Advanced CO 2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne
2015-03-31
This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO 2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).
Implications of Climate Mitigation for Future Agricultural Production
NASA Technical Reports Server (NTRS)
Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin
2015-01-01
Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.
NASA Astrophysics Data System (ADS)
Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio
2011-11-01
Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.
Carbon recovery rates following different wildfire risk mitigation treatments
M. Hurteau; M. North
2010-01-01
Sequestered forest carbon can provide a climate change mitigation benefit, but in dry temperate forests, wildfire poses a reversal risk to carbon offset projects. Reducing wildfire risk requires a reduction in and redistribution of carbon stocks, the benefit of which is only realized when wildfire occurs. To estimate the time needed to recover carbon removed and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudha, P.; Shubhashree, D.; Khan, H.
2007-06-01
Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline,more » namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.« less
Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
NASA Astrophysics Data System (ADS)
Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut
2017-11-01
Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karali, Nihan; Xu, Tengfang; Sathaye, Jayant
The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’smore » and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO 2 emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO 2 emission reduction targets for the iron and steel sector under different strategies such as simple CO 2 emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.« less
Biophysical risks to carbon sequestration and storage in Australian drylands.
Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel
2018-02-15
Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climate change mitigation effect of harvested wood products in regions of Japan.
Kayo, Chihiro; Tsunetsugu, Yuko; Tonosaki, Mario
2015-12-01
Harvested wood products (HWPs) mitigate climate change through carbon storage, material substitution, and energy substitution. We construct a model to assess the overall climate change mitigation effect (comprising the carbon storage, material substitution, and energy substitution effects) resulting from HWPs in regions of Japan. The model allows for projections to 2050 based on future scenarios relating to the domestic forestry industry, HWP use, and energy use. Using the production approach, a nationwide maximum figure of 2.9 MtC year -1 for the HWP carbon storage effect is determined for 2030. The maximum nationwide material substitution effect is 2.9 MtC year -1 in 2050. For the energy substitution effect, a nationwide maximum projection of 4.3 MtC year -1 in 2050 is established, with at least 50 % of this figure derived from east and west Japan, where a large volume of logging residue is generated. For the overall climate change mitigation effect, a nationwide maximum projection of 8.4 MtC year -1 in 2050 is established, equivalent to 2.4 % of Japan's current carbon dioxide emissions. When domestic roundwood production and HWP usage is promoted, an overall climate change mitigation effect is consistently expected to be attributable to HWPs until 2050. A significant factor in obtaining the material substitution effect will be substituting non-wooden buildings with wooden ones. The policy of promoting the use of logging residue will have a significant impact on the energy substitution effect. An important future study is an integrated investigation of the climate change mitigation effect for both HWPs and forests.
Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G
2015-04-21
We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.
Mu, Jianhong E.; Wein, Anne; McCarl, Bruce
2015-01-01
We examine the effects of crop management adaptation and climate mitigation strategies on land use and land management, plus on related environmental and economic outcomes. We find that crop management adaptation (e.g. crop mix, new species) increases Greenhouse gas (GHG) emissions by 1.7 % under a more severe climate projection while a carbon price reduces total forest and agriculture GHG annual flux by 15 % and 9 %, respectively. This shows that trade-offs are likely between mitigation and adaptation. Climate change coupled with crop management adaptation has small and mostly negative effects on welfare; mitigation, which is implemented as a carbon price starting at $15 per metric ton carbon dioxide (CO2) equivalent with a 5 % annual increase rate, bolsters welfare carbon payments. When both crop management adaptation and carbon price are implemented the effects of the latter dominates.
Dynamics and climate change mitigation potential of soil organic carbon sequestration.
Sommer, Rolf; Bossio, Deborah
2014-11-01
When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vinson, Ted S.; Kolchugina, Tatyana P.; Andrasko, Kenneth A.
1996-01-01
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6 0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.
Perverse effects of carbon markets on HFC-23 and SF6 abatement projects in Russia
NASA Astrophysics Data System (ADS)
Schneider, Lambert; Kollmuss, Anja
2015-12-01
Carbon markets are considered a key policy tool to achieve cost-effective climate mitigation. Project-based carbon market mechanisms allow private sector entities to earn tradable emissions reduction credits from mitigation projects. The environmental integrity of project-based mechanisms has been subject to controversial debate and extensive research, in particular for projects abating industrial waste gases with a high global warming potential (GWP). For such projects, revenues from credits can significantly exceed abatement costs, creating perverse incentives to increase production or generation of waste gases as a means to increase credit revenues from waste gas abatement. Here we show that all projects abating HFC-23 and SF6 under the Kyoto Protocol’s Joint Implementation mechanism in Russia increased waste gas generation to unprecedented levels once they could generate credits from producing more waste gas. Our results suggest that perverse incentives can substantially undermine the environmental integrity of project-based mechanisms and that adequate regulatory oversight is crucial. Our findings are critical for mechanisms in both national jurisdictions and under international agreements.
Coeli M. Hoover; James E. Smith
2012-01-01
The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide...
Do carbon offsets work? The role of forest management in greenhouse gas mitigation
Marie Oliver; Jeremy Fried
2013-01-01
As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate...
Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang
2013-01-01
Whereas climate change mitigation involving payments to forest landowners for accumulating carbon on their land may increase carbon stored in forests, it will also affect timber supply and prices. This study estimated the effect on US timber and primary forest product markets of hypothetical timber set-aside scenarios where US forest landowners would be paid to forego...
Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes
NASA Astrophysics Data System (ADS)
MU, J.
2014-12-01
Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.
NASA Astrophysics Data System (ADS)
Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.
2010-12-01
Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.
Quantification of mitigation potentials of agricultural practices for Europe
NASA Astrophysics Data System (ADS)
Lesschen, J. P.; Kuikman, P. J.; Smith, P.; Schils, R. L.; Oudendag, D.
2009-04-01
Agriculture has a significant impact on climate, with a commonly estimated contribution of 9% of total greenhouse gases (GHG) emissions. Besides, agriculture is the main source of nitrous oxide and methane emissions to the atmosphere. On the other hand, there is a large potential for climate change mitigation in agriculture through carbon sequestration into soils. Within the framework of the PICCMAT project (Policy Incentives for Climate Change Mitigation Agricultural Techniques) we quantified the mitigation potential of 11 agricultural practices at regional level for the EU. The focus was on smaller-scale measures towards optimised land management that can be widely applied at individual farm level and which can have a positive climate change mitigating effect and be beneficial to soil conditions, e.g. cover crops and reduced tillage. The mitigation potentials were assessed with the MITERRA-Europe model, a deterministic and static N cycling model which calculates N emissions on an annual basis, using N emission factors and N leaching fractions. For the PICCMAT project the model was extended with a soil carbon module, to assess changes in soil organic carbon according to the IPCC Tier1 approach. The amount of soil organic carbon (SOC) is calculated by multiplying the soil reference carbon content, which depends on soil type and climate, by coefficients for land use, land management and input of organic matter. By adapting these coefficients changes in SOC as result of the measures were simulated. We considered both the extent of agricultural area across Europe on which a measure could realistically be applied (potential level of implementation), and the current level of implementation that has already been achieved . The results showed that zero tillage has the highest mitigation potential, followed by adding legumes, reduced tillage, residue management, rotation species, and catch crops. Optimising fertiliser application and fertiliser type are the measures with the largest positive effect on N2O emissions. Overall the results showed that the additional mitigation potential of each individual measure is limited, but taken together they have a significant mitigation potential of about 10 percent of the current GHG emissions from agriculture. Besides, most of the measures with high mitigation potentials are associated with no or low implementation costs. Although CH4 and N2O are the most important GHG emitted from agricultural activities, it is more difficult to mitigate these emissions than increasing soil organic carbon (SOC) stocks and thus compensate them through carbon sequestration. However, the effect on carbon is only temporary and sequestered SOC stocks can easily be lost again, while for N2O the emission reduction is permanent and non-saturating. Another important implication that follows from our results is the large regional difference with regard to mitigation potential and feasibility of implementation. Policy measures to support agricultural mitigation should therefore be adjusted to regional conditions.
U.S. Geological Survey Methodology Development for Ecological Carbon Assessment and Monitoring
Zhu, Zhi-Liang; Stackpoole, S.M.
2009-01-01
Ecological carbon sequestration refers to transfer and storage of atmospheric carbon in vegetation, soils, and aquatic environments to help offset the net increase from carbon emissions. Understanding capacities, associated opportunities, and risks of vegetated ecosystems to sequester carbon provides science information to support formulation of policies governing climate change mitigation, adaptation, and land-management strategies. Section 712 of the Energy Independence and Security Act (EISA) of 2007 mandates the Department of the Interior to develop a methodology and assess the capacity of our nation's ecosystems for ecological carbon sequestration and greenhouse gas (GHG) flux mitigation. The U.S. Geological Survey (USGS) LandCarbon Project is responding to the Department of Interior's request to develop a methodology that meets specific EISA requirements.
Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie
2016-02-01
Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.
Analysis and Comparison of Carbon Capture & Sequestration Policies
NASA Astrophysics Data System (ADS)
Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.
2010-12-01
Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the public interest requires that monitoring and verification track the long term fate of pipelined CO2 regardless of its end use in order to establish that climate change goals are being met.
Overcoming the risk of inaction from emissions uncertainty in smallholder agriculture
NASA Astrophysics Data System (ADS)
Berry, N. J.; Ryan, C. M.
2013-03-01
The potential for improving productivity and increasing the resilience of smallholder agriculture, while also contributing to climate change mitigation, has recently received considerable political attention (Beddington et al 2012). Financial support for improving smallholder agriculture could come from performance-based funding including sale of carbon credits or certified commodities, payments for ecosystem services, and nationally appropriate mitigation action (NAMA) budgets, as well as more traditional sources of development and environment finance. Monitoring the greenhouse gas fluxes associated with changes to agricultural practice is needed for performance-based mitigation funding, and efforts are underway to develop tools to quantify mitigation achieved and assess trade-offs and synergies between mitigation and other livelihood and environmental priorities (Olander 2012). High levels of small scale variability in carbon stocks and emissions in smallholder agricultural systems (Ziegler et al 2012) mean that data intensive approaches are needed for precise and unbiased mitigation monitoring. The cost of implementing such monitoring programmes is likely to be high, and this introduces the risk that projects will not be developed in areas where there is the greatest need for agricultural improvements, which are likely to correspond with areas where existing data or research infrastructure are lacking. When improvements to livelihoods and food security are expected as co-benefits of performance-based mitigation finance, the risk of inaction is borne by the rural poor as well as the global climate. In situ measurement of carbon accumulation in smallholders' soils are not usually feasible because of the costs associated with sampling in a heterogeneous landscape, although technological advances could improve the situation (Milori et al 2012). Alternatives to in situ measurement are to estimate greenhouse gas fluxes by extrapolating information from existing research to other areas with similar land uses and environmental conditions, or to combine information on land use activities with process-based models that describe expected emissions and carbon accumulation under specified conditions. Unfortunately long-term studies that have measured biomass and soil organic carbon accumulation in smallholder agriculture are scarce, and default values developed for national level emissions assessments (IPCC 2006) fail to capture local variability and may not scale linearly, so cannot be applied at the project scale without introducing considerable uncertainty and the potential for bias. If there is reliable information on the agricultural activities and environmental conditions at a project site, process-based models can provide accurate estimations of agricultural greenhouse gas fluxes that capture temporal and spatial variability (Olander 2012) but collecting the necessary data to parameterize and drive the models can be costly and time consuming. Assessing and monitoring greenhouse gas fluxes in smallholder agriculture therefore involves a balance between the resources required to collect information from thousands of smallholders across large areas, and the accuracy and precision of model predictions. Accuracy, or the absence of bias, is clearly an important consideration in the quantification of mitigation benefits for performance-based finance since a bias towards over-estimation of mitigation achieved would risk misallocating limited finance to projects that have not achieved mitigation benefits. Such a bias would also lead to a net increase in emissions if credits were used to offset emissions elsewhere. The accuracy of model predictions is related to uncertainty in model input data, which affects the precision of predictions, and errors in the model structure (Olander 2012). To limit the risk that projects receive credit for mitigation benefits that are not real, a precise-or-conservative approach to carbon accounting has emerged that requires projects to report mitigation benefits to a prescribed level of precision—for example with a 90% confidence interval that is less than 20% of the estimated mitigation benefit; and if this level of precision is not reached then the lower confidence limit of the value is encouraged (VCS 2012). This helps to ensure projects that lack precision in their estimates are biased towards an underestimation of mitigation benefits, which helps limit the risk of increasing net greenhouse gas emissions. It can also mean that finance from the sale of emission reduction certificates is insufficient to support smallholder agricultural projects without donor assistance to cover the cost of project establishment (Seebauer et al 2012). Understanding the mitigation benefits of improving agricultural practice is important for many purposes other than developing carbon offsets however, and with appropriate accounting approaches risks to smallholders can be reduced and scarce resources channelled to improving land use practices. Less precision is tolerable when making payments for a broad range ecosystem services, or assessing the impacts of donor support, than it is for industrial carbon offsets. Approaches that have greater uncertainty in expected emission reductions or removals may therefore be more appropriate if there is an equal emphasis on the livelihood and environmental benefits of projects as there is on mitigation benefits. One way to balance the risk of inaction against the need for accuracy is to use process-based models in greenhouse gas accounting and decision support tools, which give users control over the precision and cost of their accounting. Such models can be parameterized and driven using readily available information or best estimates for input data, as well as site specific environmental and activity data. The potential for bias in model predictions can be limited by making use of appropriate models that are validated against regionally specific data. Although process-based models have been adopted for quantifying mitigation benefit in smallholder agriculture systems (for example Seebauer et al 2012), their use is currently limited to those with specialist knowledge or access to detailed site specific information. Web-based tools that link existing global, regional, and local environmental data with process-based models (such as RothC (Coleman and Jenkinson 1996), CENTURY (Parton et al 1987), DNDC (Li et al 1994) and DAYCENT (Del Grosso et al 2002)) that have been validated for specific areas allow users to generate initial estimates of the carbon sequestration potential of agricultural systems simply by specifying the location and intervention. This can support assessments of the feasibility of supporting these interventions through various funding sources. The same tools can also generate accurate, site specific assessments and monitoring to varying levels of detail, when required, given the inclusion of new data collected in situ . When accounting for greenhouse gases in smallholder agriculture systems users should be free to decide whether it is worthwhile to invest in collecting input data to estimate mitigation benefits with sufficient precision to meet the requirements for carbon offsets, or if greater uncertainty is tolerable. By using tools that do not require specialist support and accepting estimates of mitigation benefits that are less precise, and not necessarily conservative, those providing performance-based finance can help ensure that a greater proportion of limited budgets are spent on the activities that directly benefit smallholders and that are likely to benefit the global climate. The Small-Holder Agriculture Monitoring and Baseline Assessment methodology and prototype tool (SHAMBA 2012), which has been trialled with fifteen agroforestry and conservation agriculture projects in Malawi and is currently under review for validation under the Plan Vivo Standard (Plan Vivo 2012), provides a proof of this concept and a platform on which greater functionality and flexibility can be built. We hope that this, and other similar initiatives, will deliver approaches to greenhouse gas accounting that reduce risks and maximize benefits to smallholder farmers. References Beddington J R et al 2012 What next for agriculture after Durban? Science 335 289-90 Coleman K and Jenkinson D S 1996 RothC 26.3 a model for the turnover of carbon in soil Evaluation of Soil Organic Matter Models Using Existing, Long-Term Datasets ed D S Powlson, P Smith and J U Smith (Heidelberg: Springer) Del Grosso S J, Ojima D S, Parton W J, Mosier A R, Petereson G A and Schimel D S 2002 Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model Environ. Pollut. 116 S75-83 IPCC (Intergovenmental Panel on Climate Change) 2006 Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme (Hayama: IGES) (www.ipcc-nggip.iges.or.jp/public/2006gl/index.html) Li C, Frolking S and Harris R 1994 Modeling carbon biogeochemistry in agricultural soils Glob. Biogeochem. Cycles 8 237-54 Milori D M B P, Segini A, Da Silva W T L, Posadas A, Mares V, Quiroz R and Ladislau M N 2012 Emerging techniques for soil carbon measurements Climate Change Mitigation and Agriculture ed E Wollenberg, A Nihart, M-L Tapio-Bistrom and M Greig-Gran (Abingdon: Earthscan) Olander L P 2012 Using biogeochemical process models to quantify greenhouse gas mitigation from agricultural management Climate Change Mitigation and Agriculture ed E Wollenberg, A Nihart, M-L Tapio-Bistrom and M Greig-Gran (Abingdon: Earthscan) Parton W J, Schimel D S, Cole C V and Ojima D S 1987 Analysis of factors controlling soil organic matter levels in Great Plains grasslands Soil Sci. Soc. Am. J. 51 1173-9 Plan Vivo 2012 The Plan Vivo Standard For Community Payments for Ecosystem Services Programmes Version 2012 (available from: www.planvivo.org/) Seebauer M et al 2012 Carbon accounting for smallholder agricultural soil carbon projects Climate Change Mitigation and Agriculture ed E Wollenberg, A Nihart, M-L Tapio-Bistrom and M Greig-Gran (Abingdon: Earthscan) SHAMBA (Small-Holder Agriculture Monitoring and Baseline Assessment) 2012 Project webpage: http://tinyurl.com/shambatool VCS (Verified Carbon Standard) 2012 Veified Carbon Standard Requiements Document Version 3.2 (http://v-c-s.org/program-documents) Ziegler A D et al 2012 Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD+ policy implications Glob. Change Biol. 18 3087-99
Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindranath, N.H.; Murthy, I.K.; Sudha, P.
2007-06-01
There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the areamore » haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.« less
[Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].
Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong
2007-06-01
Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.
Bird response to future climate and forest management focused on mitigating climate change
Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh
2016-01-01
Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...
North America's net terrestrial CO2 exchange with the atmosphere 1990-2009
A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall
2015-01-01
Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...
NASA Astrophysics Data System (ADS)
Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.
2013-12-01
Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.
Kim, John B.; Monier, Erwan; Sohngen, Brent; ...
2017-03-28
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less
NASA Astrophysics Data System (ADS)
Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson
2017-04-01
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, John B.; Monier, Erwan; Sohngen, Brent
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less
Fabian B. Galvez; Andrew T. Hudak; John C. Byrne; Nicholas L. Crookston; Robert F. Keefe
2014-01-01
Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the...
NASA Astrophysics Data System (ADS)
Cohen, K. K.; Klara, S. M.; Srivastava, R. D.
2004-12-01
The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared sensors and; aerial and satellite imagery. This abstract will describe results, similarities, and contrasts for funded studies from the U.S. DOE's Carbon Sequestration Program including examples from the Sleipner North Sea Project, the Canadian Weyburn Field/Dakota Gasification Plant Project, the Frio Formation Texas Project, and Yolo County Bioreactor Landfill Project. The abstract will also address the following: How are the terms ``measurement,'' ``mitigation''and ``verification'' defined in the Program? What is the U.S. DOE's Carbon Sequestration Program Roadmap and what are the Roadmap goals for MM&V? What is the current status of MM&V technologies?
Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis
NASA Astrophysics Data System (ADS)
Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.
2017-12-01
Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks and policy at the state level, and serves as a model for future research on the role of terrestrial carbon stocks in climate change mitigation.
The role of non-CO2 mitigation within the dairy sector in pursuing climate goals
NASA Astrophysics Data System (ADS)
Rolph, K.; Forest, C. E.
2017-12-01
Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.
Carbon sequestration in managed temperate coniferous forests under climate change
NASA Astrophysics Data System (ADS)
Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.
2016-03-01
Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.
NASA Astrophysics Data System (ADS)
Tong, X.; Yue, Y.; Fensholt, R.; Brandt, M.
2017-12-01
China's ecological restoration projects are considered as "mega-engineering" activities and the most ambitious afforestation and conservation projects in human history. The highly sensitive and vulnerable karst ecosystem in Southwest China is one of the largest exposed carbonate rock areas (more than 0.54 million km2) in the world. Accelerating desertification has been reported during the last half century, caused by the increasing intensity of human exploitation of natural resources. As a result, vast karst areas (approximately 0.12 million km2) previously covered by vegetation and soil were turned into a rocky landscape. To combat this severe form of land degradation, more than 19 billion USD have been invested in mitigation initiatives since the end of the 1990s. The costs of mega-engineering as a climate change mitigation measure are however only justified if ecosystem properties can be affected at large scales. Here we study the carbon balance of the karst regions of 8 Chinese provinces over four decades, using optical and passive microwave satellite data, supported by statistical data on project implementations. We find that most areas experiencing losses in aboveground biomass carbon are located in areas with a high standing biomass ( 95 Mg C ha-1), whereas areas with a carbon gain are mostly located in regions with a low standing biomass ( 45 Mg C ha-1). However, the overall gains in carbon stocks overbalance the losses, with an average gross loss of -0.8 Pg C and a gross gain of +2.4 Pg C (1980s to 2016), resulting in a net gain of 1.6 Pg C. Areas of carbon gains are widespread and spatially coherent with conservation projects implemented after 2001, whereas areas of carbon losses show that ongoing degradation is still happening in the western parts of the karst regions. We conclude that the impact of conservation projects on the carbon balance of China's karst ecoregions is remarkable, but biomass carbon losses caused by ongoing degradation can not be ignored.
Role of the Freight Sector in Future Climate Change Mitigation Scenarios
Muratori, Matteo; Smith, Steven J.; Kyle, Page; ...
2017-02-27
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less
Role of the Freight Sector in Future Climate Change Mitigation Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Smith, Steven J.; Kyle, Page
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less
Role of the Freight Sector in Future Climate Change Mitigation Scenarios.
Muratori, Matteo; Smith, Steven J; Kyle, Page; Link, Robert; Mignone, Bryan K; Kheshgi, Haroon S
2017-03-21
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.
Changing Urban Carbon Metabolism over Time: Historical Trajectory and Future Pathway.
Chen, Shaoqing; Chen, Bin
2017-07-05
Cities are expected to play a major role in carbon emissions mitigation. A key step in decoupling urban economy from carbon emissions is to understand the full impact of socioeconomic development on urban metabolism over time. Herein, we establish a system-based framework for modeling the variation of urban carbon metabolism through time by integrating a metabolic flow inventory, input-output model, and network analysis. Using Beijing as a case study, we track the historical trajectory of carbon flows embodied in urban final consumption over 1985-2012. We find that while the tendency of increase in direct carbon emission continues within this time frame, consumption-based carbon footprint might have peaked around 2010. Significant transitions in emission intensity and roles sectors play in transferring carbon over the period are important signs of decoupling urban development from carbonization. Our further analysis of driving factors reveals a strong competition between efficiency gains and consumption level rise, showing a cumulative contribution of -584% and 494% to total carbon footprint, respectively. Projection into a future pathway suggests there is still a great potential for carbon mitigation for the city, but a strong mitigation plan is required to achieve such decarbonization before 2030. By bridging temporal metabolic model and socioeconomic planning, this framework fills one of the main gaps between monitoring of urban metabolism and design of a low-carbon economy.
CO2 Capture and Storage in Coal Gasification Projects
NASA Astrophysics Data System (ADS)
Rao, Anand B.; Phadke, Pranav C.
2017-07-01
In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO2 prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO2 capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) - a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.
Bigger is better: Improved nature conservation and economic returns from landscape-level mitigation.
Kennedy, Christina M; Miteva, Daniela A; Baumgarten, Leandro; Hawthorne, Peter L; Sochi, Kei; Polasky, Stephen; Oakleaf, James R; Uhlhorn, Elizabeth M; Kiesecker, Joseph
2016-07-01
Impact mitigation is a primary mechanism on which countries rely to reduce environmental externalities and balance development with conservation. Mitigation policies are transitioning from traditional project-by-project planning to landscape-level planning. Although this larger-scale approach is expected to provide greater conservation benefits at the lowest cost, empirical justification is still scarce. Using commercial sugarcane expansion in the Brazilian Cerrado as a case study, we apply economic and biophysical steady-state models to quantify the benefits of the Brazilian Forest Code (FC) under landscape- and property-level planning. We find that FC compliance imposes small costs to business but can generate significant long-term benefits to nature: supporting 32 (±37) additional species (largely habitat specialists), storing 593,000 to 2,280,000 additional tons of carbon worth $69 million to $265 million ($ pertains to U.S. dollars), and marginally improving surface water quality. Relative to property-level compliance, we find that landscape-level compliance reduces total business costs by $19 million to $35 million per 6-year sugarcane growing cycle while often supporting more species and storing more carbon. Our results demonstrate that landscape-level mitigation provides cost-effective conservation and can be used to promote sustainable development.
Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.
2007-06-01
Large potential for agroforestry as a mitigation option hasgiven rise to scientific and policy questions. This paper addressesmethodological issues in estimating carbon sequestration potential,baseline determination, additionality and leakage in Khammam district,Andhra Pradesh, southern part of India. Technical potential forafforestation was determined considering the various landuse options. Forestimating the technical potential, culturable wastelands, fallow andmarginal croplands were considered for Eucalyptus clonal plantations.Field studies for aboveground and below ground biomass, woody litter andsoil organic carbon for baseline and project scenario were conducted toestimate the carbon sequestration potential. The baseline carbon stockwas estimated to be 45.33 tC/ha. The additional carbon sequestrationpotential under themore » project scenario for 30 years is estimated to be12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due tobiomass burning and fertilizer application. The project scenario thoughhas a higher benefit cost ratio compared to baseline scenario, initialinvestment cost is high. Investment barrier exists for adoptingagroforestry in thedistrict.« less
Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhiliang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd J.; Wein, Anne M.; Liu, Shuguang; Kanengieter, Ronald L.; Acevedo, William
2012-01-01
Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.
Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhi-Liang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd; Wein, Anne; Liu, Shu-Guang; Kanengleter, Ronald; Acevedo, William
2012-01-01
Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and landmanagement activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.
Protected areas' role in climate-change mitigation.
Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P
2016-03-01
Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.
Biodiverse planting for carbon and biodiversity on indigenous land.
Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie
2014-01-01
Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.
Biodiverse Planting for Carbon and Biodiversity on Indigenous Land
Renwick, Anna R.; Robinson, Catherine J.; Martin, Tara G.; May, Tracey; Polglase, Phil; Possingham, Hugh P.; Carwardine, Josie
2014-01-01
Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes. PMID:24637736
The importance of carbon footprint estimation boundaries.
Matthews, H Scott; Hendrickson, Chris T; Weber, Christopher L
2008-08-15
Because of increasing concern about global climate change and carbon emissions as a causal factor, many companies and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints. The scope of these protocols varies but generally suggests estimating only direct emissions and emissions from purchased energy, with less focus on supply chain emissions. In contrast approaches based on comprehensive environmental life-cycle assessment methods are available to track total emissions across the entire supply chain, and experience suggests that following narrowly defined estimation protocols will generally lead to large underestimates of carbon emissions for providing products and services. Direct emissions from an industry are, on average, only 14% of the total supply chain carbon emissions (often called Tier 1 emissions), and direct emissions plus industry energy inputs are, on average, only 26% of the total supply chain emissions (often called Tier 1 and 2 emissions). Without a full knowledge of their footprints, firms will be unable to pursue the most cost-effective carbon mitigation strategies. We suggest that firms use the screening-level analysis described here to set the bounds of their footprinting strategy to ensure that they do not ignore large sources of environmental effects across their supply chains. Such information can help firms pursue carbon and environmental emission mitigation projects not only within their own plants but also across their supply chain.
Can the global carbon budget be balanced?
Markewich, Helaine W.; Bliss, Norman B.; Stallard, Robert F.; Sundquist, Eric T.
1997-01-01
The Mississippi Basin Carbon Project of the U.S. Geological Survey (USGS) is an effort to examine interactions between the global carbon cycle and human-induced changes to the land surface, such as farming and urbanization. Investigations in the Mississippi River basin will provide the data needed for calculating the global significance of land-use changes on land-based carbon cycling. These data are essential for predicting and mitigating the effects of global environmental change.The Mississippi Basin Carbon Project is focused on the third largest river system in the world. The Mississippi River and its tributaries drain more than 40% of the conterminous United States. The basin includes areas that typify vast regions of the Earth's surface that have undergone human development.
NASA Astrophysics Data System (ADS)
Chentouf, M.; Allouch, M.
2018-05-01
Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.
Stakeholders’ engagement in promoting sustainable development: Businesses and urban forest carbon
N. C. Poudyal; J. P. Siry; J. M. Bowker
2012-01-01
To better understand how businessesâ motivation and support for green projects varies by their organizational objectives and characteristics, this study investigates a case of urban forestry carbon credits in a broader context of climate change mitigation efforts. Companies and organizations currently participating in the Chicago Climate Exchange (CCX) were surveyed...
Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei
2017-02-01
Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the implementation of the new stage of key ecological stewardship projects in China as well as the concern on carbon benefits brought by projects, it is necessary to make efforts to increase net carbon sequestration via reducing greenhouse gas emissions and carbon leakage. Rational planning before start-up of the projects should be promoted to avoid carbon emissions due to unnecessary consumption of materials and energy. Additionally, strengthening the control and monitoring on greenhouse gas emissions and carbon leakage during the implementation of projects are also advocated.
Energy technologies evaluated against climate targets using a cost and carbon trade-off curve.
Trancik, Jessika E; Cross-Call, Daniel
2013-06-18
Over the next few decades, severe cuts in emissions from energy will be required to meet global climate-change mitigation goals. These emission reductions imply a major shift toward low-carbon energy technologies, and the economic cost and technical feasibility of mitigation are therefore highly dependent upon the future performance of energy technologies. However, existing models do not readily translate into quantitative targets against which we can judge the dynamic performance of technologies. Here, we present a simple, new model for evaluating energy-supply technologies and their improvement trajectories against climate-change mitigation goals. We define a target for technology performance in terms of the carbon intensity of energy, consistent with emission reduction goals, and show how the target depends upon energy demand levels. Because the cost of energy determines the level of adoption, we then compare supply technologies to one another and to this target based on their position on a cost and carbon trade-off curve and how the position changes over time. Applying the model to U.S. electricity, we show that the target for carbon intensity will approach zero by midcentury for commonly cited emission reduction goals, even under a high demand-side efficiency scenario. For Chinese electricity, the carbon intensity target is relaxed and less certain because of lesser emission reductions and greater variability in energy demand projections. Examining a century-long database on changes in the cost-carbon space, we find that the magnitude of changes in cost and carbon intensity that are required to meet future performance targets is not unprecedented, providing some evidence that these targets are within engineering reach. The cost and carbon trade-off curve can be used to evaluate the dynamic performance of existing and new technologies against climate-change mitigation goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, J.; Makundi, W.; Andrasko, K.
2001-01-01
This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigationmore » potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.« less
Bigger is better: Improved nature conservation and economic returns from landscape-level mitigation
Kennedy, Christina M.; Miteva, Daniela A.; Baumgarten, Leandro; Hawthorne, Peter L.; Sochi, Kei; Polasky, Stephen; Oakleaf, James R.; Uhlhorn, Elizabeth M.; Kiesecker, Joseph
2016-01-01
Impact mitigation is a primary mechanism on which countries rely to reduce environmental externalities and balance development with conservation. Mitigation policies are transitioning from traditional project-by-project planning to landscape-level planning. Although this larger-scale approach is expected to provide greater conservation benefits at the lowest cost, empirical justification is still scarce. Using commercial sugarcane expansion in the Brazilian Cerrado as a case study, we apply economic and biophysical steady-state models to quantify the benefits of the Brazilian Forest Code (FC) under landscape- and property-level planning. We find that FC compliance imposes small costs to business but can generate significant long-term benefits to nature: supporting 32 (±37) additional species (largely habitat specialists), storing 593,000 to 2,280,000 additional tons of carbon worth $69 million to $265 million ($ pertains to U.S. dollars), and marginally improving surface water quality. Relative to property-level compliance, we find that landscape-level compliance reduces total business costs by $19 million to $35 million per 6-year sugarcane growing cycle while often supporting more species and storing more carbon. Our results demonstrate that landscape-level mitigation provides cost-effective conservation and can be used to promote sustainable development. PMID:27419225
Measurement, monitoring, and verification: make it work!
Coeli M. Hoover
2011-01-01
The capacity of forests to absorb and store carbon is certainly, as the authors note, an important tool in the greenhouse gas mitigation toolbox. Our understanding of what elements can make forest carbon offset projects successful has grown a great deal over time, as the global community has come to understand that forest degradation and conversion are the result of a...
Incorporating climate into belowground carbon estimates in the national greenhouse gas inventory
Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D’Amato
2015-01-01
Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Recent evidence has pointed to the importance of climate as a driver of belowground C stocks. This study describes an approach for adjusting allometric...
Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D' Amato
2015-01-01
Background: Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Specifically, belowground C stocks are currently estimated in the United States' national greenhouse gas inventory (US NGHGI) using...
Guang-Shan Chen; Michael Notaro; Zhengyu Liu; Yongqiang Liu
2012-01-01
Afforestation has been proposed as a climate change mitigation strategy by sequestrating atmospheric carbon dioxide. With the goal of increasing carbon sequestration, a Congressional project has been planned to afforest about 18 million acres by 2020 in the Southeast United States (SEUS), the Great Lake states, and the Corn Belt states. However, biophysical feedbacks...
McGuire, A David; Lawrence, David M; Koven, Charles; Clein, Joy S; Burke, Eleanor; Chen, Guangsheng; Jafarov, Elchin; MacDougall, Andrew H; Marchenko, Sergey; Nicolsky, Dmitry; Peng, Shushi; Rinke, Annette; Ciais, Philippe; Gouttevin, Isabelle; Hayes, Daniel J; Ji, Duoying; Krinner, Gerhard; Moore, John C; Romanovsky, Vladimir; Schädel, Christina; Schaefer, Kevin; Schuur, Edward A G; Zhuang, Qianlai
2018-04-10
We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon-climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km 2 for the RCP4.5 climate and between 6 and 16 million km 2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (10 15 -g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon-climate feedback. Copyright © 2018 the Author(s). Published by PNAS.
Enhancing the Global Carbon Sink: A Key Mitigation Strategy
NASA Astrophysics Data System (ADS)
Torn, M. S.
2016-12-01
Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more resilient and productive ecosystems, and more carbon-neutral bioenergy. Better scientific understanding of the sink provides more options for policy design, enables mitigation strategies that capture co-benefits, and increases the chances that global mitigation commitments will be met.
NASA Astrophysics Data System (ADS)
Spiegel, Heide; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein
2014-05-01
Soils are the main basis for the production of food and feed. Furthermore, the production of biomass for energy and material use is becoming increasingly important. Goals for an optimal management of agricultural soils are, on the one hand, the maintenance or improvement of soil quality and, on the other hand, high productivity and climate change mitigation (reduction of GHG emissions and C sequestration). Thus, the EU project CATCH-C aims to evaluate current management practices concerning these three goals based on indicators derived from long-term field experiments of the project partners and from literature data. A maximum of 72 indicators for productivity, soil quality and the potential for carbon storage in the soil and the reduction of greenhouse gas emissions were selected by the project partners. As indicators for productivity, crop yields are determined in almost all field trials. The content of soil organic carbon (SOC) is an indicator for chemical, physical and biological soil quality and was analysed in the topsoil in all field trials. Less data exist for SOC contents in the subsoil. An important physical soil quality indicator is the bulk density, however, it is not determined in all field trials of the project partners. Therefore, information on SOC stocks, with relevance to carbon storage and climate change mitigation, is not available in all field experiments. Other physical indicators, such as penetration resistance, runoff coefficient and soil losses are evaluated. Essential biological indicators are microbial biomass and the number and weight of earthworms, which have been tested in several field trials. The evaluation of all these indicators will help to select "best management practices" and to address trade-offs and synergies for all indicators under consideration of major European farm type zones. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food. (Grant Agreement N° 289782).
Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry.
Yousefpour, Rasoul; Augustynczik, Andrey Lessa Derci; Reyer, Christopher P O; Lasch-Born, Petra; Suckow, Felicitas; Hanewinkel, Marc
2018-01-10
European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.
Lawrence, David M.; Koven, Charles; Clein, Joy S.; Burke, Eleanor; Chen, Guangsheng; Jafarov, Elchin; MacDougall, Andrew H.; Marchenko, Sergey; Nicolsky, Dmitry; Peng, Shushi; Rinke, Annette; Ciais, Philippe; Gouttevin, Isabelle; Krinner, Gerhard; Moore, John C.; Romanovsky, Vladimir; Schädel, Christina; Schaefer, Kevin; Zhuang, Qianlai
2018-01-01
We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback. PMID:29581283
McGuire, A. David; Lawrence, David M.; Koven, Charles; Clein, Joy S.; Burke, Eleanor J.; Chen, Guangsheng; Jafarov, Elchin; MacDougall, Andrew H.; Marchenko, Sergey S.; Nicolsky, Dmitry J.; Peng, Shushi; Rinke, Annette; Ciais, Philippe; Gouttevin, Isabelle; Hayes, Daniel J.; Ji, Duoying; Krinner, Gerhard; Moore, John C.; Romanovsky, Vladimir; Schadel, Christina; Schaefer, Kevin; Schuur, Edward A.G.; Zhuang, Qianlai
2018-01-01
We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.
Greenberg, S.; Gauvreau, L.; Hnottavange-Telleen, K.; Finley, R.; Marsteller, S.
2011-01-01
The Midwest Geological Sequestration Consortium, Schlumberger Carbon Services, and Archer Daniels Midland has implemented a comprehensive communications plan at the Illinois Basin - Decatur Project (IBDP), a one million metric tonne Carbon Capture and Storage project in Decatur, IL, USA funded by the U.S. Department of Energy's National Energy Technology Laboratory. The IBDP Communication Plan includes consortium information, funding and disclaimer citations, description of target audiences, media communications guidelines, paper and presentations guidelines, site visit information, crisis communication, on-site photography regulations, and other components. The creation, development, and implementation processes for the IBDP Communication Plan (the Plan) are shared in this paper. New communications challenges, such as how to address add-on research requests, data sharing and management, scope increase, and contract agreements have arisen since the Plan was completed in January 2009, resulting in development of new policies and procedures by project management. Integrating communications planning, risk assessment, and project management ensured that consistent, factual information was developed and incorporated into project planning, and constitutes the basis of public communications. Successful integration has allowed the IBDP to benefit from early identification and mitigation of the potential project risks, which allows more time to effectively deal with unknown and unidentified risks that may arise. Project risks and risks associated with public perception can be managed through careful planning and integration of communication strategies into project management and risk mitigation. ?? 2011 Published by Elsevier Ltd.
Optimization of carbon mitigation paths in the power sector of Shenzhen, China
NASA Astrophysics Data System (ADS)
Li, Xin; Hu, Guangxiao; Duan, Ying; Ji, Junping
2017-08-01
This paper studied the carbon mitigation paths of the power sector in Shenzhen, China from a supply-side perspective. We investigated the carbon mitigation potentials and investments of seventeen mitigation technologies in the power sector, and employed a linear programming method to optimize the mitigation paths. The results show that: 1) The total carbon mitigation potential is 5.95 MtCO2 in 2020 in which the adjustment of power supply structure, technical improvements of existing coal- and gas-fired power plant account for 87.5%,6.5% and 6.0%, respectively. 2) In the optimal path, the avoided carbon dioxide to meet the local government’s mitigation goal in power sector is 1.26 MtCO2.The adjustment of power supply structure and technical improvement of the coal-fired power plants are the driving factors of carbon mitigation, with contributions to total carbon mitigation are 72.6% and 27.4%, respectively.
McGuire, A. David; Lawrence, David M.; Koven, Charles; ...
2018-03-26
We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km 2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbonmore » varied between 66-Pg C (10 15-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. In conclusion, this assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, A. David; Lawrence, David M.; Koven, Charles
We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km 2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbonmore » varied between 66-Pg C (10 15-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. In conclusion, this assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.« less
Crystal L. Raymond; Donald McKenzie
2012-01-01
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.
2014-08-01
Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM atmore » the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.« less
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.
2014-08-01
Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community-integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095, particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase, driven by higher water demands for bio-energy crops.
Irreducible Uncertainty in Terrestrial Carbon Projections
NASA Astrophysics Data System (ADS)
Lovenduski, N. S.; Bonan, G. B.
2016-12-01
We quantify and isolate the sources of uncertainty in projections of carbon accumulation by the ocean and terrestrial biosphere over 2006-2100 using output from Earth System Models participating in the 5th Coupled Model Intercomparison Project. We consider three independent sources of uncertainty in our analysis of variance: (1) internal variability, driven by random, internal variations in the climate system, (2) emission scenario, driven by uncertainty in future radiative forcing, and (3) model structure, wherein different models produce different projections given the same emission scenario. Whereas uncertainty in projections of ocean carbon accumulation by 2100 is 100 Pg C and driven primarily by emission scenario, uncertainty in projections of terrestrial carbon accumulation by 2100 is 50% larger than that of the ocean, and driven primarily by model structure. This structural uncertainty is correlated with emission scenario: the variance associated with model structure is an order of magnitude larger under a business-as-usual scenario (RCP8.5) than a mitigation scenario (RCP2.6). In an effort to reduce this structural uncertainty, we apply various model weighting schemes to our analysis of variance in terrestrial carbon accumulation projections. The largest reductions in uncertainty are achieved when giving all the weight to a single model; here the uncertainty is of a similar magnitude to the ocean projections. Such an analysis suggests that this structural uncertainty is irreducible given current terrestrial model development efforts.
Potentials to mitigate climate change using biochar - the Austrian perspective
NASA Astrophysics Data System (ADS)
Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.
2015-04-01
Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar production), each year 0.38 megatons CO2e could potentially be mitigated in Austria, which is 0.4% of total or 5% of all GHG emissions caused by agriculture in Austria in 2010. In order to produce this amount of biochar annually, about 27 medium-scale or 220 small-scale pyrolysis plants would be required. The economic analysis revealed that biochar yield, carbon sequestration and feedstock costs have the highest influence on GHG abatement costs. Further reading: Bruckman, V.J. and Klinglmüller, M. (2014): Potentials to Mitigate Climate Change Using Biochar - the Austrian Perspective. In: Bruckman, V.J., Liu, J., Başak, B.B. and Apaydın-Varol, E. (Eds.) Potentials to Mitigate Climate Change Using Biochar. IUFRO Occasional Papers 27.
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.
2013-03-01
We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.
2013-01-01
We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are comparedmore » to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.« less
Sensitivity of Ocean Chemistry and Oxygen Change to the Uncertainty in Climate Change
NASA Astrophysics Data System (ADS)
Cao, L.; Wang, S.; Zheng, M.; Zhang, H.
2014-12-01
With increasing atmospheric CO2 and climate change, global ocean is undergoing substantial physical and biogeochemical changes. In particular, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would affect the projection of ocean oxygen and carbonate chemistry. To examine the effect of climate change on ocean oxygen and carbonate chemistry, we used an Earth system model of intermediate complexity to perform simulations that are driven by atmospheric CO2 concentration pathway of RCP 8.5 with climate sensitivity varying from 0.0°C to 4.5 °C. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. Our simulations show that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude, to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.
Combined climate and carbon-cycle effects of large-scale deforestation
Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.
2007-01-01
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463
Combined climate and carbon-cycle effects of large-scale deforestation.
Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A
2007-04-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.
Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Caldeira, K; Wickett, M
2006-10-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less
NASA Astrophysics Data System (ADS)
Olguin-Alvarez, M. I.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.; Magnan, M.; Dugan, A.; Mascorro, V.; Alanís, A.; Serrano, E.; Kurz, W. A.
2017-12-01
Since 2012, the Mexican government through its National Forestry Commission, with support from the Commission for Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made important progress towards the use of carbon dynamics models ("gain-loss" approach) for greenhouse gas (GHG) emissions monitoring and projections into the future. Here we assess the biophysical mitigation potential of policy alternatives identified by the Mexican Government (e.g. net zero deforestation rate, sustainable forest management) based on a systems approach that models carbon dynamics in forest ecosystems, harvested wood products and substitution benefits in two contrasting states of Mexico. We provide key messages and results derived from the use of the Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model, parameterized with input data from Mexicós National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data). The ultimate goal of this tri-national effort is to develop data and tools for carbon assessment in strategic landscapes in North America, emphasizing the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation in accordance with the Paris Agreement of the United Nation Framework Convention on Climate Change (e.g. Mid-Century Strategy, NDC goals).
Hao, Rong; Zhang, Jinliang; Wang, Peichao; Hu, Ronggui; Song, Yantun; Wu, Yupeng; Qiu, Guohong
2018-05-15
Water resources management is an important public concern. In this study, we examined the extent of sorption/desorption of trace pollutants to soil black carbon (BC) in the water level fluctuation zone (WLFZ) of the middle route of the South to North Water Transfer Project in China. In addition, we investigated the main management measures affecting these processes during the project. The results showed that the pseudo second-order model adequately describes the sorption/desorption of phenanthrene on the soil BC in the WLFZ. Water level fluctuation may indirectly influenced BC sorption/desorption by altering water chemistry. Water level residence time had negative effects on BC sorption in short-term experiments (days to months), but the impact gradually diminished with increased residence time. The results suggested that long-term field monitoring of water chemistry is urgent. During the initial period of water transfer, delaying the water supplies as drinking water source or directly irrigating crops could mitigate the adverse impacts. Future research should focus on the water-soluble products of BC degradation. The findings of this study should be useful in improving sustainable management of water resources for water transfer projects. Copyright © 2018 Elsevier Ltd. All rights reserved.
When could global warming reach 4°C?
Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G
2011-01-13
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.
Carlson, Kimberly M; Curran, Lisa M; Ratnasari, Dessy; Pittman, Alice M; Soares-Filho, Britaldo S; Asner, Gregory P; Trigg, Simon N; Gaveau, David A; Lawrence, Deborah; Rodrigues, Hermann O
2012-05-08
Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989-2008 deforestation (93%) and net carbon emissions (69%), by 2007-2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994-2001), shifting to 69% peatlands (2008-2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ∼40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings.
Carlson, Kimberly M.; Curran, Lisa M.; Ratnasari, Dessy; Pittman, Alice M.; Soares-Filho, Britaldo S.; Asner, Gregory P.; Trigg, Simon N.; Gaveau, David A.; Lawrence, Deborah; Rodrigues, Hermann O.
2012-01-01
Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989–2008 deforestation (93%) and net carbon emissions (69%), by 2007–2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994–2001), shifting to 69% peatlands (2008–2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ∼40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings. PMID:22523241
Induced seismicity and carbon storage: Risk assessment and mitigation strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Joshua A.; Foxall, William; Bachmann, Corinne
Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO 2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO 2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO 2 injection and fluid injection from other applications that have induced significant events—e.g.more » geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO 2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO 2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk assessment and mitigation approach. A phased approach to risk management is then introduced. The basic goal of the phased approach is to constantly adapt site operations to current conditions and available characterization data. The remainder of the report then focuses in detail on different components of the monitoring, risk assessment, and mitigation strategies. Issues in current seismic risk assessment methods that must be modified to address induce seismicity are highlighted. The report then concludes with several specific recommendations for operators and regulatory authorities to consider when selecting, permitting, and operating a storage project.« less
The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols
NASA Astrophysics Data System (ADS)
Schultz, T.
2016-12-01
The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.
Ma, Minda; Cai, Weiguang
2018-09-01
Energy efficiency in the building sector is expected to contribute >50% to the nationwide carbon mitigation efforts for achieving China's carbon emission peak in 2030, and carbon mitigation in Chinese commercial buildings (CMCCB) is an indicator of this effort. However, the CMCCB assessment has faced the challenge of ineffective and inadequate approaches; therefore, we have followed a different approach. Using the China Database of Building Energy Consumption and Carbon Emissions as our data source, our study is the first to employ the Logarithmic Mean Divisia Index (LMDI) to decompose five driving forces from the Kaya identity of Chinese commercial building carbon emissions (CCBCE) to assess the CMCCB values in 2001-2015. The results of our study indicated that: (1) Only two driving forces (i.e., the reciprocal of GDP per capita of Tertiary Industry in China and the CCBCE intensity) contributed negatively re m i to CCBCE during 2001-2015, and the quantified negative contributions denoted the CMCCB values. Specifically, the CMCCB values in 2001-2005, 2006-2010, and 2011-2015 were 123.96, 252.83, and 249.07 MtCO 2 , respectively. (2) The data quality control involving the CMCCB values proved the reliability of our CMCCB assessment model, and the universal applicability of this model was also confirmed. (3) The substantial achievements of the energy efficiency project in the Chinese commercial building sector were the root cause of the rapidly growing CMCCB. Overall, we believe that our model successfully bridges the research gap of the nationwide CMCCB assessment and that the proposed model is also suitable either at the provincial level or in different building climate zones in China. Meanwhile, a global-level assessment of the carbon mitigation in the commercial building sector is feasible through applying our model. Furthermore, we consider our contribution as constituting significant guidance for developing the building energy efficiency strategy in China in the upcoming phase. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Cheng-Yu; Radu, Daniela R.; Pizzi, Nicholas
Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less
Global forestry emission projections and abatement costs
NASA Astrophysics Data System (ADS)
Böttcher, H.; Gusti, M.; Mosnier, A.; Havlik, P.; Obersteiner, M.
2012-04-01
In this paper we present forestry emission projections and associated Marginal Abatement Cost Curves (MACCs) for individual countries, based on economic, social and policy drivers. The activities cover deforestation, afforestation, and forestry management. The global model tools G4M and GLOBIOM, developed at IIASA, are applied. GLOBIOM uses global scenarios of population, diet, GDP and energy demand to inform G4M about future land and commodity prices and demand for bioenergy and timber. G4M projects emissions from afforestation, deforestation and management of existing forests. Mitigation measures are simulated by introducing a carbon tax. Mitigation activities like reducing deforestation or enhancing afforestation are not independent of each other. In contrast to existing forestry mitigation cost curves the presented MACCs are not developed for individual activities but total forest land management which makes the estimated potentials more realistic. In the assumed baseline gross deforestation drops globally from about 12 Mha in 2005 to below 10 Mha after 2015 and reach 0.5 Mha in 2050. Afforestation rates remain fairly constant at about 7 Mha annually. Although we observe a net area increase of global forest area after 2015 net emissions from deforestation and afforestation are positive until 2045 as the newly afforested areas accumulate carbon rather slowly. About 200 Mt CO2 per year in 2030 in Annex1 countries could be mitigated at a carbon price of 50 USD. The potential for forest management improvement is very similar. Above 200 USD the potential is clearly constrained for both options. In Non-Annex1 countries avoided deforestation can achieve about 1200 Mt CO2 per year at a price of 50 USD. The potential is less constrained compared to the potential in Annex1 countries, achieving a potential of 1800 Mt CO2 annually in 2030 at a price of 1000 USD. The potential from additional afforestation is rather limited due to high baseline afforestation rates assumed. In addition we present results of several sensitivity analyses that were run to understand better model uncertainties and the mechanisms of drivers such as agricultural productivity, GDP, wood demand and national corruption rates.
Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E
2013-11-19
Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.
Global potential of biospheric carbon management for climate mitigation.
Canadell, Josep G; Schulze, E Detlef
2014-11-19
Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050.
Effectiveness and legitimacy of forest carbon standards in the OTC voluntary carbon market.
Merger, Eduard; Pistorius, Till
2011-08-17
In recent years, the voluntary over-the-counter (OTC) carbon market has reached a significant market volume. It is particularly interesting for forest mitigation projects which are either ineligible in compliance markets or confronted with a plethora of technical and financial hurdles and lacking market demand. As the OTC market is not regulated, voluntary standards have been created to secure the social and environmental integrity of the traded mitigation projects and thus to ensure the quality of the resulting carbon credits. Building on a theoretical efficiency-legitimacy framework, this study aims to identify and analyse the characteristics and indicators that determine the efficiency and organisational legitimacy of standards for afforestation/reforestation carbon projects. All interviewed market actors consider third-party certification and standards as a crucial component of market functionality, which provide quality assurance mechanisms that reduce information asymmetries and moral hazard between the actors regarding the quality of carbon credits, and thus reduce transaction costs. Despite this development, the recent evolution of many new and differing standards is seen as a major obstacle that renders it difficult for project developers and buyers to select an appropriate standard. According to the interviewed experts the most important legitimating factors of standards are assurance of a sufficient level of quality of carbon credits, scientifically substantiated methodological accounting and independent third-party verification, independence of standard bodies, transparency, wide market acceptance, back-up of the wider community including experts and NGOs, rigorous procedures, and the resemblance to the Afforestation/Reforestation (A/R) CDM due to its international policy endorsements. In addition, standards must provide evidence that projects contribute to a positive social and environmental development, do no harm as a minimum requirement and build a strong track record of successful projects. Project developers require clear, easily and practically applicable standards at lowest possible costs with a high potential in order to achieve good carbon prices, while buyers require that standards are legitimate, credible and that no public criticism arises when carbon credits are purchased from projects certified by a certain standard. Despite the fragmented and immature state of the OTC market, standards act as 'market-making' intermediaries and contribute to the quality and transparency of the OTC market. However, the variety of different standards imposes new hurdles for their efficiency and often creates confusion instead of confidence among potential buyers. Despite the lacking legitimacy of the standards, pressures from the institutional environment on standards ensure a minimum quality of carbon credits (including positive social and environmental impacts of carbon credits) that serves as an insurance mechanism for the integrity of standards. Its unregulated nature and the pressure from an increasingly competitive environment provides innovative space to deliver efficient certification procedures without imposing unreasonably high transaction costs on market actors. Furthermore, voluntary standards imply a more innovative certification approach, as one legal authority could do, because standards have to compete for adopters backed by civil society organisations. Thereby, the forest sector in OTC voluntary market bears great opportunities to provide the forest sector with crucial lessons for international climate policy and governmental institutions when designing regulation for forest regulation such as international and national REDDplus schemes.
NASA Astrophysics Data System (ADS)
Gottschalk, P.; Churkina, G.; Wattenbach, M.; Cubasch, U.
2010-12-01
The impact of urban systems on current and future global carbon emissions has been a focus of several studies. Many mitigation options in terms of increasing energy efficiency are discussed. However, apart from technical mitigation potential urban systems also have a considerable biogenic potential to mitigate carbon through an optimized management of organic carbon pools of vegetation and soil. Berlin city area comprises almost 50% of areas covered with vegetation or largely covered with vegetation. This potentially offers various areas for carbon mitigation actions. To assess the mitigation potentials our first objective is to estimate how large current vegetation and soil carbon stocks of Berlin are. We use publicly available forest and soil inventories to calculate soil organic carbon of non-pervious areas and forest standing biomass carbon. This research highlights data-gaps and assigns uncertainty ranges to estimated carbon resources. The second objective is to assess the carbon mitigation potential of Berlin’s vegetation and soils using a biogeochemical simulation model. BIOME-BGC simulates carbon-, nitrogen- and water-fluxes of ecosystems mechanistically. First, its applicability for Berlin forests is tested at selected sites. A spatial application gives an estimate of current net carbon fluxes. The application of such a model allows determining the sensitivity of key ecosystem processes (e.g. carbon gains through photosynthesis, carbon losses through decomposition) towards external drivers. This information can then be used to optimise forest management in terms of carbon mitigation. Initial results of Berlin’s current carbon stocks and its spatial distribution and preliminary simulations results will be presented.
NASA Technical Reports Server (NTRS)
Abney, Morgan; Barta, Daniel
2015-01-01
The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye; Makundi; Goldberg
1997-07-01
The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policymore » makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.« less
Learning through a portfolio of carbon capture and storage demonstration projects
NASA Astrophysics Data System (ADS)
Reiner, David M.
2016-01-01
Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.
Community perceptions of carbon sequestration: insights from California
NASA Astrophysics Data System (ADS)
Wong-Parodi, Gabrielle; Ray, Isha
2009-07-01
Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.
Results of the UCAR 2008 Forum on Climate Mitigation and Adaptation
NASA Astrophysics Data System (ADS)
Fellows, J.; Barron, E.
2008-12-01
Mayors, governors, and local decision makers are developing climate change action plans. They are not waiting for the federal carbon emission reduction debates to conclude (e.g., cap and trade or carbon tax legislation). Many of them are struggling with what should be in these plans, what they should be assuming about future weather and climate trends, and what the impact might be on their community and its infrastructure. In October 2008, the University Corporation for Atmospheric Research held a forum at its 2008 Members' Meeting that focused on the UCAR community's role in climate change adaptation and mitigation. Many of UCAR's 71 university members are involved in projects with local and regional decision makers struggling with planning for the future in the face of climate change. The forum focused on the following questions: 1. How are these projects working and what lessons have we learned? 2. What can our community can do to assist these partnerships (e.g., models and other tools, better information, training opportunities, outreach, sharing ideas, etc.)? 3. Can we help our nation deal more effectively with climate mitigation and adaptation by being more strategic with these partnerships (e.g., more coordination, creating packages of tools and information, creating common approaches to climate action plans, developing better communication tools, community strategic planning effort, etc.)? This presentation will provide a summary of the forum outcomes.
Land Cover Applications, Landscape Dynamics, and Global Change
Tieszen, Larry L.
2007-01-01
The Land Cover Applications, Landscape Dynamics, and Global Change project at U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) seeks to integrate remote sensing and simulation models to better understand and seek solutions to national and global issues. Modeling processes related to population impacts, natural resource management, climate change, invasive species, land use changes, energy development, and climate mitigation all pose significant scientific opportunities. The project activities use remotely sensed data to support spatial monitoring, provide sensitivity analyses across landscapes and large regions, and make the data and results available on the Internet with data access and distribution, decision support systems, and on-line modeling. Applications support sustainable natural resource use, carbon cycle science, biodiversity conservation, climate change mitigation, and robust simulation modeling approaches that evaluate ecosystem and landscape dynamics.
The impact of projected increases in urbanization on ecosystem services.
Eigenbrod, F; Bell, V A; Davies, H N; Heinemeyer, A; Armsworth, P R; Gaston, K J
2011-11-07
Alteration in land use is likely to be a major driver of changes in the distribution of ecosystem services before 2050. In Europe, urbanization will probably be the main cause of land-use change. This increase in urbanization will result in spatial shifts in both supplies of ecosystem services and the beneficiaries of those services; the net outcome of such shifts remains to be determined. Here, we model changes in urban land cover in Britain based on large (16%) projected increases in the human population by 2031, and the consequences for three different services--flood mitigation, agricultural production and carbon storage. We show that under a scenario of densification of urban areas, the combined effect of increasing population and loss of permeable surfaces is likely to result in 1.7 million people living within 1 km of rivers with at least 10 per cent increases in projected peak flows, but that increasing suburban 'sprawl' will have little effect on flood mitigation services. Conversely, losses of stored carbon and agricultural production are over three times as high under the sprawl as under the 'densification' urban growth scenarios. Our results illustrate the challenges of meeting, but also of predicting, future demands and patterns of ecosystem services in the face of increasing urbanization.
The impact of projected increases in urbanization on ecosystem services
Eigenbrod, F.; Bell, V. A.; Davies, H. N.; Heinemeyer, A.; Armsworth, P. R.; Gaston, K. J.
2011-01-01
Alteration in land use is likely to be a major driver of changes in the distribution of ecosystem services before 2050. In Europe, urbanization will probably be the main cause of land-use change. This increase in urbanization will result in spatial shifts in both supplies of ecosystem services and the beneficiaries of those services; the net outcome of such shifts remains to be determined. Here, we model changes in urban land cover in Britain based on large (16%) projected increases in the human population by 2031, and the consequences for three different services—flood mitigation, agricultural production and carbon storage. We show that under a scenario of densification of urban areas, the combined effect of increasing population and loss of permeable surfaces is likely to result in 1.7 million people living within 1 km of rivers with at least 10 per cent increases in projected peak flows, but that increasing suburban ‘sprawl’ will have little effect on flood mitigation services. Conversely, losses of stored carbon and agricultural production are over three times as high under the sprawl as under the ‘densification’ urban growth scenarios. Our results illustrate the challenges of meeting, but also of predicting, future demands and patterns of ecosystem services in the face of increasing urbanization. PMID:21389035
Menikpura, S N M; Sang-Arun, Janya; Bengtsson, Magnus
2013-10-01
Landfilling is the most common and cost-effective waste disposal method, and it is widely applied throughout the world. In developing countries in Asia there is currently a trend towards constructing sanitary landfills with gas recovery systems, not only as a solution to the waste problem and the associated local environmental pollution, but also to generate revenues through carbon markets and from the sale of electricity. This article presents a quantitative assessment of climate co-benefits from landfill gas (LFG) to energy projects, based on the case of Bangkok Metropolitan Administration, Thailand. Life cycle assessment was used for estimating net greenhouse gas (GHG) emissions, considering the whole lifespan of the landfill. The assessment found that the total GHG mitigation of the Bangkok project would be 471,763 tonnes (t) of carbon dioxide (CO(2))-equivalents (eq) over its 10-year LFG recovery period.This amount is equivalent to only 12% of the methane (CH(4)) generated over the whole lifespan of the landfill. An alternative scenario was devised to analyse possible improvement options for GHG mitigation through LFG-to-energy recovery projects. This scenario assumes that LFG recovery would commence in the second year of landfill operation and gas extraction continues throughout the 20-year peak production period. In this scenario, GHG mitigation potential amounted to 1,639,450 tCO(2)-eq during the 20-year project period, which is equivalent to 43% of the CH(4) generated throughout the life cycle. The results indicate that with careful planning, there is a high potential for improving the efficiency of existing LFG recovery projects which would enhance climate co-benefits, as well as economic benefits. However, the study also shows that even improved gas recovery systems have fairly low recovery rates and, in consequence, that emissions of GHG from such landfills sites are still considerable.
Farrelly, Damien J; Brennan, Liam; Everard, Colm D; McDonnell, Kevin P
2014-04-01
Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L(-1) day(-1). The results showed that 0.74 g L(-1) of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L(-1) was achieved. This represented an increase of 0.18 g L(-1) in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.
Mitigation potential and cost in tropical forestry - relative role for agroforestry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, Willy R.; Sathaye, Jayant A.
2004-01-01
This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectivenessmore » indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.« less
McGuire, A David; Genet, Hélène; Lyu, Zhou; Pastick, Neal; Stackpoole, Sarah; Birdsey, Richard; D'Amore, David; He, Yujie; Rupp, T Scott; Striegl, Robert; Wylie, Bruce K; Zhou, Xiaoping; Zhuang, Qianlai; Zhu, Zhiliang
2018-06-20
We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the State gained 0.4 Tg C yr -1 (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 x 10 -3 W m -2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C yr -1 (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5 to 70.0 Tg C yr -1 ), primarily because of NPP increases of 10 to 30% associated with responses to rising atmospheric CO 2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH 4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections, and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO 2 (~5% per 100 ppmv CO 2 ) saturates as CO 2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained. From a national perspective, inclusion of all of Alaska in greenhouse gas inventory reports would ensure better accounting of the overall greenhouse gas balance of the nation, and provide a foundation for considering mitigation activities in areas that are accessible enough to support substantive deployment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sensitivity of ocean acidification and oxygen to the uncertainty in climate change
NASA Astrophysics Data System (ADS)
Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han
2014-05-01
Due to increasing atmospheric CO2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO2 and those which involve CO2-induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.
Effectiveness and legitimacy of forest carbon standards in the OTC voluntary carbon market
2011-01-01
Background In recent years, the voluntary over-the-counter (OTC) carbon market has reached a significant market volume. It is particularly interesting for forest mitigation projects which are either ineligible in compliance markets or confronted with a plethora of technical and financial hurdles and lacking market demand. As the OTC market is not regulated, voluntary standards have been created to secure the social and environmental integrity of the traded mitigation projects and thus to ensure the quality of the resulting carbon credits. Building on a theoretical efficiency-legitimacy framework, this study aims to identify and analyse the characteristics and indicators that determine the efficiency and organisational legitimacy of standards for afforestation/reforestation carbon projects. Results All interviewed market actors consider third-party certification and standards as a crucial component of market functionality, which provide quality assurance mechanisms that reduce information asymmetries and moral hazard between the actors regarding the quality of carbon credits, and thus reduce transaction costs. Despite this development, the recent evolution of many new and differing standards is seen as a major obstacle that renders it difficult for project developers and buyers to select an appropriate standard. According to the interviewed experts the most important legitimating factors of standards are assurance of a sufficient level of quality of carbon credits, scientifically substantiated methodological accounting and independent third-party verification, independence of standard bodies, transparency, wide market acceptance, back-up of the wider community including experts and NGOs, rigorous procedures, and the resemblance to the Afforestation/Reforestation (A/R) CDM due to its international policy endorsements. In addition, standards must provide evidence that projects contribute to a positive social and environmental development, do no harm as a minimum requirement and build a strong track record of successful projects. Project developers require clear, easily and practically applicable standards at lowest possible costs with a high potential in order to achieve good carbon prices, while buyers require that standards are legitimate, credible and that no public criticism arises when carbon credits are purchased from projects certified by a certain standard. Conclusions Despite the fragmented and immature state of the OTC market, standards act as 'market-making' intermediaries and contribute to the quality and transparency of the OTC market. However, the variety of different standards imposes new hurdles for their efficiency and often creates confusion instead of confidence among potential buyers. Despite the lacking legitimacy of the standards, pressures from the institutional environment on standards ensure a minimum quality of carbon credits (including positive social and environmental impacts of carbon credits) that serves as an insurance mechanism for the integrity of standards. Its unregulated nature and the pressure from an increasingly competitive environment provides innovative space to deliver efficient certification procedures without imposing unreasonably high transaction costs on market actors. Furthermore, voluntary standards imply a more innovative certification approach, as one legal authority could do, because standards have to compete for adopters backed by civil society organisations. Thereby, the forest sector in OTC voluntary market bears great opportunities to provide the forest sector with crucial lessons for international climate policy and governmental institutions when designing regulation for forest regulation such as international and national REDDplus schemes. PMID:21849036
Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.
Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut
2018-07-01
Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Stergiou, John; Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella
2016-04-01
Climate Change Mitigation is one of the most important objectives of the Kyoto Convention, and is mostly oriented towards reducing GHG emissions. However, carbon sink is retained only in the calculation of the forests capacity since agricultural land and farmers practices for securing carbon stored in soils have not been recognized in GHG accounting, possibly resulting in incorrect estimations of the carbon dioxide balance in the atmosphere. The agricultural sector, which is a key sector in the EU, presents a consistent strategic framework since 1954, in the form of Common Agricultural Policy (CAP). In its latest reform of 2013 (reg. (EU) 1305/13) CAP recognized the significance of Agriculture as a key player in Climate Change policy. In order to fill this gap the "LIFE ClimaTree" project has recently founded by the European Commission aiming to provide a novel method for including tree crop cultivations in the LULUCF's accounting rules for GHG emissions and removal. In the framework of "LIFE ClimaTree" project estimation of carbon sink within EU through the inclusion of the calculated tree crop capacity will be assessed for both current and future climatic conditions by 2050s using the GISS-WRF modeling system in a very fine scale (i.e., 9km x 9km) using RCP8.5 and RCP4.5 climate scenarios. Acknowledgement: LIFE CLIMATREE project "A novel approach for accounting and monitoring carbon sequestration of tree crops and their potential as carbon sink areas" (LIFE14 CCM/GR/000635).
Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.
Chen, Shaoqing; Chen, Bin; Su, Meirong
2015-10-06
The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.
Warm spring reduced carbon cycle impact of the 2012 US summer drought
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.
The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less
Warm spring reduced carbon cycle impact of the 2012 US summer drought.
Wolf, Sebastian; Keenan, Trevor F; Fisher, Joshua B; Baldocchi, Dennis D; Desai, Ankur R; Richardson, Andrew D; Scott, Russell L; Law, Beverly E; Litvak, Marcy E; Brunsell, Nathaniel A; Peters, Wouter; van der Laan-Luijkx, Ingrid T
2016-05-24
The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.
Warm spring reduced carbon cycle impact of the 2012 US summer drought
Keenan, Trevor F.; Fisher, Joshua B.; Richardson, Andrew D.; Scott, Russell L.; Law, Beverly E.; Litvak, Marcy E.; Brunsell, Nathaniel A.; Peters, Wouter
2016-01-01
The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks. PMID:27114518
Warm spring reduced carbon cycle impact of the 2012 US summer drought
Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; ...
2016-04-25
The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less
Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang
2010-01-01
The Energy Independence and Security Act of 2007 (EISA), Section 712, authorizes the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation's ecosystems focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, shrub and grasslands; and aquatic ecosystems, such as rivers, lakes, and estuaries), (2) an estimation of annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities), and (3) an evaluation of the effects of controlling processes, such as climate change, land use and land cover, and wildlfires. The purpose of this draft methodology for public review is to propose a technical plan to conduct the assessment. Within the methodology, the concepts of ecosystems, carbon pools, and GHG fluxes used for the assessment follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess future potential conditions based on a set of projected scenarios. The scenario framework is constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission Scenarios (SRES), along with initial reference land-use and land-cover (LULC) and land-management scenarios. An additional three LULC and land-management mitigation scenarios will be constructed for each storyline to enhance carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be solicited to construct realistic and meaningful scenarios. The methods for mapping the current LULC and ecosystem disturbances will require the extensive use of both remote-sensing data and in-situ (for example, forest inventory data) to capture and characterize landscape-change events. For future potential LULC and ecosystem disturbances, key drivers such as socioeconomic, policy, and climate assumptions will be used in addition to biophysical data. The product of these analyses will be a series of maps for each future year for each scenario. These annual maps will form the basis for estimating carbon storage and GHG emissions. For terrestrial ecosystems, carbon storage, carbon-sequestration capacities, and GHG emissions under the current and projected future conditions will be assessed using the LULC and ecosystem-disturbance estimates in map format with a spatially explicit biogeochemical ensemble modeling system that incorporates properties of management activities (such as tillage or harvesting) and properties of individual ecosystems (such as elevation, vegetation characteristics, and soil attributes). For aquatic ecosystems, carbon burial in sediments and GHG fluxes are functions of the current and projected future stream flow and sediment transports, and therefore will be assessed using empirical modeling methods. Validation and uncertainty analysis methods described in the methodology will follow established guidelines to assess the quality of the assessment results. The U.S. Environmental Protection Agency's Level II ecoregions map (which delineates 24 ecoregions for the Nation) will be the practical instrument for developing and delivering assessment results. Consequently, the ecoregion will be the reporting unit of the assessment because the mitigation scenarios, assessment results, validation, and uncertainty analysis will be
Pathways for balancing CO2 emissions and sinks.
Walsh, Brian; Ciais, Philippe; Janssens, Ivan A; Peñuelas, Josep; Riahi, Keywan; Rydzak, Felicjan; van Vuuren, Detlef P; Obersteiner, Michael
2017-04-13
In December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale.
