Sample records for carbon particles down-regulate

  1. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    PubMed

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  2. Emission factors from different burning stages of agriculture wastes in Mexico.

    PubMed

    Santiago-De la Rosa, Naxieli; Mugica-Álvarez, Violeta; Cereceda-Balic, Francisco; Guerrero, Fabián; Yáñez, Karen; Lapuerta, Magin

    2017-11-01

    Open-air burning of agricultural wastes from crops like corn, rice, sorghum, sugar cane, and wheat is common practice in Mexico, which in spite limiting regulations, is the method to eliminate such wastes, to clear the land for further harvesting, to control grasses, weeds, insects, and pests, and to facilitate nutrient absorption. However, this practice generates air pollution and contributes to the greenhouse effect. Burning of straws derived from the said crops was emulated in a controlled combustion chamber, hence determining emission factors for particles, black carbon, carbon dioxide, carbon monoxide, and nitric oxide throughout the process, which comprised three apparent stages: pre-ignition, flaming, and smoldering. In all cases, maximum particle concentrations were observed during the flaming stage, although the maximum final contributions to the particle emission factors corresponded to the smoldering stage. The comparison between particle size distributions (from laser spectrometer) and black carbon (from an aethalometer) confirmed that finest particles were emitted mainly during the flaming stage. Carbon dioxide emissions were also highest during the flaming stage whereas those of carbon monoxide were highest during the smoldering stage. Comparing the emission factors for each straw type with their chemical analyses (elemental, proximate, and biochemical), some correlations were found between lignin content and particle emissions and either particle emissions or duration of the pre-ignition stage. High ash or lignin containing-straw slowed down the pre-ignition and flaming stages, thus favoring CO oxidation to CO 2 .

  3. Measurement of aerosol optical properties by integrating cavity ring-down spectroscopy and nephelometery

    NASA Astrophysics Data System (ADS)

    Tedela, Getachew; Singh, Sujeeta; Fiddler, Marc; Bililign, Solomon

    2013-03-01

    Accurate measurement of optical properties of aerosols is crucial for quantifying the influence of aerosols on climate. Aerosols that scatter and absorb radiation can have a cooling or warming effect depending on the magnitude of the respective scattering and absorption terms. One example is black carbon known for its strong absorption. The reported refractive indices for black carbon particles range from 1.2 +0i to 2.75 +1.44i. Our work attempts to measure extinction coefficient, and scattering coefficient of black carbon particles at different incident beam wavelengths using a cavity ring-down spectrometer and a Nephelometer and compare to Mie theory predictions. We report calibration results using polystyrene latex spheres and preliminary results on using commercial black carbon particles. The work is supported by the Department of Defense grant W911NF-11-1-0188.

  4. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  5. Species-Independent Down-Regulation of Leaf Photosynthesis and Respiration in Response to Shading: Evidence from Six Temperate Tree Species

    PubMed Central

    Chen, Anping; Lichstein, Jeremy W.; Osnas, Jeanne L. D.; Pacala, Stephen W.

    2014-01-01

    The ability to down-regulate leaf maximum net photosynthetic capacity (Amax) and dark respiration rate (Rdark) in response to shading is thought to be an important adaptation of trees to the wide range of light environments that they are exposed to across space and time. A simple, general rule that accurately described this down-regulation would improve carbon cycle models and enhance our understanding of how forest successional diversity is maintained. In this paper, we investigated the light response of Amax and Rdark for saplings of six temperate forest tree species in New Jersey, USA, and formulated a simple model of down-regulation that could be incorporated into carbon cycle models. We found that full-sun values of Amax and Rdark differed significantly among species, but the rate of down-regulation (proportional decrease in Amax or Rdark relative to the full-sun value) in response to shade was not significantly species- or taxon-specific. Shade leaves of sun-grown plants appear to follow the same pattern of down-regulation in response to shade as leaves of shade-grown plants. Given the light level above a leaf and one species-specific number (either the full-sun Amax or full-sun Rdark), we provide a formula that can accurately predict the leaf's Amax and Rdark. We further show that most of the down regulation of per unit area Rdark and Amax is caused by reductions in leaf mass per unit area (LMA): as light decreases, leaves get thinner, while per unit mass Amax and Rdark remain approximately constant. PMID:24727745

  6. Silk-regulated hierarchical hollow magnetite/carbon nanocomposite spheroids for lithium-ion battery anodes.

    PubMed

    Sheng, Weiqin; Zhu, Guobin; Kaplan, David L; Cao, Chuanbao; Zhu, Hesun; Lu, Qiang

    2015-03-20

    Hierarchical olive-like structured carbon-Fe3O4 nanocomposite particles composed of a hollow interior and a carbon coated surface are prepared by a facile, silk protein-assisted hydrothermal method. Silk nanofibers as templates and carbon precursors first regulate the formation of hollow Fe2O3 microspheres and then they are converted into carbon by a reduction process into Fe3O4. This process significantly simplifies the fabrication and carbon coating processes to form complex hollow structures. When tested as anode materials for lithium-ion batteries, these hollow carbon-coated particles exhibit high capacity (900 mAh g(-1)), excellent cycle stability (180 cycles) and rate performance due to their unique hierarchical hollow structure and carbon coating.

  7. Genetically Engineered Cyanobacteria

    NASA Technical Reports Server (NTRS)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  8. Breakdown of dynamic balance of a particle in a quadrupole cell by laser-induced aerosol heating.

    PubMed

    Itoh, M; Lwamoto, T; Takahashi, K; Kuno, S

    1992-08-20

    The retention stability of an aerosol particle in a quadrupole cell exposed to horizontal irradiation with a CO(2) laser is investigated for several sizes of single spherical carbon particles. The stability of dynamic balance for the particle levitation is affected significantly by the irradiation and breaks down at a power higher than 10(5) W/m(2). The particle is pushed away along the beam line, and its trajectory is slightly upward owing to the laser-induced aerosol heating.

  9. Antarctic Phytoplankton down-regulate Their Carbon-Concentrating Mechanisms under High CO2 with no Change in Growth Rates

    NASA Astrophysics Data System (ADS)

    Kranz, S. A.; Young, J. N.; Goldman, J.; Tortell, P. D.; Morel, F. M.

    2016-02-01

    High-latitude oceans, in particular the coastal Western Antarctic Peninsula (WAP) region of the Southern Ocean, are experiencing a rapidly changing environment due to rising surface ocean temperatures and CO2 concentrations. However, the direct effect of increasing CO2 on polar ocean primary production is unclear, with a number of experiments showing conflicting results. It has been hypothesized that increased CO2 may cause a reduction of the energy-intensive carbon concentrating mechanism (CCM) in phytoplankton, and these energy savings may lead to increased productivity. To test this hypothesis, we incubated natural phytoplankton communities in the WAP under high (800 ppm), current (400 ppm) and low (100 ppm) CO2 for 2 to 3 wk during the austral spring-summer of 2012/2013. In 2 incubations with diatom-dominated phytoplankton assemblages, high CO2 led to a clear down-regulation of CCM activity, as evidenced by an increase in half-saturation constants for CO2, a decrease in external carbonic anhydrase activity and a higher biological fractionation of stable carbon isotopes. In a third incubation, there was no observable regulation of the CCM. We did not observe a significant effect of CO2 on growth rates or community composition in the diatom-dominated communities. The lack of a measureable effect on growth despite CCM down-regulation is likely explained by a very small energetic requirement to concentrate CO2 and saturate Rubisco at low temperatures.

  10. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at; Meindl, Claudia; Wagner, Karin

    2014-10-15

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays formore » NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.« less

  11. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress

    PubMed Central

    Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli’s acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure. PMID:28033367

  12. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.

    PubMed

    Gao, Guang; Liu, Yameng; Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.

  13. Lightning-produced Carbon Species in the Atmosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Delitsky, Mona; Baines, K. H.

    2010-10-01

    Recent studies by Baines et al (2009) indicate that thunderstorm-associated clouds on Saturn are spectrally dark from 0.7 to 4 um, darker than regular clouds. This darkening is found to be consistent with the presence of particles of elemental carbon, such as in the form of soot particles mixed in with spectrally bright condensates. This carbon is thought to be generated by lightning-induced dissociation of methane. Lightning on Saturn will input large amounts of energy to a narrow column of atmosphere and generate products at high energies such as radicals and ions. After the column cools down, the new chemical species recombine and are frozen into a new chemical equilibrium. Experimental studies in the literature of reactions of methane and other gases in plasma discharges (which simulate lightning) indicate that, even with high ratios of hydrogen/methane, the elemental carbon obtained will form solid dark particles that persist and have a very high C/H ratio. Basically, they are mostly pure carbon, in the form of soot, amorphous carbon, graphite, graphene, polycyclic aromatic hydrocarbons, carbon black, carbon onions, etc. Hydrogen will act as a sealant onto the particles and attach to dangling bonds on their growing surfaces. Even in experiments to form the most crystalline allotrope of carbon, that is, diamond, the presence of hydrogen does not inhibit diamond formation, even at the low pressures in the atmospheres of the Jovian planets or in the interstellar medium (Allamandola et al 1991). Therefore, some form of elemental carbon is likely produced in Saturnian storm clouds and may occur as dark particles of either amorphous carbon, PAHs or crystalline carbon in a form such as graphite. ..Refs: Baines et al., PSS 57, 1650-1658 (2009) ; Allamandola et al., Meteoritics 26, 313 (1991).

  14. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABCmore » gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.« less

  15. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi

    PubMed Central

    Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun

    2017-01-01

    Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes. PMID:28207830

  16. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.

    PubMed

    Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun

    2017-01-01

    Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes.

  17. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhuang, S.; Wu, Y.; Ren, H.; Cheng, F.; Lin, X.; Wang, K.; Beardall, J.; Gao, K.

    2015-09-01

    Ocean Acidification (OA) is known to affect various aspects of the physiological performance of diatoms, but there is little information on the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum expression of the genes related to light harvesting, carbon acquisition and carboxylation, nitrite assimilation and ATP synthesis are modulated by OA. Growth and photosynthetic carbon fixation were enhanced by elevated CO2 (1000 μatm) under both constant indoor and fluctuating outdoor light regimes. The genetic expression of nitrite reductase (NiR) was up-regulated by OA regardless of light levels and/or regimes. The transcriptional expression of fucoxanthin chlorophyll a/c protein (lhcf type (FCP)) and mitochondrial ATP synthase (mtATP synthase) genes were also enhanced by OA, but only under high light intensity. OA treatment decreased the expression of β-carbonic anhydrase (β-CA) along with down-regulation of CO2 concentrating mechanisms (CCMs). Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expressions either under constant indoor light or fluctuating sunlight. Thus, OA enhanced photosynthetic and growth rates by stimulating nitrogen assimilation and indirectly by down-regulating the energy-costly inorganic carbon acquisition process.

  18. Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis

    PubMed Central

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam

    2014-01-01

    To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure. PMID:25080235

  19. Lignin down-regulation of Zea mays via dsRNAi and klason lignin analysis.

    PubMed

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam

    2014-07-23

    To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.

  20. Growth of multiwalled-carbon nanotubes using vertically aligned carbon nanofibers as templates/scaffolds and improved field-emission properties

    NASA Astrophysics Data System (ADS)

    Cui, H.; Yang, X.; Baylor, L. R.; Lowndes, D. H.

    2005-01-01

    Multiwalled-carbon nanotubes (MWCNTs) are grown on top of vertically aligned carbon nanofibers (VACNFs) via microwave plasma-enhanced chemical vapor deposition (MPECVD). The VACNFs are first grown in a direct-current plasma-enhanced chemical vapor deposition reactor using nickel catalyst. A layer of carbon-silicon materials is then deposited on the VACNFs and the nickel catalyst particle is broken down into smaller nanoparticles during an intermediate reactive-ion-plasma deposition step. These nickel nanoparticles nucleate and grow MWCNTs in the following MPECVD process. Movable-probe measurements show that the MWCNTs have greatly improved field-emission properties relative to the VACNFs.

  1. LncRNA PRNCR1 regulates osteogenic differentiation in osteolysis after hip replacement by targeting miR-211-5p.

    PubMed

    Gong, Zong-Ming; Tang, Zhen-Yu; Sun, Xiao-Liang

    2018-05-11

    Background Osteogenic differentiation and osteolysis after hip replacement are both associated with bone metabolism. Interaction between the long non-coding RNA (lncRNA) prostate cancer non-coding RNA 1 (PRNCR1) and miR-211-5p was analyzed to illuminate their roles in osteogenic differentiation and osteolysis. Methods The expression of PRNCR1, miR-211-5p and C-X-C chemokine receptor-4 (CXCR4) protein in tissues and mesenchymal stem cells (MSCs) were determined by qRT-PCR and western blot, separately. The osteogenic differentiation was assessed with Alkaline phosphatase (ALP) activity detection and ARS staining. The endogenous expressions of genes were modulated by recombinant plasmid and cell transfection. Combination condition and interaction between RNA and protein were determined with RIP and RNA pull-down assay, respectively. Interaction between miR-211-5p and CXCR4 was examined with Dual luciferase reporter assay. Results PRNCR1 and CXCR4 were up-regulated in wear particles around prosthesis and in MSCs incubated with Polymethylmethacrylate (PMMA), while miR-211-5p was down-regulated. Repression of PRNCR1 weakened the inhibitory effect of wear particles on osteogenic differentiation. PRNCR1 positively regulated CXCR4 through inhibiting miR-211-5p. Wear particles regulated CXCR4 level through miR-211-5p to affect osteogenic differentiation of MSCs. Wear particles regulated the miR-211-5p level through PRNCR1 to affect osteogenic differentiation of MSCs. Conclusion LncRNA PRNCR1 up-regulates CXCR4 through inhibiting miR-211-5p, which inhibits osteogenic differentiation and thereby leading to osteolysis after hip replacement. ©2018 The Author(s).

  2. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  3. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE PAGES

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  4. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO)

    NASA Astrophysics Data System (ADS)

    Ruiz-Cabello, F. Javier Montes; Maroni, Plinio; Borkovec, Michal

    2013-06-01

    Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.

  5. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO).

    PubMed

    Montes Ruiz-Cabello, F Javier; Maroni, Plinio; Borkovec, Michal

    2013-06-21

    Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.

  6. Toughening and healing of composites by CNTs reinforced copolymer nylon micro-particles

    NASA Astrophysics Data System (ADS)

    Kostopoulos, V.; Kotrotsos, A.; Tsokanas, P.; Tsantzalis, S.

    2018-02-01

    In this work, nylon micro-particles, both undoped and doped with multiwall carbon nanotubes played the role of the self-healing agent into carbon fibre/epoxy composites (CFRPs). These micro-particles were blended with epoxy matrix and the resulting mixture was used for the composites fabrication. Three types of composites were manufactured; the reference CFRP and the modified CFRPs with undoped and doped nylon micro-particles. After manufacturing, these composites were tested under mode I and II fracture loading conditions and it was shown that the interlaminar fracture toughness characteristics of both nylon modified composites were significantly increased. After first fracture, healing process was activated for the tested nylon modified samples and revealed high fracture toughness characteristics recovery. Morphology examinations supported the results and elucidated the involved toughening and failure mechanisms. Finally, the in-plane mechanical and thermo-mechanical properties of all the composites were characterized for identifying possible knock-down effects due to the nylon modification of composites.

  7. Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery.

    PubMed

    Wang, Huanlei; Mao, Nan; Shi, Jing; Wang, Qigang; Yu, Wenhua; Wang, Xin

    2015-02-04

    To improve the electrochemical performance of cobalt oxide owing to its inherent poor electrical conductivity and large volume expansion/contraction, Co3O4-carbon nanosheet hybrid nanoarchitectures were synthesized by a facile and scalable chemical process. However, it is still a challenge to control the size of Co3O4 particles down to ∼5 nm. Herein, we created nanosized cobalt oxide anchored 3D arrays of carbon nanosheets by the control of calcination condition. The uniformly dispersed Co3O4 nanocrystals on carbon nanosheets held a diameter down to ∼5 nm. When tested as anode materials for lithium-ion batteries, high lithium storage over 1200 mAh g(-1) is achieved, whereas high rate capability with capacity of about 390 mAh g(-1) at 10 A g(-1) is maintained through nanoscale diffusion distances and interconnected porous structure. After 500 cycles, the cobalt oxide-carbon nansheets hybrid display a reversible capacity of about 970 mAh g(-1) at 1 A g(-1). The synergistic effect between nanosized cobalt oxide and sheetlike interconnected carbon nanosheets lead to the greatly improved specific capacity and the initial Coulombic efficiency of the hybrids.

  8. Attrition and carbon formation on iron catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, S.D.; Harrington, M.S.; Jackson, N.B.

    1994-08-01

    A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attritionmore » of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.« less

  9. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  10. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    PubMed Central

    Agusti, S.; González-Gordillo, J. I.; Vaqué, D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, C. M.

    2015-01-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean. PMID:26158221

  11. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle

    NASA Astrophysics Data System (ADS)

    Edwards, Bethanie R.; Bidle, Kay D.; Van Mooy, Benjamin A. S.

    2015-05-01

    Diatoms and other phytoplankton play a crucial role in the global carbon cycle, fixing CO2 into organic carbon, which may then be exported to depth via sinking particles. The molecular diversity of this organic carbon is vast and many highly bioactive molecules have been identified. Polyunsaturated aldehydes (PUAs) are bioactive on various levels of the marine food web, and yet the potential for these molecules to affect the fate of organic carbon produced by diatoms remains an open question. In this study, the effects of PUAs on the natural microbial assemblages associated with sinking particles were investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark incubations over 24 h. PUA doses ranging from 1 to 10 µM stimulated respiration, organic matter hydrolysis, and cell growth by bacteria associated with sinking particles. PUA dosages near 100 µM appeared to be toxic, resulting in decreased bacterial cell abundance and metabolism, as well as pronounced shifts in bacterial community composition. Sinking particles were hot spots for PUA production that contained concentrations within the stimulatory micromolar range in contrast to previously reported picomolar concentrations of these compounds in bulk seawater. This suggests PUAs produced in situ stimulate the remineralization of phytoplankton-derived sinking organic matter, decreasing carbon export efficiency, and shoaling the average depths of nutrient regeneration. Our results are consistent with a "bioactivity hypothesis" for explaining variations in carbon export efficiency in the oceans.

  12. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle.

    PubMed

    Edwards, Bethanie R; Bidle, Kay D; Van Mooy, Benjamin A S

    2015-05-12

    Diatoms and other phytoplankton play a crucial role in the global carbon cycle, fixing CO2 into organic carbon, which may then be exported to depth via sinking particles. The molecular diversity of this organic carbon is vast and many highly bioactive molecules have been identified. Polyunsaturated aldehydes (PUAs) are bioactive on various levels of the marine food web, and yet the potential for these molecules to affect the fate of organic carbon produced by diatoms remains an open question. In this study, the effects of PUAs on the natural microbial assemblages associated with sinking particles were investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark incubations over 24 h. PUA doses ranging from 1 to 10 µM stimulated respiration, organic matter hydrolysis, and cell growth by bacteria associated with sinking particles. PUA dosages near 100 µM appeared to be toxic, resulting in decreased bacterial cell abundance and metabolism, as well as pronounced shifts in bacterial community composition. Sinking particles were hot spots for PUA production that contained concentrations within the stimulatory micromolar range in contrast to previously reported picomolar concentrations of these compounds in bulk seawater. This suggests PUAs produced in situ stimulate the remineralization of phytoplankton-derived sinking organic matter, decreasing carbon export efficiency, and shoaling the average depths of nutrient regeneration. Our results are consistent with a "bioactivity hypothesis" for explaining variations in carbon export efficiency in the oceans.

  13. Characterization of water based nanofluid for quench medium

    NASA Astrophysics Data System (ADS)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub-micron stage, hundreds of nanometres to be precise. Therefore, the milling process parameters are needed to be optimized further.

  14. Lignin Modification Leads to Increased Nodule Numbers in Alfalfa1[C][W][OPEN

    PubMed Central

    Gallego-Giraldo, Lina; Bhattarai, Kishor; Pislariu, Catalina I.; Nakashima, Jin; Jikumaru, Yusuke; Kamiya, Yuji; Udvardi, Michael K.; Monteros, Maria J.; Dixon, Richard A.

    2014-01-01

    Reduction of lignin levels in the forage legume alfalfa (Medicago sativa) by down-regulation of the monolignol biosynthetic enzyme hydroxycinnamoyl coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) results in strongly increased digestibility and processing ability of lignocellulose. However, these modifications are often also associated with dwarfing and other changes in plant growth. Given the importance of nitrogen fixation for legume growth, we evaluated the impact of constitutively targeted lignin modification on the belowground organs (roots and nodules) of alfalfa plants. HCT down-regulated alfalfa plants exhibit a striking reduction in root growth accompanied by an unexpected increase in nodule numbers when grown in the greenhouse or in the field. This phenotype is associated with increased levels of gibberellins and certain flavonoid compounds in roots. Although HCT down-regulation reduced biomass yields in both the greenhouse and field experiments, the impact on the allocation of nitrogen to shoots or roots was minimal. It is unlikely, therefore, that the altered growth phenotype of reduced-lignin alfalfa is a direct result of changes in nodulation or nitrogen fixation efficiency. Furthermore, HCT down-regulation has no measurable effect on carbon allocation to roots in either greenhouse or 3-year field trials. PMID:24406794

  15. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.

    PubMed

    Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T

    2000-09-01

    Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.

  16. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth.

    PubMed

    Bigras, F J; Bertrand, A

    2006-07-01

    Seedlings from a northern and a southern provenance of black spruce (Picea mariana Mill. BSP) from eastern Canada were exposed to 37 or 71 Pa of carbon dioxide (CO2) during growth, cold hardening and dehardening in a greenhouse. Bud phenology, cold tolerance and photosynthetic efficiency were assessed during the growing and over-wintering periods. Bud set occurred earlier in elevated [CO2] than in ambient [CO2], but it was later in the southern provenance than in the northern provenance. An increase in seedling cold tolerance in early fall was related to early bud set in elevated [CO2]. Maximal photosystem II (PSII) photochemical efficiency (F(v)/F(m)), effective quantum yield (phi(PSII)), photochemical quenching (q(P)), light-saturated photosynthesis (Amax), apparent quantum efficiency (alpha'), light-saturated rate of carboxylation (Vcmax) and electron transport (Jmax) decreased during hardening and recovered during dehardening. Although Amax and alpha' were higher in elevated [CO2] when measured at the growth [CO2], down-regulation of photosynthesis occurred in elevated [CO2] as shown by lower F(v)/F(m), phi(PSII), Vcmax and Jmax. Elevated [CO2] reduced gene expression of the small subunit of Rubisco and also decreased chlorophyll a/chlorophyll b ratio and nitrogen concentration in needles, confirming our observation of down-regulation of photosynthesis. Elevated [CO2] increased the CO2 diffusion gradient and decreased photorespiration, which may have contributed to enhance Amax despite down-regulation of photosynthesis. Total seedling dry mass was higher in elevated [CO2] than in ambient [CO2] at the end of the growing season. However, because of earlier bud formation and cold hardening, and down-regulation of photosynthesis during fall and winter in elevated [CO2], the treatment difference in dry mass increment was less by the end of the winter than during the growing season. Differences in photosynthetic rate observed during fall, winter and spring account for the inter-annual variations in carbon assimilation of black spruce seedlings: our results demonstrate that these variations need to be considered in carbon budget studies.

  17. Preparation of relatively clean carbon backings used in charged particle induced x-ray studies for x-rays below 4 KeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocur, P.; Duggan, J.L.; McDaniel, F.D.

    1983-04-01

    In a recent series of studies of M-shell ionization induced by protons, alpha particles, and fluorine ions, an unmanageable background of low energy contaminant x rays was observed. These K-shell x rays were primarily from Ca, K, Cl, S, P, Si and Na. The energy range of these contaminants is from 3.691 to 1.041 keV. The M-shell x rays being studied were for various elements from U ( about 3.5 keV) down to Eu (1.5 keV). In order to evaluate and reduce the problem, the contaminants for carbon foils from a number of different manufacturers and a wide variety ofmore » foil float-off procedures have been studied. Carbon foils have been produced in our laboratory using carbon rods from several different manufacturers. In this paper, techniques will be described that are most appropriate to reduce the above contaminants to a reasonable level. These techniques should be useful in trace element analysis (PIXE) studies and fundamental ionization measurements for low x-ray energies.« less

  18. Means for limiting and ameliorating electrode shorting

    DOEpatents

    Van Konynenburg, Richard A.; Farmer, Joseph C.

    1999-01-01

    A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  19. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy

    PubMed Central

    Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun

    2017-01-01

    Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e., carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3 × 107 carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10%) isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate 107 carbons was 9.9–125 sec, 2.5–50 sec and 60–612 sec on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy. PMID:28140352

  20. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun

    2017-05-01

    Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3× {{10}7} carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate {{10}7} carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.

  1. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy.

    PubMed

    Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2017-05-07

    Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u -1 . Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.

  2. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

    PubMed Central

    2013-01-01

    Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation. PMID:23822863

  3. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.

    PubMed

    Schlüter, Urte; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Weber, Andreas P M; Zellerhoff, Nina; Bucher, Marcel; Fahnenstich, Holger; Sonnewald, Uwe

    2013-07-03

    Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation.

  4. Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Li, Liuqing; Li, Zhaopeng; Zhong, Weihao; Liao, Haiyang; Li, Zhenghui

    2018-06-01

    Constructing hollow structure and nano-sized SnO2 particles are two normal strategies to improve lithium storage performance of SnO2-based electrode. But it is still challengeable to fabricate ultrasmall SnO2 embedded in carbon hollow sphere in a controllable way. Herein, we have synthesized a kind of SnO2@carbon hollow sphere via a confined Friedel-Crafts crosslinking of a novel metal-organic compound (triphenyltin chloride, named Sn-Ph) on the surface of SiO2 template. The as-prepared SnO2@carbon hollow sphere has 10 nm-sized SnO2 particles embedded in amorphous carbon wall. Furthermore, 100, 200 and 400 nm-sized SnO2@carbon hollow spheres can be obtained by regulating the size of SiO2 template. When they are applied in lithium-ion batteries, the carbon structure can act as barriers to protect SnO2 particles from pulverization, and hollow core stores electrolyte and very small SnO2 particles of 10 nm shorten the diffusion distance of lithium ions. Thus, SnO2@carbon hollow sphere presents superior electrochemical performance. The first discharge and charge capacities reach 1378.5 and 507.3 mAh g-1 respectively, and 100 cycles later, its capacity remains 501.2 mAh g-1, indicating a capacity retention of 98.8% (C100th/C2nd).

  5. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

    PubMed

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-11-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.

  6. Spatial Patterns of Carbonate Biomineralization in Biofilms

    PubMed Central

    Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.

    2015-01-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties. PMID:26276112

  7. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    PubMed Central

    Faußer, Anna C.; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5–13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55–17.5 %) and decreased (0.04–0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface. PMID:27207278

  8. Measurements of Refractory Black Carbon (rBC) Aerosols in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Khan, A. L.; McMeeking, G. R.; Lyons, W. B.; Schwarz, J. P.; Welch, K. A.; McKnight, D. M.

    2015-12-01

    Measurements of light absorbing particles in the boundary layer of the high southern latitudes are scarce. During the 2013-2014 austral summer field season refractory black carbon (rBC) aerosols were quantified by a single particle soot photometer (SP2) in the McMurdo Dry Valleys, Antarctica. The dark rBC particles absorb more radiation thereby increasing atmospheric heating, as well as reducing surface albedo and enhancing hydrologic melt when deposited on highly reflective surfaces such as snow and ice. Quantifying both local and long-range atmospheric transport of rBC to this region of a remote continent mostly covered by ice and snow would be useful in understanding meltwater generation as climate changes. Although the Dry Valleys are the largest ice-free region of Antarctica, they contain many alpine glaciers, some of which are fed from the East Antarctic Ice Sheet (EAIS). Continuous rBC measurements were collected at Lake Hoare Camp in the Taylor Valley for two months, along with shorter periods at more remote locations within the Dry Valleys. Conditions at the Lake Hoare Camp were dominated by up-valley winds from McMurdo Sound, however, winds also brought air down-valley from the EAIS polar plateau. Here we investigated periods dominated by both up and down-valley winds to explore differences in rBC concentrations, size distributions, and scattering properties. The average background rBC mass concentration was 1ng/m3, though concentrations as high as 50 ng/m3 were observed at times, likely due to local sources.

  9. [Inhibiting target gene expression and controlling growth of Epstein-Barr virus transformed cells by antisense RNA transcripts].

    PubMed

    Chen, Jian-jing; Raab-Traub, Nancy; Yao, Qing-yun; Zhang, Feng; Huang, Mei-ling; Kuang, Zhu-ji; Zhang, Xiao-shi; Ye, Yan-li; Gu, Li

    2002-01-01

    The latent membrane protein gene (LMP) of Epstein-Barr virus (EBV) was thought to play an important role in the carcinogenesis of nasopharyngeal carcinoma (NPC). In this study, the authors investigated the effects of antisense RNA (AsRNA) on LMP for down regulating at the target gene over expression in EBV transformed lymphoid cells, and set up an antisense system to inhibit LMP expression. Constructing the single strand antisense transcription system in vitro, the authors have got large amount of AsRNA. Designing and setting up an antisense tracing system in situ (ATSIS), the authors could observe the living particles of AsRNA/sense RNA duplex dimer. With time lapse phase-contrast microscopy, the agglutination phenotype on living cells was easily detected by MTT test, the inhibition rate on EBV transformed cells was calculated. LMP 1.9 fragment ligated into pGEM vector in reverse orientation have been constructed and produced a plentiful amount of AsLMPmRNA which could incorporated into both B95-8 and C1936 cell lines by endophagocytosis and formed the duplex dimer of As/Sense RNA. This particles have been visualized in situ when labelling 35S isotope by ATSIS. When AsLMPmRNA acted as agents for specific inhibition to LMP over expression, the transform phenotype of cell agglutination have been suppressed and MTT particle formatin was apparently reduced both two EBV tansformed cell lines. AsLMPmRNA targets at sense strand have a high effectiveness of down-regulation on EBV-LMP overexpression. This down regulating function of LMP and growth inhibition on transformed cell is demonstrated by the antisenes tracing system in situ (ATSIS). The results provide a clue to overcome the latent EBV infection in human bodies all living long time and to prevent it inducing NPC in high incidence area by antisense strategies.

  10. Fabrication of nanoscale Ga balls via a Coulomb explosion of microscale silica-covered Ga balls by TEM electron-beam irradiation

    PubMed Central

    Chen, Ying; Huang, Yanli; Liu, Nishuang; Su, Jun; Li, Luying; Gao, Yihua

    2015-01-01

    Nanoscale Ga particles down to 5 nm were fabricated by an explosion via an in situ electron-beam irradiation on microscale silica-covered Ga balls in a transmission electron microscope. The explosion is confirmed to be a Coulomb explosion because it occurs on the surface rather than in the whole body of the insulating silica-covered Ga micro–balls, and on the pure Ga nano-balls on the edge of carbon film. The ejected particles in the explosion increase their sizes with increasing irradiation time until the stop of the explosion, but decrease their sizes with increasing distance from the original ball. The Coulomb explosion suggests a novel method to fabricate nanoscale metal particles with low melting point. PMID:26100238

  11. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.

    PubMed

    Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans

    2008-04-28

    Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.

  12. Corrosion Behavior of Carbon Steel Coated with Octadecylamine in the Secondary Circuit of a Pressurized Water Reactor

    NASA Astrophysics Data System (ADS)

    Jäppinen, Essi; Ikäläinen, Tiina; Järvimäki, Sari; Saario, Timo; Sipilä, Konsta; Bojinov, Martin

    2017-12-01

    Corrosion and particle deposition in the secondary circuits of pressurized water reactors can be mitigated by alternative water chemistries featuring film-forming amines. In the present work, the corrosion of carbon steel in secondary side water with or without octadecylamine (ODA) is studied by in situ electrochemical impedance spectroscopy, combined with weight loss/gain measurements, scanning electron microscopy and glow-discharge optical emission spectroscopy. The impedance spectra are interpreted using the mixed-conduction model to extract kinetic parameters of oxide growth and metal dissolution through it. From the experimental results, it can be concluded that ODA addition reduces the corrosion rate of both fresh and pre-oxidized carbon steel in secondary circuit significantly by slowing down both interfacial reactions and transport through the oxide layer.

  13. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level.

    PubMed

    Tang, Xin; Zan, Xinyi; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda; Ratledge, Colin

    2016-02-11

    The oleaginous fungus, Mucor circinelloides, is attracting considerable interest as it produces oil rich in γ-linolenic acid. Nitrogen (N) deficiency is a common strategy to trigger the lipid accumulation in oleaginous microorganisms. Although a simple pathway from N depletion in the medium to lipid accumulation has been elucidated at the enzymatic level, global changes at protein levels upon N depletion have not been investigated. In this study, we have systematically analyzed the changes at the levels of protein expression in M. circinelloides WJ11, a high lipid-producing strain (36 %, lipid/cell dry weight), during lipid accumulation. Proteomic analysis demonstrated that N depletion increased the expression of glutamine synthetase, involved in ammonia assimilation, for the supply of cellular nitrogen but decreased the metabolism of amino acids. Upon N deficiency, many proteins (e.g., fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase) involved in glycolytic pathway were up-regulated while proteins involved in the tricarboxylic acid cycle (e.g., isocitrate dehydrogenase, succinyl-CoA ligase, succinate dehydrogenase, fumarate hydratase) were down-regulated, indicating this activity was retarded thereby leading to a greater flux of carbon into fatty acid biosynthesis. Moreover, glucose-6-phosphate dehydrogenase, transaldolase and transketolase, which participate in the pentose phosphate pathway, were up-regulated, leading to the increased production of NADPH, the reducing power for fatty acid biosynthesis. Furthermore, protein and nucleic acid metabolism were down-regulated and some proteins involved in energy metabolism, signal transduction, molecular chaperone and redox homeostasis were up-regulated upon N depletion, which may be the cellular response to the stress produced by the onset of N deficiency. N limitation increased those expressions of the proteins involved in ammonia assimilation but decreased that involved in the biosynthesis of amino acids. Upon N deprivation, the glycolytic pathway was up-regulated, while the activity of the tricarboxylic acid cycle was retarded, thus, leading more carbon flux to fatty acid biosynthesis. Moreover, the pentose phosphate pathway was up-regulated, then this would increase the production of NADPH. Together, coordinated regulation of central carbon metabolism upon N limitation, provides more carbon flux to acetyl-CoA and NADPH for fatty acid biosynthesis.

  14. Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae).

    PubMed

    De Smet, Lina; De Koker, Dieter; Hawley, Alyse K; Foster, Leonard J; De Vos, Paul; de Graaf, Dirk C

    2014-01-01

    Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed.

  15. Strain-dependent dysregulation of one-carbon metabolism in male mice is associated with choline- and folate-deficient diet-induced liver injury.

    PubMed

    Pogribny, Igor P; Kutanzi, Kristy; Melnyk, Stepan; de Conti, Aline; Tryndyak, Volodymyr; Montgomery, Beverly; Pogribna, Marta; Muskhelishvili, Levan; Latendresse, John R; James, S Jill; Beland, Frederick A; Rusyn, Ivan

    2013-06-01

    Dysregulation of one-carbon metabolism-related metabolic processes is a major contributor to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). It is well established that genetic and gender-specific variations in one-carbon metabolism contribute to the vulnerability to NAFLD in humans. To examine the role of one-carbon metabolism dysregulation in the pathogenesis and individual susceptibility to NAFLD, we used a "population-based" mouse model where male mice from 7 inbred were fed a choline- and folate-deficient (CFD) diet for 12 wk. Strain-dependent down-regulation of several key one-carbon metabolism genes, including methionine adenosyltransferase 1α (Mat1a), cystathionine-β-synthase (Cbs), methylenetetrahydrofolate reductase (Mthfr), adenosyl-homocysteinase (Ahcy), and methylenetetrahydrofolate dehydrogenase 1 (Mthfd1), was observed. These changes were strongly associated with interstrain variability in liver injury (steatosis, necrosis, inflammation, and activation of fibrogenesis) and hyperhomocysteinemia. Mechanistically, the decreased expression of Mat1a, Ahcy, and Mthfd1 was linked to a reduced level and promoter binding of transcription factor CCAAT/enhancer binding protein β (CEBPβ), which directly regulates their transcription. The strain specificity of diet-induced dysregulation of one-carbon metabolism suggests that interstrain variation in the regulation of one-carbon metabolism may contribute to the differential vulnerability to NFLD and that correcting the imbalance may be considered as preventive and treatment strategies for NAFLD.

  16. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat.

    PubMed

    Ismail, Amel F M; Salem, Asmaa A M; Eassawy, Mamdouh M T

    2016-07-01

    Carbon tetrachloride (CCl4) and ionizing radiation are well known environmental pollutants that generate free radicals and induce oxidative stress. The liver is the primary and major target organ responsible for the metabolism of drugs, toxic chemicals and affected by irradiation. This study investigated the effect of grape seed oil (GSO) on acute liver injury induced by carbon tetrachloride (CCl4) in γ-irradiated rats (7Gy). CCl4-intoxicated rats exhibited an elevation of ALT, AST activities, IL-6 and TNF-α level in the serum. Further, the levels of MDA, NO, NF-κB and the gene expression of CYP2E1, iNOS and Caspase-3 were increased, and SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Furthermore, silent information regulator protein 1 (SIRT1) gene expression was markedly down-regulated. Additionally, alterations of the trace elements; copper, manganese, zinc and DNA fragmentation was observed in the hepatic tissues of the intoxicated group. These effects were augmented in CCl4-intoxicated-γ-irradiated rats. However, the administration of GSO ameliorated these parameters. GSO exhibit protective effects on CCl4 induced acute liver injury in γ-irradiated rats that could be attributed to its potent antioxidant, anti-inflammatory and anti-apoptotic activities. The induction of the antioxidant enzymes activities, down-regulation of the CYP2E1, iNOS, Caspase-3 and NF-κB expression, up-regulation of the trace elements concentration levels and activation of SIRT1 gene expression are responsible for the improvement of the antioxidant and anti-inflammatory status in the hepatic tissues and could be claimed to be the hepatoprotective mechanism of GSO. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS).

    PubMed

    Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y

    2008-01-01

    Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.

  18. Development of Carbon-14 Waste Destruction and Recovery System Using AC Plasma Torch Technology Final Report CRADA No. TC02108.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althouse, P.; McKannay, R. H.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, J. Y.; Riley, W. J.

    We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less

  20. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  1. Identification of GPCR-Interacting Cytosolic Proteins Using HDL Particles and Mass Spectrometry-Based Proteomic Approach

    PubMed Central

    Chung, Ka Young; Day, Peter W.; Vélez-Ruiz, Gisselle; Sunahara, Roger K.; Kobilka, Brian K.

    2013-01-01

    G protein-coupled receptors (GPCRs) have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL) particles. We used the β2-adrenergic receptor (β2AR), a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified β2AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated β2AR pull-down, 242 proteins in the inverse agonist-activated β2AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the β2AR-interacting proteins isolated was confirmed by Western blot; three known β2AR-interacting proteins (Gsα, NHERF-2, and Grb2) and 3 newly identified known β2AR-interacting proteins (AMPKα, acetyl-CoA carboxylase, and UBC-13). Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of β2AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis. PMID:23372797

  2. The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1

    PubMed Central

    Ai, Jing; Maturu, Amita; Johnson, Wesley; Wang, Yijie; Marsh, Clay B.; Tridandapani, Susheela

    2006-01-01

    FcγR-mediated phagocytosis of IgG-coated particles is a complex process involving the activation of multiple signaling enzymes and is regulated by the inositol phosphatases PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP-1 (Src homology [SH2] domain-containing inositol phosphatase). In a recent study we have demonstrated that SHIP-2, an inositol phosphatase with high-level homology to SHIP-1, is involved in FcγR signaling. However, it is not known whether SHIP-2 plays a role in modulating phagocytosis. In this study we have analyzed the role of SHIP-2 in FcγR-mediated phagocytosis using independent cell models that allow for manipulation of SHIP-2 function without influencing the highly homologous SHIP-1. We present evidence that SHIP-2 translocates to the site of phagocytosis and down-regulates FcγR-mediated phagocytosis. Our data indicate that SHIP-2 must contain both the N-terminal SH2 domain and the C-terminal proline-rich domain to mediate its inhibitory effect. The effect of SHIP-2 is independent of SHIP-1, as overexpression of dominant-negative SHIP-2 in SHIP-1-deficient primary macrophages resulted in enhanced phagocytic efficiency. Likewise, specific knockdown of SHIP-2 expression using siRNA resulted in enhanced phagocytosis. Finally, analysis of the molecular mechanism of SHIP-2 down-regulation of phagocytosis revealed that SHIP-2 down-regulates upstream activation of Rac. Thus, we conclude that SHIP-2 is a novel negative regulator of FcγR-mediated phagocytosis independent of SHIP-1. (Blood. 2006;107:813-820) PMID:16179375

  3. Potential interactions between heterotrophic archaea and bacteria for degrading particulate organic carbon in marine water column

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, C.; Tian, J.

    2017-12-01

    Microbial degradation of organic matter is an essential process in marine carbon cycle, which constitutes an integral component of the marine ecosystem and influences climate change. It is still poorly known, however, how microorganisms interact in utilizing organic matter in the ocean. We have performed metagenomic and qPCR analyses of archaea and bacteria in both particle-attached (>3 mm) and free-living (0.2-3 mm) fractions from surface down to 8727 m in the Mariana Trench. The metagenomic results showed large numbers of genes related to the degradation of valine, leucine, isoleucine and lysine, which were similar between free-living and particle-attached fractions from surface to 6000 m depth intervals. However, the relative abundance of these genes decreased in particle-attached fractions and increased in the free-living fractions below 6000 m depth. This is consistent with the ecophysiology of marine group II (MGII) Euryarchaeota, which are suggested to be able to degrade proteins and lipids. Overall, significant correlation (R2 = 0.95) was observed between the abundance of particle-attached MGII and that of particle-attached heterotrophic bacteria in the Mariana Trench water column; whereas, the correlation was significantly reduced (R2 = 0.34) between free-living MGII and free-living bacteria. We hypothesize that particle-attached MGII and heterotrophic bacteria were mutually beneficial in degrading organic matter, which becomes less important between these organisms in the free-living population.

  4. Genome-Wide Identification of Regulatory Elements and Reconstruction of Gene Regulatory Networks of the Green Alga Chlamydomonas reinhardtii under Carbon Deprivation

    PubMed Central

    Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd

    2013-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO 2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas. PMID:24224019

  5. Carbon Dioxide Snow Storms During the Polar Night on Mars

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Colaprete, Anthony

    2001-01-01

    The Mars Orbiter Laser Altimeter (MOLA) detected clouds associated with topographic features during the polar night on Mars. While uplift generated from flow over mountains initiates clouds on both Earth and Mars, we suggest that the Martian clouds differ greatly from terrestrial mountain wave clouds. Terrestrial wave clouds are generally compact features with sharp edges due to the relatively small particles in them. However, we find that the large mass of condensible carbon dioxide on Mars leads to clouds with snow tails that may extend many kilometers down wind from the mountain and even reach the surface. Both the observations and the simulations suggest substantial carbon dioxide snow precipitation in association with the underlying topography. This precipitation deposits CO2, dust and water ice to the polar caps, and may lead to propagating geologic features in the Martian polar regions.

  6. Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube-3

    DTIC Science & Technology

    2017-12-14

    however, several universal and intrinsic problems remain. First, since the dewetting of a thin catalyst film into particles upon heating is a... heated to 800 °C in 15 minutes under Ar atmosphere, maintained for various times, and cooled down to room temperature. - Annealing of Fe-implanted...located 12 cm downstream from the middle of the tube reactor. Then the reactor was heated to 820 °C over 15 min with flowing Ar gas. During the ramping

  7. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitterberger, Maria C.; Kim, Geumsoo; Rostek, Ursula

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation inmore » CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.« less

  8. Targeted Control of Permeability Using Carbonate Dissolution/Precipitation Reactions

    NASA Astrophysics Data System (ADS)

    Clarens, A. F.; Tao, Z.; Plattenberger, D.

    2016-12-01

    Targeted mineral precipitation reactions are a promising approach for controlling fluid flow in the deep subsurface. Here we studied the potential to use calcium and magnesium bearing silicates as cation donors that would react with aqueous phase CO2 under reservoir conditions to form solid carbonate precipitates. Preliminary experiments in high pressure and temperature columns suggest that these reactions can effectively lower the permeability of a porous media. Wollastonite (CaSiO3) was used as the model silicate, injected as solid particles into the pore space of a packed column, which was then subsequently flooded with CO2(aq). The reactions occur spontaneously, leveraging the favorable kinetics that occur at the high temperature and pressure conditions characteristic of the deep subsurface, to form solid phase calcium carbonate (CaCO3) and amorphous silica (SiO2) within the pore space. Both x-ray tomography imaging of reacted columns and electron microscopy imaging of thin sections were used to characterize where dissolution/precipitation occurred within the porous media. The spatial distribution of the products was closely tied to the flow rate and the duration of the experiment. The SiO2 product precipitated in close spatial proximity to the CaSiO3 reactant. The CaCO3 product, which is sensitive to the low pH and high pCO2 brine, precipitated out of solution further down the column as Ca2+ ions moved with the brine. The permeability of the columns decreased by several orders of magnitude after injecting the CaSiO3 particles. Following carbonation, the permeability decreased even further as precipitates filled flow paths within the pore network. A pore network model was developed to help understand the interplay between precipitation kinetics and flow in altering the permeability of the porous media. The effect of particle concentration and size, pore size, reaction time, and pCO2, are explored on pore/fracture aperture and reaction extent. To provide better control of these dynamics and ultimately devise a mechanism to deliver carbonation seed particles into leakage pathways, we are exploring the potential to functionalize the silicate particles using temperature sensitive polymer coatings.

