Science.gov

Sample records for carbon reduction cycle

  1. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively. PMID:26923104

  2. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-02-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively.

  3. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach

    PubMed Central

    MacLeod, John K.

    2006-01-01

    14C-Labelled octulose phosphates were formed during photosynthetic 14CO2 fixation and were measured in spinach leaves and chloroplasts. Because mono- and bisphosphates of d-glycero-d-ido-octulose are the active 8-carbon ketosugar intermediates of the L-type pentose pathway, it was proposed that they may also be reactants in a modified Calvin–Benson–Bassham pathway reaction scheme. This investigation therefore initially focussed only on the ido-epimer of the octulose phosphates even though 14C-labelled d-glycero-d-altro-octulose mono- and bisphosphates were also identified in chloroplasts and leaves. 14CO2 predominantly labelled positions 5 and 6 of d-glycero-d-ido-octulose 1,8-P2 consistent with labelling predictions of the modified scheme. The kinetics of 14CO2 incorporation into ido-octulose was similar to its incorporation into some traditional intermediates of the path of carbon, while subsequent exposure to 12CO2 rapidly displaced the 14C isotope label from octulose with the same kinetics of label loss as some of the confirmed Calvin pathway intermediates. This is consistent with octulose phosphates having the role of cyclic intermediates rather than synthesized storage products. (Storage products don’t rapidly exchange isotopically labelled carbons with unlabelled CO2.) A spinach chloroplast extract, designated stromal enzyme preparation (SEP), catalysed and was used to measure rates of CO2 assimilation with Calvin cycle intermediates and octulose and arabinose phosphates. Only pentose (but not arabinose) phosphates and sedoheptulose 7-phosphate supported CO2 fixation at rates in excess of 120 μmol h−1 mg−1 Chl. Rates for octulose, sedoheptulose and fructose bisphosphates, octulose, hexose and triose monophosphates were all notably less than the above rate and arabinose 5-phosphate was inactive. Altro-octulose phosphates were more active than phosphate esters of the ido-epimer. The modified scheme proposed a specific phosphotransferase and SEP

  4. Seeing the Carbon Cycle

    ERIC Educational Resources Information Center

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  5. The carbon cycle revisited

    NASA Technical Reports Server (NTRS)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  6. CARBON DIOXIDE REDUCTION SYSTEM.

    DTIC Science & Technology

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  7. The Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Wigley, T. M. L.; Schimel, D. S.

    2005-08-01

    Reducing carbon dioxide (CO2) emissions is imperative to stabilizing our future climate. Our ability to reduce these emissions combined with an understanding of how much fossil-fuel-derived CO2 the oceans and plants can absorb is central to mitigating climate change. In The Carbon Cycle, leading scientists examine how atmospheric carbon dioxide concentrations have changed in the past and how this may affect the concentrations in the future. They look at the carbon budget and the "missing sink" for carbon dioxide. They offer approaches to modeling the carbon cycle, providing mathematical tools for predicting future levels of carbon dioxide. This comprehensive text incorporates findings from the recent IPCC reports. New insights, and a convergence of ideas and views across several disciplines make this book an important contribution to the global change literature.

  8. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought.

    PubMed

    Cornic, Gabriel; Fresneau, Chantal

    2002-06-01

    Stomatal closure can explain the inhibition of net CO2 uptake by a leaf subjected to a mild drought: the photosynthetic apparatus appears resistant to lack of water. Changes in both the water content of leaves maintained in a constant environment and the ambient CO2 molar fraction during measurements on well-hydrated leaves lead to similar effects on net CO2 uptake and whole chain electron transport as estimated by leaf chlorophyll fluorescence measurements. In particular, it is shown that photosystem II (PSII) functioning and its regulation are not qualitatively changed during desiccation and that the variations in PSII photochemistry can simply be understood by changes in substrate availability in this condition. Moreover, an analysis of the literature shows that when inhibition of net CO2 uptake by C3 leaves under drought (Phaseolus vulgaris L., Helianthus annus L. and Solanum tuberosum L.) was lower than 80 %, elevated CO2 completely restored the photosynthetic capacity. The CO2 molar fraction in the chloroplasts declines as stomata close in drying leaves. As a consequence, in C3 plants, ribulose-1,5-bisphosphate oxygenation increases and becomes the main sink for photosynthetic electrons. Depending on the prevailing photon flux density, the O2 uptake through photorespiratory activity can entirely replace carbon dioxide as an electron acceptor, or not. The rate of the Mehler reaction remains low and unchanged during desiccation. However, drought could also involve CO2-sensitive modification of the photosynthetic metabolism depending on plant growth conditions and possibly also on plant species.

  10. Photosynthetic Carbon Reduction and Carbon Oxidation Cycles are the Main Electron Sinks for Photosystem II Activity During a Mild Drought

    PubMed Central

    CORNIC, GABRIEL; FRESNEAU, CHANTAL

    2002-01-01

    Stomatal closure can explain the inhibition of net CO2 uptake by a leaf subjected to a mild drought: the photosynthetic apparatus appears resistant to lack of water. Changes in both the water content of leaves maintained in a constant environment and the ambient CO2 molar fraction during measurements on well‐hydrated leaves lead to similar effects on net CO2 uptake and whole chain electron transport as estimated by leaf chlorophyll fluorescence measurements. In particular, it is shown that photosystem II (PSII) functioning and its regulation are not qualitatively changed during desiccation and that the variations in PSII photochemistry can simply be understood by changes in substrate availability in this condition. Moreover, an analysis of the literature shows that when inhibition of net CO2 uptake by C3 leaves under drought (Phaseolus vulgaris L., Helianthus annus L. and Solanum tuberosum L.) was lower than 80 %, elevated CO2 completely restored the photosynthetic capacity. The CO2 molar fraction in the chloroplasts declines as stomata close in drying leaves. As a consequence, in C3 plants, ribulose‐1,5‐bisphosphate oxygenation increases and becomes the main sink for photosynthetic electrons. Depending on the prevailing photon flux density, the O2 uptake through photorespiratory activity can entirely replace carbon dioxide as an electron acceptor, or not. The rate of the Mehler reaction remains low and unchanged during desiccation. However, drought could also involve CO2‐sensitive modification of the photosynthetic metabolism depending on plant growth conditions and possibly also on plant species. PMID:12102514

  11. The Contemporary Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  12. Terrestrial Carbon Cycle Variability.

    PubMed

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y (-1)) with respect to a large and uncertain background (123 +/- 4 Pg-C y (-1)), and

  13. Terrestrial Carbon Cycle Variability

    PubMed Central

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1), and

  14. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment.

    PubMed

    Brando, Paulo M; Nepstad, Daniel C; Davidson, Eric A; Trumbore, Susan E; Ray, David; Camargo, Plínio

    2008-05-27

    The Amazon Basin experiences severe droughts that may become more common in the future. Little is known of the effects of such droughts on Amazon forest productivity and carbon allocation. We tested the prediction that severe drought decreases litterfall and wood production but potentially has multiple cancelling effects on belowground production within a 7-year partial throughfall exclusion experiment. We simulated an approximately 35-41% reduction in effective rainfall from 2000 through 2004 in a 1ha plot and compared forest response with a similar control plot. Wood production was the most sensitive component of above-ground net primary productivity (ANPP) to drought, declining by 13% the first year and up to 62% thereafter. Litterfall declined only in the third year of drought, with a maximum difference of 23% below the control plot. Soil CO2 efflux and its 14C signature showed no significant treatment response, suggesting similar amounts and sources of belowground production. ANPP was similar between plots in 2000 and declined to a low of 41% below the control plot during the subsequent treatment years, rebounding to only a 10% difference during the first post-treatment year. Live aboveground carbon declined by 32.5Mgha-1 through the effects of drought on ANPP and tree mortality. Results of this unreplicated, long-term, large-scale ecosystem manipulation experiment demonstrate that multi-year severe drought can substantially reduce Amazon forest carbon stocks.

  15. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema

    Smit, Berend

    2016-07-12

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  16. [Forest carbon cycle model: a review].

    PubMed

    Wang, Ping

    2009-06-01

    Forest carbon cycle is one of the important items in the research of terrestrial carbon cycle, while carbon cycle model is an important means in studying the carbon cycle mechanisms of forest ecosystem and in estimating carbon fluxes. Based on the sum-up of main carbon cycle models, this paper classified the forest carbon cycle models into two categories, i.e., patch scale forest carbon cycle models and regional scale terrestrial carbon cycle models, with their features commented. The future development trend in the research of forest carbon cycle models in China was discussed.

  17. Material Flows and Carbon Cycles

    NASA Astrophysics Data System (ADS)

    Worrell, E.

    2003-12-01

    The industrial sector emits almost 43 percent of the global anthropogenic carbon dioxide emissions to produce materials and products. Furthermore, energy is used to move materials and products and process the waste. Hence, a large amount of energy is consumed and CO2 is emitted to sustain our materials system. Until recently, studies investigating mitigation options focused on changes in the energy system. For industrial processes most studies evaluate how the current materials system can be maintained producing fewer greenhouse gas emissions. Three elements of a strategy to improve the long-term materials productivity are the reduction of dissipative uses of non-biodegradable materials, secondly, the re-design of products to use less material or design for re-use or recycling, and thirdly, develop more efficient technologies for material conversion and recycling. This will reduce or eliminate the need to extract virgin materials from the environment, and reduce CO2 emissions from the energy-intensive production processes. To assess measures to reduce materials consumption, fossil fuels consumption and CO2 emissions, detailed understanding of the material system is needed. The lifecycle of materials has to be investigated including all branches of industry with all the inputs and outputs. We start with a discussion of materials and the carbon cycle focusing on the contribution of materials to anthropogenic carbon flows. We discuss CO2 emissions from energy use in materials extraction and production, fossil (e.g. plastics) and biomass carbon (e.g. lumber, paper) used as feedstock of materials, and mineral sources (e.g. cement). We discuss opportunities to reduce CO2 emissions by improving the efficiency with which society uses materials through product design, material substitution, product reuse and material recycling.

  18. Product development cycle time reduction

    NASA Astrophysics Data System (ADS)

    Farran, Robin

    1992-05-01

    We are facing here today the key issues that face us in the competitive environment. North American companies are struggling to compete in the global marketplace. Gone are the days when presence ensured success. Then, sales and earnings were guaranteed. Today the competition is intense. Many manufacturing and service companies are no longer competitive. Traditionally, manufacturing companies have created the most wealth for the community and economy. Losing this ability to create wealth is tragic and unnecessary. A company can only be successful by focusing on customer satisfaction at competitive costs. Revenue growth and earnings growth require a continuous stream of products that anticipate the customers' needs, result from shorter and shorter innovation cycles, continually improve in quality, and are produced at improved costs on each cycle. The best opportunities for increased quality and decreased costs are with new products. Sure, work on quality and costs everyday. The biggest changes, however, will come through the new product development cycle. We must improve our development processes to provide leadership products which result in high levels of customer satisfaction. This is a prerequisite for business success. When presence in the marketplace was a virtual guarantee of success for a North American company, technology tended to drive the products, and the customers bought virtually everything that was produced. Functional excellence was stressed within companies ... and that was enough. Effective planning processes were not a prerequisite for success. Today success demands highly developed business research and planning processes, and functional excellence combined with organizational capabilities that ensure commercialization excellence.

  19. Carbon Dioxide (Reduction)

    SciTech Connect

    Fujita, Etsuko

    2000-01-12

    The twin problems of global warming, caused by an increase in atmospheric carbon dioxide (CO2) concentrations, and limited fossil fuel resources have stimulated research in the utilization of CO2. These problems would be partially alleviated by the development of artificial photochemical systems that could economically fix CO2 into fuels or useful chemicals. During the past one and a half decades, intensive efforts have been directed toward the photochemical production of carbon monoxide (CO) and formic acid (HCOOH) from CO2. These systems have several common elements: they all contain photosensitizers (such as metalloporphyrins, ruthenium or rhenium complexes with bipyridine), electron mediators or catalysts, and sacrificial electron donors (such as tertiary amines or ascorbic acid). Recent progress along these lines has resulted in advances in our understanding of the interaction of CO2 molecules with metal complexes, and the factors controlling the efficient storage of solar energy in the form of reduced carbon compounds.

  20. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  1. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  2. Uncovering the Neoproterozoic carbon cycle.

    PubMed

    Johnston, D T; Macdonald, F A; Gill, B C; Hoffman, P F; Schrag, D P

    2012-02-29

    Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10-100 million years) characterized by δ(13)C in carbonate (δ(13)C(carb)) enriched to more than +5 per mil. Classically, δ(13)C(carb) is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments, which can be linked to oxygen accumulation through the stoichiometry of primary production. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of δ(13)C(carb) and δ(13)C in organic carbon (δ(13)C(org)) will covary, offset by the fractionation imparted by primary production. The documentation of several Neoproterozoic δ(13)C(carb) excursions that are decoupled from δ(13)C(org), however, indicates that other mechanisms may account for these excursions. Here we present δ(13)C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple δ(13)C(carb) excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret δ(13)C(carb) anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of

  3. Carbon Cycling with Nuclear Power

    NASA Astrophysics Data System (ADS)

    Lackner, Klaus S.

    2011-11-01

    Liquid hydrocarbon fuels like gasoline, diesel or jet fuel are the most efficient ways of delivering energy to the transportation sector, in particular cars, ships and airplanes. Unfortunately, their use nearly unavoidably leads to the emission of carbon dioxide into the atmosphere. Unless an equivalent amount is removed from the air, the carbon dioxide will accumulate and significantly contribute to the man-made greenhouse effect. If fuels are made from biomass, the capture of carbon dioxide is a natural part of the cycle. Here, we discuss technical options for capturing carbon dioxide at much faster rates. We outline the basic concepts, discuss how such capture technologies could be made affordable and show how they could be integrated into a larger system approach. In the short term, the likely source of the hydrocarbon fuels is oil or gas; in the longer term, technologies that can provide energy to remove oxygen from carbon dioxide and water molecules and combine the remaining components into liquid fuels make it possible to recycle carbon between fuels and carbon dioxide in an entirely abiotic process. Here we focus on renewable and nuclear energy options for producing liquid fuels and show how air capture combined with fuel synthesis could be more economic than a transition to electric cars or hydrogen-fueled cars.

  4. An introduction to global carbon cycle management

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Parker, Lauren; Huntzinger, Deborah N.

    2009-01-01

    Past and current human activities have fundamentally altered the global carbon cycle. Potential future efforts to control atmospheric CO2 will also involve significant changes in the global carbon cycle. Carbon cycle scientists and engineers now face not only the difficulties of recording and understanding past and present changes but also the challenge of providing information and tools for new management strategies that are responsive to societal needs. The challenge is nothing less than managing the global carbon cycle.

  5. Reductive Pentose Cycle and Formate Assimilation in Rhodopseudomonas palustris

    PubMed Central

    Stokes, Jean E.; Hoare, Derek S.