Pathways for balancing CO2 emissions and sinks
Walsh, Brian; Ciais, Philippe; Janssens, Ivan A.; Peñuelas, Josep; Riahi, Keywan; Rydzak, Felicjan; van Vuuren, Detlef P.; Obersteiner, Michael
2017-01-01
In December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale. PMID:28406154
Regional Approaches to Climate Change for Inland Pacific Northwest Cereal Production Systems
NASA Astrophysics Data System (ADS)
Eigenbrode, S. D.; Abatzoglou, J. T.; Burke, I. C.; Capalbo, S.; Gessler, P.; Huggins, D. R.; Johnson-Maynard, J.; Kruger, C.; Lamb, B. K.; Machado, S.; Mote, P.; Painter, K.; Pan, W.; Petrie, S.; Paulitz, T. C.; Stockle, C.; Walden, V. P.; Wulfhorst, J. D.; Wolf, K. J.
2011-12-01
The long-term environmental and economic sustainability of agriculture in the Inland Pacific Northwest (northern Idaho, north central Oregon, and eastern Washington) depends upon improving agricultural management, technology, and policy to enable adaptation to climate change and to help realize agriculture's potential to contribute to climate change mitigation. To address this challenge, three land-grant institutions (Oregon State University, the University of Idaho and Washington State University) (OSU, UI, WSU) and USDA Agricultural Research Service (ARS) units are partners in a collaborative project - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA). The overarching goal of REACCH is to enhance the sustainability of Inland Pacific Northwest (IPNW) cereal production systems under ongoing and projected climate change while contributing to climate change mitigation. Supporting goals include: - Develop and implement sustainable agricultural practices for cereal production within existing and projected agroecological zones throughout the region as climate changes, - Contribute to climate change mitigation through improved fertilizer, fuel, and pesticide use efficiency, increased sequestration of soil carbon, and reduced greenhouse gas (GHG) emissions consistent with the 2030 targets set by the USDA National Institute for Food and Agriculture (NIFA), - Work closely with stakeholders and policymakers to promote science-based agricultural approaches to climate change adaptation and mitigation, - Increase the number of scientists, educators, and extension professionals with the skills and knowledge to address climate change and its interactions with agriculture. In this poster, we provide an overview of the specific goals of this project and activities that are underway since its inception in spring of 2011.
NASA Astrophysics Data System (ADS)
Bird, D. N.; Kunda, M.; Mayer, A.; Schlamadinger, B.; Canella, L.; Johnston, M.
2008-04-01
Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation) is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal. In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada. In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure. We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as biofuels replace the grasses, the change in carbon stocks may not compensate for the darkening of the surface.
Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.
NASA Astrophysics Data System (ADS)
Khresat, Saeb
2016-04-01
Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for land preparation through tillage systems decreased by 40-60% as a result of fuel and time-saving in the operations. The mean biological and grain yield by applying conservation agriculture have increased between 14-35% compared to conventional agriculture. It is concluded that there is a correlation between CO2 loss and tillage intensity and that a shift from traditional agriculture to Conservation agriculture can contribute to making agricultural systems more resilient to climate change.
Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.
Alig, Ralph J; Butler, Brett J
2004-04-01
One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest is a crucial disturbance affecting planted pine area, as other forest types are converted to planted pine after harvest. Conversely, however, many harvested pine plantations revert to other forest types, mainly due to passive regeneration behavior on nonindustrial private timberlands. We model land use and land cover changes as a basis for projecting future changes in planted pine area, to aid policy analysts concerned with mitigation activities for global climate change. Projections are prepared in two stages. Projected land use changes include deforestation due to pressures to develop rural land as the human population expands, which is a larger area than that converted from other rural lands (e.g., agriculture) to forestry. In the second stage, transitions among forest types are projected on land allocated to forestry. We consider reforestation, influences of timber harvest, and natural succession and disturbance processes. Baseline projections indicate a net increase of about 5.6 million ha in planted pine area in the South over the next 50 years, with a notable increase in sequestered carbon. Additional opportunities to expand pine plantation area warrant study of landowner behavior to aid in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change and attain other goals.
Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry
NASA Astrophysics Data System (ADS)
Sonter, Laura J.; Barrett, Damian J.; Moran, Chris J.; Soares-Filho, Britaldo S.
2015-04-01
Steel produced using coal generates 7% of global anthropogenic CO2 emissions annually. Opportunities exist to substitute this coal with carbon-neutral charcoal sourced from plantation forests to mitigate project-scale emissions and obtain certified emission reduction credits under the Kyoto Protocol’s Clean Development Mechanism. This mitigation strategy has been implemented in Brazil and is one mechanism among many used globally to reduce anthropogenic CO2 emissions; however, its potential adverse impacts have been overlooked to date. Here, we report that total CO2 emitted from Brazilian steel production doubled (91 to 182 MtCO2) and specific emissions increased (3.3 to 5.2 MtCO2 per Mt steel) between 2000 and 2007, even though the proportion of coal used declined. Infrastructure upgrades and a national plantation shortage increased industry reliance on charcoal sourced from native forests, which emits up to nine times more CO2 per tonne of steel than coal. Preventing use of native forest charcoal could have avoided 79% of the CO2 emitted from steel production between 2000 and 2007; however, doing so by increasing plantation charcoal supply is limited by socio-economic costs and risks further indirect deforestation pressures and emissions. Effective climate change mitigation in Brazil’s steel industry must therefore minimize all direct and indirect carbon emissions generated from steel manufacture.
Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria
In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less
Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets
Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria; ...
2015-06-03
In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less
Herrmann, Alina; Fischer, Helen; Amelung, Dorothee; Litvine, Dorian; Aall, Carlo; Andersson, Camilla; Baltruszewicz, Marta; Barbier, Carine; Bruyère, Sébastien; Bénévise, Françoise; Dubois, Ghislain; Louis, Valérie R; Nilsson, Maria; Richardsen Moberg, Karen; Sköld, Bore; Sauerborn, Rainer
2017-08-01
It is now universally acknowledged that climate change constitutes a major threat to human health. At the same time, some of the measures to reduce greenhouse gas emissions, so-called climate change mitigation measures, have significant health co-benefits (e.g., walking or cycling more; eating less meat). The goal of limiting global warming to 1,5° Celsius set by the Conference of the Parties to the United Nations Framework Convention on Climate Change in Paris in 2015 can only be reached if all stakeholders, including households, take actions to mitigate climate change. Results on whether framing mitigation measures in terms of their health co-benefits increases the likelihood of their implementation are inconsistent. The present study protocol describes the transdisciplinary project HOPE (HOuseholds' Preferences for reducing greenhouse gas emissions in four European high-income countries) that investigates the role of health co-benefits in households' decision making on climate change mitigation measures in urban households in France, Germany, Norway and Sweden. HOPE employs a mixed-methods approach combining status-quo carbon footprint assessments, simulations of the reduction of households' carbon footprints, and qualitative in-depth interviews with a subgroup of households. Furthermore, a policy analysis of current household oriented climate policies is conducted. In the simulation of the reduction of households' carbon footprints, half of the households are provided with information on health co-benefits of climate change mitigation measures, the other half is not. Households' willingness to implement the measures is assessed and compared in between-group analyses of variance. This is one of the first comprehensive mixed-methods approaches to investigate which mitigation measures households are most willing to implement in order to reach the 1,5° target set by the Paris Agreement, and whether health co-benefits can serve as a motivator for households to implement these measures. The comparison of the empirical data with current climate policies will provide knowledge for tailoring effective climate change mitigation and health policies.
NASA Astrophysics Data System (ADS)
Garneau, M.; van Bellen, S.
2016-12-01
Based on various databases, carbon stocks of terrestrial ecosystems in the boreal and arctic biomes of Quebec were quantified as part of an evaluation of their capacity to mitigate anthropogenic greenhouse gas (GHG) emissions and estimate their vulnerability with respect to recent climate change and land use changes. The results of this project are contributing to the establishment of the Strategy for Climate Change Adaptation as well as the 2013-2020 Climate Change Action Plan of the Quebec Ministry of Environment, which aim to adapt the Quebec society to the effects of climate change and the reduction of GHG emissions. The total carbon stock of the soils of the forest and peatland ecosystems of Quebec was quantified at 18.00 Gt C or 66.0 Gt CO2-equivalent, of which 95% corresponds to the boreal and arctic regions. The mean carbon mass per unit area (kg C m-2) of peatlands is about nine times higher than that of forests, with values of 100,0 kg C m-2 for peatlands and 10,9 kg C m-2 for forest stands. In 2013, total anthropogenic emissions in Quebec were quantified at 82.6 Mt CO2-equivalent (Environment Canada, 2015), or 1.25‰ of the total Quebec ecosystem carbon stock. The total stock thus represents the equivalent of about 800 years of anthropogenic emissions at the current rate, divided between 478 years for peatlands and 321 years for forest soils. Future GHG mitigation policies and sustainable land-use planning should be supported by scientific data on terrestrial ecosystems carbon stocks. An increase in investments in peatland, wetland and forest conservation, management and rehabilitation may contribute to limit greenhouse gas emissions. It is therefore essential, that, following the objectives of multiple international organisations, the management of terrestrial carbon stocks becomes part of the national engagement to reduce GHG emissions.
Regional scale temperature and circulation impacts of short-lived climate pollutants reductions
NASA Astrophysics Data System (ADS)
Oudar, T.; Kushner, P. J.; Fyfe, J. C.; von Salzen, K.; Shrestha, R.
2017-12-01
The role of anthropogenic aerosols on climate is still not clearly understood. Aerosol forcing is spatially heterogeneous and their emissions are controlled by regional economic and regulatory factors. For example, it is known that black carbon is responsible for a global net warming but its regional impacts are less understood. We evaluate the regional climate impacts of anthropogenic aerosol emission changes over the recent past and near future. Specifically, we report on numerical experiments using aerosol emissions from the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE, Stohl et al., 2015) project. These scenarios are alternative mitigation pathways for black carbon and organic aerosol over the period from 1990 to 2050. With these scenarios, we carried out three sets of simulation using the second generation Canadian Earth System Model (CanESM2): 1) A current legislation emission (CLE) scenario for black carbon and organic aerosols; 2) A mitigation (MIT) scenario for black carbon and organic aerosols, and; 3) A black carbon only mitigation scenario (MIT-BC). Five simulations were carried out for each scenario and the response analyzed in the context of a large fifty-member initial condition ensemble of simulations using historical anthropogenic aerosol forcings to 2005 as well as those forcing from the RCP8.5 scenario to 2020. Our main finding is a significant springtime cooling over the Northern midlatitudes that attributable to black carbon. Other cooling signals attributable to black carbon reductions are found in the boreal summer over Southern Europe as well as over the Northern Hemisphere midlatitudes and tropical troposphere in boreal summer and fall. All of these cooling signals are to some degree offset by simultaneous reductions in organic aerosols. As a check on the robustness, we will also report on results of five-member draws from the large ensemble over periods of comparably strong radiative forcing changes, to gauge the chance of finding similar signals as a result of internal variability alone.
Atmospheric Rivers as a Trigger for Landslides and Post-Fire Debris Flows in Southern California
NASA Astrophysics Data System (ADS)
Oakley, N.; Lancaster, J.; Stock, J. D.; Cerovski-Darriau, C.; Kaplan, M.; Ralph, F. M.
2016-12-01
The role of anthropogenic aerosols on climate is still not clearly understood. Aerosol forcing is spatially heterogeneous and their emissions are controlled by regional economic and regulatory factors. For example, it is known that black carbon is responsible for a global net warming but its regional impacts are less understood. We evaluate the regional climate impacts of anthropogenic aerosol emission changes over the recent past and near future. Specifically, we report on numerical experiments using aerosol emissions from the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE, Stohl et al., 2015) project. These scenarios are alternative mitigation pathways for black carbon and organic aerosol over the period from 1990 to 2050. With these scenarios, we carried out three sets of simulation using the second generation Canadian Earth System Model (CanESM2): 1) A current legislation emission (CLE) scenario for black carbon and organic aerosols; 2) A mitigation (MIT) scenario for black carbon and organic aerosols, and; 3) A black carbon only mitigation scenario (MIT-BC). Five simulations were carried out for each scenario and the response analyzed in the context of a large fifty-member initial condition ensemble of simulations using historical anthropogenic aerosol forcings to 2005 as well as those forcing from the RCP8.5 scenario to 2020. Our main finding is a significant springtime cooling over the Northern midlatitudes that attributable to black carbon. Other cooling signals attributable to black carbon reductions are found in the boreal summer over Southern Europe as well as over the Northern Hemisphere midlatitudes and tropical troposphere in boreal summer and fall. All of these cooling signals are to some degree offset by simultaneous reductions in organic aerosols. As a check on the robustness, we will also report on results of five-member draws from the large ensemble over periods of comparably strong radiative forcing changes, to gauge the chance of finding similar signals as a result of internal variability alone.
ERIC Educational Resources Information Center
Adanza, Jonathan R.
2016-01-01
Carbon footprint is an environmental menace that needs to be addressed at once. Various mitigating measures were proposed and yet manifestations of its proliferation are very much observable. This study seeks to determine primarily the barriers of non-adherence to identified measures to mitigate carbon footprint in the environment. Using the mixed…
Sensitivity of climate mitigation strategies to natural disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.
2013-02-19
The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because ofmore » potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies« less
Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands
Lauro Rodrigues Nogueira; Vera Lex Engel; John A. Parrotta; Antonio Carlos Galvão de Melo; Danilo Scorzoni Ré
2014-01-01
Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of São Paulo State â Brazil to develop allometric equations to estimate tree biomass of...
The role of CO2 capture and utilization in mitigating climate change
NASA Astrophysics Data System (ADS)
Mac Dowell, Niall; Fennell, Paul S.; Shah, Nilay; Maitland, Geoffrey C.
2017-04-01
To offset the cost associated with CO2 capture and storage (CCS), there is growing interest in finding commercially viable end-use opportunities for the captured CO2. In this Perspective, we discuss the potential contribution of carbon capture and utilization (CCU). Owing to the scale and rate of CO2 production compared to that of utilization allowing long-term sequestration, it is highly improbable the chemical conversion of CO2 will account for more than 1% of the mitigation challenge, and even a scaled-up enhanced oil recovery (EOR)-CCS industry will likely only account for 4-8%. Therefore, whilst CO2-EOR may be an important economic incentive for some early CCS projects, CCU may prove to be a costly distraction, financially and politically, from the real task of mitigation.
Methane mitigation shows significant benefits towards achieving the 1.5 degree target.
NASA Astrophysics Data System (ADS)
Collins, W.; Webber, C.; Cox, P. M.; Huntingford, C.; Lowe, J. A.; Sitch, S.
2017-12-01
Most analyses of allowable carbon emissions to achieve the 1.5 degree target implicitly assume that the ratio of CO2 to non-CO2 greenhouse gases remains near constant, and that all radiative forcing factors have similar impacts on land and ocean carbon storage. Here we determine how plausible reductions in methane emissions will make the carbon targets more feasible. We account for the latest estimates of the methane radiative effect as well as the indirect effects of methane on ozone. We particularly address the differing effects of methane and CO2 mitigation on the land carbon storage including via reduced concentrations of surface ozone. The methodology uses an intermediate complexity climate model (IMOGEN) coupled to a land surface model (JULES) which represents the details of the terrestrial carbon cycle. The carbon emissions inputs to IMOGEN are varied to find allowable pathways consistent with the Paris 1.5 K or 2.0 K targets. The IMOGEN physical parameters are altered to represent the climate characteristics of 38 CMIP5 models (such as climate sensitivity) to provide bounds on the range of allowable CO2 emissions. We examine the effects of three different methane mitigation options that are broadly consistent with the ranges in the SSP scenarios: little mitigation, cost-optimal mitigation, and maximal mitigation. The land and ocean carbon storage increases with methane mitigation, allowing more flexibility in CO2 emission reduction. This is mostly since CO2 fertilisation is reduced less with high methane mitigation, with a small contribution from reduced plant damage with lower surface ozone levels.
Pathways to Mexico’s climate change mitigation targets: A multi-model analysis
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine; ...
2015-04-25
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits
Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...
2015-10-28
In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less
US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wing, Ian Sue; Monier, Erwan; Stern, Ari
In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less
NASA Technical Reports Server (NTRS)
Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta;
2012-01-01
Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM < or = 2.5 microns in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.
Schwartz, Joel; Shindell, Drew; Amann, Markus; Faluvegi, Greg; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran
2012-01-01
Background: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20–40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration–response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23–34% and 7–17% and avoid 0.6–4.4 and 0.04–0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration–response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution. PMID:22418651
NASA Technical Reports Server (NTRS)
Frieler, K.; Elliott, Joshua; Levermann, A.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Doll, P.;
2015-01-01
Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making
NASA Astrophysics Data System (ADS)
Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A. D.; Gellhorn, C.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H. J.
2015-07-01
Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.
Engaging Storm Spotters and Community College Students in Regional Responses to Climate Change
NASA Astrophysics Data System (ADS)
Mooney, M. E.; Ackerman, S. A.; Buhr, S. M.
2012-12-01
Resiliency to natural hazards includes climate literacy. With a record number of billion dollar weather disasters in 2011, each one enhanced by a warmer atmosphere, our nation needs new strategies to respond, mitigate, communicate and adapt to the impacts of climate change. We know that actions we take today matter, but finding ways to mobilize our citizenry remains largely elusive. One way to galvanize a meaningful response to climate change could involve National Weather Service (NWS) storm spotters and Community College students. Dedicated storm spotters represent decades of NOAA NWS efforts to engage and enlist public participation in community safety. Why not leverage this wealth of human capital to cultivate a similar mitigation and stewardship response? The Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison conducted a pilot project with NWS storm spotters in the spring of 2011 via a web seminar on climate change, climate mitigation and emerging applications to access weather and climate data with mobile devices. Nineteen storm spotters participated and eleven provided feedback via a follow-up survey. A third of the respondents indicated that they had taken actions to minimize their carbon footprint; a majority (90%) indicated their likelihood to take action in the near future and more than two-thirds said they wanted to learn more about climate mitigation and sustainability. One attendee commented "Thank-you for putting together this web seminar. As a weather spotter, I found the information helpful, even humbling, to know climate change is already happening." CIMSS is also collaborating with the Cooperative Institute for Research in Environmental Sciences (CIRES) and Madison Area Technical College (MATC) on a climate education project where community college students take an on-line climate change course followed by the opportunity to apply for a summer internship. Through this program, two students worked at renewable energy internships during the summer of 2012. We propose that these pilot projects be implemented on regional and national scales. The relative cost and carbon footprint to organize this effort could be kept to a minimum by leveraging established storm spotter programs at NOAA's 122 Weather Service Offices and existing outreach programs at NOAA's 18 Cooperative Institutes.
Disentangling the effects of CO2 and short-lived climate forcer mitigation.
Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T; Hare, William; Klimont, Zbigniew; Velders, Guus J M; Amann, Markus; Schellnhuber, Hans Joachim
2014-11-18
Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change.
Disentangling the effects of CO2 and short-lived climate forcer mitigation
Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T.; Hare, William; Klimont, Zbigniew; Amann, Markus; Schellnhuber, Hans Joachim
2014-01-01
Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2–SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2–SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2–SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change. PMID:25368182
Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gernaat, David; Calvin, Katherine V.; Lucas, Paul
2015-07-01
The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In ordermore » to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.« less
Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaolei; Rink, Nancy
2011-04-30
To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{submore » 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,« less
NASA Astrophysics Data System (ADS)
Edmonds, J.; Iyer, G.; McJeon, H. C.; Leon, C.; Hultman, N.
2015-12-01
Strategies to mitigate dangerous anthropogenic climate change require a dramatic transformation of the energy system to reduce greenhouse gas emissions, that in turn requires large-scale investments. Investment decisions depend not only on investment capital availability but also on investment risks. A number of factors such as national policy environments, quality of public and private institutions, sector, firm and technology specific characteristics can affect investors' assessments of risks, leading to a wide variation in the business climate for investment. Such heterogeneity in investment risks can have important implications, as investors usually respond to risks by requiring higher returns for riskier projects; delaying or forgoing the investments; or preferring to invest in existing, familiar projects. We study the impact of variation in investment risks on regional patterns of emissions mitigation, the cost of emissions mitigation and patterns of technology deployment. We modify an integrated assessment model, widely used in global climate policy analyses (the Global Change Assessment Model) and incorporate decisions on investments based on risks along two dimensions. Along the first dimension, we vary perceived risks associated with particular technologies. To do so, we assign a higher cost of capital for investment in low-carbon technologies as these involve intrinsically higher levels of regulatory and market risk. The second dimension uses a proxy to vary investment risks across regions, based on an institutional quality metric published by the World Economic Forum. Explicit representation of investment risks has two major effects. First, it raises the cost of emissions mitigation relative to a world with uniform investment risks. Second, it shifts the pattern of emissions mitigation, with industrialized countries mitigating more, and developing countries mitigating less. Our results suggest that institutional reforms aimed at lowering investment risks could be an important element in lowering the cost of climate change mitigation solutions.
NASA Astrophysics Data System (ADS)
WU, Y.; Liu, S.; Li, Z.; Young, C.; Werner, J.; Dahal, D.; Liu, J.; Schmidt, G.
2012-12-01
Climate and land cover changes may influence the capacity of the terrestrial ecosystems to be carbon sinks or sources. The objective of this study was to investigate the potential change of the carbon sequestration in the Marine West Coast Forests ecoregion in the Pacific Northwest United States using the General Ensemble Biogeochemical Modeling System (GEMS). In GEMS, the underlying biogeochemical model, Erosion and Deposition Carbon Model (EDCM), was used and calibrated using MODIS net primary production (NPP) and grain yield data during the baseline period from 2002 to 2005, and then validated with another four-year period from 2006 to 2009. GEMS-EDCM was driven using projected climate from three General Circulation Models (GCMs) under three IPCC scenarios (A2, A1B, and B1) and derived land cover data from the FORecasting SCEnarios (FORE-SCE) model under the same three IPCC scenarios for the period from 2006 to 2050. This ecoregion, two-thirds of which is covered by forest, was projected to continue to gain carbon from 2005 to 2050, with an annual carbon sequestration of about -3 Tg C. It was also predicted that live biomass and soil organic carbon (SOC) would contain about 48% and 33% of the total carbon storage by 2050, respectively. In addition, forest carbon sequestration (-2 Tg C yr-1) demonstrated to be the largest sink among all ecosystems, accounting for 73% of the total, followed by grass/shrub and agriculture. Overall, results about predicted dynamics of carbon storage and sequestration can be informative to policy makers for seeking mitigation plans to reduce greenhouse gases emissions.
Potential contribution of the forestry sector in Bangladesh to carbon sequestration.
Yong Shin, Man; Miah, Danesh M; Lee, Kyeong Hak
2007-01-01
The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries for full-scale emission mitigation, the carbon sequestration potential of different species in different types of plantations should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects and problems of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming and the potential associated consequences. The paper analyzes the effects of reforestation projects on carbon sequestration in Bangladesh, in general, and in the hilly Chittagong region, in particular, and concludes by demonstrating the carbon trading opportunities. Results showed that tree tissue in the forests of Bangladesh stored 92tons of carbon per hectare (tC/ha), on average. The results also revealed a gross stock of 190tC/ha in the plantations of 13 tree species, ranging in age from 6 to 23 years. The paper confirms the huge atmospheric CO(2) offset by the forests if the degraded forestlands are reforested by CDM projects, indicating the potential of Bangladesh to participate in carbon trading for both its economic and environmental benefit. Within the forestry sector itself, some constraints are identified; nevertheless, the results of the study can expedite policy decisions regarding Bangladesh's participation in carbon trading through the CDM.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
Lu, Fei; Wang, Xiaoke; Han, Bing; Ouyang, Zhiyun; Duan, Xiaonan; Zheng, Hua
2010-04-01
Based on the carbon-nitrogen cycles and greenhouse gas (GHG) mitigation and emission processes related to straw return and burning, a compound greenhouse gas budget model, the "Straw Return and Burning Model" (SRBM), was constructed to estimate the net mitigation potential of straw return to the soil in China. As a full GHG budget model, the SRBM addressed the following five processes: (1) soil carbon sequestration, (2) mitigation of synthetic N fertilizer substitution, (3) methane emission from rice paddies, (4) additional fossil fuel use for straw return, and (5) CH4 and N2O emissions from straw burning in the fields. Two comparable scenarios were created to reflect different degrees of implementation for straw return and straw burning. With GHG emissions and mitigation effects of the five processes converted into global warming potential (GWP), the net GHG mitigation was estimated. We concluded that (1) when the full greenhouse gas budget is considered, the net mitigation potential of straw return differs from that when soil carbon sequestration is considered alone; (2) implementation of straw return across a larger area of cropland in 10 provinces (i.e., Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan) will increase net GHG emission; (3) if straw return is promoted as a feasible mitigation measure in the remaining provinces, the total net mitigation potential before soil organic carbon (SOC) saturation will be 71.89 Tg CO2 equivalent (eqv)/yr, which is equivalent to 1.733% of the annual carbon emission from fossil fuel use in China in 2003; (4) after SOC saturation, only 13 of 21 provinces retain a relatively small but permanent net mitigation potential, while in the others the net GHG mitigation potential will gradually diminish; and (5) the major obstacle to the feasibility or permanence of straw return as a mitigation measure is the increased CH4 emission from rice paddies. The paper also suggests that comparable scenarios in which all the related carbon-nitrogen cycles are taken into account be created to estimate the mitigation potentials of organic wastes in different utilizations and treatments.
S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang
2015-01-01
Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...
2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. T. Lindsey; K. A. Gano; R. D. Teel
2009-09-30
This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.
NASA Astrophysics Data System (ADS)
González, Miriam Ferrer; Ilyina, Tatiana
2016-06-01
Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.
Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissell, Gael
1985-01-01
This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.
DOT National Transportation Integrated Search
2013-06-01
The proposed study involves investigating long carbon fiber reinforced concrete as a method of mitigating earthquake damage to : bridges and other infrastructure components. Long carbon fiber reinforced concrete has demonstrated significant resistanc...
A more productive, but different, ocean after mitigation
NASA Astrophysics Data System (ADS)
John, Jasmin G.; Stock, Charles A.; Dunne, John P.
2015-11-01
Reversibility studies suggest a lagged recovery of global mean sea surface temperatures after mitigation, raising the question of whether a similar lag is likely for marine net primary production (NPP). Here we assess NPP reversibility with a mitigation scenario in which projected Representative Concentration Pathway (RCP) 8.5 forcings are applied out to 2100 and then reversed over the course of the following century in a fully coupled carbon-climate Earth System Model. In contrast to the temperature lag, we find a rapid increase in global mean NPP, including an overshoot to values above contemporary means. The enhanced NPP arises from a transient imbalance between the cooling surface ocean and continued warming in subsurface waters, which weakens upper ocean density gradients, resulting in deeper mixing and enhanced surface nitrate. We also find a marine ecosystem regime shift as persistent silicate depletion results in increased prevalence of large, non-diatom phytoplankton.
On-line Education Initiatives to Galvanize Climate Mitigation in the Great Lakes Region
NASA Astrophysics Data System (ADS)
Mooney, M. E.; Ackerman, S. A.
2014-12-01
The Cooperative Institute for Meteorological Satellite Studies (CIMSS) is supporting two different on-line education initiatives that teach about climate change while emphasizing informed and effective responses. The first is an on-line introductory level course for undergraduate students (http://c3.ssec.wisc.edu/) offered through the University of Wisconsin-Madison Atmospheric and Oceanic Sciences (AOS) department. Along with a lighter carbon footprint and the convenience of web-based access, students interact via Drupal forums, Google hangouts and twitter. Activities include several pedagogical tools with sustainability-related content and a final project requiring a discussion of regionally relevant mitigation responses to achieve low emission scenarios for assigned locations. The other initiative is a MOOC (massive open online course) focusing on the changing weather and climate in the Great Lakes Region. This 4-week course is set to launch February 23 2015. One of the primary goals of this MOOC will be having participants change four habits, one per week. Each behavior change will provide a personal benefit to participating individuals while also helping to mitigate the collective impacts of climate change. This presentation will share strategies and insights from both projects.
Warming caused by cumulative carbon emissions towards the trillionth tonne.
Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai
2009-04-30
Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.
Xu, W; Yin, Y; Zhou, S
2007-11-01
Numerous innovative approaches to mitigate effects of excessive emission of greenhouse gases (GHGs) on global climate change are being proposed and formulated. Sequestering carbon to terrestrial ecosystems represents one of the important clean development mechanisms. Reforestation through converting various non-forest lands to forests is undoubtedly an important dimension of carbon sequestration. Using Liping County in Guizhou Province as a case region, this study examines the perceived change in social and economic livelihoods of peasants and the factors responsible for the variations in the changes. The results of the study reveal that socio-economic changes associated with the government-financed project are multifaceted and profound. Because of the financial subsidies provided by the central government, this environmental action in many aspects can be regarded as a poverty reduction measure in the underdeveloped area where rural poverty is widespread. A majority of peasant households have benefited from project participation. The land conversion project with continued financial support also contributes to the social transformations of traditional rural society in remote areas to a more mobile, less subsistence agriculture-based, and open society.
Soil Organic Carbon dynamics in agricultural soils of Veneto Region
NASA Astrophysics Data System (ADS)
Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.
2012-04-01
One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and management of the EU territory by field observations of geo-referenced points. In 2009, a topsoil (0-30 cm) module was included to the survey and a subset of around 21,000 sites was sampled in 23 Member States. The second source is a soil survey monitoring pilot campaign carried in Veneto Region last year. The pilot campaign has been organized with the collaboration between JRC, University of Padova and ARPAV Veneto. The scope was to apply the LUCAS methodology to an experimental soil survey of 40 samples. The selection of the points to survey has been done on the basis of the LUCAS project related to Veneto Region, pedo-climatic and management unit conditions and the database on soils belonging to ARPAV Soil Unit, collected ante 2000. Data started to be investigated and permit to show changes in SOC content in a decade for different land use/cover and climatic areas. Through the bulk density data collected and the data already available from ARPAV library, it's possible to evaluate the Carbon stocks of Veneto region. Possible changes in Carbon can be related to land use changes and different strategies of management practices adopted over time.
NASA Astrophysics Data System (ADS)
Leinen, M.; Lamotte, R.
2008-12-01
The potential of enhancing carbon sequestration by the biosphere for climate mitigation often raises questions of offsetting effects. These questions become more important as the scale of the enhancement increases. Ocean iron fertilization is accompanied by additional questions related to use of the ocean commons. The London Convention (LC) and London Protocol (LP), international treaties adopted in 1972 and 1996 respectively, were designed to prevent use of the ocean for disposal of toxic, harmful and radioactive pollutants. Recently the LC/LP has been called upon to decide whether climate mitigation activities, such as subseafloor injection of CO2 and OIF, are legal under the framework and, if so, how they should be regulated. The broad consultation with the science community by the LC/LP in developing their perspective, and the involvement of the NGO community in these deliberations, provides a model for the process that the international policy community can use to develop science-based regulatory guidelines for carbon mitigation projects involving the commons. And the substance of that emerging regulatory framework -- built on a national-level permitting process informed by internationally agreed guidelines and standards -- may also serve as a model for the oversight of other emerging technologies that take place in the global commons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
Silk industry and carbon footprint mitigation
NASA Astrophysics Data System (ADS)
Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.
2017-10-01
Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.
NASA Astrophysics Data System (ADS)
Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.
2013-12-01
Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.
Last chance for carbon capture and storage
NASA Astrophysics Data System (ADS)
Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart
2013-02-01
Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.
2012-12-01
We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total renewable freshwater available in two GCAM regions, the Middle East and India. Additionally, 20% and 27% of the global population in years 2050 and 2095, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of renewable water available in a year (i.e., WSI > 1.0). We also investigate the effects of emission mitigation policies on water demand and compare them to the contribution of socioeconomic drivers both globally and regionally. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095, under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. With more stringent climate mitigation targets, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.
A global map of mangrove forest soil carbon at 30 m spatial resolution
NASA Astrophysics Data System (ADS)
Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily
2018-05-01
With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.
USDA-ARS?s Scientific Manuscript database
Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...
The German R&D Program for CO2 Utilization-Innovations for a Green Economy.
Mennicken, Lothar; Janz, Alexander; Roth, Stefanie
2016-06-01
Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.
2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. T. Lindsey; K. A. Gano
2008-09-30
The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.
An evaluation of negative-emission transportation-energy systems for the US
NASA Astrophysics Data System (ADS)
Larson, E. D.; Meerman, J. C.
2017-12-01
We present technical, economic, and carbon footprint evaluations of alternative technological pathways for negative emissions transportation energy from sustainably-sourced lignocellulosic biomass in the U.S. We combine the understanding of alternative technological pathways with spatially-resolved projections of the sustainable supply of lignocellulosic biomass and with future demands for transportation services to provide insights on the extent to which biomass-based energy might be able to help meet mid-century U.S. transportation energy needs and carbon mitigation targets. Biomass conversion routes included in our evaluations are biochemical, biocatalytic, thermocatalytic hydropyrolysis, and thermochemical gasification/synthesis to produce liquid fuels fungible with petroleum-derived fuels, and thermochemical conversion to hydrogen (for fuel cell vehicles) or electricity (for battery electric vehicles). Lifecycle net negative emissions are achieved for each system via soil carbon buildup during biomass production and/or capture of CO2 at the conversion facility and underground storage. Co-processing of some fossil fuel is considered in some cases to improve economics. For self-consistency in the analysis across systems, a common set of technical, economic and carbon footprint input parameters are adopted. Capital cost estimates are harmonized by taking into account scale of facilities, level of engineering details available in generating a cost estimate, and the technology readiness level (TRL) of components and the process as a whole. Implications for economics of future commercial plants are investigated, considering alternative prospective reductions in capital and operating costs (via "learning by doing") and alternative carbon mitigation policies.
David D. Diaz; Susan Charnley; Hannah Gosnell
2009-01-01
There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...
Climate change mitigation through livestock system transitions.
Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C; Mosnier, Aline; Thornton, Philip K; Böttcher, Hannes; Conant, Richard T; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An
2014-03-11
Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.
Climate change mitigation through livestock system transitions
Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An
2014-01-01
Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375
2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. A. Gano; C. T. Lindsey
2007-09-27
The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.
Wu, Yiping; Liu, Shuguang; Young, Claudia J; Dahal, Devendra; Sohl, Terry L; Davis, Brian
2015-06-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7-104.7 TgC as of 2050, 70-101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m(2)/yr (i.e., 6.6-10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.
Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian
2015-01-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.
Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian
2015-01-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development. PMID:26027873
Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States
NASA Astrophysics Data System (ADS)
Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.
2012-12-01
Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.
A synthesis of current knowledge on forests and carbon storage in the United States.
McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E
2011-09-01
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
Markewich, H.W.; Buell, G.R.
2001-01-01
Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.
van der Zwaan, Bob; Calvin, Katherine V.; Clarke, Leon E.
2016-05-01
The CLIMACAP-LAMP project, completed in December 2015, was an inter-model comparison exercise that focused on energy and climate change economics issues in Latin America. The project partners – co-financed by the EC / EuropeAid (CLIMACAP part) and EPA / USAID (LAMP part) and co-coordinated by respectively the Energy research Centre of the Netherlands (ECN) and the Pacific Northwest National Laboratory (PNNL) – report their main and detailed findings in this Special Issue of Energy Economics, exclusively dedicated to climate mitigation, low-carbon development and implications for energy and land use in Latin America. Our research endeavor included several of the mostmore » prominent regional energy modeling groups from Latin America, as well as a representative set of global integrated assessment modeling groups from a number of institutions from Europe and the US. About two dozen universities, research groups and environmental or consulting organizations took part in the CLIMACAP-LAMP cross-model comparison project, from both sides of the Atlantic. Over a handful of workshops were organized over the past four years in several countries in Latin America, attended by between 30 and 50 participants from, amongst others, Argentina, Brazil, Colombia, Mexico, the EU, and the US.« less
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.