  9. Deciphering the Acute Cellular Phosphoproteome Response to Irradiation with X-rays, Protons and Carbon Ions*

    PubMed Central

    Winter, Martin; Dokic, Ivana; Schlegel, Julian; Warnken, Uwe; Debus, Jürgen; Abdollahi, Amir; Schnölzer, Martina

    2017-01-01

    Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2 h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database. Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Because radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments. In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of functional studies aiming to decipher cellular signaling processes in response to radiotherapy, space radiation or ionizing radiation per se. Further, our data will have a significant impact on the ongoing debate about patient treatment modalities. PMID:28302921

  10. Deciphering the Acute Cellular Phosphoproteome Response to Irradiation with X-rays, Protons and Carbon Ions.

    PubMed

    Winter, Martin; Dokic, Ivana; Schlegel, Julian; Warnken, Uwe; Debus, Jürgen; Abdollahi, Amir; Schnölzer, Martina

    2017-05-01

    Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2 h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database.Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Because radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments.In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of functional studies aiming to decipher cellular signaling processes in response to radiotherapy, space radiation or ionizing radiation per se Further, our data will have a significant impact on the ongoing debate about patient treatment modalities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Implementation ambiguity: The fifth element long lost in uncertainty budgets for land biogeochemical modeling

    NASA Astrophysics Data System (ADS)

    Tang, J.; Riley, W. J.

    2015-12-01

    Previous studies have identified four major sources of predictive uncertainty in modeling land biogeochemical (BGC) processes: (1) imperfect initial conditions (e.g., assumption of preindustrial equilibrium); (2) imperfect boundary conditions (e.g., climate forcing data); (3) parameterization (type I equifinality); and (4) model structure (type II equifinality). As if that were not enough to cause substantial sleep loss in modelers, we propose here a fifth element of uncertainty that results from implementation ambiguity that occurs when the model's mathematical description is translated into computational code. We demonstrate the implementation ambiguity using the example of nitrogen down regulation, a necessary process in modeling carbon-climate feedbacks. We show that, depending on common land BGC model interpretations of the governing equations for mineral nitrogen, there are three different implementations of nitrogen down regulation. We coded these three implementations in the ACME land model (ALM), and explored how they lead to different preindustrial and contemporary land biogeochemical states and fluxes. We also show how this implementation ambiguity can lead to different carbon-climate feedback estimates across the RCP scenarios. We conclude by suggesting how to avoid such implementation ambiguity in ESM BGC models.

  12. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other microbial activities. When scaled to more complex ecosystems and integrated into Earth System Models, this approach could significantly improve predictions of global carbon-climate feedbacks. Experiments such as these are a critical first step designed at understanding climate change impacts in order to better predict ecosystem adaptations, assess the viability of mitigation strategies, and inform relevant policy decisions.

  13. Down-regulation of KORRIGAN-like endo-β-1,4-glucanase genes impacts carbon partitioning, mycorrhizal colonization and biomass production in Populus

    DOE PAGES

    Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima; ...

    2016-10-04

    Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less

  14. Down-regulation of KORRIGAN-like endo-β-1,4-glucanase genes impacts carbon partitioning, mycorrhizal colonization and biomass production in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima

    Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less

  15. Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles1[OPEN

    PubMed Central

    Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric

    2016-01-01

    The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. PMID:27325666

  16. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  17. CO2-induced photosynthetic and stoichiometric responses to phosphorus limitation

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo; di Lallo, Giacomo; van Dijk, Jerry

    2017-04-01

    Carbon fertilisation from rising atmospheric CO2 concentrations increases the productivity of plants globally. Meanwhile, the global cycles of Nitrogen (N) and Phosphorus (P) are also altered due to anthropogenic emissions. In general, the additional supply of N is expected to exceed that of P, leading to an increase in P limitation in natural ecosystems. Although the direct carbon fertilisation effect and the interaction with available N is relatively well understood, it remains uncertain how carbon fertilisation is confounded by the availability of P. It is hypothesised that (i) the photosynthetic P-use efficiency increases at elevated CO2 owing to a direct increase in photosynthesis and (ii) the photosynthetic maximum carboxylation rate (Vcmax) and electron transport rate (Jmax) are down-regulated in response to a combination of elevated CO2 and P-limitation via a coordinated reduction of leaf N and P content per unit leaf area. In this study we examined the hypothesised effects of P limitation and CO2 fertilisation on the photosynthetic and stoichiometric responses of three plant species: Holcus lanatus (C3 grass), Panicum miliaceum (C4 grass) and Solanum dulcamara (C3 herb). Individuals of these species were grown at sub-ambient (150 ppm), modern (450 ppm) and elevated CO2 concentrations (800 ppm) and exposed to an N:P treatment consisting of either severe nitrogen limitation at an N:P ratio of 1:1, or severe P limitation at an N:P ratio of 45:1, with a similar supply rate of N. Our results show significant effects of growth CO2 and P supply on Vcmax and Jmax, as well as the whole-plant biomass at the point of harvest. Interaction effects between growth CO2 and P supply were observed for the light-saturated photosynthesis rate, stomatal conductance, leaf P content, and the N:P ratio of the leaf. No significant change in the leaf N content was observed across treatments. These results suggest that limited availability of P constrains the biochemical potential for plants to up-regulate Vcmax and Jmax. This effect is most prominently expressed at low CO2 growth conditions, which induce strong up-regulation of Vcmax and Jmax when P is not limiting. Conversely, the down-regulation of Vcmax and Jmax at elevated CO2 is more pronounced when P is limiting. Hence, the combined effects of rising CO2 and additional P limitation may result in additional down-regulation of Vcmax and Jmax and a subsequent waning of the CO2 fertilisation effect. These results highlight the need to consider P limitation in global vegetation models when studying carbon fertilisation effects.

  18. Technical Note: A generic law-of-the-minimum flux limiter for simulating substrate limitation in biogeochemical models

    DOE PAGES

    Tang, J. Y.; Riley, W. J.

    2016-02-05

    We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less

  19. Optical sedimentation recorder

    DOEpatents

    Bishop, James K.B.

    2014-05-06

    A robotic optical sedimentation recorder is described for the recordation of carbon flux in the oceans wherein both POC and PIC particles are captured at the open end of a submersible sampling platform, the captured particles allowed to drift down onto a collection plate where they can be imaged over time. The particles are imaged using three separate light sources, activated in sequence, one source being a back light, a second source being a side light to provide dark field illumination, and a third source comprising a cross polarized light source to illuminate birefringent particles. The recorder in one embodiment is attached to a buoyancy unit which is capable upon command for bringing the sedimentation recorder to a programmed depth below the ocean surface during recordation mode, and on command returning the unit to the ocean surface for transmission of recorded data and receipt of new instructions. The combined unit is provided with its own power source and is designed to operate autonomously in the ocean for extended periods of time.

  20. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards.

    PubMed

    Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara

    2011-04-01

    As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.

  1. Effects of Variable Oxygen Concentrations on the Sinking Fluxes and Composition of Organic Matter in The Baltic Sea

    NASA Astrophysics Data System (ADS)

    Cisternas-Novoa, C.; Le Moigne, F. A. C.; Roa, J.; Wagner, H.; Engel, A.

    2016-02-01

    The downward flux of organic matter (OM) from the euphotic zone is critical to understand the biogeochemistry cycles in the ocean. Local changes in stratification, nutrient inputs, community structure and oxygen concentrations potentially affect the magnitude of OM flux. The Baltic Sea is a unique environment with strong natural gradients of primary productivity, nutrients and O2 concentrations. The genuine effect of oxygen minimum deficiency on the fate of sinking OM and the efficiency of the biologic carbon pump has yet to be clarified. Previous work suggested that under oxygen deficiency, nitrogen rich amino acids are preferentially utilized causing nitrogen loss from the water column (van Mooy et al., 2002, Kalvelage et al 2013). Here, we investigate how different oxygen conditions and surface productivity affect sinking particles flux and particles composition in the central Baltic Sea. Sinking OM was collected in June 2015 using surface-tethered free-drifting traps in the Gotland and Landsort deeps. Sinking particles were collected for a period of 48 and 24 hours at four depths from below the mixed layer and down to hypoxic deep waters (40, 60, 110 and 180 m). Fluxes of POC, PON, POP and amino acids were estimated. We will discuss the effect of low oxygen levels on the biological carbon pump associated with fluxes of OM and sinking particles.

  2. Microarray analysis of gene expression alteration in human middle ear epithelial cells induced by micro particle.

    PubMed

    Song, Jae-Jun; Kwon, Jee Young; Park, Moo Kyun; Seo, Young Rok

    2013-10-01

    The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial.

    PubMed

    Kamennaya, Nina A; Zemla, Marcin; Mahoney, Laura; Chen, Liang; Holman, Elizabeth; Holman, Hoi-Ying; Auer, Manfred; Ajo-Franklin, Caroline M; Jansson, Christer

    2018-05-29

    The contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22-2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure (pCO 2 ) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellular polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.

  4. Isotopic analysis of dissolved organic carbon in produced water brines by wet chemical oxidation and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif

    2013-04-01

    Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation set up.

  5. Scattering and Absorption of E&M radiation by small particles-applications to study impact of biomass aerosols on climate

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon

    2015-03-01

    The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.

  6. Organic filler from golden apple snails shells to improve the silicone rubber insulator properties

    NASA Astrophysics Data System (ADS)

    Tepsila, Sujirat; Suksri, Amnart

    2018-02-01

    This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.

  7. Effect of the one‑carbon unit cycle on overall DNA methylation in children with Down's syndrome.

    PubMed

    Song, Cui; He, Jingyi; Chen, Jie; Liu, Youxue; Xiong, Feng; Wang, Yutian; Li, Tingyu

    2015-12-01

    DNA methylation is a major epigenetic mechanism regulating gene expression. In order to analyze the impact of the one‑carbon unit cycle on the overall level of DNA methylation in children with Down's syndrome (DS), the levels of indicators associated with the one‑carbon unit cycle, including folic acid (FA), vitamin B12 (VB12) and homocysteine (Hcy), and the overall DNA methylation level of DS and healthy controls (HCs) were determined in the present study. A total of 36 DS children and 40 age‑ and gender‑matched HCs were included in the present study to determine the levels of FA, VB12, Hcy and overall DNA methylation. The effect of the one‑carbon unit cycle on the overall level of DNA methylation within the DS group was analyzed. The results demonstrated that the level of VB12 was decreased (P=0.008), while the Hcy level was increased (P=0.000) in DS patients compared with the HCs. FA and VB12 levels decreased with increasing age in DS patients (P<0.05). DNA hypermethylation and hypomethylation were observed in DS patients with VB12 deficiency and hyperhomocysteinemia, respectively (P=0.031, P=0.021). Abnormalities in the one‑carbon unit cycle tend to worsen with increasing age in DS children. Thus, one‑carbon unit cycle‑associated alterations in DNA methylation may be important in the neuropathological alterations observed in DS.

  8. Soil organic matter dynamics and mineral associations with depth across a toposequence from a Mediterranean grassland in Northern California

    NASA Astrophysics Data System (ADS)

    Kramer, M. G.; Yuen, W.

    2013-12-01

    The mechanisms governing soil carbon stabilization in Mediterranean grasslands are poorly understood. Consequently, how soil carbon will respond to climate change in these ecosystems, remains uncertain. We examined the distribution of carbon and it's relationship to soil mineralogy with depth across a sequence of topographic positions of grassland soils in the Central Valley of Northern California. We sampled representative 2 m deep soil cores at mid slope topopositions (resulting in 4 detailed 20 cm interval depth profiles), in conjunction with replicated 1 m deep soil profiles under two types of parent material; marine sandstone and loamy marine clay deposits. For sequentially deeper samples, we measured bulk density, particle size, soil pH, oxalate and citrate-dithionite extractable Fe, Al and Si. Inorganic and organic carbon content were determined by measuring bulk C and in the various size fractions with and without carbonate removal using a hydrochloric acid vacuum fumigation technique. C and N stable isotope ratios were also measured for both bulk and organic carbon. We found significant differences in total C storage, inorganic and organic C amount between topographic positions. Differences in pedogenic materials (oxalate and citrate-dithionate extractable Al, Fe and Si) and particle size distribution were also found. All topographic positions showed a decline in organic carbon content down to the measured depth of 2 m. South facing slopes contained a greater proportion of inorganic carbon throughout the depth profiles, declining with depth, whereas total C storage was greater on north facing slopes, where total annual above ground biomass was greater. Overall, carbon storage varied between inorganic to organic C form across the toposequence and with more or less direct association with pedogenic materials (oxalate and citrate-diothionite extractable) depending on landform position. We conclude that inorganic carbon storage may increase in these grassland soils, as climate warming occurs in the region, although the fate of organic C loss or storage remains less clear.

  9. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Apel, William A.; DeVeaux, Linda C.

    Alicyclobacillus acidocaldarius is a thermoacidophilic bacterium capable of growth on sugars from plant biomass. Carbon catabolite repression (CCR) allows bacteria to focus cellular resources on a sugar that provides efficient growth, but also allows sequential, rather than simultaneous use when more than one sugar is present. The A. acidocaldarius genome encodes all components of CCR, but transporters encoded are multifacilitator superfamily and ATP-binding cassette type transporters, uncommon for CCR. Therefore, global transcriptome analysis of A. acidocaldarius grown on xylose or fructose was performed in chemostats, followed by attempted induction of CCR with glucose or arabinose. A. acidocaldarius grew while simultaneouslymore » metabolizing xylose and glucose, xylose and arabinose, and fructose and glucose, indicating CCR did not control carbon metabolism. Microarrays showed down-regulation of genes during growth on one sugar compared to two. Regulation occurred primarily in genes: 1) encoding regulators, 2) encoding enzymes for cell synthesis, and 3) encoding sugar transporters.« less

  10. Effect of Global Regulators RpoS and Cyclic-AMP/CRP on the Catabolome and Transcriptome of Escherichia coli K12 during Carbon- and Energy-Limited Growth

    PubMed Central

    Egli, Thomas

    2015-01-01

    For heterotrophic microbes, limited availability of carbon and energy sources is one of the major nutritional factors restricting the rate of growth in most ecosystems. Physiological adaptation to this hunger state requires metabolic versatility which usually involves expression of a wide range of different catabolic pathways and of high-affinity carbon transporters; together, this allows for simultaneous utilization of mixtures of carbonaceous compounds at low concentrations. In Escherichia coli the stationary phase sigma factor RpoS and the signal molecule cAMP are the major players in the regulation of transcription under such conditions; however, their interaction is still not fully understood. Therefore, during growth of E. coli in carbon-limited chemostat culture at different dilution rates, the transcriptomes, expression of periplasmic proteins and catabolomes of strains lacking one of these global regulators, either rpoS or adenylate cyclase (cya), were compared to those of the wild-type strain. The inability to synthesize cAMP exerted a strong negative influence on the expression of alternative carbon source uptake and degradation systems. In contrast, absence of RpoS increased the transcription of genes belonging to high-affinity uptake systems and central metabolism, presumably due to reduced competition of σD with σS. Phenotypical analysis confirmed this observation: The ability to respire alternative carbon substrates and to express periplasmic high-affinity binding proteins was eliminated in cya and crp mutants, while these properties were not affected in the rpoS mutant. As expected, transcription of numerous stress defence genes was negatively affected by the rpoS knock-out mutation. Interestingly, several genes of the RpoS stress response regulon were also down-regulated in the cAMP-negative strain indicating a coordinated global regulation. The results demonstrate that cAMP is crucial for catabolic flexibility during slow, carbon-limited growth, whereas RpoS is primarily involved in the regulation of stress response systems necessary for the survival of this bacterium under hunger conditions. PMID:26204448

  11. Clearing the waters: Evaluating the need for site-specific field fluorescence corrections based on turbidity measurements

    USGS Publications Warehouse

    Saraceno, John F.; Shanley, James B.; Downing, Bryan D.; Pellerin, Brian A.

    2017-01-01

    In situ fluorescent dissolved organic matter (fDOM) measurements have gained increasing popularity as a proxy for dissolved organic carbon (DOC) concentrations in streams. One challenge to accurate fDOM measurements in many streams is light attenuation due to suspended particles. Downing et al. (2012) evaluated the need for corrections to compensate for particle interference on fDOM measurements using a single sediment standard in a laboratory study. The application of those results to a large river improved unfiltered field fDOM accuracy. We tested the same correction equation in a headwater tropical stream and found that it overcompensated fDOM when turbidity exceeded ∼300 formazin nephelometric units (FNU). Therefore, we developed a site-specific, field-based fDOM correction equation through paired in situ fDOM measurements of filtered and unfiltered streamwater. The site-specific correction increased fDOM accuracy up to a turbidity as high as 700 FNU, the maximum observed in this study. The difference in performance between the laboratory-based correction equation of Downing et al. (2012) and our site-specific, field-based correction equation likely arises from differences in particle size distribution between the sediment standard used in the lab (silt) and that observed in our study (fine to medium sand), particularly during high flows. Therefore, a particle interference correction equation based on a single sediment type may not be ideal when field sediment size is significantly different. Given that field fDOM corrections for particle interference under turbid conditions are a critical component in generating accurate DOC estimates, we describe a way to develop site-specific corrections.

  12. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2006-03-01

    Cholesterol Depletion Enhances Chitin Phagocytosis-Induced Macrophage Activation. Abstract will be presented at AAI Meeting at Boston in May 2006...presented at AAI Meeting at Boston in May 2006. Task 2. Tsuji S, M Yamashita Tsuji, A Nishiyama, Y Shibata. Molecular structure of human and mouse...interlectin-1 and comparison of binding to a mycobacterial galactofuranosyl residue. Abstract will be presented at AAI Meeting at Boston in May 2006

  13. Central Mechanisms and Treatment of Blast Induced Auditory and Vestibular Injuries

    DTIC Science & Technology

    2017-01-01

    which p21 CRISPR /dCas9 Lentiviral activation particles were transfected to the cultured primary cortical neurons. The preliminary data showed a...were down-regulated by knockout p21Cip1 in which p21 CRISPR /Cas9 was transfected to the cultured primary neurons (Fig. 9). These combined results...regions; CRISPR /Cas9 gene editing and Single cell RNA-seq assay Pathology: silver staining, immunohistochemistry on transgenic mice for specific

  14. Oral Administration of N-Acetyl-D-Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2007-03-01

    deoxygalactose and galactose, respectively. Relatively less mITLN-1 was eluted by these monosaccharides . The oligomeric Hu/Mo chimeric ITLN-1 had...Abeygunawardana, C., Bush, C. A. and Cisar, J. O. (1991) Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR...Hoogerhout, P. and van Boom, J. H. (1988) (1-5)-linked beta-D-galactofuranosides are immunodominant in extracellular polysaccharides of

  15. Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth1[W][OA

    PubMed Central

    Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.

    2011-01-01

    Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618

  16. Self-organized global control of carbon emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  17. Cellular and Molecular Responses of Dunaliella tertiolecta by Expression of a Plant Medium Chain Length Fatty Acid Specific Acyl-ACP Thioesterase

    PubMed Central

    Lin, Huixin; Shen, Hui; Lee, Yuan K.

    2018-01-01

    Metabolic engineering of microalgae to accumulate high levels of medium chain length fatty acids (MCFAs) has met with limited success. Traditional approaches employ single introduction of MCFA specific acyl-ACP thioesterases (TEs), but our current research in transgenic Dunaliella tertiolecta line has highlighted that, there is no single rate-limiting approach that can effectively increase MCFA levels. Here, we explore the accumulation of MCFAs in D. tertiolecta after transgenic expression of myristic acid biased TE (C14TE). We observe that the MCFA levels were negatively correlated to the fatty acid (FA) synthesis genes, ketoacyl-ACP synthase II (KASII), stearoyl-CoA-9-desaturase (Δ9D), and oleoyl-CoA-12-desaturase (Δ12D). To further examine the molecular mechanism of MCFA accumulation in microalgae, we investigate the transcriptomic dynamics of the MCFA producing strain of D. tertiolecta. At the transcript level, enhanced MCFA accumulation primarily involved up-regulation of photosynthetic genes and down-regulation of genes from central carbon metabolic processes, resulting in an overall decrease in carbon precursors for FA synthesis. We additionally observe that MCFA specific peroxisomal β-oxidation gene (ACX3) was greatly enhanced to prevent excessive build-up of unusual MCFA levels. Besides, long chain acyl-CoA synthetase gene (LACS) was down-regulated, likely in attempt to control fatty acyl supply flux to FA synthesis cycle. This article provides a spatial regulation model of unusual FA accumulation in microalgae and a platform for additional metabolic engineering targeting pathways from FA synthesis, FA transport, and peroxisomal β-oxidation to achieve microalgae oils with higher levels of MCFAs. PMID:29670594

  18. High pCO 2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial

    DOE PAGES

    Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura; ...

    2018-05-29

    Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less

  19. High pCO 2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura

    Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less

  20. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Richard S.; Vierstra, Richard D.

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  1. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE PAGES

    Marshall, Richard S.; Vierstra, Richard D.

    2018-04-06

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  2. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  3. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  4. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  5. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  6. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  7. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. Protection of porous carbon fuel particles from boudouard corrosion

    DOEpatents

    Cooper, John F.

    2015-05-26

    A system for producing energy that includes infusing porous carbon particles produced by pyrolysis of carbon-containing materials with an off-eutectic salt composition thus producing pore-free carbon particles, and reacting the carbon particles with oxygen in a fuel cell according to the reaction C+O.sub.2=CO.sub.2 to produce electrical energy.

  9. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  10. The hepatotoxicity of multi-walled carbon nanotubes in mice

    NASA Astrophysics Data System (ADS)

    Ji, Zongfei; Zhang, Danying; Li, Ling; Shen, Xizhong; Deng, Xiaoyong; Dong, Ling; Wu, Minhong; Liu, Yuanfang

    2009-11-01

    The hepatotoxicity of two types of multi-walled carbon nanotubes (MWCNTs), acid-oxidized MWCNTs (O-MWCNTs) and Tween-80-dispersed MWCNTs (T-MWCNTs), were investigated with Kunming mice exposed to 10 and 60 mg kg-1 by intravenous injection for 15 and 60 d. Compared with the PBS group, the body-weight gain of the mice decreased and the level of total bilirubin and aspartate aminotransferase increased in the MWCNT-exposed group with a significant dose-effect relationship, while tumor necrosis factor alpha level did not show significant statistical change within 60 d. Spotty necrosis, inflammatory cell infiltration in portal region, hepatocyte mitochondria swelling and lysis were observed with a significant dose-effect relationship in the MWCNT groups. Liver damage of the T-MWCNT group was more severe than that of the O-MWCNT group according to the Roenigk classification system. Furthermore, T-MWCNTs induce slight liver oxidative damage in mice at 15 d, which was recovered at 60 d. Part of the gene expressions of mouse liver in the MWCNT groups changed compared to the PBS group, including GPCRs (G protein-coupled receptors), cholesterol biosynthesis, metabolism by cytochrome P450, natural-killer-cell-mediated cytotoxicity, TNF- α, NF-κB signaling pathway, etc. In the P450 pathway, the gene expressions of Gsta2 (down-regulated), Cyp2B19 (up-regulated) and Cyp2C50 (down-regulated) had significant changes in the MWCNT groups. These results show that a high dose of T-MWCNTs can induce hepatic toxicity in mice while O-MWCNTs seem to have less toxicity.

  11. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization.

    PubMed

    HamediRad, Mohammad; Lian, Jiazhang; Li, Hejun; Zhao, Huimin

    2018-06-01

    Xylose is a major component of lignocellulosic biomass, one of the most abundant feedstocks for biofuel production. Therefore, efficient and rapid conversion of xylose to ethanol is crucial in the viability of lignocellulosic biofuel plants. In this study, RNAi Assisted Genome Evolution (RAGE) was used to improve the xylose utilization rate in SR8, one of the most efficient publicly available xylose utilizing Saccharomyces cerevisiae strains. To identify gene targets for further improvement, we created a genome-scale library consisting of both genetic over-expression and down-regulation mutations in SR8. Followed by screening in media containing xylose as the sole carbon source, yeast mutants with 29% faster xylose utilization, and 45% higher ethanol productivity were obtained relative to the parent strain. Two known and two new effector genes were identified in these mutant strains. Notably, down-regulation of CDC11, an essential gene, resulted in faster xylose utilization, and this gene target cannot be identified in genetic knock-out screens. © 2018 Wiley Periodicals, Inc.

  12. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi.

    PubMed

    Hu, Shunxin; Zhou, Bin; Wang, You; Wang, Ying; Zhang, Xinxin; Zhao, Yan; Zhao, Xinyu; Tang, Xuexi

    2017-01-01

    Karenia mikimotoi is a widespread, toxic and non-calcifying dinoflagellate, which can release and produce ichthyotoxins and hemolytic toxins affecting the food web within the area of its bloom. Shifts in the physiological characteristics of K. mikimotoi due to CO2-induced seawater acidification could alter the occurrence, severity and impacts of harmful algal blooms (HABs). Here, we investigated the effects of elevated pCO2 on the physiology of K. mikimotoi. Using semi-continuous cultures under controlled laboratory conditions, growth, photosynthesis and inorganic carbon acquisition were determined over 4-6 week incubations at ambient (390ppmv) and elevated pCO2 levels (1000 ppmv and 2000 ppmv). pH-drift and inhibitor-experiments suggested that K. mikimotoi was capable of acquiring HCO3-, and that the utilization of HCO3- was predominantly mediated by anion-exchange proteins, but that HCO3- dehydration catalyzed by external carbonic anhydrase (CAext) only played a minor role in K. mikimotoi. Even though down-regulated CO2 concentrating mechanisms (CCMs) and enhanced gross photosynthetic O2 evolution were observed under 1000 ppmv CO2 conditions, the saved energy did not stimulate growth of K. mikimotoi under 1000 ppmv CO2, probably due to the increased dark respiration. However, significantly higher growth and photosynthesis [in terms of photosynthetic oxygen evolution, effective quantum Yield (Yield), photosynthetic efficiency (α), light saturation point (Ek) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity] were observed under 2000 ppmv CO2 conditions. Furthermore, elevated pCO2 increased the photo-inhibition rate of photosystem II (β) and non-photochemical quenching (NPQ) at high light. We suggest that the energy saved through the down-regulation of CCMs might lead to the additional light stress and photo-damage. Therefore, the response of this species to elevated CO2 conditions will be determined by more than regulation and efficiency of CCMs.

  13. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  14. Effects of Particle Filters and Accelerated Engine Replacement on Heavy-Duty Diesel Vehicle Emissions of Black Carbon, Nitrogen Oxides, and Ultrafine Particles

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.

    2013-12-01

    Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately 100 nm in diameter and (b) new trucks originally equipped with diesel particle filters were 5 to 6 times more likely than filter-retrofitted trucks and trucks without filters to emit particles characterized by a single mode in the range of 10 to 30 nm in diameter.

  15. Seasonal pathways of organic matter within the Avilés submarine canyon: Food web implications

    NASA Astrophysics Data System (ADS)

    Romero-Romero, Sonia; Molina-Ramírez, Axayacatl; Höfer, Juan; Duineveld, Gerard; Rumín-Caparrós, Aitor; Sanchez-Vidal, Anna; Canals, Miquel; Acuña, José Luis

    2016-11-01

    The transport and fate of organic matter (OM) sources within the Avilés submarine canyon (Cantabrian Sea, Southern Bay of Biscay) were studied using carbon and nitrogen stable isotope ratios. The isotopic composition of settling particles and deep bottom sediments closely resembled that of surface particulate OM, and there were no marked differences in the isotopic composition of settling particles inside and outside of the AC. This indicates that the Avilés Canyon (AC) receives inputs of sinking OM mostly from the upper water column and less through advective near-bottom down-canyon transport. Sinking OM fluxes are of marine and terrestrial origin in proportions which vary seasonally. Analysis of δ13C in the canyon fauna indicates a dependence on OM mainly produced by marine phytoplankton. A tight coupling of isotopic signatures between pelagic organisms and benthic suspension feeders reflects an active biological vertical transport of OM from the surface to the deep-sea. The food web presented seasonal variations in the trophic niche width and the amplitude of the primary carbon sources, reflecting seasonality in the availability of fresh particulate OM. Those seasonal changes are larger for benthic organisms of lower trophic levels.

  16. Integrated Transcriptomic and Metabolomic Characterization of the Low-Carbon Response Using an ndhR Mutant of Synechocystis sp. PCC 68031

    PubMed Central

    Klähn, Stephan; Orf, Isabel; Schwarz, Doreen; Matthiessen, Jasper K.F.; Kopka, Joachim; Hess, Wolfgang R.; Hagemann, Martin

    2015-01-01

    The acquisition and assimilation of inorganic carbon (Ci) represents the largest flux of inorganic matter in photosynthetic organisms; hence, this process is tightly regulated. We examined the Ci-dependent transcriptional and metabolic regulation in wild-type Synechocystis sp. PCC 6803 compared with a mutant defective in the main transcriptional repressor for Ci acquisition genes, the NAD(P)H dehydrogenase transcriptional regulator NdhR. The analysis revealed that many protein-coding transcripts that are normally repressed in the presence of high CO2 (HC) concentrations were strongly expressed in ∆ndhR, whereas other messenger RNAs were strongly down-regulated in mutant cells, suggesting a potential activating role for NdhR. A conserved NdhR-binding motif was identified in the promoters of derepressed genes. Interestingly, the expression of some NdhR-regulated genes remained further inducible under low-CO2 conditions, indicating the involvement of additional NdhR-independent Ci-regulatory mechanisms. Intriguingly, we also observed that the abundance of 52 antisense RNAs and 34 potential noncoding RNAs was affected by Ci supply, although most of these molecules were not regulated through NdhR. Thus, antisense and noncoding RNAs could contribute to NdhR-independent carbon regulation. In contrast to the transcriptome, the metabolome in ∆ndhR cells was similar to that of wild-type cells under HC conditions. This observation and the delayed metabolic responses to the low-CO2 shift in ∆ndhR, specifically the lack of transient increases in the photorespiratory pathway intermediates 2-phosphoglycolate, glycolate, and glycine, suggest that the deregulation of gene expression in the ΔndhR mutant successfully preacclimates cyanobacterial cells to lowered Ci supply under HC conditions. PMID:25630438

  17. Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 during feeding on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes.

    PubMed

    Kaur, Navneet; Chen, Wenbo; Zheng, Yi; Hasegawa, Daniel K; Ling, Kai-Shu; Fei, Zhangjun; Wintermantel, William M

    2017-05-11

    Whiteflies threaten agricultural crop production worldwide, are polyphagous in nature, and transmit hundreds of plant viruses. Little is known how whitefly gene expression is altered due to feeding on plants infected with a semipersistently transmitted virus. Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) is transmitted by the whitefly (Bemisia tabaci) in a semipersistent manner and infects several globally important agricultural and ornamental crops, including tomato. To determine changes in global gene regulation in whiteflies after feeding on tomato plants infected with a crinivirus (ToCV), comparative transcriptomic analysis was performed using RNA-Seq on whitefly (Bemisia tabaci MEAM1) populations after 24, 48, and 72 h acquisition access periods on either ToCV-infected or uninfected tomatoes. Significant differences in gene expression were detected between whiteflies fed on ToCV-infected tomato and those fed on uninfected tomato among the three feeding time periods: 447 up-regulated and 542 down-regulated at 24 h, 4 up-regulated and 7 down-regulated at 48 h, and 50 up-regulated and 160 down-regulated at 72 h. Analysis revealed differential regulation of genes associated with metabolic pathways, signal transduction, transport and catabolism, receptors, glucose transporters, α-glucosidases, and the uric acid pathway in whiteflies fed on ToCV-infected tomatoes, as well as an abundance of differentially regulated novel orphan genes. Results demonstrate for the first time, a specific and temporally regulated response by the whitefly to feeding on a host plant infected with a semipersistently transmitted virus, and advance the understanding of the whitefly vector-virus interactions that facilitate virus transmission. Whitefly transmission of semipersistent viruses is believed to require specific interactions between the virus and its vector that allow binding of virus particles to factors within whitefly mouthparts. Results provide a broader understanding of the potential mechanism of crinivirus transmission by whitefly, aid in discerning genes or loci in whitefly that influence virus interactions or transmission, and subsequently facilitate development of novel, genetics-based control methods against whitefly and whitefly-transmitted viruses.

  18. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  19. National inventories of down and dead woody material forest carbon stocks in the United States: Challenges and opportunities

    Treesearch

    C.W. Woodall; L.S. Heath; J.E. Smith

    2008-01-01

    Concerns over the effect of greenhouse gases and consequent international agreements and regional/national programs have spurred the need for comprehensive assessments of forest ecosystem carbon stocks. Down and dead woody (DDW) materials are a substantial component of forest carbon stocks; however, few surveys of DDW carbon stocks have been conducted at national-...

  20. A bio-recognition device developed onto nano-crystals of carbonate apatite for cell-targeted gene delivery.

    PubMed

    Chowdhury, E H; Akaike, Toshihiro

    2005-05-20

    The DNA delivery to mammalian cells is an essential tool for analyzing gene structure, regulation, and function. The approach holds great promise for the further development of gene therapy techniques and DNA vaccination strategies to treat and control diseases. Here, we report on the establishment of a cell-specific gene delivery and expression system by physical adsorption of a cell-recognition molecule on the nano-crystal surface of carbonate apatite. As a model, DNA/nano-particles were successfully coated with asialofetuin to facilitate uptake by hepatocyte-derived cell lines through the asialoglycoprotein receptor (ASGPr) and albumin to prevent non-specific interactions of the particles with cell-surface. The resulting composite particles with dual surface properties could accelerate DNA uptake and enhance expression to a notable extent. Nano-particles coated with transferrin in the same manner dramatically enhanced transgene expression in the corresponding receptor-bearing cells and thus our newly developed strategy represents a universal phenomenon for anchoring a bio-recognition macromolecule on the apatite crystal surface for targeted gene delivery, having immediate applications in basic research laboratories and great promise for gene therapy. (c) 2005 Wiley Periodicals, Inc.

  1. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets.

    PubMed

    Wang, Bing; Wang, Diming; Wu, Xuehui; Cai, Jie; Liu, Mei; Huang, Xinbei; Wu, Jiusheng; Liu, Jianxin; Guan, Leluo

    2017-05-06

    Rumen epithelial tissue plays an important role in nutrient absorption and rumen health. However, whether forage quality and particle size impact the rumen epithelial morphology is unclear. The current study was conducted to elucidate the effects of forage quality and forage particle size on rumen epithelial morphology and to identify potential underlying molecular mechanisms by analyzing the transcriptome of the rumen epithelium (RE). To achieve these objectives, 18 mid-lactation dairy cows were allocated to three groups (6 cows per group), and were fed with one of three different forage-based diets, alfalfa hay (AH), corn stover (CS), and rice straw (RS) for 14 weeks, respectively. Ruminal volatile fatty acids (VFAs) and epithelial thickness were determined, and RNA-sequencing was conducted to identify the transcriptomic changes of rumen epithelial under different forage-based diets. The RS diet exhibited greater particle size but low quality, the AH diet was high nutritional value but small particle size, and CS diet was low quality and small particle size. The ruminal total VFA concentration was greater in AH compared with those in CS or RS. The width of the rumen papillae was greater in RS-fed cows than in cows fed AH or CS. In total, 31, 40, and 28 differentially expressed (DE, fold change > 2, FDR < 0.05) genes were identified via pair-wise comparisons including AH vs. CS, AH vs. RS, and RS vs. CS, respectively. Functional classification analysis of DE genes revealed dynamic changes in ion binding (such as DSG1) between AH and CS, proliferation and apoptotic processes (such as BAG3, HLA-DQA1, and UGT2B17) and complement activation (such as C7) between AH or RS and CS. The expression of HLA-DQA1 was down-regulated in RS compared with AH and CS, and the expression of UGT2B17 was down-regulated in RS compared with CS, with positive (R = 0.94) and negative (R = -0.96) correlation with the width of rumen epithelial papillae (P < 0.05), respectively. Our results suggest that both nutrients (VFAs) and particle sizes can alter expression of genes involved in cell proliferation/apoptosis process and complement complex. Our results suggest that particle size may be more important in regulating rumen epithelial morphology when animals are fed with low-quality forage diets and the identified DE genes may affect the RE nutrient absorption or morphology of RE. Our findings provide insights into the effects of the dietary particle size in the future management of dairy cow feeding, that when cows were fed with low-quality forage (such as rice straw), smaller particle size may be beneficial for nutrients absorption and milk production.

  2. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between taumore » and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study of up- and down-regulation of proteins during the progression of AD helps to explain the mechanisms associated with neuronal degeneration in AD.« less

  3. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    PubMed

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.

    PubMed

    Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A

    2015-06-01

    Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.

  5. Alternative polyadenylation drives genome-to-phenome information detours in the AMPKα1 and AMPKα2 knockout mice.

    PubMed

    Zhang, Shuwen; Zhang, Yangzi; Zhou, Xiang; Fu, Xing; Michal, Jennifer J; Ji, Guoli; Du, Min; Davis, Jon F; Jiang, Zhihua

    2018-04-24

    Currently available mouse knockout (KO) lines remain largely uncharacterized for genome-to-phenome (G2P) information flows. Here we test our hypothesis that altered myogenesis seen in AMPKα1- and AMPKα2-KO mice is caused by use of alternative polyadenylation sites (APSs). AMPKα1 and AMPKα2 are two α subunits of adenosine monophosphate-activated protein kinase (AMPK), which serves as a cellular sensor in regulation of many biological events. A total of 56,483 APSs were derived from gastrocnemius muscles. The differentially expressed APSs (DE-APSs) that were down-regulated tended to be distal. The DE-APSs that were related to reduced and increased muscle mass were down-regulated in AMPKα1-KO mice, but up-regulated in AMPKα2-KO mice, respectively. Five genes: Car3 (carbonic anhydrase 3), Mylk4 (myosin light chain kinase family, member 4), Neb (nebulin), Obscn (obscurin) and Pfkm (phosphofructokinase, muscle) utilized different APSs with potentially antagonistic effects on muscle function. Overall, gene knockout triggers genome plasticity via use of APSs, completing the G2P processes. However, gene-based analysis failed to reach such a resolution. Therefore, we propose that alternative transcripts are minimal functional units in genomes and the traditional central dogma concept should be now examined under a systems biology approach.

  6. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    PubMed

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  7. Shock-wave processing of C60 in hydrogen

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Jayaram, V.; Suas-David, N.; Georges, R.; Singh, M. Kiran; Arunan, E.; Kassi, S.; Dartois, E.; Reddy, K. P. J.

    2017-03-01

    Context. Interstellar carbonaceous particles and molecules are subject to intense shocks in astrophysical environments. Shocks induce a rapid raise in temperature and density which strongly affects the chemical and physical properties of both the gas and solid phases of the interstellar matter. Aims: The shock-induced thermal processing of C60 particles in hydrogen has been investigated in the laboratory under controlled conditions up to 3900 K with the help of a material shock-tube. Methods: The solid residues generated by the exposure of a C60/H2 mixture to a millisecond shock wave were collected and analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman micro-spectroscopy, and infrared micro-spectroscopy. The gaseous products were analyzed by Gas Chromatography and Cavity Ring Down Spectroscopy. Results: Volatile end-products appear above reflected shock gas temperatures of 2540 K and reveal the substantial presence of small molecules with one or two C atoms. These observations confirm the role played by the C2 radical as a major product of C60 fragmentation and less expectedly highlight the existence of a single C atom loss channel. Molecules with more than two carbon atoms are not observed in the post-shock gas. The analysis of the solid component shows that C60 particles are rapidly converted into amorphous carbon with a number of aliphatic bridges. Conclusions: The absence of aromatic CH stretches on the IR spectra indicates that H atoms do not link directly to aromatic cycles. The fast thermal processing of C60 in H2 over the 800-3400 K temperature range leads to amorphous carbon. The analysis hints at a collapse of the cage with the formation of a few aliphatic connections. A low amount of hydrogen is incorporated into the carbon material. This work extends the range of applications of shock tubes to studies of astrophysical interest.

  8. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2005-03-01

    detection with flow cytometry. Cancer . 85:2359-67. 18. Justice JP, Shibata Y, Sur S, Mustafa J, Fan M, Van Scott MR. 2001. IL-10 gene knockout attenuates...primed donors. Regional Immunol., 2, 169-175. 7. Druker, B. J., Wepsic, H. T. (1983) BCG-induced macrophages as suppressor cells. Cancer Investig. 1:151...however, have significantly lower binding affinities to de-acetylated glucosamine sugar residues (31). Dectin-1/[3- glucan CLR, on the other hand

  9. Oral Administration of N-acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2008-05-01

    asthma in Cynomolgus monkeys. J Appl Physiol 96:1433-1444, 2003. Task 2. Shibata Y, A Nishiyama, H Ohata, J Gabbard , QN Myrvik, RA Henriksen...Proceeding of “International Symposium on Low-Dose Radiation Exposures and Bio-Defense System. Page 5, 2006. Task 2. Shibata Y, J Gabbard , M Yamashita...killed BCG. J Leukoc Biol 78:1281-1290. 4. Shibata, Y., J. Gabbard , M. Yamashita, S. Tsuji, M. Smith, A. Nishiyama, R. A. Henriksen, and Q. N. Myrvik

  10. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis

    NASA Astrophysics Data System (ADS)

    Kennedy, Martin John; Löhr, Stefan Carlos; Fraser, Samuel Alex; Baruch, Elizabeth Teresa

    2014-02-01

    The burial of marine sourced organic carbon (OC) in continental margin sediments is most commonly linked to oceanographic regulation of bottom-water oxygenation (anoxia) and/or biological productivity. Here we show an additional influence in the Devonian Woodford Shale, in which OC occurs as nanometer intercalations with specific phyllosilicate minerals (mixed-layer illite/smectite) that we term organo-mineral nanocomposites. High resolution transmission electron microscopic (HRTEM) images provide direct evidence of this nano-scale relationship. While discrete micron-scale organic particles, such as Tasmanites algal cysts, are present in some lamina, a strong relation between total organic carbon (TOC) and mineral surface area (MSA) over a range of 15% TOC indicate that the dominant association of organic carbon is with mineral surfaces and not as discrete pelagic grains, consistent with HRTEM images of nanocomposites. Where periods of oxygenation are indicated by bioturbation, this relationship is modified by a shift to lower OC loading on mineral surfaces and reduced MSA variability likely resulting from biological mixing and homogenization of the sediment, oxidative burn down of OC and/or stripping of OC from minerals in animal guts. The TOC-MSA relationship extends across a range of burial depths and thermal maturities into the oil window and persists through partial illitization. Where illitization occurs, the loss of mineral surface area associated with the collapse of smectite interlayer space results in a systematic increase in TOC:MSA and reorganization of organic carbon and clays into nano-scale aggregates. While the Woodford Shale is representative of black shale deposits commonly thought to record heightened marine productivity and/or anoxia, our results point to the importance of high surface area clay minerals for OC enrichment. Given that the vast majority of these clay minerals are formed in soils before being transported to continental margin settings, their mineralogy and attendant preservative potential is primarily a function of continental climate and provenance making these deposits a sensitive recorder of land as well as oceanographic change.

  11. Natural derivatives of curcumin attenuate the Wnt/{beta}-catenin pathway through down-regulation of the transcriptional coactivator p300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Min-Jung; Cho, Munju; Song, Jie-Young

    2008-12-26

    Curcumin, a component of turmeric (Curcuma longa), has been reported to suppress {beta}-catenin response transcription (CRT), which is aberrantly activated in colorectal cancer. However, the effects of its natural analogs (demethoxycurcumin [DMC] and bisdemethoxycurcumin [BDMC]) and metabolite (tetrahydrocurcumin [THC]) on the Wnt/{beta}-catenin pathway have not been investigated. Here, we show that DMC and BDMC suppressed CRT that was activated by Wnt3a conditioned-medium (Wnt3a-CM) without altering the level of intracellular {beta}-catenin, and inhibited the growth of various colon cancer cells, with comparable potency to curcumin. Additionally, DMC and BDMC down-regulated p300, which is a positive regulator of the Wnt/{beta}-catenin pathway. Notably,more » THC also inhibited CRT and cell proliferation, but to a much lesser degree than curcumin, DMC, or BDMC, indicating that the conjugated bonds in the central seven-carbon chain of curcuminoids are essential for the inhibition of Wnt/{beta}-catenin pathway and the anti-proliferative activity of curcuminoids. Thus, our findings suggest that curcumin derivatives inhibit the Wnt/{beta}-catenin pathway by decreasing the amount of the transcriptional coactivator p300.« less

  12. Characterization of diesel particles: effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility.

    PubMed

    Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena

    2004-05-01

    Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.

  13. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  14. Organic carbon burial in fjords: Terrestrial versus marine inputs

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  15. Enrichment Ratio and Aggregate Stability Dynamics in Intensely Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Filley, T. R.; Hou, T.; Abban, B. K.; Wilson, C. G.; Boys, J.

