted in December, when Otter Creek is at low flow. At times of higher surface flow, the contribution from groundwater base flow will be correspondingly smaller. This study illustrates that carbon isotopes can be an effective, low-cost tool in base flow studies.

  16. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    PubMed

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area.

  17. A method for carbon stable isotope analysis of methyl halides and chlorofluorocarbons at pptv concentrations.

    PubMed

    Archbold, Marie E; Redeker, Kelly R; Davis, Simon; Elliot, Trevor; Kalin, Robert M

    2005-01-01

    A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air (13)C/(12)C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl(2)F(2)) and CFC-113 (C(2)Cl(3)F(3)). Significant, but consistent, isotopic shifts of -27.5 per thousand to -25.6 per thousand do occur within the system for CFC-11 (CCl(3)F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (carbon isotope results similar to published values for (13)C/(12)C analysis of MeCl (-39.1 per thousand) and CFC-113 (-28.1 per thousand). However, this is the first paper reporting stable carbon isotope signatures for CFC-11 (-29.4 per thousand) and CFC-12 (-37.0 per thousand). Copyright (c) 2005 John Wiley & Sons, Ltd.

  18. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O

    NASA Astrophysics Data System (ADS)

    Cummins, Renata C.; Finnegan, Seth; Fike, David A.; Eiler, John M.; Fischer, Woodward W.

    2014-09-01

    Much of what we know about the history of Earth's climate derives from the chemistry of carbonate minerals in the sedimentary record. The oxygen isotopic compositions (δ18O) of calcitic marine fossils and cements have been widely used as a proxy for past seawater temperatures, but application of this proxy to deep geologic time is complicated by diagenetic alteration and uncertainties in the δ18O of seawater in the past. Carbonate clumped isotope thermometry provides an independent estimate of the temperature of the water from which a calcite phase precipitated, and allows direct calculation of the δ18O of the water. The clumped isotope composition of calcites is also highly sensitive to recrystallization and can help diagnose different modes of diagenetic alteration, enabling evaluation of preservation states and identification of the most pristine materials from within a sample set-critical information for assessing the quality of paleoproxy data generated from carbonates. We measured the clumped isotope composition of a large suite of calcitic fossils (primarily brachiopods and corals), sedimentary grains, and cements from Silurian (ca. 433 Ma) stratigraphic sections on the island of Gotland, Sweden. Substantial variability in clumped isotope temperatures suggests differential preservation with alteration largely tied to rock-buffered diagenesis, complicating the generation of a stratigraphically resolved climate history through these sections. Despite the generally high preservation quality of samples from these sections, micro-scale observations of calcite fabric and trace metal composition using electron backscatter diffraction and electron microprobe analysis suggest that only a subset of relatively pristine samples retain primary clumped isotope signatures. These samples indicate that Silurian tropical oceans were likely warm (33 ± 7 °C) and similar in oxygen isotopic composition to that estimated for a "modern" ice-free world (δ18OVSMOW of -1.1 ± 1

  19. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  20. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1979-01-01

    The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.

  1. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1979-01-01

    The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.

  2. Fe isotopic signatures in the seawater and suspended particles from the Equatorial Pacific and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lacan, F.; Labatut, M.; Radic, A.; Abadie, C.

    2012-12-01

    Seawater iron isotopic composition, notably of its dissolved phase, has been first thought to be a very promising new tracer of iron sources to the ocean. It has been argued that it could allow distinguishing dust sources characterized by crustal like signatures, from sedimentary sources characterized by isotopically light iron resulting from reductive dissolution within oxygen depleted sediments. This has been found in suboxic to anoxic basins (with delta56/54Fe/IRMM values as low as 3%o along the very reductive California margin). Here, we will present Fe isotope data, both in the dissolved and particulate phases, from three oxic areas, one in the Equatorial Pacific and two in the Southern Ocean, were sedimentary sources do not seem to be associated to isotopically light iron. We will argue that release of dissolved iron from the sediments in those environments is the result of non-reductive processes. In such environments Fe isotopes signature might not help tracing different Fe sources (eg. dusts versus sediments), but rather might bring information about the processes involved in the release of dissolved Fe from these sources. The dataset also allows studying the evolution of water mass signatures along water masses pathways, suggesting that they may, at least in some cases, remain unchanged over long distances. A clear isotopically light signature (delta56/54Fe/IRMM ~-0.7%o) associated to the low oxygenated Upper Circumpolar Deep Water will be discussed.