    1969-01-01

    Rhodopseudomonas palustris assimilated formate autotrophically as carbon dioxide and hydrogen arising from the activity of the formic hydrogenlyase system. Kinetic analyses of cell suspensions pulse-labeled with 14C-formate or 14C-bicarbonate showed similar distributions of incorporated radioactivity. In both cases phosphate esters were the first assimilation products. Ribulose diphosphate carboxylase, phosphoribose isomerase, and phosphoribulokinase, characteristic enzymes of the reductive pentose cycle, were present in extracts of cells grown on formate. PMID:5354954

  6. The Majority of Free-Living Autotrophic Bacteria use the Reductive TCA Cycle for Carbon Fixation at Deep-Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Campbell, B. J.; Cary, C.

    2003-12-01

    Deep-sea hydrothermal vents support large micro and macroscopic communities, without the input of photosynthesis. Autotrophic production at these vents is based on hydrothermal vent fluid chemistry. Primary production has been thought to occur mainly via hydrogen sulfide oxidation through the Calvin-Benson pathway, as measured by the presence of Rubisco in endosymbionts of several invertebrate hosts. Recently, we characterized two fosmids from a large insert library of the epsilon Proteobacterial episymbionts of Alvinella pompejana. Both contained sequences encoding ATP citrate lyase, a key enzyme in the reverse TCA cycle, an alternate carbon dioxide fixation pathway. Previous investigators have demonstrated the dominance of the epsilon subdivision in the free-living bacterial communities at hydrothermal vents. Based on these results, our working hypothesis is: The rTCA cycle is the dominant pathway for carbon fixation in the free-living bacterial communities at hydrothermal vents. A selection of free-living bacterial communities from various geographic locations (9N, East Pacific Rise and Guaymas Basin) were screened for the presence, diversity and expression (via RT-PCR) of Rubisco (forms I and II) and ATP citrate lyase. Our results indicate that the ATP citrate lyase gene is diverse and is consistently expressed in several types of vent communities. The two forms of Rubisco are not consistently present or expressed in the same environments. These results indicate that chemoautotrophic production in the free-living bacterial communities at deep-sea hydrothermal vents is dominated by bacteria that utilize the rTCA cycle, and parallels the phylogenetic dominance of members of the epsilon subdivision of Proteobacteria.

  7. Biogeochemical Cycles of Carbon and Sulfur

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.

  8. Bioenergy, the Carbon Cycle, and Carbon Policy

    NASA Astrophysics Data System (ADS)

    Kammen, D. M.

    2003-12-01

    The evolving energy and land-use policies across North America and Africa provide critical case studies in the relationship between regional development, the management of natural resources, and the carbon cycle. Over 50 EJ of the roughly 430 EJ total global anthropogenic energy budget is currently utilized in the form of direct biomass combustion. In North America 3 - 4 percent of total energy is derived from biomass, largely in combined heat and power (CHP) combustion applications. By contrast Africa, which is a major consumer of 'traditional' forms of biomass, uses far more total bioenergy products, but largely in smaller batches, with quantities of 0.5 - 2 tons/capita at the household level. Several African nations rely on biomass for well over 90 percent of household energy, and in some nations major portions of the industrial energy supply is also derived from biomass. In much of sub-Saharan Africa the direct combustion of biomass in rural areas is exceeded by the conversion of wood to charcoal for transport to the cities for household use there. There are major health, and environmental repercussions of these energy flows. The African, as well as Latin American and Asian charcoal trade has a noticeable signature on the global greenhouse gas cycles. In North America, and notably Scandinavia and India as well, biomass energy and emerging conversion technologies are being actively researched, and provide tremendous opportunities for the evolution of a sustainable, locally based, energy economy for many nations. This talk will examine aspects of these current energy and carbon flows, and the potential that gassification and new silvicultural practices hold for clean energy systems in the 21st century. North America and Africa will be examined in particular as both sources of innovation in this field, and areas with specific promise for application of these energy technologies and biomass/land use practices to further energy and global climate management.

  9. Redox buffering by natural organic matter in microbial reduction and O2 re-oxidation cycles: Assessment of reversibility and sustainability, and implications for carbon cycling in temporarily anoxic environments

    NASA Astrophysics Data System (ADS)

    Klüpfel, Laura; Piepenbrock, Anette; Kappler, Andreas; Sander, Michael

    2013-04-01

    Natural organic matter contains redox-active functional moieties, including quinone/hydroquinone groups, that play an important role as redox mediators and buffers in many biogeochemical and pollutant electron transfer reactions. In temporarily anoxic environments, such as paddy and wetland soils, NOM may serve as terminal electron acceptor in anaerobic microbial respiration. Reduction of NOM may competitively suppress electron transfer to inorganic electron acceptors, including to CO2 in hydrogenotrophic methanogenesis. Upon re-aeration, reduced NOM moieties may become re-oxidized by reacting with O2. Previous studies independently demonstrated microbial NOM reduction and partial to complete O2 re-oxidation of (electro-)chemically reduced NOM. Changes in NOM redox state over successive microbial reduction and O2 oxidation cycles have, however, not been explicitly investigated, despite the importance of such NOM redox cycling in temporarily anoxic systems. The objectives of this work were to assess (i) electron transfer reversibility to/from NOM over microbial reduction and O2 re-oxidation cycles, (ii) the sustainability of electron transfer over repeated redox cycles, and (iii) to elucidate the thermodynamics of microbial NOM reduction. To this end, we quantified the changes in redox states of four humic acids (HAs) over successive cycles of reduction by NOM respiring bacteria, the facultative anaerobe Shewanella oneidensis MR-1, and subsequent re-oxidation by O2. The HAs were chosen as models for NOM and were isolated from terrestrial and aquatic sources. Changes in the redox states of HAs were quantified by analytical electrochemistry, which included the electron accepting and donating capacities of HA (EAC and EDC; i.e., the number of electrons accepted and donated by a given mass of HA) and the redox potentials, Eh, of HAs. Anoxic incubations of HAs with S. oneidensis and lactate as electron donor resulted in extensive microbial HA reduction, as evidenced from

  10. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.

    PubMed

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2016-10-01

    Modification of CNTs with hydroxyl group promotes their applications in biomedical area. However, the impact of hydroxylation on their biocompatibility is far from being completely understood. In this study, we carried out a comprehensive evaluation of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on the human normal liver L02 cell line, and compared it with that of pristine multi-walled carbon nanotubes (p-MWCNTs). Results demonstrated that compared with p-MWCNTs, MWCNTs-OH induced significantly lower oxidative stress as indicated by the level of intracellular antioxidant glutathione (GSH), subsequently lead to less cell membrane damage as demonstrated by lactate dehydrogenase (LDH) leakage assay, and showed slightly decreased arrestment of cell cycle distribution at G0/G1. More interestingly, MWCNTs-OH exhibited significantly lower tendency to activate caspase-8, a key molecule involved in the extrinsic apoptotic pathway. All these in vitro results demonstrated that hydroxylation of MWCNTs enhanced their biocompatibility compare with p-MWCNTs.

  11. Changing carbon cycle: a global analysis

    SciTech Connect

    Trabalka, J.R.; Reichle, D.E.

    1986-01-01

    An attempt is made to examine current knowledge about the fluxes, sources, and sinks in the global carbon cycle, as well as our ability to predict changes in atmospheric CO/sub 2/ concentration resulting from anthropogenic influences. The reader will find authoritative discussions of: past and expected releases of CO/sub 2/ from fossil fuels; the historical record and implications of atmospheric CO/sub 2/ increases; isotopic and geological records of past carbon cycle processes; the role of the oceans in the global carbon cycle; the influence of the world biosphere on changes in atmospheric CO/sub 2/ levels; and, evidence linking the components of the global carbon cycle.

  12. Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change.

    NASA Astrophysics Data System (ADS)

    Matthews, H. Damon; Weaver, Andrew J.; Meissner, Katrin J.

    2005-05-01

    The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When forced by historical emissions of CO2 from fossil fuels and land-use change, the coupled climate-carbon cycle model accurately reproduces historical atmospheric CO2 trends, as well as terrestrial and oceanic uptake for the past two decades. Under six twenty-first-century CO2 emissions scenarios, both terrestrial and oceanic carbon sinks continue to increase, though terrestrial uptake slows in the latter half of the century. Climate-carbon cycle feedbacks are isolated by comparing a coupled model run with a run where climate and the carbon cycle are uncoupled. The modeled positive feedback between the carbon cycle and climate is found to be relatively small, resulting in an increase in simulated CO2 of 60 ppmv at the year 2100. Including non-CO2 greenhouse gas forcing and increasing the model's climate sensitivity increase the effect of this feedback to 140 ppmv. The UVic model does not, however, simulate a switch from a terrestrial carbon sink to a source during the twenty-first century, as earlier studies have suggested. This can be explained by a lack of substantial reductions in simulated vegetation productivity due to climate changes.

  13. Dynamics of the Neoproterozoic carbon cycle.

    PubMed

    Rothman, Daniel H; Hayes, John M; Summons, Roger E

    2003-07-08

    The existence of unusually large fluctuations in the Neoproterozoic (1,000-543 million years ago) carbon-isotopic record implies strong perturbations to the Earth's carbon cycle. To analyze these fluctuations, we examine records of both the isotopic content of carbonate carbon and the fractionation between carbonate and marine organic carbon. Together, these are inconsistent with conventional, steady-state models of the carbon cycle. The records can be well understood, however, as deriving from the nonsteady dynamics of two reactive pools of carbon. The lack of a steady state is traced to an unusually large oceanic reservoir of organic carbon. We suggest that the most significant of the Neoproterozoic negative carbon-isotopic excursions resulted from increased remineralization of this reservoir. The terminal event, at the Proterozoic-Cambrian boundary, signals the final diminution of the reservoir, a process that was likely initiated by evolutionary innovations that increased export of organic matter to the deep sea.

  14. Authigenic Carbonate and the History of the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Schrag, Daniel P.; Higgins, John. A.; Macdonald, Francis A.; Johnston, David T.

    2013-02-01

    We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O2 or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.

  15. The Role of Carbon Cycle Observations and Knowledge in Carbon Management

    SciTech Connect

    Dilling, Lisa; Doney, Scott; Edmonds, James A.; Gurney, Kevin R.; Harriss, Robert; Schimel, David; Stephens, Britton; Stokes, Gerald M.

    2003-08-14

    Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere, leading to potential changes in climate. The current challenge facing society is to develop options for future management of the carbon cycle. A variety of approaches has been suggested: direct reduction of emissions, deliberate manipulation of the natural carbon cycle to enhance sequestration, and capture and isolation of carbon from fossil fuel use. Policy development to date has laid out some of the general principles to which carbon management should adhere. These can be summarized as: how much carbon is stored, by what means, and for how long. To successfully manage carbon for climate purposes requires increased understanding of carbon cycle dynamics and improvement to the scientific capabilities available for measurement as well as policy needs. Specific needs for scientific information to underpin carbon cycle management decisions are not yet broadly known. A stronger dialogue between decision makers and scientists must be developed to foster improved application of scientific knowledge to decisions. This paper reviews the current state of knowledge of the carbon cycle and measurement capabilities, with an emphasis on the continental-scale, and its relevance to carbon sequestration goals.

  16. [Carbon balance analysis of corn fuel ethanol life cycle].

    PubMed

    Zhang, Zhi-shan; Yuan, Xi-gang

    2006-04-01

    The quantity of greenhouse gas emissions (net carbon emissions) of corn-based fuel ethanol, which is known as an alternative for fossil fuel is an important criteria for evaluating its sustainability. The methodology of carbon balance analysis for fuel ethanol from corn was developed based on principles of life cycle analysis. For the production state of fuel ethanol from summer corn in China, carbon budgets in overall life cycle of the ethanol were evaluated and its main influence factors were identified. It presents that corn-based fuel ethanol has no obvious reduction of carbon emissions than gasoline, and potential improvement in carbon emission of the life cycle of corn ethanol could be achieved by reducing the nitrogen fertilizer and irrigation electricity used in the corn farming and energy consumption in the ethanol conversion process.

  17. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  18. Carbon cycle feedbacks and future climate change.

    PubMed

    Friedlingstein, Pierre

    2015-11-13

    Climate and carbon cycle are tightly coupled on many timescales, from interannual to multi-millennial timescales. Observations always evidence a positive feedback, warming leading to release of carbon to the atmosphere; however, the processes at play differ depending on the timescales. State-of-the-art Earth System Models now represent these climate-carbon cycle feedbacks, always simulating a positive feedback over the twentieth and twenty-first centuries, although with substantial uncertainty. Recent studies now help to reduce this uncertainty. First, on short timescales, El Niño years record larger than average atmospheric CO2 growth rate, with tropical land ecosystems being the main drivers. These climate-carbon cycle anomalies can be used as emerging constraint on the tropical land carbon response to future climate change. Second, centennial variability found in last millennium records can be used to constrain the overall global carbon cycle response to climatic excursions. These independent methods point to climate-carbon cycle feedback at the low-end of the Earth System Models range, indicating that these models overestimate the carbon cycle sensitivity to climate change. These new findings also help to attribute the historical land and ocean carbon sinks to increase in atmospheric CO2 and climate change.

  19. Container Refurbishment Cycle Time Reduction (CTR) Project

    SciTech Connect

    Aloi, t.; anthony, p; blair, t; forester, c; hall, k; hawk, t; gordon, b; johnsen, s; keck, g; clifford, m; reichert, d; rogers, p; richards, w; smallen, p; tilley, e

    2000-05-15

    In mid-1999, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the overall efficiency of the Container Refurbishment process. A cross-functional team was formed by the Industrial Engineering Services group within Product Certification Organization to evaluate the current process and to propose necessary changes for improvement. The CTR team efforts have resulted in increased productivity equaling approximately $450K per year. The effort also significantly reduced the wait time required necessary to start assembly work on the shop floor. Increasing daily production time and identifying delays were key team goals. Following is a brief summary of accomplishments: (A) Productivity Improvements: (1) Reduced Radcon survey time for empty containers: (i) 50% at 9720-3 (ii) 67% at 9204-2 and (iii) 100% at 9212; (2) Eliminated container inspections at 9720-3; (3) Reduced charged time (includes hands-on labor and support functions) per empty container by 25%; (4) Reduced cycle time to refurbish a container by 25%. (Dramatic wait time reduction -Assembly); (5) Reduced the time for 9212 to receive empty, refurbished containers by 67-80%; (6) Reduced the time for 9204-2E to receive empty, refurbished containers from 1 day to immediate; (7) Implemented software to track time charged per container for continuous improvement; (8) Initiated continuous improvement efforts between Workstream experts and Refurbishment personnel, reworded complex Workstream prompts to allow worker data corrections, and reduces time of support groups, Workstream personnel, and Refurbishment personnel; (9) Consolidated refurbished, container warehousing areas, eliminated long travel times to areas outside the protected area portals to an area in the vicinity of the refurbishment area and a process area, benefits are improved container flow and better housekeeping; and (10) improved overall communication of team by flowcharting entire process. B. Annual Cost Savings: $453K

  20. Carbon cycle in advanced coal chemical engineering.

    PubMed

    Yi, Qun; Li, Wenying; Feng, Jie; Xie, Kechang

    2015-08-07

    This review summarizes how the carbon cycle occurs and how to reduce CO2 emissions in highly efficient carbon utilization from the most abundant carbon source, coal. Nowadays, more and more attention has been paid to CO2 emissions and its myriad of sources. Much research has been undertaken on fossil energy and renewable energy and current existing problems, challenges and opportunities in controlling and reducing CO2 emission with technologies of CO2 capture, utilization, and storage. The coal chemical industry is a crucial area in the (CO2 value chain) Carbon Cycle. The realization of clean and effective conversion of coal resources, improving the utilization and efficiency of resources, whilst reducing CO2 emissions is a key area for further development and investigation by the coal chemical industry. Under a weak carbon mitigation policy, the value and price of products from coal conversion are suggested in the carbon cycle.