    2015-12-01

    Challenges in understanding the soil carbon dynamics within intensely managed landscapes (IMLs), found throughout much the US Midwest, is highly complex due to the presence of heterogeneous landscape features and properties, as well as a mosaic of physical and biogeochemical processes occurring at different time scales. In addition, rainfall events exacerbate the effects of tillage by the impact of raindrops, which break down aggregates that encase carbon and dislodge and entrain soil particles and aggregates along the downslope. The redistribution of soil and carbon can have huge implications on biogeochemical cycling and overall carbon budgeting. In this study, we provide some rare field data on the mechanisms impacting aggregate stability, enrichment ratio values to estimate fluxes of carbon, as well as lignin chemistry to see influences on oxidation/mineralization rates. Rainfall simulation experiments were conducted within agricultural fields. Experiments were performed on the midslope (eroding) and toeslope (depositional) sections of representative hillslopes, under a variety of land managements, including row crop (conventional and conservation) and restored grasslands. Sensors were utilized to capture the evolution of soil moisture, temperature, microbial respiration pulses, and discharge rates to identify pseudo-steady state conditions. Samples collected at the weir outlet were tested for sediment concentrations and size fractions, as well as carbon and lignin fluxes. Preliminary findings show that conservation management practices have higher aggregate stability and decreased mass fluxes of carbon in the downslope than conventional tillage techniques.

  16. Changes in Gene Expression in the Hippocampus Following Exposure to 56Fe Particles and Protection by Berry Diets

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Lau, Francis; Carey, Amanda; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James

    Exposing young rats to particles of high energy and charge (HZE particles), such as 56 Fe, enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals. Behaviors affected by radiation include deficits in motor performance, spatial learning and memory behavior, amphetamine-induced conditioned taste aversion learning, conditioned place preference, and operant conditioning. Berry fruit diets are high in antioxidant and antiinflammatory activity, and prevent the occurrence of the neurochemical and behavioral changes that occur in aging and by exposure to 56 Fe particles. In the present study, we examined whether gene expression in the hippocampus, an area of the brain important in memory, is affected by exposure to 56 Fe particles 36 hours post-irradiation. We also evaluated whether the blueberry (BB) and strawberry (SB) diets could ameliorate irradiation-induced deficits in gene expression by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to radiation. Therefore, to measure gene expression, 4 rats/group were euthanized 36 hours post whole-body irradiation with 1.5 Gy or 2.5 Gy of 1 GeV/n high-energy 56 Fe particles. Alterations in gene expression profile induced by radiation were analyzed by pathway-focused microarrays on the inflammatory cytokines and genes involved in NF-κB signal transduction pathways. For the diet studies, 3 rats/group were irradiated with 2.5 Gy of 56 Fe following 8 weeks supplementation with either the 2% BB or the 2% SB diet. We found that genes that directly or indirectly interact in the regulation of growth and differentiation of neurons were changed following irradiation. Genes that regulate apoptosis were up-regulated whereas genes that modulate cellular proliferation were down-regulated, possibly to eliminate damaged cells and to stop cell proliferation to prevent DNA damage caused by radiation to new cells. Supplementation with the berry diets enhanced neuronal communication and cell signaling by altering gene regulation of some of the protective stress signals. Therefore, these data suggest that 56 Fe particle irradiation causes deficits in gene expression in rats which are ameliorated by berry fruit diets.

  17. Cochliobolus lunatus down-regulates proteome at late stage of colonization and transiently alters StNPR1 expression in Solanum tuberosum L.

    PubMed

    Louis, Bengyella; Waikhom, Sayanika D; Jose, Robinson C; Goyari, Sailendra; Bhardwaj, Pardeep Kumar; Talukdar, Narayan C; Roy, Pranab

    2017-03-01

    Cochliobolus lunatus abundantly produces four-celled conidia at high temperatures (>30 °C) and under suitable conditions; the fungus colonizes potato (Solanum tuberosum L.) cultivars by adopting different invasion strategies at the microscopic level. Long-lasting defence during infection requires an upsurge in proteome changes particularly pathogenesis-related proteins chiefly under the control of nonexpresser of pathogenesis-related proteins. In order to gain molecular insights, we profiled the changes in proteome and potato nonexpresser of pathogenesis-related proteins (StNPR1) during the infection process. It is found that C. lunatus significantly (P < 0.05) suppressed the host functional proteome by 96 h after infection (hai), principally, affecting the expression of ribulose bisphosphate carboxylase enzyme, plastidic aldolase enzyme, alcohol dehydrogenase 2 and photosystem II protein prior to the formation of brown-to-black leaf spot disease. Strongest host response was observed at 24 hai hallmarked by 307 differentially expressed peptide spots concurring with the active phase of production of penetrating hyphae. Additionally, C. lunatus differentially down-regulated StNPR1 transcript by 8.19 fold by 24 hai. This study is the first to elucidate that C. lunatus transiently down-regulates the expression of StNPR1 at the onset of infection, and as a whole, infection negatively affects the expression of proteome components involved in photosynthesis, carbon fixation and light assimilation. This study contributes towards better understanding of the mechanism underlining the invasion strategies of C. lunatus.

  18. Linking Soils and Down Woody Material Inventories for Cohesive Assessments of Ecosystem Carbon Pools

    Treesearch

    Katherine P. O' Neill; Christopher Woodall; Michael Amacher; Geoffrey Holden

    2005-01-01

    The Soils and Down Woody Materials (DWM) indicators collected by the Forest Inventory and Analysis program provide the only data available for nationally consistent monitoring of carbon storage in soils, the forest floor, and down woody debris. However, these indicators were developed and implemented separately, resulting in field methods and compilation procedures...

  19. In vitro expression of hard metal dust (WC-Co) - responsive genes in human peripheral blood mononucleated cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombaert, Nooemi; Lison, Dominique; Van Hummelen, Paul

    Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profilemore » of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNF{alpha}), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.« less

  20. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    PubMed

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Metabolomic and Proteomic Insights into Carbaryl Catabolism by Burkholderia sp. C3 and Degradation of Ten N-Methylcarbamates

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2013-01-01

    Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon (PAH) degrader, can utilize 9 of the 10 N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (approximately 196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency. PMID:23463356

  2. Plant acclimation impacts carbon allocation to isoprene emissions: evidence from past to future CO2 levels

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert

    2016-04-01

    Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (weeks) via acclimation in photosynthetic biochemistry. In order to understand the effects of CO2-induced climate change on carbon allocation in plants it is therefore important to quantify how isoprene biosynthesis and emissions are effected by both short-term responses and long-term acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. In addition to environmental conditions, this imbalance is determined by the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (V cmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 levels representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. Plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters V cmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. This CO2 effect is most pronounced going from glacial to present CO2. In the short term, an increase in CO2 stimulates photosynthesis through an increase in Ci and marginally decreases isoprene production owing to an increase in the electron demand for carbon fixation. In the long-term, acclimation to rising CO2 leads to down regulation of both Jmax and V cmax, which modulates the stimulating effect of rising CO2 on photosynthesis. Specifically the down-regulation of Jmax reduces isoprene emissions at this time scale, whereas the down-regulation of V cmax has a marginal effect according to the LES-model. Our results highlight that biochemical acclimation to rising CO2 influences the allocation of carbon to isoprene biosynthesis. References Harrison, S. P. et al: Volatile isoprenoid emissions from plastid to planet, New Phytol., 197(1), 49-57, 2013. Morfopoulos, C. et al: A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2, New Phytol., 203(1), 125-139, 2014.

  3. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  4. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius

    DOE PAGES

    Lee, Brady D.; Apel, William A.; DeVeaux, Linda C.; ...

    2017-08-03

    Alicyclobacillus acidocaldarius is a thermoacidophilic bacterium capable of growth on sugars from plant biomass. Carbon catabolite repression (CCR) allows bacteria to focus cellular resources on a sugar that provides efficient growth, but also allows sequential, rather than simultaneous use when more than one sugar is present. The A. acidocaldarius genome encodes all components of CCR, but transporters encoded are multifacilitator superfamily and ATP-binding cassette-type transporters, uncommon for CCR. Therefore, global transcriptome analysis of A. acidocaldarius grown on xylose or fructose was performed in this paper in chemostats, followed by attempted induction of CCR with glucose or arabinose. Alicyclobacillus acidocaldarius grewmore » while simultaneously metabolizing xylose and glucose, xylose and arabinose, and fructose and glucose, indicating that CCR did not control carbon metabolism. Finally, microarrays showed down-regulation of genes during growth on one sugar compared to two, and occurred primarily in genes encoding: (1) regulators; (2) enzymes for cell wall synthesis; and (3) sugar transporters.« less

  5. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Apel, William A.; DeVeaux, Linda C.

    Alicyclobacillus acidocaldarius is a thermoacidophilic bacterium capable of growth on sugars from plant biomass. Carbon catabolite repression (CCR) allows bacteria to focus cellular resources on a sugar that provides efficient growth, but also allows sequential, rather than simultaneous use when more than one sugar is present. The A. acidocaldarius genome encodes all components of CCR, but transporters encoded are multifacilitator superfamily and ATP-binding cassette-type transporters, uncommon for CCR. Therefore, global transcriptome analysis of A. acidocaldarius grown on xylose or fructose was performed in this paper in chemostats, followed by attempted induction of CCR with glucose or arabinose. Alicyclobacillus acidocaldarius grewmore » while simultaneously metabolizing xylose and glucose, xylose and arabinose, and fructose and glucose, indicating that CCR did not control carbon metabolism. Finally, microarrays showed down-regulation of genes during growth on one sugar compared to two, and occurred primarily in genes encoding: (1) regulators; (2) enzymes for cell wall synthesis; and (3) sugar transporters.« less

  6. Membrane-electrode assemblies for electrochemical cells

    DOEpatents

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  7. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved organic matter. However, the role of food web structure in mediating these dynamics remains unclear.

  8. Element budgets in an Arctic mesocosm CO2 perturbation study

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Siljakova, A.; Riebesell, U.

    2012-08-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining the temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air/sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification using KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation) all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down some of the mentioned uncertainties. Water column concentrations of particulate and dissolved organic and inorganic constituents were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution, as well as estimates of wall growth were developed to close the gaps in element budgets. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in 2 of the 3 experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic compounds under nutrient recycling summer conditions. This carbon over-consumption effect becomes evident from budget calculations, but was too small to be resolved by direct measurements of dissolved organics. The out-competing of large diatoms by comparatively small algae in nutrient uptake caused reduced production rates under future ocean CO2 conditions in the end of the experiment. This CO2 induced shift away from diatoms towards smaller phytoplankton and enhanced cycling of dissolved organics was pushing the system towards a retention type food chain with overall negative effects on export potential.

  9. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Chunnian; Zhao Naiqin; Shi Chunsheng

    2008-08-04

    Three types of carbon nanomaterials, including bamboo-shaped carbon nanotubes with Ni encapsulated and hollow and Ni catalytic particles filled carbon nanocages, have been prepared by methane catalytic decomposition at a relatively low temperature. Transmission electron microscopy observations showed that fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures predominated. Detailed examination of high-resolution transmission electron microscopy showed that the walls of bamboo-shaped carbon nanotubes with quasi-cone catalytic particles encapsulated consisted of oblique graphene planes with respect to the tube axis. The Ni particles encapsulated in the carbon nanocages were larger than that encapsulated in carbon nanotubes, but the diameters of the cores ofmore » hollow carbon nanocages were less than that of Ni particles encapsulated in carbon nanotubes, suggesting that the sizes of catalyst particles played an important role during carbon nanomaterial growth. The magnetic properties of the carbon nanomaterials were measured, which showed relatively large coercive force (H{sub c} = 138.4 O{sub e}) and good ferromagnetism (M{sub r}/M{sub s} = 0.325)« less

  10. Molecular identification of organic compounds in atmospheric complex mixtures and relationship to atmospheric chemistry and sources.

    PubMed

    Mazurek, Monica A

    2002-12-01

    This article describes a chemical characterization approach for complex organic compound mixtures associated with fine atmospheric particles of diameters less than 2.5 m (PM2.5). It relates molecular- and bulk-level chemical characteristics of the complex mixture to atmospheric chemistry and to emission sources. Overall, the analytical approach describes the organic complex mixtures in terms of a chemical mass balance (CMB). Here, the complex mixture is related to a bulk elemental measurement (total carbon) and is broken down systematically into functional groups and molecular compositions. The CMB and molecular-level information can be used to understand the sources of the atmospheric fine particles through conversion of chromatographic data and by incorporation into receptor-based CMB models. Once described and quantified within a mass balance framework, the chemical profiles for aerosol organic matter can be applied to existing air quality issues. Examples include understanding health effects of PM2.5 and defining and controlling key sources of anthropogenic fine particles. Overall, the organic aerosol compositional data provide chemical information needed for effective PM2.5 management.

  11. The chemical composition and sources of PM2.5 during the 2009 Chinese New Year's holiday in Shanghai

    NASA Astrophysics Data System (ADS)

    Feng, Jialiang; Sun, Peng; Hu, Xiaoling; Zhao, Wei; Wu, Minghong; Fu, Jiamo

    2012-11-01

    China is virtually shut down during the week-long Chinese New Year's holiday. This implies that the anthropogenic emissions would be greatly decreased during the period thus providing an opportunity to study the air quality in China under reduced emissions, and the drastic emission changes during a short period of time allows the comparison of source contributions under significantly different conditions. Seventeen PM2.5 samples were collected during the 2009 Chinese New Year's holiday in Shanghai to study the composition and sources of the fine particles. Organic carbon (OC), elemental carbon (EC), eight water-soluble ions, fourteen metals and solvent extractable organic compounds (SEOC) including alkanes, hopanes, polycyclic aromatic hydrocarbons (PAHs) and fatty acids were measured. Diagnostic PAH ratios, correlation analysis of OC, EC, n-alkanes, hopanes and PAHs showed that vehicle emissions were the main source of n-alkanes and EC, and an important source of the locally emitted particulate PAHs in urban Shanghai, while coal burning should be the main source of the transported PAHs from the inland areas. The composition of n-fatty acids also provided some clue on the significance of the contribution by kitchen activities. In the New Year's Eve's sample, 75% of the particle mass was estimated to be from fireworks, and K+, SO42 -, Cl-, OC, Al and Ba were the main components. Firework fine particles had high OC/EC ratio and low NO3-/SO42 - ratio.

  12. Microscopic relaxations in a protein sustained down to 160 K in a non-glass forming organic solvent

    DOE PAGES

    Mamontov, Eugene; O'Neil, Hugh

    2016-05-03

    In this paper, we have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160 K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamicalmore » transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160 K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Finally, our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics.« less

  13. Carbon in down woody materials of eastern U.S. forests

    Treesearch

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath

    2003-01-01

    To better manage global carbon storage and other ecosystem processes, there is a need for accessible carbon data on components of down woody materials (DWM) in forests. We examined the feasibility of linking available data on DWM to the U.S. Department of Agriculture (USDA) Forest Inventory Analysis (FIA) database, which covers the nation's forest lands. We...

  14. Smoke From Canadian Wildfires Drifts Down to U.S.

    NASA Image and Video Library

    2015-06-10

    Canada has already had its share of wildfires this season, and the smoke from these wildfires is slowly drifting south over the United States' Midwest. The drifting smoke can be seen in this Terra satellite image over Lake Michigan, as well as parts of Minnesota, Wisconsin, Indiana and Ohio. The smoke released by any type of fire (forest, brush, crop, structure, tires, waste or wood burning) is a mixture of particles and chemicals produced by incomplete burning of carbon-containing materials. All smoke contains carbon monoxide, carbon dioxide and particulate matter (PM or soot). Smoke can contain many different chemicals, including aldehydes, acid gases, sulfur dioxide, nitrogen oxides, polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, styrene, metals and dioxins. The type and amount of particles and chemicals in smoke varies depending on what is burning, how much oxygen is available, and the burn temperature. Exposure to any type of smoke should be avoided if possible, but especially by those with respiratory issues, the elderly, and children. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite on June 09, 2015. Credit: NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.

    2016-01-01

    Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.

  16. Nanostructures to modulate vascular inflammation: Multifunctional nanoparticles for quantifiable siRNA delivery and molecular imaging

    NASA Astrophysics Data System (ADS)

    Kaneda, Megan Marie

    Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of nucleotide agents.

  17. Investigation of energetic particle induced geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  18. Materials based on carbon-filled porous layers of PVC cyclam derivatives cross-linked with the surfaces of asbestos fabric fibers

    NASA Astrophysics Data System (ADS)

    Tzivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardishev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-08-01

    The synthesis of bilayer materials with porous upper layers composed of PVC hydroxyethylcyclam derivatives filled with carbon and a layer consisting of hydroxyethylcyclam, cross-linked via Si-O-C groups with the silica chains of a developed surface of asbestos fabric, is described. The aza-crown groups in these materials are bound with aqua complexes of H2SO4 or NaOH. The structure of the materials is examined, their adsorption characteristics are determined, and the rate of motion of H+ or OH- ions in electrochemical bridges is measured, while the formation of H2 and O2 in their cathodic and anodic polarization is determined as a function of voltage. It is shown that the upper layer of these materials is adsorption-active and electronand H+- or OH-- conductive, while the bottom layer is only H+- or OH-- conductive; through it, the upper layer is supplied with the H+ or OH- ions needed for the regeneration of the aqua complexes broken down to H2 and O2 on carbon particles.

  19. Analytical high resolution microscopic investigation of organic coating on co-composted biochar

    NASA Astrophysics Data System (ADS)

    Albu, Mihaela; Mayrhofer, Claudia; Hagemann, Nikolas; Joseph, Stephen; Hofer, Ferdinand; Kothleitner, Gerald

    2017-04-01

    Aged and/or co-composted biochar amendment improves soil fertility by changing certain proprieties like the porosity and sorption capacity, the redox properties, water holding capacity and nutrient transformations in soil. The beneficial properties have been correlated with surface functional groups resulting from the interactions between black carbon particles, inorganic and organic matter in the soil and soil biota, manure or other compost feedstock. As a result, porous organic layer and organo-mineral phases on the biochar surfaces are formed. This paper presents a detailed analysis of the porous layer and organo-mineral phases formed on co-composted biochar by using high resolution scanning transmission electron microscopy (STEM) and electron energy loss (EELS) as well as energy dispersive X-ray spectroscopy (EDX). The fine structure fingerprints of carbon and nitrogen edges have been used to identify the functional groups, while EDX was used to identify the mineral phases. However, in order to achieve undoubtable results a novel preparation technic of the sample has been developed. The preparation involved 3D gold sputtering on the black carbon particles in order to preserve the surface intact, embedding in resin and, ultrathin microtome cutting. The investigation was carried out using a probe corrected Titan 3G, at a voltage of 60 kV and in cryo-condition, with an EELS energy resolution of 0.15 eV and a spatial resolution down to atomic layers. We proved the presence of both C and N functional groups in the porous, heterogeneous and hydrophilic organic layer and organo-mineral agglomerates. The organic layer fully covered the outer surface of the black carbon piece, but also the surface of internal pores. Its thickness varied from 500-1000 nm on the outer surface down to a couple of nanometres on internal pores. The observed C functional groups have been identified to correspond to: aromatic, aromatic with side chain, ketone, aliphatic, carboxyl/amine carbon and, carbonyl while the N functional groups were: pyridine, imine, amide/peptide, pyrrole, and NO2-/oxidised N. The STEM analysis also revealed the formation of complex organo-mineral agglomerates involving Ca but also the redox-active Fe as iron oxide nnanoparticles and P as magnesium phosphate nnanoparticles. These findings are valuable information which contributes to the understanding of biochar reactions with soil and plants as a function of agronomic practice and environmental factors. Acknowledgment This research received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative-I3).

  20. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  1. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes

    PubMed Central

    Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.

    1998-01-01

    To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531

  2. Ubiquitous healthy diatoms in the deep sea confirms deep carbon injection by the biological pump

    NASA Astrophysics Data System (ADS)

    Agustí, Susana; González-Gordillo, Jose I.; Vaqué, Dolors; Estrada, Marta; Cerezo, Maria I.; Salazar, Guillem; Gasol, Josep M.; Duarte, Carlos M.

    2016-04-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean awaits confirmation. Photosynthetic plankton, directly responsible for trapping CO2 in organic form in the surface layer, are a key constituent of the flux of sinking particles and are assumed to die and become detritus upon leaving the photic layer. Research in the 1960-70's reported the occasional presence of well-preserved phytoplankton cells in the deep ocean, but these observations, which could signal at rapid sinking rates, were considered anecdotal. Using new developments we tested the presence of healthy phytoplankton cells in the deep sea (2000 to 4000 m depth) along the Malaspina 2010 Circumnavigation Expedition, a global expedition sampling the bathypelagic zone of the Atlantic, Indian and Pacific Oceans. In particular, we used a new microplankton sampling device, the Bottle-Net, 16S rDNA sequences, flow cytometric counts, vital stains and experiments to explore the abundance and health status of photosynthetic plankton cells between 2,000 and 4,000 m depth along the Circumnavigation track. We described the community of microplankton (> 20μm) found at the deep ocean (2000-4000 m depth), surprisingly dominated by phytoplankton, and within this, by diatoms. Moreover, we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark sea. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from few days to few weeks, corresponding to sinking rates of 124 to 732 m d-1, comparable to those of fast sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep-sea and that this is a prevalent process operating across the global oligotrophic ocean.

  3. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    PubMed

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  4. Npr1 Ser/Thr Protein Kinase Links Nitrogen Source Quality and Carbon Availability with the Yeast Nitrate Transporter (Ynt1) Levels*

    PubMed Central

    Martín, Yusé; González, Yelvis V.; Cabrera, Elisa; Rodríguez, Celia; Siverio, José M.

    2011-01-01

    Ynt1, the single high affinity nitrate and nitrite transporter of the yeast Hansenula polymorpha, is regulated by the quality of nitrogen sources. Preferred nitrogen sources cause Ynt1 dephosphorylation, ubiquitinylation, endocytosis, and vacuolar degradation. In contrast, under nitrogen limitation Ynt1 is phosphorylated and sorted to the plasma membrane. We show here the involvement of the Ser/Thr kinase HpNpr1 in Ynt1 phosphorylation and regulation of Ynt1 levels in response to nitrogen source quality and the availability of carbon. In Δnpr1, Ynt1 phosphorylation does not take place, although Ynt1 ubiquitin conjugates increase. As a result, in this strain Ynt1 is sorted to the vacuole, from both plasma membrane and the later biosynthetic pathway in nitrogen-free conditions and nitrate. In contrast, overexpression of NPR1 blocks down-regulation of Ynt1, increasing Ynt1 phosphorylation at Ser-244 and -246 and reducing ubiquitinylation. Furthermore, Npr1 is phosphorylated in response to the preferred nitrogen sources, and indeed it is dephosphorylated in nitrogen-free medium. Under conditions where Npr1 is phosphorylated, Ynt1 is not and vice versa. We show for the first time that carbon starvation leads to Npr1 phosphorylation, whereas Ynt1 is dephosphorylated and degraded in the vacuole. Rapamycin prevents this, indicating a possible role of the target of rapamycin signaling pathway in this process. We concluded that Npr1 plays a key role in adapting Ynt1 levels to the nitrogen quality and availability of a source of carbon. PMID:21652715

  5. Examining responses of ecosystem carbon exchange to environmental changes using particle filtering mathod

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2017-12-01

    Attention has been paid to the agricultural field that could regulate ecosystem carbon exchange by water management and residual treatments. However, there have been less known about the dynamic responses of the ecosystem to environmental changes. In this study, focussing on paddy field, where CO2 emissions due to microbial decomposition of organic matter are suppressed and alternatively CH4 emitted under flooding condition during rice growth season and subsequently CO2 emission following the fallow season after harvest, the responses of ecosystem carbon exchange were examined. We conducted model data fusion analysis for examining the response of cropland-atmosphere carbon exchange to environmental variation. The used model consists of two sub models, paddy rice growth sub-model and soil decomposition sub-model. The crop growth sub-model mimics the rice plant growth processes including formation of reproductive organs as well as leaf expansion. The soil decomposition sub-model simulates the decomposition process of soil organic carbon. Assimilating the data on the time changes in CO2 flux measured by eddy covariance method, rice plant biomass, LAI and the final yield with the model, the parameters were calibrated using a stochastic optimization algorithm with a particle filter method. The particle filter method, which is one of the Monte Carlo filters, enable us to evaluating time changes in parameters based on the observed data until the time and to make prediction of the system. Iterative filtering and prediction with changing parameters and/or boundary condition enable us to obtain time changes in parameters governing the crop production as well as carbon exchange. In this study, we focused on the parameters related to crop production as well as soil carbon storage. As the results, the calibrated model with estimated parameters could accurately predict the NEE flux in the subsequent years. The temperature sensitivity, denoted by Q10s in the decomposition rate of soil organic carbon (SOC) were obtained as 1.4 for no cultivation period and 2.9 for cultivation period (submerged soil condition in flooding season). It suggests that the response of ecosystem carbon exchange differs due to SOC decomposition process which is sensitive to environmental variation during paddy rice cultivation period.

  6. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; O'Neil, Hugh

    In this paper, we have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160 K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamicalmore » transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160 K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Finally, our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics.« less

  8. Entrapment of carbon dioxide with chitosan-based core-shell particles containing changeable cores.

    PubMed

    Dong, Yanrui; Fu, Yinghao; Lin, Xia; Xiao, Congming

    2016-08-01

    Water-soluble chitosan-based core-shell particles that contained changeable cores were successfully applied to anchor carbon dioxide. The entrapment capacity of the particles for carbon dioxide (EC) depended on the cores. It was found that EC of the particles contained aqueous cores was higher than that of the beads with water-soluble chitosan gel cores, which was confirmed with thermogravimetric analysis. In addition, calcium ions and sodium hydroxide were introduced within the particles to examine their effect on the entrapment. EC of the particles was enhanced with sodium hydroxide when the cores were WSC gel. The incorporation of calcium ions was helpful for stabilizing carbon dioxide through the formation of calcium carbonate, which was verified with Fourier transform infrared spectra and scanning electron microscopy/energy-dispersive spectrometry. This phenomenon meant the role of calcium ions for fixating carbon dioxide was significant. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby

    DOEpatents

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1994-01-01

    A method of making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  10. Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby

    DOEpatents

    Swathirajan, S.; Mikhail, Y.M.

    1994-05-31

    A method is described for making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane. 10 figs.

  11. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests

    Treesearch

    Matthew B. Russell; Christopher W. Woodall; Shawn Fraver; Anthony W. D' Amato; Grant M. Domke; Kenneth E. Skog

    2014-01-01

    A key component in describing forest carbon (C) dynamics is the change in downed dead wood biomass through time. Specifically, there is a dearth of information regarding the residence time of downed woody debris (DWD), which may be reflected in the diversity of wood (for example, species, size, and stage of decay) and site attributes (for example, climate) across the...

  12. Carbonic Anhydrase-8 Regulates Inflammatory Pain by Inhibiting the ITPR1-Cytosolic Free Calcium Pathway

    PubMed Central

    Zhuang, Gerald Z.; Keeler, Benjamin; Grant, Jeff; Bianchi, Laura; Fu, Eugene S.; Zhang, Yan Ping; Erasso, Diana M.; Cui, Jian-Guo; Wiltshire, Tim; Li, Qiongzhen; Hao, Shuanglin; Sarantopoulos, Konstantinos D.; Candiotti, Keith; Wishnek, Sarah M.; Smith, Shad B.; Maixner, William; Diatchenko, Luda; Martin, Eden R.; Levitt, Roy C.

    2015-01-01

    Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain. PMID:25734498

  13. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  14. Biomass and carbon attributes of downed woody materials in forests of the United States

    Treesearch

    C.W. Woodall; B.F. Walters; S.N. Oswalt; G.M. Domke; C. Toney; A.N. Gray

    2013-01-01

    Due to burgeoning interest in the biomass/carbon attributes of forest downed and dead woody materials (DWMs) attributable to its fundamental role in the carbon cycle, stand structure/diversity, bioenergy resources, and fuel loadings, the U.S. Department of Agriculture has conducted a nationwide field-based inventory of DWM. Using the national DWM inventory, attributes...

  15. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum.

    PubMed

    Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M

    2018-01-01

    Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.

  16. Direct /TEM/ observation of the catalytic oxidation of amorphous carbon by Pd particles

    NASA Technical Reports Server (NTRS)

    Moorhead, R. D.; Poppa, H.; Heinemann, K.

    1980-01-01

    The catalytic oxidation of amorphous carbon substrates by Pd particles is observed by in situ transmission electron microscopy. Various modes of selective attack of the carbon substrate in the immediate neighborhood of Pd particles are observed, which can be correlated with different degrees of particle mobility. Using amorphous substrates we have been able to demonstrate that the particle-substrate interaction is influenced by the structure of the particle. This has not previously been noted.

  17. Effect of magnetic and electric coupling fields on micro- and nano- structure of carbon films in the CVD diamond process and their electron field emission property

    NASA Astrophysics Data System (ADS)

    Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao

    2018-03-01

    In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.

  18. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds

    PubMed Central

    Moon, Young-Sun; Choi, Won-Sik; Park, Eun-Sil; Bae, In Kyung; Choi, Sung-Deuk; Paek, Ockjin; Kim, Sheen-Hee; Chun, Hyang Sook; Lee, Sung-Eun

    2016-01-01

    Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes. PMID:27537912

  19. Children's Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure?

    PubMed

    Saenen, Nelly D; Bové, Hannelore; Steuwe, Christian; Roeffaers, Maarten B J; Provost, Eline B; Lefebvre, Wouter; Vanpoucke, Charlotte; Ameloot, Marcel; Nawrot, Tim S

    2017-10-01

    Ambient air pollution, including black carbon, entails a serious public health risk because of its carcinogenic potential and as climate pollutant. To date, an internal exposure marker for black carbon particles that have cleared from the systemic circulation into the urine does not exist. To develop and validate a novel method to measure black carbon particles in a label-free way in urine. We detected urinary carbon load in 289 children (aged 9-12 yr) using white-light generation under femtosecond pulsed laser illumination. Children's residential black carbon concentrations were estimated based on a high-resolution spatial temporal interpolation method. We were able to detect urinary black carbon in all children, with an overall average (SD) of 98.2 × 10 5 (29.8 × 10 5 ) particles/ml. The urinary black carbon load was positively associated with medium-term to chronic (1 mo or more) residential black carbon exposure: +5.33 × 10 5 particles/ml higher carbon load (95% confidence interval, 1.56 × 10 5 to 9.10 × 10 5 particles/ml) for an interquartile range increment in annual residential black carbon exposure. Consistently, children who lived closer to a major road (≤160 m) had higher urinary black carbon load (6.93 × 10 5 particles/ml; 95% confidence interval, 0.77 × 10 5 to 13.1 × 10 5 ). Urinary black carbon mirrors the accumulation of medium-term to chronic exposure to combustion-related air pollution. This specific biomarker reflects internal systemic black carbon particles cleared from the circulation into the urine, allowing investigators to unravel the complexity of particulate-related health effects.

  20. Methods for forming particles from single source precursors

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  1. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick,

    NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with lessmore » NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1. - Highlights: • Silica and nanoparticles cause LMP in macrophages in vitro and in vivo. • Phagolysosome acidification is required for particle-induced LMP. • Cathepsin B and L are not required for nanoparticle-induced LMP. • Cathepsin B/L regulate the secretion of HMGB1 with particle exposure.« less

  2. Dysfunction of methionine sulfoxide reductases to repair damaged proteins by nickel nanoparticles.

    PubMed

    Feng, Po-Hao; Huang, Ya-Li; Chuang, Kai-Jen; Chen, Kuan-Yuan; Lee, Kang-Yun; Ho, Shu-Chuan; Bien, Mauo-Ying; Yang, You-Lan; Chuang, Hsiao-Chi

    2015-07-05

    Protein oxidation is considered to be one of the main causes of cell death, and methionine is one of the primary targets of reactive oxygen species (ROS). However, the mechanisms by which nickel nanoparticles (NiNPs) cause oxidative damage to proteins remain unclear. The objective of this study is to investigate the effects of NiNPs on the methionine sulfoxide reductases (MSR) protein repairing system. Two physically similar nickel-based nanoparticles, NiNPs and carbon-coated NiNP (C-NiNPs; control particles), were exposed to human epithelial A549 cells. Cell viability, benzo(a)pyrene diolepoxide (BPDE) protein adducts, methionine oxidation, MSRA and B3, microtubule-associated protein 1A/1B-light chain 3 (LC3) and extracellular signal-regulated kinase (ERK) phosphorylation were investigated. Exposure to NiNPs led to a dose-dependent reduction in cell viability and increased BPDE protein adduct production and methionine oxidation. The methionine repairing enzymatic MSRA and MSRB3 production were suppressed in response to NiNP exposure, suggesting the oxidation of methionine to MetO by NiNP was not reversed back to methionine. Additionally, LC3, an autophagy marker, was down-regulated by NiNPs. Both NiNP and C-NiNP caused ERK phosphorylation. LC3 was positively correlated with MSRA (r = 0.929, p < 0.05) and MSRB3 (r = 0.893, p < 0.05). MSR was made aberrant by NiNP, which could lead to the dysfunction of autophagy and ERK phosphorylation. The toxicological consequences may be dependent on the chemical characteristics of the nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy.

    PubMed

    McCartt, A Daniel; Ognibene, Ted J; Bench, Graham; Turteltaub, Kenneth W

    2016-09-06

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. The CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.

  4. Characterization and observation of water-based nanofluids quench medium with carbon particle content variation

    NASA Astrophysics Data System (ADS)

    Yahya, S. S.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Kresnodrianto, Mahiswara, E. P.

    2018-05-01

    Recently, nanofluids have been widely used in heat treatment industries as quench medium with better quenching performance. The thermal conductivity of nanofluids is higher compared to conventional quench medium such as polymer, water, brine, and petroleum-based oil. This characteristic can be achieved by mixing high thermal conductivity particles in nanometer scale with a fluid as base. In this research, carbon powder and distilled water were used as nanoparticles and base respectively. The carbon source used in this research was laboratory grade carbon powder, and activated carbon as a cheaper alternative source. By adjusting the percentage of dispersed carbon particles, thermal conductivity of nanofluids could be controlled as needed. To obtain nanoscale carbon particles, planetary ball mill was used to grind laboratory-grade carbon and active carbon powder to further decrease its particle size. This milling method will provide nanoparticles with lower production cost. Milling speed and duration were set at 500 rpm and 15 hours. Scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX) were carried out respectively to determine the particle size, material identification, particle morphology. The carbon nanoparticle content in nanofluids quench mediums for this research were varied at 0.1, 0.3, and 0.5 % vol. Furthermore, these mediums were used to quench AISI 1045 carbon steel samples which had been annealed at 1000 °C. Hardness testing and metallography observation were then conducted to check the effect of different quench medium in steel samples. Preliminary characterizations showed that the carbon particle dimension after milling was hundreds of nanometers, or still in sub-micron range. Therefore, the milling process parameters are need to be optimized further. EDX observation in laboratory-grade carbon powder showed that the powder was pure carbon as expected for, but in activated carbon has some impurities. The nanofluid itself, however, was stable, despite the hydrophobic characteristic of carbon. The effect of different carbon percentages in nanofluid could give an illustration for optimal ratio of nanofluid to achieve the desired material properties.

  5. Coarse woody debris and soil respiration 6 years post-tornado in a Piedmont forest blowdown

    NASA Astrophysics Data System (ADS)

    Oldfield, C.; Peterson, C. J.

    2017-12-01

    Severe wind disturbances can rapidly change carbon pools and fluxes in forests, causing a site to switch from a carbon sink to a source in a matter of minutes. Moreover, salvage logging after a disturbance can result in disturbed and compacted soil, altered woody debris carbon pools, and seedling mortality, all of which may further alter carbon dynamics beyond that caused by the disturbance itself. We measured down dead wood and soil respiration in the summer of 2017 at Boggs Creek Recreation Area in the Piedmont of northeast Georgia, the site of a severe tornado in 2011. Down dead wood and soil respiration were compared in control (intact forest), salvaged, and unsalvaged areas. Megagrams per hectare of down dead wood was significantly higher in the unsalvaged condition than the control or salvage logging condition (ANOVAs, p<0.05 in both cases). Conversely, the volume of down dead wood was not significantly different in the control when compared to the salvage logging condition (p=0.99). Soil respiration was significantly higher in the salvage logged condition than the control (p<0.05), but was not significantly different between the unsalvaged condition and the control (p=0.30) or the unsalvaged condition and the salvaged condition (p=0.58). This research shows that wind disturbances have a lasting impact on the amount of down dead wood in a forest, and salvage logging may lead to greater soil respiration years after the initial disturbance, both of which will influence the time elapsed before a disturbed forest switches from carbon source to carbon sink. Further research is needed to determine the duration of these effects, along with the carbon consequences for other forest carbon pools.

  6. Coated powder for electrolyte matrix for carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Browall, Kenneth W.

    1985-01-01

    A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell.

  7. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOEpatents

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  8. Long-Term Evolution of the Sun and our Biosphere: Causes and Effects?

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.

    2000-05-01

    The course of early biological evolution felt the environmental consequences of changes in the solar output (discussed here), as well as long-term decreases in planetary heat flow and the flux of extraterrestrial impactors. A large, early UV flux fueled the photodissociation of atmospheric water vapor, sustaining a significant hydrogen flux to space. This flux caused Earth's crust to become oxidized, relative to its mantle. Accordingly, reduced gases and aqueous solutes that were erupted volcanically into the relatively more oxidized surface environment created sources of chemical redox energy for the origin and early evolution of life. Although the solar constant has increased some 30 percent over Earth's lifetime, oceans remained remarkably stable for more than 3.8 billion years. Thus a very effective climate regulation was probably achieved by decreasing over time the atmospheric inventories of greenhouse gases such as carbon dioxide and methane. Such decreases probably had major consequences for the biosphere. Substantial early marine bicarbonate and carbon dioxide inventories sustained abundant abiotic precipitation of carbonates, with consequences for the stability and habitability of key aqueous environments. A long-term decline in carbon dioxide levels increased the bioenergetic requirements for carbon dioxide as well as other aspects of the physiology of photosynthetic microorganisms. The long-term trend of global mean surface temperature is still debated, as is the role of the sun's evolution in that trend. Future increases in the solar constant will drive atmospheric carbon dioxide levels down further, challenging plants to cope with ever-dwindling concentrations of carbon substrates. Climate regulation will be achieved by modulating an increasing abundance of high-albedo water vapor clouds. Future biological evolution defies precise predictions, however it is certain that the sun's continuing evolution will play a key role.

  9. Altered peat hydrophysical properties following drainage and wildfire increases peatland vulnerability to ecosystem regime shift

    NASA Astrophysics Data System (ADS)

    Waddington, James; Kettridge, Nick; Sherwood, James; Granath, Gustaf

    2015-04-01

    Northern peatlands represent a globally significant carbon reservoir, composed largely of legacy carbon which is no longer part of the active carbon cycle. However, it is unclear whether this legacy carbon is vulnerable as a result of enhanced peat smouldering and combustion under the moderate drying conditions predicted for northern peatlands as a result of climate change and/or disturbance from forestry, mining, and associated transport development. A significant loss in legacy carbon as a result of wildfire has already been observed in smaller tropical peatlands where deep peat soils have been destabilized due to severe drainage and a shift in vegetation. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland several decades post drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition, previously observed within only severely disturbed tropical peatlands, when accompanied by wildfire. The combined impact of moderate drainage followed by wildfire resulted in a shift of the peat surface down the peat profile, exposing denser peat at the surface. In undisturbed northern peatlands where depth of burn is typically low, low-density near-surface peats help regulate water-table position and near-surface moisture availability post-fire, both of which are favourable to Sphagnum recolonization. As a result of drainage and fire at the study site, the self-regulating properties of the low-density Sphagnum surface were lost. We demonstrate that changes in peat hydrophysical properties increased hydrological limitations to Sphagnum recovery leading to the conversion to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy carbon stored in the peat.

  10. Aerosol Optical Properties of Smoke from the Las Conchas Wildfire, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Dubey, M. K.; Flowers, B. A.; Aiken, A. C.; Klein, B. Z.; Mazzoleni, C.; Sharma, N.; China`, S.

    2011-12-01

    The Las Conchas wildfire in Northern New Mexico started on June, 26 2011 and spread rapidly, eventually burning an area of 634 km2 (245 mi2). Due to the close proximity to the fire, the Los Alamos National Laboratory (LANL) was shut down and the town evacuated for several days. Immediately after LANL reopened (7/6/2011) the Earth and Environmental Sciences Division (EES-14) attained unique measurements of the smoke by sampling the ambient air. Three Integrated Photoacoustic/Nephelometer Spectrometers (DMT Inc.) were set up to measure aerosol light absorption and scattering coefficients. A University of Northwest Switzerland thermodenuder was used to remove compounds that are volatile at temperatures up to 200C. The aerosol's optical properties were measured before and after denuding the sample at 405nm (blue), 532nm (green), 781nm (red), and for non-denuded particles also at 375nm (ultraviolet). The aerosol size distributions were measured after the denuder with a Laser Aerosol Spectrometer (LAS, TSI Inc.) and black carbon was measured with a Single Particle Soot Photometer (SP2, DMT Inc.). Additionally, ambient measurements of Total Particulate Matter (PM2.5 and PM10) were collected continuously at the LANL air monitoring stations. These measurements are used in conjunction with numerical simulations to determine the bulk optical properties of the aerosol. Aerosols in wildfire smoke are composed of organic and black carbon (soot) particles that are formed during wood combustion and pyrolysis. The optical properties of the smoke particles are complex and lead to large uncertainties in assessing the global climate. During the measurement period, the Las Conchas fire provided very high particle concentrations (up to 200 μg/m3) that were exploited to investigate their optical properties. By heating the particles to temperatures ranging from 75 to 200C in the denuder, volatile organics were removed and the optical properties of the remaining particles were measured. Denuding of the aerosols, removed the outer organic coatings leaving behind the inner core of black carbon (soot) and any compounds that did not volatize completely. By simultaneously measuring the optical properties of the non-denuded as well as the denuded aerosol, we can study how the coatings affect the optical properties. The absorption coefficient measurements showed that coatings can cause an increase or decrease in absorption. The photoacoustic measurements were also combined with SP2 measurements to gain a mechanistic understanding of the effect of composition on the mass light absorption cross-sections of carbonaceous aerosols emitted by fires.

  11. Filling carbon nanotubes with particles.

    PubMed

    Kim, Byong M; Qian, Shizhi; Bau, Haim H

    2005-05-01

    The filling of carbon nanotubes (CNTs) with fluorescent particles was studied experimentally and theoretically. The fluorescent signals emitted by the particles were visible through the walls of the nanotubes, and the particles inside the tubes were observable with an electron microscope. Taking advantage of the template-grown carbon nanotubes' transparency to fluorescent light, we measured the filling rate of the tubes with particles at room conditions. Liquids such as ethylene glycol, water, and ethylene glycol/water mixtures, laden with 50 nm diameter fluorescent particles, were brought into contact with 500 nm diameter CNTs. The liquid and the particles' transport were observed, respectively, with optical and fluorescence microscopy. The CNTs were filled controllably with particles by the complementary action of capillary forces and the evaporation of the liquid. The experimental results were compared and favorably agreed with theoretical predictions. This is the first report on fluorescence studies of particle transport in carbon nanotubes.

  12. Detection of nanoparticles in carbon arc discharge with laser-induced incandescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, S.; Bak, J.; Khrabryi, A.

    Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arcmore » plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.« less

  13. Detection of nanoparticles in carbon arc discharge with laser-induced incandescence

    DOE PAGES

    Yatom, S.; Bak, J.; Khrabryi, A.; ...

    2017-02-20

    Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arcmore » plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.« less

  14. Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO3 from a supersaturated salt solution.

    PubMed

    Bolze, J; Pontoni, D; Ballauff, M; Narayanan, T; Cölfen, H

    2004-09-01

    The effect of a double hydrophilic block-copolymer additive (made of polyaspartic acid and polyethyleneglycol, pAsp(10)-b-PEG(110)) on the initial formation of calcium carbonate from a supersaturated salt solution has been studied in situ by means of time-resolved synchrotron small-angle X-ray scattering (SAXS). A stopped-flow cell was used for rapidly mixing the 20 mM aqueous reactant solutions of calcium chloride and sodium carbonate. In reference measurements without polymer additive the very rapid formation of primary, overall spherical CaCO(3) particles with a radius of ca. 19 nm and a size polydispersity of ca. 26% was observed within the first 10 ms after mixing. A subsequent, very rapid aggregation of these primary particles was evidenced by a distinct upturn of the SAXS intensity at smallest angles. During the aggregation process the size of the primary particles remained unchanged. From an analysis of the absolute scattering intensity the mass density of these particles was determined to 1.9 g/cm(3). From this rather low density it is concluded that those precursor particles are amorphous, which has been confirmed by simultaneous wide-angle X-ray diffraction measurements. Upon adding 200 pm of the block-copolymer no influence on the size, the size polydispersity and morphology of the primary particles, nor on the kinetics of their formation and growth, was found. On the other hand, the subsequent aggregation and precipitation process is considerably slowed down by the additive and smaller aggregates result. The crystalline morphology of the sediment was studied in situ by WAXS ca. 50 min after mixing the reactants. Several diffraction rings could be detected, which indicate that a transformation of the metastable, amorphous precursor particles to randomly oriented vaterite nanocrystallites has taken place. In addition, a few isolated Bragg spots of high intensity were detected, which are attributed to individual, oriented calcite microcrystals that nucleated at the wall of the capillary.