2013-04-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahan, Kauser
One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA studymore » was also conducted to investigate the energy intensive steps in algae cultivation.« less
The theory-practice gap of black carbon mitigation technologies in rural China
NASA Astrophysics Data System (ADS)
Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng
2018-02-01
Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.
Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.
2016-06-06
Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less
DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S
2016-10-01
Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.
Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less
Forests, carbon and global climate.
Malhi, Yadvinder; Meir, Patrick; Brown, Sandra
2002-08-15
This review places into context the role that forest ecosystems play in the global carbon cycle, and their potential interactions with climate change. We first examine the natural, preindustrial carbon cycle. Every year forest gross photosynthesis cycles approximately one-twelfth of the atmospheric stock of carbon dioxide, accounting for 50% of terrestrial photosynthesis. This cycling has remained almost constant since the end of the last ice age, but since the Industrial Revolution it has undergone substantial disruption as a result of the injection of 480 PgC into the atmosphere through fossil-fuel combustion and land-use change, including forest clearance. In the second part of this paper we review this 'carbon disruption', and its impact on the oceans, atmosphere and biosphere. Tropical deforestation is resulting in a release of 1.7 PgC yr(-1) into the atmosphere. However, there is also strong evidence for a 'sink' for carbon in natural vegetation (carbon absorption), which can be explained partly by the regrowth of forests on abandoned lands, and partly by a global change factor, the most likely cause being 'fertilization' resulting from the increase in atmospheric CO(2). In the 1990s this biosphere sink was estimated to be sequestering 3.2 PgC yr(-1) and is likely to have substantial effects on the dynamics, structure and biodiversity of all forests. Finally, we examine the potential for forest protection and afforestation to mitigate climate change. An extensive global carbon sequestration programme has the potential to make a particularly significant contribution to controlling the rise in CO2 emissions in the next few decades. In the course of the whole century, however, even the maximum amount of carbon that could be sequestered will be dwarfed by the magnitude of (projected) fossil-fuel emissions. Forest carbon sequestration should only be viewed as a component of a mitigation strategy, not as a substitute for the changes in energy supply, use and technology that will be required if atmospheric CO(2) concentrations are to be stabilized.
Morrow, William R; Griffin, W Michael; Matthews, H Scott
2008-05-15
We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.
Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK
2003-01-01
in this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–11 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.
Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne
2015-06-02
Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.
Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change
NASA Astrophysics Data System (ADS)
Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.
2011-12-01
Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these vegetation types is projected to increase to 808 MMtC. Our results indicate that future C storage in Arizona is highly dependent on precipitation. Given that most climate models for the Southwest predict a more arid future, it is likely that C storage will decrease in Arizona ecosystems, as it has in response to recent droughts, reducing mitigation of rising human emissions.
Less than 2 °C warming by 2100 unlikely
NASA Astrophysics Data System (ADS)
Raftery, Adrian E.; Zimmer, Alec; Frierson, Dargan M. W.; Startz, Richard; Liu, Peiran
2017-09-01
The recently published Intergovernmental Panel on Climate Change (IPCC) projections to 2100 give likely ranges of global temperature increase in four scenarios for population, economic growth and carbon use. However, these projections are not based on a fully statistical approach. Here we use a country-specific version of Kaya's identity to develop a statistically based probabilistic forecast of CO2 emissions and temperature change to 2100. Using data for 1960-2010, including the UN's probabilistic population projections for all countries, we develop a joint Bayesian hierarchical model for Gross Domestic Product (GDP) per capita and carbon intensity. We find that the 90% interval for cumulative CO2 emissions includes the IPCC's two middle scenarios but not the extreme ones. The likely range of global temperature increase is 2.0-4.9 °C, with median 3.2 °C and a 5% (1%) chance that it will be less than 2 °C (1.5 °C). Population growth is not a major contributing factor. Our model is not a `business as usual' scenario, but rather is based on data which already show the effect of emission mitigation policies. Achieving the goal of less than 1.5 °C warming will require carbon intensity to decline much faster than in the recent past.
NASA Technical Reports Server (NTRS)
Watson, Kent A.; Connell, John W.; Delozier, Donavon M.; Smith, Joseph G., Jr.
2004-01-01
Space environmentally durable polymeric films with low color and sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film while maintaining flexibility is to use single wall carbon nanotubes (SWNTs) as conductive additives. Approaches investigated in our lab involved an in-situ polymerization method, addition of SWNTs to a polymer containing reactive end-groups, and spray coating of polymer surfaces. The work described herein is a summary of the current status of this project. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the physical, thermal, mechanical and optical properties of the films. Additionally, the electrical conductivity was not affected by harsh mechanical manipulation of the films. The chemistry and physical properties of these nanocomposites will be discussed.
NASA Astrophysics Data System (ADS)
Waggoner, L. A.; Capalbo, S. M.; Talbott, J.
2007-05-01
Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.
Assessing seven decades of carbon accumulation in two U.S. northern hardwood forests
Coeli Hoover
2011-01-01
Forests play a key role in the global carbon cycle, and programs aimed at mitigating greenhouse gas emissions through the protection and enhancement of forest carbon stocks are growing in number. Adding greenhouse gas mitigation as a management objective presents managers with a considerable challenge, because data and guidelines are scarce. Long-term inventory...
Benchmark map of forest carbon stocks in tropical regions across three continents.
Saatchi, Sassan S; Harris, Nancy L; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T A; Salas, William; Zutta, Brian R; Buermann, Wolfgang; Lewis, Simon L; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra
2011-06-14
Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.
DOT National Transportation Integrated Search
2009-05-01
Wisconsin has constructed many environmental mitigation projects in conjunction with transportation projects that have been implemented according : to the National Environmental Policy Act. Other mitigation projects have been constructed pursuant to ...
2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. L. Johnson; K. A. Gano
2006-10-03
The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.
Palmer, Margaret A; Hondula, Kelly L
2014-09-16
Compensatory mitigation is commonly used to replace aquatic natural resources being lost or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream mitigation projects were <1 for many projects, and most mitigation was implemented on perennial streams while most impacts were to ephemeral and intermittent streams. Regulatory requirements for assessing project outcome were minimal; visual assessments were the most common and 97% of the projects reported suboptimal or marginal habitat even after 5 years of monitoring. Less than a third of the projects provided biotic or chemical data; most of these were impaired with biotic indices below state standards and stream conductivity exceeding federal water quality criteria. Levels of selenium known to impair aquatic life were reported in 7 of the 11 projects that provided Se data. Overall, the data show that mitigation efforts being implemented in southern Appalachia for coal mining are not meeting the objectives of the Clean Water Act to replace lost or degraded streams ecosystems and their functions.
The Moving Target of Climate Mitigation: Examples from the Energy Sector in California
NASA Astrophysics Data System (ADS)
Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.
2016-12-01
In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.
Kurz, Werner A; Stinson, Graham; Rampley, Gregory J; Dymond, Caren C; Neilson, Eric T
2008-02-05
A large carbon sink in northern land surfaces inferred from global carbon cycle inversion models led to concerns during Kyoto Protocol negotiations that countries might be able to avoid efforts to reduce fossil fuel emissions by claiming large sinks in their managed forests. The greenhouse gas balance of Canada's managed forest is strongly affected by naturally occurring fire with high interannual variability in the area burned and by cyclical insect outbreaks. Taking these stochastic future disturbances into account, we used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to project that the managed forests of Canada could be a source of between 30 and 245 Mt CO(2)e yr(-1) during the first Kyoto Protocol commitment period (2008-2012). The recent transition from sink to source is the result of large insect outbreaks. The wide range in the predicted greenhouse gas balance (215 Mt CO(2)e yr(-1)) is equivalent to nearly 30% of Canada's emissions in 2005. The increasing impact of natural disturbances, the two major insect outbreaks, and the Kyoto Protocol accounting rules all contributed to Canada's decision not to elect forest management. In Canada, future efforts to influence the carbon balance through forest management could be overwhelmed by natural disturbances. Similar circumstances may arise elsewhere if global change increases natural disturbance rates. Future climate mitigation agreements that do not account for and protect against the impacts of natural disturbances, for example, by accounting for forest management benefits relative to baselines, will fail to encourage changes in forest management aimed at mitigating climate change.
Lu, Fei; Hu, Huifeng; Sun, Wenjuan; Zhu, Jiaojun; Liu, Guobin; Zhou, Wangming; Zhang, Quanfa; Shi, Peili; Liu, Xiuping; Wu, Xing; Zhang, Lu; Wei, Xiaohua; Dai, Limin; Zhang, Kerong; Sun, Yirong; Xue, Sha; Zhang, Wanjun; Xiong, Dingpeng; Deng, Lei; Liu, Bojie; Zhou, Li; Zhang, Chao; Zheng, Xiao; Cao, Jiansheng; Huang, Yao; He, Nianpeng; Zhou, Guoyi; Bai, Yongfei; Xie, Zongqiang; Tang, Zhiyao; Wu, Bingfang; Fang, Jingyun; Liu, Guohua; Yu, Guirui
2018-04-17
The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China's forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country's land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country's C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 10 12 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO 2 mitigation in China.
Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme
Roy, Jacques; Picon-Cochard, Catherine; Augusti, Angela; Benot, Marie-Lise; Thiery, Lionel; Darsonville, Olivier; Landais, Damien; Piel, Clément; Defossez, Marc; Devidal, Sébastien; Escape, Christophe; Ravel, Olivier; Fromin, Nathalie; Volaire, Florence; Milcu, Alexandru; Bahn, Michael; Soussana, Jean-François
2016-01-01
Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake. PMID:27185934
Johnson, T L; Keith, D W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
Johnson, Timothy L; Keith, David W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
Pillar, V D; Tornquist, C G; Bayer, C
2012-08-01
The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.
Reducing greenhouse gas emissions in agriculture without compromising food security?
NASA Astrophysics Data System (ADS)
Frank, Stefan; Havlík, Petr; Soussana, Jean-Francois; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael
2017-04-01
To keep global warming possibly below 1.5 C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price could substantially affect other Sustainable Development Goals. Here, we assess the implications of climate change mitigation in agriculture for agricultural production and food security using an integrated modelling framework and explore ways of relaxing the competition between climate change mitigation and food availability. Using a scenario that limits global warming to 1.5 C, results indicate a food calorie loss in 2050 of up to 330 kcal per capita in food insecure countries. If only developed countries participated in the mitigation effort, the calorie loss would be 40 kcal per capita, however the climate target would not be achieved. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land using a comprehensive set of management options, would allow achieving a 1.5 C target while reducing the implied calorie loss by up to 70% and storing up to 3.5 GtCO2 in soils. Hence, the promotion of so called "win-win" mitigation options i.e. soil carbon sequestration, and ensuring successful mitigation of land use change emissions are crucial to stabilize the climate without deteriorating food security.
NASA Astrophysics Data System (ADS)
Paul, S.; Syrek-Gerstenkorn, B.
2017-01-01
Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.
Agriculture and climate change: Potential for mitigation in Spain.
Albiac, Jose; Kahil, Taher; Notivol, Eduardo; Calvo, Elena
2017-08-15
Agriculture and forestry activities are one of the many sources of greenhouse gas (GHG) emissions, but they are also sources of low-cost opportunities to mitigate these emissions compared to other economic sectors. This paper provides a first estimate of the potential for mitigation in the whole Spanish agriculture. A set of mitigation measures are selected for their cost-effectiveness and abatement potential and an efficient mix of these measures is identified with reference to a social cost of carbon of 40 €/tCO 2 e. This mix of measures includes adjusting crop fertilization and managing forests for carbon sequestration. Results indicate that by using the efficient mix of mitigation measures the annual abatement potential could reach 10 million tCO 2 e, which represents 28% of current agricultural emissions in Spain. This potential could further increase if the social cost of carbon rises covering the costs of applying manure to crops. Results indicate also that economic instruments such as input and emission taxes could be only ancillary measures to address mitigation in agriculture. These findings can be used to support the mitigation efforts in Spain and guide policymakers in the design of country-level mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy
NASA Astrophysics Data System (ADS)
Booth, Mary S.
2018-03-01
Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.
Prevented mortality and greenhouse gas emissions from historical and projected nuclear power.
Kharecha, Pushker A; Hansen, James E
2013-05-07
In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420,000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.
Prevented Mortality and Greenhouse Gas Emissions From Historical and Projected Nuclear Power
NASA Technical Reports Server (NTRS)
Kharecha, Pushker A.; Hansen, James E.
2013-01-01
In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.
Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?
Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan
2015-01-01
Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.
Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?
Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan
2015-01-01
Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits. PMID:26436916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Matthew T.; Judd, Steven L.
This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.
NASA Astrophysics Data System (ADS)
Hannam, Jacqueline; Vanguelova, Elena; West, Vicky
2017-04-01
The Woodland Carbon Code is a voluntary standard for woodland creation projects in the UK. Carbon sequestration resulting from certified projects will contribute directly to the UK's national targets for reducing emissions of greenhouse gases (GHG). Whilst this is concerned primarily with above ground capture there is little empirical evidence of the longer term carbon sequestration potential of soils under this land use change in the UK. We present preliminary results from a resurvey of 20 sites originally sampled as part of the soil survey of England and Wales. It includes soil carbon stocks assessed within the soil profile (up to 1m depth) where sites have been converted to forestry in the last 40 years. The small number of sites (n=20) and high variability in soil type, forest type and original land use prevented detailed analysis between these different factors, but overall there was an increase in carbon concentration in the whole profile, driven primarily by an increase the surface organic layers. For all sites combined there was no significant difference in the C stocks between the two survey periods. The increase in carbon stock in the surface organic horizons tended to be offset by a decrease in the mineral subsoils (specifically in Brown Earth soils) primarily as a result of bulk density changes. There are presently insufficient measured data from a range of UK climate, land-use and soil type conditions to quantify with confidence soil C changes during afforestation. This is partly because of the difficulties of detecting relatively slow changes in spatially heterogeneous soils and also obtaining good examples of sites that have undergone documented land use change. Reviewing results from all ongoing afforestation projects in the UK will provide better quantification of the C sequestration potential of forest soils to be accounted for in the Woodland Carbon Code's overall GHG mitigation potential.
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
Matthew W. Warren; Steve Frolking; Zhaohua Dai; Sofyan Kurnianto
2016-01-01
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics...
The potential of exceptional climate change education on individual lifetime carbon emissions
NASA Astrophysics Data System (ADS)
Cordero, E.; Centeno, D.; Todd, A. M.
2016-12-01
Strategies to mitigate climate change often center on clean technologies such as electric vehicles and solar panels, while the mitigation potential of a quality educational experience is rarely discussed. We investigate the role of education on individual carbon emissions using case studies from an intensive one-year university general education course focused on climate science and solutions. Results from this analysis demonstrate that students who completed the university course had significantly lower carbon emissions compared to a control group. If such an educational experience could be expanded throughout the United States, we estimate that education could be as valuable a climate change mitigation method as improving the fuel efficiency of automobiles. Relatedly, we also report on a new approach to apply real-time cloud based data to track the environmental impact of students during their participation in educational climate change programs. Such a tool would help illustrate the potential of education as a viable carbon mitigation strategy.
The Potential for Carbon Sequestration in the United States
2007-09-01
Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect (Ann Arbor, Mich.: Ann Arbor Press, 1998), pp. 18–21; R.F. Follett and...others, The Potential of U.S. Grazing Land to Sequester Carbon and Mitigate the Greenhouse Effect (Boca Raton, Fla.: CRC Press, 2001), pp. 401–430... the Greenhouse Effect , pp. 18–21; R. Lal and others, “Managing U.S. Cropland to Sequester Carbon in Soil,” Journal of Soil and Water Conservation
Carbon farming economics: What have we learned?
Tang, Kai; Kragt, Marit E; Hailu, Atakelty; Ma, Chunbo
2016-05-01
This study reviewed 62 economic analyses published between 1995 and 2014 on the economic impacts of policies that incentivise agricultural greenhouse (GHG) mitigation. Typically, biophysical models are used to evaluate the changes in GHG mitigation that result from landholders changing their farm and land management practices. The estimated results of biophysical models are then integrated with economic models to simulate the costs of different policy scenarios to production systems. The cost estimates vary between $3 and $130/t CO2 equivalent in 2012 US dollars, depending on the mitigation strategies, spatial locations, and policy scenarios considered. Most studies assessed the consequences of a single, rather than multiple, mitigation strategies, and few considered the co-benefits of carbon farming. These omissions could challenge the reality and robustness of the studies' results. One of the biggest challenges facing agricultural economists is to assess the full extent of the trade-offs involved in carbon farming. We need to improve our biophysical knowledge about carbon farming co-benefits, predict the economic impacts of employing multiple strategies and policy incentives, and develop the associated integrated models, to estimate the full costs and benefits of agricultural GHG mitigation to farmers and the rest of society. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Marshall; Muratori, Matteo; Kyle, Page
Although the aviation sector is a relatively small contributor to total greenhouse gas emissions, it is a fast-growing, fossil fuel-intensive transportation mode. Because aviation is a mode for which liquid fuels currently have no practical substitute, biofuels are gaining attention as a promising cleaner alternative. In this paper, we use the GCAM integrated assessment model to develop scenarios that explore the potential impact of biojet fuels for use in aviation in the context of broader climate change mitigation. We show that a carbon price would have a significant impact on the aviation sector. In the absence of alternatives to jetmore » fuel from petroleum, mitigation potential is limited and would be at the expense of aviation service demand growth. However, mitigation efforts through the increased use of biojet fuels show potential to reduce the carbon intensity of aviation, and may not have a significant impact on carbon mitigation and bioenergy use in the rest of the energy system. The potential of biofuel to decarbonize air transport is significantly enhanced when carbon dioxide capture and storage (CCS) is used in the conversion process to produce jet fuels from biomass feedstock.« less
Restoring Coastal Plants to Improve Global Carbon Storage: Reaping What We Sow
Irving, Andrew D.; Connell, Sean D.; Russell, Bayden D.
2011-01-01
Long-term carbon capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of atmospheric CO2 and associated impacts of global climate change. Until recently, the significant below-ground CCS capacity of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of global carbon transfer. However, this reservoir of natural, free, and sustainable carbon storage potential is increasingly jeopardized by alarming trends in coastal habitat loss, totalling 30–50% of global abundance over the last century alone. Human intervention to restore lost habitats is a potentially powerful solution to improve natural rates of global CCS, but data suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural recovery. PMID:21479244
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Richard; Berger, Matthew; Tonasket, Patrick
2006-12-01
The Colville Confederated Tribes Wildlife Mitigation Project is protecting lands as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. The Mitigation Project protects and manages 54,606 acres for the biological requirements of managed wildlife species that are important to the Colville Tribes. With the inclusion of 2006 acquisitions, the Colville Tribes have acquired approximately 32,018 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. This annual report for 2006 briefly describes that four priority land acquisitions that were considered for enrollment into the Colvillemore » Tribes Mitigation Project during the 2006 contract period.« less
The underappreciated potential of peatlands in global climate change mitigation strategies.
Leifeld, J; Menichetti, L
2018-03-14
Soil carbon sequestration and avoidable emissions through peatland restoration are both strategies to tackle climate change. Here we compare their potential and environmental costs regarding nitrogen and land demand. In the event that no further areas are exploited, drained peatlands will cumulatively release 80.8 Gt carbon and 2.3 Gt nitrogen. This corresponds to a contemporary annual greenhouse gas emission of 1.91 (0.31-3.38) Gt CO 2 -eq. that could be saved with peatland restoration. Soil carbon sequestration on all agricultural land has comparable mitigation potential. However, additional nitrogen is needed to build up a similar carbon pool in organic matter of mineral soils, equivalent to 30-80% of the global fertilizer nitrogen application annually. Restoring peatlands is 3.4 times less nitrogen costly and involves a much smaller land area demand than mineral soil carbon sequestration, calling for a stronger consideration of peatland rehabilitation as a mitigation measure.
Climate change mitigation by carbon stock - the case of semi-arid West Africa
NASA Astrophysics Data System (ADS)
Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.
2009-11-01
Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.
An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests
Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...
2017-07-24
Corrosion-Mitigation Projects Final Report on Project F15-AR04 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Clint A. Wilson...2017 Implementation of Polyurea Applications for Wastewater System Corrosion-Mitigation Projects Final Report on Project F15-AR04 Clint A...Secretary of Defense Washington, DC 20301-3090 Under Project F15-AR04, “Polyurea Coating for Rehabilitation of Concrete and Metal Infrastructure
Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.
2016-06-24
Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.
Benchmark map of forest carbon stocks in tropical regions across three continents
Saatchi, Sassan S.; Harris, Nancy L.; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T. A.; Salas, William; Zutta, Brian R.; Buermann, Wolfgang; Lewis, Simon L.; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra
2011-01-01
Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a “benchmark” map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ±6% to ±53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ±5% and ca. ±1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete. PMID:21628575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Glen P; Marland, Gregg; Hertwich, Edgar G.
2009-01-01
Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purposemore » of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.« less
Hungry Horse Mitigation; Flathead Lake, 2001-2002 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Barry
2003-06-09
The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Councilmore » in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the interconnected Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of potential mitigation strategies. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-6.« less
La Scala, N; De Figueiredo, E B; Panosso, A R
2012-08-01
Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.
2013-05-01
and Maintenance of the Missouri River Bank Stabilization and Navigation Project, and Operation of the Kansas River Reservoir System, and acquiring and...developing lands to produce habitat as directed by the BSNP Mitigation Project. The proposed project would be constructed under the authority of...the Mitigation Project. The Missouri River BSNP Mitigation Project of Missouri, Kansas , Iowa, and Nebraska was authorized by Section 601 (a) of the
Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2009-01-05
In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less
NASA Astrophysics Data System (ADS)
Lenihan, J.; Neilson, R.; Bachelet, D.; Drapek, R.
2005-12-01
The VINCERA project is an intercomparison among three dynamic general vegetation models (DGVMs) simulating the response of North American ecosystems to six new future climate scenarios. The scenarios were produced by three general circulation models, each using two different future trace gas emissions scenarios. All of the scenarios are near the warmer end of the Intergovernmental Panel on Climate Change's projected future temperature range. Here we present results from the MC1 DGVM. All major forested ecosystems in North America exhibit carbon sequestration until the late 20th or early 21st century, followed by a drought induced decline and loss of carbon to levels below those at 1900 in the absence of fire suppression. By the end of the 21st century, the entire continent will have lost from 10 to 30 Pg of carbon, depending on the scenario. However, fire suppression can significantly mitigate carbon losses and ecosystem declines, producing a net change in carbon from a loss of about 5 Pg to a gain of about 8 Pg under the different scenarios. Most of the suppression benefits are obtained by forests in the western U.S. Suppression also mitigates carbon losses and conversions to savanna or grassland in the eastern U.S., but forest decline still occurs in the east under all scenarios. Dieback is triggered by two mechanisms. Reduced regional precipitation, variable among the scenarios, is one. The second more pervasive mechanism is the influence of rising temperatures on evapotranspiration. Even with the benefits of enhanced water use efficiency from elevated CO2 and slight increases in precipitation, dramatic increases in temperature can produce widespread forest dieback, and increases in fire severity. The eastern United States appear to be particularly vulnerable, as does the central Canadian boreal forest because of the relative flatness of climate gradients near ecotones. Under some scenarios, dieback is also driven by both increasing temperatures and decreasing precipitation, most notably the southeastern and northwestern United States. Following a period of gradual carbon sequestration, the enhanced evapotranspiration appears to overtake the 'greening' processes producing a rapid dieback. The point of turnaround from greenup to dieback occurs about now for the temperate forests and about a decade from now in the boreal forests, initiating an extended period of rapid losses of ecosystem carbon. These results underscore the critical importance of addressing uncertainties with respect to ecosystem water balance and the direct effects of elevated CO2 concentrations.
Mitigation gambles: uncertainty, urgency and the last gamble possible
NASA Astrophysics Data System (ADS)
Shue, Henry
2018-05-01
A rejection by current generations of more ambitious mitigation of carbon emissions inflicts on future generations inherently objectionable risks about which they have no choice. Any gains through savings from less ambitious mitigation, which are relatively minor, would accrue to current generations, and all losses, which are relatively major, would fall on future generations. This mitigation gamble is especially unjustifiable because it imposes a risk of unlimited losses until carbon emissions cease. Ultimate physical collapses remain possible. Much more ominous is prior social collapse from political struggles over conflicting responses to threatened physical collapse. The two most plausible objections to the thesis that less ambitious mitigation is unjustifiable rely, respectively, on the claim that negative emissions will allow a later recovery from a temporary overshoot in emissions and on the claim that ambitious mitigation is incompatible with poverty alleviation that depends on inexpensive fossil fuels. Neither objection stands up. Reliance on negative emissions later instead of ambitious mitigation now permits the passing of tipping points for irreversible change meanwhile, and non-carbon energy is rapidly becoming price competitive in developing countries like India that are committed to poverty alleviation. This article is part of the themed issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn
2012-11-01
The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less
NASA Astrophysics Data System (ADS)
Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.
2013-12-01
The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.
Modeling the recovery and degradation of mangroves at the global scale
NASA Astrophysics Data System (ADS)
Lagomasino, D.; Fatoyinbo, T.; Lee, S. K.; Feliciano, E. A.; Trettin, C.
2017-12-01
Forest growth and reforestation rates are crucial information for sustainable forest management practices and decision-making for restoration projects. There has been a recent increase in mangrove blue carbon restoration projects because of their extremely high carbon density, globally can reach over 1000 Mg ha-1 of carbon. If ecosystem projects do plan to facilitate mangrove restoration or deter land cover changes as a climate change mitigation strategy or in other carbon inventory strategies, unbiased field inventories need to become the norm. It is known that mangrove carbon can be extremely high in certain geographic settings, but that is not the case for many other regions. Remotely sensed canopy height has recently been incorporated into mangrove field inventories which provides an unbiased, readily accessible, and spatially-explicit model that was used to stratify the inventory design into discrete height classes. Combining the forest canopy height distribution captured from space and the field inventory data, biomass and carbon density were determined for each height class. Here, we present mangrove vertical growth rates and global carbon stock changes modeled through the combination of remotely sensed land cover change and canopy height class models using Landsat-derived vegetation index anomalies and synthetic aperture radar interferometry, respectively. Average growth rates ( 1-1.5m yr-1) were determined for four mangrove forests in the Zambezi, Rufiji, Ganges, and Mekong Deltas. An average global net productivity (9-10 Mg C ha-1 yr-1) was then derived using the four sites which represent young, fast-growing mangrove forests. Global mangrove carbon change was calculated using the average productivity estimates and land cover change from 2000 to 2015. Losses were categorized based on canopy height derived biomass classes in 2000 using Shuttle Radar Topography Mission data, while gained carbon stocks were assessed by using the study-derived mean productivity estimates. The vertical growth rates, forest structure, and biomass changes presented here will be useful in the implementation of forest management plans and refining primary production estimates, carbon sequestration potential, and identifying critical areas that are capable of being measured at regular intervals from space.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Enforceability of design concept and scope and project-level mitigation and control measures. 93.125 Section 93.125 Protection of Environment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Enforceability of design concept and scope and project-level mitigation and control measures. 93.125 Section 93.125 Protection of Environment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Enforceability of design concept and scope and project-level mitigation and control measures. 93.125 Section 93.125 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Enforceability of design concept and scope and project-level mitigation and control measures. 93.125 Section 93.125 Protection of Environment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Enforceability of design concept and scope and project-level mitigation and control measures. 93.125 Section 93.125 Protection of Environment...
NASA Astrophysics Data System (ADS)
Some, T. E.; Barbier, B.
2015-12-01
Climate changes talks regularly underline that developing countries' agriculture could play a stronger role in GHGs mitigation strategies and benefit from the Kyoto Protocol program of subsidies. Scientists explain that agriculture can contribute to carbon mitigation by storing more carbon in the soil through greener cropping systems. In this context, a growing number of research projects have started to investigate how developing countries agriculture can contribute to these objectives. The clean development mechanism (CDM) proposed in the Kyoto protocol is one particular policy instrument that can incite farmers to mitigate the GHG balance towards more sequestration and less emission. Some economists such as Michael Porter think that environmental regulation lead to a win-win outcome, in which case subsidies are not necessary. If it is a trade-off between incomes and the environment, subsidies are required. CDM can be mobilized to support the mitigation strategy. Agriculture implies the use of inputs. Reducing the emission implies the reduction of those inputs which will in turn imply a yield decrease. The study aims to assess whether this measure will imply a trade-off between environmental and economic objectives or a win-win situation. I apply this study to the case of small farmers in Burkina Faso through environmental instruments such as the emissions limits and agroforestry using a bioeconomic model, in which the farmers maximize their utility subject to constraints. The study finds that the limitation of emissions in annual crops production involves a trade-off. by impacting negatively their net cash come. By integrating perennial crops in the farming system, the farmers' utility increases. Around 6,118 kg are sequestrated individually. By computing the value on this carbon balance, farmers' net cash incomes go better. Then practicing agroforestry is a win-win situation, as they reach a higher level of income, and reduce emissions. Policymakers must encourage small farmers to integrate perennial crops in their annual crops system. Most of small farmers are living below the poverty line. Limiting emissions will get worse their life conditions. To reach the emission reduction objective in the annual crops system, subsidies are needed in order to compensate the income lost through the CDM.
Modeling Fire Emissions across Central and Southern Italy: Implications for Land and Fire Management
NASA Astrophysics Data System (ADS)
Bacciu, V. M.; Salis, M.; Spano, D.
2015-12-01
Fires play a relevant role in the global and regional carbon cycle, representing a remarkable source of CO2 and other greenhouse gases (GHG) that influence atmosphere budgets and climate. In addition, the wildfire increase projected in Southern Europe due to climate change (CC) and concurrent exacerbation of extreme weather conditions could also lead to a significant rise in GHG. Recently, in the context of the Italian National Adaptation Strategy to Climate Change (SNAC), several approaches were identified as valuable tools to adapt and mitigate the impacts of CC on wildfires, in order to reduce landscape susceptibility and to contribute to the efforts of carbon emission mitigation proposed within the Kyoto protocol. Active forest and fuel management (such as prescribed burning, fuel reduction and removal, weed and flammable shrub control, creation of fuel discontinuity) is recognised to be a key element to adapt and mitigate the impacts of CC on wildfires. Despite this, overall there is a lack of studies about the effectiveness of fire emission mitigation strategies. The current work aims to analyse the potential of a combination of fuel management practices in mitigating emissions from forest fires and evaluate valuable and viable options across Central and Southern Italy. These objectives were achieved throughout a retrospective application of an integrated approach combining a fire emission model (FOFEM - First Order Fire Effect Model) with spatially explicit, comprehensive, and accurate fire, vegetation and weather data for the period 2004-2012. Furthermore, a number of silvicultural techniques were combined to develop several fuel management scenarios and then tested to evaluate their potential in mitigating fire emissions.The preliminary results showed the crucial role of appropriate fuel, fire behavior, and weather data to reduce bias in quantifying the source and the composition of fire emissions and to attain reasonable estimations. Also, the current study highlighted that balanced combination of fuel management techniques could not only be a viable mean to reduce fire emissions but at the same time prevent future wildfires and the related threat to human lives and activities.
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.
Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example
Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453
NASA Astrophysics Data System (ADS)
Kalu, J. U.; Aliagha, G. U.; Buang, A.
2016-02-01
Global warming has consequences on the environment and economy; this led to the establishment of United Nation Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. These two agreements were to reduce greenhouse gases (GHG) emissions which are responsible for climate change and global warming. Developing countries under the protocol are not obligated to reduce or disclosure GHG emission, so their participation in the protocol is on voluntary mitigation bases. This study intends to examine economic factors that influence voluntary carbon disclosure in the property sub-sector of developing countries based on annual report of listed property companies in Malaysia. Signaling theory addresses the problem of information asymmetry in the society. Disclosure is an effective tool to overcome information imbalance among different market participants. The study hypothesizes that the economic factors that influence voluntary carbon information disclosure in developing countries are: [1] the company's size; this is because a large-sized company have more resources to cover the cost of reducing pollution. [2] The company's gearing status; where there is no sufficient information disclosure in a highly geared company will result to an increased agency cost. [3] Profitability; profits grants companies a pool of resources for mitigation activities and environmental reporting. Also, carbon disclosure acts as a means for achieving public confidence and legitimacy. [4] Liquidity: Companies that are highly liquid will disclosure more information to distinguish themselves from other companies that are less liquidity. This is correlated to environmental disclosure. [5] Financial slack affects companies’ ability to participate in green technology projects that enable a reduction in emission.
Li, Y; Zhang, P; Cai, W; Rosenblatt, J S; Raad, I I; Xu, D; Gu, T
2016-02-01
Microbiologically influenced corrosion (MIC), also known as biocorrosion, is caused by corrosive biofilms. MIC is a growing problem, especially in the oil and gas industry. Among various corrosive microbes, sulfate reducing bacteria (SRB) are often the leading culprit. Biofilm mitigation is the key to MIC mitigation. Biocide applications against biofilms promote resistance over time. Thus, it is imperative to develop new biodegradable and cost-effective biocides for large-scale field applications. Using the corrosive Desulfovibrio vulgaris (an SRB) biofilm as a model biofilm, this work demonstrated that a cocktail of glyceryl trinitrate (GTN) and caprylic acid (CA) was very effective for biofilm prevention and mitigation of established biofilms on C1018 carbon steel coupons. The most probable number sessile cell count data and confocal laser scanning microscope biofilm images proved that the biocide cocktail of 25 ppm (w/w) GTN + 0.1% (w/w) CA successfully prevented the D. vulgaris biofilm establishment on C1018 carbon steel coupons while 100 ppm GTN + 0.1% CA effectively mitigated pre-established D. vulgaris biofilms on C1018 carbon steel coupons. In both cases, the cocktails were able to reduce the sessile cell count from 10(6) cells/cm(2) to an undetectable level.
CARNOL PROCESS FOR CO2 MITIGATION FROM POWER PLANTS AND THE TRANSFORMATION SECTOR
The report describes an alternative mitigation process that would convert waste carbon dioxide (CO2) to carbon an methanol using natural gas as process feedstock. The process yields 1 mole of methanol from each mole of CO2 recovered, resulting in a net zero CO2 emission when the ...
Carbon debt and carbon sequestration parity in forest bioenergy production
S.R. Mitchell; M.E. Harmon; K.B. O' Connell
2012-01-01
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...
Embodied carbon mitigation and reduction in the built environment - What does the evidence say?
Pomponi, Francesco; Moncaster, Alice
2016-10-01
Of all industrial sectors, the built environment puts the most pressure on the natural environment, and in spite of significant efforts the International Energy Agency suggests that buildings-related emissions are on track to double by 2050. Whilst operational energy efficiency continues to receive significant attention by researchers, a less well-researched area is the assessment of embodied carbon in the built environment in order to understand where the greatest opportunities for its mitigation and reduction lie. This article approaches the body of academic knowledge on strategies to tackle embodied carbon (EC) and uses a systematic review of the available evidence to answer the following research question: how should we mitigate and reduce EC in the built environment? 102 journal articles have been reviewed systematically in the fields of embodied carbon mitigation and reduction, and life cycle assessment. In total, 17 mitigation strategies have been identified from within the existing literature which have been discussed through a meta-analysis on available data. Results reveal that no single mitigation strategy alone seems able to tackle the problem; rather, a pluralistic approach is necessary. The use of materials with lower EC, better design, an increased reuse of EC-intensive materials, and stronger policy drivers all emerged as key elements for a quicker transition to a low carbon built environment. The meta-analysis on 77 LCAs also shows an extremely incomplete and short-sighted approach to life cycle studies. Most studies only assess the manufacturing stages, often completely overlooking impacts occurring during the occupancy stage and at the end of life of the building. The LCA research community have the responsibility to address such shortcomings and work towards more complete and meaningful assessments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance
NASA Astrophysics Data System (ADS)
Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin
2017-09-01
Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road
). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.