  1. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  2. Iron, phytoplankton growth, and the carbon cycle.

    PubMed

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (<1 nM) due to the low solubility of iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to

  3. Global Impacts (Carbon Cycle 2.0)

    ScienceCinema

    Gadgil, Ashok [EETD and UC Berkeley

    2016-07-12

    Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  4. Sulfur and carbon cycling in organic-rich marine sediments

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1985-01-01

    Nearshore, continental shelf, and slope sediments are important sites of microbially mediated carbon and sulfur cycling. Marine geochemists investigated the rates and mechanisms of cycling processes in these environments by chemical distribution studies, in situ rate measurements, and steady state kinetic modeling. Pore water chemical distributions, sulfate reduction rates, and sediment water chemical fluxes were used to describe cycling on a ten year time scale in a small, rapidly depositing coastal basin, Cape Lookout Bight, and at general sites on the upper continental slope off North Carolina, U.S.A. In combination with 210 Pb sediment accumulation rates, these data were used to establish quantitative carbon and sulfur budgets as well as the relative importance of sulfate reduction and methanogeneis as the last steps in the degradation of organic matter.

  5. Recuperative supercritical carbon dioxide cycle

    SciTech Connect

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  6. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema

    Alivisatos, Paul

    2016-07-12

    Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  7. Carbon cycle modeling calculations for the IPCC

    SciTech Connect

    Wuebbles, D.J.; Jain, A.K.

    1993-08-12

    We carried out essentially all the carbon cycle modeling calculations that were required by the IPCC Working Group 1. Specifically, IPCC required two types of calculations, namely, ``inverse calculations`` (input was CO{sub 2} concentrations and the output was CO{sub 2} emissions), and the ``forward calculations`` (input was CO{sub 2} emissions and output was CO{sub 2} concentrations). In particular, we have derived carbon dioxide concentrations and/or emissions for several scenarios using our coupled climate-carbon cycle modelling system.

  8. Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)

    ScienceCinema

    DePaolo, Don [Director, LBNL Earth Sciences Division

    2016-07-12

    Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  9. Chemical Oceanography and the Marine Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  10. Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency

    SciTech Connect

    Ridgway, Paul; Zheng, Honghe; Liu, Gao; Song, Xiangun; Ross, Philip; Battaglia, Vincent

    2009-05-05

    Vinylene Carbonate (VC) was added to the electrolyte in graphite-lithium half-cells. We report its effect on the coulombic efficiency (as capacity shift) of graphite electrodes under various formation cycling conditions. Cyclic voltammetry on glassy carbon showed that VC passivates the electrode against electrolyte reduction. The dQ/dV plots of the first lithiation of the graphite suggest that VC alters the SEI layer, and that by varying the cell formation rate, the initial ratio of ethylene carbonate to VC in the SEI layer can be controlled. VC was found to decrease first cycle efficiency and reversible capacity (in ongoing cycling) when used to excess. However, experiments with VC additive used with various formation rates did not show any decrease in capacity shift.

  11. Simulated Carbon Cycling in a Model Microbial Mat.

    NASA Astrophysics Data System (ADS)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  12. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  13. Understanding the Carbon Cycle : A Jigsaw Approach

    NASA Astrophysics Data System (ADS)

    Hastings, D. W.

    2006-12-01

    A thorough understanding of the carbon cycle is fundamental to understanding the eventual fate of CO2. To achieve this, students must understand individual processes, such as photosynthesis and respiration, as well as an integrated knowledge of how these processes relate to each other. In this "jigsaw" exercise, each student is assigned one five fundamental geochemical processes in the short- term carbon cycle to research and fully understand. In class, students first meet with others who have studied the same process to strengthen and deepen their understanding of this process. They then form teams of five students and explain to other students their particular process. In exchange, other students explain the other aspects of the carbon cycle. At the end of class all students will know about each of the five processes, and thus develop an integrated understanding of the entire carbon cycle. This approach is an efficient method for students to learn the material. As in a jigsaw puzzle, each student's part is essential for the full understanding of the carbon cycle. Since each student's part is essential, then each student is essential, which is what makes this strategy effective The jigsaw approach encourages listening, engagement, and collaboration by giving each member of the group an essential part to play in the academic activity.

  14. Predictability of the terrestrial carbon cycle.

    PubMed

    Luo, Yiqi; Keenan, Trevor F; Smith, Matthew

    2015-05-01

    Terrestrial ecosystems sequester roughly 30% of anthropogenic carbon emission. However this estimate has not been directly deduced from studies of terrestrial ecosystems themselves, but inferred from atmospheric and oceanic data. This raises a question: to what extent is the terrestrial carbon cycle intrinsically predictable? In this paper, we investigated fundamental properties of the terrestrial carbon cycle, examined its intrinsic predictability, and proposed a suite of future research directions to improve empirical understanding and model predictive ability. Specifically, we isolated endogenous internal processes of the terrestrial carbon cycle from exogenous forcing variables. The internal processes share five fundamental properties (i.e., compartmentalization, carbon input through photosynthesis, partitioning among pools, donor pool-dominant transfers, and the first-order decay) among all types of ecosystems on the Earth. The five properties together result in an emergent constraint on predictability of various carbon cycle components in response to five classes of exogenous forcing. Future observational and experimental research should be focused on those less predictive components while modeling research needs to improve model predictive ability for those highly predictive components. We argue that an understanding of predictability should provide guidance on future observational, experimental and modeling research.

  15. Iron cycling at corroding carbon steel surfaces.

    PubMed

    Lee, Jason S; McBeth, Joyce M; Ray, Richard I; Little, Brenda J; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media.

  16. Carbon sequestration and its role in the global carbon cycle

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  17. Graphite formation by carbonate reduction during subduction

    NASA Astrophysics Data System (ADS)

    Galvez, Matthieu E.; Beyssac, Olivier; Martinez, Isabelle; Benzerara, Karim; Chaduteau, Carine; Malvoisin, Benjamin; Malavieille, Jacques

    2013-06-01

    Carbon is transported from Earth's surface into its interior at subduction zones. Carbonates in sediments overlying hydrothermally altered rocks (including serpentinites) within the subducted slab are the main carriers of this carbon. Part of the carbon is recycled back to the surface by volcanism, but some is transferred to the deep Earth. Redox transformations during shallow subduction control the transfer and long-term fate of carbon, but are poorly explored. Here we use carbon stable isotopes and Raman spectroscopy to analyse the reduction of carbonate in an exhumed serpentinite-sediment contact in Alpine Corsica, France. We find that highly crystalline graphite was formed during subduction metamorphism and was concentrated in the sediment, within a reaction zone in direct contact with the serpentinite. The graphite in this reaction zone has a carbon isotopic signature (δ13C) of up to 0.8+/-0.1‰, similar to that of the original calcite that composed the sediments, and is texturally associated with the calcium-bearing mineral wollastonite that is also formed in the process. We use mass-balance calculations to show that about 9% of the total carbonaceous matter in the sedimentary unit results from complete calcite reduction in the reaction zone. We conclude that graphite formation, under reducing and low-temperature conditions, provides a mechanism to retain carbon in a subducting slab, aiding transport of carbon into the deeper Earth.

  18. Carbon cycling and snowball Earth.

    PubMed

    Goddéris, Yves; Donnadieu, Yannick

    2008-12-18

    The possibility that Earth witnessed episodes of global glaciation during the latest Precambrian challenges our understanding of the physical processes controlling the Earth's climate. Peltier et al. suggest that a 'hard snowball Earth' state may have been prevented owing to the release of CO(2) from the oxidation of dissolved organic carbon (DOC) in the ocean as the temperature decreased. Here we show that the model of Peltier et al. is not self-consistent as it implies large fluctuations of the ocean alkalinity content without providing any processes to account for it. Our findings suggest that the hard snowball Earth hypothesis is still valid.

  19. The Disordered Kinetics of Earth's Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Rothman, Daniel

    2008-03-01

    The carbon cycle describes the transformations of carbon as it cycles through living organisms and the physical environment. In its simplest form, the cycle amounts to a loop between photosynthesis and respiration. Photosynthesis produces organic carbon and molecular oxygen from carbon dioxide and water. Respiration reverses the process by oxidation of organic carbon. The duration of the cycle spans a vast range of time scales: from days or less for fast-growing plankton in the oceans, to hundreds of millions of years or more for the small fraction of organic matter that is buried as rock. The rates at which the cycle is closed set atmospheric carbon dioxide levels at short time scales and oxygen levels at geologic time scales. Respiration rates thereby influence not only climate---by the determination of equilibrium carbon dioxide concentrations---but also biological evolution---because the oxygenation of Earth's atmosphere must have preceded the advent of aerobic metabolism. We review recent advances in the understanding of the rates that control the carbon cycle, with emphasis on the respiratory back-reaction. Given considerable biological, chemical, and environmental variation, it comes as no surprise that measurements of rates vary greatly. Observations suggest, however, some surprising simplicity: for example, the rates of microbial consumption of organic matter in sediments and soils slow down systematically like the inverse of the age of the organic matter. This aging effect can be quantitatively understood as the macroscopic observation of microscopically disordered kinetics. The disorder can arise purely physically as the consequence of a reaction-diffusion process in porous media, but any combination of physical, chemical, and biological parameters that yield a wide range of rates suffices. A predicted practical consequence is a slow, logarithmic decay of organic matter in sediments and soils, which compares well with measurements. Further observations

  20. Carbon cycling in terrestrial environments: Chapter 17

    USGS Publications Warehouse

    Wang, Yang; Huntington, Thomas G.; Osher, Laurie J.; Wassenaar, Leonard I; Trumbore, Susan E.; Amundson, Ronald; Harden, Jennifer W.; McKnight, Diane M.; Schiff, Sherry L.; Aiken, George R.; Lyons, W. Berry; Aravena, Ramon O.; Baron, Jill S.

    1998-01-01

    This chapter reviews a number of applications of isotopic techniques for the investigation of carbon cycling processes. Carbon dioxide (C02) is an important greenhouse gas. Its concentration in the atmosphere has increased from an estimated 270 ppm at the beginning of the industrial revolution to ∼ 360 ppm at present. Climatic conditions and atmospheric C02 concentration also influence isotopic discrimination during photosynthesis. Natural and anthropogenically induced variations in the carbon isotopic abundance can be exploited to investigate carbon transformations between pools on various time scales. It also discusses one of the isotopes of carbon, the 14C, that is produced in the atmosphere by interactions of cosmic-ray produced neutrons with stable isotopes of nitrogen (N), oxygen (O), and carbon (C), and has a natural abundance in the atmosphere of ∼1 atom 14 C per 1012 atoms 12C. The most important factor affecting the measured 14C ages of soil organic matter is the rate of organic carbon cycling in soils. Differences in the dynamics of soil carbon among different soils or soil horizons will result in different soil organic 14C signatures. As a result, the deviation of the measured 14C age from the true age could differ significantly among different soils or soil horizons.

  1. Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves

    SciTech Connect

    Sharkey, T.D.; Seemann, J.R. Univ. of Nevada, Reno )

    1989-04-01

    We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding {sup 14}CO{sub 2}. The k{sub cat} of RuBP carboxylase (moles CO{sub 2} fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO{sub 2} and Mg{sup 2+} was unchanged by water stress. The ratio of activity before and after incubation with CO{sub 2} and Mg{sup 2+} (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions.

  2. Implications of carbon dust emission for terrestrail carbon cycling and carbon accounting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion preferentially removes the finest carbon- and nutrient-rich soil fractions, and consequently its role may be significant within terrestrial carbon (C) cycles. However, the impacts of wind erosion on soil organic carbon (SOC) redistribution are not considered in most carbon cycle models,...

  3. Moving Carbon, Changing Earth: Bringing the Carbon Cycle to Life

    NASA Astrophysics Data System (ADS)

    Zabel, I.; Duggan-Haas, D.; Ross, R. M.; Stricker, B.; Mahowald, N. M.

    2014-12-01

    The carbon cycle presents challenges to researchers - in how to understand the complex interactions of fluxes, reservoirs, and systems - and to outreach professionals - in how to get across the complexity of the carbon cycle and still make it accessible to the public. At Cornell University and the Museum of the Earth in Ithaca, NY, researchers and outreach staff tackled these challenges together through a 2013 temporary museum exhibition: Moving Carbon, Changing Earth. Moving Carbon, Changing Earth introduced visitors to the world of carbon and its effect on every part of our lives. The exhibit was the result of the broader impacts portion of an NSF grant awarded to Natalie Mahowald, Professor in the Department of Earth and Atmospheric Sciences at Cornell University, who has been working with a team to improve simulations of regional and decadal variability in the carbon cycle. Within the exhibition, visitors used systems thinking to understand the distribution of carbon in and among Earth's systems, learning how (and how quickly or slowly) carbon moves between and within these systems, the relative scale of different reservoirs, and how carbon's movement changes climate and other environmental dynamics. Five interactive stations represented the oceans, lithosphere, atmosphere, biosphere, and a mystery reservoir. Puzzles, videos, real specimens, and an interview with Mahowald clarified and communicated the complexities of the carbon cycle. In this talk we'll present background information on Mahowald's research as well as photos of the exhibition and discussion of the components and motivations behind them, showing examples of innovative ways to bring a complex topic to life for museum visitors.

  4. JGI's Carbon Cycling Studies on Restored Marshes

    SciTech Connect

    Tringe, Susannah; Theroux, Susanna

    2015-06-02

    DOE Joint Genome Institute Metagenome Program Head, Susannah Tringe, and postdoc, Susie Theroux, discuss the lessons to be learned from studying the microbial diversity of marshes that have been converted to other uses, and are now being restored, as well as the potential impacts on the global carbon cycle.

  5. JGI's Carbon Cycling Studies on Restored Marshes

    ScienceCinema

    Tringe, Susannah; Theroux, Susanna

    2016-07-12

    DOE Joint Genome Institute Metagenome Program Head, Susannah Tringe, and postdoc, Susie Theroux, discuss the lessons to be learned from studying the microbial diversity of marshes that have been converted to other uses, and are now being restored, as well as the potential impacts on the global carbon cycle.