  15. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  16. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  17. Effect of long-term microgravity on the mineralisation of inner ear otoliths of fish - a spaceflight study

    NASA Astrophysics Data System (ADS)

    Anken, Ralf

    The "heavy bodies" (i.e., statoliths or otoliths, mainly made up of calcium carbonate and protein) in the inner ears of vertebrates transform the physical parameter "gravity" to biological signals needed for postural control. It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish (via a down-regulation of carbonic anhydrase reactivity) as an adaptation towards altered environmental gravity. We were thus prompted to elucidate whether long-term microgravity would possibly yield opposite effects. Therefore, larval siblings of cichlid fish (Oreochromis mossambicus) were housed in a bioregenerative life support system (OMEGAHAB) using green algae (Euglena gracilis) for oxygen supply. The experiment was successfully flown on the FOTON M-3 mission. Prior to launch, otoliths were stained with a fluorescent calcium tracer (Alizarin Complexone). This treatment both allowed an assessment of otolith growth (size) after recovery as well as an analysis of relocations of calcium deposits. Calcium and strontium contents were determined using inductively coupled plasma mass spectrometry. The results will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 0527).

  18. Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization.

    PubMed

    Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T

    2015-12-29

    The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.

  19. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. Here,more » the CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.« less

  20. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy

    DOE PAGES

    McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham; ...

    2016-07-26

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. Here,more » the CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.« less

  1. The impact of port emissions and marine biogenics on the single-particle chemistry of marine aerosol measured on board the R/V Atlantis during the CalNEX 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Gaston, C. J.; Quinn, P.; Bates, T. S.; Prather, K. A.

    2010-12-01

    Marine environments are characterized by low particle concentrations and, as such, are sensitive to changes in particle number concentration and chemistry induced by biogenic and anthropogenic influences. Measurements of both gas phase and particle phase emissions on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of anthropogenic and marine biogenic emissions on particle chemistry along the California coast. Real-time, single-particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the single-particle mixing state of the sampled marine aerosols. Submicron particles (0.2-1.0 um) containing organic carbon, elemental carbon mixed with organic carbon, and unique V-containing particles previously detected in port regions were prevalent throughout the Southern California coast; most of these particles were also associated with sulfate. Measurements made in the deep water channel near Sacramento, CA revealed dramatically different particle chemistry that was characterized by organic carbon and amines. Particles measured further away from the continent toward the open ocean were influenced by marine biological activity due to a phytoplankton bloom that was occurring off the California coast. During this sampling period, unique ocean-derived particles containing internal mixtures of Mg and organic carbon were detected in addition to unique particles containing elemental S ions, which were only detected at night. An aerosol generator used to bubble seawater in order to characterize primary emissions from the ocean confirmed that the Mg-organic carbon and S-containing particles were indeed emitted from the ocean. These measurements reveal the strong impact of both port emissions as well as marine biogenic emissions on aerosol chemistry along the California coast.

  2. Stable carbonous catalyst particles and method for making and utilizing same

    DOEpatents

    Ganguli, Partha S.; Comolli, Alfred G.

    2005-06-14

    Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr.sub.2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m.sup.2 /g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations. This invention also includes method steps for making the stable carbonous catalyst particles having improved particle strength and catalytic activity, and processes for utilizing the active stable carbonous carbon-coated catalysts such as for syn-gas reactions in ebullated/fluidized bed reactors for producing alcohol products and Fischer-Tropsch synthesis liquid products.

  3. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    PubMed

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  4. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ryu, Won-Hee; Lim, Sung-Jin; Kim, Won-Keun; Kwon, HyukSang

    2014-07-01

    Dumbbell-like microsphere carbonate precursors including multi-transition metal components (Ni1/3Mn1/3Co1/3CO3) assembled with nano-building blocks were synthesized by urea-assisted solvo/hydrothermal method, and layered cathode materials (LiNi1/3Mn1/3Co1/3O2) were subsequently prepared using the similarly shaped carbonate precursors for Li-ion batteries. For the synthesis of hierarchical microsphere structures, the partial addition of viscous organic solvent (e.g. ethylene glycol) in aqueous solution played a crucial role, not only in suppressing the sudden particle growth but also in regulating the directional crystallization of carbonate particles on the surface. The dumbbell-like LiNi1/3Mn1/3Co1/3O2 assembled with nanocubes prepared via the urea-assisted solvo/hydrothermal method exhibited better electrochemical characteristics, such as initial discharge capacity, cyclic performance, and rate-capability as a cathode material of Li-ion batteries, compared with the LiNi1/3Mn1/3Co1/3O2 materials prepared via the conventional co-precipitation method.

  5. Dynamic range of Nef-mediated evasion of HLA class II-restricted immune responses in early HIV-1 infection.

    PubMed

    Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa

    2015-07-31

    HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Method for applying pyrolytic carbon coatings to small particles

    DOEpatents

    Beatty, Ronald L.; Kiplinger, Dale V.; Chilcoat, Bill R.

    1977-01-01

    A method for coating small diameter, low density particles with pyrolytic carbon is provided by fluidizing a bed of particles wherein at least 50 per cent of the particles have a density and diameter of at least two times the remainder of the particles and thereafter recovering the small diameter and coated particles.

  7. Methods of forming semiconductor devices and devices formed using such methods

    DOEpatents

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  8. Ebola Virus Glycoprotein Promotes Enhanced Viral Egress by Preventing Ebola VP40 From Associating With the Host Restriction Factor BST2/Tetherin.

    PubMed

    Gustin, Jean K; Bai, Ying; Moses, Ashlee V; Douglas, Janet L

    2015-10-01

    BST2/tetherin is an innate immune molecule with the unique ability to restrict the egress of human immunodeficiency virus (HIV) and other enveloped viruses, including Ebola virus (EBOV). Coincident with this discovery was the finding that the HIV Vpu protein down-regulates BST2 from the cell surface, thereby promoting viral release. Evidence suggests that the EBOV envelope glycoprotein (GP) also counteracts BST2, although the mechanism is unclear. We find that total levels of BST2 remain unchanged in the presence of GP, whereas surface BST2 is significantly reduced. GP is known to sterically mask surface receptors via its mucin domain. Our evaluation of mutant GP molecules indicate that masking of BST2 by GP is probably responsible for the apparent surface BST2 down-regulation; however, this masking does not explain the observed virus-like particle egress enhancement. We discovered that VP40 coimmunoprecipitates and colocalizes with BST2 in the absence but not in the presence of GP. These results suggest that GP may overcome the BST2 restriction by blocking an interaction between VP40 and BST2. Furthermore, we have observed that GP may enhance BST2 incorporation into virus-like particles. Understanding this novel EBOV immune evasion strategy will provide valuable insights into the pathogenicity of this deadly pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.

  10. Symposium on the Tropospheric Chemistry of the Antarctic Region: Pre- Conference Abstracts

    DTIC Science & Technology

    1991-06-01

    and composition); elemental carbon particles can scatter and absorb solar radiation. In addition, molecular species present as organic carbon aerosol ...elemental carbon to organic carbon aerosol particles are measured. This accounting pro- vides useful information needed to describe the ambient levels... Particle Analysis of Five Years of Aerosol Sampling in the Antarctic Peninsula P. Artaxo, W. M aenhaut and Rend Van Grieken

  11. Electrode assembly for use in a solid polymer electrolyte fuel cell

    DOEpatents

    Raistrick, Ian D.

    1989-01-01

    A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.

  12. Diallyl disulfide attenuated carbon ion irradiation-induced apoptosis in mouse testis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway

    PubMed Central

    Di, Cui-xia; Han, Lu; Zhang, Hong; Xu, Shuai; Mao, Ai-hong; Sun, Chao; Liu, Yang; Si, Jing; Li, Hong-yan; Zhou, Xin; Liu, Bing; Miao, Guo-ying

    2015-01-01

    Diallyl disulfide (DADS), a major organosulfur compound derived from garlic, has various biological properties, including anti-cancer effects. However, the protective mechanism of DADS against radiation-induced mouse testis cell apoptosis has not been elucidated. In this study, the magnitude of radiation effects evoked by carbon ion irradiation was marked by morphology changes, significant rise in apoptotic cells, activation expression of p53, up regulation the ratio of pro-apoptotic Tap73/anti-apoptotic ΔNp73, as well as alterations of crucial mediator of the mitochondrial pathway. Interestingly, pretreatment with DADS attenuated carbon ion irradiation-induced morphology damages and apoptotic cells. Additionally, DADS elevated radiation-induced p53 and p21 expression, suggesting that p53 might be involved in the inhibition of cell cycle progression through up regulation of p21. Furthermore, administration with DADS prevented radiation-induced Tap73/ΔNp73 expression and consequently down regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression, indicating that the balance between Tap73 and ΔNp73 had potential to activate p53 responsive genes. Thus, our results showed that radio protection effect of DADS on mouse testis is mediated by blocking apoptosis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway, suggesting that DADS could be used as a potential radio protection agent for the testis against heavy-ion radiation. PMID:26526304

  13. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    NASA Astrophysics Data System (ADS)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  14. Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Levy, Misti E.; Zhang, Renyi; Zheng, Jun; Tan, Haobo; Wang, Yuan; Molina, Luisa T.; Takahama, S.; Russell, L. M.; Li, Guohui

    2014-05-01

    We present measurements of submicron aerosols in Tijuana, Mexico during the Cal-Mex 2010 field campaign. A suite of aerosol instrumentations were deployed, including a hygroscopic-volatility tandem differential mobility analyzer (HV-TDMA), aerosol particle mass analyzer (APM), condensation particle counter (CPC), cavity ring-down spectrometer (CRDS), and nephelometer to measure the aerosol size distributions, effective density, hygroscopic growth factors (HGF), volatility growth factors (VGF), and optical properties. The average mass concentration of PM0.6 is 10.39 ± 7.61 μg m-3, and the derived average black carbon (BC) mass concentration is 2.87 ± 2.65 μg m-3. There is little new particle formation or particle growth during the day, and the mass loading is dominated by organic aerosols and BC, which on average are 37% and 27% of PM1.0, respectively. For four particle sizes of 46, 81, 151, and 240 nm, the measured particle effective density, HGFs, and VGFs exhibit distinct diurnal trends and size-dependence. For smaller particles (46 and 81 nm), the effective density distribution is unimodal during the day and night, signifying an internally mixed aerosol composition. In contrast, larger particles (151 and 240 nm) exhibit a bi-modal effective density distribution during the daytime, indicating an external mixture of fresh BC and organic aerosols, but a unimodal distribution during the night, corresponding to an internal mixture of BC and organic aerosols. The smaller particles show a noticeable diurnal trend in the effective density distribution, with the highest effective density (1.70 g cm-3) occurring shortly after midnight and the lowest value (0.90 g cm-3) occurring during the afternoon, corresponding most likely to primary organic aerosols and BC, respectively. Both HGFs and VGFs measured are strongly size-dependent. HGFs increase with increasing particle size, indicating that the largest particles are more hygroscopic. VGFs decrease with increasing particle size, indicating that larger particles are more volatile. The hygroscopicity distributions of smaller particles (46 and 81 nm) are unimodal, with a HGF value close to unity. Large particles typically exhibit a bi-modal distribution, with a non-hygroscopic mode and a hygroscopic mode. For all particle sizes, the VGF distributions are bimodal, with a primary non-volatile mode and a secondary volatile mode. The average extinction, scattering, and absorption coefficients are 86.04, 63.07, and 22.97 Mm-1, respectively, and the average SSA is 0.75. Our results reveal that gasoline and diesel vehicles produce a significant amount of black carbon particles in this US-Mexico border region, which impacts the regional environment and climate.

  15. INDOOR-OUTDOOR RELATIONSHIPS OF PARTICLES, PAH, AND BLACK CARBON IN AN OCCUPIED TOWNHOUSE

    EPA Science Inventory

    Real-time instrumentation for measuring particles, PAH, and black carbon (soot) has been operated since May of 1998 in an occupied 3-story town house in Reston, VA. Indoor and outdoor concentrations have been measured every five minutes for the particles and black carbon and ev...

  16. Nanoscale zinc silicate from phytoliths

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.; Freitas, J. A.; Culbertson, J. C.; Wollmershauser, J. A.

    2017-10-01

    We report a faster, less expensive method of producing zinc silicate nanoparticles. Such particles are used in high volume to make phosphors and anti-corrosion coatings. The approach makes use of phytoliths (plant rocks), which are microscopic, amorphous, and largely silicate particles embedded in plants, that lend themselves to being easily broken down into nanoparticles. Nanoparticles of Zn2SiO4 were produced in a two stage process. In the refinement stage, plant residue, mixed with an appropriate amount of ZnO, was heated in an argon atmosphere to a temperature exceeding 1400 °C for four to six hours and then heated in air at 650 °C to remove excess carbon. TEM shows 50-100 nm nanoparticles. Raman scattering indicates that only the -Zn2SiO4 crystalline phase was present. X-ray analysis indicated pure rhombohedral R 3 bar phase results from using rice/wheat husks. Both samples luminesced predominantly at 523 nm when illuminated with X-rays or UV laser light.

  17. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputo, A.J.; Costanzo, D.A.; Lackey, W.J.

    1980-10-07

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as sicl4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  18. Down-Regulation of Small Rubber Particle Protein Expression Affects Integrity of Rubber Particles and Rubber Content in Taraxacum brevicorniculatum

    PubMed Central

    Hillebrand, Andrea; Post, Janina J.; Wurbs, David; Wahler, Daniela; Lenders, Malte; Krzyzanek, Vladislav; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP) has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1–5) were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. Here, we demonstrate by immunogold labeling that TbSRPPs are localized to rubber particles, and that rubber particles mainly consist of TbSRPP3, 4 and 5 as shown by high-resolution two-dimensional gel electrophoresis and mass spectrometric analysis. We also carried out an RNA-interference approach in transgenic plants to address the function of TbSRPPs in rubber biosynthesis as well as rubber particle morphology and stability. TbSRPP-RNAi transgenic T. brevicorniculatum plants showed a 40–50% reduction in the dry rubber content, but neither the rubber weight average molecular mass nor the polydispersity of the rubber were affected. Although no phenotypical differences to wild-type particles could be observed in vivo, rubber particles from the TbSRPP-RNAi transgenic lines were less stable and tend to rapidly aggregate in expelling latex after wounding of laticifers. Our results prove that TbSRPPs are very crucial for rubber production in T. brevicorniculatum, probably by contributing to a most favourable and stable rubber particle architecture for efficient rubber biosynthesis and eventually storage. PMID:22911861

  19. The Role of Sink Strength and Nitrogen Availability in the Down-Regulation of Photosynthetic Capacity in Field-Grown Nicotiana tabacum L. at Elevated CO2 Concentration.

    PubMed

    Ruiz-Vera, Ursula M; De Souza, Amanda P; Long, Stephen P; Ort, Donald R

    2017-01-01

    Down-regulation of photosynthesis is among the most common responses observed in C 3 plants grown under elevated atmospheric CO 2 concentration ([CO 2 ]). Down-regulation is often attributed to an insufficient capacity of sink organs to use or store the increased carbohydrate production that results from the stimulation of photosynthesis by elevated [CO 2 ]. Down-regulation can be accentuated by inadequate nitrogen (N) supply, which may limit sink development. While there is strong evidence for down-regulation of photosynthesis at elevated [CO 2 ] in enclosure studies most often involving potted plants, there is little evidence for this when [CO 2 ] is elevated fully under open-air field treatment conditions. To assess the importance of sink strength on the down-regulation of photosynthesis and on the potential of N to mitigate this down-regulation under agriculturally relevant field conditions, two tobacco cultivars ( Nicotiana tabacum L. cv. Petit Havana; cv. Mammoth) of strongly contrasting ability to produce the major sink of this crop, leaves, were grown under ambient and elevated [CO 2 ] and with two different N additions in a free air [CO 2 ] (FACE) facility. Photosynthetic down-regulation at elevated [CO 2 ] reached only 9% in cv. Mammoth late in the season likely reflecting sustained sink strength of the rapidly growing plant whereas down-regulation in cv. Petit Havana reached 25%. Increased N supply partially mitigated down-regulation of photosynthesis in cv. Petit Havana and this mitigation was dependent on plant developmental stage. Overall, these field results were consistent with the hypothesis that sustained sink strength, that is the ability to utilize photosynthate, and adequate N supply will allow C 3 crops in the field to maintain enhanced photosynthesis and therefore productivity as [CO 2 ] continues to rise.

  20. Computational evaluation of new homologous down regulators of Translationally Controlled Tumor Protein (TCTP) targeted for tumor reversion.

    PubMed

    Nayarisseri, Anuraj; Yadav, Mukesh; Wishard, Rohan

    2013-12-01

    The Translationally Controlled Tumor Protein (TCTP) has been investigated for tumor reversion and is a target of cancer therapy. Down regulators which suppress the expression of TCTP can trigger the process of tumor reversion leading to the transformation of tumor cells into revertant cells. The present investigation is a novel protein-protein docking approach to target TCTP by a set of proteins similar to the protein: sorting nexin 6 (SNX6) which is an established down regulator of TCTP. The established down regulator along with its set of most similar proteins were modeled using the PYTHON based software - MODELLER v9.9, followed by structure validation using the Procheck Package. Further TCTP was docked with its established and prospective down regulators using the flexible docking protocol suite HADDOCK. The results were evaluated and ranked according to the RMSD values of the complex and the HADDOCK score, which is a weighted sum of van der Waal's energy, electrostatic energy, restraints violation energy and desolvation energy. Results concluded the protein sorting nexin 6 of Mus musculus to be a better down regulator of TCTP, as compared to the suggested down regulator (Homo sapiens snx6).

  1. Finding consistency between different views of the absorption enhancement of black carbon: An observationally constrained hybrid model to support a transition in optical properties with mass fraction

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.

    2015-12-01

    The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.

  2. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans.

    PubMed

    Pusztahelyi, T; Molnár, Z; Emri, T; Klement, E; Miskei, M; Kerékgyárto, J; Balla, J; Pócsi, I

    2006-01-01

    N-Acetyl-D-glucosamine, chito-oligomers and carbon starvation regulated chiA, chiB, and nagA gene expressions in Aspergillus nidulans cultures. The gene expression patterns of the main extracellular endochitinase ChiB and the N-acetyl-beta-D-glucosaminidase NagA were similar, and the ChiB-NagA enzyme system may play a morphological and/or nutritional role during autolysis. Alterations in the levels of reactive oxygen species or in the glutathione-glutathione disulfide redox balance, characteristic physiological changes developing in ageing and autolyzing fungal cultures, did not affect the regulation of either the growth-related chiA or the autolysis-coupled chiB genes although both of them were down-regulated under diamide stress. The transcription of the chiC gene with unknown physiological function was repressed by increased intracellular superoxide concentration.

  3. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    PubMed

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  4. Black carbon radiative forcing at TOA decreased during aging.

    PubMed

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  5. Factors affecting the behavior of unburned carbon upon steam activation

    NASA Astrophysics Data System (ADS)

    Lu, Zhe

    The main objective of this study is to investigate the factors that could affect the behavior of unburned carbon samples upon steam activation. Through this work, the relationships among the factors that could influence the carbon-steam reaction with the surface area of the produced activated carbon were explored. Statistical analysis was used to relate the chemical and physical properties of the unburned carbon to the surface area of the activated carbon. Six unburned carbons were selected as feedstocks for activated carbon, and marked as UCA through UCF. The unburned carbons were activated using steam at 850°C for 90 minutes, and the surface areas of their activated counterparts were measured using N2 adsorption isotherms at 77K. The activated carbons produced from different unburned carbon precursors presented different surface areas at similar carbon burn-off levels. Moreover, in different carbon burn-off regions, the sequences for surface area of activated carbons from different unburned carbon samples were different. The factors that may affect the carbon-steam gasification reactions, including the concentration of carbon active sites, the crystallite size of the carbon, the intrinsic porous structure of carbon, and the inorganic impurities, were investigated. All unburned carbons investigated in this study were similar in that they showed the very broad (002) and (10 ) carbon peaks, which are characteristic of highly disordered carbonaceous materials. In this study, the unburned carbon samples contained about 17--48% of inorganic impurities. Compared to coals, the unburned carbon samples contain a larger amount of inorganic impurities as a result of the burn-off, or at lease part, of the carbon during the combustion process. These inorganic particles were divided into two groups in terms of the way they are associated with carbon particles: free single particles, and particles combined with carbon particles. As indicated from the present work, unburned carbons with one of the following properties will produce activated carbons with high surface areas. These properties include: (a) large amount of O2 chemisorption capacity; (b) high concentration of surface C-O complex; and (c) small crystallite diameter; (d) high concentration of Na+K particles that are combined with carbon; (e) high concentration of isotropic carbon. (Abstract shortened by UMI.)

  6. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    PubMed

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  7. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study.

    PubMed

    Sinharay, Rudy; Gong, Jicheng; Barratt, Benjamin; Ohman-Strickland, Pamela; Ernst, Sabine; Kelly, Frank J; Zhang, Junfeng Jim; Collins, Peter; Cullinan, Paul; Chung, Kian Fan

    2018-01-27

    Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO 2 ) concentrations were measured. Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO 2 , PM 10 , PM 2.5 , and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV 1 ] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV 1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO 2 , ultrafine particles and PM 2.5 , and an increase in PWV and augmentation index with NO 2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. British Heart Foundation. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  8. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance.

    PubMed

    Andreev, Pavel A

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.

  9. In situ synthesis of luminescent carbon nanoparticles toward target bioimaging

    NASA Astrophysics Data System (ADS)

    Sharker, Shazid Md.; Kim, Sung Min; Lee, Jung Eun; Jeong, Ji Hoon; in, Insik; Lee, Kang Dea; Lee, Haeshin; Park, Sung Young

    2015-03-01

    This paper describes the in situ synthesis of single fluorescence carbon nanoparticles (FCNs) for target bioimaging applications derived from biocompatible hyaluronic acid (HA) without using common conjugation processes. FCNs formed via the dehydration of hyaluronic acid, which were obtained by carbonizing HA, and partially carbonized HA fluorescence carbon nanoparticles (HA-FCNs), formed by a lower degree of carbonization, show good aqueous solubility, small particle size (<20 nm) and different fluorescence intensities with a red shift. After confirming the cytotoxicity of HA-FCNs and FCNs, we carried out in vitro and in vivo bioimaging studies where HA-FCNs themselves functioned as single particle triggers in target imaging. The converted nanocrystal carbon particles from HA provide outstanding features for in vitro and in vivo new targeted delivery and diagnostic tools.This paper describes the in situ synthesis of single fluorescence carbon nanoparticles (FCNs) for target bioimaging applications derived from biocompatible hyaluronic acid (HA) without using common conjugation processes. FCNs formed via the dehydration of hyaluronic acid, which were obtained by carbonizing HA, and partially carbonized HA fluorescence carbon nanoparticles (HA-FCNs), formed by a lower degree of carbonization, show good aqueous solubility, small particle size (<20 nm) and different fluorescence intensities with a red shift. After confirming the cytotoxicity of HA-FCNs and FCNs, we carried out in vitro and in vivo bioimaging studies where HA-FCNs themselves functioned as single particle triggers in target imaging. The converted nanocrystal carbon particles from HA provide outstanding features for in vitro and in vivo new targeted delivery and diagnostic tools. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07422j

  10. A novel avalanche-confinement TEPC for microdosimetry at nanometric level

    NASA Astrophysics Data System (ADS)

    Bortot, D.; Agosteo, S.; Colautti, P.; Conte, V.; Introini, M. V.; Lorenzoli, M.; Pasquato, S.; Pola, A.

    2017-09-01

    The tissue equivalent proportional counter (TEPC) is the most accurate device for measuring the microdosimetric properties of a particle beam, showing to properly assess the relative biological effectiveness by linking the physical parameters of the radiation with the corresponding biological response. Nevertheless no detailed information on the track structure of the impinging particles can be obtained, since the lower operation limit of the common TEPCs is about 0.3 ?m. On the other hand, the pattern of particle interactions at the nanometer level, which demonstrated to have a strong correlation with radiation-induced damages to the DNA, is directly measured by only three different nanodosimeters worldwide: practical instruments are not yet available. The gap between microdosimetry and track-nanodosimetry can be filled partially by extending the TEPC response down to the nanometric region. A feasibility study of a novel TEPC designed to simulate biological sites in the nanometric domain was performed. The present paper aims at describing the design, the development and the characterization of this avalanche-confinement TEPC. Irradiations with photons, fast neutrons and low-energy carbon ions demonstrated the capability of this TEPC of measuring in the range 0.3 μm - 25 nm.

  11. Regulating low-NOx and high-burnout deep-air-staging combustion under real-furnace conditions in a 600 MWe down-fired supercritical boiler by strengthening the staged-air effect.

    PubMed

    Kuang, Min; Wang, Zhihua; Zhu, Yanqun; Ling, Zhongqian; Li, Zhengqi

    2014-10-21

    A 600 MW(e) down-fired pulverized-coal supercritical boiler, which was equipped with a deep-air-staging combustion system for reducing the particularly high NOx emissions, suffered from the well-accepted contradiction between low NOx emissions and high carbon in fly ash, in addition to excessively high gas temperatures in the hopper that jeopardized the boiler's safe operations. Previous results uncovered that under low-NOx conditions, strengthening the staged-air effect by decreasing the staged-air angle and simultaneously increasing the staged-air damper opening alleviated the aforementioned problems to some extent. To establish low-NOx and high-burnout circumstances and control the aforementioned hopper temperatures, a further staged-air retrofit with horizontally redirecting staged air through an enlarged staged-air slot area was performed to greatly strengthen the staged-air effect. Full-load industrial-size measurements were performed to confirm the availability of this retrofit. The present data were compared with those published results before the retrofit. High NOx emissions, low carbon in fly ah, and high hopper temperatures (i.e., levels of 1036 mg/m(3) at 6% O2, 3.72%, and about 1300 °C, respectively) appeared under the original conditions with the staged-air angle of 45° and without overfire air (OFA) application. Applying OFA and reducing the angle to 20° achieved an apparent NOx reduction and a moderate hopper temperature decrease while a sharp increase in carbon in fly ash (i.e., levels of 878 mg/m(3) at 6% O2, about 1200 °C, and 9.81%, respectively). Fortunately, the present staged-air retrofit was confirmed to be applicable in regulating low-NOx, high-burnout, and low hopper temperature circumstances (i.e., levels of 867 mg/m(3) at 6% O2, 5.40%, and about 1100 °C, respectively).

  12. Carbon-catalyzed oxidation of SO2 by NO2 and air

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Schryer, D. R.; Cofer, W. R., III; Edahl, R. A., Jr.; Munavalli, S.

    1982-01-01

    A series of experiments was performed using carbon particles (commercial furnace black) as a surrogate for soot particles. Carbon particles were suspended in water, and gas mixtures were bubbled into the suspensions to observe the effect of carbon particles on the oxidation of SO2 by air and NO2. Identical gas mixtures were bubbled into a blank containing only pure water. After exposure each solution was analyzed for pH and sulfate. It was found that NO2 greatly enhances the oxidation of SO2 to sulfate in the presence of carbon particles. The amount of sulfate found in the blanks was significantly less. Under the conditions of these experiments no saturation of the reaction was observed and SO2 was converted to sulfate even in a highly acid medium (pH or = 1.5).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, David E.

    The process by which super-thermal ions slow down against background Coulomb potentials arises in many fields of study. In particular, this is one of the main mechanisms by which the mass and energy from the reaction products of fusion reactions is deposited back into the background. Many of these fields are characterized by length and time scales that are the same magnitude as the range and duration of the trajectory of these particles, before they thermalize into the background. This requires numerical simulation of this slowing down process through numerically integrating the velocities and energies of these particles. This papermore » first presents a simple introduction to the required plasma physics, followed by the description of the numerical integration used to integrate a beam of particles. This algorithm is unique in that it combines in an integrated manner both a second-order integration of the slowing down with the particle beam dispersion. These two processes are typically computed in isolation from each other. A simple test problem of a beam of alpha particles slowing down against an inert background of deuterium and tritium with varying properties of both the beam and the background illustrate the utility of the algorithm. This is followed by conclusions and appendices. The appendices define the notation, units, and several useful identities.« less

  14. Improvements of the cyclone separator performance by down-comer tubes.

    PubMed

    Ganegama Bogodage, Sakura; Leung, A Y T

    2016-07-05

    Enhancement of fine particle (PM2.5) separation is important for cyclone separators to reduce any extra purification process required at the outlet. Therefore, the present experimental research was performed to explore the performance of cyclone separators modified with down-comer tubes at solid loading rates from 0 to 8.0 g/m(3) with a 10 m/s inlet velocity. The study proved the effectiveness of down-comer tubes in reducing the particle re-entrainment and increasing the finer separation with acceptable pressure drops, which was pronounced at low solid loading conditions. The experimental results were compared with theories of Smolik and Muschelknautz. Theories were acceptable for certain ranges, and theory breakdown was mainly due to the neglect of particle agglomeration, re-entrainment and the reduction of swirling energy, as well as the increase of wall friction due to presence of particles. Copyright © 2016. Published by Elsevier B.V.

  15. Negative differential mobility in interacting particle systems

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amit Kumar; Basu, Urna; Mohanty, P. K.

    2018-05-01

    Driven particles in the presence of crowded environment, obstacles, or kinetic constraints often exhibit negative differential mobility (NDM) due to their decreased dynamical activity. Based on the empirical studies of conserved lattice gas model, two species exclusion model and other interacting particle systems we propose a new mechanism for complex many-particle systems where slowing down of certain non-driven degrees of freedom by the external field can give rise to NDM. To prove that the slowing down of the non-driven degrees is indeed the underlying cause, we consider several driven diffusive systems including two species exclusion models, misanthrope process, and show from the exact steady state results that NDM indeed appears when some non-driven modes are slowed down deliberately. For clarity, we also provide a simple pedagogical example of two interacting random walkers on a ring which conforms to the proposed scenario.

  16. In-situ single submicron particle composition analysis of ice residuals from mountain-top mixed-phase clouds in Central Europe

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Schneider, J.; Klimach, T.; Mertes, S.; Schenk, L. P.; Curtius, J.; Kupiszewski, P.; Hammer, E.; Vochezer, P.; Lloyd, G.; Ebert, M.; Kandler, K.; Weinbruch, S.; Borrmann, S.

    2015-02-01

    This paper presents results from the "INUIT-JFJ/CLACE 2013" field campaign at the high alpine research station Jungfraujoch in January/February 2013. The chemical composition of ice particle residuals (IPR) in a size diameter range of 200-900 nm was measured in orographic, convective and non-convective clouds with a single particle mass spectrometer (ALABAMA) under ambient conditions characterized by temperatures between -28 and -4 °C and wind speed from 0.1 to 21 km h-1. Additionally, background aerosol particles in cloud free air were investigated. The IPR were sampled from mixed-phase clouds with two inlets which selectively extract small ice crystals in-cloud, namely the Counterflow Virtual Impactor (Ice-CVI) and the Ice Selective Inlet (ISI). The IPR as well as the aerosol particles were classified into seven different particle types: (1) black carbon, (2) organic carbon, (3) black carbon internally mixed with organic carbon, (4) minerals, (5) one particle group (termed "BioMinSal") that may contain biological particles, minerals, or salts, (6) industrial metals, and (7) lead containing particles. For any sampled particle population it was determined by means of single particle mass spectrometer how many of the analyzed particles belonged to each of these categories. Accordingly, between 20 and 30% of the IPR and roughly 42% of the background particles contained organic carbon. The measured fractions of minerals in the IPR composition varied from 6 to 33%, while the values for the "BioMinSal" group were between 15 and 29%. Four percent to 31% of the IPR contained organic carbon mixed with black carbon. Both inlets delivered similar results of the chemical composition and of the particle size distribution, although lead was found only in the IPR sampled by the Ice-CVI. The results show that the ice particle residual composition varies substantially between different cloud events, which indicates the influence of different meteorological conditions, such as origin of the air masses, temperature and wind speed.

  17. Size and Purity Control of HPHT Nanodiamonds down to 1 nm

    PubMed Central

    2015-01-01

    High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method. PMID:26691647

  18. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    NASA Technical Reports Server (NTRS)

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).

  19. Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB.

    PubMed

    Khoo, Bernard; Roca, Xavier; Chew, Shern L; Krainer, Adrian R

    2007-01-17

    Apolipoprotein B (APOB) is an integral part of the LDL, VLDL, IDL, Lp(a) and chylomicron lipoprotein particles. The APOB pre-mRNA consists of 29 constitutively-spliced exons. APOB exists as two natural isoforms: the full-length APOB100 isoform, assembled into LDL, VLDL, IDL and Lp(a) and secreted by the liver in humans; and the C-terminally truncated APOB48, assembled into chylomicrons and secreted by the intestine in humans. Down-regulation of APOB100 is a potential therapy to lower circulating LDL and cholesterol levels. We investigated the ability of 2'O-methyl RNA antisense oligonucleotides (ASOs) to induce the skipping of exon 27 in endogenous APOB mRNA in HepG2 cells. These ASOs are directed towards the 5' and 3' splice-sites of exon 27, the branch-point sequence (BPS) of intron 26-27 and several predicted exonic splicing enhancers within exon 27. ASOs targeting either the 5' or 3' splice-site, in combination with the BPS, are the most effective. The splicing of other alternatively spliced genes are not influenced by these ASOs, suggesting that the effects seen are not due to non-specific changes in alternative splicing. The skip 27 mRNA is translated into a truncated isoform, APOB87SKIP27. The induction of APOB87SKIP27 expression in vivo should lead to decreased LDL and cholesterol levels, by analogy to patients with hypobetalipoproteinemia. As intestinal APOB mRNA editing and APOB48 expression rely on sequences within exon 26, exon 27 skipping should not affect APOB48 expression unlike other methods of down-regulating APOB100 expression which also down-regulate APOB48.

  20. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow.

    PubMed

    van der Mei, Henny C; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E; Collias, Dimitris I; Mitchell, Michael D; Busscher, Henk J

    2008-07-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not allow direct observation of bacterial adhesion and the determination of viability. Here we propose to use a parallel plate flow chamber with carbon particles attached to the bottom plate to study bacterial adhesion to individual carbon particles and determine the viability of adhering bacteria. Observation and enumeration is done after live/dead staining in a confocal laser scanning microscope. Escherichiae coli adhered in higher numbers than Raoultella terrigena, except to a coconut-based carbon, which showed low bacterial adhesion compared to other wood-based carbon types. After adhesion, 83-96% of the bacteria adhering to an acidic carbon were dead, while on a basic carbon 54-56% were dead. A positively charged, basic carbon yielded 76-78% bacteria dead, while on a negatively charged coconut-based carbon only 32-37% were killed upon adhesion. The possibility to determine both adhesion as well as the viability of adhering bacteria upon adhesion to carbon particles is most relevant, because if bacteria adhere but remain viable, this still puts the water treatment system at risk, as live bacteria can grow and form a biofilm that can then be shedded to cause contamination. (c) 2008 Wiley Periodicals, Inc.

  1. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. A facile production of microporous carbon spheres and their electrochemical performance in EDLC

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Shi, Lei; Liu, Hongbo; Yang, Li; He, Yuede

    2012-03-01

    In the absence of activation process, we prepared a series of carbon particles from saccharine, in which hydrothermal carbonization method was used. These particles have spherical or near-spherical morphology, controllable monodisperse particle size from the analyses of SEM. Raman and XRD results show that they are nongraphitizable. The BET surface area of these carbon spherules is around 400-500 m2 g-1 and the microporosity is about 84%, suggesting that the carbon particles are rich in micropores. The electrochemical behaviors were characterized by means of galvanostatic charging/discharging, cycle voltammetry and impedance spectroscopy. The results show that the specific capacitance of sucrose-based carbon spherule reached 164 F g-1 in 30% KOH electrolyte and a high volumetric capacitance over 170 F cm-3 was obtained. These carbon spherules could be promising materials for EDLC according to their facile preparation way, low cost and high packing density.

  3. Particles of spilled oil-absorbing carbon in contact with water

    DOEpatents

    Muradov, Nazim [Melbourne, FL

    2011-03-29

    Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

  4. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in size segregated aerosol particles suggested that combustion processes could strongly affect isotopic fractionation in aerosol particles of different sizes thereby potentially affecting an interpretation of ambient atmospheric observations.

  5. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  6. Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy.

    PubMed

    Galindo González, Leonardo M; El Kayal, Walid; Ju, Chelsea J-T; Allen, Carmen C G; King-Jones, Susanne; Cooke, Janice E K

    2012-04-01

    In the autumn, stems of woody perennials such as forest trees undergo a transition from active growth to dormancy. We used microarray transcriptomic profiling in combination with a proteomics analysis to elucidate processes that occur during this growth-to-dormancy transition in a conifer, white spruce (Picea glauca[Moench] Voss). Several differentially expressed genes were likely associated with the developmental transition that occurs during growth cessation in the cambial zone and the concomitant completion of cell maturation in vascular tissues. Genes encoding for cell wall and membrane biosynthetic enzymes showed transcript abundance patterns consistent with completion of cell maturation, and also of cell wall and membrane modifications potentially enabling cells to withstand the harsh conditions of winter. Several differentially expressed genes were identified that encoded putative regulators of cambial activity, cell development and of the photoperiodic pathway. Reconfiguration of carbon allocation figured centrally in the tree's overwintering preparations. For example, genes associated with carbon-based defences such as terpenoids were down-regulated, while many genes associated with protein-based defences and other stress mitigation mechanisms were up-regulated. Several of these correspond to proteins that were accumulated during the growth-to-dormancy transition, emphasizing the importance of stress protection in the tree's adaptive response to overwintering. © 2011 Blackwell Publishing Ltd.

  7. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma

    PubMed Central

    Gatto, Francesco; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Several common oncogenic pathways have been implicated in the emergence of renowned metabolic features in cancer, which in turn are deemed essential for cancer proliferation and survival. However, the extent to which different cancers coordinate their metabolism to meet these requirements is largely unexplored. Here we show that even in the heterogeneity of metabolic regulation a distinct signature encompassed most cancers. On the other hand, clear cell renal cell carcinoma (ccRCC) strongly deviated in terms of metabolic gene expression changes, showing widespread down-regulation. We observed a metabolic shift that associates differential regulation of enzymes in one-carbon metabolism with high tumor stage and poor clinical outcome. A significant yet limited set of metabolic genes that explained the partial divergence of ccRCC metabolism correlated with loss of von Hippel-Lindau tumor suppressor (VHL) and a potential activation of signal transducer and activator of transcription 1. Further network-dependent analyses revealed unique defects in nucleotide, one-carbon, and glycerophospholipid metabolism at the transcript and protein level, which contrasts findings in other tumors. Notably, this behavior is recapitulated by recurrent loss of heterozygosity in multiple metabolic genes adjacent to VHL. This study therefore shows how loss of heterozygosity, hallmarked by VHL deletion in ccRCC, may uniquely shape tumor metabolism. PMID:24550497

  8. The effect of arousal on regulation of negative emotions using cognitive reappraisal: An ERP study.

    PubMed

    Langeslag, Sandra J E; Surti, Kruti

    2017-08-01

    Because the effectiveness of the emotion regulation strategy cognitive reappraisal may vary with emotion intensity, we investigated how stimulus arousal affects reappraisal success. Participants up- and down-regulated emotional responses using cognitive reappraisal to low and high arousing unpleasant pictures while the electroencephalogram (EEG) was recorded. Up-regulation resulted in more negative self-reported valence, while down-regulation resulted in less negative self-reported valence regardless of stimulus arousal, suggesting that subjective reappraisal success does not vary with emotional intensity. Participants felt that down-regulation of emotional responses to low arousing unpleasant pictures was easiest, which is in line with previous findings that participants showed a greater preference for reappraisal in low than high arousing situations. The late positive potential (LPP) amplitude was enhanced by down-regulation of high arousing unpleasant pictures. Even though this effect was unexpected and is opposite to the typical effect of down-regulation on the LPP, it is in line with several previous studies. Potential explanations for LPP regulation effects in the unexpected direction, such as strategy selection and task design, are evaluated. Suggestions and recommendations for future research are discussed, including using trial-by-trial manipulation of regulation instructions and studying the effect of stimulus arousal on up- and down-regulation of positive emotions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    NASA Astrophysics Data System (ADS)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  10. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    USGS Publications Warehouse

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  11. Large particle breakdown by cattle eating ryegrass and alfalfa.

    PubMed

    McLeod, M N; Minson, D J

    1988-04-01

    The proportion of large particles (LP) broken down to small, insoluble particles by primary mastication (eating), rumination, digestion and detrition (rubbing) was determined for separated leaf and stem fractions of perennial ryegrass (Lolium perenne) and alfalfa (Medicago sativa) fed to cattle cannulated at the esophagus. Large particles were defined as those particles retained during wet sieving on a screen with an aperture of 1.18 mm. Reduction in weight of particles caused by solubilizing or digestion was not considered to be particle breakdown per se, and particles were corrected for this loss in weight. The proportion of LP in the forage broken down by primary mastication was 25 +/- 1.9% (means +/- SE). Breakdown of LP by rumination was calculated from the weight of total particles regurgitated and the proportion of LP in the regurgitated and swallowed remasticated material. The weight of LP regurgitated was corrected for the dry matter lost by digestion using lignin ratio in the LP entering the rumen and of the regurgitated digesta. Rumination accounted for 50 +/- 1.5% of LP breakdown. Fecal loss accounted for 8 +/- .8% of the LP in forage. Breakdown of LP by digestion and detrition was calculated as 17 +/- 1.3% from the difference between the LP eaten and those broken down by primary mastication, rumination and passing out in the feces. The significance of these results for predicting voluntary intake from laboratory analysis is considered.

  12. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism.

    PubMed

    Fu, Rongbing; Xu, Zhen; Peng, Lin; Bi, Dongsu

    2016-12-01

    In this study, nanoscale zerovalent iron (NZVI) immobilized on biomass carbon was used for the high efficient removal of BDE 209. NZVI supported on biomass carbon minimized the aggregation of NZVI particles resulting in the increased reaction performance. The proposed removal mechanism included the adsorption of BDE 209 on the surface or interior of the biomass carbon NZVI (BC-NZVI) particles and the subsequent debromination of BDE 209 by NZVI while biomass carbon served as an electron shuttle. BC-NZVI particles and the interaction between BC-NZVI particles and BDE 209 were characterized by TEM, XRD, and XPS. The removal reaction followed a pseudo-first-order rate expression under different reaction conditions, and the k obs was higher than that of other NZVI-supported materials. The debromination of BDE 209 by BC-NZVI was a stepwise process from nona-BDE to DE. A proposed pathway suggested that supporting NZVI on biomass carbon has potential as a promising technique for in situ organic-contaminated groundwater remediation.

  13. Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration.

    PubMed

    Nakazawa, Yoshifumi; Matsui, Yoshihiko; Hanamura, Yusuke; Shinno, Koki; Shirasaki, Nobutaka; Matsushita, Taku

    2018-07-01

    Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment. First, we developed a method to detect and quantify trace concentration of carbon particles in the sand filtrate. This method consisted of 1) sampling particles with a membrane filter and then 2) using image analysis software to manipulate a photomicrograph of the filter so that black spots with a diameter >0.2 μm (considered to be carbon particles) could be visualized. Use of this method revealed that CSF removed a very high percentage of SPAC: approximately 5-log in terms of particle number concentrations and approximately 6-log in terms of particle volume concentrations. When waters containing 7.5-mg/L SPAC and 30-mg/L PAC, concentrations that achieved the same adsorption performance, were treated, the removal rate of SPAC was somewhat superior to that of PAC, and the residual particle number concentrations for SPAC and PAC were at the same low level (100-200 particles/mL). Together, these results suggest that SPAC can be used in place of PAC in CSF treatment without compromising the quality of the filtered water in terms of particulate matter contamination. However, it should be noted that the activated carbon particles after sand filtration were smaller in terms of particle size and were charge-neutralized to a lesser extent than the activated carbon particles before sand filtration. Therefore, the tendency of small particles to escape in the filtrate would appear to be related to the fact that their small size leads to a low destabilization rate during the coagulation process and a low collision rate during the flocculation and filtration processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Identification of a cis-Regulatory Element Involved in Phytochrome Down-Regulated Expression of the Pea Small GTPase Gene pra21

    PubMed Central

    Inaba, Takehito; Nagano, Yukio; Sakakibara, Toshihiro; Sasaki, Yukiko

    1999-01-01

    The pra2 gene encodes a pea (Pisum sativum) small GTPase belonging to the YPT/rab family, and its expression is down-regulated by light, mediated by phytochrome. We have isolated and characterized a genomic clone of this gene and constructed a fusion DNA of its 5′-upstream region in front of the gene for firefly luciferase. Using this construct in a transient assay, we determined a pra2 cis-regulatory region sufficient to direct the light down-regulation of the luciferase reporter gene. Both 5′- and internal deletion analyses revealed that the 93-bp sequence between −734 and −642 from the transcriptional start site was important for phytochrome down-regulation. Gain-of-function analysis showed that this 93-bp region could confer light down-regulation when fused to the cauliflower mosaic virus 35S promoter. Furthermore, linker-scanning analysis showed that a 12-bp sequence within the 93-bp region mediated phytochrome down-regulation. Gel-retardation analysis showed the presence of a nuclear factor that was specifically bound to the 12-bp sequence in vitro. These results indicate that this element is a cis-regulatory element involved in phytochrome down-regulated expression. PMID:10364400

  15. Proteomic alteration in gastic adenocarcinomas from Japanese patients

    PubMed Central

    Yoshihara, Takahiro; Kadota, Yoshito; Yoshimura, Yoshiyuki; Tatano, Yutaka; Takeuchi, Naohiro; Okitsu, Hiroshi; Umemoto, Atsushi; Yamauchi, Takashi; Itoh, Kohji

    2006-01-01

    Background Gastric adenocarcinomas comprise one of the common types of cancers in Asian countries including Japan. Comprehensive protein profiling of paired surgical specimens of primary gastric adenocarcinomas and nontumor mucosae derived from Japanese patients was carried out by means of two-dimensional gel electrophoresis (2D-EP) and liquid chromatography-electrospray ionic tandem mass spectrometry (LC-ESI-MS) to establish gastric cancer-specific proteins as putative clinical biomarkers and molecular targets for chemotherapy. Results Relatively common alterations in protein expression were revealed in the tumor tissues. Increases in manganese dismutase and nonhistone chromosomal protein HMG-1 (HMG-1) were observed, while decreases in carbonic anhydrases I and II, glutatione-S-transferase and foveolin precursor (gastrokine-1) (FOV), an 18-kDa stomach-specific protein with putative tumor suppressor activity, were detected. RT-PCR analysis also revealed significant down-regulation of FOV mRNA expression in tumor tissues. Conclusion A possible pathological role for down-regulation of FOV in gastric carcinogenesis was demonstrated. Evaluation of the specific decreases in gene and protein expression of FOV in patients may be utilized as clinical biomarkers for effective diagnosis and assessment of gastric cancer. PMID:17187689

  16. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less

  17. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  18. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  19. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    PubMed

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  20. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements

    NASA Astrophysics Data System (ADS)

    Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D.