  3. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  4. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Blair, N. E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1992-09-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from "noncompetitive" substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94‰. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in 13C, reaching a maximum δ13C value of -42‰. Third, the acetate pool experienced a precipitous decline from >5 mM to <20 μM and methane production was again dominated by CO2 reduction. The δ13C of methane produced during this final phase ranged from -46 to -58‰. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8% of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane emitted from undisturbed Cape Lookout Bight sediment.

  5. Influence of chemical structure on carbon isotope composition of lignite

    NASA Astrophysics Data System (ADS)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  6. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    NASA Astrophysics Data System (ADS)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  7. A Multi-isotope Tracer Approach Linking Land Use With Carbon and Nitrogen Cycling in the San Joaquin River System

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better

  8. Using carbon isotopes of methane from porewater to understand methane emissions across a permafrost thaw gradient

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; McCalley, C. K.; Clarizia, P. E.; Verbeke, B. A.; Werner, S. L.; Burke, S. A.; Malhotra, A.; Rocci, K.

    2016-12-01

    Methane (CH4) emissions from high latitude ecosystems are controlled in part by the presence/absence of permafrost and concomitant modifications in vegetation composition. Rapid transitions in habitat impact CH4 emissions both by changing the moisture regime as well as the production and emission pathways. Measurement of the isotopic composition of CH4 in porewater in these thawed ecosystems can indicate shifts in production pathways of CH4. We measured CH4 and carbon dioxide (CO2) emission, belowground CH4 concentration and 13CH4 of porewater, vegetative type, and vascular greenness area (VGA) along a thaw gradient during summers 2012-2016 in Stordalen Mire, Sweden. Concentrations of CH4 belowground showed positive correlation with aboveground emissions. Carbon isotopic signatures of CH4 varied varied between sites with more hydrogenotrophic signatures in sites dominated by Sphagnum spp. and acetate fermentation signatures in sedge dominated sites (Carex and Eriophorum spp.). These data indicate that these ecosystems transition from thaw, their 13CH4 emissions will change and therefore need to be accounted for in global atmospheric budgets and models.

  9. Sulfur and carbon isotope biogeochemistry of a rewetted brackish fen

    NASA Astrophysics Data System (ADS)

    Koebsch, Franziska; Gehre, Matthias; Winkel, Matthias; Koehler, Stefan; Koch, Marian; Jurasinski, Gerald; Spitzy, Alejandro; Liebner, Susanne; Sachs, Torsten; Schmiedinger, Iris; Kretzschmann, Lisett; Saborowski, Anke; Böttcher, Michael E.

    2015-04-01

    Coastal wetlands are at the interface between terrestrial freshwater and marine and exhibit very specific biogeochemical conditions. Intermittent sea water intrusion affects metabolic pathways, i. e. anaerobic carbon metabolism is progressively dominated by sulfate reduction with lower contribution of methanogenesis whilst methane production is increasingly shifted from acetoclastic to hydrogenotrophic. Due to expanding anthropogenic impact a large proportion of coastal ecosystems is degraded with severe implications for the biogeochemical processes. We use concentration patterns and stable isotope signatures of water, sulfate, dissolved carbonate, and methane (δ2H, δ13C, δ18O, δ34S) to investigate the S and C metabolic cycle in a rewetted fen close to the southern Baltic Sea border. Such studies are crucial to better predict dynamic ecosystem feedback to global change like organic matter (OM) decomposition or greenhouse gas emissions. Yet, little is known about the metabolic pathways in such environments. The study site is part of the TERENO Observatory "Northeastern German Lowlands' and measurements of methane emissions have run since 2009. High methane fluxes up to 800 mg m-2 hr-1 indicate that methanogenesis is the dominant C metabolism pathway despite of high sulfate concentrations (up to 37 mM). The presented data are part of a comprehensive biogeochemical investigation that we conducted in autumn 2014 and that comprises 4 pore water profiles and sediment samples within a transect of 300-1500 m distance to the Baltic Sea. Depth of organic layers ranged from 25 to 140 cm with high OM contents (up to 90 dwt.%). Sulfate/chloride ratios in the pore waters were lower than in the Baltic Sea for most sites and sediment depths indicated a substantial net sulfate loss. Sulfide concentrations were negligible at the top and increased parallel to the sulfate concentrations with depth to values of up to 0.3 mM. One pore water profiles situated 1150 m from the Baltic

  10. Oxygen isotopic signature of the skeletal microstructures in cultured corals: Identification of vital effects

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, A.; Reynaud, S.; Rollion-Bard, C.; Cuif, J. P.; Dauphin, Y.; Blamart, D.; Ferrier-Pagès, C.; Allemand, D.