  6. Reconstructing Late Ordovician carbon cycle variations

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.; Freeman, Katherine H.; Herrmann, Achim D.; Patzkowsky, Mark E.; Ainsaar, Leho; Martma, Tõnu

    2013-03-01

    The role of carbon dioxide in regulating climate during the early Paleozoic, when severe glaciations occurred during a putative greenhouse world, remains unclear. Here, we present the first molecular carbon isotope proxy-based estimates for Late Ordovician (early Katian) pCO2 levels, and explore the limitations of applying this approach to the reconstruction of Paleozoic pCO2. Carbon isotope profiles from three sites in Laurentia (Iowa, Ontario and Pennsylvania) and one site in Baltica (Estonia) exhibit overall low isotope fractionation between organic and inorganic carbon during photosynthesis (ɛp) and these values declined during the early Katian carbonate carbon isotope excursion (or Guttenberg Carbon Isotope Excursion, GICE). Algal ɛp values are sensitive to changes in CO2 concentrations, algae cell morphologies, and cell growth rates. To constrain these factors, we present molecular evidence that a decrease in the relative abundance of cyanobacteria and a change in the eukaryotic algae community co-occurred with the GICE. Regardless of local biotic or oceanographic influences, a decline in ɛp values indicates photosynthesis was sensitive to carbon concentrations, and via analogy with modern taxa, constrains pCO2 to below ˜8× pre-industrial levels (PIL), or about half of previous estimates. In addition, the global, positive carbon isotope excursions expressed in a wide variety of sedimentary materials (carbonate, bulk organic matter, n-alkanes, acyclic and cyclic isoprenoid hydrocarbons), provide compelling evidence for perturbation of the global carbon cycle, and this was likely associated with a decrease in pCO2 approximately 10 million years prior to the Hirnantian glaciations. Isotopic records from deeper water settings suggest a complex interplay of carbon sources and sinks, with pCO2 increasing prior to and during the early stages of the GICE and then decreasing when organic carbon burial outpaced increased volcanic inputs.

  7. The Carbon Cycle at the Nile Headwaters

    NASA Astrophysics Data System (ADS)

    Jones, Michael; Saunders, Matthew

    2014-05-01

    The carbon cycle at the Nile headwaters M B Jones, School of Natural Sciences, Trinity College, University of Dublin, Dublin 2, Ireland M Saunders, Environmental and Biochemical Sciences Group, The James Hutton Institute, Aberdeen, Scotland River systems play an integral role in the global carbon cycle by connecting the terrestrial biosphere, the atmosphere and the oceans. Extensive wetland systems, such as those found in the Amazon region, have been shown to export significant amounts of carbon to river waters as dissolved carbon dioxide (CO2) that can be transported and emitted hundreds of km downstream. The assessment of both regional and global carbon budgets could therefore be improved by quantifying these lateral carbon fluxes, especially from highly productive temporarily or permanently flooded areas where substantial CO2 evasion from inland waters can occur. The Nile is the longest river in the world and the headwaters are located in the extensive Papyrus dominated wetlands in central Africa that are associated with Lake Victoria. From its source the White Nile flows northwards through wetlands in Uganda and Sudan before it joins the Blue Nile. Papyrus wetlands have been shown to be some of the most productive global ecosystems, with recorded rates of aerial net primary productivity of up to 3.09 kg C m-2 yr-1. In addition, where anaerobic conditions occur they also accumulate large amounts of carbon in the form of peat, and under these circumstances they represent a significant carbon sink. However, as water moves through these wetlands and is exchanged with surrounding rivers and lakes significant quantities of dissolved organic and inorganic carbon as well as suspended particulate organic matter are exported, which are either released further downstream by degassing, decomposition or deposition. Information on such losses from these wetland ecosystems is extremely sparse but in order to better constrain ecosystem scale carbon dynamics more accurate

  8. Zooplankton and the Ocean Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Steinberg, Deborah K.; Landry, Michael R.

    2017-01-01

    Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.

  9. Carbon dioxide reduction by the Bosch process

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.

    1975-01-01

    Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.

  10. A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema

    Alivisatos, Paul

    2016-07-12

    Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  11. A Future with (out) Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema

    Collins, Bill

    2016-07-12

    Bill Collins, Head of LBNL's Climate Sciences Department, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  12. Understanding Oscillations of the Geological Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Bachan, A.; Payne, J.; Saltzman, M.; Thomas, E.; Kump, L. R.

    2015-12-01

    The geological cycling of carbon ties together the sedimentary reservoirs with Earth's biosphere and climate. Perturbations to this coupled system are recorded in the carbon isotopic composition of marine limestones (δ13Ccarb). In the past decade numerous intervals of large-amplitude oscillations in δ13Ccarbhave been identified, with a variety of explanations proposed for individual events. Yet, when data spanning the past ~1 Ga are viewed as a whole, it is clear that large-scale oscillations are a common feature of the carbon isotopic record. The ubiquity of oscillations suggests that they may share a single origin rather than having many disparate causes. Here we present a simple two-box model of the geological carbon cycle exhibiting such oscillations: the Carbon-Cycle Oscillator. Analogous to a damped mass-spring system, the burial fluxes of carbonate and phosphate in the model act like friction, whereas P supply and Corg burial act like the restoring force of the spring. When the sensitivities of P supply and Corg burial to the sizes of the C and P reservoirs, respectively, increase above a critical threshold, the model exhibits oscillations upon perturbation. We suggest that intervals with large oscillations in bulk ocean-atmosphere δ13C are characterized by a greater sensitivity of the C:P burial-ratio and ALK:P weathering-ratio to the state of the ocean-atmosphere carbon pool. In addition, moderating of the slope of that dependence in general can account for the observed decrease in the amplitude of oscillations over the past billion years. We hypothesize that factors with a unidirectional trajectory during Earth history (e.g. increased oxygenation of the deep ocean, and evolution of pelagic calcifiers) led to a decrease in the Earth System's gain and increase in its resilience over geologic time, even in the face of continuing perturbations from the solid Earth and extraterrestrial realms.

  13. Carbon cycle uncertainty in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Sikka, M.; Oechel, W. C.; Huntzinger, D. N.; Melton, J. R.; Koven, C. D.; Ahlström, A.; Arain, M. A.; Baker, I.; Chen, J. M.; Ciais, P.; Davidson, C.; Dietze, M.; El-Masri, B.; Hayes, D.; Huntingford, C.; Jain, A. K.; Levy, P. E.; Lomas, M. R.; Poulter, B.; Price, D.; Sahoo, A. K.; Schaefer, K.; Tian, H.; Tomelleri, E.; Verbeeck, H.; Viovy, N.; Wania, R.; Zeng, N.; Miller, C. E.

    2014-08-01

    Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for the Alaskan Arctic from four recent model intercomparison projects - NACP (North American Carbon Program) site and regional syntheses, TRENDY (Trends in net land atmosphere carbon exchanges), and WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project) - we provide a baseline of terrestrial carbon cycle uncertainty, defined as the multi-model standard deviation (σ) for each quantity that follows. Mean annual absolute uncertainty was largest for soil carbon (14.0 ± 9.2 kg C m-2), then gross primary production (GPP) (0.22 ± 0.50 kg C m-2 yr-1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m-2 yr-1), net primary production (NPP) (0.14 ± 0.33 kg C m-2 yr-1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m-2 yr-1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m-2 yr-1), net ecosystem exchange (NEE) (-0.01 ± 0.19 kg C m-2 yr-1), and CH4 flux (2.52 ± 4.02 g CH4 m-2 yr-1). There were no consistent spatial patterns in the larger Alaskan Arctic and boreal regional carbon stocks and fluxes, with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic and larger boreal region.

  14. Cycling of black carbon in the ocean

    NASA Astrophysics Data System (ADS)

    Coppola, Alysha I.; Druffel, Ellen R. M.

    2016-05-01

    Black carbon (BC) is a by-product of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial time scales in the world oceans has remained unknown. Here we quantified dissolved BC (DBC) in marine dissolved organic carbon isolated by solid phase extraction at several sites in the world ocean. We find that DBC in the Atlantic, Pacific, and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is 1.2 ± 0.1 μM in the deep Atlantic. The average 14C age of surface DBC is 4800 ± 620 14C years and much older in a deep water sample (23,000 ± 3000 14C years). The range of DBC structures and 14C ages indicates that DBC is not homogeneous in the ocean. We show that there are at least two distinct pools of marine DBC, a younger pool that cycles on centennial time scales and an ancient pool that cycles on >105 year time scales.

  15. Phanerozoic cycles of sedimentary carbon and sulfur.

    PubMed

    Garrels, R M; Lerman, A

    1981-08-01

    A reservoir model of a Recent steady-state sedimentary system in which the reduced sulfur and oxidized sulfur reservoirs were coupled with the oxidized carbon and reduced carbon reservoirs was constructed. The time curve of the sulfur isotope ratios of the sedimentary sulfate reservoir was used to drive the model back to the beginning of Cambrian time (600 million years ago), producing the reservoir sizes and isotope values and material fluxes of the carbon-sulfur system. The predicted values of carbon isotope ratios of the carbonate reservoir agree well with observed values, showing that the model is basically sound. Some general conclusions from this success are (i) material flux rates in the carbon-oxygen-sulfur system of the geologic past (averaged over tens of millions of years) lie within about a factor of 2 of Recent rates. (ii) The oxidation-reduction balances of Phanerozoic time were dominated by reciprocal relationships between carbon and sulfur compounds. (iii) The rate of production of atmospheric oxygen by storage in sediments of organic carbon of photosynthetic origin increased from the Cambrian Period to the Permian Period and declined somewhat from the Permian Period to the Present. (iv) The storage of oxygen in oxidized sulfur compounds kept pace (within the limits of the data) with oxygen production. (v) Transfer of oxygen from CO(2) to SO(4) from the Cambrian to the Permian Period was several times the Recent free oxygen content of the atmosphere.

  16. Carbon cycle uncertainty in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Sikka, M.; Oechel, W. C.; Huntzinger, D. N.; Melton, J. R.; Koven, C. D.; Ahlström, A.; Arain, A. M.; Baker, I.; Chen, J. M.; Ciais, P.; Davidson, C.; Dietze, M.; El-Masri, B.; Hayes, D.; Huntingford, C.; Jain, A.; Levy, P. E.; Lomas, M. R.; Poulter, B.; Price, D.; Sahoo, A. K.; Schaefer, K.; Tian, H.; Tomelleri, E.; Verbeeck, H.; Viovy, N.; Wania, R.; Zeng, N.; Miller, C. E.

    2014-02-01

    Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ) against the mean (x\\bar) for each quantity. Mean annual uncertainty (σ/x\\bar) was largest for net ecosystem exchange (NEE) (-0.01± 0.19 kg C m-2 yr-1), then net primary production (NPP) (0.14 ± 0.33 kg C m-2 yr-1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m-2 yr-1), gross primary production (GPP) (0.22 ± 0.50 kg C m-2 yr-1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m-2 yr-1), CH4 flux (2.52 ± 4.02 g CH4 m-2 yr-1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m-2 yr-1), and soil carbon (14.0± 9.2 kg C m-2). The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity) analysis was conducted of 20th century NEE to CO2 fertilization (β) and climate (γ), which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.

  17. Hyperdominance in Amazonian forest carbon cycling.

    PubMed

    Fauset, Sophie; Johnson, Michelle O; Gloor, Manuel; Baker, Timothy R; Monteagudo M, Abel; Brienen, Roel J W; Feldpausch, Ted R; Lopez-Gonzalez, Gabriela; Malhi, Yadvinder; ter Steege, Hans; Pitman, Nigel C A; Baraloto, Christopher; Engel, Julien; Pétronelli, Pascal; Andrade, Ana; Camargo, José Luís C; Laurance, Susan G W; Laurance, William F; Chave, Jerôme; Allie, Elodie; Vargas, Percy Núñez; Terborgh, John W; Ruokolainen, Kalle; Silveira, Marcos; Aymard C, Gerardo A; Arroyo, Luzmila; Bonal, Damien; Ramirez-Angulo, Hirma; Araujo-Murakami, Alejandro; Neill, David; Hérault, Bruno; Dourdain, Aurélie; Torres-Lezama, Armando; Marimon, Beatriz S; Salomão, Rafael P; Comiskey, James A; Réjou-Méchain, Maxime; Toledo, Marisol; Licona, Juan Carlos; Alarcón, Alfredo; Prieto, Adriana; Rudas, Agustín; van der Meer, Peter J; Killeen, Timothy J; Marimon Junior, Ben-Hur; Poorter, Lourens; Boot, Rene G A; Stergios, Basil; Torre, Emilio Vilanova; Costa, Flávia R C; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Groot, Nikée; Arets, Eric; Moscoso, Victor Chama; Castro, Wendeson; Coronado, Euridice N Honorio; Peña-Claros, Marielos; Stahl, Clement; Barroso, Jorcely; Talbot, Joey; Vieira, Ima Célia Guimarães; van der Heijden, Geertje; Thomas, Raquel; Vos, Vincent A; Almeida, Everton C; Davila, Esteban Álvarez; Aragão, Luiz E O C; Erwin, Terry L; Morandi, Paulo S; de Oliveira, Edmar Almeida; Valadão, Marco B X; Zagt, Roderick J; van der Hout, Peter; Loayza, Patricia Alvarez; Pipoly, John J; Wang, Ophelia; Alexiades, Miguel; Cerón, Carlos E; Huamantupa-Chuquimaco, Isau; Di Fiore, Anthony; Peacock, Julie; Camacho, Nadir C Pallqui; Umetsu, Ricardo K; de Camargo, Plínio Barbosa; Burnham, Robyn J; Herrera, Rafael; Quesada, Carlos A; Stropp, Juliana; Vieira, Simone A; Steininger, Marc; Rodríguez, Carlos Reynel; Restrepo, Zorayda; Muelbert, Adriane Esquivel; Lewis, Simon L; Pickavance, Georgia C; Phillips, Oliver L

    2015-04-28

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

  18. Hyperdominance in Amazonian forest carbon cycling

    PubMed Central

    Fauset, Sophie; Johnson, Michelle O.; Gloor, Manuel; Baker, Timothy R.; Monteagudo M., Abel; Brienen, Roel J.W.; Feldpausch, Ted R.; Lopez-Gonzalez, Gabriela; Malhi, Yadvinder; ter Steege, Hans; Pitman, Nigel C.A.; Baraloto, Christopher; Engel, Julien; Pétronelli, Pascal; Andrade, Ana; Camargo, José Luís C.; Laurance, Susan G.W.; Laurance, William F.; Chave, Jerôme; Allie, Elodie; Vargas, Percy Núñez; Terborgh, John W.; Ruokolainen, Kalle; Silveira, Marcos; Aymard C., Gerardo A.; Arroyo, Luzmila; Bonal, Damien; Ramirez-Angulo, Hirma; Araujo-Murakami, Alejandro; Neill, David; Hérault, Bruno; Dourdain, Aurélie; Torres-Lezama, Armando; Marimon, Beatriz S.; Salomão, Rafael P.; Comiskey, James A.; Réjou-Méchain, Maxime; Toledo, Marisol; Licona, Juan Carlos; Alarcón, Alfredo; Prieto, Adriana; Rudas, Agustín; van der Meer, Peter J.; Killeen, Timothy J.; Marimon Junior, Ben-Hur; Poorter, Lourens; Boot, Rene G.A.; Stergios, Basil; Torre, Emilio Vilanova; Costa, Flávia R.C.; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Groot, Nikée; Arets, Eric; Moscoso, Victor Chama; Castro, Wendeson; Coronado, Euridice N. Honorio; Peña-Claros, Marielos; Stahl, Clement; Barroso, Jorcely; Talbot, Joey; Vieira, Ima Célia Guimarães; van der Heijden, Geertje; Thomas, Raquel; Vos, Vincent A.; Almeida, Everton C.; Davila, Esteban Álvarez; Aragão, Luiz E.O.C.; Erwin, Terry L.; Morandi, Paulo S.; de Oliveira, Edmar Almeida; Valadão, Marco B.X.; Zagt, Roderick J.; van der Hout, Peter; Loayza, Patricia Alvarez; Pipoly, John J.; Wang, Ophelia; Alexiades, Miguel; Cerón, Carlos E.; Huamantupa-Chuquimaco, Isau; Di Fiore, Anthony; Peacock, Julie; Camacho, Nadir C. Pallqui; Umetsu, Ricardo K.; de Camargo, Plínio Barbosa; Burnham, Robyn J.; Herrera, Rafael; Quesada, Carlos A.; Stropp, Juliana; Vieira, Simone A.; Steininger, Marc; Rodríguez, Carlos Reynel; Restrepo, Zorayda; Muelbert, Adriane Esquivel; Lewis, Simon L.; Pickavance, Georgia C.; Phillips, Oliver L.