Schramm, Michael P.; Bevelhimer, Mark S.; DeRolph, Chris R.
2016-04-11
Environmental mitigation plays an important role in the environmentally sustainable development of hydropower resources. However, comprehensive data on mitigation required by the Federal Energy Regulatory Commission (FERC) at United States (US) hydropower projects is lacking. Therefore, our objective was to create a comprehensive database of mitigation required at non-federal hydropower projects and provide a synthesis of available mitigation data. Mitigation data was collated for over 300 plants licensed or relicensed from 1998 through 2013. We observed that the majority of FERC mitigation requirements deal with either hydrologic flows or recreation and that hydropower plants in the Pacific Northwest had themore » highest number of requirements. Our data indicate opportunities exist to further explore hydropower mitigation in the areas of environmental flows, fish passage, and water quality. Lastly, connecting these data with ecological outcomes, actual flow data, and larger landscape level information will be necessary to evaluate the effectiveness of mitigation and ultimately inform regulators, managers, and planners.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, Michael P.; Bevelhimer, Mark S.; DeRolph, Chris R.
Environmental mitigation plays an important role in the environmentally sustainable development of hydropower resources. However, comprehensive data on mitigation required by the Federal Energy Regulatory Commission (FERC) at United States (US) hydropower projects is lacking. Therefore, our objective was to create a comprehensive database of mitigation required at non-federal hydropower projects and provide a synthesis of available mitigation data. Mitigation data was collated for over 300 plants licensed or relicensed from 1998 through 2013. We observed that the majority of FERC mitigation requirements deal with either hydrologic flows or recreation and that hydropower plants in the Pacific Northwest had themore » highest number of requirements. Our data indicate opportunities exist to further explore hydropower mitigation in the areas of environmental flows, fish passage, and water quality. Lastly, connecting these data with ecological outcomes, actual flow data, and larger landscape level information will be necessary to evaluate the effectiveness of mitigation and ultimately inform regulators, managers, and planners.« less
The effects of carbon tax on the Oregon economy and state greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Rice, A. L.; Butenhoff, C. L.; Renfro, J.; Liu, J.
2014-12-01
Of the numerous mechanisms to mitigate greenhouse gas emissions on statewide, regional or national scales in the United States, a tax on carbon is perhaps one of the simplest. By taxing emissions directly, the costs of carbon emissions are incorporated into decision-making processes of market actors including consumers, energy suppliers and policy makers. A carbon tax also internalizes the social costs of climate impacts. In structuring carbon tax revenues to reduce corporate and personal income taxes, the negative incentives created by distortionary income taxes can be reduced or offset entirely. In 2008, the first carbon tax in North America across economic sectors was implemented in British Columbia through such a revenue-neutral program. In this work, we investigate the economic and environmental effects of a carbon tax in the state of Oregon with the goal of informing the state legislature, stakeholders and the public. The study investigates 70 different economic sectors in the Oregon economy and six geographical regions of the state. The economic model is built upon the Carbon Tax Analysis Model (C-TAM) to provide price changes in fuel with data from: the Energy Information Agency National Energy Modeling System (EIA-NEMS) Pacific Region Module which provides Oregon-specific energy forecasts; and fuel price increases imposed at different carbon fees based on fuel-specific carbon content and current and projected regional-specific electricity fuel mixes. CTAM output is incorporated into the Regional Economic Model (REMI) which is used to dynamically forecast economic impacts by region and industry sector including: economic output, employment, wages, fiscal effects and equity. Based on changes in economic output and fuel demand, we further project changes in greenhouse gas emissions resulting from economic activity and calculate revenue generated through a carbon fee. Here, we present results of this modeling effort under different scenarios of carbon fee and avenues for revenue repatriation.
NASA Astrophysics Data System (ADS)
Boylan, R. D.; Brooks, E. S.
2012-12-01
It has long been understood that soil organic matter (SOM) plays important role in the chemistry of agricultural soils. Promoting both cation exchange capacity and water retention, SOM also has the ability to sequester atmospheric carbon adding to a soils organic carbon content. Increasing soil organic carbon in the dryland agricultural region of the Inland Pacific Northwest is not only good for soil health, but also has the potential to mitigate greenhouse gas emissions. Implementing strategies that minimizing the loss of soil carbon thus promoting carbon sequestration require a fundamental understanding of the dominant hydrologic flow paths and runoff generating processes in this landscape. Global fluxes of organic carbon from catchments range from 0.4-73,979 kg C km-2 year-1 for particulate organic carbon and 1.2-56,946 kg C km-2 year-1 for dissolved organic carbon (Alvarez-Cobelas, 2010). This small component of the global carbon cycle has been relatively well studied but there have yet to be any studies that focus on the dryland agricultural region of the Inland Pacific Northwest. In this study event based samples were taken at 5 sites across the Palouse Basin varying in land use and management type as well as catchment size, ranging from 1km2 to 7000 km2. Data collection includes streamflow, suspended sediment, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), particulate organic carbon (POC), dissolved organic nitrogen (TN), and nitrate concentrations as well as soil organic carbon (SOC) from distributed source areas. It is predicted that management type and streamflow will be the main drivers for DOC and POC concentrations. Relationships generated and historic data will then be used in conjunction with the Water Erosion Prediction Project (WEPP) to simulate field scale variability in the soil moisture, temperature, surface saturation, and soil erosion. Model assessment will be based on both surface runoff and sediment load measured at the outlet of these field catchments and distributed measurements capturing spatial variability within the catchments. We demonstrate how the accurate representation of the field scale variability in hydrology is an essential first step in the development of full scale cropping models capable of evaluating precision-based mitigation strategies.
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.
2006-12-01
Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.
A probabilistic analysis of cumulative carbon emissions and long-term planetary warming
Fyke, Jeremy Garmeson; Matthews, H. Damon
2015-11-16
Efforts to mitigate and adapt to long-term climate change could benefit greatly from probabilistic estimates of cumulative carbon emissions due to fossil fuel burning and resulting CO 2-induced planetary warming. Here we demonstrate the use of a reduced-form model to project these variables. We performed simulations using a large-ensemble framework with parametric uncertainty sampled to produce distributions of future cumulative emissions and consequent planetary warming. A hind-cast ensemble of simulations captured 1980–2012 historical CO 2 emissions trends and an ensemble of future projection simulations generated a distribution of emission scenarios that qualitatively resembled the suite of Representative and Extended Concentrationmore » Pathways. The resulting cumulative carbon emission and temperature change distributions are characterized by 5–95th percentile ranges of 0.96–4.9 teratonnes C (Tt C) and 1.4 °C–8.5 °C, respectively, with 50th percentiles at 3.1 Tt C and 4.7 °C. Within the wide range of policy-related parameter combinations that produced these distributions, we found that low-emission simulations were characterized by both high carbon prices and low costs of non-fossil fuel energy sources, suggesting the importance of these two policy levers in particular for avoiding dangerous levels of climate warming. With this analysis we demonstrate a probabilistic approach to the challenge of identifying strategies for limiting cumulative carbon emissions and assessing likelihoods of surpassing dangerous temperature thresholds.« less
Lu, Fei; Hu, Huifeng; Sun, Wenjuan; Zhu, Jiaojun; Liu, Guobin; Zhou, Wangming; Zhang, Quanfa; Shi, Peili; Liu, Xiuping; Wu, Xing; Zhang, Lu; Wei, Xiaohua; Dai, Limin; Zhang, Kerong; Sun, Yirong; Xue, Sha; Zhang, Wanjun; Xiong, Dingpeng; Deng, Lei; Liu, Bojie; Zhou, Li; Zhang, Chao; Cao, Jiansheng; Huang, Yao; Zhou, Guoyi; Bai, Yongfei; Xie, Zongqiang; Wu, Bingfang; Fang, Jingyun; Liu, Guohua; Yu, Guirui
2018-01-01
The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China’s forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country’s land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country’s C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 1012 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO2 mitigation in China. PMID:29666317
Sensitivity Analysis Tailored to Constrain 21st Century Terrestrial Carbon-Uptake
NASA Astrophysics Data System (ADS)
Muller, S. J.; Gerber, S.
2013-12-01
The long-term fate of terrestrial carbon (C) in response to climate change remains a dominant source of uncertainty in Earth-system model projections. Increasing atmospheric CO2 could be mitigated by long-term net uptake of C, through processes such as increased plant productivity due to "CO2-fertilization". Conversely, atmospheric conditions could be exacerbated by long-term net release of C, through processes such as increased decomposition due to higher temperatures. This balance is an important area of study, and a major source of uncertainty in long-term (>year 2050) projections of planetary response to climate change. We present results from an innovative application of sensitivity analysis to LM3V, a dynamic global vegetation model (DGVM), intended to identify observed/observable variables that are useful for constraining long-term projections of C-uptake. We analyzed the sensitivity of cumulative C-uptake by 2100, as modeled by LM3V in response to IPCC AR4 scenario climate data (1860-2100), to perturbations in over 50 model parameters. We concurrently analyzed the sensitivity of over 100 observable model variables, during the extant record period (1970-2010), to the same parameter changes. By correlating the sensitivities of observable variables with the sensitivity of long-term C-uptake we identified model calibration variables that would also constrain long-term C-uptake projections. LM3V employs a coupled carbon-nitrogen cycle to account for N-limitation, and we find that N-related variables have an important role to play in constraining long-term C-uptake. This work has implications for prioritizing field campaigns to collect global data that can help reduce uncertainties in the long-term land-atmosphere C-balance. Though results of this study are specific to LM3V, the processes that characterize this model are not completely divorced from other DGVMs (or reality), and our approach provides valuable insights into how data can be leveraged to be better constrain projections for the land carbon sink.
My geoscience research and how it matters to you: Corn, climate, and classrooms
NASA Astrophysics Data System (ADS)
McGill, B. M.
2017-12-01
In a corn field far north of New Orleans, I study how carbon moves between soils, water, and the atmosphere. More specifically, I look at how different farming practices affect carbon dioxide (CO2) emissions from the soil to the atmosphere and carbon storage in the soil and water. This is important because soils store about twice as much carbon as the atmosphere, so we need to understand how human activities, such as agriculture, disrupt or enhance carbon movement and, ultimately, contribute to or mitigate climate change. Carefully accounting for an ecosystem's greenhouse gas balance (emissions vs. storage) helps climate scientists project how future climate change will affect all of us. My research demonstrates that, in some cases, croplands are storing carbon—this finding will improve the accuracy of existing calculations of carbon gains and losses on farms. This could help farmers get credit for storing carbon in a future scenario with a price on carbon, and this could help policy makers design policy that incentivizes best management practices. Furthermore, through this work I have mentored undergraduate students and collaborated with a local high school science teacher and her classroom. This work was conducted at the only NSF-funded Long Term Ecological Research site focused on cropland agriculture, the Kellogg Biological Station LTER at Michigan State University.
Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics
NASA Astrophysics Data System (ADS)
Jantz, Patrick; Goetz, Scott; Laporte, Nadine
2014-02-01
A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Daniel
1984-10-01
This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Hungry Horse Dam project on the South Fork of the Flathead River and previous mitigation of theses losses. In order to develop and focus mitigation efforts, it was first necessary to estimate wildlife and wildlife hatitat losses attributable to the construction and operation of the project. The purpose of this report was to document the best available information concerning the degree of impacts to target wildlife species. Indirect benefits to wildlife species not listed will be identified during the development of alternative mitigation measures. Wildlifemore » species incurring positive impacts attributable to the project were identified.« less
NASA Astrophysics Data System (ADS)
Pungkul, S.; Suraswasdi, C.; Phonekeo, V.
2014-02-01
The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.
NASA Astrophysics Data System (ADS)
Keller, David P.; Lenton, Andrew; Scott, Vivian; Vaughan, Naomi E.; Bauer, Nico; Ji, Duoying; Jones, Chris D.; Kravitz, Ben; Muri, Helene; Zickfeld, Kirsten
2018-03-01
The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible
impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention - deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility
, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.>
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, David P.; Lenton, Andrew; Scott, Vivian
The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention – deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO 2 from the atmosphere. When focused on CO 2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emissionmore » scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO 2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO 2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.>« less
Climate Mitigation Versus Agriculture in the Tropics
NASA Astrophysics Data System (ADS)
McAfee, K.
2011-12-01
Significant new drivers of land-use change in the tropics are market-based strategies for climate-change mitigation and biodiversity conservation. These strategies are based on the putative monetary values of new commodities: genetic resources and ecosystem services, especially carbon sequestration services by forests. Payments for Ecosystem Services projects are expanding in Latin America, Asia, and some parts of Africa, promising a 'triple-win' for nature, the private sector, and the poor. Analysis of Mexico's national PES program and review of a growing body of PES case studies, however, reveal a pattern of conflict between poverty alleviation and other social goals, on the one hand, and the market-efficiency criteria that frame many PES projects, on the other hand. This poses a warning for more ambitious, global schemes based on similar principles, such as Reduced Emissions from Deforestation and Degradation (REDD). Additionally, transnational trade in carbon offsets, seen as a source of finance for PES and for REDD, puts climate policy on a collision course with agriculture, particularly given the context of closing land frontiers and international 'land-grabbing' claims on land for food-export plantations. Because market-based PES and REDD tend to target small- and medium-scale farmers, they are likely to constrain agriculture for domestic needs in regions where food security is already weak. Land-use governance based on conservation-by-commercialization can be compared to alternative approaches that link greening, food production, and social equity in a more integrated way, by combining scientific and local ecological and agroecological knowledge with strategies for rural revitalization and development.
Reducing greenhouse gas emissions in agriculture without compromising food security?
NASA Astrophysics Data System (ADS)
Frank, Stefan; Havlík, Petr; Soussana, Jean-François; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael
2017-10-01
To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110-285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80-300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land would allow reducing the implied calorie loss by 65% when sticking to the initially estimated land use mitigation requirements, thereby limiting the impact on undernourishment to 20-75 million people, and storing significant amounts of carbon in soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousins, Katherine
The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.
Mitigation gambles: uncertainty, urgency and the last gamble possible.
Shue, Henry
2018-05-13
A rejection by current generations of more ambitious mitigation of carbon emissions inflicts on future generations inherently objectionable risks about which they have no choice. Any gains through savings from less ambitious mitigation, which are relatively minor, would accrue to current generations, and all losses, which are relatively major, would fall on future generations. This mitigation gamble is especially unjustifiable because it imposes a risk of unlimited losses until carbon emissions cease. Ultimate physical collapses remain possible. Much more ominous is prior social collapse from political struggles over conflicting responses to threatened physical collapse. The two most plausible objections to the thesis that less ambitious mitigation is unjustifiable rely, respectively, on the claim that negative emissions will allow a later recovery from a temporary overshoot in emissions and on the claim that ambitious mitigation is incompatible with poverty alleviation that depends on inexpensive fossil fuels. Neither objection stands up. Reliance on negative emissions later instead of ambitious mitigation now permits the passing of tipping points for irreversible change meanwhile, and non-carbon energy is rapidly becoming price competitive in developing countries like India that are committed to poverty alleviation.This article is part of the themed issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).
Julia I. Burton; Adrian Ares; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity...
John B. Bradford; Douglas N. Kastendick
2010-01-01
Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon...
REPORT TO CONGRESS ON BLACK CARBON
The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and thei...
Global Modeling and Projection of Short-Lived Climate Pollutants in an Earth System Model
NASA Astrophysics Data System (ADS)
Sudo, K.; Takemura, T.; Klimont, Z.; Kurokawa, J.; Akimoto, H.
2013-12-01
In predicting and mitigating future global warming, short-lived climate pollutants (SLCPs) such as tropospheric ozone (O3), black carbon (BC), and other related components including CH4/VOCs and aerosols play crucial roles as well as long-lived species like CO2 or N2O. Several recent studies suggests that reduction of heating SLCPs (i.e., O3 and black carbon) together with CH4 can decrease and delay the expected future warming, and can be an alternative to CO2 mitigation (Shindell et al., 2012). However it should be noted that there are still large uncertainties in simulating SLCPs and their climate impacts. For instance, present global models generally have a severe tendency to underestimate BC especially in remote areas like the polar regions as shown by the recent model intercomparison project under the IPCC (ACCMIP/AeroCOM). This problem in global BC modeling, basically coming from aging and removal processes of BC, causes still a large uncertainty in the estimate of BC's atmospheric heating and climate impacts (Bond et al., 2013; Kerr et al., 2013). This study attempted to improve global simulation of BC by developing a new scheme for simulating aging process of BC and re-evaluate radiative forcing of BC in the framework of a chemistry-aerosol coupled climate model (Earth system model) MIROC-ESM-CHEM. Our improved model with the new aging scheme appears to relatively well reproduce the observed BC concentrations and seasonality in the Arctic/Antarctic region. The new model estimates radiative forcing of BC to be 0.83 W m-2 which is about two times larger than the estimate by our original model with no aging scheme (0.41 W m-2), or the model ensemble mean in the IPCC report. Using this model, future projection of SLCPs and their climate impacts is conducted following the recent IIASA emission scenarios for the year 2030 (Klimont et al., 2006; Cofala et al., 2007). Our simulation suggests that heating SLCPs components (O3, BC, and CH4) are significantly reduced in the maximal feasible reduction (MFR) scenario, contributing to global mean temperature reduction by about -0.25 oC after 2030. This heating-SLCPs-induced warming mitigation in MFR is, however, largely cancelled out by the temperature increase due to decreases in cooling aerosols (SO42-, NO3-, and organics), resulting in temperature projection which is not quite different from the other scenarios like CLE (current legislation for air quality) or 450ppm climate stabilization (intermediate reduction) scenario. References Bond et al. (2013): Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., 118, 5380-5552, doi:10.1002/jgrd.50171, 2013. Cofala et al. (2007): Scenarios of global anthropogenic emissions of air pollutants and methane until 2030, Atmos. Environ., 41, 8486-8499. Kerr et al. (2013): Soot is warming the world even more than thought, Science, 339, 382, doi: 10.1126/science.339.6118.382. Klimont, Z., Brink, C. (2006): Modelling of Emissions of Air Pollutants and Greenhouse Gases from Agricultural Sources in Europe. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. Shindell et al. (2012): Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security, Science, 335, 183-189, doi: 10.1126/science.1210026.
Greenhouse gas emission accounting and management of low-carbon community.
Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin
2012-01-01
As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO₂ emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO₂ emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities.
Greenhouse Gas Emission Accounting and Management of Low-Carbon Community
Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin
2012-01-01
As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO2 emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO2 emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104
pyhector: A Python interface for the simple climate model Hector
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Willner, Sven; Hartin, Corinne; Gieseke, Robert
2017-04-01
Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production andmore » respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.« less
NASA Astrophysics Data System (ADS)
Defourny, Pierre; Verbeeck, Hans; Moreau, Inès; De Weirdt, Marjolein; Verhegghen, Astrid; Kibambe-Lubamba, Jean-Paul; Jungers, Quentin; Maignan, Fabienne; Najdovski, Nicolas; Poulter, Benjamin; MacBean, Natasha; Peylin, Philippe
2014-05-01
Vegetation is a major carbon sink and is as such a key component of the international response to climate change caused by the build-up of greenhouse gases in the atmosphere. However, anthropogenic disturbances like deforestation are the primary mechanism that changes ecosystems from carbon sinks to sources, and are hardly included in the current carbon modelling approaches. Moreover, in tropical regions, the seasonal/interannual variability of carbon fluxes is still uncertain and a weak or even no seasonality is taken into account in global vegetation models. In the context of climate change and mitigation policies like "Reducing Emissions from Deforestation and Forest Degradation in Developing Countries" (REDD), it is particularly important to be able to quantify and forecast the vegetation dynamics and carbon fluxes in these regions. The overall objective of the VEGECLIM project is to increase our knowledge on the terrestrial carbon cycle in tropical regions and to improve the forecast of the vegetation dynamics and carbon stocks and fluxes under different climate-change and deforestation scenarios. Such an approach aims to determine whether the African terrestrial carbon balance will remain a net sink or could become a carbon source by the end of the century, according to different climate-change and deforestation scenarios. The research strategy is to integrate the information of the land surface characterizations obtained from 13 years of consistent SPOT-VEGETATION time series (land cover, vegetation phenology through vegetation indices such as the Enhanced Vegetation Index (EVI)) as well as in-situ carbon flux data into the process based ORCHIDEE global vegetation model, capable of simulating vegetation dynamics and carbon balance. Key challenge of this project was to bridge the gap between the land cover and the land surface model teams. Several improvements of the ORCHIDEE model have been realized such as a new seasonal leaf dynamics for tropical evergreen forests, the introduction of spatial soil phosphorus to improve the spatial distribution of simulated woody biomass and an assimilation of smoothed seasonal pattern of satellite-based EVI used as a proxy to vegetation productivity. The outputs of the ORCHIDEE simulations over both Amazon and Congo Basins are discussed with regards to the observed phenology by remote sensing.
Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways
NASA Astrophysics Data System (ADS)
Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D. E. H. J.; Guivarch, C.; Havlik, P.; Huppmann, D.; Johnson, N.; Karkatsoulis, P.; Keppo, I.; Krey, V.; Ó Broin, E.; Price, J.; van Vuuren, D. P.
2017-01-01
Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities.
The U. S. DOE Carbon Storage Program: Status and Future Directions
NASA Astrophysics Data System (ADS)
Damiani, D.
2016-12-01
The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations capable of storing from 50 to 100 million metric tons of CO2 in a saline formation. These projects will lay the foundation for fully integrated carbon capture and storage demonstrations of future first of a kind (FOAK) coal power projects. Future research will also bring added focus on offshore CCS.
Implications of Deep Decarbonization for Carbon Cycle Science
NASA Astrophysics Data System (ADS)
Jones, A. D.; Williams, J.; Torn, M. S.
2016-12-01
The energy-system transformations required to achieve deep decarbonization in the United States, defined as a reduction of greenhouse gas emissions of 80% or more below 1990 levels by 2050, have profound implications for carbon cycle science, particularly with respect to 4 key objectives: understanding and enhancing the terrestrial carbon sink, using bioenergy sustainably, controlling non-CO2 GHGs, and emissions monitoring and verification. (1) As a source of mitigation, the terrestrial carbon sink is pivotal but uncertain, and changes in the expected sink may significantly affect the overall cost of mitigation. Yet the dynamics of the sink under changing climatic conditions, and the potential to protect and enhance the sink through land management, are poorly understood. Policy urgently requires an integrative research program that links basic science knowledge to land management practices. (2) Biomass resources can fill critical energy needs in a deeply decarbonized system, but current understanding of sustainability and lifecycle carbon aspects is limited. Mitigation policy needs better understanding of the sustainable amount, types, and cost of bioenergy feedstocks, their interactions with other land uses, and more efficient and reliable monitoring of embedded carbon. (3) As CO2 emissions from energy decrease under deep decarbonization, the relative share of non-CO2 GHGs grows larger and their mitigation more important. Because the sources tend to be distributed, variable, and uncertain, they have been under-researched. Policy needs a better understanding of mitigation priorities and costs, informed by deeper research in key areas such as fugitive CH4, fertilizer-derived N2O, and industrial F-gases. (4) The M&V challenge under deep decarbonization changes with a steep decrease in the combustion CO2 sources due to widespread electrification, while a greater share of CO2 releases is net-carbon-neutral. Similarly, gas pipelines may carry an increasing share of methane from biogenic or other net carbon-neutral sources. Improved lifecycle analysis will be needed to verify carbon neutrality, while the signal-to-noise challenge for attributing CO2 to fossil or biogenic fuels becomes more challenging.
Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Barry; Evarts, Les
2005-06-01
The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.« less
Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Barry; Evarts, Les
2008-12-22
The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.« less
Hungry Horse Mitigation; Flathead Lake, 2004-2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Barry; Evarts, Les
2006-06-01
The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.« less
Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Barry; Evarts, Les
2009-08-06
The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.« less
DOT National Transportation Integrated Search
2012-05-01
Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...
Li, Renqiang; Xu, Ming; Powers, Ryan; Zhao, Fen; Jetz, Walter; Wen, Hui; Sheng, Qingkai
2017-10-05
Conservationists strive for practical, cost-effective management solutions to forest-based species conservation and climate change mitigation. However, this is compromised by insufficient information about the effectiveness of protected areas in increasing carbon storage, and the co-benefits of species and carbon conservation remain poorly understood. Here, we present the first rigorous quantitative assessment of the roles of giant panda nature reserves (NRs) in carbon sequestration, and explore the co-benefits of habitat conservation and climate change mitigation. Results show that more than 90% of the studied panda NRs are effective in increasing carbon storage, with the mean biomass carbon density of the whole NRs exhibiting a 4.2% higher growth rate compared with lands not declared as NRs over the period 1988-2012, while this effectiveness in carbon storage masks important patterns of spatial heterogeneity across the giant panda habitats. Moreover, the significant associations have been identified between biomass carbon density and panda's habitat suitability in ~85% NRs and at the NR level. These findings suggest that the planning for carbon and species conservation co-benefits would enhance the greatest return on limited conservation investments, which is a critical need for the giant panda after its conservation status has been downgraded from "endangered" to "vulnerable".
NASA Astrophysics Data System (ADS)
le page, Y.; Morton, D. C.; Hurtt, G. C.
2013-12-01
Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.
Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel
The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundationmore » due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.« less
Climate mitigation and the future of tropical landscapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons
2010-11-16
Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less
Derived crop management data for the LandCarbon Project
Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer
2011-01-01
The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop products are used as input to the LandCarbon models to represent the historic and the future scenario management data. The overall algorithm to generate each of the gridded management products is based on the land cover and the derived crop type. For each year in the land cover dataset, the algorithm loops through each 250-meter pixel in the ecoregion. If the current pixel in the land cover dataset is an agriculture pixel, then the crop type is determined. Once the crop type is derived, then the crop harvest, manure, fertilizer, tillage, and cover crop values are derived independently for that crop type. The following is the overall algorithm used for the set of derived grids. The specific algorithm to generate each management dataset is discussed in the respective section for that dataset, along with special data handling and a description of the output product.
L-325 Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
2008-09-30
This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades. It includes time-zero monitoring results for planting activities conducted in January 2008, annual survival monitoring for all planting years (2007 and 2008), and recommendations for the successful completion of DOE habitat mitigation commitments for this project.
The Impact of CCS Readiness on the Evolution of China's Electric Power Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahowski, Robert T.; Davidson, Casie L.; Yu, Sha
In this study, GCAM-China is exercised to examine the impact of CCS availability on the projected evolution of China’s electric power sector under the Paris Increased Ambition policy scenario developed by Fawcett et al. based on the Intended Nationally Determined Contributions (INDCs) submitted under the COP-21 Paris Agreement. This policy scenario provides a backdrop for understanding China’s electric generation mix over the coming century under several CCS availability scenarios: CCS is fully available for commercial-scale deployment by 2025; by 2050; by 2075; and CCS is unavailable for use in meeting the modelled mitigation targets through 2100. Without having CCS available,more » the Chinese electric power sector turns to significant use of nuclear, wind, and solar to meet growing demands and emissions targets, at a cost. Should large-scale CCS deployment be delayed in China by 25 years, the modeled per-ton cost of climate change mitigation is projected to be roughly $420/tC (2010 US dollars) by 2050, relative to $360/tC in the case in which CCS is available to deploy by 2025, a 16% increase. Once CCS is available for commercial use, mitigation costs for the two cases converge, equilibrating by 2085. However, should CCS be entirely unavailable to deploy in China, the mitigation cost spread, compared to the 2025 case, doubles by 2075 ($580/tC and $1130/tC respectively), and triples by 2100 ($1050/tC vs. $3200/tC). However, while delays in CCS availability may have short-term impacts on China’s overall per-ton cost of meeting the emissions reduction target evaluated here, as well as total mitigation costs, the carbon price is likely to approach the price path associated with the full CCS availability case within a decade of CCS deployment. Having CCS available before the end of the century, even under the delays examined here, could reduce the total amount of nuclear and renewable energy that must deploy, reducing the overall cost of meeting the emissions mitigation targets.« less
Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurens, Lieve M; Glasser, Melodie
Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the contextmore » of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.« less
Global socioeconomic carbon stocks in long-lived products 1900-2008
NASA Astrophysics Data System (ADS)
Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin
2012-09-01
A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.
Mitigating climate change through small-scale forestry in the USA: opportunities and challenges
Susan Charnley; David Diaz; Hannah Gosnell
2010-01-01
Forest management for carbon sequestration is a low-cost, low-technology, relatively easy way to help mitigate global climate change that can be adopted now while additional long-term solutions are developed. Carbon-oriented management of forests also offers forest owners an opportunity to obtain a new source of income, and commonly has environmental co-benefits. The...
Carbon dioxide capture strategies from flue gas using microalgae: a review.
Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V
2016-09-01
Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.
NASA Astrophysics Data System (ADS)
Singh, J.; Doyle, M.; Lave, R.; Robertson, M.
2015-12-01
Stream restoration is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy creates an environment where restored stream 'credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of mitigation on restoration design and construction is unknown. We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. Physical study sites are located in the state of North Carolina, USA. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider, shallower and geomorphically more homogeneous than nonrestored streams. For example, nonrestored streams are typically characterized by more than an order of magnitude variability in radius of curvature and meander wavelength within a single study reach. By contrast, the radius of curvature in many restored streams does not vary for nearly the entire project reach. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that social forces shape the morphology of restored streams. Designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Home to a fairly mature stream mitigation banking market, North Carolina can provide lessons for other states or countries with younger mitigation banking programs (e.g., Oregon and Montana) as well as places considering their introduction.
L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
2009-09-29
Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimummore » number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.« less
NASA Astrophysics Data System (ADS)
Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.
2017-12-01
Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
...] Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings AGENCY... for Wind Retrofit Projects for Existing Residential Buildings. DATES: Comments must be received by... property from hazards and their effects. One such activity is the implementation of wind retrofit projects...
76 FR 61070 - Disaster Assistance; Hazard Mitigation Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... systems from the list of eligible project types; and modified language relating to general, allowable open... types of projects. The project-type listing is not all-inclusive. FEMA published a Notice of Proposed... mitigation project types can be difficult to show using FEMA's conventional benefit/cost calculation...
NASA Astrophysics Data System (ADS)
Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar
2017-12-01
Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.
Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis
Song, Xinzhang; Peng, Changhui; Zhou, Guomo; Jiang, Hong; Wang, Weifeng
2014-01-01
The Grain for Green Program (GGP), initiated in 1999, is the largest ecological restoration project in central and western China. Here, for the first time, we performed a meta-analysis and found that the GGP largely increased the soil organic carbon (SOC). The SOC was increased by 48.1%, 25.4%, and 25.5% at soil depths of 0–20 cm, 20–40 cm, and 40–60 cm, respectively. Moreover, this carbon accumulation has significantly increased over time since GGP implementation. The carbon accumulation showed a significantly more active response to the GGP in the top 20 cm of soil than in the deeper soil layers. Conversion of cropland to forest could lead to significantly greater SOC accumulation than would the conversion of cropland to grassland. Conversion from cropland to woodland could lead to greater SOC accumulation than would the conversion to either shrubland or orchard. Our results suggest that the GGP implementation caused SOC to accumulate and that there remains a large potential for further accumulation of carbon in the soil, which will help to mitigate climate change in the near future. PMID:24675818
Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry
NASA Astrophysics Data System (ADS)
Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.
2010-12-01
Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between agriculture and timber products. We analyze regional changes in land use, output, competitiveness, and food consumption under climate change mitigation policy regimes which differ by participation/exclusion of agricultural sectors and non-Annex I countries, as well as policy instruments. While responsible for only a third of global GHG emissions, under the global carbon tax the land using sectors could contribute half of all economically efficient mitigation in the near term, at modest carbon prices. The imposition of a carbon tax in agriculture, however, has adverse effects on food consumption, especially in developing countries. These effects are much smaller if an agricultural producer subsidy is introduced to compensate for carbon tax the producers pay. The global forest carbon sequestration subsidy effectively controls emission leakage when the carbon tax is imposed only in Annex I regions, since the sequestration subsidy bids land away from agriculture in non-Annex I regions. Though the sequestration subsidy yields GHG abatement benefit, the policy may adversely affect food security and agricultural development in developing countries.
REPORT TO CONGRESS ON BLACK CARBON | Science ...
The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and their potential for protecting climate, public health, and the environment. The EPA Advisory Council on Clean Air Compliance Analysis has peer-reviewed the report. In the October 2009 Interior Appropriations bill, Congress requested that EPA, in consultation with other Federal agencies, study the emissions and impacts of black carbon in the US and internationally. To fulfill this charge, EPA has conducted an intensive effort to compile, assess, and summarize available scientific information on the current and future impacts of black carbon, and to evaluate the effectiveness of available mitigation approaches and technologies for protecting climate, public health, and the environment.
Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.
Phillips, Oliver L; Brienen, Roel J W
2017-12-01
Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities.
Increased importance of methane reduction for a 1.5 degree target
NASA Astrophysics Data System (ADS)
Collins, William J.; Webber, Christopher P.; Cox, Peter M.; Huntingford, Chris; Lowe, Jason; Sitch, Stephen; Chadburn, Sarah E.; Comyn-Platt, Edward; Harper, Anna B.; Hayman, Garry; Powell, Tom
2018-04-01
To understand the importance of methane on the levels of carbon emission reductions required to achieve temperature goals, a processed-based approach is necessary rather than reliance on the transient climate response to emissions. We show that plausible levels of methane (CH4) mitigation can make a substantial difference to the feasibility of achieving the Paris climate targets through increasing the allowable carbon emissions. This benefit is enhanced by the indirect effects of CH4 on ozone (O3). Here the differing effects of CH4 and CO2 on land carbon storage, including the effects of surface O3, lead to an additional increase in the allowable carbon emissions with CH4 mitigation. We find a simple robust relationship between the change in the 2100 CH4 concentration and the extra allowable cumulative carbon emissions between now and 2100 (0.27 ± 0.05 GtC per ppb CH4). This relationship is independent of modelled climate sensitivity and precise temperature target, although later mitigation of CH4 reduces its value and thus methane reduction effectiveness. Up to 12% of this increase in allowable emissions is due to the effect of surface ozone. We conclude early mitigation of CH4 emissions would significantly increase the feasibility of stabilising global warming below 1.5 °C, alongside having co-benefits for human and ecosystem health.
Warren, Rachel
2011-01-13
The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.
Joint implementation: Biodiversity and greenhouse gas offsets
NASA Astrophysics Data System (ADS)
Cutright, Noel J.
1996-11-01
One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.
RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence M.; Rajagopalan, Ganesh; Stevenson, Thomas; Turner, Charles; Bulcha, Berhanu
2017-01-01
Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.
Global climate change and the mitigation challenge.
Princiotta, Frank
2009-10-01
Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.
Albeni Falls Wildlife Protection, Mitigation, and Enhancement Plan, Final Report 1987.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Robert C.
1988-08-01
A wildlife impact assessment and mitigation plan has been developed for the US Army Corps of Engineers Albeni Falls Project in northern Idaho. The Habitat Evaluation Procedure (HEP) was used to evaluate pre- and post-construction habitat conditions at the Albeni Falls Project. There were 6617 acres of wetlands converted to open water due to development and operation of the project. Eight evaluation species were selected with impacts expressed in numbers of Habitat Units (HU's). For a given species, one HU is equivalent to one acre of prime habitat. The Albeni Falls Project resulted in estimated losses of 5985 mallard HU's,more » 4699 Canada goose HU's, 3379 redhead HU's, 4508 breeding bald eagle HU's, 4365 wintering bald eagle HU's, 2286 black-capped chickadee HU's, 1680 white-tailed deer HU's, and 1756 muskrat HU's. The yellow warbler gained 71 HU's. Therefore, total target species estimated impacts were 28,587 HU's. Impacts on peregrine falcons were not quantified in terms of HU's. Projects have been proposed by an interagency team of biologists to mitigate the impacts of Albeni Falls on wildlife. The HEP was used to estimate benefits of proposed mitigation projects to target species. Through a series of proposed protection and enhancement actions, the mitigation plan will provide benefits of an estimated 28,590 target species HU's to mitigate Albeni Falls wildlife habitat values lost. 52 refs., 9 figs., 14 tabs.« less
Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed
NASA Technical Reports Server (NTRS)
Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.;
2017-01-01
The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.