    2009-09-01

    In order to identify vital effect on oxygen isotopic ratio, we analyzed at micrometer size scale skeleton microstructures of a scleractinian coral Acropora, cultured under constant conditions. Measurements focused on the two crystalline units highlighted different isotopic signatures. Massive crystals (centers of calcification: COC) exhibit quasi-constant lowest values whereas fibers, the dominant units exhibit scattered distribution with amplitude of up to 5‰. Fiber oxygen isotopic ratios (δ 18O) range from values similar to instantaneous deposition to equilibrium value. By comparing data obtained on the Acropora specimen and deep-sea corals grown under well constrained conditions, we infer that the scattered δ 18O aragonite fibers indicate precipitation through kinetic precipitation. Thus, we argue for inherent biological feature typical to all coral genera. Modalities of COC formation remain ignored. The different isotopic signature of two mineral microstructures present in close proximity in coral skeleton can only be explained by compartment depositions related to different organic environments. Indeed, multiple secondary electron microscopy (SEM) observations favor interaction between mineral and organic matrix surface. Moreover, atomic forcing microscopy (AFM) investigations demonstrated thermodynamic changes induced by mineralization in presence of organic compounds. The combination of our results with previous published ones from biological studies, allows us proposing a consistent model of fiber skeleton formation. The prerequisite step of mineral growth unit precipitation would be initiated by organic matrix secretion, which defines spatial extension. Specific carriers supply ionic compounds of the crystals to ensure local supersaturation. However, possibly controlled by organic molecules, ionic amount would be limited, implying the supersaturation decline over the time. This could explain the progressive decrease of the coral growth rate. In this

  11. High-resolution stable isotope signature of a land-falling atmospheric river in Southern Norway

    NASA Astrophysics Data System (ADS)

    Weng, Yongbiao; Sodemann, Harald

    2017-04-01

    Gathering observational evidence of the long-range moisture versus local source contributions remains a scientific challenge, but is critical for understanding how hydrological extremes develop. Moisture transport to the west coast of Norway is often connected to elongated meridional structures of high water vapour flux known as Atmospheric Rivers. It is still an open question how well moisture sources estimated by different numerical models for such events of long-range transport correspond with reality. In this study, we present high resolution stable isotope information collected during a land-falling Atmospheric River in Southern Norway during winter 2016, and analyse the data with the aim to differentiate between moisture source signatures and below-cloud processes affecting the stable isotope composition. The precipitation characterised by a pronounced warm front was sampled manually on a rooftop platform at a 10-20 minute interval during the 24h of the event and later measured by a laser spectrometer (Picarro L2140-i) in the lab for δ18O, δD, and d-excess. Simultaneously, the stable isotope composition of water vapor was continuously measured at high resolution. To that end, ambient air was continuously pumped from a nearby inlet at 25 m above the ground and measured by another laser spectrometer (Picarro L2130-i). Stable water isotope measurements were supplemented by detailed precipitation parameters from a laser disdrometer (OTT Parsivel2), Micro Rain Radar (MRR-2), Total Precipitation Sensor (TPS-3100), and a nearby weather station. Measurements show a signature of two depletion periods in the main stable isotope parameters that are not apparent in precipitation amount and atmospheric temperature measurements. The deuterium excess in rainfall responds differently, with first and increase and then a decrease during these depletion periods. We interpret this as a combined consequence of airmass change, cloud microphysics, and below-cloud effects

  12. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    USGS Publications Warehouse

    Warwick, Peter; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  13. Triple Oxygen and Clumped Isotopes in Synthetic and Natural Carbonates: Implications for Paleoclimate and Paleohydrology Studies

    NASA Astrophysics Data System (ADS)

    Laskar, A. H.; Rangarajan, R.; Liang, M. C.