    2015-01-01

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region. PMID:25919449

  19. Controls on aquatic carbon cycling in a carbonate dominated groundwater catchment using dissolved oxygen dynamics

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Parker, S. J.

    2015-12-01

    Carbon cycling in aquatic systems is increasingly seen as playing an important role in global carbon budgets and hence on potential impacts and controls on global warming. However, determining the partitioning within and transfer between different carbon stores is a major challenge, particularly where there are multiple sources and controls on carbon utilisation. Dissolved oxygen, DO, provides a proxy for investigating the dynamics of carbon utilisation in aquatic systems. High temporal resolution monitoring of DO at multiple site on the Hampshire Avon, a chalk dominated permeable catchment in southern England, UK, has been investigated using a dynamic DO model in order to investigate the biochemical cycling of carbon. Gross primary production, governed by photosynthetically active radiation, is determined through inverse modelling. Model simplification though parameter reduction is achieved through investigating controls on aeration (the transfer of oxygen across the atmosphere-river interface) and respiration. Seasonal changes in biomass affect long term oxygen dynamics, which are compounded by episodic hydrological events that control the partitioning of surface water and groundwater in the stream channel and consequently the sources of carbon and DO in the river channel. Using variations in surface geology across the catchment the impacts of varying baseflow characteristics on carbon cycling within the catchment is demonstrated.

  20. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  1. Climate extremes and the carbon cycle (Invited)

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Bahn, M.; Ciais, P.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.

    2013-12-01

    The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Ongoing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that rare climate extremes can lead to a decrease in ecosystem carbon stocks and therefore have the potential to negate the expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget. In addition to direct impact on the carbon fluxes of photosynthesis and respiration via extreme temperature and (or) drought, effects of extreme events may also lead to lagged responses, such as wildfires triggered by heat waves and droughts, or pest and pathogen outbreaks following wind-throw caused by heavy storms, reduced plant health due to drought stress or due to less frequent cold extremes in presently cold regions. One extreme event can potentially override accumulated previous carbon sinks, as shown by the Western European 2003 heat wave.. Extreme events have the potential to affect the terrestrial ecosystem carbon balance through a single factor, or as a combination of factors. Climate extremes can cause carbon losses from accumulated stocks, as well as long-lasting impacts on (e.g. lagged effects) on plant growth and mortality, extending beyond the duration of the extreme event itself. The sensitivity of terrestrial ecosystems and their carbon balance to climate change and extreme events varies according to the type of extreme, the climatic region, the land cover, and the land management. Extreme event impacts are very relevant in forests due to the importance of lagged and memory effects on tree growth and mortality, the longevity of tree species, the large forest carbon stocks and their vulnerability, as well as the

  2. Carbon cycles and climate: a selected bibliography

    SciTech Connect

    Olson, J.S.; Allison, L.J.; Collier, B.N.

    1980-05-01

    This partially annotated bibliography contains the first 1000 references from a computerized file of literature on the global ecological implications of carbon cycles and climatic changes. Many early citations originated from the Biogeochemical Ecological Information Center established at Oak Ridge National Laboratory in 1968 and from profiles of computerized files such as Government Research Abstracts (GRA) and Biological Abstracts (BA). Later citations have been extracted from the open literature through 1978 and early 1979, from government reports and impact statements, and from profiles of GRA, BA, and the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The subject categories covered by this bibliography may be divided into two main topics: carbon cycling and climate system analysis. Volume 3 provides indexes for author, organization (corporate authority), keywords (or free index terms), taxonomic category, subject category, Chemical Abstracts codes, Biological Abstracts codes (crosscode), and COSATI/Weekly Government Abstracts codes concentrated with permuted title words.

  3. Mask cycle time reduction for foundry projects

    NASA Astrophysics Data System (ADS)

    Balasinski, A.

    2011-11-01

    One of key deliverables of foundry based manufacturing is low cycletime. Building new and enhancing existing products by mask changes involves significant logistical effort, which could be reduced by standardizing data management and communication procedures among design house, mask shop, and foundry (fab) [1]. As an example, a typical process of taping out can take up to two weeks in addition to technical effort, for database handling, mask form completion, management approval, PO signoff and JDV review, translating into loss of revenue. In order to reduce this delay, we are proposing to develop a unified online system which should assist with the following functions: database edits, final verifications, document approvals, mask order entries, and JDV review with engineering signoff as required. This would help a growing number of semiconductor products to be flexibly manufactured at different manufacturing sites. We discuss how the data architecture based on a non-relational database management system (NRDMBS) extracted into a relational one (RDMBS) should provide quality information [2], to reduce cycle time significantly beyond 70% for an example 2 week tapeout schedule.

  4. Models for generation of carbonate cycles

    NASA Astrophysics Data System (ADS)

    Read, J. F.; Grotzinger, J. P.; Bova, J. A.; Koerschner, W. F.

    1986-02-01

    Computer modeling provides a quantitative approach to a better understanding of actual carbonate cyclic sequences. To model carbonate cycles, we can use water-depth-dependent sedimentation rate for each facies, an initial lag time, linear subsidence, tidal range, and period and amplitude of sea-level oscillation about a horizontal datum. Tidal-flat-capped cycles up to a few metres thick result from low-amplitude sea-level oscillation of a few metres and short lag times. Nonerosive caps reflect sea-level lowering being balanced by subsidence, and basinward migration of the shoreline not exceeding tidal-flat progradation rate. When higher amplitude sea-level oscillations occur, the tidal flats are abandoned on the inner shelf during sea-level fall, because seaward movement of the strandline outpaces progradation rate of flats. Increased amplitude also results in sea level falling faster than flats can subside, so that disconformities with thick vadose profiles develop. High-amplitude (100 m or more) oscillations result in incipient drowning of platforms and juxtaposition of deep-water facies against shallow-water facies within cycles. Sea level falls before the platform can build to the sea-level highstand, and the shoreline migrates much more rapidly than tidal flats can prograde; thus, cycles are disconformity-bounded and lack tidal-flat caps.

  5. Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Seneviratne, Sonia I.; Gruber, Nicolas; Davin, Edouard L.

    2017-01-01

    The feedbacks between climate, atmospheric CO2 concentration and the terrestrial carbon cycle are a major source of uncertainty in future climate projections with Earth systems models. Here, we use observation-based estimates of the interannual variations in evapotranspiration (ET), net biome productivity (NBP), as well as the present-day sensitivity of NBP to climate variations, to constrain globally the terrestrial carbon cycle feedbacks as simulated by models that participated in the fifth phase of the coupled model intercomparison project (CMIP5). The constraints result in a ca. 40% lower response of NBP to climate change and a ca. 30% reduction in the strength of the CO2 fertilization effect relative to the unconstrained multi-model mean. While the unconstrained CMIP5 models suggest an increase in the cumulative terrestrial carbon storage (477 PgC) in response to an idealized scenario of 1%/year atmospheric CO2 increase, the constraints imply a ca. 19% smaller change. Overall, the applied emerging constraint approach offers a possibility to reduce uncertainties in the projections of the terrestrial carbon cycle, which is a key determinant of the future trajectory of atmospheric CO2 concentration and resulting climate change.

  6. Propagation of uncertainty in carbon emission scenarios through the global carbon cycle

    SciTech Connect

    Keller, A.A.; Goldstein, R.A. )

    1994-09-01

    The authors used the GLOCO model, which is a carbon cycling model that considers seven terrestrial biomes, two oceans and one atmosphere, to evaluate the rise in atmospheric CO[sub 2] concentration, (pCO[sub 2]) and the partitioning of carbon to the global compartments (ocean, atmosphere and terrestrial) as a function of time for a number of possible anthropogenic carbon emission scenarios, based on different energy policies as developed by the Energy Modeling Forum (EMF-12). The authors then evaluated the possible uncertainty in carbon emission scenarios and the propagation of this uncertainty in carbon emission scenarios and the propagation of this uncertainty throughout the model to obtain an envelope for the rise in pCO[sub 2]. Large fluctuations in the input signal are smoothed by the carbon cycle, resulting in more than a four-fold reduction in uncertainty in the output signal (pCO[sub 2]). In addition, they looked at the effect that other model variables have on the pCO[sub 2] envelope, specifically the ratio of carbon to nitrogen in the emissions. The carbon to nitrogen ratio (C:N) will vary throughout the next century depending on the mix on energy sources chosen. More nitrogen in the emissions can produce a cofertilization effect in the terrestrial biomes, which would lead to sequestration of additional carbon. The uncertainty in C:N will enlarge the pCO[sub 2] uncertainty envelope by up to 20 ppm.

  7. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  8. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III )

    1988-09-01

    Soil organic carbon in active exchange with the atmosphere constitutes approximately two-thirds of the carbon in terrestrial ecosystems. The large size and long residence time of this pool make it an important component of the global carbon cycle. The amount of carbon stored in soils and the rate of exchange of soil carbon with the atmosphere depends on many factors related to the chemistry of soil organic matter. The amount of carbon stored in soil is determined by the balance of two biotic processes associated with productivity of terrestrial vegetation and decomposition of organic matter. Each of these processes have strong physical controls that can be related to the climate variables temperature and precipitation at a regional or global scale. Soil carbon density generally increases with increasing precipitation, and there is an increase in soil carbon with decreasing temperature for any particular level of precipitation. Various ecosystem disturbances alter the balances between production and decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivation. The amount of soil carbon and nitrogen change resulting from cultivation depends on the initial amounts of each. Average changes in nitrogen are about one half to one forth the corresponding average carbon changes. Analysis of carbon and nitrogen linkages in soil shed some light on soil carbon dynamics after conversion to agriculture. The amount of initial carbon lost is associated with the amount of carbon in excess of C/N ratio of about 12 to 14. Soils with a high C/N ratio lose a larger fraction of the initial carbon then those with low C/N ratios. Soils with high C/N ratios have a larger percentage of organic matter in slowly decomposing forms. Cultivation results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels.

  9. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    DTIC Science & Technology

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  10. Carbon footprint estimation of municipal water cycle

    NASA Astrophysics Data System (ADS)

    Bakhshi, Ali A.

    2009-11-01

    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  11. Human Domination of Today's Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Tans, P. P.

    2014-12-01

    Observations of isotopic ratios show that the seasonal cycle as well as interannual variations of atmospheric CO2 are caused primarily by the response of terrestrial ecosystems to short-term variations of climate. Multiple lines of evidence demonstrate that the ongoing multi-decadal increase is 100% due to human activitites, and thus we are collectively responsible for the enhanced greenhouse effect, accompanied by acidification of the oceans, that is expected to last hundreds, and likely thousands, of years. Potential carbon cycle climate feedbacks, such as emissions of CH4 and CO2 from Arctic permafrost warming, are still difficult to quantify, so that in the forseeable future the emissions from fossil fuel burning will continue to dominate. CO2 removal from the atmosphere, which is energetically expensive, will cause the rate of transfer into the oceans to slow, and eventually to reverse. Managed carbon storage in the terestrial biosphere has very limited potential compared to current fossil fuel emissions. The primary imperative of climate change mitigation is to remove reduced carbon entirely from our sources of primary energy at the greatest possible pace.

  12. Hydrological and biogeochemical constraints on terrestrial carbon cycle projections

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2 emissions. However, the future fate of this sink in the coming decades is very uncertain, as current Earth System Models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day Evapotranspiration (ET) and Gross Primary Productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease of the projected GPP and to a ca. 50% reduction of the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on Net Biome Productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Also, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. Moreover, a similar strategy is used to provide constraints on the feedbacks involving the terrestrial carbon cycle and the climate system. The findings indicate that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase of the atmospheric CO2 concentration and for future climate change.

  13. Tuning of magnetic parameters in cobalt-polystyrene nanocomposites by reduction cycling

    SciTech Connect

    Nair, Swapna S.; Sunny, Vijutha; Anantharaman, M.R.

    2011-10-15

    Graphical abstract: Cobalt nanoparticles were prepared by a reduction process inside polymer pores. A porous polymer network (polystyrene) was chosen as the template for the synthesis of elementary cobalt as high surface area cobalt nanoparticles are prone to oxidation. The preliminary studies reveal that the cobalt is first formed with an oxide protective layer outside and upon repeating the reduction cycles, inner pores of the polymers are opened which enhanced the yield of metallic cobalt. These high surface area cobalt nanoparticles embedded in a polymer are ideal for the synthesis of carbon nanotubes as cobalt can act as a catalyst for the nanotube synthesis. The concentration of cobalt can be tuned in this technique by repeating the cycling process. Highlights: {yields} Elementary cobalt nanoparticles were synthesized inside polystyrene by a novel process. {yields} The self protection is achieved by the auto-shelling with the metal oxide. {yields} The magnetisation and coercivity could be tuned by repeating the cycles. {yields} Tuning of magnetic properties (both coercivity and magnetisation) could be achieved by the repetition of reduction cycles. {yields} Synthesized nanocomposite can act as a catalyst for carbon nanotube synthesis. -- Abstract: Cobalt nanoparticles were prepared by a reduction process inside polymer pores using CoSO{sub 4}.7H{sub 2}O and NaBH{sub 4}. A porous polymer network (sulphonated polystyrene) was chosen, as the template for the synthesis of elementary cobalt as high surface area cobalt nanoparticles are prone to oxidation. The preliminary studies reveal that the cobalt is first formed with an oxide protective layer outside and upon repeating the reduction cycles, inner pores of the polymers are opened which enhanced the yield of metallic cobalt. These high surface area cobalt nanoparticles embedded in a polymer are ideal for the synthesis of carbon nanotubes as cobalt can act as a catalyst for the nanotube synthesis. The

  14. A weekly cycle in atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cerveny, Randall S.; Coakley, Kevin J.

    2002-01-01

    We present a new statistic called the ``Mean Symmetrized Residual'' (MSR) for detection and quantification of a weekly cycle in measured daily atmospheric carbon dioxide (CO2). At the Mauna Loa Observatory in Hawaii, we conclude that CO2 concentrations, on average, are significantly lower (0.022 parts per million by volume, ppmv) on weekends (Saturday-Sunday) than during the rest of the week. Over the past twenty-five years, the variation of the mean values of MSR (as a function of day of the week) has been relatively stable. We speculate that the observed weekday/weekend variation in CO2 at Mauna Loa is the result of anthropogenic emissions on Hawaii and nearby sources. We do not detect a weekly cycle in daily CO2 concentration measured at South Pole, Antarctica. This methodology has applicability to a variety of datasets.