    2016-05-01

    This study addresses, through two types of experiments, the potential for the oceans to act as a source of atmospheric ice-nucleating particles (INPs). The INP concentration via deposition mode nucleation was measured in situ at a coastal site in British Columbia in August 2013. The INP concentration at conditions relevant to cirrus clouds (i.e., -40 °C and relative humidity with respect to ice, RHice = 139%) ranged from 0.2 L-1 to 3.3 L-1. Correlations of the INP concentrations with levels of anthropogenic tracers (i.e., CO, SO2, NOx, and black carbon) and numbers of fluorescent particles do not indicate a significant influence from anthropogenic sources or submicron bioaerosols, respectively. Additionally, the INPs measured in the deposition mode showed a poor correlation with the concentration of particles with sizes larger than 500 nm, which is in contrast with observations made in the immersion freezing mode. To investigate the nature of particles that could have acted as deposition INP, laboratory experiments with potential marine aerosol particles were conducted under the ice-nucleating conditions used in the field. At -40 °C, no deposition activity was observed with salt aerosol particles (sodium chloride and two forms of commercial sea salt: Sigma-Aldrich and Instant Ocean), particles composed of a commercial source of natural organic matter (Suwannee River humic material), or particle mixtures of sea salt and humic material. In contrast, exudates from three phytoplankton (Thalassiosira pseudonana, Nanochloris atomus, and Emiliania huxleyi) and one marine bacterium (Vibrio harveyi) exhibited INP activity at low RHice values, down to below 110%. This suggests that the INPs measured at the field site were of marine biological origins, although we cannot rule out other sources, including mineral dust.

  1. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling.

    PubMed

    Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H

    2018-05-01

    Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants.

    PubMed

    Aguirre, Elena; Elena, Aguirre; Leménager, Diane; Diane, Leménager; Bacaicoa, Eva; Eva, Bacaicoa; Fuentes, Marta; Marta, Fuentes; Baigorri, Roberto; Roberto, Baigorri; Zamarreño, Angel Ma; García-Mina, José Ma

    2009-03-01

    The aim of this study is to investigate the effect of a well-characterized purified humic acid (non-measurable concentrations of the main plant hormones were detected) on the transcriptional regulation of the principal molecular agents involved in iron assimilation. To this end, non-deficient cucumber plants were treated with different concentrations of a purified humic acid (PHA) (2, 5, 100 and 250 mg of organic carbonL(-1)) and harvested 4, 24, 48, 76 and 92 h from the onset of the treatment. At harvest times, the mRNA transcript accumulation of CsFRO1 encoding for Fe(III) chelate-reductase (EC 1.16.1.7); CsHa1 and CsHa2 encoding for plasma membrane H+-ATPase (EC 3.6.3.6); and CsIRT1 encoding for Fe(II) high-affinity transporter, was quantified by real-time RT-PCR. Meanwhile, the respective enzyme activity of the Fe(III) chelate-reductase and plasma membrane H+-ATPase was also investigated. The results obtained indicated that PHA root treatments affected the regulation of the expression of the studied genes, but this effect was transient and differed (up-regulation or down-regulation) depending on the genes studied. Thus, principally the higher doses of PHA caused a transient increase in the expression of the CsHa2 isoform for 24 and 48 h whereas the CsHa1 isoform was unaffected or down-regulated. These effects were accompanied by an increase in the plasma membrane H+-ATPase activity for 4, 48 and 96 h. Likewise, PHA root treatments (principally the higher doses) up-regulated CsFRO1 and CsIRT1 expression for 48 and 72 h; whereas these genes were down-regulated by PHA for 96 h. These effects were associated with an increase in the Fe(III) chelate-reductase activity for 72 h. These effects were not associated with a significant decrease in the Fe root or leaf concentrations, although an eventual effect on the Fe root assimilation pattern cannot be ruled out. These results stress the close relationships between the effects of humic substances on plant development and iron nutrition. However, further studies are needed in order to elucidate if these effects at molecular level are caused by mechanisms involving hormone-like actions and/or nutritional factors.

  3. CERES CRS Info

    Atmospheric Science Data Center

    2013-05-17

    ... Flux - Down Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  4. Finite Element Analysis of Particle Ionization within Carbon Nanotube Ion Micro Thruster

    DTIC Science & Technology

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. FINITE ELEMENT ...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FINITE ELEMENT ANALYSIS OF PARTICLE IONIZATION WITHIN CARBON NANOTUBE ION MICRO THRUSTER 5...simulation, carbon nanotube simulation, microsatellite, finite element analysis, electric field, particle tracing 15. NUMBER OF PAGES 55 16. PRICE

  5. Effect of detonation nanodiamonds on phagocyte activity.

    PubMed

    Karpukhin, Alexey V; Avkhacheva, Nadezhda V; Yakovlev, Ruslan Yu; Kulakova, Inna I; Yashin, Valeriy A; Lisichkin, Georgiy V; Safronova, Valentina G

    2011-07-01

    Detonation ND (nanodiamond) holds much promise for biological studies and medical applications. Properties like size of particles, inclination for modification of their surface and unambiguous biocompatibility are crucial. Of prime importance is interaction between ND and immune cells, which supervise foreign intrusion into an organism and eliminate it. Neutrophils are more reactive in inflammatory response implementing cytotoxical arsenal including ROS (reactive oxygen species). The aim of the work was to estimate the ability of two ND samples (produced by Diamond Center and PlasmaChem) to keep the vitality of neutrophils from the inflammatory site. The ability of cells to generate ROS in the presence of ND particles is considered as indicating their biocompatibility. IR spectra and size of particles in the samples were characterized. Acid modification of ND was carried out to get the luminescent form. In the biological aspect, ND demonstrated up or down action, depending on the concentration, time and conditions of activation of cells. Weak action of ND in whole blood was obtained possibly owing to the ND adsorbed plasma proteins, which mask active functional groups to interact with the cell membrane. ND did not influence the viability of isolated inflammatory neutrophils in low and moderate concentrations and suppressed it in high concentrations (≥1 g/l). Addition of ND to the cell suspension initiated concentration-dependent reaction to produce ROS similar to respiratory burst. ND up-regulated response to bacterial formylpeptide, but up- and down-modified (low or high concentrations, accordingly) response to such bacterial agents as OZ (opsonized zymosan), which neutrophils swallow up by oxygen-dependent phagocytosis. Localization of the particles on the cell surface as into the cells was identified by monitoring the intrinsic fluorescence of oxidized ND. The various mechanisms that could account for penetration of ND particles into the cell are discussed. Common conclusion concerns compatibility of ND with living neutrophils from inflammatory site and their normal functioning for infection safeguard.

  6. Field results for line intersect distance sampling of coarse woody debris

    Treesearch

    David L. R. Affleck

    2009-01-01

    A growing recognition of the importance of downed woody materials in forest ecosystem processes and global carbon budgets has sharpened the need for efficient sampling strategies that target this resource. Often the aggregate volume, biomass, or carbon content of the downed wood is of primary interest, making recently developed probability proportional-to-volume...

  7. MicroRNA-137 Negatively Regulates H2O2-Induced Cardiomyocyte Apoptosis Through CDC42

    PubMed Central

    Wang, Junnan; Xu, Rihao; Wu, Junduo; Li, Zhibo

    2015-01-01

    Background Oxidative stress, inducing cardiomyocyte apoptosis or myocardial ischemia, is the major denominator of many cardiac diseases. In this study, we intended to explore the regulatory function of microRNA-137 (miR-137) in oxidative stress-induced cardiomyocyte apoptosis. Material/Methods Cardiomyocytes were extracted from newborn C57BL/6 mice and cultured in vitro. Apoptosis was induced by H2O2, and evaluated by TUNEL assay. The effect of cardiomyocyte apoptosis on gene expression of miR-137 was evaluated by qRT-PCR. Lentivirus was used to stably down-regulate miR-137, and the subsequent effects of miR-137 down-regulation on cardiomyocyte apoptosis, its targeted gene CDC42, and caspase pathway were evaluated by TUNEL assay, dual-luciferase reporter assay, and Western blot assay, respectively. Finally, CDC42 was down-regulated by siRNA and its effect on miR-137-mediated cardiomyocyte apoptosis protection was examined. Results H2O2 induced significant apoptosis and up-regulated miR-137 in cardiomyocytes, whereas lentivirus-mediated miR-137 down-regulation protected against apoptosis. CDC42 was the direct target gene of miR-137 and proteins of CDC42, caspase-3, and caspase-9 were all regulated by miR-137 down-regulation in cardiomyocyte apoptosis. SiRNA-mediated CDC42 down-regulation reversed the protection of miR-137 down-regulation against cardiomyocyte apoptosis. Conclusions Our work demonstrated miR-137 and CDC42 are critical regulators in cardiomyocyte apoptosis. It may help to identify the molecular targets to prevent myocardial injury in human patients. PMID:26566162

  8. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.

    PubMed

    Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut

    2008-03-01

    We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.

  9. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  10. Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2010

    USGS Publications Warehouse

    Oden, Jeannette H.; Brown, Dexter W.; Oden, Timothy D.

    2011-01-01

    Gross alpha-particle activities and beta-particle activities for all 47 samples were analyzed at 72 hours after sample collection and again at 30 days after sample collection, allowing for the measurement of the activity of short-lived isotopes. Gross alpha-particle activities reported in this report were not adjusted for activity contributions by radon or uranium and, therefore, are conservatively high estimates if compared to the U.S. Environmental Protection Agency National Primary Drinking Water Regulation for adjusted gross alpha-particle activity. The gross alpha-particle activities at 30 days in the samples ranged from R0.60 to 25.5 picocuries per liter and at 72 hours ranged from 2.58 to 39.7 picocuries per liter, and the "R" preceding the value of 0.60 picocuries per liter refers to a nondetected result less than the sample-specific critical level. Gross beta-particle activities measured at 30 days ranged from 1.17 to 14.4 picocuries per liter and at 72 hours ranged from 1.97 to 4.4 picocuries per liter. Filtered uranium was detected in quantifiable amounts in all of the 47 wells sampled. The uranium concentrations ranged from 0.03 to 42.7 micrograms per liter. One sample was analyzed for carbon-14, and the amount of modern atmospheric carbon was reported as 0.2 percent. Six source-water samples collected from municipal supply wells were analyzed for radium-226, and all of the concentrations were considered detectable concentrations (greater than their associated sample-specific critical level). Three source-water samples collected were analyzed for radon-222, and all of the concentrations were substantially greater than the associated sample-specific critical level.

  11. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    PubMed

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in < 2 microm particles, respectively. The contents of oxalate-(Al(o)) and pyrophosphate extractable (Al(p)) were 0.08-1.34 g x kg(-10 and 0.11-0.47 g x kg(-1) in 2-250 microm particles, respectively; 2.96-6.20 g x kg(-1) and 0.38-0.78 g x kg(-1) in < 2 microm particles, respectively. And amounts of selective extractable Fe are generally higher in paddy yellow-brown soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in < 2 microm particles, respectively. The ratio of the stable organic carbon and nitrogen (C(stable)/N(stable)) were 9.50-22.0 in 2-250 microm particles and 7.43-11.54 in < 2 microm particles, respectively. The stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in < 2 microm particles, respectively. According to SI, it is lower in arid yellow-brown soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  12. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    DOE PAGES

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; ...

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  13. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with γ-rays or carbon ions.

    PubMed

    Dong, Chen; He, Mingyuan; Ren, Ruiping; Xie, Yuexia; Yuan, Dexiao; Dang, Bingrong; Li, Wenjian; Shao, Chunlin

    2015-04-15

    The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated. Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.CIR (HMy) lymphocytes for different periods. The activation of MAPK proteins and the generation of intracellular nitric oxide (NO) and reactive oxygen species (ROS) in the irradiated U937 cells were measured. Micronuclei (MN) formation in the HMy cells was applied to evaluate the bystander damage. Some U937 cells were pretreated with different MAPK inhibitors before irradiation. Additional MN formation was induced in the HMy cells after co-culturing with irradiated U937 cells, and the yield of this bystander MN formation was dependent on the co-culture period with γ-ray irradiation but remained high after 1h of co-culture with carbon irradiation. Further investigations disclosed that the time response of the RIBEs had a relationship with LET, where ERK played a different role from JNK and p38 in regulating RIBEs by regulating the generation of the bystander signaling factors NO and ROS. The finding that the RIBE of high-LET radiation could persist for a much longer period than that of γ-rays implies that particle radiation during space flight could have a high risk of long-term harmful effects. An appropriate intervention targeting the MAPK pathway may have significant implications in reducing this risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Stability and precipitation of diverse nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, Chintal

    Nanotechnology is a rapidly growing industry that is exploiting the novel characteristics of materials manufactured at the nanoscale. Carbon based nanomaterials such as Carbon Nanotubes (CNTs) and Detonation Nanodiamond (DND) possess unique properties and find a wide range of industrial applications. With the advent of mass production of such materials, there is a possibility of contamination of water resources. Depending on the surface properties and structures, they might aggregate and settle down, or be dispersed and transported by the water. Therefore, there is a need to develop an understanding of the fate of such materials in aqueous media. The understanding and effect of solution chemistry is a key to predicting their deposition, transport, reactivity, and bioavailability in aquatic environments. The colloidal behavior of organic dispersed CNTs and water dispersed DNDs is investigated. The aggregation behavior of these two colloidal systems is quite different from that of hydrophilic, water soluble functionalized CNTs (F-CNTs). The values of the Fuchs stability ratio or the critical coagulant concentration are determined experimentally using time-resolved dynamic light scattering and are used to predict the stability of such systems. It is found that the aggregation behavior of the organic dispersed, antisolvent precipitated system does not follow the conventional Derjaguin--Landau--Verwey-- Overbeek (DLVO) theory. But they stabilize in the long term, which is attributed to the supersaturation generated by different solubility of a solute in the solvent/antisolvent. Based on particle size distribution, zeta potential as well as the aggregation kinetics, the water dispersed DNDs are found to be relatively stable in aqueous solutions, but aggregate rapidly in presence of mono and divalent salts. Also, the formation of carboxylic groups on the DND surface does not alter colloidal behavior as dramatically as it does for other nanocarbons especially carbon nanotubes. Formation of colloidal dispersions via precipitation processes has been widely used in the chemical and pharmaceutical industries. The synthesis of micro- particles for hydrophobic drugs is effectively carried out via anti-solvent precipitation method. The formation of small particles in the precipitation method is strongly influenced by colloidal interactions, and therefore, dependent on the properties of the particles and the liquid. The effect of solvent on the colloidal stability of the micro-drug particles is studied in detail. It is found that the organic solvent plays an important role on particle formation, polymorphism and stability of micron scale drug particles in aqueous media. Also, the supersaturation can be varied by using different solvents and the physicochemical characteristics of the suspension can be altered, which affects stability. Understanding of the colloidal stability and the aggregation kinetics has great importance not only for fundamental researches, but also for their applications.

  15. Magnetic separation of carbon-encapsulated Fe nanoparticles from thermally-treated wood char

    Treesearch

    Sung Phil Mun; Zhiyong Cai; Jilei Zhang

    2013-01-01

    Wood char,a by-product from the fast-pyrolysis process of southern yellow pine wood for bio-oil production, was carbonized with Fenano particles (FeNPs) as a catalyst to prepare carbon-encapsulated Fe nanoparticles. A magnetic separation method was tested to isolate carbon-encapsulated Fe nano particles from the carbonized char. X-ray diffraction pattern clearly shows...

  16. Knockdown of FABP5 mRNA decreases cellular cholesterol levels and results in decreased apoB100 secretion and triglyceride accumulation in ARPE-19 cells

    PubMed Central

    Wu, Tinghuai; Tian, Jane; Cutler, Roy G.; Telljohann, Richard S.; Bernlohr, David; Mattson, Mark P.; Handa, James T.

    2010-01-01

    To maintain normal retinal function, retinal pigment epithelial (RPE) cells engulf photoreceptor outer segments (ROS) enriched in free fatty acids (FFAs). We have previously demonstrated fatty acid-binding protein 5 (FABP5) down-regulation in the RPE/choroidal complex in a mouse model of aging and early age-related macular degeneration. FABPs are involved in intracellular transport of FFAs and their targeting to specific metabolic pathways. To elucidate the role of FABP5 in lipid metabolism, the production of the FABP5 protein in a human RPE cell line was inhibited using RNA interference technology. As a result, the levels of cholesterol and cholesterol ester were decreased by about 40%, whereas FFAs and triglycerides were increased by 18 and 67% after siRNA treatment, respectively. Some species of phospholipids were decreased in siRNA-treated cells. Cellular lipid droplets were evident and apoB secretion was decreased by 76% in these cells. Additionally, we discovered that ARPE-19 cells could synthesize and secrete Apolipoprotein B100 (apoB100), which may serve as a backbone structure for the formation of lipoprotein particles in these cells. Our results indicate that FABP5 mRNA knockdown results in the accumulation of cellular triglycerides, decreased cholesterol levels, and reduced secretion of apoB100 protein and lipoprotein-like particles. These observations indicated that FABP5 plays a critical role in lipid metabolism in RPE cells, suggesting that FABP5 down-regulation in the RPE/choroid complex in vivo might contribute to aging and early age-related macular degeneration. PMID:19434059

  17. Microscopic relaxations in a protein sustained down to 160K in a non-glass forming organic solvent.

    PubMed

    Mamontov, E; O'Neill, H

    2017-01-01

    We have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamical transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics. We hypothesize that, if the long debated idea regarding the direct link between the microscopic relaxations and the biological activity in proteins is correct, then not only the microscopic relaxations, but also the activity, could be sustained in proteins all the way down to the freezing temperature of a non-glass forming solvent with a weak temperature dependence of its viscosity. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery.

    PubMed

    Korhonen, Eveliina; Rönkkö, Seppo; Hillebrand, Satu; Riikonen, Joakim; Xu, Wujun; Järvinen, Kristiina; Lehto, Vesa-Pekka; Kauppinen, Anu

    2016-03-01

    Porous silicon (PSi) is a promising material for the delivery and sustained release of therapeutic molecules in various tissues. Due to the constant rinsing of cornea by tear solution as well as the short half-life of intravitreal drugs, the eye is an attractive target for controlled drug delivery systems, such as PSi microparticles. Inherent barriers ensure that PSi particles are retained in the eye, releasing drugs at the desired speed until they slowly break down into harmless silicic acid. Here, we have examined the in vitro cytotoxicity of positively and negatively charged thermally oxidized (TOPSi) and thermally carbonized (TCPSi) porous silicon microparticles on human corneal epithelial (HCE) and retinal pigment epithelial (ARPE-19) cells. In addition to ocular assessment under an inverted microscope, cellular viability was evaluated using the CellTiter Blue™, CellTiter Fluor™, and lactate dehydrogenase (LDH) assays. CellTiter Fluor proved to be a suitable assay but due to non-specific and interfering responses, neither CellTiter Blue nor LDH assays should be used when evaluating PSi particles. Our results suggest that the toxicity of PSi particles is concentration-dependent, but at least at concentrations less than 200μg/ml, both positively and negatively charged PSi particles are well tolerated by human corneal and retinal epithelial cells and therefore applicable for delivering drug molecules into ocular tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  20. Carbon-rich particles in Comet Halley

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1990-01-01

    The majority of particles detected in the coma of Comet Halley contain carbon atoms; many of these grains appear to consist preponderately or only of light elements. These light-element particles may be composed of organic compounds. Of the possible combinations of the elements hydrogen, carbon, nitrogen, and oxygen, numerous examples are found of particles containing the combinations (H,C,O,N), (H,C,N), (H,C,O), and (H,C). These results may bear on the recent detection of polyoxymethylene fragments, the observation of cyanojets (CN patterns consistent with release from solid particles), the possible presence of cyanopolyacetylenes or HCN polymer and the make-up of the CHON particles. If cometary matter could reach the surface of the earth without complete disruption, these diverse organic and mixed particles could create unique microenvironments, possibly with significant or even pivotal prebiotic chemical activity. Here a speculative insight into possible relationships between carbon in comets and carbon in life is given, as well as a brief overview of on-going analysis of data from the highly successful Particle Impact Analyzer (PIA) experiment flown on the Giotto spacecraft for the flyby of Comet Halley (development and implementation of PIA was under the direction of J. Kissel of the Max Planck Institute for Kernphysik, Heidelberg). PIA is a time-of-flight analyzer which obtains mass spectra of ions from individual particles impacting on a Pt-Ag foil target within the instrument.

  1. Pelagic origin and fate of sedimenting particles in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bathmann, Ulrich V.; Peinert, Rolf; Noji, Thomas T.; Bodungen, Bodo V.

    A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g.m -2y -1, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10 3m -2d -1). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.

  2. Isolation and Quantitative Estimation of Diesel Exhaust and Carbon Black Particles Ingested by Lung Epithelial Cells and Alveolar Macrophages In Vitro

    EPA Science Inventory

    A new procedure for isolating and estimating ingested carbonaceous diesel exhaust particles (DEP) or carbon black (CB) particles by lung epithelial cells and macrophages is described. Cells were incubated with DEP or CB to examine cell-particle interaction and ingestion. After va...

  3. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand.

    PubMed

    Cai, Li; Zhu, Jinghan; Hou, Yanglong; Tong, Meiping; Kim, Hyunjung

    2015-10-01

    Four types of NPs: carbon nanotubes and graphene oxide (carbon-based NPs), titanium dioxide and zinc oxide metal-oxide NPs, were utilized to systematically determine the influence of gravity on the transport of NPs in porous media. Packed column experiments for two types of carbon-based NPs were performed under unfavorable conditions in both up-flow (gravity-negative) and down-flow (gravity-positive) orientations, while for two types of metal-oxide NPs, experiments were performed under both unfavorable and favorable conditions in both up-flow and down-flow orientations. Both breakthrough curves and retained profiles of two types of carbon-based NPs in up-flow orientation were equivalent to those in down-flow orientation, indicating that gravity had negligible effect on the transport and retention of carbon-based NPs under unfavorable conditions. In contrast, under both unfavorable and favorable conditions, the breakthrough curves for two types of metal-oxide NPs in down-flow orientation were lower relative to those in up-flow orientation, indicating that gravity could decrease the transport of metal-oxide NPs in porous media. The distinct effect of gravity on the transport and retention of carbon-based and metal-oxide NPs was mainly attributed to the contribution of gravity to the force balance on the NPs in quartz sand. The contribution of gravity was determined by the interplay of the density and sizes of NP aggregates under examined solution conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Webinar Presentation: Particle-Resolved Simulations for Quantifying Black Carbon Climate Impact and Model Uncertainty

    EPA Pesticide Factsheets

    This presentation, Particle-Resolved Simulations for Quantifying Black Carbon Climate Impact and Model Uncertainty, was given at the STAR Black Carbon 2016 Webinar Series: Changing Chemistry over Time held on Oct. 31, 2016.

  6. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  7. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that formmore » as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.« less

  8. Effect of intrinsic organic carbon on the optical properties of fresh diesel soot

    PubMed Central

    Adler, Gabriella; Riziq, Ali Abo; Erlick, Carynelisa; Rudich, Yinon

    2010-01-01

    This study focuses on the retrieval of the normalized mass absorption cross section (MAC) of soot using theoretical calculations that incorporate new measurements of the optical properties of organic carbon (OC) intrinsic to fresh diesel soot. Intrinsic OC was extracted by water and an organic solvent, and the complex refractive index of the extracted OC was derived at 532 and 355-nm wavelengths using cavity ring-down aerosol spectrometry. The extracted OC was found to absorb weakly in the visible wavelengths and moderately at blue wavelengths. The mass ratio of OC and elemental carbon (EC) in the collected particles was evaluated using a thermo-optical method. The measured EC/OC ratio in the soot exhibited substantial variability from measurement to measurement, ranging between 2 and 5. To test the sensitivity of the MAC to this variability, three different EC/OC ratios (2∶1, 1∶1, and 1∶2) were chosen as representative. Particle size and spherule morphology were estimated using scanning electron microscopy, and the soot was found to be primarily in the form of aggregates with a dominant aggregate diameter mode in the range 200–250 nm. The measured refractive index of the extracted OC was used with a variety of theoretical models to calculate the MAC of internally mixed diesel soot at 532 and 355 nm. We conclude that Rayleigh–Debye–Gans theory on clusters of coated spherules and T-matrix of a solid EC spheroid coated by intrinsic OC are both consistent with previous measurements; however, Rayleigh–Debye–Gans theory provides a more realistic physical model for the calculation PMID:20018649

  9. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.

    PubMed

    Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria

    2010-04-01

    Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement.

  10. Down dead wood statistics for Maine timberlands, 1995

    Treesearch

    Linda S. Heath; David C. Chojnacky; David C. Chojnacky

    2001-01-01

    Down dead wood (DDW) is important for its role in carbon and nutrient cycling, carbon sequestration, wildfire behavior, plant reproduction, and wildlife habitat. DDW was measured for the first time during a forest inventory of Maine by the USDA Forest Service in 1994-1996. Pieces greater than 3 feet long and greater than 3 inches in diameter at point of intersection...

  11. Carbon particles

    DOEpatents

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  12. Carbon-particle generator

    DOEpatents

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  13. Size-dependent surface phase change of lithium iron phosphate during carbon coating

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang

    2014-03-01

    Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

  14. Increased photosynthetic acclimation in alfalfa associated with arbuscular mycorrhizal fungi (AMF) and cultivated in greenhouse under elevated CO2.

    PubMed

    Goicoechea, Nieves; Baslam, Marouane; Erice, Gorka; Irigoyen, Juan José

    2014-11-15

    Medicago sativa L. (alfalfa) can exhibit photosynthetic down-regulation when grown in greenhouse conditions under elevated atmospheric CO2. This forage legume can establish a double symbiosis with nitrogen fixing bacteria and arbuscular mycorrhizal fungi (AMF), which may increase the carbon sink effect of roots. Our aim was to assess whether the association of alfalfa with AMF can avoid, diminish or delay the photosynthetic acclimation observed in previous studies performed with nodulated plants. The results, however, showed that mycorrhizal (M) alfalfa at the end of their vegetative period had lower carbon (C) discrimination than non-mycorrhizal (NM) controls, indicating photosynthetic acclimation under ECO2 in plants associated with AMF. Decreased C discrimination was due to the acclimation of conductance, since the amount of Rubisco and the expression of genes codifying both large and small subunits of Rubisco were similar or slightly higher in M than in NM plants. Moreover, M alfalfa accumulated a greater amount of soluble sugars in leaves than NM plants, thus favoring a down-regulation effect on photosynthetic rates. The enhanced contents of sugars in leaves coincided with a reduced percentage of arbuscules in roots, suggesting decreased sink of carbohydrates from shoots to roots in M plants. The shorter life cycle of alfalfa associated with AMF in comparison with the NM controls may also be related to the accelerated photosynthetic acclimation in M plants. Further research is needed to clarify to what extent this behavior could be extrapolated to alfalfa cultivated in the field and subjected to periodic cutting of shoots under climatic change scenarios. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Similar photosynthetic response to elevated carbon dioxide concentration in species with different phloem loading strategies.

    PubMed

    Bishop, Kristen A; Lemonnier, Pauline; Quebedeaux, Jennifer C; Montes, Christopher M; Leakey, Andrew D B; Ainsworth, Elizabeth A

    2018-06-02

    Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO 2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO 2 concentrations is unclear, despite the widespread impacts of rising CO 2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO 2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO 2 uptake by elevated CO 2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO 2 . There was a trend toward greater starch accumulation at elevated CO 2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO 2 , but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.

  16. Murine J774 Macrophages Recognize LPS/IFN-g, Non-CpG DNA or Two-CpG DNA-containing Sequences as Immunologically Distinct

    PubMed Central

    Crosby, Lynn; Casey, Warren; Morgan, Kevin; Ni, Hong; Yoon, Lawrence; Easton, Marilyn; Misukonis, Mary; Burleson, Gary; Ghosh, Dipak K.

    2010-01-01

    Specific bacterial lipopolysaccharides (LPS), IFN-γ, and unmethylated cytosine or guanosine-phosphorothioate containing DNAs (CpG) activate host immunity, influencing infectious responses. Macrophages detect, inactivate and destroy infectious particles, and synthetic CpG sequences invoke similar responses of the innate immune system. Previously, murine macrophage J774 cells treated with CpG induced the expression of nitric oxide synthase 2 (NOS2) and cyclo-oxygenase 2 (COX2) mRNA and protein. In this study murine J774 macrophages were exposed to vehicle, interferon γ + lipopolysaccharide (IFN-g/LPS), non-CpG (SAK1), or two-CpG sequence-containing DNA (SAK2) for 0–18 hr and gene expression changes measured. A large number of immunostimulatory and inflammatory changes were observed. SAK2 was a stronger activator of TNFα- and chemokine expression-related changes than LPS/IFN-g. Up regulation included tumor necrosis factor receptor superfamily genes (TNFRSF’s), IL-1 receptor signaling via stress-activated protein kinase (SAPK), NF-κB activation, hemopoietic maturation factors and sonic hedgehog/wingless integration site (SHH/Wnt) pathway genes. Genes of the TGF-β pathway were down regulated. In contrast, LPS/IFN-g -treated cells showed increased levels for TGF-β signaling genes, which may be linked to the observed up regulation of numerous collagens and down regulation of Wnt pathway genes. SAK1 produced distinct changes from LPS/IFN-g or SAK2. Therefore, J774 macrophages recognize LPS/IFN-g, non-CpG DNA or two-CpG DNA-containing sequences as immunologically distinct. PMID:20097302

  17. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.

    PubMed

    Velimirovic, Milica; Larsson, Per-Olof; Simons, Queenie; Bastiaens, Leen

    2013-11-01

    Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Low density microcellular carbon or catalytically impregnated carbon forms and process for their preparation

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1989-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  19. Low density microcellular carbon or catalytically impregnated carbon foams and process for their prepartion

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1988-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  20. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOEpatents

    Hooper, R.W.; Pekala, R.W.

    1987-04-30

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  1. In situ synthesis of luminescent carbon nanoparticles toward target bioimaging.

    PubMed

    Sharker, Shazid Md; Kim, Sung Min; Lee, Jung Eun; Jeong, Ji Hoon; In, Insik; Lee, Kang Dea; Lee, Haeshin; Park, Sung Young

    2015-03-12

    This paper describes the in situ synthesis of single fluorescence carbon nanoparticles (FCNs) for target bioimaging applications derived from biocompatible hyaluronic acid (HA) without using common conjugation processes. FCNs formed via the dehydration of hyaluronic acid, which were obtained by carbonizing HA, and partially carbonized HA fluorescence carbon nanoparticles (HA-FCNs), formed by a lower degree of carbonization, show good aqueous solubility, small particle size (<20 nm) and different fluorescence intensities with a red shift. After confirming the cytotoxicity of HA-FCNs and FCNs, we carried out in vitro and in vivo bioimaging studies where HA-FCNs themselves functioned as single particle triggers in target imaging. The converted nanocrystal carbon particles from HA provide outstanding features for in vitro and in vivo new targeted delivery and diagnostic tools.

  2. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Seunghyon; Kim, Ji-Eun; Kim, Daegyu; Woo, Chang Gyu; Pikhitsa, Peter V.; Cho, Myung-Haing; Choi, Mansoo

    2015-09-01

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT.

  3. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.

  4. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    PubMed

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD < 2%, except Na2O. Carbon is ultra-light element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to determine the carbon dioxide in the carbonate quantitatively. The intensity of the carbon is increase with the times of the measurement and the time delay even the pellet is stored in the dessicator. So employing the latest pressed powder pellet is suggested.

  5. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  6. Wintertime Correlation Between Black Carbon and Particle Size in a Street and Rural Site in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Gramsch, E. V.; Reyes, F.; Oyola, P.

    2013-05-01

    We have studied the correlation between black carbon and particle size in three sites in the Metropolitan area of Santiago de Chile in the winter of 2009 and performed a detailed comparison. Two of the sites are located near busy streets in Santiago de Chile. The other site was located in a rural area about 30 km upwind from downtown with little influence from vehicles, but large influence from wood burning. The particle size distribution was measured with a DMPS (Whalin, 2001) in the range from 10 to 700 nm. Simultaneously, black carbon was measured with an optical monitor developed at the University of Santiago (Gramsch, 2004). It is well known that the smaller particles (~ 10 - 40 nm ) are emitted directly by the engines of vehicles, which later condensate or coagulate in the atmosphere to form larger particles. In our measurements, the street site is mostly influenced by diesel vehicles which emit large amounts of black carbon. We have divided the particle size measurements in four groups (10 - 40 nm, 41- 69 nm, 79 - 157 nm and 190 - 700 nm) in order to compare with the carbon monitor. The highest correlation (0.98) in the site near the street between black carbon and the particles was obtained with the 190 - 700 nm. The correlation with the 79 - 157 nm group was slightly less (0.93). A comparison between the hourly average curves for black carbon and the 190 - 700 nm group show a similar shape during the whole day. In the rural site, the number of particles in the 10 - 40 nm group was 10 times lower than in the street, but the number of particles in the 190 - 700 nm group was only two times smaller. This fact is an indication that wood burning does not generate particles smaller than ~ 80 - 100 nm. The best correlation in the rural site between the black carbon and the particles was also with the 190 - 700 nm group. However, the correlation was lower (0.86) than in the street site. The hourly average curves for black carbon and the 190 - 700 nm group show a similar shape during the night (10 PM - 6 AM), but differ during the day. These measurements indicate that black carbon measurements may be more sensitive to emission from diesel vehicles than wood burning. This work was supported by the University of Santiago (Dicyt), the National Commission for the Environment (CONAMA) and the Regional Government of the Metropolitan Region (GORE).. Gramsch, E., Cereceda-Balic, F., Ormeño, I., Palma, G., Oyola, P., 2004. Use of the light absorption coefficient to monitor elemental carbon and PM2.5. Example of Santiago de Chile. Journal of the Air and Waste Management Association 54, 799-808 Wahlin, P., Palmgren, F., Van Dingenen, R., 2001. Experimental studies of ultrafine particles in streets and the relationship to traffic. Atmospheric Environment 35 (Suppl. 1), 63-69..

  7. Optimization of synthesis process of thermally-responsive poly-n-isopropylacrylamide nanoparticles for controlled release of antimicrobial hydrophobic compounds

    NASA Astrophysics Data System (ADS)

    Hill, Laura E.; Gomes, Carmen L.

    2014-12-01

    The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.

  8. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    PubMed

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  9. Active Hexose-correlated Compound Down-regulates Heat Shock Factor 1, a Transcription Factor for HSP27, in Gemcitabine-resistant Human Pancreatic Cancer Cells.

    PubMed

    Tokunaga, Masayuki; Baron, Byron; Kitagawa, Takao; Tokuda, Kazuhiro; Kuramitsu, Yasuhiro

    2015-11-01

    Active hexose-correlated compound (AHCC) is an extract of a basidiomycete mushroom that enhances the therapeutic effects and reduces the side-effects of chemotherapy. Our previous studies demonstrated that heat-shock protein 27 (HSP27) was involved in gemcitabine-resistance of pancreatic cancer cells and it was down-regulated by AHCC-treatment. However, how AHCC down-regulated HSP27 is unknown. In the present study, we focused on two transcription factors reported to induce HSP27, heat shock factor 1 (HSF1) and high-mobility group box 1 (HMGB1) and investigated the effect of AHCC on their expression. KLM1-R cells were treated with AHCC and the protein expression of HSF1 and HMGB1 were analyzed by western blotting. The protein expression of HSF1 in KLM1-R was down-regulated by AHCC treatment. On the other hand, the protein expression of HMGB1 was not reduced in KLM1-R cells after AHCC treatment. The possibility that AHCC down-regulated HSP27 through down-regulation of the HSF1, was herein shown. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein.

    PubMed

    Jiang, Wen-Jian; Ren, Wei-Hong; Liu, Xu-Jie; Liu, Yan; Wu, Fu-Jian; Sun, Li-Zhong; Lan, Feng; Du, Jie; Zhang, Hong-Jia

    2016-09-05

    In this study, we assessed whether the down-regulation of Yes-associated protein (YAP) is involved in the pathogenesis of extracellular matrix (ECM) mechanical stress-induced Stanford type A aortic dissection (STAAD). Human aortic samples were obtained from heart transplantation donors as normal controls and from STAAD patients undergoing surgical replacement of the ascending aorta. Decreased maximum aortic wall velocity, ECM disorders, increased VSMC apoptosis, and YAP down-regulation were identified in STAAD samples. In a mouse model of STAAD, YAP was down-regulated over time during the development of ECM damage, and increased VSMC apoptosis was also observed. YAP knockdown induced VSMC apoptosis under static conditions in vitro , and the change in mechanical stress induced YAP down-regulation and VSMC apoptosis. This study provides evidence that YAP down-regulation caused by the disruption of mechanical stress is associated with the development of STAAD via the induction of apoptosis in aortic VSMCs. As STAAD is among the most elusive and life-threatening vascular diseases, better understanding of the molecular pathogenesis of STAAD is critical to improve clinical outcome.

  11. A Transcriptome Approach Toward Understanding Fruit Softening in Persimmon

    PubMed Central

    Jung, Jihye; Choi, Sang Chul; Jung, Sunghee; Cho, Byung-Kwan; Ahn, Gwang-Hwan; Ryu, Stephen B.

    2017-01-01

    Persimmon (Diospyros kaki Thunb.), which is a climacteric fruit, softens in 3–5 weeks after harvest. However, little is known regarding the transcriptional changes that underlie persimmon ripening. In this study, high-throughput de novo RNA sequencing was performed to examine differential expression between freshly harvested (FH) and softened (ST) persimmon fruit peels. Using the Illumina HiSeq platform, we obtained 259,483,704 high quality reads and 94,856 transcripts. After the removal of redundant sequences, a total of 31,258 unigenes were predicted, 1,790 of which were differentially expressed between FH and ST persimmon (1,284 up-regulated and 506 down-regulated in ST compared with FH). The differentially expressed genes (DEGs) were further subjected to KEGG pathway analysis. Several pathways were found to be up-regulated in ST persimmon, including “amino sugar and nucleotide sugar metabolism.” Pathways down-regulated in ST persimmon included “photosynthesis” and “carbon fixation in photosynthetic organisms.” Expression patterns of genes in these pathways were further confirmed using quantitative real-time RT-PCR. Ethylene gas production during persimmon softening was monitored with gas chromatography and found to be correlated with the fruit softening. Transcription involved in ethylene biosynthesis, perception and signaling was up-regulated. On the whole, this study investigated the key genes involved in metabolic pathways of persimmon fruit softening, especially implicated in increased sugar metabolism, decreased photosynthetic capability, and increased ethylene production and other ethylene-related functions. This transcriptome analysis provides baseline information on the identity and modulation of genes involved in softening of persimmon fruits and can underpin the future development of technologies to delay softening in persimmon. PMID:28955353

  12. An fMRI investigation of the cognitive reappraisal of negative memories

    PubMed Central

    Holland, Alisha C.; Kensinger, Elizabeth A.

    2013-01-01

    Episodic memory retrieval can be influenced by individuals’ current goals, including those that are emotional in nature. Participants underwent an fMRI scan while reappraising, or changing the way they thought about aversive images they had previously encoded, to down-regulate (i.e., decrease), up-regulate (i.e., increase), or maintain the emotional intensity associated with their recall. A conjunction analysis between down- and up-regulation during the entire 12-sec recall period revealed that both commonly activated reappraisal-related regions, particularly in the lateral and medial prefrontal cortex (PFC). However, when we analyzed a reappraisal instruction phase prior to recall and then divided the recall phase into the time when individuals were first searching for their memories and later elaborating on their details, we found that down- and up-regulation engaged greater neural activity at different time points. Up-regulation engaged greater PFC activity than down-regulation or maintenance during the reappraisal instruction phase. In contrast, down-regulation engaged greater lateral PFC activity as images were being searched for and retrieved. Maintaining the emotional intensity associated with the aversive images engaged similar regions to a greater extent than either reappraisal condition as participants elaborated on the details of the images they were holding in mind. Our findings suggest that down- and up-regulation engage similar neural regions during memory retrieval, but differ in the timing of this engagement. PMID:23500898

  13. Beneficial effects of omega-3 fatty acids in the proteome of high-density lipoprotein proteome

    PubMed Central

    2012-01-01

    Background Omega-3 poly-unsaturated fatty acids (ω-3 PUFAs) have demonstrated to be beneficial in the prevention of cardiovascular disease, however, the mechanisms by which they perform their cardiovascular protection have not been clarified. Intriguingly, some of these protective effects have also been linked to HDL. The hypothesis of this study was that ω-3 PUFAs could modify the protein cargo of HDL particle in a triglyceride non-dependent mode. The objective of the study was to compare the proteome of HDL before and after ω-3 PUFAs supplemented diet. Methods A comparative proteomic analysis in 6 smoker subjects HDL before and after a 5 weeks ω-3 PUFAs enriched diet has been performed. Results Among the altered proteins, clusterin, paraoxonase, and apoAI were found to increase, while fibronectin, α-1-antitrypsin, complement C1r subcomponent and complement factor H decreased after diet supplementation with ω-3 PUFAs. Immunodetection assays confirmed these results. The up-regulated proteins are related to anti-oxidant, anti-inflammatory and anti-atherosclerotic properties of HDL, while the down-regulated proteins are related to regulation of complement activation and acute phase response. Conclusions Despite the low number of subjects included in the study, our findings demonstrate that ω-3 PUFAs supplementation modifies lipoprotein containing apoAI (LpAI) proteome and suggest that these protein changes improve the functionality of the particle. PMID:22978374

  14. Drosophila melanogaster Activating Transcription Factor 4 Regulates Glycolysis During Endoplasmic Reticulum Stress

    PubMed Central

    Lee, Ji Eun; Oney, McKenna; Frizzell, Kimberly; Phadnis, Nitin; Hollien, Julie

    2015-01-01

    Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells. PMID:25681259

  15. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    PubMed Central

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  16. Effect of Dietary Protein Level on the Expression of Proteins in the Gastrointestinal Tract of Young Pigs.

    PubMed

    Ma, Xianyong; Tian, Zhimei; Deng, Dun; Cui, Yiyan; Qiu, Yueqin

    2018-05-02

    The objective of this research is to investigate the effect of protein level on proteins expression in the gastrointestinal tract of young pigs. Eighteen piglets (Duroc × Landrace × Yorkshire) were weaned at 28 days of age and randomly assigned to three diets with 20%, 17%, and 14% CP level, and four essential amino acids, Lys, Met, Thr, and Trp, in three diets met the requirements of weaned piglets. The experimental period lasted 45 days. Compared with the control (20% CP level), the average daily feed intake, the average daily gain, and gain feed ratio of the 17% CP group did not decrease ( P > 0.05), but those of 14% CP group decreased ( P < 0.05). The proteomics profiles result of three tissues (gastric antrum, duodenum, and jejunum) showed that, compared with the control, the immune system, protein digestion and absorption, lipid or carbon digestion and absorption, etc. were up-regulated in 17% CP group, while most of them were down-regulated in 14% CP group. Amino acids metabolism of gastric, pancreatic secretion of duodenum or steroid hormone biosynthesis of jejunum was down-regulated in the 17% CP group, but the lipid metabolism was up-regulated in the 14% CP group. Six proteins were selected for identification by Western-blot, and their changes had the same trend as the proteomics results. The protein level decreased from 20% to 17%, the growth performance was not affected, while the nutrient digestion and absorption or the immune function were improved, which implied that 17% protein level maybe benefit for nutrients absorption of pigs.

  17. Modulations in primary and secondary metabolic pathways and adjustment in physiological behaviour of Withania somnifera under drought stress.