Forest management strategies for reducing carbon emissions, the French case
NASA Astrophysics Data System (ADS)
Valade, Aude; Luyssaert, Sebastiaan; Bellassen, Valentin; Vallet, Patrick; Martin, Manuel
2015-04-01
International agreements now recognize the role of forest in the mitigation of climate change through the levers of in-situ sequestration, storage in products and energy and product substitution. These three strategies of carbon management are often antagonistic and it is still not clear which strategy would have the most significant impact on atmospheric carbon concentrations. With a focus on France, this study compares several scenarios of forest management in terms of their effect on the overall carbon budget from trees to wood-products. We elaborated four scenarios of forest management that target different wood production objectives. One scenario is 'Business as usual' and reproduces the current forest management and wood production levels. Two scenarios target an increase in bioenergy wood production, with either long-term or short-term goals. One scenario aims at increasing the production of timber for construction. For this, an empirical regression model was developed building on the rich French inventory database. The model can project the current forest resource at a time horizon of 20 years for characteristic variables diameter, standing volume, above-ground biomass, stand age. A simplified life-cycle analysis provides a full carbon budget for each scenario from forest management to wood use and allows the identification of the scenario that most reduces carbon emissions.
How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation
NASA Astrophysics Data System (ADS)
Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.
2014-12-01
Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.
Mapping High Biomass Corridors for Climate and Biodiversity Co-Benefits
NASA Astrophysics Data System (ADS)
Jantz, P.; Goetz, S. J.; Laporte, N. T.
2013-12-01
A key issue in global conservation is how climate mitigation activities can secure biodiversity co-benefits. Tropical deforestation releases significant amounts of CO2 to the atmosphere and results in widespread biodiversity loss. The dominant strategy for forest conservation has been protected area designation. However, maintaining biodiversity in protected areas requires ecological exchange with ecosystems in which they are embedded. At current funding levels, existing conservation strategies are unlikely to prevent further loss of connectivity between protected areas and surrounding landscapes. The emergence of REDD+, a mechanism for funding carbon emissions reductions from deforestation in developing countries, suggests an alignment of goals and financial resources for protecting forest carbon, maintaining biodiversity in protected areas, and minimizing loss of forest ecosystem services. Identifying, protecting and sustainably managing vegetation carbon stocks between protected areas can provide both climate mitigation benefits through avoided CO2 emissions from deforestation and biodiversity benefits through the targeted protection of forests that maintain connectivity between protected areas and surrounding ecosystems. We used a high resolution, pan-tropical map of vegetation carbon stocks derived from MODIS, GLAS lidar and field measurements to map corridors that traverse areas of highest aboveground biomass between protected areas. We mapped over 13,000 corridors containing 49 GtC, accounting for 14% of unprotected vegetation carbon stock in the tropics. In the majority of cases, carbon density in corridors was commensurate with that of the protected areas they connect, suggesting significant opportunities for achieving climate mitigation and biodiversity co-benefits. To further illustrate the utility of this approach, we conducted a multi-criteria analysis of corridors in the Brazilian Amazon, identifying high biodiversity, high vegetation carbon stock corridors with low opportunity costs which may be good candidates for inclusion in climate mitigation activities like those being considered under REDD+.
Jiang, Zaidi; Yin, Shan; Zhang, Xianxian; Li, Changsheng; Shen, Guangrong; Zhou, Pei; Liu, Chunjiang
2017-12-01
Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N₂O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH₄ emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH₄ emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.
The contribution of China's Grain to Green Programto carbon and water cycles
NASA Astrophysics Data System (ADS)
Yuan, W.
2017-12-01
The Chinese government started implementation of the Grain for Green Project (GGP) in 1999, aiming to convert cropland to forestland to mitigate soil erosion problems in areas across the country. Although the project has generated substantial environmental benefits, such as erosion reduction, carbon sequestration and water quality improvements, the magnitude of these benefits has not yet been well quantified due to the lack of location specific data describing the afforestation efforts. Remote sensing is well suited to detect afforestation locations, a prerequisite for estimating the impacts of the project on carbon and water cycles. In this study, we first examined the practicability of using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product to detect afforestation locations; however, the results showed that the MODIS product failed to distinguish the afforestation areas of GGP. Then, we used a normalized difference vegetation index (NDVI) time series analysis approach for detecting afforestation locations, applying statistical data to determine the NDVI threshold of converted croplands. The technique provided the necessary information for location of afforestation implemented under GGP, explaining 85% of conversion from cropland to forestlands across all provinces. Second, we estimated the changes in carbon fluxes and stocks caused by forests converted from croplands under the GGP using a process-based ecosystem model (i.e., IBIS). Our results showed that the converted areas from croplands to forests under the GGP program could sequester 110.45 Tg C by 2020, and 524.36 Tg C by the end of this century. The sequestration capacity showed substantial spatial variations with large sequestration in southern China. The economic benefits of carbon sequestration from the GGP were also estimated according to the current carbon price. The estimated economic benefits ranged from 8.84 to 44.20 billion from 2000 through 2100, which may exceed the current total investment ($38.99 billion) on the program. As the GGP program continues and forests grow, the impact of this program will be even larger in the future, making a more considerable contribution to China's carbon sink over the upcoming decades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beranich, S.J.
1994-08-24
This report evaluates the impacts assessment and proposed mitigations provided in environmental documents concerning the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The projected impacts and proposed mitigations identified in UMTRA Project environmental documents were evaluated for two UMTRA Project sites. These sites are Gunnison and Durango, which are representative of currently active and inactive UMTRA Project sites, respectively. National Environmental Policy Act (NEPA) documentation was prepared for the remedial action at Durango and Gunnison as well as for the provision of an alternate water supply system at Gunnison. Additionally, environmental analysis was completed formore » mill site demolition Gunnison, and for a new road related to the Durango remedial action. The results in this report pertain only to the impact assessments prepared by the Regulatory Compliance staff as a part of the NEPA compliance requirements. Similarly, the mitigative measures documented are those that were identified during the NEPA process.« less
Untangling the confusion around land carbon science and climate change mitigation policy
NASA Astrophysics Data System (ADS)
Mackey, Brendan; Prentice, I. Colin; Steffen, Will; House, Joanna I.; Lindenmayer, David; Keith, Heather; Berry, Sandra
2013-06-01
Depletion of ecosystem carbon stocks is a significant source of atmospheric CO2 and reducing land-based emissions and maintaining land carbon stocks contributes to climate change mitigation. We summarize current understanding about human perturbation of the global carbon cycle, examine three scientific issues and consider implications for the interpretation of international climate change policy decisions, concluding that considering carbon storage on land as a means to 'offset' CO2 emissions from burning fossil fuels (an idea with wide currency) is scientifically flawed. The capacity of terrestrial ecosystems to store carbon is finite and the current sequestration potential primarily reflects depletion due to past land use. Avoiding emissions from land carbon stocks and refilling depleted stocks reduces atmospheric CO2 concentration, but the maximum amount of this reduction is equivalent to only a small fraction of potential fossil fuel emissions.
Carrasco, L R; Papworth, S K
2014-12-15
Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantifying the biophysical climate change mitigation potential of Canada's forest sector
NASA Astrophysics Data System (ADS)
Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.
2014-01-01
The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base-case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.
Impact of the 2015 El Niño on the Indonesian carbon balance: implications for carbon mitigation
NASA Astrophysics Data System (ADS)
Bowman, K. W.; Liu, J.; Bloom, A. A.; Parazoo, N.; Lee, M.; Walker, T. W.; Menemenlis, D.; Jiang, Z.; Gierach, M.; Gurney, K. R.
2016-12-01
The COP21 or Paris Agreement in Dec. 2015 was a landmark step in a cooperative approach to reduce anthropogenic emissions from both fossil fuel and deforestation. During that same period, one of the strongest El Niños on record led to devastating droughts, fires, and air pollution in Indonesia. We assess the impact of this El Niño on the Indonesia carbon balance using the NASA Carbon Monitoring System Flux (CMS-Flux) pilot project, which assimilates satellite observations across the entire carbon cycle to attribute the CO2 growth rate to spatially resolved surface fluxes. We assimilate new xCO2 observations from the Orbital Carbon Observatory (OCO-2) to quantify net carbon fluxes and validate those fluxes against independent in-situ atmospheric data. The contribution of biomass burning to the carbon balance is independently determined from the assimilation of Measurements of Pollution in the Troposphere (MOPITT). The impact of the concomitant drought on productively is assessed from the assimilation of new solar induced fluorescence (SIF) measurements. Using these multiple lines of evidence, we investigate the relative role of biomass burning and productivity in the contribution of Indonesia to the global atmospheric growth rate. The exceptionally long turnover rates of peat carbon pools lead to effectively irreversible carbon loss to the atmosphere. The implications of these losses to Indonesian Intended Nationally Determined Contributions (INDC) as part of the Paris agreement will be explored.
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
How much would five trillion tonnes of carbon warm the climate?
NASA Astrophysics Data System (ADS)
Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.
2016-04-01
While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5EgC, with smaller forcing contributions from other greenhouse gases. These results indicate that the unregulated exploitation of the fossil fuel resource would ultimately result in considerably more profound climate changes than previously suggested.
Detailed assessment of global transport-energy models’ structures and projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Sonia; Mishra, Gouri Shankar; Fulton, Lew
This paper focuses on comparing the frameworks and projections from four major global transportation models with considerable transportation technology and behavioral detail. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and even energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in partmore » to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C / 450 ppm CO2e target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as feasibility of current policy goals, additional policy targets needed, regional vs. global reductions, etc.; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning input assumptions and historical data, policy analysis, and modeling insights.« less
Experimental study designs to improve the evaluation of road mitigation measures for wildlife.
Rytwinski, Trina; van der Ree, Rodney; Cunnington, Glenn M; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; Jaeger, Jochen A G; Soanes, Kylie; van der Grift, Edgar A
2015-05-01
An experimental approach to road mitigation that maximizes inferential power is essential to ensure that mitigation is both ecologically-effective and cost-effective. Here, we set out the need for and standards of using an experimental approach to road mitigation, in order to improve knowledge of the influence of mitigation measures on wildlife populations. We point out two key areas that need to be considered when conducting mitigation experiments. First, researchers need to get involved at the earliest stage of the road or mitigation project to ensure the necessary planning and funds are available for conducting a high quality experiment. Second, experimentation will generate new knowledge about the parameters that influence mitigation effectiveness, which ultimately allows better prediction for future road mitigation projects. We identify seven key questions about mitigation structures (i.e., wildlife crossing structures and fencing) that remain largely or entirely unanswered at the population-level: (1) Does a given crossing structure work? What type and size of crossing structures should we use? (2) How many crossing structures should we build? (3) Is it more effective to install a small number of large-sized crossing structures or a large number of small-sized crossing structures? (4) How much barrier fencing is needed for a given length of road? (5) Do we need funnel fencing to lead animals to crossing structures, and how long does such fencing have to be? (6) How should we manage/manipulate the environment in the area around the crossing structures and fencing? (7) Where should we place crossing structures and barrier fencing? We provide experimental approaches to answering each of them using example Before-After-Control-Impact (BACI) study designs for two stages in the road/mitigation project where researchers may become involved: (1) at the beginning of a road/mitigation project, and (2) after the mitigation has been constructed; highlighting real case studies when available. Copyright © 2015 Elsevier Ltd. All rights reserved.
Richards, Meryl Breton; Méndez, V Ernesto
2014-04-01
Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.
Ralph Alig; Greg Latta; Darius Adams; Bruce McCarl
2009-01-01
The forest sector can contribute to atmospheric greenhouse gas reduction, while also providing other environmental, economic, and social benefits. Policy tools for climate change mitigation include carbon-related payment programs as well as laws and programs to impede the loss of agricultural and forest lands to development. Policy makers will base their expectations...
Nantucket, Ma. Climate Protection Action Plan: A Public Outreach Strategy
NASA Astrophysics Data System (ADS)
Petrik, C.; Stephenson, A.; Petsch, S.
2009-12-01
As communities and municipalities gain a better understanding of climate change, they are exploring the ways in which to work towards adaptation and mitigation. One strategy that the Island of Nantucket, Massachusetts turned toward is the drafting of a Climate Protection Action Plan (CPAP). The CPAP was developed during the summer of 2009 to meet three goals: (1) assist the Town of Nantucket in creating a framework to help them reduce CO2 emissions; (2) educate the municipality and community in techniques that promote energy efficiency and sustainability on the island; and (3) document past, present and future approaches adopted by the Town towards emissions reduction and energy sustainability. In particular, this project focused on using local strengths and natural resources identified by island stakeholders that may help the island to mitigate carbon emissions and adapt to climate change.. Drafting the CPAP provided community members and politicians with an opportunity to become better educated in the science of climate change and to learn how climate change will affect their community. On the island of Nantucket, leaders in the religious, civic, and political communities were brought into a conversation about how each group could contribute to reducing greenhouse gas emissions. A geosciences graduate student was brought into the CPAP team as a climate fellow to facilitate this conversation. This provided the foundation for stakeholder recommendations incorporated into the CPAP. This capacity-building model served as an effective way to create an informal learning environment about climate change that allowed members of the island community to directly participate in developing their locally appropriate climate protection strategy. The draft CPAP developed through this study and presented to the Town of Nantucket comprises assessments and recommendations in public research and education; building and energy efficiency; transportation; renewable energy; and carbon offsets. Through the drafting of these types of Plans, geoscientists have the unique opportunity to offer a scientific foundation to communities that are looking to better understand climate change, its projected affects, and how they can best develop plans for mitigation and adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Robert C.; Mehrhoff, L.A.
1985-01-01
The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purposemore » of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.« less
Forest carbon calculators: a review for managers, policymakers, and educators
Harold S.J. Zald; Thomas A. Spies; Mark E. Harmon; Mark J. Twery
2016-01-01
Forests play a critical role sequestering atmospheric carbon dioxide, partially offsetting greenhouse gas emissions, and thereby mitigating climate change. Forest management, natural disturbances, and the fate of carbon in wood products strongly influence carbon sequestration and emissions in the forest sector. Government policies, carbon offset and trading programs,...
Carbon capture and sequestration (CCS)
DOT National Transportation Integrated Search
2009-06-19
Carbon capture and sequestration (or storage)known as CCShas attracted interest as a : measure for mitigating global climate change because large amounts of carbon dioxide (CO2) : emitted from fossil fuel use in the United States are potentiall...
Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng
2015-01-01
We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.
40 CFR 230.95 - Ecological performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mitigation plan must contain performance standards that will be used to assess whether the project is... mitigation project, so that the project can be objectively evaluated to determine if it is developing into... verifiable. Ecological performance standards must be based on the best available science that can be measured...
40 CFR 230.95 - Ecological performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mitigation plan must contain performance standards that will be used to assess whether the project is... mitigation project, so that the project can be objectively evaluated to determine if it is developing into... verifiable. Ecological performance standards must be based on the best available science that can be measured...
40 CFR 230.95 - Ecological performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mitigation plan must contain performance standards that will be used to assess whether the project is... mitigation project, so that the project can be objectively evaluated to determine if it is developing into... verifiable. Ecological performance standards must be based on the best available science that can be measured...
40 CFR 230.95 - Ecological performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mitigation plan must contain performance standards that will be used to assess whether the project is... mitigation project, so that the project can be objectively evaluated to determine if it is developing into... verifiable. Ecological performance standards must be based on the best available science that can be measured...
NASA Astrophysics Data System (ADS)
Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.
2018-02-01
The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.
NASA Astrophysics Data System (ADS)
Weindl, Isabelle; Popp, Alexander; Bodirsky, Benjamin Leon; Rolinski, Susanne; Lotze-Campen, Hermann; Biewald, Anne; Humpenöder, Florian; Dietrich, Jan Philipp; Stevanović, Miodrag
2017-12-01
Land use change has been the primary driving force of human alteration of terrestrial ecosystems. With 80% of agricultural land dedicated to livestock production, the sector is an important lever to attenuate land requirements for food production and carbon emissions from land use change. In this study, we quantify impacts of changing human diets and livestock productivity on land dynamics and depletion of carbon stored in vegetation, litter and soils. Across all investigated productivity pathways, lower consumption of livestock products can substantially reduce deforestation (47-55%) and cumulative carbon losses (34-57%). On the supply side, already minor productivity growth in extensive livestock production systems leads to substantial CO2 emission abatement, but the emission saving potential of productivity gains in intensive systems is limited, also involving trade-offs with soil carbon stocks. If accounting for uncertainties related to future trade restrictions, crop yields and pasture productivity, the range of projected carbon savings from changing diets increases to 23-78%. Highest abatement of carbon emissions (63-78%) can be achieved if reduced consumption of animal-based products is combined with sustained investments into productivity increases in plant production. Our analysis emphasizes the importance to integrate demand- and supply-side oriented mitigation strategies and to combine efforts in the crop and livestock sector to enable synergies for climate protection.
NASA Astrophysics Data System (ADS)
Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.
2015-12-01
Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.
Implementing Financial Assurance for Mitigation Project Success
The Institute for Water Resources (IWR) prepared this white paper on financial assurance for mitigation project success to provide a reference resource for Corps district staff involved with establishing and overseeing financial assurances.
Robinson, Bret A.
2010-01-01
In recent years carbon dioxide intrusion has become recognized as a potentially serious health threat where homes are constructed on or near reclaimed surface coal mines. When carbon dioxide invades the living space of a home, it can collect near the floor, displace the oxygen there, and produce an oxygen-deficient environment. In this investigation, several lines of inquiry were pursued to determine the environmental factors that most influence carbon dioxide intrusion at a Pike County, Ind., home where this phenomenon is known to occur. It was found that carbon dioxide intrusion events at the home are most closely tied to rapid drops in barometric pressure and rainfall. Other researchers have shown that windy conditions and periods of cold weather also can contribute to soil-gas intrusion to structures. From this, a conceptual model was developed to illustrate the influence of these four meteorological conditions. Additionally, three mitigation methods-block-wall depressurization, block-wall and sub-slab depressurization, and block-wall and sub-slab pressurization-were applied successively to the study-site home, and environmental data were collected to evaluate the effectiveness of each mitigation method. In each case, it was found that these methods did not ensure a safe environment when meteorological conditions were favorable for carbon dioxide intrusion.
Mitigation: Decarbonization unique to cities
NASA Astrophysics Data System (ADS)
Ibrahim, Nadine
2017-10-01
Strategies that reduce fossil-fuel use can achieve both global carbon mitigation and local health-protection goals. Now research shows the dual benefits of compact urban design and circular economy policies in Chinese cities.
Climate-agriculture interactions and needs for policy making
NASA Astrophysics Data System (ADS)
Phillips, J. G.
2010-12-01
Research exploring climate change interactions with agriculture has evolved from simplistic “delta T” simulation experiments with crop models to work highlighting the importance of climate variability and extreme events, which characterized the negative impacts possible if no adaptation occurred. There soon followed consideration of socioeconomic factors allowing for adaptive strategies that are likely to mitigate the worst case outcomes originally projected. At the same time, improved understanding of biophysical feedbacks has led to a greater recognition of the role that agriculture plays in modifying climate, with a great deal of attention recently paid to strategies to enhance carbon sequestration in agricultural systems. Advances in models of biogeochemical cycling applied to agronomic systems have allowed for new insights into greenhouse gas emissions and sinks associated with current, conventional farming systems. Yet this work is still relatively simplistic in that it seldom addresses interactions between climate dynamics, adoption of mitigation strategies, and feedbacks to the climate system and the surrounding environment. In order for agricultural policy to be developed that provides incentives for appropriate adaptation and mitigation strategies over the next 50 years, a systems approach needs to be utilized that addresses feedbacks and interactions at field, farm and regional scales in a broader environmental context. Interactions between carbon and climate constraints on the one hand, and environmental impacts related to water, nutrient runoff, and pest control all imply a transformation of farming practices that is as of yet not well defined. Little attention has been paid to studying the implications of “alternative” farming strategies such as organic systems, intensive rotational grazing of livestock, or increases in the perennial component of farmscapes, all of which may be necessary responses to energy and other environmental constraints over the coming century, interacting with a changing climate. Examples of interactions that need further exploration include the degree to which increases in soil organic matter to enhance carbon sequestration will improve system resilience and help mitigate the effects of an increase in climate variability, and how we can optimize the role of below-ground microbial communities in methane and nitrous-oxide emissions and sinks as well as in nutrient cycling and plant-water relations. These and other key areas where agroecosystem research is needed to advance policy will be discussed.
Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security
NASA Astrophysics Data System (ADS)
Shindell, Drew; Kuylenstierna, Johan C. I.; Vignati, Elisabetta; van Dingenen, Rita; Amann, Markus; Klimont, Zbigniew; Anenberg, Susan C.; Muller, Nicholas; Janssens-Maenhout, Greet; Raes, Frank; Schwartz, Joel; Faluvegi, Greg; Pozzoli, Luca; Kupiainen, Kaarle; Höglund-Isaksson, Lena; Emberson, Lisa; Streets, David; Ramanathan, V.; Hicks, Kevin; Oanh, N. T. Kim; Milly, George; Williams, Martin; Demkine, Volodymyr; Fowler, David
2012-01-01
Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.
Climate Change Mitigation Challenge for Wood Utilization-The Case of Finland.
Soimakallio, Sampo; Saikku, Laura; Valsta, Lauri; Pingoud, Kim
2016-05-17
The urgent need to mitigate climate change invokes both opportunities and challenges for forest biomass utilization. Fossil fuels can be substituted by using wood products in place of alternative materials and energy, but wood harvesting reduces forest carbon sink and processing of wood products requires material and energy inputs. We assessed the extended life cycle carbon emissions considering substitution impacts for various wood utilization scenarios over 100 years from 2010 onward for Finland. The scenarios were based on various but constant wood utilization structures reflecting current and anticipated mix of wood utilization activities. We applied stochastic simulation to deal with the uncertainty in a number of input variables required. According to our analysis, the wood utilization decrease net carbon emissions with a probability lower than 40% for each of the studied scenarios. Furthermore, large emission reductions were exceptionally unlikely. The uncertainty of the results were influenced clearly the most by the reduction in the forest carbon sink. There is a significant trade-off between avoiding emissions through fossil fuel substitution and reduction in forest carbon sink due to wood harvesting. This creates a major challenge for forest management practices and wood utilization activities in responding to ambitious climate change mitigation targets.
A Review of CO2 Sequestration Projects and Application in China
Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang
2014-01-01
In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323
Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification
Zhang, Han; Cao, Long
2016-01-01
Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480
Ocean acidification alters the material properties of Mytilus edulis shells
Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie
2015-01-01
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244
Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK
2003-01-01
One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (<15 Tg C y–1), but greater potential through extensification of agriculture (~40 Tg C y–1) or through the afforestation of surplus arable land (~50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.
A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration
NASA Astrophysics Data System (ADS)
Garten, Charles T., Jr.
2009-03-01
Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.
Flying into the future: aviation emissions scenarios to 2050.
Owen, Bethan; Lee, David S; Lim, Ling
2010-04-01
This study describes the methodology and results for calculating future global aviation emissions of carbon dioxide and oxides of nitrogen from air traffic under four of the IPCC/SRES (Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker scenarios: A1B, A2, B1, and B2. In addition, a mitigation scenario has been calculated for the B1 scenario, requiring rapid and significant technology development and transition. A global model of aircraft movements and emissions (FAST) was used to calculate fuel use and emissions to 2050 with a further outlook to 2100. The aviation emission scenarios presented are designed to interpret the SRES and have been developed to aid in the quantification of the climate change impacts of aviation. Demand projections are made for each scenario, determined by SRES economic growth factors and the SRES storylines. Technology trends are examined in detail and developed for each scenario providing plausible projections for fuel efficiency and emissions control technology appropriate to the individual SRES storylines. The technology trends that are applied are calculated from bottom-up inventory calculations and industry technology trends and targets. Future emissions of carbon dioxide are projected to grow between 2000 and 2050 by a factor in the range of 2.0 and 3.6 depending on the scenario. Emissions of oxides of nitrogen associated with aviation over the same period are projected to grow by between a factor of 1.2 and 2.7.
Diagnostic indicators for integrated assessment models of climate policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriegler, Elmar; Petermann, Nils; Krey, Volker
2015-01-01
Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnosticmore » indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.« less
Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.
Mudd, Gavin M; Diesendorf, Mark
2008-04-01
The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.
NASA Astrophysics Data System (ADS)
Thorne, James H.; Girvetz, Evan H.; McCoy, Michael C.
2009-05-01
This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.
Thorne, James H; Girvetz, Evan H; McCoy, Michael C
2009-05-01
This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.
NASA Astrophysics Data System (ADS)
Williams, C. A.; Gu, H.; Jiao, T.
2017-12-01
Avoided deforestation is a leading pathway for climate change mitigation, featuring prominently in many country's Intended Nationally Determined Contributions, but its climate benefits remain contested, in part because of reports of large offsetting effects in some regions of the world. It is well known that avoiding forest to non-forest conversion prevents forest carbon release, and sustains forest carbon uptake, but also increases albedo thus diminishing the potency of this mitigation strategy. While the mechanisms are known, their relative importance and the resulting climate benefit remain unclear. This is in part due to a lack of quantitative assessments documenting geographic variation in rates of forest conversion, associated carbon emissions, resulting radiative forcing, and the magnitude of simultaneous albedo offsets. This study (i) quantifies the current rate of forest conversion and carbon release in the United States with Landsat remote sensing and a carbon assessment framework, and (ii) compares this to quantitative estimates of the radiative forcing from the corresponding albedo change. Albedo radiative forcing is assessed with a recently-generated, global atlas of land-cover-specific albedos derived from a fusion of MODIS and Landsat reflectances, combined with snow cover and solar radiation datasets. We document the degree to which albedo warming offsets carbon cooling from contemporary forest conversions taking place in different regions of the United States and identify the underlying drivers of spatial variability. We then extend this to other regions of the world where forests are under threat and where avoided deforestation is viewed as a primary tool for climate mitigation. Results shed light on the, at times contentious, debate about the efficacy of forest protection as a mitigation mechanism.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and hurricane protection projects. (3) Mitigation of shore damages is defined as the construction of... beach erosion and hurricane protection projects, or portions thereof, located adjacent to Federal...) There is an authorized beach erosion control or combined beach and hurricane protection project for the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and hurricane protection projects. (3) Mitigation of shore damages is defined as the construction of... beach erosion and hurricane protection projects, or portions thereof, located adjacent to Federal...) There is an authorized beach erosion control or combined beach and hurricane protection project for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and hurricane protection projects. (3) Mitigation of shore damages is defined as the construction of... beach erosion and hurricane protection projects, or portions thereof, located adjacent to Federal...) There is an authorized beach erosion control or combined beach and hurricane protection project for the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and hurricane protection projects. (3) Mitigation of shore damages is defined as the construction of... beach erosion and hurricane protection projects, or portions thereof, located adjacent to Federal...) There is an authorized beach erosion control or combined beach and hurricane protection project for the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and hurricane protection projects. (3) Mitigation of shore damages is defined as the construction of... beach erosion and hurricane protection projects, or portions thereof, located adjacent to Federal...) There is an authorized beach erosion control or combined beach and hurricane protection project for the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Daniel; Malta, Patrick
1990-06-01
Project goals are to rehabilitate 1120 acres of big game (elk and mule deer, Odocoileus hemionus) winter range on the Hungry Horse and Spotted Bear Districts of Flathead National Forest lands adjacent to Hungry Horse Reservoir. This project represents the initial phase of implementation toward the mitigation goal. A minimum of 547 acres Trust-funded enhancements are called for in this plan. The remainder are part of the typical Forest Service management activities for the project area. Monitor and evaluate the effects of project implementation on the big game forage base and elk and mule deer populations in the project area.more » Monitor enhancement success to determine effective acreage to be credited against mitigation goal. Additional enhancement acreage will be selected elsewhere in the Flathead Forest or other lands adjacent'' to the reservoir based on progress toward the mitigation goal as determined through monitoring. The Wildlife Mitigation Trust Fund Advisory Committee will serve to guide decisions regarding future enhancement efforts. 7 refs.« less
The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh
NASA Astrophysics Data System (ADS)
Ayers, Jessica M.; Huq, Saleemul
2009-05-01
There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.
The value of linking mitigation and adaptation: a case study of Bangladesh.
Ayers, Jessica M; Huq, Saleemul
2009-05-01
There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.
Regulatory Promotion of Emergent CCS Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Lincoln; Uchitel, Kirsten; Johnson, David
2014-01-01
Despite the growing inevitability of climate change and the attendant need for mitigation strategies, carbon capture and sequestration (CCS) has yet to gain much traction in the United States. Recent regulatory proposals by the U.S. Environmental Protection Agency (EPA), limited in scope to new-build power plants, represent the only significant policy initiative intended to mandate diffusion of CCS technology. Phase I of this Project assessed barriers to CCS deployment as prioritized by the CCS community. That research concluded that there were four primary barriers: (1) cost, (2) lack of a carbon price, (3) liability, and (4) lack of a comprehensivemore » regulatory regime. Phase II of this Project, as presented in this Report, assesses potential regulatory models for CCS and examines where those models address the hurdles to diffusing CCS technology identified in Phase I. It concludes (1) that a CCS-specific but flexible standard, such as a technology performance standard or a very particular type of market-based regulation, likely will promote CCS diffusion, and (2) that these policies cannot work alone, but rather, should be combined with other measures, such as liability limits and a comprehensive CCS regulatory regime.« less
Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.
2009-01-01
An overview of significant Micrometeoroid and Orbital Debris (MMOD) impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. The concept of "Late Inspection" of the Nose Cap and Wing leading Edge (WLE) Reinforced Carbon Carbon (RCC) regions will be introduced. An alternative mated attitude with the International Space Station (ISS) on shuttle MMOD risk will also be presented. The significant threat mitigation effect of these two techniques will be demonstrated. The wing leading edge impact detection system, on-orbit repair techniques and disabled vehicle contingency plans will also be discussed.
Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; ...
2015-04-01
Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO 2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less
Maximizing mitigation benefits: research to support a mitigation cost framework-final report.
DOT National Transportation Integrated Search
2016-08-01
Tracking environmental costs in the project development process has been a challenging task for state : departments of transportation (DOTs). Previous research identified the need to accurately track and : subsequently estimate project costs resultin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Greg; Marotz, Brian L.; Dunnigan, James
''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biologicalmore » effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.« less
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
Forest environmental investments and implications for climate change mitigation.
Ralph J. Alig; Lucas S. Bair
2006-01-01
Forest environmental conditions are affected by climate change, but investments in forest environmental quality can be used as part of the climate change mitigation strategy. A key question involving the potential use of forests to store more carbon as part of climate change mitigation is the impact of forest investments on the timing and quantity of forest volumes...
Sea level rise under the Shared Socioeconomic Pathways (SSPs)
NASA Astrophysics Data System (ADS)
Schleussner, C. F.; Nauels, A.; Rogelj, J.; Mengel, M.; Meinshausen, M.
2017-12-01
In order to assess future sea level rise and its impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present Sea Level Rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative Forcing Targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for latest research on additional Antarctic rapid discharge dynamics from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986-2005 of 102 cm (likely range: 77 to 135 cm) for SSP1, 118 cm (90 to 151 cm) for SSP2, 118 cm (91 to 149 cm) for SSP3, 107 cm (81 to 137 cm) for SSP4, and 144 cm (112 to 184 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios is dominated by the mitigation targets and yield median estimates of 68 cm (56 to 87 cm) for FT 2.6 Wm-2, 76 cm (61 to 107 cm) for FT 3.4 Wm-2, 90 cm (68 to 120 cm) for FT 4.5 Wm-2, and 105 cm (79 to 136 cm) for FT 6.0 Wm-2. Average 2081-2100 annual rates of SLR are 6 mm/yr and 19 mm/yr for the FT 2.6 Wm-2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. For limiting median 2100 SSP SLR projections to below 80 cm, we find that 2050 cumulative CO2 emissions since pre-industrial should not exceed around 860 GtC, with the global coal phase-out nearly completed. For SSP mitigation scenarios, the median 2050 carbon price of 90 US$2005 tCO2-1 would correspond to a median 2100 SLR of around 80 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.
Emissions reduction scenarios in the Argentinean Energy Sector
Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; ...
2016-04-14
Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco
Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-14
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
Chen, Cong; Zhu, Ying; Zeng, Xueting; Huang, Guohe; Li, Yongping
2018-07-15
Contradictions of increasing carbon mitigation pressure and electricity demand have been aggravated significantly. A heavy emphasis is placed on analyzing the carbon mitigation potential of electric energy systems via tradable green certificates (TGC). This study proposes a tradable green certificate (TGC)-fractional fuzzy stochastic robust optimization (FFSRO) model through integrating fuzzy possibilistic, two-stage stochastic and stochastic robust programming techniques into a linear fractional programming framework. The framework can address uncertainties expressed as stochastic and fuzzy sets, and effectively deal with issues of multi-objective tradeoffs between the economy and environment. The proposed model is applied to the major economic center of China, the Beijing-Tianjin-Hebei region. The generated results of proposed model indicate that a TGC mechanism is a cost-effective pathway to cope with carbon reduction and support the sustainable development pathway of electric energy systems. In detail, it can: (i) effectively promote renewable power development and reduce fossil fuel use; (ii) lead to higher CO 2 mitigation potential than non-TGC mechanism; and (iii) greatly alleviate financial pressure on the government to provide renewable energy subsidies. The TGC-FFSRO model can provide a scientific basis for making related management decisions of electric energy systems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-01
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
NASA Astrophysics Data System (ADS)
Graham, Victoria; Laurance, Susan G.; Grech, Alana; McGregor, Andrew; Venter, Oscar
2016-11-01
REDD+ holds potential for mitigating emissions from tropical forest loss by providing financial incentives for carbon stored in forests, but its economic viability is under scrutiny. The primary narrative raised in the literature is that REDD+ will be of limited utility for reducing forest carbon loss in Southeast Asia, while the level of finance committed falls short of profits from alternative land-use activities in the region, including large-scale timber and oil palm operations. Here we assess the financial costs and carbon benefits of various REDD+ strategies deployed in the region. We find the cost of reducing emissions ranges from 9 to 75 per tonne of avoided carbon emissions. The strategies focused on reducing forest degradation and promoting forest regrowth are the most cost-effective ways of reducing emissions and used in over 60% of REDD+ projects. By comparing the financial costs and carbon benefits of a broader range of strategies than previously assessed, we highlight the variation between different strategies and draw attention to opportunities where REDD+ can achieve maximum carbon benefits cost-effectively. These findings have broad policy implications for Southeast Asia. Until carbon finance escalates, emissions reductions can be maximized from reforestation, reduced-impact logging and investing in improved management of protected areas. Targeting cost-efficient opportunities for REDD+ is important to improve the efficiency of national REDD+ policy, which in-turn fosters greater financial and political support for the scheme.
Using FIA data to inform United States forest carbon national-level accounting needs: 1990-2010
Linda S. Heath
2013-01-01
Forests are partially made up of carbon. Live vegetation, dead wood, forest floor, and soil all contain carbon. Through the process of photosynthesis, trees reduce carbon dioxide to carbohydrates and store the carbon in wood. By removing carbon dioxide from the atmosphere, forests mitigate climate change that may be brought on by increased atmospheric CO2...