  15. Modeling the carbon cycle in Lake Matano.

    PubMed

    Kuntz, L B; Laakso, T A; Schrag, D P; Crowe, S A

    2015-09-01

    Lake Matano, Indonesia, is a stratified anoxic lake with iron-rich waters that has been used as an analogue for the Archean and early Proterozoic oceans. Past studies of Lake Matano report large amounts of methane production, with as much as 80% of primary production degraded via methanogenesis. Low δ(13)C values of DIC in the lake are difficult to reconcile with this notion, as fractionation during methanogenesis produces isotopically heavy CO2. To help reconcile these observations, we develop a box model of the carbon cycle in ferruginous Lake Matano, Indonesia, that satisfies the constraints of CH4 and DIC isotopic profiles, sediment composition, and alkalinity. We estimate methane fluxes smaller than originally proposed, with about 9% of organic carbon export to the deep waters degraded via methanogenesis. In addition, despite the abundance of Fe within the waters, anoxic ferric iron respiration of organic matter degrades <3% of organic carbon export, leaving methanogenesis as the largest contributor to anaerobic organic matter remineralization, while indicating a relatively minor role for iron as an electron acceptor. As the majority of carbon exported is buried in the sediments, we suggest that the role of methane in the Archean and early Proterozoic oceans is less significant than presumed in other studies.

  16. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  17. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.

    PubMed

    Lin, Junjie; Zhu, Biao; Cheng, Weixin

    2015-12-01

    The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond.

  18. A regularization of the carbon cycle data-fusion problem

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2013-04-01

    Improving our understanding of the carbon cycle is an important component of modelling climate and the Earth system, and a variety of data assimilation techniques have been used to combine process models with different types of observational data. Here, we carry out a careful mathematical analysis on a simple, yet generic, version of the carbon allocation inverse problem. At the heart of a Bayesian approach to data-model fusion is the following problem: given a generalized observation operator H, and observations y, determine the model state x that minimizes |Hx - y| in a given norm. Such a problem is well-posed if a unique solution x = H-1y exists, and if the inverse of H is continuous. However, in discrete models such a problem can be ill-conditioned, and hence ill-posed, when the singular values of H decay to zero. Our analysis is carried out on the evergreen version of the Data Assimilation-Linked Ecosystem model (DALEC EV). DALEC EV depicts a forest ecosystem as a set of five carbon pools: the gross primary production (GPP) is calculated at a daily time step as a function of the foliar carbon and meteorological drivers, following a mass conservation principle the GPP is then entirely allocated to carbon pools and respiration via fluxes. While this model is very simple, it represents the basic processes simulated by more sophisticated models of the carbon cycle and the low dimension of the state variable (five carbon pools and eleven parameters) allows direct solution using otherwise hopeless methods. Using synthetic observations of net ecosystem exchange (NEE), defined as the difference between GPP and respirations, we study the conditioning of the inverse problem. We found that the generalized observation operator is ill-conditioned and we study the impact of various regularization techniques: generalized Tikhonov regularization, total least square etc. Finally we use the formalism of control theory to apply model reduction techniques to the regularization

  19. Global warming and marine carbon cycle feedbacks on future atmospheric CO2

    PubMed

    Joos; Plattner; Stocker; Marchal; Schmittner

    1999-04-16

    A low-order physical-biogeochemical climate model was used to project atmospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming simulations and collapses at high levels of carbon dioxide. Projected changes in the marine carbon cycle have a modest impact on atmospheric carbon dioxide. Compared with the control, atmospheric carbon dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean carbon uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic carbon, except when the North Atlantic thermohaline circulation collapses.

  20. Reduction of bromate by granular activated carbon

    SciTech Connect

    Kirisits, M.J.; Snoeyink, V.L.; Kruithof, J.C.

    1998-07-01

    Ozonation of waters containing bromide can lead to the formation of bromate, a probable human carcinogen. Since bromate will be regulated at 10 {micro}g/L by the Stage 1 Disinfectants/Disinfection By-Products Rule, there is considerable interest in finding a suitable method of bromate reduction. Granular activated carbon (GAC) can be used to chemically reduce bromate to bromide, but interference from organic matter and anions present in natural water render this process inefficient. In an effort to improve bromate reduction by GAC, several modifications were made to the GAC filtration process. The use of a biologically active carbon (BAC) filter ahead of a fresh GAC filter with and without preozonation, to remove the biodegradable organic matter, did not substantially improve the bromate removal of the GAC filter. The use of the BAC filter for biological bromate reduction proved to be the most encouraging experiment. By lowering the dissolved oxygen in the influent to the BAC from 8.0 mg/L to 2.0 mg/L, the percent bromate removal increased from 42% to 61%.

  1. An isopycnic ocean carbon cycle model

    NASA Astrophysics Data System (ADS)

    Assmann, K. M.; Bentsen, M.; Segschneider, J.; Heinze, C.

    2010-02-01

    The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  2. Metal fiber - carbon electrodes for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Smith, Robert Fendlay

    An investigation was carried out to determine activities for oxygen reduction and current efficiencies to hydrogen peroxide of commercially available nickel fibers, carbon fibers, and carbon powders. The activities and current efficiencies were determined by conducting Rotating Ring Disk Electrode Experiments (RRDE) on porous electrodes that utilize an interlocking network of metal fibers with carbon fibers and/or powders. Experimentation was also done using PTFE - carbon powder and PTFE - nickel fiber paste electrodes to remove any porosity and symbiotic effects of the nickel - carbon electrodes. Results of the traditional flat plate PTFE electrodes were compared to the porous electrodes to verify the proposed mathematical viability of porous electrode RRDE. RRDE experiments showed that the most active carbons for oxygen reduction have a surface area to volume ratio of 1000 m2/g, and current rent efficiency to hydrogen peroxide was increased as the average pore size increased. A mathematical model and half-cell polarization experiments were used to characterize and optimize oxygen reduction in gas diffusion electrodes consisting of carbon fibers and/or powders entrapped in a sinter-locked network of nickel microfibers. Important electrode physical parameters, such as nickel fiber loading (0.005 to 0.01 g/cm2) , nickel fiber diameter (2 to 12 mum), void volume (73 to 96%), distance of the active layer from the gas supply (0 to 0.005 cm), and addition of a peroxide decomposition catalyst (0 to 0.004 g/cm2) were systematically varied to determine their effects on electrode performance. Experimentally determined total currents and current efficiencies to hydrogen peroxide were compared to calculated values for model verification. Other important parameters, including intra-electrode oxygen and hydrogen peroxide concentrations, overpotentials, and reaction rates, were simulated to help optimize the electrode. Fabricated metal fiber-carbon electrodes were compared to a

  3. Monitoring the Carbon Cycle from Space

    NASA Astrophysics Data System (ADS)

    Bréon, François-Marie

    Carbon dioxide is the main driver of climate change while methane is also an important contributor with the potential for large feedbacks. Both of these gases are emitted through anthropogenic activities but their concentration in the atmosphere are also controlled by natural fluxes. Currently, roughly half of anthropogenic CO2 emissions are absorbed by ocean and vegetation but the processes that control these sinks are still poorly understood. There is therefore a need to monitor the sources and sinks of carbon as well as parameters related to processes linked to these processes. Surfaces fluxes of gases, such as Carbon dioxide and methane, generate concentration gradients that can be monitored from space. In return, the measurement of concentration gradients can be used to estimate the surface fluxes, using atmospheric transport inversion methods. The past decade has seen strong improvements in our ability to monitor the atmospheric concentration gradients starting with the SCIAMACHY instrument onboard ENVISAT. The gradients are tiny however, due to the long lifetime or CO2 and methane in the atmosphere, and the measurement accuracy remains a challenge to really bring new knowledge on the Carbon fluxes from space. This may change with the launch of the NASA OCO-2 mission (first one was lost at launch) that is dedicated to the measurement of the atmospheric CO2 column. Although the long term trend of atmospheric Carbon concentration is linked to anthropogenic emissions, the annual cycle is driven by vegetation photosynthesis. Indeed, annual photosynthesis flux is typically ten times larger than the fossil-fuel emissions. The monitoring of vegetation dynamics from space dates back 30 years, but recent advances make it possible to estimate additional parameters such as the total vegetation biomass or tree height. Improved accuracy make it possible to identify the impact of meteorological events on the vegetation functioning.

  4. An isopycnic ocean carbon cycle model

    NASA Astrophysics Data System (ADS)

    Assmann, K. M.; Bentsen, M.; Segschneider, J.; Heinze, C.

    2009-07-01

    The carbon cycle is a major forcing component in the global climate system. Modelling studies aiming to explain recent and past climatic changes and to project future ones thus increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here we present first results from a newly developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents interior ocean transport of biogeochemical tracers well and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the biogeochemical code for use with an isopycnic coordinate are in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. Use of a prognostic slab atmosphere allows us to assess the effect of the changes in export production on global ocean carbon uptake and atmospheric CO2 levels. Sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of modelled air-sea fluxes and nutrient distributions.

  5. Carbon cycle in shrimp polyculture mesocosm

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Cai; Li, De-Shang; Dong, Shuang-Lin

    2000-03-01

    The carbon cycle in shrimp polyculture mesocosm ecosystems was studied in the shrimp farm of the Huanghai Fisheries Group Corporation in Shandong Province from May to August, 1997. The results showed that the plankton community respiration rate fluctuated between 0.07 and 2.28 mgC/(L·d), average of 0.82±0.42 mgC/(L·d), which was 49 percent of the rate of phytoplankton gross production; that the average respiration rates (mgC/(L·d)) of micro-, nano- and pico-plankton were 0.07, 0.38 and 0.31, which were 175, 30 and 207 percent of the corresponding sized phytoplankton production rates; that the sediment respiration rate (mgC/(m2·d)) varied from 178.64 to 373.23, average of 262.60±48.68, and increased gradually with the lapse of culture time; and that the organic carbon accumulation and the respiration in the sediment of the shrimp monoculture mesocosm was higher than that in the polyculture mesocosms. The total sediment respiration per 25 m2 mesocosm in the culture period averaged 571.16 gC, which was 10 percent of the total organic carbon input of the mesocosm.

  6. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  7. Carbon and nitrogen cycling in thermally heated sediments

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Burton, M.; Vennelakanti, S.; Havig, J. R.; Shock, E.

    2009-12-01

    Hydrothermally heated sediment environments, such as are found in abundance throughout Yellowstone National Park, host fully functional microbial ecosystems. As with any ecosystem, both sources and sinks of carbon, nitrogen, and a myriad of other nutrients and energy-driving factors must be supplied. While we know microbial communities in hydrothermal environments can be surprisingly diverse, we know little about basic ecological functions such as carbon and nitrogen cycling. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in sediments and biofilms across a temperature and chemical gradient at this location revealed that the four best studied carbon fixation pathways [Calvin, reverse tricarboxylic acid, acetyl-CoA, 3-hydroxypropionate cycles] may all be functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Microcosm experiments using biofilms from this hot spring as inoculae with 13C labeled carbon substrates indicate heterotrophic growth [2]. In addition, metagenomic analysis of environmental DNA has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [3]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [4, 5]. Of particular interest is the role of individuals in carbon and nitrogen cycling as environmental conditions suitable for chemosynthetic and photosynthetic growth vary. This study explores the diversity of cbbM/cbbL [Calvin cycle], aclB/oor/porA [rTCA cycle], nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. The transition of genetic diversity within sediments and biofilms is focused on the chemosynthetic

  8. Carbon cycling in polycyclic driftsand sequences

    NASA Astrophysics Data System (ADS)

    Jansen, B.; Van Mourik, J. M.; De Vreng, A.; Kalbitz, K.

    2012-04-01

    Polycyclic driftsand sequences are a common soil type in The Netherlands related to historic plaggen agriculture, where heath sods were seasonally removed from sandy soils to fertilize adjacent fields upon mixing with animal manure. When sods were removed too rigorously, this led to instable periods with sand drifting. These were alternated by stable periods with soil formation (initial podzols). Polycyclic sequences such as these are valuable geoecological records that contain important soil archives used for landscape evolution studies. Proxies commonly used for this purpose are fossil pollen analysis and 14C dating. We recently combined the mentioned proxies with OSL dating and biomarker analysis in a landscape evolution study in a typical polycyclic driftsand deposit in The Netherlands. For biomarker analysis we used the VERHIB model that we recently developed to unravel preserved biomarker patterns (n-alkanes and n-alcohols) in soils or sediments into their plant species-specific origin [1]. We discovered that the combination of proxies not only yielded information about landscape evolution, but also about carbon cycling in the soils in question. OSL dating yielded the age of the initial deposition of the driftsand. Therefore, the observed difference with the 14C derived age of various organic matter fractions at the same depth in a profile provided initial clues about soil organic carbon input and turnover [2]. We found that such information could be expanded through application of the VERHIB model. The leaves and roots of plant species have distinctly different biomarker patterns that are both considered by the model; it uses the root to leaf input ratio as well as rooting depth as explicit parameters [2]. We found that when VERHIB modeling results were related to the fossil pollen based vegetation reconstruction from the same driftsand sequence, information could be obtained about the relative input of root material vs. leaf material. Therefore, a multi

  9. The changing carbon cycle of the coastal ocean.

    PubMed

    Bauer, James E; Cai, Wei-Jun; Raymond, Peter A; Bianchi, Thomas S; Hopkinson, Charles S; Regnier, Pierre A G

    2013-12-05

    The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget.

  10. Global Carbon Cycle and Climate Change

    NASA Astrophysics Data System (ADS)

    Wofsy, Steven C.

    2004-11-01

    Kirill Kondratyev and his colleagues present an unusual look at global change issues, with particular emphasis on quantitative models that can capture diverse aspects of the complete Earth system-vegetation, atmosphere, oceans, and human beings. The focus is on the global carbon cycle as a prime indicator of global environmental stresses. It includes some remarkably sharp, and insightful critical analysis of the Kyoto Protocol and IPCC activity, and provides citations to a large sampling of Russian-language papers mostly unknown elsewhere. The critique of current policy trends is, in many respects, the most interesting part of the book. The authors are skeptical of claims about attribution of recent climate trends to human intervention, but devastating in their demolition of the ``skeptics'' views that nothing is seriously wrong in the global environmental system. They convincingly bring to bear the most telling observations and facts to make these arguments compelling and clarifying.