    2016-12-01

    Conventional oxygen isotope (δ18O) has widely been used for paleoclimate studies. However, multiple influencing factors such as temperature, precipitation and kinetic effects during carbonate precipitation complicate the interpretation of δ18O data sometimes. Triple oxygen isotope (Δ17O) in carbonates could be sensitive to kinetic effect occur during its precipitation in water. Carbonates may also record the Δ17O signature of the parent waters, providing a basis in the natural carbonates for identifying kinetic processes such as rapid degassing at lower relative humidity inside a cave during speleothem deposition. Clumped isotopes (Δ47) in carbonates give the formation temperatures of the carbonates if precipitated under isotopic equilibrium. The first goal of the study is to explore the applicability of Δ17O for paleohydrolocial studies. The second is to reconstruct paleotemperature with suitable natural carbonates using Δ47values. This is a rare paleoclimate study utilizing two sophisticated new tools. CO2 produced from carbonates by acid digestion was used for both Δ47 and Δ17O analysis. Purified CO2 samples were directly introduced into the Mass spectrometer (MAT 253) for clumped isotope analysis [1] and CO2-O2 exchange method in presence of platinum for Δ17O analysis [2,3]. We measured Δ47 and Δ17O values in synthetic carbonates precipitated at different temperatures (10-90 oC) and Δ17O values in the water from which the carbonate precipitated. We observed consistent Δ47 values in the carbonates while Δ17O were found to vary. Probably a proper slope (between δ18O and δ17O) selection for carbonates would give consistent results. We also measured Δ47 and Δ17O in modern and well dated speleothems from Chinese and Indian caves to study the paleohydrology and paleotemperature. Δ47 and Δ17O were also measured in modern natural carbonate depositions such as corals, foraminifer and marbles to explore their potentials for paleoclimate studies

  14. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  15. Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-enriched conditions: implications for the origin of methane and its isotopic diagnosis

    NASA Astrophysics Data System (ADS)

    Okumura, Tomoyo; Kawagucci, Shinsuke; Saito, Yayoi; Matsui, Yohei; Takai, Ken; Imachi, Hiroyuki

    2016-12-01

    Hydrogen and carbon isotope systematics of H2O-H2-CO2-CH4 in hydrogenotrophic methanogenesis and their relation to H2 availability were investigated. Two H2-syntrophic cocultures of fermentatively hydrogenogenic bacteria and hydrogenotrophic methanogens under conditions of <102 Pa-H2 and two pure cultures of hydrogenotrophic methanogens under conditions of 105 Pa-H2 were tested. Carbon isotope fractionation between CH4 and CO2 during hydrogenotrophic methanogenesis was correlated with pH2, as indicated in previous studies. The hydrogen isotope ratio of CH4 produced during rapid growth of the thermophilic methanogen Methanothermococcus okinawensis under high pH2 conditions ( 105 Pa) was affected by the isotopic composition of H2, as concluded in a previous study of Methanothermobacter thermautotrophicus. This " {δ D}_{{H}_2} effect" is a possible cause of the diversity of previously reported values for hydrogen isotope fractionation between CH4 and H2O examined in H2-enriched culture experiments. Hydrogen isotope fractionation between CH4 and H2O, defined by (1000 + {δ D}_{{CH}_4} )/(1000 + {δ D}_{{H}_2O} ), during hydrogenotrophic methanogenesis of the H2-syntrophic cocultures was in the range 0.67-0.69. The hydrogen isotope fractionation of our H2-syntrophic dataset overlaps with those obtained not only from low- pH2 experiments reported so far but also from natural samples of "young" methane reservoirs (0.66-0.74). Conversely, such hydrogen isotope fractionation is not consistent with that of "aged" methane in geological samples (≥0.79), which has been regarded as methane produced via hydrogenotrophic methanogenesis from the carbon isotope fractionation. As a possible process inducing the inconsistency in hydrogen isotope signatures between experiments and geological samples, we hypothesize that the hydrogen isotope signature of CH4 imprinted at the time of methanogenesis, as in the experiments and natural young methane, may be altered by diagenetic hydrogen