Critical success factors in infrastructure projects
NASA Astrophysics Data System (ADS)
Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; Mohd Rahim, E. M. Roodienyanto
2017-11-01
Construction of infrastructure project is different from buildings. The main difference is term of project site where infrastructure project need to command a long stretch while building mostly confine to a limited area. As such factors that are critical to infrastructure project may not be that significant to building project and vice versa. Flood mitigation can be classified under infrastructure projects under which their developments are planned by the government with the specific objective to reduce or avoid the negative effects of flood to the environment and livelihood. One of the indicators in project success is delay. The impact of project delay in construction industry is significant that it decelerates the projects implementation, specifically the government projects. This study attempted to identify and compare the success factors between infrastructure and building projects, as such comparison rarely found in the current literature. A model of flood mitigation projects' success factors was developed by merging the experts' views and reports from the existing literature. The experts' views were obtained from the responses to open-ended questions on the required fundamentals to achieve successful completion of flood mitigation projects. An affinity analysis was applied to these responses to develop the model. The developed model was then compared to the established success factors found in building project, extracted from the previous studies to identify the similarities and differences between the two models. This study would assist the government and construction players to become more effective in constructing successful flood mitigation projects for the future practice in a flood-prone country like Malaysia.
Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated carbon dioxide
USDA-ARS?s Scientific Manuscript database
A major goal of climate change research is to understand whether and how terrestrial ecosystems can sequester more carbon to mitigate rising atmospheric carbon dioxide (CO2) levels. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric CO2 has been assumed to be a major mecha...
The challenge of carbon dioxide removal for EU policy-making
NASA Astrophysics Data System (ADS)
Scott, Vivian; Geden, Oliver
2018-05-01
Most scenarios to meet the Paris Agreement require negative emissions technologies. The EU has assumed a global leadership role in mitigation action and low-carbon energy technology development and deployment, but carbon dioxide removal presents a serious challenge to its low-carbon policy paradigm and experience.
Humphries Choptiany, John Michael; Pelot, Ronald
2014-09-01
Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life-cycle assessments and cost-benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil-fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high-level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions. © 2014 Society for Risk Analysis.
A conceptual framework for hydropeaking mitigation.
Bruder, Andreas; Tonolla, Diego; Schweizer, Steffen P; Vollenweider, Stefan; Langhans, Simone D; Wüest, Alfred
2016-10-15
Hydropower plants are an important source of renewable energy. In the near future, high-head storage hydropower plants will gain further importance as a key element of large-scale electricity production systems. However, these power plants can cause hydropeaking which is characterized by intense unnatural discharge fluctuations in downstream river reaches. Consequences on environmental conditions in these sections are diverse and include changes to the hydrology, hydraulics and sediment regime on very short time scales. These altered conditions affect river ecosystems and biota, for instance due to drift and stranding of fishes and invertebrates. Several structural and operational measures exist to mitigate hydropeaking and the adverse effects on ecosystems, but estimating and predicting their ecological benefit remains challenging. We developed a conceptual framework to support the ecological evaluation of hydropeaking mitigation measures based on current mitigation projects in Switzerland and the scientific literature. We refined this framework with an international panel of hydropeaking experts. The framework is based on a set of indicators, which covers all hydrological phases of hydropeaking and the most important affected abiotic and biotic processes. Effects of mitigation measures on these indicators can be predicted quantitatively using prediction tools such as discharge scenarios and numerical habitat models. Our framework allows a comparison of hydropeaking effects among alternative mitigation measures, to the pre-mitigation situation, and to reference river sections. We further identified key issues that should be addressed to increase the efficiency of current and future projects. They include the spatial and temporal context of mitigation projects, the interactions of river morphology with hydropeaking effects, and the role of appropriate monitoring to evaluate the success of mitigation projects. Copyright © 2016 Elsevier B.V. All rights reserved.
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance with... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
NASA Astrophysics Data System (ADS)
Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj
2017-04-01
Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate related events and due to overgrazing. The peat degradation causes significant losses of carbon store, GHG emissions and is followed by changes in water balance and water composition. The issue arises if such a type of ecosystems as peatlands could be a subject for ecosystem restoration in this arid and subhumid climate. Could it be considered as measure for climate change mitigation and adaptation? With funding opportunities from the Asian Development Bank a pilot project for peatland restoration had been launched in 2016 in Khashaat soum, Arkhangai aimag in Central Mongolia. The pilot aimed to merge local interests of herders with global targets of climate change mitigation. The following questions are addressed: what are the losses of natural functions and ecosystem services of peatland; what are expectations and demands of local communities and incentives for their involvement; how should and could look the target ecosystem; what are the technical solutions in order to achieve the target ecosystem characteristics; and what are the parameters for monitoring to assess the success of the project? The comprehensive baseline study addressed both natural and social aspects. The conclusions are: most of peat in the study area had been mineralised and has turned to organic rich soil with carbon content between 20 to 40 %, the key sources of water - small springs - are partly destroyed by cattle; the permafrost disappeared in this area and could not be the subject for restoration; local herders understand the value of peatland as water source and had carried out some voluntary activities for water storage and regulation such as dam construction; nevertheless there is no understanding of functional particularities of peatland ecosystem and restoration efforts are not effective. Following the baseline study the concept for ecosystem restoration project had been developed. The approach was to merge community based solution with scientific approaches. Restoration in subhumid conditions should avoid creation of open water surfaces, like channels or reservoirs, and deal with integrative ecosystem management. The restoration concept involved fencing of springs, preventing erosion and enhancing water accumulation in soil by cascades of small dams and other small scale ecological solutions. At the same time to meet the needs of local herders, it was decided to repair the dam, constructed by herders, even if it has little value for peatland restoration. The engineering design is now ready and will be implemented next months. The last part of the pilot is monitoring. The parameters determined in the baseline study are included in monitoring program to help to evaluate: carbon sequestration rate, GHG emission reduction, water retention, soil humidity, pasture productivity, social integrity and impact on livelihoods.
Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten
2017-07-15
Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantifying the biophysical climate change mitigation potential of Canada's forest sector
NASA Astrophysics Data System (ADS)
Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.
2014-07-01
The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.
NASA Astrophysics Data System (ADS)
Yager, D. B.; Burchell, A.; Robinson, R.; Odell, S.; Dick, R. P.; Johnson, C. A.; Hidinger, J.; Rathke, D.
2007-12-01
There is now widespread agreement that, if the climate is to be stabilized, then net greenhouse gas emissions must be greatly reduced (IPCC, 2007). The need to reduce net CO2 emissions plus the possible economic and environmental ramifications of not addressing climate change have stimulated important atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. Soils represent a potentially large and environmentally significant natural carbon reservoir. Increasing the natural terrestrial sequestration potential (NTS) of soils is among the seven, "Sokolow CO2 stabilization wedges' or carbon management strategies needed to thwart doubling of atmospheric CO2. Additionally, high plains to subalpine temperate soils tend to be less susceptible to baseline C pool declines due to global warming than are warmer regions and are important ecosystems in which to quantify soil carbon storage capacity. To examine the potential of magnesium silicate-bearing soils to sequester additional carbon, we sampled 60 high plains prairie to subalpine forest soil horizons derived from weathering of Tertiary-age dacite-andesite- basalt compositions in Colorado, U.S.A.: the San Luis Valley, San Juan Volcanic Field, Grand Mesa, White River- Roan Plateau (Flat Tops), Rocky Mountain National Park, Front Range and propylitically-altered terrain in the western San Juan Volcanic field containing secondary magnesium silicates (chlorite-species). Data for C, N, O (total conc., isotopes), metals, major and trace elements, Hg, S, microbial enzymes (β-glucosidase, arylsulfatase, acid neutralizing capacity (ANC), and 14C radiocarbon dates are reported. Samples demonstrate variable but elevated C relative to average global soil C. In particular, the propylitically-altered rocks have a high instantaneous ANC in laboratory tests (> 20 kg/ton CaCO3 equivalent) and derivative forest soils containing low-temperature charcoal "burn" horizons have high total organic carbon contents (12-14 Wt.% in the A-B horizons; 0 to 30 cm). These data are important to understanding the carbon sequestration potential that soils derived from intermediate to mafic igneous rocks can provide. Additionally, for range or forest management and mine waste remediation scenarios, this data suggests C mitigation efforts may be augmented by 'geomimicry' scenarios whereby projects model and enhance natural processes that support CO2 sequestration.
Using land to mitigate climate change: hitting the target, recognizing the trade-offs.
Reilly, John; Melillo, Jerry; Cai, Yongxia; Kicklighter, David; Gurgel, Angelo; Paltsev, Sergey; Cronin, Timothy; Sokolov, Andrei; Schlosser, Adam
2012-06-05
Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can play in a global mitigation strategy to stabilize Earth's average temperature within 2 °C of the preindustrial level and their impacts on agriculture. We show that an ambitious global Energy-Only climate policy that includes biofuels would likely not achieve the 2 °C target. A thought-experiment where the world ideally prices land carbon fluxes combined with biofuels (Energy+Land policy) gets the world much closer. Land could become a large net carbon sink of about 178 Pg C over the 21st century with price incentives in the Energy+Land scenario. With land carbon pricing but without biofuels (a No-Biofuel scenario) the carbon sink is nearly identical to the case with biofuels, but emissions from energy are somewhat higher, thereby results in more warming. Absent such incentives, land is either a much smaller net carbon sink (+37 Pg C - Energy-Only policy) or a net source (-21 Pg C - No-Policy). The significant trade-off with this integrated land-use approach is that prices for agricultural products rise substantially because of mitigation costs borne by the sector and higher land prices. Share of income spent on food for wealthier regions continues to fall, but for the poorest regions, higher food prices lead to a rising share of income spent on food.
Managing Carbon on Federal Public Lands: Opportunities and Challenges in Southwestern Colorado.
Dilling, Lisa; Kelsey, Katharine C; Fernandez, Daniel P; Huang, Yin D; Milford, Jana B; Neff, Jason C
2016-08-01
Federal lands in the United States have been identified as important areas where forests could be managed to enhance carbon storage and help mitigate climate change. However, there has been little work examining the context for decision making for carbon in a multiple-use public land environment, and how science can support decision making. This case study of the San Juan National Forest and the Bureau of Land Management Tres Rios Field Office in southwestern Colorado examines whether land managers in these offices have adequate tools, information, and management flexibility to practice effective carbon stewardship. To understand how carbon was distributed on the management landscape we added a newly developed carbon map for the SJNF-TRFO area based on Landsat TM texture information (Kelsey and Neff in Remote Sens 6:6407-6422. doi: 10.3390/rs6076407 , 2014). We estimate that only about 22 % of the aboveground carbon in the SJNF-TRFO is in areas designated for active management, whereas about 38 % is in areas with limited management opportunities, and 29 % is in areas where natural processes should dominate. To project the effects of forest management actions on carbon storage, staff of the SJNF are expected to use the Forest Vegetation Simulator (FVS) and extensions. While identifying FVS as the best tool generally available for this purpose, the users and developers we interviewed highlighted the limitations of applying an empirically based model over long time horizons. Future research to improve information on carbon storage should focus on locations and types of vegetation where carbon management is feasible and aligns with other management priorities.
Managing Carbon on Federal Public Lands: Opportunities and Challenges in Southwestern Colorado
NASA Astrophysics Data System (ADS)
Dilling, Lisa; Kelsey, Katharine C.; Fernandez, Daniel P.; Huang, Yin D.; Milford, Jana B.; Neff, Jason C.
2016-08-01
Federal lands in the United States have been identified as important areas where forests could be managed to enhance carbon storage and help mitigate climate change. However, there has been little work examining the context for decision making for carbon in a multiple-use public land environment, and how science can support decision making. This case study of the San Juan National Forest and the Bureau of Land Management Tres Rios Field Office in southwestern Colorado examines whether land managers in these offices have adequate tools, information, and management flexibility to practice effective carbon stewardship. To understand how carbon was distributed on the management landscape we added a newly developed carbon map for the SJNF-TRFO area based on Landsat TM texture information (Kelsey and Neff in Remote Sens 6:6407-6422. doi: 10.3390/rs6076407, 2014). We estimate that only about 22 % of the aboveground carbon in the SJNF-TRFO is in areas designated for active management, whereas about 38 % is in areas with limited management opportunities, and 29 % is in areas where natural processes should dominate. To project the effects of forest management actions on carbon storage, staff of the SJNF are expected to use the Forest Vegetation Simulator (FVS) and extensions. While identifying FVS as the best tool generally available for this purpose, the users and developers we interviewed highlighted the limitations of applying an empirically based model over long time horizons. Future research to improve information on carbon storage should focus on locations and types of vegetation where carbon management is feasible and aligns with other management priorities.
NASA Astrophysics Data System (ADS)
Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.
2017-08-01
This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.
Revegetation of Reconstructed Reaches of the Provo River, Heber Valley, Utah
John A. Rice
2006-01-01
In 1999, the Utah Reclamation Mitigation and Conservation Commission began the Provo River Restoration Project to create a more naturally functioning riverine ecosystem between Jordanelle Dam and Deer Creek Reservoir. The purpose of the project was to mitigate for past impacts to riverine, wetland, and riparian habitats caused by the Central Utah Project and other...
Are the impacts of land use on warming underestimated in climate policy?
NASA Astrophysics Data System (ADS)
Mahowald, Natalie M.; Ward, Daniel S.; Doney, Scott C.; Hess, Peter G.; Randerson, James T.
2017-09-01
While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.
PERSPECTIVE: REDD pilot project scenarios: are costs and benefits altered by spatial scale?
NASA Astrophysics Data System (ADS)
Carlson, Kimberly M.; Curran, Lisa M.
2009-09-01
Kimberly M Carlson Payments for reducing carbon emissions due to deforestation and degradation (REDD) have garnered considerable global interest and investments. These financial incentives aim to alter the drivers of land use change by reducing opportunity costs of retaining forest cover, and are often promoted as multipartite solutions that not only generate profits and reduce carbon emissions but provide benefits for human development and biodiversity. Currently, the United Nations Framework Convention on Climate Change (UNFCCC) is debating a post-Kyoto protocol with national or sub-national emission reduction targets. Anticipating the inclusion of REDD in this agreement, >80% of pilot REDD projects are being established in tropical regions (table 1). While the capacity of REDD projects to meet their stated objectives must be assessed post- implementation, land use change models are powerful tools for generating potential outcomes from these pilot initiatives. Table 1. Extent and emissions reductions for all REDD projects as reported by Ecosystem Marketplace, which maintains a comprehensive and up-to-date inventory of REDD projects that are selling credits and/or are verified by a third-party verifier. Adapted from Forest Carbon Portal (2009). Geographical zoneContinentProjects (#) Area (km2) Emissions reductions (Mt C) Tropical and Subtropical Africa2775019.50 Asia28100109.60 South America 9183 880278.24 TemperateAustralia1140.18 North America115N/A Totals15199 759407.52 In this issue of ERL, Gaveau et al (2009) use a spatially-explicit model to explore the potential of a REDD pilot project in northern Sumatra, Indonesia, to reduce deforestation and conserve orangutan biodiversity. This project is conceived by the Provincial Government of Aceh, financed by Merrill Lynch, and co-managed by carbon trading firm Carbon Conservation and NGO Flora and Fauna International. Project managers estimate CO2 emissions reductions at 3.4 Mt y-1 over 30 years across a 7500 km2 area (Forest Carbon Portal 2009). From a time-series of Landsat satellite images, Gaveau et al calculate deforestation rates from 1990-2000 and 2000-2006. They apply these annual rates to deforestation probability maps, generated from forest condition in 2006 and six static spatial variables, to predict potential locations of future deforestation through 2030 under three different scenarios: (i) a business-as- usual with no REDD project; (ii) the current 7500 km2 project; and (iii) an extensive 65 000 km2 REDD scheme extending across the Aceh and Sumatra Utara provinces. Gaveau et al's chief contribution is identifying locations where forest carbon projects potentially have the greatest benefits for forest and orangutan conservation. By processing Landsat satellite imagery - now freely available - with relatively few spatial model inputs, this approach also has great potential for widespread application in tropical countries developing historical deforestation baselines. Yet Landsat satellite data also impose limitations for REDD. For example, Gaveau et al are unable to calculate forest degradation, which is highly problematic both to define and detect with Landsat imagery, yet critical especially in Indonesia with extensive logged forests (Curran et al 2004, Ramankutty et al 2007, Asner et al 2006). Nevertheless, Landsat remains one of the most appropriate satellite data products available for countries calculating previous rates of forest change. Assuming that technical roadblocks to REDD are overcome, another challenge surrounds assessing the feasibility of emission reduction scenarios, including those presented by Gaveau et al. Their estimates show that carbon and biodiversity gains would be 6- to 7-fold greater if the pilot project encompassed the 65 000 km2 northern Sumatra region. Yet, developers chose to implement this REDD project across 7500 km2, ~ 10% of Gaveau et al's expanded scenario region. If REDD programs are to be realized across large spatial scales (e.g., provinces/states), what factors constrain effective implementation? First, high transaction costs and investment risks appear to be major barriers to establishing carbon concessions across large, heterogeneous regions. Identifying who should receive compensation as well as negotiating transparent and effective payment arrangements, is at best challenging especially with ambiguous land use rights and government jurisdiction in Indonesia (Ebeling and Yasué 2008). Protecting fragmented forests from multiple threats of logging, agriculture, and fire is fraught with complexities; who should be held accountable for defending 65 000 km2 from fire especially during ENSO- associated droughts (Siegert et al 2001, Langner and Siegert 2008)? REDD's effectiveness will require support from people who live in and near REDD projects; Gaveau et al address only biodiversity and forest loss in their paper, but incorporating the potential effects of REDD programs on livelihoods and social dynamics is one of the most critical components of effective assessments via scenario-building and modeling (Soares-Filho et al 2006). Another major obstacle to establishing REDD across large regions is the opportunity costs of carbon concessions. Recent estimates show that profits from protecting aboveground biomass for carbon payments in Indonesian non-peat forests are far below the benefits garnered from converting these forests to plantation agriculture (Butler et al 2009). Yet in order to mitigate forest conversion as proposed by Gaveau et al, carbon must compete with alternative high-value commodities (e.g., palm oil). Although forest carbon credits currently are traded in voluntary markets, carbon prices are considerably higher in compliance markets than in voluntary markets (World Bank 2008). If the UNFCCC generates consensus in December 2009 incorporating REDD in formal market-based trading mechanisms to meet compliance targets, REDD may become a financially competitive land use option even in highly-threatened lowland forests, including those in northern Sumatra. Ultimately, REDD implementation is an iterative process, requiring regular appraisals and improvements at local (i.e., REDD projects) through international (i.e., UNFCCC) levels. The overarching value of REDD pilot initiatives such as this groundbreaking Aceh project and Gaveau et al's innovative assessments is to identify suitable approaches as well as shortcomings, allowing revised and refined efforts that will mitigate forest degradation via financial mechanisms. The next iteration of REDD program evaluations will also need to incorporate: (i) empirical measurements of carbon stock change attributed to forest degradation; (ii) evaluations of economic incentives for a diverse suite of agents such as local and urban communities as well as the private sector; and, (iii) explicitly consider the fluctuating price of carbon vis-à-vis competing commodity prices. References Asner G P, Broadbent E N, Oliveira P J C, Keller M, Knapp D E and Silva J N M 2006 Condition and fate of logged forests in the Brazilian Amazon Proc. Natl Acad. Sci. USA 103 12947-50 Butler R A, Koh L P and Ghazoul J 2009 REDD in the red: palm oil could undermine carbon payment schemes Conserv. Lett. 2 67-73 Curran L M, Trigg S N, Mcdonald A K, Astiani D, Hardiono Y M, Siregar P, Caniago I and Kasischke E 2004 Lowland forest loss in protected areas of Indonesian Borneo Science 303 1000-3 Ebeling J and Yasué M 2008 Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits Phil. Trans. R. Soc. B 363 1917-24 Forest Carbon Portal 2009 Forest Carbon Inventory Project www.forestcarbonportal.com Gaveau D, Wich S, Epting J, Juhn D, Kanninen M and Leader-Williams N 2009 The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation Environ. Res. Lett. 4 034013 Langner A and Siegert F 2009 Spatiotemporal fire occurrence in Borneo over a period of 10 years Glob. Change Biol. 15 48-62 Ramankutty N, Gibbs H K, Achard F, Defries R, Foley J A and Houghton R A 2007 Challenges to estimating carbon emissions from tropical deforestation Glob. Change Biol. 13 51-66 Siegert F, Ruecker G, Hinrichs A and Hoffmann A A 2001 Increased damage from fires in logged forests during droughts caused by El Nino Nature 414 437-40 Soares-Filho B S, Nepstad D C, Curran L M, Cerqueira G C, Garcia R A, Ramos C A, Voll E, Mcdonald A, Lefebvre P and Schlesinger P 2006 Modelling conservation in the Amazon basin Nature 440 520-3 World Bank 2008 State and Trends of the Carbon Market 2008 (Washington, DC: World Bank)
NASA Astrophysics Data System (ADS)
Di Vittorio, Alan; Mao, Jiafu; Shi, Xiaoying
2016-04-01
Several climate adaptation and mitigation strategies incorporate land use and land cover change to address global carbon balance and also food, fuel, fiber, and water resource sustainability. However, Land Use and Land Cover Change (LULCC) are not consistent across the CMIP5 model simulations because only the land use input was harmonized. Differences in LULCC impede understanding of global change because such differences can dramatically alter land-atmosphere mass and energy exchange in response to differences in associated use and distribution of land resources. For example, the Community Earth System Model (CESM) overestimates 2005 atmospheric CO2 concentration by 18 ppmv, and we explore the contribution of historical LULCC to this bias in relation to the effects of CO2 fertilization and nitrogen deposition on terrestrial carbon. Using identical land use input, a chronologically referenced LULCC that accounts for pasture, as opposed to the default year-2000 referenced LULCC, increases this bias to 27 ppmv because more forest needs to be cleared for land use. Assuming maximum forest retention for all land conversion reduces the new bias to ~21 ppmv, while minimum forest retention increases the new bias to ~32 ppmv. Corresponding ecosystem carbon changes from the default in 2005 are approximately -28 PgC, -10 PgC, and -43 PgC, respectively. This 33 PgC uncertainty range due to maximizing versus minimizing forest area is 66% of the estimated 50 PgC gain in ecosystem carbon due to CO2 fertilization from 1850-2005, and 150% of the estimated 22 PgC gain due to nitrogen deposition. This range is also similar to the 28 PgC difference generated by changing the LULCC reference year and accounting for pasture. These results indicate that LULCC uncertainty is not only a major driver of bias in simulated atmospheric CO2, but that it could contribute even more to this bias than uncertainty in CO2 fertilization or nitrogen deposition. This highlights the need for more accurate LULCC scenarios in earth system simulations to provide robust historical and future projections of carbon and climate, especially when incorporating climate feedbacks on human and environmental systems. More accurate LULCC scenarios will also improve impact and resource sustainability analyses in the context of climate adaptation and mitigation strategies. These new scenarios will need to be developed and implemented as an integrated process with interdependent land use and land cover to adequately incorporate human and environmental drivers of LULCC.
Couvillion, Brady R.; Steyer, Gregory D.; Wang, Hongqing; Beck, Holly J.; Rybczyk, John M.
2013-01-01
Few landscape scale models have assessed the effects of coastal protection and restoration projects on wetland morphology while taking into account important uncertainties in environmental factors such as sea-level rise (SLR) and subsidence. In support of Louisiana's 2012 Coastal Master Plan, we developed a spatially explicit wetland morphology model and coupled it with other predictive models. The model is capable of predicting effects of protection and restoration projects on wetland area, landscape configuration, surface elevation, and soil organic carbon (SOC) storage under multiple environmental uncertainty scenarios. These uncertainty scenarios included variability in parameters such as eustatic SLR (ESLR), subsidence rate, and Mississippi River discharge. Models were run for a 2010–2060 simulation period. Model results suggest that under a “future-without-action” condition (FWOA), coastal Louisiana is at risk of losing between 2118 and 4677 km2 of land over the next 50 years, but with protection and restoration projects proposed in the Master Plan, between 40% and 75% of that loss could be mitigated. Moreover, model results indicate that under a FWOA condition, SOC storage (to a depth of 1 m) could decrease by between 108 and 250 million metric tons, a loss of 12% to 30% of the total coastwide SOC, but with the Master Plan implemented, between 35% and 74% of the SOC loss could be offset. Long-term maintenance of project effects was best attained in areas of low SLR and subsidence, with a sediment source to support marsh accretion. Our findings suggest that despite the efficacy of restoration projects in mitigating losses in certain areas, net loss of wetlands in coastal Louisiana is likely to continue. Model results suggest certain areas may eventually be lost regardless of proposed restoration investment, and, as such, other techniques and strategies of adaptation may have to be utilized in these areas.
Land use strategies to mitigate climate change in carbon dense temperate forests.
Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E
2018-04-03
Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.
Land use strategies to mitigate climate change in carbon dense temperate forests
Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.
2018-01-01
Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758
NASA Astrophysics Data System (ADS)
Haan, Steven; Ali, S. J.; Baxamusa, S. H.; Celliers, P. M.; Clark, D. S.; Kritcher, A. L.; Nikroo, A.; Stadermann, M.; Biener, J.; Wallace, R.; Smalyuk, V.; Robey, H.; Weber, C. R.; Huang, H.; Reynolds, H.; Carlson, L.; Rice, N.; Kline, J. L.; Simakov, A. N.; Yi, S. A.
2017-10-01
NIF indirect drive ablators (CH, Be, and high density carbon HDC) show hydrodynamic irregularity beyond that expected from surface features. Characterizing these seeds and estimating their growth is important in projecting performance. The resulting modulations can be measured in x-ray backlit implosions on NIF called Hydro Growth Radiography, and on Omega with 2D velocimetry. This presentation summarizes the experiments for the three ablators, along with simulations thereof and projections of the significance for NIF. For CH, dominant seeds are photo-induced oxidation, which might be mitigated with alumina coating. For Be, perturbations result from Ar and O contamination. For HDC, perturbations are seeded by shock propagation around melt, depend on shock strength, and may constrain the adiabat of future HDC implosions. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; ...
2017-09-09
This study presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development,more » regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO 2 emissions of the baseline scenarios range from about 25 GtCO 2 to more than 120 GtCO 2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m 2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar
This study presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development,more » regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO 2 emissions of the baseline scenarios range from about 25 GtCO 2 to more than 120 GtCO 2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m 2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).« less
Can reducing black carbon emissions counteract global warming?
Bond, Tami C; Sun, Haolin
2005-08-15
Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. We review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. We argue that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. We synthesize results from published climate-modeling studies to obtain a global warming potential for black carbon relative to that of CO2 (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. We find that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, we propose a role for black carbon in climate mitigation strategies that is consistent with the apparently conflicting arguments raised during our discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement.
Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.
ERIC Educational Resources Information Center
Brewer, Carol A.; Beiswenger, Jane M.
1993-01-01
Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…
Short- and long-term effects of fire on carbon in US dry temperate forest systems
Hurteau, Matthew D.; Brooks, Matthew L.
2011-01-01
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.
IDF Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
This document provides a review and status of activities conducted in support of the CH2MHill Hanford Group (CHG) Compensatory Mitigation Implementation Plan (MIP) for the Integrated Disposal Facility (IDF). It includes time-zero monitoring results for planting activities conducted in December 2007, annual survival monitoring for all planting years, a summary of artificial burrow observations, and recommendations for the successful completion of DOE mitigation commitments for this project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Allen B.
This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Yearmore » Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.« less
NASA Astrophysics Data System (ADS)
Ibrom, A.
2012-04-01
Nitrogen (N) fertilization, both intended and unintended, interacts with carbon cycling in terrestrial ecosystems, because the major processes of carbon (C) turnover depend on enzymes and thus on N availability. Comparisons between annual carbon dioxide flux (CO2) budgets and wet N deposition in forests showed a very strong linear increase of CO2 sequestration with increased N deposition. After considering total rather than only wet N deposition the ratios between increased carbon uptake and atmospheric N input were closer to C/N that can be found in wood. This suggested that the observed ecosystems responses to enhanced N inputs were mainly driven by plant responses. Finally, looking at changes in soil organic matter changes indicated even lower sensitivities of carbon sequestration to N addition. The objective of this study is to describe the mechanisms of the responses and the fate of the N in the ecosystem based on results from intensively investigated forest sites. Within the European NitroEuope-IP project the annual fluxes and pool sizes of C and N were estimated in four so-called forest supersites, including temperate coniferous forests in Southern Germany (Höglwald) and in the Netherlands (Speulderbos), one temperate beech forest close to Sorø on Zealand in Denmark and a boreal pine forest (Hyytiälä, Southern Finland). Due to differences in vegetation, bedrock and climate history, soils differed in acidity, organic matter content and biological activity; the levels of atmospheric N deposition varied from very low (Hyytiälä) to high (the other sites). Comparisons of N and C budgets of plants and soils confirmed a simple and stoichiometric effect dCuptake/dNdep = constant and in the order of magnitude of (C/N)wood for plants but not for soils and thus not for the forest ecosystems as a whole. Differences in soil processes as indicated by the differing C/N of SOM, differing amounts of N stored in the soil and considerable differences in N leaching rates even at comparable N deposition levels, showed clearly that the diversity of soils play a large role in the N use for C sequestration and thus for the beneficial effects of additional N loads on climate change mitigation effects in forests. An important conclusion of the study for intended forest fertilization is to consider N leaching to the ground water, which might even enhance the greenhouse effect through increased N2O emissions from streams, estuaries and coasts rather than mitigating it via increased CO2 sequestration at the forest site. Acknowledgements This work has been funded by the European Commission via the NitroEurope and CarboEurope integrated projects.
Future Arctic climate changes: Adaptation and mitigation time scales
NASA Astrophysics Data System (ADS)
Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.
2014-02-01
The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.
Forest carbon estimation using the Forest Vegetation Simulator: Seven things you need to know
Coeli M. Hoover; Stephanie A. Rebain
2011-01-01
Interest in options for forest-related greenhouse gas mitigation is growing, and so is the need to assess the carbon implications of forest management actions. Generating estimates of key carbon pools can be time consuming and cumbersome, and exploring the carbon consequences of management alternatives is often a complicated task. In response to this, carbon reporting...
King, Stagg; Harden, Jennifer; Manies, Kristen L.; Munster, Jennie; White, L. Douglas
2002-01-01
Soils in Alaska, and in high latitude terrestrial ecosystems in general, contain significant amounts of organic carbon, most of which is believed to have accumulated since the start of the Holocene about 10 ky before present. High latitude soils are estimated to contain 30-40% of terrestrial soil carbon (Melillo et al., 1995; McGuire and Hobbie, 1997), or ~ 300-400 Gt C (Gt = 1015 g), which equals about half of the current atmospheric burden of carbon. Boreal forests in particular are estimated to have more soil carbon than any other terrestrial biome (Post et al., 1982; Chapin and Matthews, 1993). The relations among net primary production, soil carbon storage, recurrent fire disturbance, nutrients, the hydrologic cycle, permafrost and geomorphology are poorly understood in boreal forest. Fire disturbance has been suggested to play a key role in the interactions among the complex biogeochemical processes influencing carbon storage in boreal forest soils (Harden et al., 2000; Zhuang et al., 2002). There has been an observed increase in fire disturbance in North American boreal black spruce (Picea mariana) forests in recent decades (Murphy et al., 1999; Kasichke et al., 2000), concurrent with increases in Alaskan boreal and arctic surface temperatures and warming of permafrost (Osterkamp and Romanofsky, 1999). Understanding the role of fire in long term carbon storage and how recent changes in fire frequency and severity may influence future high latitude soil carbon pools is necessary for those working to understand or mitigate the effects of global climate change.
NASA Astrophysics Data System (ADS)
Lutz, M. D.; Rybczyk, J.; Poppe, K.; Johnson, C.; Kaminsky, M.; Lanphear, M.
2017-12-01
Seagrass meadows provide more than habitat, biodiversity support, wave abatement, and water quality improvement; they help mitigate climate change by taking up and storing (sequestering) carbon (C), reportedly at rates only surpassed worldwide by salt marsh and mangrove ecosystems. Now that their climate mitigation capacity has earned seagrass ecosystems a place in the Verified Carbon Standard voluntary greenhouse gas program, accurate ecosystem carbon accounting is essential. Though seagrasses vary in carbon storage and accumulation greatly across species and geography, the bulk of data included in calculating global averages involves tropical and subtropical seagrasses. We know little regarding carbon stocks nor sequestration rates for eelgrass (Zostera marina) meadows in the Pacific Northwest. The intent of our study was to quantify carbon stocks and sequestration rates in the central Salish Sea of Washington State. We gathered sediment cores over three bays, as close to 1 m in depth as possible, both on foot and while scuba diving. We measured bulk density, carbon concentration, carbon stock, grain size, and carbon accumulation rate with depth. Results from our study show lower estimated Corg concentration (mean = 0.39% C, SE=0.01, range=0.11-1.75, SE=0.01), Corg stock (mean=24.46 Mg ha-1, SE=0.00, range=16.31-49.99.70), and C sequestration rates (mean=33.96 g m-2yr-1, range=11.4-49.5) than those reported in published studies from most other locations. Zostera marina is highly productive, yet does not seem to have the capacity to store C in its sediments like seagrasses in warmer climes. These data have implications in carbon market trading, when determining appropriate seagrass restoration site dimensions to offset emissions from transportation, industry, and seagrass habitat disturbance. Awareness of lower rates could prevent underestimating the area appropriate for mitigation or restoration.
NASA Astrophysics Data System (ADS)
Thorne, James H.; Huber, Patrick R.; O'Donoghue, Elizabeth; Santos, Maria J.
2014-05-01
Globally, urban areas are expanding, and their regional, spatially cumulative, environmental impacts from transportation projects are not typically assessed. However, incorporation of a Regional Advance Mitigation Planning (RAMP) framework can promote more effective, ecologically sound, and less expensive environmental mitigation. As a demonstration of the first phase of the RAMP framework, we assessed environmental impacts from 181 planned transportation projects in the 19 368 km2 San Francisco Bay Area. We found that 107 road and railroad projects will impact 2411-3490 ha of habitat supporting 30-43 threatened or endangered species. In addition, 1175 ha of impacts to agriculture and native vegetation are expected, as well as 125 crossings of waterways supporting anadromous fish species. The extent of these spatially cumulative impacts shows the need for a regional approach to associated environmental offsets. Many of the impacts were comprised of numerous small projects, where project-by-project mitigation would result in increased transaction costs, land costs, and lost project time. Ecological gains can be made if a regional approach is taken through the avoidance of small-sized reserves and the ability to target parcels for acquisition that fit within conservation planning designs. The methods are straightforward, and can be used in other metropolitan areas.
Urban cross-sector actions for carbon mitigation with local health co-benefits in China
NASA Astrophysics Data System (ADS)
Ramaswami, Anu; Tong, Kangkang; Fang, Andrew; Lal, Raj M.; Nagpure, Ajay Singh; Li, Yang; Yu, Huajun; Jiang, Daqian; Russell, Armistead G.; Shi, Lei; Chertow, Marian; Wang, Yangjun; Wang, Shuxiao
2017-10-01
Cities offer unique strategies to reduce fossil fuel use through the exchange of energy and materials across homes, businesses, infrastructure and industries co-located in urban areas. However, the large-scale impact of such strategies has not been quantified. Using new models and data sets representing 637 Chinese cities, we find that such cross-sectoral strategies--enabled by compact urban design and circular economy policies--contribute an additional 15%-36% to national CO2 mitigation, compared to conventional single-sector strategies. As a co-benefit, ~25,500 to ~57,500 deaths annually are avoided from air pollution reduction. The benefits are highly variable across cities, ranging from <1%-37% for CO2 emission reduction and <1%-47% for avoided premature deaths. These results, using multi-scale, multi-sector physical systems modelling, identify cities with high carbon and health co-benefit potential and show that urban-industrial symbiosis is a significant carbon mitigation strategy, achievable with a combination of existing and advanced technologies in diverse city types.