  11. Recent Cycle Time Reduction at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.

    2000-01-01

    The NASA Langley Research Center (LaRC) has been engaged in an effort to reduce wind tunnel test cycle time in support of Agency goals and to satisfy the wind tunnel testing needs of the commercial and military aerospace communities. LaRC has established the Wind Tunnel Enterprise (WTE), with goals of reducing wind tunnel test cycle time by an order of magnitude by 2002, and by two orders of magnitude by 2010. The WTE also plans to meet customer expectations for schedule integrity, as well as data accuracy and quality assurance. The WTE has made progress towards these goals over the last year with a focused effort on technological developments balanced by attention to process improvements. This paper presents a summary of several of the WTE activities over the last year that are related to test cycle time reductions at the Center. Reducing wind tunnel test cycle time, defined here as the time between the freezing of loft lines and delivery of test data, requires that the relationship between high productivity and data quality assurance be considered. The efforts have focused on all of the drivers for test cycle time reduction, including process centered improvements, facility upgrades, technological improvements to enhance facility readiness and productivity, as well as advanced measurement techniques. The application of internet tools and computer modeling of facilities to allow a virtual presence of the customer team is also presented.

  12. Effects of elevated atmospheric carbon dioxide on soil nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Hofmockel, Kirsten S.

    Human activities including fossil fuel combustion, deforestation, and land conversion to agriculture have caused the concentration of atmospheric CO2 to increase since the Industrial Revolution. One approach to atmospheric CO2 reduction is sequestration in forest ecosystems. Presently little is known about the overall impact of elevated atmospheric CO2 on net ecosystem carbon storage, particularly in terms of nutrient limitations. In this dissertation I tested the hypothesis that elevated atmospheric CO2 will stimulate soil N availability, supporting long-term CO 2 sequestration in southeastern forests, examined asymbiotic N2 fixation, amino acid assimilation and ecosystem scale N cycling to understand changes in soil N cycling induced by elevated atmospheric CO 2. All research was conducted at the Duke Forest free Air CO2 Enrichment (FACE) experiment, where atmospheric CO2 concentrations have been maintained at 200 ul l-1 above ambient levels in the 30-m diameter treatment plots since 1996. This body of research indicates that elevated atmospheric CO2 does not stimulate soil N cycling at the decadal time scale. Field measurements of exogenous N inputs via asymbiotic N2 fixing bacteria reveal no CO2 stimulation. Soil moisture was the most important factor controlling field rates of N2 fixation. Changes in endogenous N cycling were evaluated using stable isotope tracer field experiments. Short-term experiments showed that more amino acid N was assimilated by both fine roots and microbes under ambient compared to elevated CO2. This significant treatment effect indicates that soil C limitation was a stronger driver of amino acid cycling than N limitation. Intact amino acid assimilation was comparable to NH4 assimilation and may make a small, but important contribution to plant N uptake in warm-temperate forest ecosystems. Inorganic N cycling was not affected by elevated atmospheric CO2. After two growing seasons, a 15N field tracer experiment showed no effects of

  13. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    PubMed Central

    Shen, Jing; Kortlever, Ruud; Kas, Recep; Birdja, Yuvraj Y.; Diaz-Morales, Oscar; Kwon, Youngkook; Ledezma-Yanez, Isis; Schouten, Klaas Jan P.; Mul, Guido; Koper, Marc T. M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low overpotential (0.5 V), with an efficiency and selectivity comparable to the best porphyrin-based electrocatalyst in the literature. While carbon monoxide is the main reduction product, we also observe methane as by-product. The results of our detailed pH-dependent studies are explained consistently by a mechanism in which carbon dioxide is activated by the cobalt protoporphyrin through the stabilization of a radical intermediate, which acts as Brønsted base. The basic character of this intermediate explains how the carbon dioxide reduction circumvents a concerted proton–electron transfer mechanism, in contrast to hydrogen evolution. Our results and their mechanistic interpretations suggest strategies for designing improved catalysts. PMID:26324108

  14. Role of volcanic forcing on future global carbon cycle

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Otterå, O. H.

    2011-02-01

    Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller but more frequent eruptions, such as Pinatubo, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before return to the warming trend. Therefore, the climate change is approximately delayed by several decades and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45% increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by reduced CO2 partial pressure gradient between ocean and atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling only leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century. With respect to sulphur injection geoengineering method, our study suggest that small scale but frequent mitigation is more efficient than the opposite. Moreover, the longer we delay

  15. Biofuels Science and Facilities (Carbon Cycle 2.0)

    ScienceCinema

    Keasling, Jay D

    2016-07-12

    Jay D. Keasling speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  16. Carbon Cycle 2.0: Ashok Gadgil: global impact

    ScienceCinema

    Ashok Gadgi

    2016-07-12

    Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  17. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema

    Price, Lynn

    2016-07-12

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  18. A Healthy Reduction in Oil Dependence and Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Higgins, M.

    2003-12-01

    Societal dependence on oil as an energy source for personal transportation leads to increasingly negative social consequences including climate change, air pollution, political and economic instability and habitat degradation. Our heavy reliance on the automobile for transportation, determined in part by urban sprawl, also contributes to the population's increasingly sedentary lifestyle and to a concomitant degradation in health. We have shown that widespread substitution of exercise, commensurate with previously recommended levels, through biking or walking instead of driving can substantially reduce oil consumption and carbon emissions. For example, if all individuals between the ages of 10 and 64 substituted one hour of cycling for driving the reduction in gasoline demand would be equivalent to the gas produced from 34.9 percent of current oil consumption. Relative to 1990 net US emissions, this constitutes a 10.9 percent reduction in carbon emissions. Therefore, substitution of exercise for driving could improve health, reduce carbon emissions and save more oil than even upper estimates of that contained in the Arctic National Wildlife Refuge.

  19. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  20. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    PubMed

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.

  1. Reduction of Carbon Monoxide. Past Research Summary

    DOE R&D Accomplishments Database

    Schrock, R. R.

    1982-01-01

    Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

  2. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.

    PubMed

    Hügler, Michael; Sievert, Stefan M

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  3. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  4. Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Patiño, Yolanda; Pilehvar, Sanaz; Díaz, Eva; Ordóñez, Salvador; De Wael, Karolien

    2017-02-05

    The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT -MWCNT-COOH and MWCNT-NH2-was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH2>MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH=5.0, deposition time=20s and volume of MWCNT=10μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A=8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS).

  5. Carbon-Based Reduction of Lunar Regolith (CRLR)

    NASA Astrophysics Data System (ADS)

    Rice, Eric E.; Gustafson, Robert J.; Jordan, J.

    2001-03-01

    ORBITEC is developing a new high-temperature processing technique to produce oxygen and metals from lunar regolith via carbonaceous high-temperature reduction. The utility in this technique overcomes problematic issues inherent in traditional high-temperature processing methods that employ crucible-type containment vessels and hot-walled (i.e., resistance or inductive) furnaces. Crucible containment structures either crack from thermal and mechanical stress and/or react with the molten reaction mix, making it very unlikely that such a material could survive the repeated high-temperature thermal cycling in an economical LOX plant on the Moon. To enable in situ production of lunar oxygen, high-temperature reduction of lunar soil can be accomplished using a direct heating source, achieving high oxygen yield and high carbon (or hydrogen, depending on the reducing source) recovery. The direct heating approach uses the lunar regolith as its own insulative container. This approach allows extremely high processing temperatures (>2000 C) while eliminating the difficult requirement of developing a containment vessel that withstands these temperatures, is impervious to prolonged chemical attack, and is capable of thermal cycling. Reduction of regolith using this heating approach will provide NASA with a manageable, practical, and efficient technique for extracting oxygen from indigenous lunar resources for life support and propellant applications. In this effort, ORBITEC intends to demonstrate new techniques for achieving high oxygen yield and high carbon or hydrogen recovery. This will include developing integrated designs for both a production plant and a possible flight experiment on a NASA reduced-gravity aircraft.

  6. Carbon cycle: Global warming then and now

    NASA Astrophysics Data System (ADS)

    Stassen, Peter

    2016-04-01

    A rapid warming event 55.8 million years ago was caused by extensive carbon emissions. The rate of change of carbon and oxygen isotopes in marine shelf sediments suggests that carbon emission rates were much slower than anthropogenic emissions.

  7. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  8. Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle

    SciTech Connect

    Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob

    2012-05-22

    An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

  9. Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.

  10. Y-12 Respirator Flow Cycle Time Reduction Project

    SciTech Connect

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  11. Carbon Cycle 2.0: Jay Keasling: Biofuels

    SciTech Connect

    Jay Keasling

    2010-02-16

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  12. Carbon Cycle 2.0: Jay Keasling: Biofuels

    ScienceCinema

    Jay Keasling

    2016-07-12

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  13. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    ScienceCinema

    Nitash Balsara

    2016-07-12

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  14. Carbon Cycle 2.0: Robert Cheng and Juan Meza

    ScienceCinema

    Robert Cheng and Juan Meza

    2016-07-12

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  15. The changing carbon cycle at Mauna Loa Observatory.

    PubMed

    Buermann, Wolfgang; Lintner, Benjamin R; Koven, Charles D; Angert, Alon; Pinzon, Jorge E; Tucker, Compton J; Fung, Inez Y

    2007-03-13

    The amplitude of the CO(2) seasonal cycle at the Mauna Loa Observatory (MLO) increased from the early 1970s to the early 1990s but decreased thereafter despite continued warming over northern continents. Because of its location relative to the large-scale atmospheric circulation, the MLO receives mainly Eurasian air masses in the northern hemisphere (NH) winter but relatively more North American air masses in NH summer. Consistent with this seasonal footprint, our findings indicate that the MLO amplitude registers North American net carbon uptake during the warm season and Eurasian net carbon release as well as anomalies in atmospheric circulation during the cold season. From the early 1970s to the early 1990s, our analysis was consistent with that of Keeling et al. [Keeling CD, Chin JFS, Whorf TP (1996) Nature 382:146-149], suggesting that the increase in the MLO CO(2) amplitude is dominated by enhanced photosynthetic drawdown in North America and enhanced respiration in Eurasia. In contrast, the recent decline in the CO(2) amplitude is attributed to reductions in carbon sequestration over North America associated with severe droughts from 1998 to 2003 and changes in atmospheric circulation leading to decreased influence of Eurasian air masses. With the return of rains to the U.S. in 2004, both the normalized difference vegetation index and the MLO amplitude sharply increased, suggesting a return of the North American carbon sink to more normal levels. These findings indicate that atmospheric CO(2) measurements at remote sites can continue to play an important role in documenting changes in land carbon flux, including those related to widespread drought, which may continue to worsen as a result of global warming.

  16. Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model

    SciTech Connect

    Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

    2004-04-01

    Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

  17. Carbon cycle: New pathways in the sand

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra

    2017-01-01

    Organic carbon decomposition in anoxic marine sediments was thought to be dominated by bacteria, but experimental data and microbial culture studies now show that microalgae buried in coastal sands may also play an important role in carbon turnover.

  18. Carbon cycle: Ocean dissolved organics matter

    NASA Astrophysics Data System (ADS)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  19. Carbon and sulfur cycling through geologic time

    NASA Technical Reports Server (NTRS)

    Garrels, R. M.

    1985-01-01

    Mathematical models of the coupled global systems of sedimentary reservoirs and fluxes are used to infer variations in reservoir sizes and rates of sedimentation over periods of hundreds of millions of years. Perhaps most interesting is the coupled sulfide/sulfate carbon/carbonate system that controls global oxygen and carbon dioxide production and consumption is discussed.

  20. Microbial Fe(III) oxide reduction and Fe cycling in iron-rich freshwater wetland sediments

    SciTech Connect

    Roden, E.E.

    1995-12-31

    The dynamics of Fe cycling and the interaction between microbial Fe(III) oxide reduction and other anaerobic microbial respiratory processes were examined in Fe-rich, sulfate-poor freshwater wetland sediments. Sediment incubation experiments demonstrated that reduction of Fe(III) oxides (amorphous, soluble in dilute HCl) dominated anaerobic carbon mineralization at Fe(III) concentrations in excess of 10 mmol per liter wet sediment. The kinetics of Fe(III) reduction were found to be first-order with respect to the concentration of Fe(III) oxide, although estimated first-order rate constants varied in relation to the absolute rates of Fe(III) reduction, suggesting a co-dependency on the concentration of easily degradable organic carbon. High concentrations of amorphous Fe(III) oxides (10-100 mmol L wet sed {sup -1}) were found in surface sediments (0-3 cm) of unvegetated zones of the wetland and in the rhizosphere (0-10 cm) of emergent aquatic plants, sufficient (based on sediment incubation experiments) to allow Fe(III)-reducing bacteria (FeRB) to dominate anaerobic carbon mineralization. A rapid redox cycling of Fe is apparent in these localized zones based on observed rates of Fe(III) reduction and the abundance/depth distribution of Fe(Ill) oxides. Preliminary culture enrichment studies indicate that FeRB present in these sediments are capable of metabolizing a range of both natural and contaminant aromatic hydrocarbons, which suggests a potential for utilization of natural and/or artificial Fe-rich wetland systems for organic contaminant bioremediation.

  1. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  2. Progress and Future Directions in North American Carbon Cycle Science

    NASA Astrophysics Data System (ADS)

    Michalak, Anna; Huntzinger, Deborah; Shrestha, Gyami

    2013-05-01

    The North American Carbon Program (NACP) convened its fourth biennial "All Investigators" meeting (AIM4, http://www.nacarbon.org/meeting_2013) to review progress in understanding the dynamics of the carbon cycle of North America and adjacent oceans and to chart a course for a more integrative and holistic approach to future research. The meeting was structured around the six decadal goals outlined in the new "A U.S. Carbon Cycle Science Plan" (Michalak et al., University Corporation for Atmospheric Research, 2011, available at http://www.carboncyclescience.gov) and focused on (1) diagnosis of the atmospheric carbon cycle, (2) drivers of anthropogenic emissions, (3) vulnerability of carbon stocks to change, (4) ecosystem impacts of change, (5) carbon management, and (6) decision support.

  3. Carbon Cycle 2.0: Paul Alivisatos: Introduction

    ScienceCinema

    Paul Alivisatos

    2016-07-12

    Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  4. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    ScienceCinema

    Ramesh, Ramamoorthy

    2016-07-12

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  5. Belowground cycling of carbon in forests and pastures of eastern Amazonia

    SciTech Connect

    Trumbore, S.E.; Davidson, E.A.; Nepstad, D.C.

    1995-12-01

    Measurements of carbon stocks and fluxes in Amazon soils were used to model subsurface carbon cycling for the purpose of predicting carbon fluxes associated with deforestation and subsequent pasture management. Isotopic measurement of soil organic matter and soil carbon dioxide, measurements of aboveground and belowground carbon inputs, and estimates of carbon dioxide production as a function of soil depth were incorporated into a model describing turnover times of years, decades, and more than centuries. In degraded pastures, reduced carbon inputs to the soil were observed to cause a reduction in soil carbon inventory and delta carbon 14. Increases in carbon and carbon 14 were observed in managed pastures, which were fertilized and planted with productive grasses, over forest values. Predicted carbon losses from destruction of forest roots more than one meter deep in the soil partially offset carbon inventory increases in the upper meter of managed pasture soils. The major changes in soil carbon inventory after implementation of land management occur within the first 10 years. Due to this short turnover time, land management is an important factor in determining the effects of land use change on the global carbon budget. 54 refs., 7 figs., 5 tabs.