    PubMed

    Singh, Ruchi; Gupta, Pankhuri; Khan, Furqan; Singh, Susheel Kumar; Sanchita; Mishra, Tripti; Kumar, Anil; Dhawan, Sunita Singh; Shirke, Pramod Arvind

    2018-07-01

    In general medicinal plants grown under water limiting conditions show much higher concentrations of secondary metabolites in comparison to control plants. In the present study, Withania somnifera plants were subjected to water stress and data related to drought tolerance phenomenon was collected and a putative mechanistic concept considering growth responses, physiological behaviour, and metabolite content and gene expression aspects is presented. Drought induced metabolic and physiological responses as well as drastic decrease in CO 2 uptake due to stomatal limitations. As a result, the consumption of reduction equivalents (NADPH 2+ ) for CO 2 assimilation via the calvin cycle declines significantly resulting in the generation of a large oxidative stress and an oversupply of antioxidant enzymes. Drought also results in the shifting of metabolic processes towards biosynthetic activities that consume reduction equivalents. Thus, biosynthesis of reduced compounds (isoprenoids, phenols and alkaloids) is enhanced. The dynamics of various metabolites have been discussed in the light of gene expression analysis of control and drought treated leaves. Gene encoding enzymes of pathways leading to glucose, fructose and fructan production, conversion of triose phosphates to hexoses and hexose phosphorylation were up-regulated in the drought stressed leaves. The down-regulated Calvin cycle genes were co-ordinately regulated with the down-regulation of chloroplast triosephosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Expression of gene encoding Squalene Synthase (SQS) was highly upregulated under drought stress which is responsible for the diversion of carbon flux towards withanolides biosynthesis from isoprenoid pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System

    PubMed Central

    Viadas, Cristina; Rodríguez, María C.; Sangari, Felix J.; Gorvel, Jean-Pierre; García-Lobo, Juan M.; López-Goñi, Ignacio

    2010-01-01

    Background The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche. PMID:20422049

  19. Turbidite carbon distribution by Ramped PyrOx, Astoria Canyon

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Galy, V.; McNichol, A. P.

    2017-12-01

    The magnitude and nature of carbon preserved in marine sediments can be affected by long-term processes such as climate change and tectonic transport; preservation of carbon can also be affected by short-term, episodic disturbances such as storm events, landslides, and earthquakes. In margins with active canyons, these systems can be efficient burial networks for carbon. The downslope displacement and reorganization of sediment and associated organic carbon (OC) during turbidite formation alters oxygen diffusion and the potential for aerobic oxidation, thereby modifying the redox geochemistry of the sediment package. Generally termed as a `burn-down', reactions at the subsurface oxidation front are linked to a loss of OC preservation within turbidite sequences. Still debated is the source of the OC residual within `burn-down' events, primarily whether the preserved material is dominated by terrestrial or marine components. To better understand the significance of canyon systems and turbidite deposits in the transport, preservation, and `burn-down' of organic carbon, samples from these systems can be studied using the Ramped PyrOx (RPO) technique. Whereas bulk radiocarbon measurements are unsuitable within turbidite deposits, RPO is well suited for characterizing the distribution of carbon sources within a turbidite interval. To complement RPO analyses, OC and N content, stable carbon isotope composition, gamma ray attenuation bulk density, computerized tomography, and magnetic susceptibility were determined. The turbidite systems of the Cascadia Subduction Zone have been extensively studied in relation to the Holocene paleoseismic record. Gravity cores collected in 2011 aboard the R/V Wecoma capture turbidite deposits in Astoria Canyon and demonstrate characteristics of `burn down' intervals. RPO data from within a 15 cm turbidite interval indicate minimal variation in reactivity structure, stable carbon isotope values and radiocarbon age, suggesting a shared source of sediment input. Such similarities imply minimal source-selective OC alteration and are consistent with a singular event (e.g. - flood) associated with late Holocene warm interval influence on the Columbia River Basin.

  20. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study - an elemental mass balance approach

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.

    2013-05-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.

  1. Soil organic carbon response to shrub encroachment regulated by soil aggregates

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Li, H.; Shen, H.; Feng, Y.; Fang, J.

    2017-12-01

    Shrub encroachment leads to change in soil organic carbon content, but there still exists a lot of uncertainty in its mechanism as it relates to deep soil research. Soil organic carbon is usually associated with stable aggregate quantity. In this study, we conducted a field investigation for typical steppe and desert steppe in Inner Mongolia with the view to examining the impact of shrub encroachment on soil organic carbon with soil aggregate at a depth of 0-500 cm. The results show that in the desert steppe, the particle size of soil aggregate content level in different depth are presented the trend of shrub patches is lower than the herb matrix, organic carbon content of soil aggregate under 50 cm deeper presents the trend of shrub patches is higher than herb matrix, eventually leading to shrub patches whole soil organic carbon in the 0 to 50 cm depth lower than the herb matrix, and in deeper soil below 50 cm higher than the herb matrix. In the typical steppe, there is no significant difference between soil aggregate structure of shrub patches and herb matrix, but organic carbon content of soil aggregate, especially large aggregate organic carbon content in the shrub patches is significantly higher than the herb matrix, so that the whole soil organic carbon content in the shrub patches is significantly higher than herb matrix. The rate of soil organic carbon content change (0-100 cm) by shrub encroachment showed significant negative correlation with the mean weight diameter of soil aggregate of herb matrix. We also found that the variations of soil organic carbon in desert steppe is not dominant by aggregates of some size, but the change of the typical steppe soil organic carbon mainly contributed by > 0.25 mm and 0.053-0.25 mm aggregates. The results suggested that the effects of shrub encroachment on soil organic carbon is regulated by soil aggregate, but it is varied for different type of grassland, which should provide some insights into our understanding on regional carbon budget under global environment change.

  2. Black carbon, mass and elemental measurements of airborne particles in the village of Serowe, Botswana

    NASA Astrophysics Data System (ADS)

    Moloi, K.; Chimidza, S.; Lindgren, E. Selin; Viksna, A.; Standzenieks, P.

    Absorption of sunlight by sub-micron particles is an important factor in calculations of the radiation balance of the earth and thus in climate modelling. Carbon-containing particles are generally considered as the most important in this respect. Major sources of these particles are generally considered to be bio-mass burning and vehicle exhaust. In order to characterise size fractionated particulate matter in a rural village in Botswana with respect to light absorption and elemental content experiments were performed, in which simultaneous sampling was made with a dichotomous impactor and a laboratory-made sampler, made compatible with black carbon analysis by reflectometry. The dichotomous impactor was equipped with Teflon filters and the other sampler with glass fibre filters. Energy dispersive X-ray fluorescence was used for elemental analysis of both kinds of filters. It appeared that Teflon filters were the most suitable for the combination of mass-, elemental- and black carbon measurements. The black carbon content in coarse (2.5-10 μm) and fine (<2.5 μm) particles was determined separately and related to elemental content and emission source. The results show that the fine particle fraction in the aerosol has a much higher contribution of black particles than the coarse particle fraction. This observation is valid for the village in Botswana as well as for a typical industrialised city in Sweden, used as a reference location.

  3. Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke

    PubMed Central

    Kocbach, Anette; Li, Yanjun; Yttri, Karl E; Cassee, Flemming R; Schwarze, Per E; Namork, Ellen

    2006-01-01

    Background Exposure to ambient particulate matter has been associated with a number of adverse health effects. Particle characteristics such as size, surface area and chemistry seem to influence the negative effects of particles. In this study, combustion particles from vehicle exhaust and wood smoke, currently used in biological experiments, were analysed with respect to microstructure and chemistry. Methods Vehicle exhaust particles were collected in a road tunnel during two seasons, with and without use of studded tires, whereas wood smoke was collected from a stove with single-stage combustion. Additionally, a reference diesel sample (SRM 2975) was analysed. The samples were characterised using transmission electron microscopy techniques (TEM/HRTEM, EELS and SAED). Furthermore, the elemental and organic carbon fractions were quantified using thermal optical transmission analysis and the content of selected PAHs was determined by gas chromatography-mass spectrometry. Results Carbon aggregates, consisting of tens to thousands of spherical primary particles, were the only combustion particles identified in all samples using TEM. The tunnel samples also contained mineral particles originating from road abrasion. The geometric diameters of primary carbon particles from vehicle exhaust were found to be significantly smaller (24 ± 6 nm) than for wood smoke (31 ± 7 nm). Furthermore, HRTEM showed that primary particles from both sources exhibited a turbostratic microstructure, consisting of concentric carbon layers surrounding several nuclei in vehicle exhaust or a single nucleus in wood smoke. However, no differences were detected in the graphitic character of primary particles from the two sources using SAED and EELS. The total PAH content was higher for combustion particles from wood smoke as compared to vehicle exhaust, whereas no source difference was found for the ratio of organic to total carbon. Conclusion Combustion particles from vehicle exhaust and residential wood smoke differ in primary particle diameter, microstructure, and PAH content. Furthermore, the analysed samples seem suitable for assessing the influence of physicochemical characteristics of particles on biological responses. PMID:16390554

  4. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Background Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. Methods We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. Results N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca2+, although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein–particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. Conclusion We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size. PMID:25848250

  5. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m(2)/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca(2+), although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein-particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size.

  6. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues.more » Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.« less

  7. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

    2013-06-01

    Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

  8. Semi-Continuous Measurements of Aerosol Chemical Composition During the Summer 2002 Yosemite National Park Special Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, J; Lee, T; Heath, J

    2003-02-16

    Semi-continuous measurements of fine particle composition were made over a period of several weeks in summer 2002 in Yosemite National Park, California. These included measurement of aerosol ionic composition (by PILS- Particle-Into-Liquid System) and aerosol carbon (by dual wavelength aethalometer and an R&P particulate carbon monitor). The data reveal that aerosol composition at the site is highly :variable in time, with a strong diurnal cycle. Interestingly, however, different diurnal cycles were sometimes observed for different chemical constituents of the particles. Organic carbon was observed to dominate fine particle mass, with some periods apparently associated with influx of smoke from wildfiresmore » in the western U.S. Measurements of fine particle carbon isotopes revealed the fraction of carbon from biogenic sources to range from approximately 73 to 95%. The ionic fraction of the aerosol was usually dominated by ammoniated sulfate. During most periods, PM{sub 2.5} nitrate was found primarily in sea salt particles from which chloride had been displaced. Strong variations in the extent of ammonia neutralization of sulfate were also observed. The ability to observe rapid changes in aerosol composition using these semi-continuous aerosol composition measurements is helpful for understanding the dynamic chemical composition of fine particles responsible for regional haze.« less

  9. An Unaccounted Fraction of Marine Biogenic CaCO3 Particles

    PubMed Central

    Heldal, Mikal; Norland, Svein; Erichsen, Egil S.; Thingstad, T. Frede; Bratbak, Gunnar

    2012-01-01

    Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from <1 to >100 µm, and in a typical concentration of 104–105 particles L−1 (size range counted 1–100 µm). Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1–100 µm size range account for 2–4 times more CaCO3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO2 remains to be investigated. PMID:23110119

  10. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Halpert, Gerald (Inventor); Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  11. Carbon-Nanotube-Carpet Heat-Transfer Pads

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cruden, Brett A.; Cassel, Alan M.

    2006-01-01

    Microscopic thermal-contact pads that include carpet-like arrays of carbon nanotubes have been invented for dissipating heat generated in integrated circuits and similarly sized single electronic components. The need for these or other innovative thermal-contact pads arises because the requisite high thermal conductances cannot be realized by scaling conventional macroscopic thermal-contact pads down to microscopic sizes. Overcoming limitations of conventional thermal-contact materials and components, the carbon-nanotube thermal-contact pads offer the high thermal conductivities needed to accommodate the high local thermal power densities of modern electronic circuits, without need for large clamping pressures, extreme smoothness of surfaces in contact, or gap-filling materials (e.g., thermally conductive greases) to ensure adequate thermal contact. Moreover, unlike some conventional thermal-contact components, these pads are reusable. The figure depicts a typical pad according to the invention, in contact with a rough surface on an electronic component that is to be cooled. Through reversible bending and buckling of carbon nanotubes at asperities on the rough surface, the pad yields sufficiently, under relatively low contact pressure, that thermal contact is distributed to many locations on the surface to be cooled, including valleys where contact would not ordinarily occur in conventional clamping of rigid surfaces. Hence, the effective thermal-contact area is greater than that achievable through scaling down of a macroscopic thermal-contact pad. The extremely high longitudinal thermal conductivities of the carbon nanotubes are utilized to conduct heat away from potential hot spots on the surface to be cooled. The fibers protrude from a layer of a filler material (Cu, Ag, Au, or metal-particle- filled gels), which provides both mechanical support to maintain the carbon nanotubes in alignment and thermal conductivity to enhance the diffusion of concentrated heat from the nanotubes into the larger adjacent volume of a heat sink. The array of carbon nanotubes, the filler material, and the heat sink are parts of a unitary composite structure that is fabricated as follows: 1. Using techniques that have been reported previously, the array of substantially perpendicularly oriented carbon nanotubes is grown on a metal, silicon, or other suitable thermally conductive substrate that is intended to become the heat sink. 2. By means of chemical vapor deposition, physical vapor deposition, plasma deposition, ion sputtering, electrochemical deposition, or casting from a liquid phase, some or all of the interstitial volume between carbon nanotubes is filled with the aforementioned layer of mechanically supporting, thermally conductive material. 3. To cause the carbon nanotubes to protrude the desired length from the filler material, an outer layer of filler is removed by mechanical polishing, chemical mechanical polishing, wet chemical etching, electrochemical etching, or dry plasma etching.

  12. Dry particle coating of polymer particles for tailor-made product properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratiomore » and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.« less

  13. In Situ Bioremediation of MTBE in Groundwater

    DTIC Science & Technology

    2003-06-01

    by-products (carbon dioxide and water ). Groundwater leaving the down-gradient edge of the treatment zone contains MTBE at concentrations less than... groundwater treatment approaches ineffective or impracticable. Currently, conventional pump and treat (P&T) followed by aboveground water treatment and...carbon dioxide and water ). Groundwater leaving the down gradient edge of the treatment zone contains MTBE at concentrations less than or equal to the

  14. Chemical Demilitarization - Assembled Chemical Weapons Assessment (ACWA): Root Cause Analysis

    DTIC Science & Technology

    2011-07-01

    BGCAPP, supercritical water oxidation (SCWO) will subject the hydrolysate to very high temperatures and pressures, breaking it down into carbon dioxide ...ANS. The resulting hydrolysates from both the chemical and energetic process are then broken down into carbon dioxide , water and salts in the SCWO...Cutter Machine RDT&E Research, Development, Test and Evaluation RSM Rocket Shear Machine SAR Selected Acquisition Report SCWO Supercritical Water

  15. Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review.

    PubMed

    Holzman, Jacob B; Bridgett, David J

    2017-03-01

    Theoretical perspectives posit that heart-rate variability (HRV) reflects self-regulatory capacity and therefore can be employed as a bio-marker of top-down self-regulation (the ability to regulate behavioral, cognitive, and emotional processes). However, existing findings of relations between self-regulation and HRV indices are mixed. To clarify the nature of such relations, we conducted a meta-analysis of 123 studies (N=14,347) reporting relations between HRV indices and aspects of top-down self-regulation (e.g., executive functioning, emotion regulation, effortful control). A significant, albeit small, effect was observed (r=0.09) such that greater HRV was related to better top-down self-regulation. Differences in relations were negligible across aspects of self-regulation, self-regulation measurement methods, HRV computational techniques, at-risk compared with healthy samples, and the context of HRV measurement. Stronger relations were observed in older relative to younger samples and in published compared to unpublished studies. These findings generally support the notion that HRV indices can tentatively be employed as bio-markers of top-down self-regulation. Conceptual and theoretical implications, and critical gaps in current knowledge to be addressed by future work, are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Maeyoshi, Yuta; Miyamoto, Shohei; Noda, Yusaku; Munakata, Hirokazu; Kanamura, Kiyoshi

    2017-01-01

    Carbon-coated LiCoPO4 particles are synthesized by one-pot hydrothermal process using three different organic additives (carboxymethylcellulose sodium salt (CMC), glucose, and ascorbic acid). The effect of the organic additives on particle size, morphology, nature of carbon coating, and electrochemical property of the resulting LiCoPO4 is investigated. CMC plays important roles to decrease the particle size and form well-covered carbon coating on the surface. Carbon-coated LiCoPO4 prepared using CMC delivers higher initial discharge capacity of 135 mA h g-1 at 0.1 C, and shows superior rate capability and cyclic performance than the other samples. The improved electrochemical characteristics are attributed to not only the fine particle which allows facile electronic and ionic transport, but also the high coverage of carbon coating which improves the electrical conductivity and prevents the irreversible reactions of the charged LiCoPO4 with electrolyte.

  17. Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1

    PubMed Central

    Dauletbaev, N; Herscovitch, K; Das, M; Chen, H; Bernier, J; Matouk, E; Bérubé, J; Rousseau, S; Lands, L C

    2015-01-01

    Background and Purpose There is current interest in vitamin D as a potential anti-inflammatory treatment for chronic inflammatory lung disease, including cystic fibrosis (CF). Vitamin D transcriptionally up-regulates the anti-inflammatory gene DUSP1, which partly controls production of the inflammatory chemokine IL-8. IL-8 is overabundant in CF airways, potentially due to hyperinflammatory responses of CF macrophages. We tested the ability of vitamin D metabolites to down-regulate IL-8 production in CF macrophages. Experimental Approach CF and healthy monocyte-derived macrophages (MDM) were treated with two vitamin D metabolites, 25-hydroxyvitamin D3 (25OHD3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), or paricalcitol, synthetic analogue of 1,25(OH)2D3. 25OHD3 was tested at doses of 25–150 nM, whereas 1,25(OH)2D3 and paricalcitol at doses of up to 100 nM. IL-8 was stimulated by bacterial virulence factors. As potential anti-inflammatory mechanism of vitamin D metabolites, we assessed up-regulation of DUSP1. Key Results MDM from patients with CF and some healthy donors showed excessive production of stimulated IL-8, highlighting their hyperinflammatory phenotype. Vitamin D metabolites down-regulated stimulated IL-8 only in those hyperinflammatory MDM, and only when used at high doses (>100 nM for 25OHD3, or >1 nM for 1,25(OH)2D3 and paricalcitol). The magnitude of IL-8 down-regulation by vitamin D metabolites or paricalcitol was moderate (∼30% vs. >70% by low-dose dexamethasone). Transcriptional up-regulation of DUSP1 by vitamin D metabolites was seen in all tested MDM, regardless of IL-8 down-regulation. Conclusions and Implications Vitamin D metabolites and their analogues moderately down-regulate IL-8 in hyperinflammatory macrophages, including those from CF. This down-regulation appears to go through DUSP1-independent mechanisms. PMID:26178144

  18. Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1.

    PubMed

    Dauletbaev, N; Herscovitch, K; Das, M; Chen, H; Bernier, J; Matouk, E; Bérubé, J; Rousseau, S; Lands, L C

    2015-10-01

    There is current interest in vitamin D as a potential anti-inflammatory treatment for chronic inflammatory lung disease, including cystic fibrosis (CF). Vitamin D transcriptionally up-regulates the anti-inflammatory gene DUSP1, which partly controls production of the inflammatory chemokine IL-8. IL-8 is overabundant in CF airways, potentially due to hyperinflammatory responses of CF macrophages. We tested the ability of vitamin D metabolites to down-regulate IL-8 production in CF macrophages. CF and healthy monocyte-derived macrophages (MDM) were treated with two vitamin D metabolites, 25-hydroxyvitamin D3 (25OHD3 ) and 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), or paricalcitol, synthetic analogue of 1,25(OH)2 D3 . 25OHD3 was tested at doses of 25-150 nM, whereas 1,25(OH)2 D3 and paricalcitol at doses of up to 100 nM. IL-8 was stimulated by bacterial virulence factors. As potential anti-inflammatory mechanism of vitamin D metabolites, we assessed up-regulation of DUSP1. MDM from patients with CF and some healthy donors showed excessive production of stimulated IL-8, highlighting their hyperinflammatory phenotype. Vitamin D metabolites down-regulated stimulated IL-8 only in those hyperinflammatory MDM, and only when used at high doses (>100 nM for 25OHD3 , or >1 nM for 1,25(OH)2 D3 and paricalcitol). The magnitude of IL-8 down-regulation by vitamin D metabolites or paricalcitol was moderate (∼30% vs. >70% by low-dose dexamethasone). Transcriptional up-regulation of DUSP1 by vitamin D metabolites was seen in all tested MDM, regardless of IL-8 down-regulation. Vitamin D metabolites and their analogues moderately down-regulate IL-8 in hyperinflammatory macrophages, including those from CF. This down-regulation appears to go through DUSP1-independent mechanisms. © 2015 The British Pharmacological Society.

  19. Effects of coumarate 3-hydroxylase down-regulation on lignin structure

    Treesearch

    John Ralph; Takuya Akiyama; Hoon Kim; Fachuang Lu; Paul F. Schatz; Jane M. Marita; Sally A. Ralph; M.S. Srinivasa Reddy; Fang Chen; Richard A. Dixon

    2006-01-01

    Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in alfalfa massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to thenormally dominant guaiacyl (G) and syringyl (S) units Stem levels of up to ~65% P (from wild-type levels of ~1%) resulting from down-regulation of C3H were measured by traditional degradative...

  20. The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown Nicotiana tabacum at elevated CO2 concentration

    USDA-ARS?s Scientific Manuscript database

    Down-regulation of photosynthesis is one of the most frequent responses observed in C3 plants grown under elevated atmospheric CO2 concentration ([CO2]). Down-regulation is often attributed to an insufficient capacity of sink organs to use or store the increase in carbohydrate production in leaves t...

  1. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated monitoring station (55˚ 26'26"N; 26˚ 03'60"E) in the eastern part of Lithuania in the Aukštaitija national park during 2-24 July, 2008. The Rugšteliškis station is located in a remote relatively clean forested area. An aerosol mass spectrometer (AMS), developed at Aerodyne Research, was used to obtain real-time quantitative information on particle size-resolved mass loadings for volatile and semi-volatile chemical components present in/on ambient aerosol. The AMS inlet system allows 100 % transmission efficiency for particles with size diameter between 60 to 600 nm and partial transmission down to 20 nm and up to 2000 nm. The aerosol sampling was also carried out using a Micro-Orifice Uniform Deposit Impactor (MOUDI) model 110. The flow rate was 30 l/min, and the 50% aerodynamic cutoff diameters of the 10 stages were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10 and 0.056 m. Aluminum foil was used as the impaction surface. The aerosol samples were analyzed for total carbon using the elemental analyzer (Flash EA1112). Besides, samples were analyzed for ^13C/12C ratio by the isotopic ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (Norman et al., 1999; Garbaras et al., 2008). During campaign the dynamic behavior of aerosols was measured and quantitatively compared with meteorological conditions and air mass transport. The submicron aerosol was predominately sulphate and organic material. The AMS was able to discriminate and quantify mixed organic/inorganic accumulation mode particles (300 - 400 nm), which appeared to be dominated by regional sources and were of the origin similar to those seen in the more remote areas. The particulate organic fraction was also investigated in detail using the mass spectral data. By combining the organic matter size distribution (measured with AMS) with the total carbon (TC) size distribution (measured with MOUDI) we were able to report organic carbon to total carbon (OC/TC) ratio in different size particles. Furthermore, we measured TC ^13C/12C isotopic ratio on each cascade. This ratio contributed to identifying sources of carbonaceous species. References Garbaras, A., Andriejauskiene, J., Bariseviciute, R., Remeikis, V., 2008. Tracing of atmospheric aerosol sources using stable carbon isotopes. Lithuanian J. Phys. 48, 259-264. Jaenicke, R., 1998. Atmospheric aerosol size distribution. In: Harrison, R.M., van Grieken, R.E. (Eds.), Atmospheric Particles. John Wiley & Sons, Chichester, pp. 1-28. Middlebrook, A.M., Murphy, D.M., Thomson, D.S., 1998. Observations of organic material in individual marine particles at Cape Grim during the first aerosol characterization experiment (ACE 1). Journal of Geophysical Research 103, 16475-16483. Norman, A.L., Hopper, J.F., Blanchard, P., Ernst, D., Brice, K., Alexandrou, N., Klouda, G., 1999. The stable carbon isotope composition of atmospheric PAHs. Atmospheric Environment 33 (17), 2807-2814. Samara, C., Voutsa, D., 2005. Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59, 1197-1206.

  2. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Department of Geriatrics, Zhu Jiang Hospital, Southern Medical University, Guangzhou, Guangdong; Hu, Fang

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions tomore » mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting TGF-β1/Smad3 signaling in high-glucose-treated human MCs.« less

  3. To the bottom of carbon processing at the seafloor: towards integration of geological, geochemical and ecological concepts (Vladimir Ivanovich Vernadsky Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Middelburg, Jack J.

    2017-04-01

    Marine sediments are a habitat for organisms, govern the partitioning of material being buried or recycled, and act as filter for the paleorecord. Processes in the surface sediment layer determine whether carbon is recycled within the biosphere (short-term cycle) or transferred to the geosphere (long-term cycle) and as such it function as key interface in the System Earth. Scientists from various disciplines with their own interests, paradigms and techniques have studied this pivotal role of the seafloor in processing material deposited. Marine geologists and paleoceanographers study sediments with the primary aim to extract information on past environmental conditions using down-core measurements of substances delivered to the seafloor and that have survived the processing at the seafloor. Biogeochemists quantify the fate of material delivered, in particular how much of the material is eventually buried and when and in what form is the remaining recycled to the water column, because recycling of key nutrients (e.g. N, P, Si, Fe) sustain primary production. Organic geochemists investigate how organic matter delivered to the seafloor is degraded, transformed or preserved using changes in the composition at the molecular level. Ecologists focus on the organisms, i.e. the actors consuming, producing and transporting the material deposited. Although these disciplines often study the same material, e.g. organic matter delivered to the seafloor, they focus on different aspect ignoring key concepts, findings and approaches from other disciplines. For example, ecologists and biogeochemist studying carbon flow at the seafloor normally ignore detailed molecular information available from organic geochemistry. Bioturbation, particle transport and mixing at the seafloor, is often ignored by paleocanographers, and biogeochemists have developed advanced transport-reaction models in which the actors, the animals, mix the particles but do so without consuming organic matter, their food. Here I present existing views on organic carbon processing at the seafloor, discuss where they agree and disagree and aim to arrive at an integrated view of carbon processing at the seafloor that is consistent with recent views within the organic geochemical, sediment geochemical, ecological and microbiological communities.

  4. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    PubMed

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    NASA Astrophysics Data System (ADS)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  6. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  7. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE PAGES

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...

    2017-10-03

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  8. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors.

    PubMed

    Rusi; Majid, S R

    2015-11-05

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg(-1) and 68 kWkg(-1) at current density of 20 Ag(-1) in mixed KOH/K3Fe(CN)6 electrolyte.

  10. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Rusi; Majid, S. R.

    2015-11-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg-1 and 68 kWkg-1 at current density of 20 Ag-1 in mixed KOH/K3Fe(CN)6 electrolyte.

  11. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    PubMed Central

    Rusi; Majid, S. R.

    2015-01-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg−1 and 68 kWkg−1 at current density of 20 Ag−1 in mixed KOH/K3Fe(CN)6 electrolyte. PMID:26537363

  12. Purification process for vertically aligned carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  13. Let's Break it Down: A Study of Organic Decomposition Rates in Clay Soil

    NASA Astrophysics Data System (ADS)

    Weiss, E.

    2016-12-01

    In this experiment I will be testing if temperature affects the organic decomposition rates in clay soil. I will need to be able to clean and weigh each filter paper without disrupting my data damaging or brushing off additional paper material. From there I need to be able to analyze and interpret my data to factor anything else that may affect the decomposition rates in the soil. Soil decomposers include bacteria and fungi. They obtain energy from plant and animal detritus through aerobic decomposition, which is similar to how humans break down sugar. The formula is: C6H12O6 + O2 → CO2 + H2O + energy. Besides oxygen and sugar the organisms need nutrients such as water and sustainable temperatures. Decomposition is important to us because it helps regulate soil structure, moisture, temperature, and provides nutrients to soil organisms. This matters on a global scale since decomposers release a large amount of carbon when breaking down matter, which contributes to greenhouse gasses such as carbon dioxide and methane. These greenhouse gasses affect the earth's climate. People who care about decomposition are farmers and those in agriculture, as well as environmental scientists. Even national parks might care because decomposition may affect park safety, how the park looks, and the amount of plants and wildlife. Things that can affect decomposition are the decomposers in the soil, temperature, and water or moisture. My secondary research also showed that PH and chemical composition of the soil affect the rate of decomposition.Cold or freezing temperatures can help preserve organic material in soil because it freezes the soil and moisture, making it too dense for the organic decomposers to break down the organic matter. Soil also can be preserved by drying out and being stored at 4º Celsius (or 39º Fahrenheit) for 28 days. However, soil can degrade slowly in these conditions because it is not frozen and can be oxidized.

  14. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    PubMed

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.

  15. Alpha or beta human chorionic gonadotropin knockdown decrease BeWo cell fusion by down-regulating PKA and CREB activation

    PubMed Central

    Saryu Malhotra, Sudha; Suman, Pankaj; Kumar Gupta, Satish

    2015-01-01

    The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, α- and β-hCG silenced ‘BeWo’ cell lines were generated. Treatment of both α- and β-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the α- and β-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, β-catenin activation was unaffected by either α- or β-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on β-catenin activation suggesting the absence of non-canonical β-catenin stabilization via PKA. Interestingly, canonical activation of β-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process. PMID:26053549

  16. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    EPA Science Inventory

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  17. MULTIYEAR REAL-TIME MONITORING OF PARTICLES, PAH, AND BLACK CARBON IN AN OCCUPIED HOUSE

    EPA Science Inventory

    Concentrations of ultrafine, fine, and coarse particles, particle-bound polycyclic aromatic hydrocarbons (PAH), and black carbon have been measured continuously (every 1 to 5 minutes) in an occupied townhouse for 2-3 years. Also, since the summer of 1999, temperature (outdoors...

  18. Differential Regulation of Sorbitol and Sucrose Loading into the Phloem of Plantago major in Response to Salt Stress1[OA

    PubMed Central

    Pommerrenig, Benjamin; Papini-Terzi, Flavia Stal; Sauer, Norbert

    2007-01-01

    Several plant families generate polyols, the reduced form of monosaccharides, as one of their primary photosynthetic products. Together with sucrose (Suc) or raffinose, these polyols are used for long-distance allocation of photosynthetically fixed carbon in the phloem. Many species from these families accumulate these polyols under salt or drought stress, and the underlying regulation of polyol biosynthetic or oxidizing enzymes has been studied in detail. Here, we present results on the differential regulation of genes that encode transport proteins involved in phloem loading with sorbitol and Suc under salt stress. In the Suc- and sorbitol-translocating species Plantago major, the mRNA levels of the vascular sorbitol transporters PmPLT1 and PmPLT2 are rapidly up-regulated in response to salt treatment. In contrast, mRNA levels for the phloem Suc transporter PmSUC2 stay constant during the initial phase of salt treatment and are down-regulated after 24 h of salt stress. This adaptation in phloem loading is paralleled by a down-regulation of mRNA levels for a predicted sorbitol dehydrogenase (PmSDH1) in the entire leaf and of mRNA levels for a predicted Suc phosphate synthase (PmSPS1) in the vasculature. Analyses of Suc and sorbitol concentrations in leaves, in enriched vascular tissue, and in phloem exudates of detached leaves revealed an accumulation of sorbitol and, to a lesser extent, of Suc within the leaves of salt-stressed plants, a reduced rate of phloem sap exudation after NaCl treatment, and an increased sorbitol-to-Suc ratio within the phloem sap. Thus, the up-regulation of PmPLT1 and PmPLT2 expression upon salt stress results in a preferred loading of sorbitol into the phloem of P. major. PMID:17434995

  19. Effects of 1 MeV electrons on the deformation mechanisms of polyethylene/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Zhang, Xiaodong; Liu, Chaoming; Li, Xingji; Li, Hongxia; Ma, Guoliang; Tian, Feng

    2017-10-01

    Polymer nano-composites, especially in polyethylene (PE)/carbon nanotube (CNT) composites can be employed as radiation shielding and structural materials in space. When the PE/CNT composites are used in space, it is easy to suffer from radiation damage caused by charged particles. However, few studies about deformation mechanisms of the composites exposed to electron become available so far. In this paper, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) with MWCNT loadings concentrations of 0.1 wt%. The structural evolution during uniaxial tensile deformation of the LDPE/0.1% MWCNT composites before and after 1 MeV electrons were investigated by means of a small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). Experimental results show that 1 MeV electrons obviously increase the ultimate tensile strength of the LDPE/MWCNT composites. From SAXS and WAXD analyses, it is shown that 1 MeV electrons inhibit the disintegration and the rotation of the lamellae, and slow down the formation of the new crystals. It is concluded that the intense interaction between MWCNTs and LDPE matrix and the crosslinking strengthening generated by 1 MeV electrons is the dominant reason for the changes of the deformation behaviors of LDPE.

  20. Physiological and Transcriptional Responses of Saccharomyces cerevisiae to Zinc Limitation in Chemostat Cultures †

    PubMed Central

    De Nicola, Raffaele; Hazelwood, Lucie A.; De Hulster, Erik A. F.; Walsh, Michael C.; Knijnenburg, Theo A.; Reinders, Marcel J. T.; Walker, Graeme M.; Pronk, Jack T.; Daran, Jean-Marc; Daran-Lapujade, Pascale

    2007-01-01

    Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified. PMID:17933919

  1. Ultrafine Condensation Particle Counter Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, C.

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  2. Soot Nanostructure: Using Fringe Analysis Software on High Resolution Transmission Electron Microscopy of Carbon Soot

    NASA Technical Reports Server (NTRS)

    King, James D.

    2004-01-01

    Using high resolution transmission electron images of carbon nanotubes and carbon particles, we are able to use image analysis program to determine several carbon fringe properties, including length, separation, curvature and orientation. Results are shown in the form of histograms for each of those quantities. The combination of those measurements can give a better indication of the graphic structure within nanotubes and particles of carbon and can distinguish carbons based upon fringe properties. Carbon with longer, straighter and closer spaced fringes are considered graphite, while amorphous carbon contain shorter, less structured fringes.

  3. The influence of emotion down-regulation on the expectation of sexual reward.

    PubMed

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Cousijn, Janna; Both, Stephanie

    2015-05-01

    Emotion regulation research has shown successful altering of unwanted aversive emotional reactions. Cognitive strategies can also regulate expectations of reward arising from conditioned stimuli. However, less is known about the efficacy of such strategies with expectations elicited by conditioned appetitive sexual stimuli, and possible sex differences therein. In the present study it was examined whether a cognitive strategy (attentional deployment) could successfully down-regulate sexual arousal elicited by sexual reward-conditioned cues in men and women. A differential conditioning paradigm was applied, with genital vibrostimulation as unconditioned stimulus (US) and sexually relevant pictures as conditional stimuli (CSs). Evidence was found for emotion down-regulation to effect extinction of conditioned sexual responding in men. In women, the emotion down-regulatory strategy resulted in attenuated conditioned approach tendencies towards the CSs. The findings support that top-down modulation may indeed influence conditioned sexual responses. This knowledge may have implications for treating disturbances in sexual appetitive responses. Copyright © 2015. Published by Elsevier Ltd.

  4. Toward a complete inventory of stratospheric dust particles with implications and their classification

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.; Mckay, D. S.

    1984-01-01

    As the Earth travels about the Sun it continuously sweeps up material laying in its path. The material includes dust-sized fragments of the meteors, comets and asteroids that have passed by as well as much older particles from out between the stars. These grains first become caught in the mesosphere and then slowly pass down through the stratosphere and the troposphere, finally raining down upon the Earth's surface. In the stratosphere the cosmic dust particles encounter increasing amounts of contaminants from the Earth. At the highest reaches of Earth's atmosphere these contaminants consists mainly of dust from the most explosive volcanoes, rocket exhaust, and other manmade space debris. In the troposphere windborne particles and pollen become an increasingly larger fraction of the atmospheric dust load. An increased knowledge of the nature of cosmic particles is suggested.

  5. Study and Fabrication of Super Low-Cost Solar Cell (SLC-SC) Based on Counter Electrode from Animal’s Bone

    NASA Astrophysics Data System (ADS)

    Fadlilah, D. R.; Fajar, M. N.; Aini, A. N.; Haqqiqi, R. I.; Wirawan, P. R.; Endarko

    2018-04-01

    The synthesized carbon from bones of chicken, cow, and fish with the calcination temperature at 450 and 600°C have been successfully fabricated for counter electrode in the Super Low-Cost Solar Cell (SLC-LC) based the structure of Dye-Sensitized Solar Cells (DSSC). The main proposed study was to fabricate SLC-SC and investigate the influence of the synthesized carbon from animal’s bone for counter electrode towards to photovoltaic performance of SLC-SC. X-Ray Diffraction and UV-Vis was used to characterize the phase and the optical properties of TiO2 as photoanode in SLC-SC. Meanwhile, the morphology and particle size distribution of the synthesized carbon in counter electrodes were investigated by Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The results showed that the TiO2 has anatase phase with the absorption wavelength of 300 to 550 nm. The calcination temperature for synthesizing of carbon could affect morphology and particle size distribution. The increasing temperature gave the effect more dense in morphology and increased the particle size of carbon in the counter electrode. Changes in morphology and particle size of carbon give effect to the performance of the SLC-SC where the increased morphology’s compact and particle size make decreased in the performance of the SLC-SC.

  6. Chylomicronemia syndrome

    MedlinePlus

    ... a disorder in which the body does not break down fats (lipids) correctly. This causes fat particles ... normally found in fat and muscle. It helps break down certain lipids. When LpL is missing or ...

  7. Stress Conditions Promote Yeast Gap1 Permease Ubiquitylation and Down-regulation via the Arrestin-like Bul and Aly Proteins*

    PubMed Central

    Crapeau, Myriam; Merhi, Ahmad; André, Bruno

    2014-01-01

    Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation. PMID:24942738

  8. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  9. PULMONARY TOXICOLOGY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL

    EPA Science Inventory

    PULMONARY TOXICITY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL.

    M Daniels, A Ranade* & MJ Selgrade & MI Gilmour.
    Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, RTP, NC. * Particle Technology, College Par...

  10. EFFECTS OF FORMALDEHYDE AND PARTICLE-BOUND FORMALDEHYDE ON LUNG MACROPHAGE FUNCTIONS

    EPA Science Inventory

    Dr. George Jakab and associates exposed mice to varying levels (ranging from 0.5 to 15 parts per million [ppm]) of formaldehyde alone or to formaldehyde (5 and 2.5 ppm) mixed with carbon black particles. Carbon black particles were chosen because of their similarity to comb...

  11. Carbon: Nitrogen Interaction Regulates Expression of Genes Involved in N-Uptake and Assimilation in Brassica juncea L.

    PubMed Central

    Goel, Parul; Bhuria, Monika; Kaushal, Mamta

    2016-01-01

    In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C) and Nitrogen (N) are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source) on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N), C source alone (+Suc-N), with N and C source (+Suc+N) or without N and C source (-Suc-N). Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8) in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2) in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen. PMID:27637072

  12. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Noncyclic Nature of the Tricarboxylic Acid “Cycle” in Illuminated Leaves1[W

    PubMed Central

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA “cycle” does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  13. Emergency deployable core catcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewell, M.P.

    An emergency melt down core catcher apparatus for a nuclear reactor having a retrofitable eutectic solute holding vessel connected to a core containment vessel with particle transferring fluid and particles or granules of solid eutectic solute materials contained therein and transferable by automatically operated valve means to transport and position the solid eutectic solute material in a position below the core to catch and react with any partial or complete melt down of the fuel core.

  14. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies

    NASA Astrophysics Data System (ADS)

    Liu, Mingyu; Hong, Chao; Li, Guowen; Ma, Ping; Xie, Yan

    2016-09-01

    Myricetin-nicotinamide (MYR-NIC) nanococrystal preparation methods were developed and optimized using both top down and bottom up approaches. The grinding (top down) method successfully achieved nanococrystals, but there were some micrometer range particles and aggregation. The key consideration of the grinding technology was to control the milling time to determine a balance between the particle size and distribution. In contrast, a modified bottom up approach based on a solution method in conjunction with sonochemistry resulted in a uniform MYR-NIC nanococrystal that was confirmed by powder x-ray diffraction, scanning electron microscopy, dynamic light scattering, and differential scanning calorimeter, and the particle dissolution rate and amount were significantly greater than that of MYR-NIC cocrystal. Notably, this was a simple method without the addition of any non-solvent. We anticipate our findings will provide some guidance for future nanococrystal preparation as well as its application in both chemical and pharmaceutical area.

  15. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters.

    PubMed

    Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing

    2015-11-01

    This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter. As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.

  16. Webinar Presentation: Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China

    EPA Pesticide Factsheets

    This presentation, Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China, was given at the STAR Black Carbon 2016 Webinar Series: Accounting for Impact, Emissions, and Uncertainty held on Nov. 7, 2016.

  17. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    PubMed

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  18. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 wasmore » down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of Drp1 in islets evokes loss of glucose-stimulated insulin secretion.« less

  19. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis.

    PubMed

    Wei, Tao; Deng, Kejun; Wang, Hongbin; Zhang, Lipeng; Wang, Chunguo; Song, Wenqin; Zhang, Yong; Chen, Chengbin

    2018-03-12

    In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A -expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the 'signal transduction mechanisms' category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with "ribosome", "plant hormone signal transduction", photosynthesis", "plant-pathogen interaction", "glycolysis/gluconeogenesis" and "carbon fixation" are hypothesized to perform major functions in drought resistance in AtDREB1A -expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.

  20. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} down-regulates CXCR4 on carcinoma cells through PPAR{gamma}- and NF{kappa}B-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Cynthia Lee; Lowthers, Erica Lauren; Blay, Jonathan

    2007-10-01

    The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE{sub 2}, PGA{sub 2}, PGD{sub 2}, PGJ{sub 2} and 15dPGJ{sub 2} each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD{sub 2} and its metabolites PGJ{sub 2} and 15dPGJ{sub 2}. Down-regulation was most rapid with the end-product 15dPGJ{sub 2} and was accompanied bymore » a marked reduction in CXCR4 mRNA. 15dPGJ{sub 2} is known to be a ligand for the nuclear receptor PPAR{gamma}. Down-regulation of CXCR4 was also observed with the PPAR{gamma} agonist rosiglitazone, while 15dPGJ{sub 2}-induced CXCR4 down-regulation was substantially diminished by the PPAR{gamma} antagonists GW9662 and T0070907. These data support the involvement of PPAR{gamma}. However, the 15dPGJ{sub 2} analogue CAY10410, which can act on PPAR{gamma} but which lacks the intrinsic cyclopentenone structure found in 15dPGJ{sub 2}, down-regulated CXCR4 substantially less potently than 15dPGJ{sub 2}. The cyclopentenone grouping is known to inhibit the activity of NF{kappa}B. Consistent with an additional role for NF{kappa}B, we found that the cyclopentenone prostaglandin PGA{sub 2} and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NF{kappa}B p50 and that 15dPGJ{sub 2} interfered with this p50 nuclear localization. These data suggest that 15dPGJ{sub 2} can down-regulate CXCR4 on cancer cells through both PPAR{gamma} and NF{kappa}B. 15dPGJ{sub 2}, present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.« less

  1. An N-terminal fragment of substance P, substance P(1-7), down-regulates neurokinin-1 binding in the mouse spinal cord.

    PubMed

    Yukhananov RYu; Larson, A A

    1994-08-29

    Injected intrathecally, substance P (SP) down-regulates neurokinin-1 (NK-1) binding in the spinal cord and desensitizes rats to the behavioral effect of SP. N-terminal fragments of SP, such as SP(1-7), induce antinociception and play a role in desensitization to SP in mice. The goal of this study was to assess the abilities of N- and C-terminal fragments of SP to down-regulate NK-1 binding. Binding of [3H]SP to mouse spinal cord membranes was inhibited by SP, CP-96,345, and to a lesser extent by SP(5-11), but not SP(1-7), consistent with these binding sites being NK-1 receptors. Injection of SP(5-11) intrathecally did not affect the affinity (Kd) or concentration (Bmax) of [3H]SP binding. However, injection of 1 nmol of SP(1-7) decreased the Bmax of [3H]SP binding in the spinal cord at 6 h after its injection just as this dose of SP decreased the Bmax at 24 h. These data suggest that the N-terminus of SP is responsible for down-regulation of NK-1 binding. As SP(5-11) did not down-regulate NK-1 binding, activation of NK-1 sites does not appear necessary or sufficient for down-regulation of SP binding. In contrast, SP(1-7), in spite of its inability to interact with NK-1 sites, did down-regulate SP binding, suggesting an indirect mechanism dissociated from NK-1 receptors.

  2. [Worker exposure to ultrafine particles during carbon black treatment].