Sustainable biochar to mitigate global climate change
Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen
2010-01-01
Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722
Carbon Capture and Sequestration- A Review
NASA Astrophysics Data System (ADS)
Sood, Akash; Vyas, Savita
2017-08-01
The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.
Climate Forcing by Particles from Specific Sources, With Implications for No-regrets Scenarios
NASA Astrophysics Data System (ADS)
Bond, T. C.; Roden, C. A.; Subramanian, R.; Rasch, P. J.
2006-12-01
Mitigation-- the act of reducing human effects on climate and atmosphere by changing practices-- occurs one source at a time, one country at a time. Examining climate forcing produced by individual sources could be instructive. Two sectors contribute the largest fraction of black carbon aerosols from energy-related combustion: diesel engines and residential biofuel. We examine direct climate forcing by aerosols from these sources in four locations. Because source characterization is lacking, global emission inventories that include chemical composition of particles have often relied on expert judgment. We are gaining information on emission rates and climate- relevant properties through partnerships with projects related to air quality and health in Thailand and Honduras. Despite the presence of organic carbon, black carbon's constant companion, particles from both diesel and biofuel exert net climate warming. In particular, solid-fuel combustion produces material with weak light absorption and strong absorption spectral dependence. We discuss the expected emissions and properties of this material. Revised emission rates and properties are implemented in the Community Atmosphere Model, housed at the National Center for Atmospheric Research, and we tag particles emitted from individual sources. Which sources feed high-forcing regions, such as the area above the low-cloud deck in the North Pacific? Which particles might have been scavenged, and how does uncertainty in removal rates affect single-source forcing? Using model experiments, we estimate central values and uncertainties of direct radiative forcing from each source. Finally, we discuss the potential for reducing climate forcing by mitigating these individual sources. What is the range of benefits expected by addressing these sources, and what are the costs and obstacles? Only by representing uncertainty can we determine the likelihood that reducing these emissions represents a "no- regret" scenario for climate.
Compensatory Mitigation for Losses of Aquatic Resources; Final Rule
These regulations are designed to improve the effectiveness of compensatory mitigation to replace lost aquatic resource functions and area, and increase the efficiency and predictability of the mitigation project review process.
Albeni Falls Wildlife Mitigation : Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terra-Berns, Mary
The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue tomore » center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.« less
Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China
Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.
2011-01-01
Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.
Carbon Dioxide Emissions Associated with the Restoration of a Tidal Salt Marsh in Boston, MA
NASA Astrophysics Data System (ADS)
Bulpett, K.; Chen, R. F.
2016-02-01
Decades of land alterations had led to the encroachment of the invasive Phragmites australis in the Neponset River salt marshes in Boston, Massachusetts. An 11 acre area on the west bank of the Neponset River had been underlain by dredge spoil and was several feet higher in elevation than surrounding marsh; contributing to the domination of Phragmites which occurred at high enough densities to virtually exclude native vegetation species and posed as an ecological threat to the remaining marshlands. In 2005, restoration of this section involved excavating approximately 46,700 cubic yards of dredged materials; effectively lowering the marsh platform by 1.5 feet to reestablish tidal flushing. The removed materials were relocated to an area deemed unlikely for future restoration efforts on the northern portion of the site, containing relatively high elevations from previous dredge spoil deposits and dense strands of Phragmites. The mitigation has been considered successful as seawater inundation has promoted the replacement of the Phragmites with native Spartina alterniflora. The excavation and relocation of dredge materials exposed previously buried marsh sediments to the atmosphere. Our research study focuses on determining how much carbon dioxide (CO2) may have been released due to the disturbance of this sequestered carbon. Ten years after the restoration, in 2015, direct measurements of CO2 fluxes from the soils in the remediated site, an unrestored area, and the dredge spoils reveal differing CO2 emission rates between the three sites, measuring at 1.54 ± 0.70 μmol/m2/s, 5.48 ± 2.68 μmol/m2/s, 9.57 ± 2.09 μmol/m2/s respectively. Our measurements suggest that the restoration has resulted in a significant release of previously sequestered carbon to the atmosphere. Estimations of potential emissions and avoided emissions resulting from coastal restoration projects are necessary in evaluating mitigation policies and practices and managing conservation efforts of these essential ecosystems.
NASA Astrophysics Data System (ADS)
Rice, J.; Halter, T.; Hejazi, M. I.; Jensen, E.; Liu, L.; Olson, J.; Patel, P.; Vernon, C. R.; Voisin, N.; Zuljevic, N.
2014-12-01
Integrated assessment models project the future electricity generation mix under different policy, technology, and socioeconomic scenarios, but they do not directly address site-specific factors such as interconnection costs, population density, land use restrictions, air quality, NIMBY concerns, or water availability that might affect the feasibility of achieving the technology mix. Moreover, since these factors can change over time due to climate, policy, socioeconomics, and so on, it is important to examine the dynamic feasibility of integrated assessment scenarios "on the ground." This paper explores insights from coupling an integrated assessment model (GCAM-USA) with a geospatial power plant siting model (the Capacity Expansion Regional Feasibility model, CERF) within a larger multi-model framework that includes regional climate, hydrologic, and water management modeling. GCAM-USA is a dynamic-recursive market equilibrium model simulating the impact of carbon policies on global and national markets for energy commodities and other goods; one of its outputs is the electricity generation mix and expansion at the state-level. It also simulates water demands from all sectors that are downscaled as input to the water management modeling. CERF simulates siting decisions by dynamically representing suitable areas for different generation technologies with geospatial analyses (informed by technology-specific siting criteria, such as required mean streamflow per the Clean Water Act), and then choosing siting locations to minimize interconnection costs (to electric transmission and gas pipelines). CERF results are compared across three scenarios simulated by GCAM-USA: 1) a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail, 2) a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward nuclear, carbon capture and sequestration (CCS), and renewables, and 3) a repeat of scenario (2) in which CCS technologies are made unavailable—resulting in a large increase in the nuclear fraction of the mix.
NASA Astrophysics Data System (ADS)
Brown, S.; Nicholls, R. J.; Goodwin, P.; Haigh, I. D.; Lincke, D.; Vafeidis, A. T.; Hinkel, J.
2018-03-01
We use multiple synthetic mitigation sea-level scenarios, together with a non-mitigation sea-level scenario from the Warming Acidification and Sea-level Projector model. We find sea-level rise (SLR) continues to accelerate post-2100 for all but the most aggressive mitigation scenarios indicative of 1.5°C and 2.0°C. Using the Dynamic Interactive Vulnerability Assessment modeling framework, we project land and population exposed in the 1 in 100 year coastal flood plain under SLR and population change. In 2000, the flood plain is estimated at 540 × 103 km2. By 2100, under the mitigation scenarios, it ranges between 610 × 103 and 640 × 103 km2 (580 × 103 and 700 × 103 km2 for the 5th and 95th percentiles). Thus differences between the mitigation scenarios are small in 2100. However, in 2300, flood plains are projected to increase to between 700 × 103 and 960 × 103 km2 in 2300 (610 × 103 and 1290 × 103 km2) for the mitigation scenarios, but 1630 × 103 km2 (1190 × 103 and 2220 × 103 km2) for the non-mitigation scenario. The proportion of global population exposed to SLR in 2300 is projected to be between 1.5% and 5.4% (1.2%-7.6%) (assuming no population growth after 2100) for the aggressive mitigation and the non-mitigation scenario, respectively. Hence over centennial timescales there are significant benefits to climate change mitigation and temperature stabilization. However, sea-levels will continue to rise albeit at lower rates. Thus potential impacts will keep increasing necessitating adaptation to existing coastal infrastructure and the careful planning of new coastal developments.
NASA Astrophysics Data System (ADS)
Kaneda, Yoshiyuki
2015-04-01
Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST) Yoshiyuki KANEDA Disaster mitigation center Nagoya University/ Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Mustafa ELDIK Boğaziçi University, Kandilli Observatory and Earthquake Researches Institute (KOERI) and Members of SATREPS Japan-Turkey project The target of this project is the Marmara Sea earthquake after the Izmit (Kocaeli) Earthquake 1999 along to the North Anatolian fault. According to occurrences of historical Earthquakes, epicenters have moved from East to West along to the North Anatolian Fault. There is a seismic gap in the Marmara Sea. In Marmara region, there is Istanbul with high populations such as Tokyo. Therefore, Japan and Turkey can share our own experiences during past damaging earthquakes and we can prepare for future large Earthquakes and Tsunamis in cooperation with each other in SATREPS project. This project is composed of Multidisciplinary research project including observation researches, simulation researches, educational researches, and goals are as follows, ① To develop disaster mitigation policy and strategies based on Multidisciplinary research activities. ② To provide decision makers with newly found knowledge for its implementation to the current regulations. ③ To organize disaster education programs in order to increase disaster awareness in Turkey. ④ To contribute the evaluation of active fault studies in Japan. In this SATREPS project, we will integrate Multidisciplinary research results for disaster mitigation in Marmara region and .disaster education in Turkey.
Risky future for Mediterranean forests unless they undergo extreme carbon fertilization.
Gea-Izquierdo, Guillermo; Nicault, Antoine; Battipaglia, Giovanna; Dorado-Liñán, Isabel; Gutiérrez, Emilia; Ribas, Montserrat; Guiot, Joel
2017-07-01
Forest performance is challenged by climate change but higher atmospheric [CO 2 ] (c a ) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process-based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010-2100 for the high-emission RCP8.5 and low-emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected c a ; (ii) constant c a = 390 ppm, to test a purely climate-driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing c a , enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long-term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non-negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing c a and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss-performance at high c a above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO 2 ]. © 2017 John Wiley & Sons Ltd.
Identifying and Mitigating Risks in Security Sector Assistance for Africa’s Fragile States
2015-01-01
The Logframe Handbook: A Logical Framework Approach to Project Cycle Management , Washington, D.C., 2005. 34 Identifying and Mitigating Risks in SSA...Fragile States 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER... Project Unique Identification Code (PUIC) for the project that produced this document is HQD126409. v Contents Preface
NASA Astrophysics Data System (ADS)
Francois, Baptiste; Creutin, Jean-Dominique
2016-04-01
Today, most of the produced energy is generated from fossil energy sources (i.e. coal, petroleum). As a result, the energy sector is still the main source of greenhouse gas in the atmosphere. For limiting greenhouse gas emission, a transition from fossil to renewable energy is required, increasing gradually the fraction energy coming from variable renewable energy (i.e. solar power, wind power and run-of-the river hydropower, hereafter denoted as VRE). VRE penetration, i.e. the percentage of demand satisfied by variable renewables assuming no storage capacity, is hampered by their variable and un-controllable features. Many studies show that combining different VRE over space smoothes their variability and increases their global penetration by a better match of demand fluctuations. When the demand is not fully supplied by the VRE generation, backup generation is required from stored energy (mostly from dams) or fossil sources, the latter being associated with high greenhouse gas emission. Thus the VRE penetration is a direct indicator of carbon savings and basically depends on the VRE installed capacity, its mix features, and on the installed storage capacity. In this study we analyze the European transition to a low carbon electricity system. Over a selection of representative regions we analyze carbon saving trajectories as functions of VRE production and storage capacities for different scenarios mixing one to three VRE with non-renewables. We show substantial differences between trajectories when the mix of sources is far from the local optimums, when the storage capacity evolves. We bring new elements of reflection about the effect of transport grid features from local independent systems to a European "copper plate". This work is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/).
32 CFR 211.9 - Mitigation Options.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 2 2013-07-01 2013-07-01 false Mitigation Options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation Options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...
32 CFR 211.9 - Mitigation options.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Mitigation options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...
32 CFR 211.9 - Mitigation Options.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Mitigation Options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation Options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...
Soil organic carbon stock changes in the contiguous United States from 1920s to 2010s
NASA Astrophysics Data System (ADS)
Cao, B.; Grunwald, S.; Ferguson, H. J.; Hempel, J. W.; Xiong, X.; Patarasuk, R.; Ross, C. W.
2014-12-01
To investigate the changes of soil organic carbon (SOC) stocks is of great importance to understand soil carbon dynamics and develop greenhouse gas mitigation and adaptation strategies. There are research gaps in understanding how natural environmental and anthropogenic factors (such as socio-cultural and political/legislative) have provided positive and negative feedbacks on SOC stocks since the 1920s at continental scale. The objectives of this study were to 1) determine the temporal trends in SOC storage across the contiguous U.S.; 2) explore the factors that can explain if soils have acted as a carbon source or sink during the period from 1920s to 2010. We used two soil datasets: 1) National Characterization Soil Survey Database (NCSS) from 1924 to 2010, which includes a total of 14,493 site observations with mutiple soil horizons within 0-100 cm; 2) The data from the Rapid Carbon Assessment (RaCA) Project, containing a total of 6,409 site observations to the maximum depth of 100 cm (2010-2012). We also extracted environmental covariates (space-time layers) covering the U.S. from various sources (remote sensing, National Elevation Dataset, climate data from PRISM project, etc.) to those sites. Results show a fluctuating trend of SOC stocks from 4 kg m-2 in 1920-1930 to 6 kg m-2 in 2010 in the 0-20 cm profile, and from 9 kg m-2 in 1920-1930 to 17 kg m-2 in 2010 in the 0-100 cm profile, respectively. However, there had been a decrease of SOC stock from 1975 to 1985 in both the 0-20 cm and 0-100 cm profiles. Our analysis reveals relationships between SOC storage and major pivotal political/legislative and socio-cultural events as well as environmental factors. The variation of SOC across the contiguous U.S. was affected in some periods by environmental legislation while in others natural effects predominated. The SOC stock change assessment can be used to infer on the magnitude and past trends; and thus, allows some insight how past natural and anthropogenic conditions have interacted with soil carbon storage. These patterns are likely to be amplified under projected anthropogenic trajectories that are magnitude of orders larger in the future. Our results also highlight the importance to take measures to achieve a neutral carbon budget fostering soil carbon sequestration to enhance soil carbon natural capital.
Positive train control desense mitigation test : research phase 1.
DOT National Transportation Integrated Search
2016-05-01
Final report for Positive Train Control (PTC) Desense Mitigation Test Research project includes description of Northeast Corridor (NEC) PTC deployments, PTC radio desense scenarios, PTC radio desense mitigation approaches, PTC radio desense mitigatio...
Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, Jay; Garrow, Larry
2005-06-01
''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine themore » biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.« less
Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, Jay; Garrow, Larry
2004-06-01
''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determinemore » the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.« less
Mexican forest inventory expands continental carbon monitoring
Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro
2008-01-01
The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...
Injection of carbon dioxide into deep saline formations is seen as one possible technology for mitigating carbon emissions from utilities. The safety of the sequestered carbon dioxide is the focus of many studies with leakage through faults or abandoned wells as some of the main...
Land-use protection for climate change mitigation
NASA Astrophysics Data System (ADS)
Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp
2014-12-01
Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.
Perspectives on Carbon Capture and Sequestration in the United States
NASA Astrophysics Data System (ADS)
Wong-Parodi, Gabrielle Mei-Ling
Overall, this dissertation examines a sequence of important interconnected issues: the perspectives of potential and actual CCS host communities, the perspectives of the environmental community on the rationality of CCS as viable mitigation solution for the United States, and strategies for engaging with the public on CCS. Much of the research in this dissertation is original work addressing major interdisciplinary gaps in existing literature as well as in industry and government public engagement practice. Each of the chapters is a stand-alone paper that provides a unique contribution to a series of different types of carbon management technologies and academic disciplines. They are assembled together to provide a unique integrated evaluation of these related problems. Collectively, these chapters capture some of the major challenges facing mitigation technology engagement from the potentially time consuming need for careful social site characterization to the opportunities for using citizen-guided marketing methods to identify factors that may enhance effective public engagement. Chapters 2 and 3 are essays on the perspectives of potential and actual CCS host communities. Chapter 2 finds that host communities in California's Central Valley are more concerned with the social risks of hosting a CCS project (e.g. fear of neglect should something go wrong) rather than with the technical risks of the technology. Chapter 3 finds that host communities across the US are more concerned with social risks, and want a say in how those risks should be mitigated. This Chapter concludes with a discussion of how a 'social site characterization' conducted along side a traditional site characterization when evaluating the potential for a CCS project may be a good way to both encourage positive relationships with community members and mitigate potential concerns. Chapter 4 is an essay on the perspectives of the environmental community towards the potential of CCS as a viable mitigation solution in the US. This Chapter shows that environmental non-governmental organizations' position on CCS falls into one of four camps who believe: CCS should be developed and deployed in the near-term (Enthusiasts), CCS should be studied (Prudents), CCS will likely need to be deployed but only as a last resort (Reluctants), and CCS should not be deployed (Opponents). This Chapter finds that only Enthusiasts plan on educating the public about the technology in the near-term, however their ability to influence the public may be limited because they are more adept at targeting policymakers (not as experienced with the public) and receive much of their funding from industry (not seen as particularly trustworthy). In this dissertation, Chapter 5 is an essay on using citizen-guided emotional messages about CCS as a way to effectively communicate with the energy veteran public. This Chapter finds that Wyoming citizens believe information about CCS presented within an emotionally self-referent framework is likely to be a more persuasive way to garner support for or rejection of the technology amongst the Wyoming public than just the presentation of the same information alone.
Ocean acidification alters the material properties of Mytilus edulis shells.
Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie
2015-02-06
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.
2015-01-01
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.
Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.
2015-01-01
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal. PMID:26417074
NASA Astrophysics Data System (ADS)
Elias, P. O.; Faderin, A.
2014-12-01
Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, J.; Garrow, L.
Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possiblemore » conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.« less
Quantifying carbon footprint reduction opportunities for U.S. households and communities.
Jones, Christopher M; Kammen, Daniel M
2011-05-01
Carbon management is of increasing interest to individuals, households, and communities. In order to effectively assess and manage their climate impacts, individuals need information on the financial and greenhouse gas benefits of effective mitigation opportunities. We use consumption-based life cycle accounting techniques to quantify the carbon footprints of typical U.S. households in 28 cities for 6 household sizes and 12 income brackets. The model includes emissions embodied in transportation, energy, water, waste, food, goods, and services. We further quantify greenhouse gas and financial savings from 13 potential mitigation actions across all household types. The model suggests that the size and composition of carbon footprints vary dramatically between geographic regions and within regions based on basic demographic characteristics. Despite these differences, large cash-positive carbon footprint reductions are evident across all household types and locations; however, realizing this potential may require tailoring policies and programs to different population segments with very different carbon footprint profiles. The results of this model have been incorporated into an open access online carbon footprint management tool designed to enable behavior change at the household level through personalized feedback.
Woolf, Dominic; Lehmann, Johannes; Lee, David R
2016-10-21
Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg -1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg -1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.
Woolf, Dominic; Lehmann, Johannes; Lee, David R.
2016-01-01
Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg−1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg−1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred. PMID:27767177
Public perceptions about climate change mitigation in British Columbia's forest sector
Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors. PMID:29684041
Public perceptions about climate change mitigation in British Columbia's forest sector.
Peterson St-Laurent, Guillaume; Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.
Pollution mitigation and carbon sequestration by an urban forest.
Brack, C L
2002-01-01
At the beginning of the 1900s, the Canberra plain was largely treeless. Graziers had carried out extensive clearing of the original trees since the 1820s leaving only scattered remnants and some plantings near homesteads. With the selection of Canberra as the site for the new capital of Australia, extensive tree plantings began in 1911. These trees have delivered a number of benefits, including aesthetic values and the amelioration of climatic extremes. Recently, however, it was considered that the benefits might extend to pollution mitigation and the sequestration of carbon. This paper outlines a case study of the value of the Canberra urban forest with particular reference to pollution mitigation. This study uses a tree inventory, modelling and decision support system developed to collect and use data about trees for tree asset management. The decision support system (DISMUT) was developed to assist in the management of about 400,000 trees planted in Canberra. The size of trees during the 5-year Kyoto Commitment Period was estimated using DISMUT and multiplied by estimates of value per square meter of canopy derived from available literature. The planted trees are estimated to have a combined energy reduction, pollution mitigation and carbon sequestration value of US$20-67 million during the period 2008-2012.
IDENTIFICATION OF CANDIDATE HOUSES FOR NORTH FLORIDA PORTION OF THE FLORIDA RADON MITIGATION PROJECT
The report gives results of a study to locate candidate houses for a proposed radon mitigation research and demonstration project in North Florida. he effort involved: 1) identification of target geographical areas, 2) radon monitoring in identified clusters, and 3) house charact...
DOT National Transportation Integrated Search
2011-01-01
This report presents the mitigation strategies and demonstration/pilot projects that are recommended to enhance performance and reduce the occurrence of pavements exhibiting accelerated aging or deterioration. The report is grouped into two parts, fo...
A review on disaster risk mitigation in the oil and gas project
NASA Astrophysics Data System (ADS)
Rodhi, N. N.; Anwar, N.; Wiguna, I. P. A.
2018-01-01
In addition to the very complex risks, hazards potentially lead to disasters in the oil and gas projects. These risks can certainly be anticipated with the application of risk management, but an unsystematic and ineffective implementation of risk management will still bring adverse impacts. According to the eleven risk management principles in ISO 31000:2009, the application of risk management must pay attention to all aspects, both internal and external factors. Thus, this paper aims to identify variables that could affect the disaster mitigation efforts of oil and gas projects. This research began with literature study to determine the problems of risk management in oil and gas projects, so the affecting variables as the study objectives can be specified subsequently based on the literature review as well. The variables that must be considered in the efforts of disaster risk mitigation of oil and gas project are the risk factors and sustainability aspect.
Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity
NASA Technical Reports Server (NTRS)
Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.;
2016-01-01
Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.
Pasture management – Converting carbon in the air into something useful on the ground
USDA-ARS?s Scientific Manuscript database
Soil organic matter is a key indicator of agricultural productivity, water relations, nutrient cycling, biodiversity, and greenhouse gas mitigation potential. This presentation was made at the Iowa Grazing Conference to describe to what soil organic carbon is, how soil organic carbon affects other ...
The effects of climate sensitivity and carbon cycle interactions on mitigation policy stringency
Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect o...
Morgan L. Wiechmann; Matthew D. Hurteau; Malcolm P. North; George W. Koch; Lucie Jerabkova
2015-01-01
Forests sequester carbon from the atmosphere, helping mitigate climate change. In fire-prone forests, burn events result in direct and indirect emissions of carbon. High fire-induced tree mortality can cause a transition from a carbon sink to source, but thinning and prescribed burning can reduce fire severity and carbon loss when wildfire occurs. However, treatment...
Carbon farming in hot, dry coastal areas: an option for climate change mitigation
NASA Astrophysics Data System (ADS)
Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.
2012-10-01
We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 tonnes of carbon dioxide per hectare per year from the atmosphere (averaged over 20 yr). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to reduce significantly the current upward trend in atmospheric CO2 levels. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 € per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level.
The carbon footprint of traditional woodfuels
NASA Astrophysics Data System (ADS)
Bailis, Robert; Drigo, Rudi; Ghilardi, Adrian; Masera, Omar
2015-03-01
Over half of all wood harvested worldwide is used as fuel, supplying ~9% of global primary energy. By depleting stocks of woody biomass, unsustainable harvesting can contribute to forest degradation, deforestation and climate change. However, past efforts to quantify woodfuel sustainability failed to provide credible results. We present a spatially explicit assessment of pan-tropical woodfuel supply and demand, calculate the degree to which woodfuel demand exceeds regrowth, and estimate woodfuel-related greenhouse-gas emissions for the year 2009. We estimate 27-34% of woodfuel harvested was unsustainable, with large geographic variations. Our estimates are lower than estimates from carbon offset projects, which are probably overstating the climate benefits of improved stoves. Approximately 275 million people live in woodfuel depletion `hotspots’--concentrated in South Asia and East Africa--where most demand is unsustainable. Emissions from woodfuels are 1.0-1.2 Gt CO2e yr-1 (1.9-2.3% of global emissions). Successful deployment and utilization of 100 million improved stoves could reduce this by 11-17%. At US$11 per tCO2e, these reductions would be worth over US$1 billion yr-1 in avoided greenhouse-gas emissions if black carbon were integrated into carbon markets. By identifying potential areas of woodfuel-driven degradation or deforestation, we inform the ongoing discussion about REDD-based approaches to climate change mitigation.
Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M
2018-06-01
Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
A bottom-up approach to estimating cost elements of REDD+ pilot projects in Tanzania
2012-01-01
Background Several previous global REDD+ cost studies have been conducted, demonstrating that payments for maintaining forest carbon stocks have significant potential to be a cost-effective mechanism for climate change mitigation. These studies have mostly followed highly aggregated top-down approaches without estimating the full range of REDD+ costs elements, thus underestimating the actual costs of REDD+. Based on three REDD+ pilot projects in Tanzania, representing an area of 327,825 ha, this study explicitly adopts a bottom-up approach to data assessment. By estimating opportunity, implementation, transaction and institutional costs of REDD+ we develop a practical and replicable methodological framework to consistently assess REDD+ cost elements. Results Based on historical land use change patterns, current region-specific economic conditions and carbon stocks, project-specific opportunity costs ranged between US$ -7.8 and 28.8 tCOxxxx for deforestation and forest degradation drivers such as agriculture, fuel wood production, unsustainable timber extraction and pasture expansion. The mean opportunity costs for the three projects ranged between US$ 10.1 – 12.5 tCO2. Implementation costs comprised between 89% and 95% of total project costs (excluding opportunity costs) ranging between US$ 4.5 - 12.2 tCO2 for a period of 30 years. Transaction costs for measurement, reporting, verification (MRV), and other carbon market related compliance costs comprised a minor share, between US$ 0.21 - 1.46 tCO2. Similarly, the institutional costs comprised around 1% of total REDD+ costs in a range of US$ 0.06 – 0.11 tCO2. Conclusions The use of bottom-up approaches to estimate REDD+ economics by considering regional variations in economic conditions and carbon stocks has been shown to be an appropriate approach to provide policy and decision-makers robust economic information on REDD+. The assessment of opportunity costs is a crucial first step to provide information on the economic baseline situation of deforestation and forest degradation agents and on the economic incentives required to halt unsustainable land use. Since performance based REDD+ carbon payments decrease over time (as deforestation rates drop and for each saved ha of forest payments occur once), investments in REDD+ implementation have a crucial role in triggering sustainable land use systems by investing in the underlying assets and the generation of sustainable revenue streams to compensate for opportunity costs of land use change. With a potential increase in the land value due to effective REDD+ investments, expenditures in an enabling institutional environment for REDD+ policies are crucial to avoid higher deforestation pressure on natural forests. PMID:22877419
Buildings: Mitigation Opportunities with a Focus on Health Implications
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Addressing building energy use is the critical first step in any strategic plan for mitigating climate change. Buildings have a direct impact on estimated global climate change due to their large carbon ...
Designing advanced biochar products for maximizing greenhouse gas mitigation potential
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...
NASA Astrophysics Data System (ADS)
Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.
2018-03-01
The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.
Assessment of the Potential for Flux Estimation Using Concentration Data from Mobile Surveys
NASA Astrophysics Data System (ADS)
Gyenis, A.; Zahasky, C.; Moriarty, D. M.; Benson, S. M.
2014-12-01
Carbon capture and storage is a climate change mitigation technology with the potential to serve as a bridge technology as society transitions from a fossil fuel dependent energy system to a renewable energy dominated system. One of the greatest concerns associated with wide-scale adoption of carbon capture and storage technology is the risk of carbon dioxide leakage from sequestration reservoirs. Thus there is a need to develop efficient and effective strategies for monitoring and verification of geologically stored carbon dioxide. To evaluate the potential for estimating leakage fluxes based on mobile surveys, we establish correlations between concentration data and flux measurements made with a flux chamber. These correlations are then used to estimate leakage fluxes over a 70-meter long horizontal well buried approximately 1.8 meters below the surface at the Zero Emissions Research and Technology (ZERT) facility operated by Montana State University. The CO2 had a leakage rate of 0.15 t/d, which is comparable to a small leak in an industrial scale project (0.005% of a 1 Mt/yr storage project). A Picarro gas analyzer was used to measure 12CO2 and 13CO2 at heights of 3 cm above the ground surface. Previous studies (Moriarty, 2014) show that concentration data at this height provides a very high likelihood (>95%) of detecting leaks within a distance of 2.5 m of the leak. Measured concentration data show a noisy but significant correlation with flux measurements, thus providing the possibility to obtain rough estimates of leakage fluxes from mobile measurements. Moriarty, Dylan, 2014. Rapid Surface Detection of CO2 Leaks from Geologic Sequestration Sites. MS Thesis, Stanford University.
Listvenite logging on D/V CHIKYU: Hole BT1B, Oman Drilling Project
NASA Astrophysics Data System (ADS)
Kelemen, P. B.; Beinlich, A.; Morishita, T.; Greenberger, R. N.; Johnson, K. T. M.; Lafay, R.; Michibayashi, K.; Harris, M.; Phase I Science Party, T. O. D. P.
2017-12-01
Listvenite, quartz-carbonate altered ultramafic rock containing minor fuchsite (Cr-muscovite) forms by complete carbonation of peridotite and is thus an attractive objective for carbon mitigation studies. However, reaction controls and evolution of listvenite are still enigmatic. Here we present the first results of Phase 1 of the ICDP (International Continental Drilling Program) Oman Drilling Project and subsequent core logging using the analytical facilities on board the research vessel D/V CHIKYU. Hole BT1B contains 300 m of continuous drill core intersecting alluvium, listvenite-altered serpentinite, serpentinite, ophicarbonate and the underlying metamorphic sole of the Semail ophiolite, Oman. The drill core has been systematically investigated by visual core description, thin section petrography, X-ray fluorescence core logging, X-ray diffractometry, visible-shortwave infrared imaging spectroscopy and X-ray Computer Tomography. Our observations show that listvenite is highly variable in texture and color on the mm to m scale. Listvenite was visually categorized into 5 principal color groups: the dominant dark red (47 %), light red (19 %), orange (14 %), pale (2 %) and green (16 %). The presence of hematite/goethite results in dark reddish, red and orange hues. Light grey or pale colored listvenite lacks hematite and/or goethite veins and may represent the `true' listvenite. Green listvenite is characterized by the presence of cm-sized quartz-fuchsite intergrowths. Five zones of serpentinite, which vary in thickness between several tens of cm and 4 m, are intercalated within the massive listvenite of Hole BT1B. Gradational listvenite-serpentinite transition zones contain the ophicarbonate assemblage (magnesite + serpentine) and sometimes additional talc, representing intermediate carbonation reaction progress. Preservation of the former mesh texture and bastite after orthopyroxene in the listvenite suggest that the listvenite precursor had already been serpentinized prior to infiltration of the CO2-bearing alteration fluid.
Ji, Chunyi; Cao, Wenbin; Chen, Yong; Yang, Hongqiang
2016-11-12
The carbon sequestration of harvested wood products (HWP) plays an important role in climate mitigation. Accounting the carbon contribution of national HWP carbon pools has been listed as one of the key topics for negotiation in the United Nations Framework Convention on Climate Change. On the basis of the revised Production Approach of the Intergovernmental Panel on Climate Change (2013) (IPCC), this study assessed the accounting of carbon stock and emissions from the HWP pool in China and then analyzed its balance and contribution to carbon mitigation from 1960 to 2014. Research results showed that the accumulated carbon stock in China's HWP carbon pool increased from 130 Teragrams Carbon (TgC) in 1960 to 705.6 TgC in 2014. The annual increment in the carbon stock rose from 3.2 TgC in 1960 to 45.2 TgC in 2014. The category of solid wood products accounted for approximately 95% of the annual amount. The reduction in carbon emissions was approximately twelve times that of the emissions from the HWP producing and processing stage during the last decade. Furthermore, the amount of carbon stock and emission reduction increased from 23 TgC in 1960 to 76.1 TgC in 2014. The annual contribution of HWP could compensate for approximately 2.9% of the national carbon dioxide emissions in China.
Ji, Chunyi; Cao, Wenbin; Chen, Yong; Yang, Hongqiang
2016-01-01
The carbon sequestration of harvested wood products (HWP) plays an important role in climate mitigation. Accounting the carbon contribution of national HWP carbon pools has been listed as one of the key topics for negotiation in the United Nations Framework Convention on Climate Change. On the basis of the revised Production Approach of the Intergovernmental Panel on Climate Change (2013) (IPCC), this study assessed the accounting of carbon stock and emissions from the HWP pool in China and then analyzed its balance and contribution to carbon mitigation from 1960 to 2014. Research results showed that the accumulated carbon stock in China’s HWP carbon pool increased from 130 Teragrams Carbon (TgC) in 1960 to 705.6 TgC in 2014. The annual increment in the carbon stock rose from 3.2 TgC in 1960 to 45.2 TgC in 2014. The category of solid wood products accounted for approximately 95% of the annual amount. The reduction in carbon emissions was approximately twelve times that of the emissions from the HWP producing and processing stage during the last decade. Furthermore, the amount of carbon stock and emission reduction increased from 23 TgC in 1960 to 76.1 TgC in 2014. The annual contribution of HWP could compensate for approximately 2.9% of the national carbon dioxide emissions in China. PMID:27845760
Sharing global CO2 emission reductions among one billion high emitters
Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo
2009-01-01
We present a framework for allocating a global carbon reduction target among nations, in which the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we build up a global CO2 distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO2-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by “Business as Usual” projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO2 would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO2 emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled. PMID:19581586
Assessing net carbon sequestration on urban and community forests of northern New England, USA
Daolan Zheng; Mark J. Ducey; Linda S. Heath
2013-01-01
Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...
Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities
Francisco Escobedo; Sebastian Varela; Min Zhao; John E. Wagner; Wayne Zipperer
2010-01-01
Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and...
A. Paige Fischer; Susan Charnley
2010-01-01
Nonindustrial privateâor "family"âforests hold great potential for sequestering carbon and have received much attention in discussions about forestry-based climate change mitigation. However, little is known about social and cultural influences on owners' willingness to manage for carbon and respond to policies designed to encourage carbon-oriented...
Barriers to the development of forest carbon offsetting: Insights from British Columbia, Canada.
Peterson St-Laurent, Guillaume; Hagerman, Shannon; Hoberg, George
2017-12-01
In recent years, the provision of economic incentives through carbon financing and carbon offsetting has been central to efforts at forest carbon mitigation. However, notwithstanding their potentially important roles in climate policy, forest carbon offsets face numerous barriers which have limited widespread implementation worldwide. This paper uses the case study of the Canadian province of British Columbia to explore the barriers associated with achieving widespread implementation of forest carbon offsets in the next several decades. Drawing on interviews with experts from government, non-governmental organizations, the private sector and First Nations, six main barriers are identified and discussed: (1) deficiencies of carbon markets, (2) limited economic benefits, (3) uncertain climate effectiveness, (4) negative public opinion, (5) limited and uncertain property rights, and (6) governance issues. While respondents from different sectors agreed on various points, divergence was also observed, notably on the trade-off between generating environmentally sound offsets and promoting cost-effective ways to achieve mitigation. We discuss these differences in the context of the goals and objectives of different actors, and offer insights for understanding the uptake (or not) of carbon offset policies. Copyright © 2017 Elsevier Ltd. All rights reserved.