  16. Isotope Fractionation in Photosynthetic Bacteria during Carbon Dioxide Assimilation 1

    PubMed Central

    Wong, William; Sackett, William M.; Benedict, C. Roy

    1975-01-01

    The δ PDB13C values have been determined for the cellular constituents and metabolic intermediates of autotrophically grown Chromatium vinosum. The isotopic composition of the HCO3- in the medium and the carbon isotopic composition of the bacterial cells change with the growth of the culture. The δ PDB13C value of the HCO3- in the media changes from an initial value of −6.6‰ to +8.1‰ after 10 days of bacterial growth and the δ PDB13C value of the bacterial cells change from −37.5‰ to −29.2‰ in the same period. The amount of carbon isotope fractionation during the synthesis of hexoses by the photoassimilation of CO2 has a range of −15.5‰ at time zero to −22.0‰ after 10 days. This range of fractionation compares to the range of carbon isotope fractionation for the synthesis of sugars from CO2 by ribulose 1,5-diphosphate carboxylase and the Calvin cycle. The amount of carbon isotope fractionation during the synthesis of aspartic acid from CO2 is −24.9‰ at time zero and −15.0‰ after 10 days of bacterial growth. This amount of fractionation is in the range of carbon isotope fractionation for the synthesis of C4 amino acids by a double carboxylation through ribulose 1,5-diphosphate and phosphoenolpyruvate carboxylase. PMID:16659105

  17. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  18. Quantifying nitrogen process rates in a constructed wetland using natural abundance stable isotope signatures and stable isotope amendment experiments.

    PubMed

    Erler, Dirk V; Eyre, Bradley D

    2010-01-01

    This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.

  19. Modeling the long-term and transient evolution of biogeochemical and isotopic signatures in coal tar-contaminated aquifers

    NASA Astrophysics Data System (ADS)

    D'Affonseca, Fernando Mazo; Prommer, Henning; Finkel, Michael; Blum, Philipp; Grathwohl, Peter

    2011-05-01

    Reactive transport modeling is a critical element in assessing the potential of natural attenuation of groundwater pollutants. In the present study, we developed a comprehensive quantitative model that incorporates the key processes affecting the long-term fate of complex organic compound mixtures released from coal tar-type dense nonaqueous phase liquid sources. The model framework addresses the simulation of the long-term dynamics of source zone depletion, the fate of the released compounds during reactive transport in the groundwater, the evolution of the aquifer's biogeochemical response, in particular its redox conditions, and the redox-dependent carbon isotope fractionation of selected organic compounds. The modeling framework was applied for the interpretation of observed biogeochemical and isotopic data from a well-characterized coal tar-contaminated site in northern Germany. The simulations highlight the diversity of fates of the individual compounds, which result from their widely varying physicochemical characteristics, and also how complex interactions develop over the lifetime of the contamination. The highly transient release of contaminants from the coal tar as pool and as heterogeneously distributed blobs in the source zone triggers continuously changing biogeochemical conditions and isotope signatures. The modeling results illustrate how difficult and uncertain the assessment of contaminant fate can be if the collected data cover only a small time window relative to the transport time scale. This emphasizes the need for a holistic understanding of the governing processes that control the effectiveness of monitored natural attenuation before it is implemented as a passive remediation strategy at nonaqueous phase liquid-contaminated sites.

  20. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    NASA Astrophysics Data System (ADS)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    ecologically prominent clades of eukaryotic phytoplankton. This continuity of εf across taxa may help to explain why there is no coherent signature of phytoplankton evolutionary succession in Phanerozoic carbon isotope records.

  1. Forensic utility of carbon isotope ratio variations in PVC tape backings.

    PubMed

    Dietz, Marianne E; Stern, Libby A; Mehltretter, Andria Hobbs; Parish, Ashley; McLasky, Velvet; Aranda, Roman

    2012-03-01

    Forensic interest in adhesive tapes with polyvinyl chloride (PVC) backings (electrical tape) derives from their use in a variety of illicit activities. Due to the range of physical characteristics, chemical compositions, and homogeneity within a single roll of tape, traditional microscopic and chemical analyses can offer a high degree of discrimination between tapes, permitting the assessment of potential associations between evidentiary tape samples. The carbon isotope ratios of tapes could provide additional discrimination among tape samples. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different rolls of tape of the same product, we assessed the δ(13)C values of backings from 87 rolls of PVC-based black electrical tape (~20 brands, >60 products) Prior to analysis, adhesives were removed to prevent contamination by adhering debris, and plasticizers were extracted because of concern over their potential mobility. This result is consistent with each of these tapes having approximately the same plasticizer δ(13)C value and proportion of carbon in these plasticizers. The δ(13)C values of the 87 PVC tape backings ranged between -23.5 and -41.3 (‰, V-PDB), with negligible carbon isotopic variation within single rolls of tape, yet large variations among tape brands and tape products. Within this tape population, carbon isotope ratios permitted an average exclusion power of 93.7%, using a window of +/-0.3‰; the combination of carbon isotope ratio measurement with additional chemical and physical analyses raises the discrimination power to over 98.9%, with only 41 out of a possible 3741 pairs of tape samples being indistinguishable. There was a linear relationship between the δ(13)C value of tape backings and the change in δ(13)C value with the extraction of plasticizers. Analyses of pre- and post-blast tape sample pairs show that carbon isotope signatures are within 0.3‰ of