    PubMed

    Mikołajczyk, Urszula; Bujak-Pietrek, Stella; Szadkowska-Stańczyk, Irena

    2015-01-01

    The aim of the project was to assess the exposure of workers to ultrafine particles released during handling and packing of carbon black. The assessment included the results of the measurements performed in a carbon black handling plant before, during, and after work shift. The number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was assayed by a condensation particle counter (CPC). The mass concentration of particles was determined by a DustTrak II DRX aerosol concentration monitor. The surface area concentration of the particles potentially deposited in the alveolar (A) and tracheo-bronchial (TB) regions was estimated by an AeroTrak 9000 nanoparticle monitor. An average mass concentration of particles during the process was 6-fold higher than that before its start, while a 3-fold increase in the average number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was observed during the process. At the same time a 4-fold increase was found in the surface area concentration of the particles potentially deposited in the A and TB regions. During the process of carbon black handling and packing a significantly higher values of each of the analysed parameters, characterizing the exposure to ultrafine particles, were noted. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  3. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared tomore » matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.« less

  4. Down-regulation of MutS homolog 3 by hypoxia in human colorectal cancer

    PubMed Central

    Li, Jie; Koike, Junichi; Kugoh, Hiroyuki; Arita, Michitsune; Ohhira, Takahito; Kikuchi, Yoshinori; Funahashi, Kimihiko; Takamatsu, Ken; Boland, C. Richard; Koi, Minoru; Hemmi, Hiromichi

    2013-01-01

    Down-regulation of hMSH3 is associated with elevated microsatellite alterations at selected tetranucleotide repeats and low levels of microsatellite instability in colorectal cancer (CRC). However, the mechanism that down-regulates hMSH3 in CRC is not known. In this study, a significant association between over-expression of glucose transporter 1, a marker for hypoxia, and down-regulation of hMSH3 in CRC tissues was observed. Therefore, we examined the effect of hypoxia on the expression of hMSH3 in human cell lines. When cells with wild type p53 (wt-p53) were exposed to hypoxia, rapid down-regulation of both hMSH2 and hMSH3 occurred. In contrast, when null or mutated p53 (null/mut-p53) cells were exposed to hypoxia, only hMSH3 was down-regulated, and at slower rate than wt-p53 cells. Using a reporter assay, we found that disruption of the two putative hypoxia response elements (HREs) located within the promoter region of the hMSH3 abrogated the suppressive effect of hypoxia on reporter activity regardless of p53 status. In an EMSA, two different forms of HIF-1α complexes that specifically bind to these HREs were detected. A larger complex containing HIF-1α predominantly bound to the HREs in hypoxic null/mut-p53 cells whereas a smaller complex predominated in wt-p53 cells. Finally, HIF-1α knockdown by siRNA significantly inhibited down-regulation of hMSH3 by hypoxia in both wt-p53 and mut-p53 cells. Taken together, our results suggest that the binding of HIF-1α complexes to HRE sites is necessary for down-regulation of hMSH3 in both wt-p53 and mut-p53 cells. PMID:22343000

  5. Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry

    1991-01-01

    The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.

  6. Characterization of biogenic elements in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.

    1986-01-01

    Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.

  7. Geochemical and petrographical characterization of fine-grained carbonate particles along proximal to distal transects

    NASA Astrophysics Data System (ADS)

    Turpin, Mélanie; Emmanuel, Laurent; Immenhauser, Adrian; Renard, Maurice

    2012-12-01

    The origin of carbonate ooze particles is often poorly understood. This is due to their polygenic origin and potential post-depositional alteration. Here, the outcome of a physical separation study with regard to different component classes of micritic carbonates is shown. The focus is on grain size and morphology, mineralogy and isotope signatures. Two contrasting proximal-to-distal transects were investigated: (1) the Miocene leeward margin of Great Bahama Bank (ODP Leg 166) and (2) the transition between the Maiella platform and the Umbria-Marche basin in central Italy near the Cenomanian-Turonian boundary. In both case settings, carbonate particles of biogenic origin include at least three groups of organisms: (i) planktonic foraminifera, (ii) calcareous nannofossils and (iii) fragments of unspecified neritic skeletal material. Two further particle types lack diagnostic structures, and based on particle size and mineralogy, are here referred to as (iv) macroparticles (5-20 μm, mainly xenomorphic) and (v) microparticles (< 12 μm, mainly automorphic to sub-automorphic). Macro- and microparticles represent 50 to 80% of the carbonate phase in slope and toe-of-slope domains and share characteristic carbon and oxygen isotope signatures. Macro- and microparticles are considered shallow-water precipitation products subsequently exported into the slope and toe-of-slope domains. Macroparticles are probably related to the fragmentation of neritic skeletal components while microparticles point to inorganic and/or bioinduced precipitation in the water column. In some cases, macro- and microparticles may have an early diagenetic origin. The identification of the origin of fine-grained particles allows for a quantitative assessment of exported, in situ and diagenetic carbonate materials in periplatform environments. The data shown here represent an important step towards a more complete characterization of carbonate ooze and micrite.

  8. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle arises mainly from fossil fuel sources, whereas OC in larger particles from 200 nm to 1 μm has higher contribution from biomass burning/other sources. Moreover, there is a clear distinction in source contribution between the more volatile OC fraction and the more refractory fraction. The more refractory fraction is enriched in 13C by 1 to 2 ‰ for both small and large particles. These results show that the fossil fuel combustion is associated to a larger degree with more volatile carbon, whereas biomass burning is the main source of the more refractory particles. According to our source apportionment, the more volatile carbon fraction in the smallest particles is almost completely from fossil fuels, whereas the more refractory carbon fraction in the large size range is almost complete from biomass burning. The more refractory small particles and the less refractory large particles are roughly an even mix of these two sources. The detailed chemical speciation of the carbonaceous aerosol will be presented as well. Acknowledgements This study was funded by the Dutch Science Foundation (NWO grants Nr. 820.01.001, and 834.08.002).

  9. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  10. Toroidal Alfvénic Eigenmodes Driven by Energetic Particles with Maxwell and Slowing-down Distributions

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Zou, Zhihui; Kim, Charlson C.; Hu, Zhaoqing; Wang, Zhengxiong

    2016-10-01

    The energetic-particle (EP) driven toroidal Alfvén eigenmodes (TAEs) in a circular-shaped large aspect ratio tokamak are studied using the hybrid kinetic-MHD model in the NIMROD code, where the EPs are advanced using the δf particle-in-cell (PIC) method and their kinetic effects are coupled to the bulk plasma through moment closures. Two initial distributions of EPs, Maxwell and slowing-down, are considered. The influence of EP parameters, including density, temperature and density gradient, on the frequency and the growth rate of TAEs are obtained and benchmarked with theory and gyrokinetic simulations for the Maxwell distribution with good agreement. When the density and temperature of EPs are above certain thresholds, the transition from TAE to energetic particle modes (EPM) occurs and the mode structure also changes. Comparisons between Maxwell and slowing-down distributions in terms of EP-driven TAEs and EPMs will also be presented and discussed. Supported by the National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002 and 2015GB101004, and the Natural Science Foundation of China Grant No. 11205194.

  11. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  12. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Haiyan; McGee, John K.; Saxena, Rajiv K.

    2009-09-15

    Engineered carbon nanotubes are being developed for a wide range of industrial and medical applications. Because of their unique properties, nanotubes can impose potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their surface. The present study was designed to evaluate whether acid functionalization (AF) enhanced the cardiopulmonary toxicity of single-walled carbon nanotubes (SWCNT) as well as control carbon black particles. Mice were exposed by oropharyngeal aspiration to 10 or 40 {mu}g of saline-suspended single-walled carbon nanotubes (SWCNTs), acid-functionalized SWCNTs (AF-SWCNTs), ultrafine carbon black (UFCB), AF-UFCB, or 2 {mu}g LPS. 24 hours later,more » pulmonary inflammatory responses and cardiac effects were assessed by bronchoalveolar lavage and isolated cardiac perfusion respectively, and compared to saline or LPS-instilled animals. Additional mice were assessed for histological changes in lung and heart. Instillation of 40 {mu}g of AF-SWCNTs, UFCB and AF-UFCB increased percentage of pulmonary neutrophils. No significant effects were observed at the lower particle concentration. Sporadic clumps of particles from each treatment group were observed in the small airways and interstitial areas of the lungs according to particle dose. Patches of cellular infiltration and edema in both the small airways and in the interstitium were also observed in the high dose group. Isolated perfused hearts from mice exposed to 40 {mu}g of AF-SWCNTs had significantly lower cardiac functional recovery, greater infarct size, and higher coronary flow rate than other particle-exposed animals and controls, and also exhibited signs of focal cardiac myofiber degeneration. No particles were detected in heart tissue under light microscopy. This study indicates that while acid functionalization increases the pulmonary toxicity of both UFCB and SWCNTs, this treatment caused cardiac effects only with the AF-carbon nanotubes. Further experiments are needed to understand the physico-chemical processes involved in this phenomenon.« less

  13. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  14. Bottom-up and top-down emotion generation: implications for emotion regulation

    PubMed Central

    Misra, Supriya; Prasad, Aditya K.; Pereira, Sean C.; Gross, James J.

    2012-01-01

    Emotion regulation plays a crucial role in adaptive functioning and mounting evidence suggests that some emotion regulation strategies are often more effective than others. However, little attention has been paid to the different ways emotions can be generated: from the ‘bottom-up’ (in response to inherently emotional perceptual properties of the stimulus) or ‘top-down’ (in response to cognitive evaluations). Based on a process priming principle, we hypothesized that mode of emotion generation would interact with subsequent emotion regulation. Specifically, we predicted that top-down emotions would be more successfully regulated by a top-down regulation strategy than bottom-up emotions. To test this hypothesis, we induced bottom-up and top-down emotions, and asked participants to decrease the negative impact of these emotions using cognitive reappraisal. We observed the predicted interaction between generation and regulation in two measures of emotional responding. As measured by self-reported affect, cognitive reappraisal was more successful on top-down generated emotions than bottom-up generated emotions. Neurally, reappraisal of bottom-up generated emotions resulted in a paradoxical increase of amygdala activity. This interaction between mode of emotion generation and subsequent regulation should be taken into account when comparing of the efficacy of different types of emotion regulation, as well as when reappraisal is used to treat different types of clinical disorders. PMID:21296865

  15. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Twilight, a Novel Circadian-Regulated Gene, Integrates Phototropism with Nutrient and Redox Homeostasis during Fungal Development

    PubMed Central

    Naqvi, Naweed I.

    2015-01-01

    Phototropic regulation of circadian clock is important for environmental adaptation, organismal growth and differentiation. Light plays a critical role in fungal development and virulence. However, it is unclear what governs the intracellular metabolic response to such dark-light rhythms in fungi. Here, we describe a novel circadian-regulated Twilight (TWL) function essential for phototropic induction of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. The TWL transcript oscillates during circadian cycles and peaks at subjective twilight. GFP-Twl remains acetylated and cytosolic in the dark, whereas light-induced phosphorylation (by the carbon sensor Snf1 kinase) drives it into the nucleus. The mRNA level of the transcription/repair factor TFB5, was significantly down regulated in the twl∆ mutant. Overexpression of TFB5 significantly suppressed the conidiation defects in the twl∆ mutant. Furthermore, Tfb5-GFP translocates to the nucleus during the phototropic response and under redox stress, while it failed to do so in the twl∆ mutant. Thus, we provide mechanistic insight into Twl-based regulation of nutrient and redox homeostasis in response to light during pathogen adaptation to the host milieu in the rice blast pathosystem. PMID:26102503

  17. Twilight, a Novel Circadian-Regulated Gene, Integrates Phototropism with Nutrient and Redox Homeostasis during Fungal Development.

    PubMed

    Deng, Yi Zhen; Qu, Ziwei; Naqvi, Naweed I

    2015-06-01

    Phototropic regulation of circadian clock is important for environmental adaptation, organismal growth and differentiation. Light plays a critical role in fungal development and virulence. However, it is unclear what governs the intracellular metabolic response to such dark-light rhythms in fungi. Here, we describe a novel circadian-regulated Twilight (TWL) function essential for phototropic induction of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. The TWL transcript oscillates during circadian cycles and peaks at subjective twilight. GFP-Twl remains acetylated and cytosolic in the dark, whereas light-induced phosphorylation (by the carbon sensor Snf1 kinase) drives it into the nucleus. The mRNA level of the transcription/repair factor TFB5, was significantly down regulated in the twl∆ mutant. Overexpression of TFB5 significantly suppressed the conidiation defects in the twl∆ mutant. Furthermore, Tfb5-GFP translocates to the nucleus during the phototropic response and under redox stress, while it failed to do so in the twl∆ mutant. Thus, we provide mechanistic insight into Twl-based regulation of nutrient and redox homeostasis in response to light during pathogen adaptation to the host milieu in the rice blast pathosystem.

  18. Hill slope and erosional controls on soil organic geochemistry in intensely managed landscapes

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Hou, T.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Abban, B. K.; Boys, J.; Wilson, C. G.

    2015-12-01

    Like many regions of North America, the last 100 years of agriculture in the glaciated upper Midwest has lead to a major redistribution of soil carbon and nitrogen on the landscape. Through the natural coevolution of geomorphic, pedogenic, and ecological processes in the critical zone or by punctual changes in these processes as a result of intensive management, landscapes established characteristic hierarchies of physicochemical controls on organic matter stability. In the Intensively-Managed Landscapes - Critical Zone Observatory (IML-CZO) in Iowa and Illinois these processes are being studied with a combination of surface soil geochemical surveys and simulated rainfall/erosion experiments to document how the organic geochemistry of hill slopes, under land management ranging from row crop to restored prairie, are currently evolving, and how they evolved during early management and pre settlement. Using a combination of soil analyses including elemental, stable isotope, textural, and soil biopolymers (lignin and cutin/suberin fatty acids (SFA)) we investigated the spatial patterns of static surface soil properties and time course rainfall-erosional experiments along the same slopes to gain insight into soil carbon and biopolymer enrichment patterns in east-central Iowa within the Clear Creek Watershed. Both lignin and substituted fatty acid concentration and their molecular ratios highlighted differences in C3/C4 (soy/corn) management activities in surface soils while over 40 years of prairie restoration dramatically altered surface soil profiles. For example, a general pattern in static baseline samples was an enrichment of 15N in soils down slope and an opposite pattern of accumulation/loss of lignin and SFA in topographic highs and lows. Transport of soil particles, associated biopolymers, and elemental and isotope signatures, exhibited distinct patterns based upon both position of the hill slope and directionality of flow with respect to rill/gully direction created by tillage activity. This indicates that particle/chemistry transport and enrichment of organic chemical signatures down slope and into associated flood plains and streams in modern intensively managed systems should be distinct from pre-settlement patterns and help interpret pre- and post settlement alluvium sediment.

  19. Mechanisms of Cell Killing Response from Low Linear Energy Transfer (LET) Radiation Originating from 177Lu Radioimmunotherapy Targeting Disseminated Intraperitoneal Tumor Xenografts

    PubMed Central

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2016-01-01

    Radiolabeled antibodies (mAbs) provide efficient tools for cancer therapy. The combination of low energy β−-emissions (500 keVmax; 130 keVave) along with a γ-emission for imaging makes 177Lu (T1/2 = 6.7 day) a suitable radionuclide for radioimmunotherapy (RIT) of tumor burdens possibly too large to treat with α-particle radiation. RIT with 177Lu-trastuzumab has proven to be effective for treatment of disseminated HER2 positive peritoneal disease in a pre-clinical model. To elucidate mechanisms originating from this RIT therapy at the molecular level, tumor bearing mice (LS-174T intraperitoneal xenografts) were treated with 177Lu-trastuzumab comparatively to animals treated with a non-specific control, 177Lu-HuIgG, and then to prior published results obtained using 212Pb-trastuzumab, an α-particle RIT agent. 177Lu-trastuzumab induced cell death via DNA double strand breaks (DSB), caspase-3 apoptosis, and interfered with DNA-PK expression, which is associated with the repair of DNA non-homologous end joining damage. This contrasts to prior results, wherein 212Pb-trastuzumab was found to down-regulate RAD51, which is involved with homologous recombination DNA damage repair. 177Lu-trastuzumab therapy was associated with significant chromosomal disruption and up-regulation of genes in the apoptotic process. These results suggest an inhibition of the repair mechanism specific to the type of radiation damage being inflicted by either high or low linear energy transfer radiation. Understanding the mechanisms of action of β−- and α-particle RIT comparatively through an in vivo tumor environment offers real information suitable to enhance combination therapy regimens involving α- and β−-particle RIT for the management of intraperitoneal disease. PMID:27196891

  20. Particle transport through hydrogels is charge asymmetric.

    PubMed

    Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E

    2015-02-03

    Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. SEASONAL VARIATION OF THE PARTICLE SIZE DISTRIBUTION OF POLYCYCLIC AROMATIC HYDROCARBONS AND OF MAJOR AEROSOL SPECIES IN CLAREMONT, CALIFORNIA. (R827352C020)

    EPA Science Inventory

    As part of the Southern California Particle Center and Supersite (SCPCS) activities, we measured, during all seasons, particle size distributions of 12 priority pollutant polycyclic aromatic hydrocarbons (PAHs), concurrently with elemental carbon (EC), organic carbon (OC), sul...

  2. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  3. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  4. Combustion of Coal Char Particles under Fluidized Bed Oxyfiring Conditions

    NASA Astrophysics Data System (ADS)

    Scala, Fabrizio; Chirone, Riccardo

    In this work combustion of single coal char particles was studied at 850°C in a lab-scale fluidized bed under simulated oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O2 concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO2 in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to the bed one up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO2 gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be more important than under combustion conditions.

  5. Relationships between self-regulation and personality scores of persons with Down syndrome.

    PubMed

    Kojima, M; Ikeda, Y

    2001-12-01

    This study examined the associations of self-regulation (scores on self-assertion and self control) with personality traits for 76 persons with Down syndrome. Analysis shows self-assertion scores were correlated with scores for all personality traits. The correlations were significant with Emotionality and Playfulness for people with Down syndrome but not for those without Down syndrome (n=40). Self-control scores significantly correlated with scores on controlling and attachment for both groups. Emotionality was related to scores on self-control for students without Down syndrome but not for those with Down syndrome.

  6. How to estimate forest carbon for large areas from inventory data

    Treesearch

    James E. Smith; Linda S. Heath; Peter B. Woodbury

    2004-01-01

    Carbon sequestration through forest growth provides a low-cost approach for meeting state and national goals to reduce net accumulations of atmospheric carbon dioxide. Total forest ecosystem carbon stocks include "pools" in live trees, standing dead trees, understory vegetation, down dead wood, forest floor, and soil. Determining the level of carbon stocks in...

  7. Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes

    NASA Astrophysics Data System (ADS)

    Pohjalainen, Elina; Kallioinen, Jani; Kallio, Tanja

    2015-04-01

    Traditionally electrodes for lithium ion batteries are manufactured using carbon additives to increase the conductivity. However, in case of lithium titanate, Li4Ti5O12 (LTO), carbon free electrodes have gathered some interest lately. Therefore two LTO materials synthesized using the same synthesis but different end milling process resulting in materials with different particle size and surface area are compared here using electrodes manufactured with and without carbon additives. Both LTO samples (LTO-SP with small primary particle size and high surface area, and LTO-LP with larger primary particle size and small surface area) produce similar capacities and voltages with or without carbon additives at low C-rates at the room temperature. However, at high C-rates and/or sub-zero temperatures electrodes with carbon additives produce higher capacities and smaller ohmic losses and this behavior is more pronounced for the LTO electrodes with smaller primary particle size and larger surface area. These results show that the feasibility of carbon free LTO electrodes depends on the properties of LTO affecting the morphology of the electrode and consequently, the transport properties. This is most pronounced under conditions where electron and Li+ ion transfer become limiting (high C-rates and low temperature).

  8. Sit Down with Sabin: Margaret Torn: The Carbon Cycle Like You've Never Seen It (LBNL Summer Lecture Series)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Sabin; Torn, Margaret

    2011-07-06

    Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.

  9. A low carbon economy and society.

    PubMed

    Urry, John

    2013-03-13

    This paper examines various aspects of moving from high carbon economies and societies to a cluster of low carbon systems. First, some historical material is considered from the Second World War and the 1970s, periods with some lessons for the contemporary 'powering down' of whole societies. Second, analysis is provided of some green shoots of a powering down of existing systems identifiable in the contemporary developed world. Third, analysis is provided of the array of systems, social practices and innovations that would have to develop in order to effect powering down on a sufficient scale and within an appropriate time period. Most examples are drawn from transport and mobility. Finally, the paper demonstrates just why developing new systems is so hard, especially as this must involve a transformed cluster of systems. The forces that make a new cluster unlikely are exceptionally powerful and make this a very difficult but not impossible outcome.

  10. On the Impact Origin of Phobos and Deimos. I. Thermodynamic and Physical Aspects

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Genda, Hidenori; Charnoz, Sébastien; Rosenblatt, Pascal

    2017-08-01

    Phobos and Deimos are the two small moons of Mars. Recent works have shown that they can accrete within an impact-generated disk. However, the detailed structure and initial thermodynamic properties of the disk are poorly understood. In this paper, we perform high-resolution SPH simulations of the Martian moon-forming giant impact that can also form the Borealis basin. This giant impact heats up the disk material (around ˜2000 K in temperature) with an entropy increase of ˜1500 J K-1 kg-1. Thus, the disk material should be mostly molten, though a tiny fraction of disk material (< 5 % ) would even experience vaporization. Typically, a piece of molten disk material is estimated to be meter sized owing to the fragmentation regulated by their shear velocity and surface tension during the impact process. The disk materials initially have highly eccentric orbits (e ˜ 0.6-0.9), and successive collisions between meter-sized fragments at high impact velocity (˜1-5 km s-1) can grind them down to ˜100 μm sized particles. On the other hand, a tiny amount of vaporized disk material condenses into ˜0.1 μm sized grains. Thus, the building blocks of the Martian moons are expected to be a mixture of these different sized particles from meter-sized down to ˜100 μm sized particles and ˜0.1 μm sized grains. Our simulations also suggest that the building blocks of Phobos and Deimos contain both impactor and Martian materials (at least 35%), most of which come from the Martian mantle (50-150 km in depth; at least 50%). Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.

  11. Deep soil dynamics of floodplain carbon in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Steger, Kristin; Kim, Amy T.; Viers, Joshua H.; Fiener, Peter; Smart, David R.

    2017-04-01

    Active floodplains can putatively store large amounts of organic carbon (SOC) in subsoils originating from catchment erosion processes with subsequent floodplain deposition. Changes in catchment land use patterns and river management to optimize agricultural use of the floodplain or to restore the floodplain back to natural systems may alter SOC stocks in these soils. Our study focussed on the assessment of SOC pools associated with alluvial floodplain soils converting from conventional arable use to restored flooding and floodplain vegetation. We evaluated depth-dependent SOC contents using 21 drillings down to 3m and 10 drillings down to 7m along a transect through a floodplain area of the lower Cosumnes River, a non-constrained tributary to the Sacramento - San Joaquin Delta in California. In general, our data underline the importance of carbon stocks in subsoils >1m, which represent up to 19 and 6% of SOC stocks at the different sampling locations accounting for drillings down to 3 and 7m, respectively. All of our sampling sites revealed a SOC-rich buried A horizon between 70 and 130cm with SOC concentrations between 11 and 17g/kg, representative of the functioning floodplain system pre-disturbance. Radiocarbon dating showed that the 14C age in the buried horizon was younger than in the overlaying soils, indicating a substantial sedimentation phase with sediments of low SOC concentrations and higher carbon age. This sedimentation phase was probably associated with the huge upstream sediment production resulting from the hydraulic gold mining at the Cosumnes River starting around 1860. Apart from larger SOC contents in the buried horizon compared to the recent topsoil, its 13C and 15N isotopic signature also differed suggesting a change in long-term input of plant organic matter as well as different fertilization regimes during the agricultural use of the area from approx. 1890 onwards. In summary, deep alluvial soils in floodplains store large amounts of SOC not yet accounted for in global models. Intensive agricultural use of these floodplains often combined with river regulation and embanking of floodplain areas may lead to a slow but continuous release of the buried SOC to the atmosphere. However, restoration of floodplains may promote the stabilization of alluvial SOC in floodplains and hence contribute to more sustainable soils.

  12. Morphology and band structure regulation of graphitic carbon nitride microspheres by solvothermal temperature to boost photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Shuaijun; Yan, Qingyun; Dong, Pei; Zhao, Chaocheng; Wang, Yongqiang; Liu, Fang; Li, Lin

    2018-06-01

    Graphitic carbon nitride (g-C3N4) microspheres (CNMS) were fabricated via a solvothermal method by using supramolecular complexes of dicyandiamide and cyanuric chloride as precursors. The effect of solvothermal temperature on the morphology, band structure, and activity was systematically investigated. Structural characterization results indicate that the samples prepared at 180 °C (CNMS-180) and 200 °C (CNMS-200) possess spherical morphology, while irregular bulk particles were obtained at 160 °C (CN-160). In addition, the band gap increased as the solvothermal temperature decreased from 200 to 160 °C. In comparison with CN-160 and CNMS-200, the valence band of CNMS-180 was more positive and thus gives higher photo-oxidation capability. Accordingly, CNMS-180 exhibits higher photocatalytic degradation efficiency on Rhodamine B, stronger photocurrent response, and lower charge transfer resistance. Additionally, CNMS-180 exhibits excellent stability after four runs. This work might provide a guidance for the regulation of morphology and band structure of g-C3N4-based materials prepared at low temperatures.

  13. Dust in brown dwarfs and extrasolar planets. V. Cloud formation in carbon- and oxygen-rich environments

    NASA Astrophysics Data System (ADS)

    Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.

    2017-07-01

    Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless, smooth continuum due to a carbonaceous cloud cover, unless the cloud particles become crystalline.

  14. Optimal Down Regulation of mRNA Translation

    NASA Astrophysics Data System (ADS)

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2017-01-01

    Down regulation of mRNA translation is an important problem in various bio-medical domains ranging from developing effective medicines for tumors and for viral diseases to developing attenuated virus strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible mutations, we consider the problem of maximally down regulating protein production by altering the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the down regulation optimization problem. Our results suggest that one must focus on the position along the mRNA molecule where the transition rate has the strongest effect on the protein production rate. However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss some of the biological implications of these results.

  15. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  16. Ufmylation and FATylation Pathways are Down Regulated in Human Alcoholic and Non Alcoholic Steatohepatitis, and Mice Fed DDC, where Mallory-Denk Bodies (MDBs) Form

    PubMed Central

    Liu, H; Li, J; Tillman, B; French, BA; French, SW

    2014-01-01

    We previously reported the mechanisms involved in the formation of Mallory-Denk bodies (MDBs) in mice fed DDC. To further provide clinical evidence as to how ubiquitin-like protein (Ubls) modification, gene transcript expression in Ufmylation and FATylation were investigated in human archived formalin-fixed, paraffin-embedded (FFPE) liver biopsies and frozen liver sections from DDC re-fed mice were used. Real-time PCR analysis showed that all Ufmylation molecules (Ufm1, Uba5, Ufc1, Ufl1 and UfSPs) were significantly down regulated, both in DDC re-fed mice livers and patients’ livers where MDBs had formed, indicating that gene transcript changes were limited to MDB-forming livers where the protein quality control system was down regulated. FAT10 and subunits of the immunoproteasome (LMP2 and LMP7) were both up regulated as previously shown. An approximate 176- and 5-fold up regulation (respectively) of FAT10 were observed in the DDC re-fed mice liver and in the livers of human alcoholic hepatitis with MDBs present, implying that there was an important role played by this gene. The FAT10-specific E1 and E2 enzymes Uba6 and USE1, however, were found to be down regulated both in patients’ livers and in the liver of DDC re-fed mice. Interestedly, the down regulation of mRNA levels was proportionate to MDB abundance in the liver tissues. Our results show the first systematic demonstration of transcript regulation of Ufmylation and FATylation in the liver of patients who form MDBs, where protein quality control is down regulated. This was also shown in livers of DDC re-fed mice where MDBs had formed. PMID:24893112

  17. Coatings of black carbon in Tijuana, Mexico, during the CalMex Campaign

    NASA Astrophysics Data System (ADS)

    Takahama, S.; Russell, L. M.; Duran, R.; Subramanian, R.; Kok, G.

    2010-12-01

    Black carbon number and mass concentrations were measured by a single-particle soot photometer (SP2; by Droplet Measurement Technologies) in Tijuana, Mexico between May 15, 2010, and June 30, 2010, for the CalMex campaign. The measurement site, Parque Morelos, is a recreational area located in the Southeast region of Tijuana. The SP2 was equipped with 8-channels of signal detection that spans a wider range of sensitivity for incandescing and scattering measurements than traditional configurations. The campaign-average number concentration of incandescing particles was 280 #/cc, peaking during traffic activity in the mornings. Incandescing particles made up 50% of all particles (incandescing and purely scattering) detected by the SP2. The mode of the number size distribution estimated for black carbon, according to estimated mass-equivalent diameters, was approximately 100 nm or smaller. Temporal variations in estimated coating thicknesses for these black carbon particles are discussed together with co-located measurements of organic aerosol and inorganic salts.

  18. Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors

    NASA Astrophysics Data System (ADS)

    Pai, Rajesh V.; Mollick, P. K.; Kumar, Ashok; Banerjee, J.; Radhakrishna, J.; Chakravartty, J. K.

    2016-05-01

    UO2 microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO2 based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO2 microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800-1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO2 microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method.

  19. Reappraising the ultimatum: an fMRI study of emotion regulation and decision making.

    PubMed

    Grecucci, Alessandro; Giorgetta, Cinzia; Van't Wout, Mascha; Bonini, Nicolao; Sanfey, Alan G

    2013-02-01

    Emotion regulation strategies provide a means by which to modulate our social behavior. In this study, we investigated the effect of using reappraisal to both up- and downregulate social decision making. After being instructed on how to use reappraisal, participants played the Ultimatum Game while undergoing functional magnetic resonance imaging and applied the strategies of upregulation (reappraising the proposer's intentions as more negative), down-regulation (reappraising the proposer's intentions as less negative), as well as a baseline "look" condition. As hypothesized, when reappraising, decision acceptance rates were altered, with a greater number of unfair offers accepted while down-regulating and a greater number of unfair offers rejected while upregulating, both relative to the baseline condition. At the neural level, during reappraisal, significant activations were observed in the inferior and middle frontal gyrus (MFG), in addition to the medial prefrontal cortex and cingulate gyrus for unfair offers only. Regulated decisions involved left inferior frontal gyrus for upregulation and MFG for down-regulation strategies, respectively. Importantly, the effects of emotion modulation were evident in posterior insula, with less activation for down-regulation and more activation for upregulation in these areas. Notably, we show for the first time that top-down strategies such as reappraisal strongly affect our socioeconomic decisions.

  20. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension.

    PubMed

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2015-01-01

    The top-down approach is frequently used for drug nanocrystal production. A large number of review papers have referred to the top-down approach in terms of process parameters such as stabilizer selection. However, a very important factor, that is, the influence of drug properties, has been not addressed so far. This review will first discuss different nanocrystal technologies in brief. The focus will be on reviewing the different drug properties such as solid state and particle morphology on the efficiency of particle size reduction during top-down processes. Furthermore, the drug properties in the final nanosuspensions are critical for drug dissolution velocity. Therefore, another focus is the characterization of drugs in obtained nanosuspension. Drug physical properties play an important role in the production efficiency. The combinative technologies using modified drugs could significantly improve the performances of top-down processes. However, further understanding of the drug millability and homogenization will still be needed. In addition, a carefully established characterization system for nansuspension is essential.

  1. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastellone, M.L.; Arena, U.

    1999-05-01

    Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor weremore » determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.« less

  2. Influence of top-down control in the plankton food web on vertical carbon flux: a mesocosm study in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Stone, J.; Steinberg, D. K.

    2016-02-01

    The effects of predation on carbon export in planktonic food webs are poorly known, but likely play a key role in the biological pump. Gelatinous zooplankton (GZ) dominate the zooplankton community in the Chesapeake Bay during summer months, exerting considerable top-down control on the planktonic food web. The medusa Chrysaora quinquecirrha preys upon the ctenophore Mnemiopsis leidyi, which in turn is a major predator of the omnivorous copepod Acartia tonsa. This trophic cascade is known to significantly affect copepod abundance in Chesapeake Bay, but the resulting changes to particulate organic carbon (POC) flux are unknown. We hypothesized that additions or exclusions of GZ predators would result in changes in both total POC flux and the composition of exported particles (e.g., phytoplankton aggregates, fecal pellets). We conducted mesocosm experiments in the York River tributary of Chesapeake Bay during summer and fall, 2015 to quantify the cascading effects of GZ blooms on POC flux. The mesocosms contained a natural assemblage of phytoplankton and microzooplankton, and A. tonsa copepods, and received one of four treatments of GZ: 1) a control with no GZ added, 2) addition of ctenophores, 3) addition of medusae, and 4) addition of both ctenophores and medusae. POC flux from each mesocosm was measured over multiple 2-day experimental runs and grazing rates of GZ on each other and on copepods were calculated. There were no significant differences in total POC flux between treatments, but the composition of both the final zooplankton assemblage and exported organic matter differed between treatments. As a result of grazing on copepods by ctenophores, treatments which included GZ had lower final copepod abundances and a corresponding decrease in flux of copepod fecal pellets. We discuss how this change in composition of exported material as a result of cascading trophic interactions may affect the efficiency of the biological pump and benthic processes.

  3. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles

    PubMed Central

    Xin, Hongqi; Li, Yi; Liu, Zhongwu; Wang, Xinli; Shang, Xia; Cui, Yisheng; Zhang, Zheng Gang; Chopp, Michael

    2013-01-01

    To test, in vivo, the hypothesis that exosomes from multipotent mesenchymal stromal cells (MSCs) mediate microRNA 133b (miR-133b) transfer which promotes neurological recovery from stroke, we employed knock-in and knock-down technologies to up-regulate or down-regulate the miR-133b level in MSCs (miR-133b+MSCs or miR-133b−MSCs) and their corresponding exosomes, respectively. Rats were subjected to middle cerebral artery occlusion (MCAo) and were treated with naïve MSCs, miR-133b+MSCs, or miR-133b−MSC at one day after MCAo. Compared with controls, rats receiving naïve MSC treatment significantly improved functional recovery, and exhibited increased axonal plasticity and neurite remodeling in the ischemic boundary zone (IBZ) at day 14 after MCAo. The outcomes were significantly enhanced with miR-133b+MSC treatment, and were significantly decreased with miR-133b−MSC treatment, compared to naïve MSC treatment. The miR-133b level in exosomes collected from the cerebral spinal fluid was significantly increased after miR-133b+MSC treatment, and was significantly decreased after miR-133b−MSC treatment at day 14 after MCAo, compared to naïve MSC treatment. Tagging exosomes with green fluorescent protein demonstrated that exosomes-enriched extracellular particles were released from MSCs and transferred to adjacent astrocytes and neurons. The expression of selective targets for miR-133b, connective tissue growth factor and ras homolog gene family member A, were significantly decreased in the IBZ after miR-133b+MSC treatment, while their expression remained at similar elevated levels after miR-133b−MSC treatment, compared to naïve MSC treatment. Collectively, our data suggest that exosomes from MSCs mediate the miR-133b transfer to astrocytes and neurons, which regulate gene expression, subsequently benefit neurite remodeling and functional recovery after stroke. PMID:23630198

  4. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    PubMed Central

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  5. Metastatic Melanoma Secreted IL-10 Down-Regulates CD1 Molecules on Dendritic Cells in Metastatic Tumor Lesions

    PubMed Central

    Gerlini, Gianni; Tun-Kyi, Adrian; Dudli, Christa; Burg, Günter; Pimpinelli, Nicola; Nestle, Frank O.

    2004-01-01

    CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor. PMID:15579430

  6. Efficiency of mitigation measures to reduce particulate air pollution--a case study during the Olympic Summer Games 2008 in Beijing, China.

    PubMed

    Schleicher, Nina; Norra, Stefan; Chen, Yizhen; Chai, Fahe; Wang, Shulan

    2012-06-15

    Atmospheric particles were studied before, during, and after the period of the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the mitigation measures implemented by the Chinese Government. Total suspended particles (TSP) and fine particles (PM(2.5) and PM(1)) were collected continuously from October 2007 to February 2009 and were analyzed in detail with regard to mass and element concentrations, water-soluble ions, and black carbon (BC). Mass as well as element concentrations during the Olympic air quality control period were lower than the respective concentrations during the time directly before and after the Olympic Games. The results showed that the applied aerosol source control measures, such as shutting down industries and reducing traffic, had a huge impact on the reduction of aerosol pollution in Beijing. However, the meteorological conditions, especially rainfall, certainly also contributed to the successful reduction of particulate air pollution. Coarse particles were reduced more efficiently than finer particles, which indicates that long-range transport of atmospheric particles is difficult to control and that presumably the established mitigation area was not large enough. The study further showed that elements from predominantly anthropogenic sources, such as S, Cu, As, Cd, and Pb, as well as BC, were reduced more efficiently during the Olympic Games than elements for which geogenic sources are more significant, such as Al, Fe, Rb or Sr. Furthermore, the mentioned anthropogenic element concentrations were reduced more in the finer PM(2.5) samples whereas geogenic ones were reduced stronger in TSP samples including the coarser fraction. Consequently, it can be assumed that the mitigation measures, as intended, were successful in reducing more toxic and health-relevant particles from anthropogenic sources. Firework displays, especially at the Opening Ceremony, could be identified as a special short-time source for atmospheric particles during the Olympic Games. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Method of making molten carbonate fuel cell ceramic matrix tape

    DOEpatents

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  8. Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs.

    PubMed

    Merriman, L A; Stein, H H

    2016-09-01

    Two experiments were conducted to evaluate particle size of calcium carbonate used in diets fed to growing pigs. Experiment 1 was conducted to determine apparent total tract digestibility (ATTD), standardized total tract digestibility (STTD), and retention of Ca among diets containing calcium carbonate produced to different particle sizes, and Exp. 2 was conducted to determine if growth performance of weanling pigs is affected by particle size of calcium carbonate. In Exp. 1, 4 diets based on corn and potato protein isolate were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P, but the calcium carbonate used in the diets was ground to 4 different particle sizes (200, 500, 700, or 1,125 μm). A Ca-free diet was formulated to determine basal endogenous losses of Ca. In Exp. 2, 4 diets were based on corn and soybean meal and the only difference among diets was that each diet contained calcium carbonate ground to the 4 particle sizes used in Exp. 1. In Exp. 1, 40 barrows (15.42 ± 0.70 kg initial BW) were allotted to the 5 diets with 8 replicate pigs per diet using a randomized complete block design, and in Exp. 2, 128 pigs with an initial BW of 9.61 ± 0.09 kg were randomly allotted to 4 experimental diets. Results of Exp. 1 indicated that basal endogenous losses of Ca were 0.329 g/kg DMI. The ATTD of Ca was 70.0 ± 3.2, 74.3 ± 2.7, 70.0 ± 2.9, and 72.1 ± 2.7 and the STTD of Ca was 74.2 ± 3.2, 78.5 ± 2.7, 74.1 ± 2.9, and 76.2 ± 2.7 for calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. Retention of Ca was 67.4 ± 3.1, 70.4 ± 2.6, 63.9 ± 2.8, and 67.2 ± 2.2 for diets containing calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. There were no differences among diets for ATTD of Ca, STTD of Ca, or retention of Ca. The ATTD of P was 64.5 ± 1.7, 66.8 ± 2.6, 64.2 ± 3.0, and 63.2 ± 1.7% and retention of P was 61.4 ± 1.4, 63.8 ± 2.8, 61.9 ± 2.8, and 60.9 ± 1.5 for diets containing calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. Neither ATTD of P nor retention of P was influenced by the particle size of calcium carbonate. Results of Exp. 2 indicated that ADG, ADFI, and G:F were not impacted by the particle size of calcium carbonate. In conclusion, particle size of calcium carbonate did not affect ATTD of Ca, STTD of Ca, or retention of Ca; ATTD of P or retention of P; or growth performance of pigs. Any particle size of calcium carbonate in the range from 200 to 1,125 μm can therefore be used in diets fed to pigs.

  9. Microarray analysis of gene regulations and potential association with acephate-resistance and fitness cost in Lygus lineolaris.

    PubMed

    Zhu, Yu Cheng; Guo, Zibiao; He, Yueping; Luttrell, Randall

    2012-01-01

    The tarnished plant bug has become increasingly resistant to organophosphates in recent years. To better understand acephate resistance mechanisms, biological, biochemical, and molecular experiments were systematically conducted with susceptible (LLS) and acephate-selected (LLR) strains. Selection of a field population with acephate significantly increased resistance ratio to 5.9-fold, coupled with a significant increase of esterase activities by 2-fold. Microarray analysis of 6,688 genes revealed 329 up- and 333 down-regulated (≥2-fold) genes in LLR. Six esterase, three P450, and one glutathione S-transferase genes were significantly up-regulated, and no such genes were down-regulated in LLR. All vitellogenin and eggshell protein genes were significantly down-regulated in LLR. Thirteen protease genes were significantly down-regulated and only 3 were up-regulated in LLR. More than twice the number of catalysis genes and more than 3.6-fold of metabolic genes were up-regulated, respectively, as compared to those down-regulated with the same molecular and biological functions. The large portion of metabolic or catalysis genes with significant up-regulations indicated a substantial increase of metabolic detoxification in LLR. Significant increase of acephate resistance, increases of esterase activities and gene expressions, and variable esterase sequences between LLS and LLR consistently demonstrated a major esterase-mediated resistance in LLR, which was functionally provable by abolishing the resistance with esterase inhibitors. In addition, significant elevation of P450 gene expression and reduced susceptibility to imidacloprid in LLR indicated a concurrent resistance risk that may impact other classes of insecticides. This study demonstrated the first association of down-regulation of reproductive- and digestive-related genes with resistance to conventional insecticides, suggesting potential fitness costs associated with resistance development. This study shed new light on the understanding of the molecular basis of insecticide resistance, and the information is highly valuable for development of chemical control guidelines and tactics to minimize resistance and cross-resistance risks.

  10. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    NASA Astrophysics Data System (ADS)

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam

    2015-02-01

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2-12 μg/m3. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10-420 nm were 10,000-40,000 particles/cm3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1-10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  11. High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Pan, Zihe; Cheng, Huaigang; Chen, Zuliang; Cheng, Fangqin

    2018-06-01

    Vaterite-type calcium carbonate particles have some unique properties such as high hydrophilicity, large surface areas, and hierarchical structures consisting of primary vaterite particles in comparison with calcite or aragonite-type polymorphs. In this paper, gypsum (CaSO4·2H2O) suspension is used to synthesize micro-sized vaterite CaCO3 through magnetic stirring (MS) and ultrasonic probe vibration (UPV) methods. The effects of ammonia concentration, CO2 flow rate, solid-liquid ratio on the gypsum carbonation process, mineral phase composition, morphology and particle size distribution of CaCO3 are investigated. The results show that the carbonation process is significantly influenced by ammonia concentration, CO2 flow rate and ultrasound. Comparing with magnetic stirring, ultrasonic probe vibration take less time to reach the complete carbonate reaction. Gypsum is transformed to vaterite with the conversion rate about ∼95% when the mole ratio of NH4+/Ca2+ is 2.4 otherwise the carbonation reaction was uncompleted with gypsum residues left. Comparing with MS method, the UPV method resulted in smaller size and narrower size distribution of as-prepared microparticles and approximately 80% reduction of the particle size was achieved. It is established that increasing the solid-liquid ratio resulted in larger particle size in MS system and smaller particle size in UPV system. Increasing CO2 flow rate caused the particle size decreased in MS system and increased in UPV system.

  12. Effect of Carbon Black on Elastomer Blends

    NASA Astrophysics Data System (ADS)

    Si, Mayu; Koga, Tadanori; Ji, Yuan; Seo, Young-Soo; Rafailovich, Miriam; Sokolov, Jonathan; Gerspacher, M.; Dias, A. J.; Karp, Kriss R.; Satija, Sushil; Lin, Min Y.

    2003-03-01

    The effects of untreated and heat-treated carbon black N299 on the interfacial properties of PB (Polybutadiene) and terpolymer BIMS [brominated Poly(isobutylene-co-methyl styrene)] were investigated by neutron reflectivity (NR) and lateral force microscopy (LFM). The NR results show that the addition of carbon black significantly slows down the interfacial broadening while heat-treated carbon black has less effect on slowing down the diffusion compared with untreated carbon black. These results were confirmed by the LFM data, which shows the magnitude of lateral force loop of heat-treated carbon black is bigger than that of untreated one. Ultra small and small angle neutron scattering (USANS and SANS) were used to probe the morphology and surface lateral force. Increasing volume concentration of carbon black to 5glass transition temperature of BIMS is also decreased, which was measured by Differential scanning Calorimeter (DSC). XRD analysis indicates that the heat treatment crystallizes the carbon black and strong graphitic peaks are observed. The large degree of crystallization decreases the interaction with the polymer matrix and hence minimizes the effect on the internal dynamics

  13. Down-regulation of Glutathione S-transferase Pi in Asthma Contributes to Enhanced Oxidative Stress

    PubMed Central

    Schroer, Kathy T.; Gibson, Aaron M.; Sivaprasad, Umasundari; Bass, Stacey A.; Ericksen, Mark B.; Wills-Karp, Marsha; LeCras, Tim; Fitzpatrick, Anne M.; Brown, Lou Ann S.; Stringer, Keith F.; Khurana Hershey, Gurjit K.

    2011-01-01

    Background Glutathione S-transferase Pi (GSTPi) is the predominant redox regulator in the lung. While evidence implicates an important role for GSTPi in asthma, the mechanism for this has remained elusive. Objectives To determine how GSTPi is regulated in asthma and to elucidate its role in maintaining redox homeostasis. Methods We elucidated the regulation of GSTPi in children with asthma and utilized murine models of asthma to determine the role of GSTPi in redox homeostasis. Measurements and Main Results Our findings demonstrate that GSTPi transcript levels are markedly down-regulated in allergen and IL-13 treated mouse models of asthma via STAT6 dependent and independent pathways. Nuclear factor-erythroid 2 related factor 2 (Nrf2) was also down-regulated in these models. The decrease in GSTPi expression was associated with decreased total GST activity in the lungs of mice. Examination of cystine intermediates uncovered a functional role for GSTPi in regulating Cys oxidation, whereby GSTPi-deficient mice exhibited increased oxidative stress (increase in % cystine) compared with wild-type mice following allergen challenge. GSTPi expression was similarly down-regulated in children with asthma. Conclusions These data collectively suggest that down-regulation of GSTPi following allergen challenge may contribute to the asthma phenotype due to disruption of redox homeostasis and increased oxidative stress. Furthermore, GSTPi may be an important therapeutic target for asthma, and evaluation of GSTPi expression may prove beneficial in identifying individuals who would benefit from therapy targeting this pathway. PMID:21570714

  14. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.

    PubMed

    Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A

    2010-05-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.

  15. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma

    PubMed Central

    Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.

    2010-01-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954

  16. Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis.

    PubMed

    Guan, Ruo-Bing; Li, Hai-Chao; Miao, Xue-Xia

    2018-06-01

    When using RNA interference (RNAi) to study gene functions in Lepidoptera insects, we discovered that some genes could not be suppressed; instead, their expression levels could be up-regulated by double-stranded RNA (dsRNA). To predict which genes could be easily silenced, we treated the Asian corn borer (Ostrinia furnacalis) with dsGFP (green fluorescent protein) and dsMLP (muscle lim protein). A transcriptome sequence analysis was conducted using the cDNAs 6 h after treatment with dsRNA. The results indicated that 160 genes were up-regulated and 44 genes were down-regulated by the two dsRNAs. Then, 50 co-up-regulated, 25 co-down-regulated and 43 unaffected genes were selected to determine their RNAi responses. All the 25 down-regulated genes were knocked down by their corresponding dsRNA. However, several of the up-regulated and unaffected genes were up-regulated when treated with their corresponding dsRNAs instead of being knocked down. The genes up-regulated by the dsGFP treatment may be involved in insect immune responses or the RNAi pathway. When the immune-related genes were excluded, only seven genes were induced by dsGFP, including ago-2 and dicer-2. These results not only provide a reference for efficient RNAi target predications, but also provide some potential RNAi pathway-related genes for further study. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  17. Pyrophoric metal-carbon foam composites and methods of making the same

    DOEpatents

    Gash, Alexander E [Brentwood, CA; Satcher, Jr., Joe H.; Simpson, Randall L [Livermore, CA; Baumann, Theodore F [Discovery Bay, CA; Worsley, Marcus A [Belmont, CA

    2012-05-08

    A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m.sup.2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  19. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  20. Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress.

    PubMed

    Lee, Ji Eun; Oney, McKenna; Frizzell, Kimberly; Phadnis, Nitin; Hollien, Julie

    2015-02-13

    Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells. Copyright © 2015 Lee et al.

  1. Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a "top-down" approach.

    PubMed

    Zhang, Tianchang; Kim, Christine H J; Cheng, Yingwen; Ma, Yanwen; Zhang, Hongbo; Liu, Jie

    2015-02-21

    A "top-down" and scalable approach for processing carbon fiber cloth (CFC) into flexible and all-carbon electrodes with remarkable areal capacity and cyclic stability was developed. CFC is commercially available in large quantities but its use as an electrode material in supercapacitors is not satisfactory. The approach demonstrated in this work is based on the sequential treatment of CFC with KOH activation and high temperature annealing that can effectively improve its specific surface area to a remarkable 2780 m(2) g(-1) while at the same time achieving a good electrical conductivity of 320 S m(-1) without sacrificing its intrinsic mechanical strength and flexibility. The processed CFC can be directly used as an electrode for supercapacitors without any binders, conductive additives and current collectors while avoiding elaborate electrode processing steps to deliver a specific capacitance of ∼0.5 F cm(-2) and ∼197 F g(-1) with remarkable rate performance and excellent cyclic stability. The properties of these processed CFCs are comparable or better than graphene and carbon nanotube based electrodes. We further demonstrate symmetric solid-state supercapacitors based on these processed CFCs with very good flexibility. This "top-down" and scalable approach can be readily applied to other types of commercially available carbon materials and therefore can have a substantial significance for high performance supercapacitor devices.

  2. Keratinocyte growth factor and the expression of wound-healing-related genes in primary human keratinocytes from burn patients.

    PubMed

    Chomiski, Verônica; Gragnani, Alfredo; Bonucci, Jéssica; Correa, Silvana Aparecida Alves; Noronha, Samuel Marcos Ribeiro de; Ferreira, Lydia Masako

    2016-08-01

    To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.

  3. Solar Energy Enhancement Using Down-converting Particles: A Rigorous Approach

    DTIC Science & Technology

    2011-06-06

    Solar energy enhancement using down-converting particles: A rigorous approach Ze’ev R. Abrams,1,2 Avi Niv ,2 and Xiang Zhang2,3,a) 1Applied Science...System 1. 114905-2 Abrams, Niv , and Zhang J. Appl. Phys. 109, 114905 (2011) [This article is copyrighted as indicated in the article. Reuse of AIP...This increase per band-gap is displayed in 114905-3 Abrams, Niv , and Zhang J. Appl. Phys. 109, 114905 (2011) [This article is copyrighted as indicated

  4. [Immune response in cervical cancer. Strategies for the development of therapeutic vaccines].

    PubMed

    Mora-García, María Lourdes; Monroy-García, Alberto

    2015-01-01

    High-risk human papillomaviruses (HR-HPV), as HPV-16, evade immune recognition through the inactivation of cells of the innate immune response. HPV-16 E6 and E7 genes down-regulate type I interferon response. They do not produce viremia or cell death; therefore, they do not cause inflammation or damage signal that alerts the immune system. Virus-like particles (VLPs), consisting of structural proteins (L1 and L2) of the main HR-HPV types that infect the genitourinary tract, are the most effective prophylactic vaccines against HR-HPV infection. While for the high grade neoplastic lesions, therapeutic vaccines based on viral vectors, peptides, DNA or complete HR-HPV E6 and E7 proteins as antigens, have had limited effectiveness. Chimeric virus-like particles (cVLPs) that carry immunogenic peptides derived from E6 and E7 viral proteins, capable to induce activation of specific cytotoxic T lymphocytes, emerge as an important alternative to provide prophylactic and therapeutic activity against HR-HPV infection and cervical cancer.

  5. Emotion Regulation in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Smith, Maureen C.; Walden, Tedra A.

    This study presents a preliminary exploration of emotion regulation in a sample of 20 children (ages 3-18 years) with Down Syndrome. Three aspects of emotion regulation (modulation, organization, flexibility) were predicted from emotion variables (affect intensity, affective expression, and autonomy-curiosity and motivation) in backward regression…

  6. Time-Dependent Changes in Morphology and Composition of Solid Particles Collected From Heavy Water Electrolyte after Electrolysis with a Palladium Cathode

    NASA Astrophysics Data System (ADS)

    Dash, John; Wang, Q.

    2009-03-01

    Recently, we have observed particles floating on the surfaces of electrolytes after electrolysis, in four cells, each of which contained a heavy water electrolyte and a Pd cathode. Solid particles were unexpected from electrolysis, so it seemed important to characterize these particles. Cu grids were used to collect particles from the electrolyte surface. Then, a scanning electron microscope ( SEM ) and an energy dispersive spectrometer ( EDS ) were used to study the surfaces of these particles and to record time-dependent changes which were occurring. The morphology and composition of the particles were determined . After storage at ambient for 11 days, there were large changes in the morphology and composition of the particles. For example, one portion of the particles contained a large number of microspheres. A typical microsphere contained mostly carbon and palladium, whereas the matrix near the microsphere contained mostly palladium with less carbon and a significant amount of silver. One day later the same microsphere had increased carbon and reduced palladium, but there was no significant change in the composition of the matrix. Results for other particles from other cells will also be presented.

  7. Functional overlap of top-down emotion regulation and generation: an fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions.

    PubMed

    Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri

    2014-09-01

    One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.

  8. Physiological and Comparative Proteomic Analysis Reveals Different Drought Responses in Roots and Leaves of Drought-Tolerant Wild Wheat (Triticum boeoticum)

    PubMed Central

    Liu, Hui; Sultan, Muhammad Abdul Rab Faisal; Liu, Xiang li; Zhang, Jin; Yu, Fei; Zhao, Hui xian

    2015-01-01

    To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum), physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control), 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA) level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs) (corresponding to 87 and 80 unique proteins, respectively) in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism was down-regulated in the roots, but enhanced in the leaves. These results will contribute to the existing knowledge on the complexity of root and leaf protein changes that occur in response to drought, and also provide a framework for further functional studies on the identified proteins. PMID:25859656

  9. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    PubMed

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major role in the lifecycle of atmospheric OA.

  10. Iron-carbon composites for the remediation of chlorinated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sunkara, Bhanu Kiran

    This research is focused on engineering submicron spherical carbon particles as effective carriers/supports for nanoscale zerovalent iron (NZVI) particles to address the in situ remediation of soil and groundwater chlorinated contaminants. Chlorinated hydrocarbons such as trichloroethylene (TCE) and tetrachloroethylene (PCE) form a class of dense non-aqueous phase liquid (DNAPL) toxic contaminants in soil and groundwater. The in situ injection of NZVI particles to reduce DNAPLs is a potentially simple, cost-effective, and environmentally benign technology that has become a preferred method in the remediation of these compounds. However, unsupported NZVI particles exhibit ferromagnetism leading to particle aggregation and loss in mobility through the subsurface. This work demonstrates two approaches to prepare carbon supported NZVI (iron-carbon composites) particles. The objective is to establish these iron-carbon composites as extremely useful materials for the environmental remediation of chlorinated hydrocarbons and suitable materials for the in situ injection technology. This research also demonstrates that it is possible to vary the placement of iron nanoparticles either on the external surface or within the interior of carbon microspheres using a one-step aerosol-based process. The simple process of modifying iron placement has significant potential applications in heterogeneous catalysis as both the iron and carbon are widely used catalysts and catalyst supports. Furthermore, the aerosol-based process is applied to prepare new class of supported catalytic materials such as carbon-supported palladium nanoparticles for ex situ remediation of contaminated water. The iron-carbon composites developed in this research have multiple functionalities (a) they are reactive and function effectively in reductive dehalogenation (b) they are highly adsorptive thereby bringing the chlorinated compound to the proximity of the reactive sites and also serving as adsorption materials for decontamination (c) they are of the optimal size for transport through sediments (d) they have amphiphilic chemical functionalities that help stabilize them when they reach the DNAPL target zones. Finally, the iron-carbon composite microspheres prepared through aerosol-based process can used for in situ injection technology as the process is conductive to scale-up and the materials are environmentally benign.

  11. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process

    NASA Astrophysics Data System (ADS)

    McHenry, M. E.; Majetich, S. A.; Artman, J. O.; Degraef, M.; Staley, S. W.

    1994-04-01

    A process based on the Kratschmer-Huffman carbon arc method of preparing fullerenes has been used to generate carbon-coated cobalt and cobalt carbide nanocrystallites. Magnetic nanocrystallites are extracted from the soot with a gradient field technique. For Co/C composites, structural characterization by x-ray diffraction and high-resolution transmission electron microscopy reveals the presence of a fcc Co phase, graphite, and a minority Co2C phase. The majority of Co nanocrystals exists as nominally spherical particles, 0.5-5 nm in radius. Hysteretic and temperature-dependent magnetic response, in randomly and magnetically aligned powder samples frozen in epoxy reveals fine-particle magnetism associated with monodomain Co particles. The magnetization exhibits a unique functional dependence on H/T, and hysteresis below a blocking temperature, TB~=160 K. Below TB, the temperature dependence of the coercivity is given by Hc=Hci[1-(T/TB)1/2], with Hci~=450 Oe.

  12. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots.

    PubMed

    Chizhik, Anna M; Stein, Simon; Dekaliuk, Mariia O; Battle, Christopher; Li, Weixing; Huss, Anja; Platen, Mitja; Schaap, Iwan A T; Gregor, Ingo; Demchenko, Alexander P; Schmidt, Christoph F; Enderlein, Jörg; Chizhik, Alexey I

    2016-01-13

    Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.

  13. Graphene nanocomposites for electrochemical cell electrodes

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  14. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  15. Synthesis and characterization of CaCO3 (calcite) nano particles from cockle shells (Anadara granosa Linn) by precipitation method

    NASA Astrophysics Data System (ADS)

    Widyastuti, Sri; Intan Ayu Kusuma, P.

    2017-06-01

    Calcium supplements can reduce the risk of osteoporosis, but they are not automatically absorbed in the gastrointestinal tract. Nanotechnology is presumed to have a capacity in resolving this problem. The preparation and characterization of calcium carbonate nano particle to improve the solubility was performed. Calcium carbonate nano particles were synthesized using precipitation method from cockle shells (Anadara granosa Linn). Samples of the cockle shells were dried in an oven at temperature of 50°C for 7 (seven) days and subsequently they were crushed and blended into fine powder that was sieved through 125-μm sieve. The synthesis of calcium carbonate nanocrystals was done by extracting using hydro chloride acid and various concentrations of sodium hydroxide were used to precipitate the calcium carbonate nano particles. The size of the nano particles was determined by SEM, XRD data, and Fourier transform infrared spectroscopy (FT-IR). The results of XRD indicated that the overall crystalline structure and phase purity of the typical calcite phase CaCO3 particles were approximately 300 nm in size. The method to find potential applications in industry to yield the large scale synthesis of aragonite nano particles by a low cost but abundant natural resource such as cockle shells is required.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, A.; Davidovits, P.; Lewis, E. R.

    Interpreting the temporal relationship between the scattering and incandescence signals recorded by the Single Particle Soot Photometer (SP2), Sedlacek et al. (2012) reported that 60% of the refractory black carbon containing particles in a plume containing biomass burning tracers exhibited non-core-shell structure. Because the relationship between the rBC (refractory black carbon) incandescence and the scattering signals had not been reported in the peer-reviewed literature, and to further evaluate the initial interpretation by Sedlacek et al., a series of experiments was undertaken to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as themore » light-absorbing substance to characterize this signal relationship. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources. This work was communicated in a 2015 publication (Sedlacek et al. 2015)« less

  17. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  18. Spectral Properties of Gas-phase Condensed Fullerene-like Carbon Nanoparticles from Far-ultraviolet to Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Jäger, C.; Mutschke, H.; Henning, Th.; Huisken, F.

    2008-12-01

    Carbon solids are ubiquitous material in interstellar space. However, the formation pathway of carbonaceous matter in astrophysical environments, as well as in terrestrial gas-phase condensation reactions, is not yet understood. Laser ablation of graphite in different quenching gas atmospheres, such as pure He, He/H2, and He/H2O at varying pressures, is used to synthesize very small, fullerene-like carbon nanoparticles. The particles are characterized by very small diameters between 1 and 4 nm and a disturbed onion-like structure. The soot particles extracted from the condensation zone obviously represent a very early stage of particle condensation. The spectral properties have been measured from the far-ultraviolet (FUV; λ = 120 nm) to the mid-infrared (MIR; λ = 15 μm). The seedlike soot particles show strong absorption bands in the 3.4 μm range. The profile and the intensity pattern of the 3.4 μm band of the diffuse interstellar medium can be well reproduced by the measured 3.4 μm profile of the condensed particles; however, all the carbon which is left to form solids is needed to fit the intensity of the interstellar bands. In contrast to the assumption that onion-like soot particles could be the carriers of the interstellar ultraviolet (UV) bump, our very small onion-like carbon nanoparticles do not show distinct UV bands due to (π-π*) transitions.

  19. Comparative assessment of synthetic strategies toward active platinum-rhodium-tin electrocatalysts for efficient ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Erini, Nina; Krause, Paul; Gliech, Manuel; Yang, Ruizhi; Huang, Yunhui; Strasser, Peter

    2015-10-01

    The present work explores the effect of autoclave-based autogenous-pressure vs. ambient pressure conditions on the synthesis and properties of carbon-supported Pt-Rh-Sn nanoparticle electrocatalysts. The Pt-Rh-Sn nanoparticles were characterized by X-ray spectroscopy, electron microscopy and mass spectroscopy and deployed as catalysts for the electrocatalytic ethanol oxidation reaction. Pt-Rh-Sn catalysts precipitated with carbon already present showed narrow particle size distribution around 7 nm, while catalysts supported on carbon after particle formation showed broader size distribution ranging from 8 to 16 nm, similar metal loadings between 40 and 48 wt.% and similar atomic ratios of Pt:Rh:Sn of 30:10:60. The highest ethanol oxidation activity at low overpotentials associated with exceptionally early ethanol oxidation onset potential was observed for ambient-pressure catalysts with the active ternary alloy phase formed in presence of the carbon supports. In contrast, catalysts prepared under ambient pressure in a two-step approach, involving alloy particle formation followed by particle separation and subsequent deposition on the carbon support, yielded the highest overall mass activities. Based on the observed synthesis-activity correlations, a comparative assessment is provided of the synthetic techniques at high vs. low pressures, and in presence and absence of carbon support. Plausible hypotheses in terms of particle dispersion and interparticle distance accounting for these observed differences are discussed.

  20. Effect of Carbon in Fabrication Al-SiC Nanocomposites for Tribological Application

    PubMed Central

    Hekner, Bartosz; Myalski, Jerzy; Pawlik, Tomasz; Sopicka-Lizer, Małgorzata

    2017-01-01

    Aluminium-based hybrid composites are a new class of advanced materials with the potential of satisfying the demands in engineering applications. This paper describes the effects of carbon addition on the formation and properties of AMC with SiC nanoparticles reinforcement. The composites were produced via mechanical alloying followed by hot pressing. Three forms of carbon, graphite (GR), multiwalled carbon nanotubes (CNTs), and, for the first time, glassy carbon (GC), were used for the hybrid composites manufacturing and compared with tribological properties of Al-SiC composite without carbon addition. GC and CNTs enhanced formation of Al-SiC composite particles and resulted in a homogeneous distribution of reinforcing particles. On the other hand, GR addition altered mechanochemical alloying and did not lead to a proper distribution of nanoparticulate SiC reinforcement. Hot pressing technique led to the reaction between Al and carbon as well as SiC particles and caused the formation of Al4C3 and γ-Al2O3. The subsistence of carbon particles in the composites altered the predominant wear mechanisms since the wear reduction and the stabilization of the friction coefficient were observed. GC with simultaneous γ-Al2O3 formation in the hybrid Al-SiC(n)-C composites turned out to be the most effective additive in terms of their tribological behaviour. PMID:28773039

  1. Evaluating the Air Quality, Climate and Economic Impacts of ...

    EPA Pesticide Factsheets

    Anaerobic digestion is a natural biological process in which microorganisms break down organic materials in the absence of oxygen. When anaerobic microbes metabolize organic waste – i.e., the carbon-based remains of plants, animals and their waste products, e.g. animal manure, sewage sludge and food waste – they produce biogas. Biogas consists mainly of methane and carbon dioxide and can be used as a renewable energy fuel in a variety of applications. The impacts of biogas generation and utilization processes differ, depending on the source material (e.g., sewage, manure, food processing waste, municipal solid waste) and end uses (e.g., on-site electricity generation, conversion to a vehicle fuel, injection into the natural gas pipeline, etc.). Organic waste managers and regulators alike lack sufficient information about the overall environmental and economic performance of available biogas management technologies. A more complete understanding of the environmental and economic performance of biogas-to-energy technologies will assist state and local governments, regulators, and potential project developers in identifying geographically appropriate and cost-effective biogas management options.The backdrop for this research was California. The state has unique air quality challenges due to the combination of meteorology and topography, population growth and the pollution burden associated with mobile sources. However, with the strengthening of National Ambient

  2. Particle size analysis on density, surface morphology and specific capacitance of carbon electrode from rubber wood sawdust

    NASA Astrophysics Data System (ADS)

    Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.

    2018-02-01

    The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and < 38 µm with variations of grinding time for 40 h (SC) and 80 h (SD) respectively. All of the samples were activated by 0.4 M KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.

  3. Emotion regulation of the affect-modulated startle reflex during different picture categories.

    PubMed

    Conzelmann, Annette; McGregor, Victoria; Pauli, Paul

    2015-09-01

    Previous studies on emotion regulation of the startle reflex found an increase in startle amplitude from down-, to non-, to up-regulation for pleasant and unpleasant stimuli. We wanted to clarify whether this regulation effect remains stable for different picture categories within pleasant and unpleasant picture sets. We assessed startle amplitude of 31 participants during down-, non-, or up-regulation of feelings elicited by pleasant erotic and adventure and unpleasant victim and threat pictures. Startle amplitude was smaller during adventure and erotic compared to victim and threat pictures and increased from down-, to non-, to up-regulation independently of the picture category. Results indicate that the motivational priming effect on startle modulation elicited by different picture categories is independent of emotion regulation instructions. In addition, the emotion regulation effect is independent of motivational priming effects. © 2015 Society for Psychophysiological Research.

  4. Real-world operation conditions and on-road emissions of Beijing diesel buses measured by using portable emission measurement system and electric low-pressure impactor.

    PubMed

    Liu, Zhihua; Ge, Yunshan; Johnson, Kent C; Shah, Asad Naeem; Tan, Jianwei; Wang, Chu; Yu, Linxiao

    2011-03-15

    On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNO(x)) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNO(x) emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNO(x) of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Structural evolution of detonation carbon in Composition B-3 by X-ray scattering

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Dattelbaum, Dana; Gustavsen, Richard; Podlesak, David; Jensen, Brian; Watkins, Erik; Ringstrand, Bryan; Willey, Trevor; Lauderbach, Lisa; Hodgin, Ralph; Bagge-Hansen, Michael; van Buuren, Tony; Graber, Tim

    2015-06-01

    High explosive detonation products are primarily composed of solid carbon products. Prior electron microscopy studies have revealed that detonation carbon can contain a variety of unique carbon particles possessing novel morphologies, including core-shell, onions and ribbons. Despite these observations very little is known on what conditions leads to the production of novel carbon nanoparticles. A fuller understanding on conditions that generate such novel carbon materials would greatly benefit from time-resolved studies that probe particle formation and evolution through and beyond the chemical reaction zone. Here, we report initial experiments employing time-resolved X-ray scattering measurements to monitor the detonation carbon products formed from Composition B-3 (60% TNT, 40% RDX). Time-resolved SAXS (TRSAXS) studies were performed at the Dynamic Compression Sector (DCS, Sector 35) at the Advanced Photon Source (Argonne National Laboratory). In-situ formation of solid carbon behind the detonation front was probed on the nanosecond time scale. Analysis of the scattering patterns using model independent methods (Porod and Guinier) yielded insights into particle morphology and interfaces.

  6. Global assessment of ocean carbon export by combining satellite observations and food-web models

    NASA Astrophysics Data System (ADS)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  7. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  8. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  9. Down-regulation of adenosine monophosphate-activated protein kinase activity: A driver of cancer.

    PubMed

    He, Xiaoling; Li, Cong; Ke, Rong; Luo, Lingyu; Huang, Deqiang

    2017-04-01

    Adenosine monophosphate-activated protein kinase (AMPK), a serine/threonine protein kinase, is known as "intracellular energy sensor and regulator." AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of "Warburg effect" in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.

  10. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3 (or O2) and were chosen because it is believed to form the same reactive oxygen intermediates than ozone. A weak water physisorption on soot was observed revealing hydrophobic properties of particles. Oxygen atoms were found to be strongly reactive. A Langmuir behavior was observed for oxygen atoms adsorption on carbon particles and we were able to determine an initial uptake coefficient of approximately 2.10-2. [1] Fenidel, W., et al., Interaction between carbon or iron aerosol particles and ozone. Atmospheric Environment, 1995. 29(9): p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.

  11. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer' particles with Pd-shell/Au-core and Au-shell/Pd-core morphologies, have been prepared and immobilized on both activated carbon and TiO2 supports. These have subsequently been compared as catalysts for the direct production of H2O2 and for benzyl alcohol oxidation in an attempt to elucidate the optimum particle morphology/support combination for both these reactions. Aberration corrected analytical electron microscopy has been used extensively to characterize these sol-immobilized materials. In particular, the STEM -HAADF technique has provided invaluable new (and often unexpected) information on the atomic structure, elemental distribution within particles, and compositional variations between particles for these controlled catalyst preparations. In addition, we have been able to compare their differing thermal stability and sintering behaviors, and to demonstrate that they have quite varying wetting interactions with activated carbon and TiO2 supports. Over the course of their lifetime, many supported metal catalysts exposed to elevated temperatures tend to de-activate by nanoparticle sintering, which decreases the overall exposed metal surface area and the number of active sites available for catalysis. It is sometimes desirable to devise chemical re-dispersion treatments whereby the mean size of the particles is reduced and the catalytic activity regenerated. In this work, the possibility of re-dispersing gold nanoparticles by a simple low temperature methyl iodide (CH3 I) treatment has been investigated. A variety of characterization techniques, including EXAFS, XRD, XPS, UV-DRS and STEM-HAADF imaging has been applied to samples before and after CH3 I treatment, in an attempt to determine the efficacy of the re-dispersion method. It is shown that re-dispersion of Au nanoparticles on activated carbon, graphite, Al2 O3 and TiO2 substrates is possible to varying degrees. A complete re-dispersion of `bulk' gold nanoparticles down to the atomic scale has been achieved on activated carbon and graphite substrates, with the exclusive formation of isolated gold atoms, dimeric species, and sub-nm clusters.

  12. Does prolonged pituitary down-regulation with gonadotropin-releasing hormone agonist improve the live-birth rate in in vitro fertilization treatment?

    PubMed

    Ren, Jianzhi; Sha, Aiguo; Han, Dongmei; Li, Ping; Geng, Jie; Ma, Chaihui

    2014-07-01

    To evaluate the effects of a prolonged duration of gonadotropin-releasing hormone agonist (GnRH-a) in pituitary down-regulation for controlled ovarian hyperstimulation (COH) on the live-birth rate in nonendometriotic women undergoing in vitro fertilization and embryo transfer (IVF-ET). Retrospective cohort study. University-affiliated hospital. Normogonadotropic women undergoing IVF. Three hundred seventy-eight patients receiving a prolonged pituitary down-regulation with GnRH-a before ovarian stimulation and 422 patients receiving a GnRH-a long protocol. Live-birth rate per fresh ET. In comparison with the long protocol, the prolonged down-regulation protocol required a higher total dose of gonadotropins. A lower serum luteinizing hormone (LH) level on the starting day of gonadotropin and the day of human chorionic gonadotropin (hCG) and a fewer number of oocytes and embryos were observed in the prolonged down-regulation protocol. However, the duration of stimulation and number of high-quality embryos were comparable between the two groups. A statistically significantly higher implantation rate (50.27% vs. 39.69%), clinical pregnancy rate (64.02% vs. 56.87%) and live-birth rate per fresh transfer cycle (55.56% vs. 45.73%) were observed in the prolonged protocol. Prolonged down-regulation in a GnRH-a protocol might increase the live-birth rates in normogonadotropic women. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Characterization of typical metal particles during haze episodes in Shanghai, China.

    PubMed

    Li, Rui; Yang, Xin; Fu, Hongbo; Hu, Qingqing; Zhang, Liwu; Chen, Jianmin

    2017-08-01

    Aerosol particles were collected during three heavy haze episodes at Shanghai in the winter of 2013. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy was used to study the morphology and speciation of typical metal particles at a single-particle level. In addition, time-of-flight aerosol mass spectrometry (ATOFMS) was applied to identify the speciation of the Fe-containing particles. TEM analysis indicated that various metal-containing particles were hosted by sulfates, nitrates, and oxides. Fe-bearing particles mainly originated from vehicle emissions and/or steel production. Pb-, Zn-, and Sb-bearing particles were mainly contributed by anthropogenic sources. Fe-bearing particles were clustered into six groups by ATOFMS: Fe-Carbon, Fe-Inorganic, Fe-Trace metal, Fe-CN, Fe-PO 3, and Fe-NO 3 . ATOFMS data suggested that Fe-containing particles corresponded to different origins, including industrial activities, resuspension of dusts, and vehicle emissions. Fe-Carbon and Fe-CN particles displayed significant diurnal variation, and high levels were observed during the morning rush hours. Fe-Inorganic and Fe-Trace metal particle levels peaked at night. Furthermore, Fe-Carbon and Fe-PO 3 were mainly concentrated in the fine particles. Fe-CN, Fe-Inorganic, and Fe-Trace metal exhibited bimodal distribution. The mixing state of the particles revealed that all Fe-bearing particles tended to be mixed with sulfate and nitrate. The data presented herein is essential for elucidating the origin, evolution processes, and health effects of metal-bearing particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Criterion 5: Maintenance of forest contributions to global carbon cycles

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Northern forests cover more than 42 percent of the region and are enormous reservoirs of carbon. Through photosynthesis, live trees emit oxygen in exchange for carbon dioxide they pull from the atmosphere. As a tree grows it stores carbon in wood above and below ground, and sequestered carbon comprises about half of its dry weight. Dead trees and down logs are also...

  15. Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes.

    PubMed

    Krajcik, Rasti; Jung, Adrian; Hirsch, Andreas; Neuhuber, Winfried; Zolk, Oliver

    2008-05-02

    The lipophilic nature of biological membranes restricts the direct intracellular delivery of potential drugs and molecular probes and makes intracellular transport one of the key problems in gene therapy. Because of their ability to cross cell membranes, single walled carbon nanotubes (SWNTs) are of interest as carriers of biologically active molecules, such as small interfering RNAs (siRNAs). We developed a strategy for chemical functionalization of SWNTs with hexamethylenediamine (HMDA) and poly(diallyldimethylammonium)chloride (PDDA) to obtain a material that was able to bind negatively charged siRNA by electrostatic interactions. PDDA-HMDA-SWNTs exhibited negligible cytotoxic effects on isolated rat heart cells at concentrations up to 10mg/l. PDDA-HMDA-SWNTs loaded with extracellular signal-regulated kinase (ERK) siRNA were able to cross the cell membrane and to suppress expression of the ERK target proteins in primary cardiomyocytes by about 75%. PDDA-functionalized SWNTs thus present an effective carrier system for applications in siRNA-mediated gene silencing.

  16. Near-extinction and final burnout in coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, R.H.; Davis, K.A.

    The late stages of char combustion have a special technological significance, as carbon conversions of 99% or greater are typically required for the economic operation of pulverized coal fired boilers. In the present article, two independent optical techniques are used to investigate near-extinction and final burnout phenomenas. Captive particle image sequences, combined with in situ optical measurements on entrained particles, provide dramatic illustration of the asymptotic nature of the char burnout process. Single particle combustion to complete burnout is seen to comprise two distinct stages: (1) a rapid high-temperature combustion stage, consuming about 70% of the char carbon and endingmore » with near-extinction of the heterogeneous reactions due to a loss of global particle reactivity, and (2) a final burnout stage occurring slowly at lower temperatures. For particles containing mineral matter, the second stage can be further subdivided into: (2a) late char combustion, which begins after the near-extinction event, and converts carbon-rich particles to mixed particle types at a lower temperature and a slower rate; and (2b) decarburization of ash -- the removal of residual carbon inclusions from inorganic (ash) frameworks in the very late stages of combustion. This latter process can be extremely slow, requiring over an order of magnitude more time than the primary rapid combustion stage. For particles with very little ash, the loss of global reactivity leading to early near-extinction is clearly related to changes in the carbonaceous char matrix, which evolves over the course of combustion. Current global kinetic models used for the prediction of char combustion rates and carbon burnout in boilers do not predict the asymptotic nature of char combustion. More realistic models accounting for the evolution of char structure are needed to make accurate predictions in the range of industrial interest.« less

  17. Silicon Solar Cell Efficiency Improvement Employing the Photoluminescent, Down-Shifting Effects of Carbon and CdTe Quantum Dots (Open Access Publisher’s Version)

    DTIC Science & Technology

    2016-03-21

    ORIGINAL PAPER Silicon solar cell efficiency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots Elias...smaller influence on solar cell performance, they are con- sidered to be a more attractive option due to their afford- ability and minimal impact in the...Photovoltaics Solar cells Introduction There is a generalized trend to demonstrate higher solar cell efficiency with more affordable devices to promote

  18. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 andmore » CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.« less

  19. The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth

    PubMed Central

    2011-01-01

    Background E. coli B (BL21), unlike E.coli K-12 (JM109) is insensitive to glucose concentration and, therefore, grows faster and produces less acetate than E. coli K-12, especially when growing to high cell densities at high glucose concentration. By performing genomic analysis, it was demonstrated that the cause of this difference in sensitivity to the glucose concentration is the result of the differences in the central carbon metabolism activity. We hypothesized that the global transcription regulator Cra (FruR) is constitutively expressed in E. coli B and may be responsible for the different behaviour of the two strains. To investigate this possibility and better understand the function of Cra in the two strains, cra - negative E. coli B (BL21) and E. coli K-12 (JM109) were prepared and their growth behaviour and gene expression at high glucose were evaluated using microarray and real-time PCR. Results The deletion of the cra gene in E. coli B (BL21) minimally affected the growth and maximal acetate accumulation, while the deletion of the same gene in E.coli K-12 (JM109) caused the cells to stop growing as soon as acetate concentration reached 6.6 g/L and the media conductivity reached 21 mS/cm. ppsA (gluconeogenesis gene), aceBA (the glyoxylate shunt genes) and poxB (the acetate producing gene) were down-regulated in both strains, while acs (acetate uptake gene) was down-regulated only in E.coli B (BL21). These transcriptional differences had little effect on acetate and pyruvate production. Additionally, it was found that the lower growth of E. coli K-12 (JM109) strain was the result of transcription inhibition of the osmoprotectant producing bet operon (betABT). Conclusions The transcriptional changes caused by the deletion of cra gene did not affect the activity of the central carbon metabolism, suggesting that Cra does not act alone; rather it interacts with other pleiotropic regulators to create a network of metabolic effects. An unexpected outcome of this work is the finding that cra deletion caused transcription inhibition of the bet operon in E. coli K-12 (JM109) but did not affect this operon transcription in E. coli B (BL21). This property, together with the insensitivity to high glucose concentrations, makes this the E. coli B (BL21) strain more resistant to environmental changes. PMID:21718532

  20. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressedmore » genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.« less

  1. 46 CFR 34.15-35 - Enclosure openings-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...

  2. 46 CFR 34.15-35 - Enclosure openings-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...

  3. 46 CFR 34.15-35 - Enclosure openings-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...

  4. 46 CFR 34.15-35 - Enclosure openings-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...

  5. 46 CFR 34.15-35 - Enclosure openings-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...

  6. Sediment texture and metal contamination in the Venice Lagoon (Italy): A snapshot before the installation of the MOSE system

    NASA Astrophysics Data System (ADS)

    Zonta, Roberto; Botter, Margherita; Cassin, Daniele; Bellucci, Luca Giorgio; Pini, Roberto; Dominik, Janusz

    2018-05-01

    Sediments of the Venice Lagoon down to 50 cm depth were investigated to assess sediment texture and metal contamination status, before the construction and activation of the MOSE system, which is intended to prevent the periodical flood events affecting the lagoon and the city of Venice. 380 cores were collected in shallow-water areas of the lagoon, and analysed along their vertical profile to determine grain-size distribution and concentrations of some major and trace elements (Al, As, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn), total carbon and organic carbon. Radionuclide analyses (137Cs, 210Pb) were performed on 15 cores in an attempt to establish sediment chronology and determine radionuclide inventories in erosional and depositional areas. On the whole-lagoon scale, strong depletion of particles <31 μm in diameter (from medium silt to clay fractions) was observed in sediments down to 10 cm depth in comparison to deeper layers. This depletion characterised both erosional and depositional areas, and may be caused by increased water dynamics and resuspension of sediment due to anthropogenic activities. The apparent sediment accumulation rate determined with 210Pbxs in depositional areas was estimated at 0.2-0.4 cm y-1. In the majority of cores, 210Pbxs inventories were lower than expected from atmospheric fallout, suggesting its export along with fine particles. The different sediment characteristics in terms of grain-size distribution and organic carbon content observed in the upper layer with respect to the deeper ones reflect the modification of the sedimentary balance in recent years. The loss of fine particles, even from sediments in depositional areas of the northern part of the lagoon, may herald changes in local sediment texture leading to a further depletion of morphodiversity, which in turn may lead to the reduction or loss of important lagoon habitats. On the whole-lagoon scale, the prevalently lithogenic elements (Al, As, Cr, Fe, Mn, Ni) decreased towards the top of the cores, reflecting the depletion of fine particles in the upper sediment layer due to winnowing in non-confined lagoon areas. In contrast, partly anthropogenic elements (Cu, Hg, Pb, Zn) increased up to the subsurface sediment layers (5-10 and/or 10-20 cm) as an effect of increasing pollutant inputs until a certain time in the past. Enrichment Factors (EF) were calculated from 9 cores, comparing concentrations in the "pre-industrial" (>100 years ago) and recent (surface layer, 0-5 cm) sediments. The mostly lithogenic elements were not enriched (EF ˜ 1), whereas the partly anthropogenic elements showed slight (Cu and Pb, EF ˜ 1.2) to significant (Hg and Zn, EF ˜ 2) enrichment. The shallow waters on the landward side (particularly close to freshwater inputs), the area nearby the industrial district of Porto Marghera and a small zone adjacent to the city of Chioggia were identified as the main pollutant accumulation sites. Mercury was the only element potentially harmful for aquatic life. Its concentration in the biologically active surface sediment layer (0-5 cm) exceeded the NOAA Effects Range-Median (ERM) value in 27% of samples, corresponding to 20% of the shallow-water surface area. The collected data set represents a valuable reference for monitoring the impact of the construction and operation of the MOSE system on the sediment features of the Venice Lagoon.

  7. Lethal and sublethal responses of native mussels (Unionidae: Lampsilis siliquoidea and L. higginsii) to elevated carbon dioxide

    USGS Publications Warehouse

    Waller, Diane L.; Bartsch, Michelle; Bartsch, Lynn; Jackson, Craig

    2018-01-01

    Levels of carbon dioxide (CO2) that have been proposed for aquatic invasive species (AIS) control [24 000 – 96 000 µatm partial pressure CO2 (PCO2); 1 atm = 101.325 kPa] were tested on juvenile mussels, the Fatmucket (Lampsilis siliquoidea) and the U.S. federally endangered Higgins Eye (L. higginsii). A suite of responses (survival, growth, behavior, and gene expression) were measured after 28-d exposure and 14-d postexposure to CO2. The 28-d LC20 (lethal concentration to 20%) was lower for L. higginsii (31 800 µatm PCO2, 95% confidence interval (CI) 15 000 – 42 800 µatm) than for L. siliquoidea (58 200 µatm PCO2, 95% CI 45 200 – 68 100 µatm). Treatment-related reductions occurred in all measures of growth and condition. Expression of chitin synthase, key for shell formation, was down-regulated at 28-d exposure. Carbon dioxide caused narcotization and unburial of mussels, behaviors that could increase mortality by predation and displacement. We conclude that survival and growth of juvenile mussels could be reduced by continuous exposure to elevated CO2, but recovery may be possible in shorter duration exposure.

  8. Observation of hydration of single, modified carbon aerosols

    NASA Technical Reports Server (NTRS)

    Wyslouzil, B. E.; Carleton, K. L.; Sonnenfroh, D. M.; Rawlins, W. T.; Arnold, S.

    1994-01-01

    We have compared the hydration behavior of single carbon particles that have been treated by exposure to gaseous H2SO4 with that of untreated particles. Untreated carbon particles did not hydrate as the relative humidity varied from 0 to 80% at 23 C. In contrast, treated particles hydrated under subsaturation conditions; mass increases of up to 30% were observed. The mass increase is consistent with sulfuric acid equilibration with the ambient relative humidity in the presence of inert carbon. For the samples studied, the average amount of absorbed acid was 14% +/- 6% by weight, which corresponds to a surface coverage of approximately 0.1 monolayer. The mass fraction of surface-absorbed acid is comparable to the soluble mass fraction observed by Whitefield et al. (1993) in jet aircraft engine aerosols. Estimates indicate this mass fraction corresponds to 0.1% of the available SO2 exiting an aircraft engine ending up as H2SO4 on the carbon aerosol. If this heterogeneous process occurs early enough in the exhaust plume, it may compete with homogeneous nucleation as a mechanism for producing sulfuric acid rich aerosols.

  9. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    PubMed

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  10. Multilayer ultra-high-temperature ceramic coatings

    DOEpatents

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  11. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  12. Precipitation Rate Investigation on synthesis of precipitated calcium carbonate

    NASA Astrophysics Data System (ADS)

    Sulistiyono, E.; Handayani, M.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    Study on the formation of precipitated calcium carbonate from natural limestone Sukabumi with the influenced of various parameters such as precipitation rate, concentration of CaCl2 and amplitudes were investigated. We also investigated the result with the precipitated calcium carbonate from Merck (p.a) for comparison. The higher concentration of CaCl2 would give effect to the lower of the precipitation rate. It was observed that precipitation rate of calcium carbonate from limestone Sukabumi at concentration of 0.08 molar was 3.66 cm/minutes and showing the optimum condition, while the precipitation rate of calcium carbonate Merck at the concentration 0.08 molar was 3.53 cm/minutes. The characterization of precipitated calcium carbonate was done using X-ray fluorescence (XRF) and scanning electron microscope (SEM). The characterization using XRF showed that CaO content of precipitated calcium carbonate from natural limestone Sukabumi had high purity of 99.16%. The particle distribution using scanning electron microscope (SEM) showed that precipitated calcium carbonate from natural limestone Sukabumi revealed 1.79 µm – 11.46 µm, meanwhile the particle distribution of precipitated calcium carbonate Merck showed larger particles with the size of 3.22 µm – 10.68 µm.

  13. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  14. Quantitative proteomic analysis of the Salmonella-lettuce interaction

    PubMed Central

    Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L; Snow, Daniel D; Hodges, Laurie; Li, Xu

    2014-01-01

    Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens. PMID:24512637

  15. Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ni, Dan; Sun, Wang; Xie, Liqiang; Fan, Qinghua; Wang, Zhenhua; Sun, Kening

    2018-01-01

    Bismuth oxyfluoride impregnated CMK-3 nanocomposite is synthesized by a facile nanocasting approach. Mesoporous carbon CMK-3 can suppress the aggregation and growth of bismuth oxyfluoride particles and offer rapid electron and Li ion passageways. Bismuth oxyfluoride nanoparticles are embedded in the mesoporous channels with particle size less than 20 nm. The bismuth oxyfluoride@CMK-3 nanocomposite maintains 148 mA h g-1 after 40 cycles with the capacity from both the bismuth oxyfluoride and the functional groups on the mesoporous carbon. The hybrid with confined bismuth oxyfluoride nanoparticles, conductive carbon network, and oxygen functional groups on the carbon matrix exhibits higher capacity and cycling stability than bulk bismuth oxyfluoride particles when used as lithium ion batteries cathode.

  16. Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2008-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a third component of micro-sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  17. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  18. Modeling Deuterium Release from Plasma Implanted Surfaces

    NASA Astrophysics Data System (ADS)

    Grossman, A. A.; Doerner, R.; Hirooka, Y.; Luckhardt, S. C.; Sze, F. C.

    1997-11-01

    When energetic ions or atoms of hydrogen isotopes interact with a solid surface, they may either be reflected or they may be implanted, a slowing down process within the subsurface layer of the energetic particles to thermal velocities. Subsequent interactions of the thermalized particles are those of diffusion and trapping within the material and the possibility of re-emission from the solid via desorption. The diffusion equation and its boundary conditions govern the transport of this thermalized hydrogen within the material. Diffusivities obey an Arrhenius law over as much as fourteen orders of magnitude for the temperature range of interest for a fusion reactor first wall and divertor plate. Using TMAP4, a variety of diffusion models are set up for comparison with experiments on PISCES which involve implantation and desorption of deuterium from beryllium, tungsten, carbon and boron carbide. The parameters and characteristics of the models which give the closest fit to the experimental data are reported. At the high fluences of these experiments, it is necessary to take into account saturation effects during implantation using a separate implantation layer with thickness given by TRIM and a higher trapping to lattice ratio than in the bulk in order to model the experimental data.

  19. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, James; Decker, David; Patterson, Gary

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC)more » were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical reactions. The DIC carbon-14 corrected ages can be further constrained by measuring the carbon isotopes of DOC. Because the only source of organic carbon in aquifers is almost always greater than 40,000 years old, any organic carbon that may be added to the groundwater would contain no carbon-14. Thus, ground-water ages determined by carbon isotopes of DOC should be maximum ages that can be used to constrain DIC corrected ages.« less

  20. 21 CFR Appendix A to Subpart A of... - List of Applicable Laws, Regulations, and Administrative Provisions

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... down by law, regulation, or administrative action relating to proprietary medicinal products as... provisions laid down by law, regulation or administrative action relating to proprietary medicinal products... approximation of the laws of the Member States relating to veterinary medicinal products, as widened and amended...

Top