  2. Isotopic signatures of production and uptake of H2 by soil

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Popa, M. E.; Batenburg, A. M.; Röckmann, T.

    2015-09-01

    Molecular hydrogen (H2) is the second most abundant reduced trace gas (after methane) in the atmosphere, but its biogeochemical cycle is not well understood. Our study focuses on the soil production and uptake of H2 and the associated isotope effects. Air samples from a grass field and a forest site in the Netherlands were collected using soil chambers. The results show that uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission at the grassland sites where clover (N2 fixing legume) was present. The H2 mole fraction and deuterium content were measured in the laboratory to determine the isotopic fractionation factor during H2 soil uptake (αsoil) and the isotopic signature of H2 that is simultaneously emitted from the soil (δDsoil). By considering all net-uptake experiments, an overall fractionation factor for deposition of αsoil = kHD/kHH = 0.945 ± 0.004 (95 % CI) was obtained. The difference in mean αsoil between the forest soil 0.937 ± 0.008 and the grassland 0.951 ± 0.025 is not statistically significant. For two experiments, the removal of soil cover increased the deposition velocity (vd) and αsoil simultaneously, but a general positive correlation between vd and αsoil was not found in this study. When the data are evaluated with a model of simultaneous production and uptake, the isotopic composition of H2 that is emitted at the grassland site is calculated as δDsoil = (-530 ± 40) ‰. This is less deuterium-depleted than what is expected from isotope equilibrium between H2O and H2.

  3. Isotopic signatures of production and uptake of H2 by soil

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Popa, M. E.; Batenburg, A. M.; Röckmann, T.

    2015-11-01

    Molecular hydrogen (H2) is the second most abundant reduced trace gas (after methane) in the atmosphere, but its biogeochemical cycle is not well understood. Our study focuses on the soil production and uptake of H2 and the associated isotope effects. Air samples from a grass field and a forest site in the Netherlands were collected using soil chambers. The results show that uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission at the grassland sites where clover (N2 fixing legume) was present. The H2 mole fraction and deuterium content were measured in the laboratory to determine the isotopic fractionation factor during H2 soil uptake (αsoil) and the isotopic signature of H2 that is simultaneously emitted from the soil (δDsoil). By considering all net-uptake experiments, an overall fractionation factor for deposition of αsoil = kHD / kHH = 0.945 ± 0.004 (95 % CI) was obtained. The difference in mean αsoil between the forest soil 0.937 ± 0.008 and the grassland 0.951 ± 0.026 is not statistically significant. For two experiments, the removal of soil cover increased the deposition velocity (vd) and αsoil simultaneously, but a general positive correlation between vd and αsoil was not found in this study. When the data are evaluated with a model of simultaneous production and uptake, the isotopic composition of H2 that is emitted at the grassland site is calculated as δDsoil = (-530 ± 40) ‰. This is less deuterium depleted than what is expected from isotope equilibrium between H2O and H2.

  4. [Carbon isotope fractionation inplants]. Final report

    SciTech Connect

    O`Leary, M.H.

    1990-12-31

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  5. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Jiang, B.; Guo, H.; Ono, S.

    2014-09-01

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism responsible for the production and preservation of these signatures is debated. In order to identify the origin and the mechanism of preservation for these signatures, a series of laboratory photochemical experiments were carried out to investigate the effect of temperature and added O2 on S-MIF produced by the two absorption band systems of SO2 photolysis in the 190 to 220 nm region and photoexcitation in the 250 to 350 nm region. The SO2 photolysis (SO2 + hν → SO + O) experiments showed S-MIF signals with large 34S / 32S fractionation, which increases with decreasing temperature. The overall S-MIF pattern observed for photolysis experiments, including high 34S / 32S fractionations, positive mass-independent anomalies in 33S, and negative anomalies in 36S, is consistent with a major contribution fr