  6. Carbon cycling and storage in mangrove forests.

    PubMed

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  7. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates.

    PubMed

    Mystakidis, Stefanos; Davin, Edouard L; Gruber, Nicolas; Seneviratne, Sonia I

    2016-06-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2  emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change.

  8. A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; Bacour, Cédric; MacBean, Natasha; Leonard, Sébastien; Rayner, Peter; Kuppel, Sylvain; Koffi, Ernest; Kane, Abdou; Maignan, Fabienne; Chevallier, Frédéric; Ciais, Philippe; Prunet, Pascal

    2016-09-01

    Large uncertainties in land surface models (LSMs) simulations still arise from inaccurate forcing, poor description of land surface heterogeneity (soil and vegetation properties), incorrect model parameter values and incomplete representation of biogeochemical processes. The recent increase in the number and type of carbon cycle-related observations, including both in situ and remote sensing measurements, has opened a new road to optimize model parameters via robust statistical model-data integration techniques, in order to reduce the uncertainties of simulated carbon fluxes and stocks. In this study we present a carbon cycle data assimilation system that assimilates three major data streams, namely the Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) observations of vegetation activity, net ecosystem exchange (NEE) and latent heat (LE) flux measurements at more than 70 sites (FLUXNET), as well as atmospheric CO2 concentrations at 53 surface stations, in order to optimize the main parameters (around 180 parameters in total) of the Organizing Carbon and Hydrology in Dynamics Ecosystems (ORCHIDEE) LSM (version 1.9.5 used for the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations). The system relies on a stepwise approach that assimilates each data stream in turn, propagating the information gained on the parameters from one step to the next. Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, which suggests that current LSMs have reached the level of development to assimilate these observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for temperate ecosystems). The

  9. Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0)

    ScienceCinema

    Cheng, Robert K; Meza, Juan

    2016-07-12

    Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  10. Mixed-layer carbon cycling at the Kuroshio Extension Observatory

    NASA Astrophysics Data System (ADS)

    Fassbender, Andrea J.; Sabine, Christopher L.; Cronin, Meghan F.; Sutton, Adrienne J.

    2017-02-01

    Seven years of data from the NOAA Kuroshio Extension Observatory (KEO) surface mooring, located in the North Pacific Ocean carbon sink region, were used to evaluate drivers of mixed-layer carbon cycling. A time-dependent mass balance approach relying on two carbon tracers was used to diagnostically evaluate how surface ocean processes influence mixed-layer carbon concentrations over the annual cycle. Results indicate that the annual physical carbon input is predominantly balanced by biological carbon uptake during the intense spring bloom. Net annual gas exchange that adds carbon to the mixed layer and the opposing influence of net precipitation that dilutes carbon concentrations make up smaller contributions to the annual mixed-layer carbon budget. Decomposing the biological term into annual net community production (aNCP) and calcium carbonate production (aCaCO3) yields 7 ± 3 mol C m-2 yr-1 aNCP and 0.5 ± 0.3 mol C m-2 yr-1 aCaCO3, giving an annually integrated particulate inorganic carbon to particulate organic carbon production ratio of 0.07 ± 0.05, as a lower limit. Although we find that vertical physical processes dominate carbon input to the mixed layer at KEO, it remains unclear how horizontal features, such as eddies, influence carbon production and export by altering nutrient supply as well as the depth of winter ventilation. Further research evaluating linkages between Kuroshio Extension jet instabilities, eddy activity, and nutrient supply mechanisms is needed to adequately characterize the drivers and sensitivities of carbon cycling near KEO.

  11. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  12. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    PubMed

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  13. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  14. The role of urbanization in the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Churkina, Galina

    2016-04-01

    Increasing urbanization and global environmental change are two of the grand challenges of the Anthropocene. There are many important connections between these two challenges, which are still poorly understood. The role of urbanization in the global carbon cycle is one of them. Until now, the known facts about the its role encompassed only CO2 emissions. Urban areas account for more than 70% of CO2 emissions from burning fossil fuels. Urban expansion in tropics is responsible for 5% of the annual emissions from land use change. Here I show that the effect of urbanization on the global carbon cycle extends beyond these emissions. I quantify the contribution of urbanization to the major carbon fluxes and pools globally and identify gaps crucial for predicting the evolution of the carbon cycle in the future. Urban residents currently control ~22 (12-40)% of the land carbon uptake (112 PgC/yr) and ~24 (15-39)% of the carbon emissions (117 PgC/yr) from land globally. Urbanization resulted in the creation of new carbon pools on land such as buildings (~6.7 PgC) and landfills (~30 PgC). Together these pools store 1.6 (±0.3)% of the total vegetation and soil carbon pools globally. The creation and maintenance of these new pools has been associated with high emissions of CO2, which are currently better understood than the processes associated with the dynamics of these pools and accompanying uptake of carbon. Predictions of the future trajectories of the global carbon cycle will require a much better understanding of how urban development affects the carbon cycle over the long term.

  15. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.

    PubMed

    Stimson, A G; Allott, T E H; Boult, S; Evans, M G

    2017-02-15

    Inland water bodies are recognised as dynamic sites of carbon processing, and lakes and reservoirs draining peatland soils are particularly important, due to the potential for high carbon inputs combined with long water residence times. A carbon budget is presented here for a water supply reservoir (catchment area~9km(2)) draining an area of heavily eroded upland peat in the South Pennines, UK. It encompasses a two year dataset and quantifies reservoir dissolved organic carbon (DOC), particulate organic carbon (POC) and aqueous carbon dioxide (CO2(aq)) inputs and outputs. The budget shows the reservoir to be a hotspot of fluvial carbon cycling, as with high levels of POC influx it acts as a net sink of fluvial carbon and has the potential for significant gaseous carbon export. The reservoir alternates between acting as a producer and consumer of DOC (a pattern linked to rainfall and temperature) which provides evidence for transformations between different carbon species. In particular, the budget data accompanied by (14)C (radiocarbon) analyses provide evidence that POC-DOC transformations are a key process, occurring at rates which could represent at least ~10% of the fluvial carbon sink. To enable informed catchment management further research is needed to produce carbon cycle models more applicable to these environments, and on the implications of high POC levels for DOC composition.

  16. The carbon cycle on early Earth—and on Mars?

    PubMed Central

    Grady, Monica M; Wright, Ian

    2006-01-01

    One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere. PMID:17008211

  17. The carbon cycle on early Earth--and on Mars?

    PubMed

    Grady, Monica M; Wright, Ian

    2006-10-29

    One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.

  18. A model ensemble for explaining the seasonal cycle of globally averaged atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Alexandrov, Georgii; Eliseev, Alexey

    2015-04-01

    The seasonal cycle of the globally averaged atmospheric carbon dioxide concentrations results from the seasonal changes in the gas exchange between the atmosphere and other carbon pools. Terrestrial pools are the most important. Boreal and temperate ecosystems provide a sink for carbon dioxide only during the warm period of the year, and, therefore, the summertime reduction in the atmospheric carbon dioxide concentration is usually explained by the seasonal changes in the magnitude of terrestrial carbon sink. Although this explanation seems almost obvious, it is surprisingly difficult to support it by calculations of the seasonal changes in the strength of the sink provided by boreal and temperate ecosystems. The traditional conceptual framework for modelling net ecosystem exchange (NEE) leads to the estimates of the NEE seasonal cycle amplitude which are too low for explaining the amplitude of the seasonal cycle of the atmospheric carbon dioxide concentration. To propose a more suitable conceptual framework we develop a model ensemble that consists of nine structurally different models and covers various approaches to modelling gross primary production and heterotrophic respiration, including the effects of light saturation, limited light use efficiency, limited water use efficiency, substrate limitation and microbiological priming. The use of model ensembles is a well recognized methodology for evaluating structural uncertainty of model-based predictions. In this study we use this methodology for exploratory modelling analysis - that is, to identify the mechanisms that cause the observed amplitude of the seasonal cycle of the atmospheric carbon dioxide concentration and its slow but steady growth.

  19. Carbon cycling in high-latitude ecosystems

    NASA Technical Reports Server (NTRS)

    Townsend, Alan; Frolking, Stephen; Holland, Elizabeth

    1992-01-01

    The carbon-rich soils and peatlands of high-latitude ecosystems could substantially influence atmospheric concentrations of CO2 and CH4 in a changing climate. Currently, cold, often waterlogged conditions retard decomposition, and release of carbon back to the atmosphere may be further slowed by physical protection of organic matter in permafrost. As a result, many northern ecosystems accumulate carbon over time (Billings et al., 1982; Poole and Miller, 1982), and although such rates of accumulation are low, thousands of years of development have left Arctic ecosystems with an extremely high soil carbon content; Schlesinger's (1984) average value of 20.4 kg C/m(sup 2) leads to a global estimate of 163 x 10(exp 15) g C. All GCM simulations of a doubled CO2 climate predict the greatest warming to occur in the polar regions (Dickinson, 1986; Mitchell, 1989). Given the extensive northern carbon pools and the strong sensitivity of decomposition processes to temperature, even a slight warming of the soil could dramatically alter the carbon balance of Arctic ecosystems. If warming accelerates rates of decomposition more than rates of primary production, a sizeable additional accumulation of CO2 in the atmosphere could occur. Furthermore, CH4 produced in anaerobic soils and peatlands of the Arctic already composes a good percentage of the global efflux (Cicerone and Oremlund, 1988); if northern soils become warmer and wetter as a whole, CH4 emissions could dramatically rise. A robust understanding of the primary controls of carbon fluxes in Arctic ecosystems is critical. As a framework for a systematic examination of these controls, we discussed a conceptual model of regional-scale Arctic carbon turnover, including CH4 production, and based upon the Century soil organic matter model.

  20. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  1. Development of a carbon formation reactor for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, G.

    1985-01-01

    Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.

  2. Carbon corrosion in PEM fuel cells during drive cycle operation

    DOE PAGES

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; ...

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potentialmore » regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.« less

  3. Carbon corrosion in PEM fuel cells during drive cycle operation

    SciTech Connect

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; Spernjak, Dusan; Langlois, David Alan; Ahluwalia, Rajesh; More, Karen L.; Grot, Steve

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potential regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.

  4. Grid Expansion Planning for Carbon Emissions Reduction

    SciTech Connect

    Bent, Russell W.; Toole, Gasper L.

    2012-07-18

    There is a need to upgrade and expand electric power transmission and generation to meet specified renewable energy targets and simultaneously minimize construction cost and carbon emissions. Some challenges are: (1) Renewable energy sources have variable production capacity; (2) Deficiency of transmission capacity at desirable renewable generation locations; (3) Need to incorporate models of operations into planning studies; and (4) Prevent undesirable operational outcomes such as negative dispatch prices or curtailment of carbon neutral generation.

  5. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  6. Effect of Carbon and Energy Source on Bacterial Chromate Reduction

    SciTech Connect

    Smith, William Aaron; Apel, William Arnold; Petersen, J. N.; Peyton, Brent Michael

    2002-07-01

    Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.

  7. An advanced carbon reactor subsystem for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, Gary P.; Cusick, Robert J.

    1986-01-01

    An evaluation is presented of the development status of an advanced carbon-reactor subsystem (ACRS) for the production of water and dense, solid carbon from CO2 and hydrogen, as required in physiochemical air revitalization systems for long-duration manned space missions. The ACRS consists of a Sabatier Methanation Reactor (SMR) that reduces CO2 with hydrogen to form methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolize methane to carbon and hydrogen; the carbon is recycled to the SMR, while the produce carbon is periodically removed from the CFR. A preprototype ACRS under development for the NASA Space Station is described.

  8. Simulation of the carbon cycle in the ocean

    SciTech Connect

    Fasham, M.J.R.

    1991-09-16

    A dual carbon-nitrogen biological model of the upper ocean has been developed, which has successfully allowed predictions of fluxes of carbon between atmosphere and the deep ocean to made. Regarding studying the carbon cycle in the ocean, the modelling has highlighted the need for a good understanding of the interactions between the carbon and nitrogen cycles, and also the importance of zooplankton grazing and levels of overwintering biological stocks. Problems have been encountered with the accuracy of prediction of the partial pressure of carbon dioxide in the surface ocean, and the sensitivity of the model to zooplankton parameters, and those parameters which effect overwintering stocks (e.g. mortality parameters). The model has recently been incorporated into a physical General Circulation Model of the Atlantic Ocean. Future work will involve assessing the performance of the biological model in General Circulation Models, and making necessary refinements in order to improve its predictive ability. 1 ref., 1 fig.

  9. The contribution of bacteria to algal growth by carbon cycling.

    PubMed

    Bai, Xue; Lant, Paul; Pratt, Steven

    2015-04-01

    Algal mass production in open systems is often limited by the availability of inorganic carbon substrate. In this paper, we evaluate how bacterial driven carbon cycling mitigates carbon limitation in open algal culture systems. The contribution of bacteria to carbon cycling was determined by quantifying algae growth with and without supplementation of bacteria. It was found that adding heterotrophic bacteria to an open algal culture dramatically enhanced algae productivity. Increases in algal productivity due to supplementation of bacteria of 4.8 and 3.4 times were observed in two batch tests operating at two different pH values over 7 days. A kinetic model is proposed which describes carbon limited algal growth, and how the limitation could be overcome by bacterial activity to re-mineralize photosynthetic end products.

  10. Physical and biogeochemical mechanisms of internal carbon cycling in Lake Michigan

    NASA Astrophysics Data System (ADS)

    Pilcher, Darren J.; McKinley, Galen A.; Bootsma, Harvey A.; Bennington, Val

    2015-03-01

    The lakewide seasonal carbon cycle of Lake Michigan is poorly quantified and lacks the mechanistic links necessary to determine impacts upon it from eutrophication, invasive species, and climate change. A first step toward a full appreciation of Lake Michigan's carbon cycle is to quantify the dominant mechanisms of its internal carbon cycle. To achieve this, we use the MIT general circulation model configured to the bathymetry of Lake Michigan and coupled to an ecosystem model to simulate the seasonal cycle of productivity, temperature, circulation, and the partial pressure of CO2 in water (pCO2). This biogeochemistry is designed to be appropriate for the prequagga mussel state of the lake. The primary mechanism behind the seasonal cycle of primary productivity is lake physics. The offshore spring phytoplankton bloom begins following a reduction in deep vertical mixing and ends with the depletion of nutrients via thermal stratification. The exception is the western shoreline, where summer winds drive coastal upwelling, providing hypolimnetic nutrients and generating significant productivity. Surface pCO2 is controlled by the net effect from temperature on solubility, and is modulated by biological uptake of dissolved inorganic carbon (DIC) and isothermal mixing of DIC-rich water in winter. Temperature tends to have the greatest seasonal impact in nearshore regions, while local DIC has the greatest impact in offshore regions. Lakewide, the model suggests that carbon is absorbed from the atmosphere during the spring bloom and released to the atmosphere during winter mixing and when summer surface temperatures are at their maximum.

  11. Contribution of fish to the marine inorganic carbon cycle.

    PubMed

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  12. Urbanization and the carbon cycle: Contributions from social science

    NASA Astrophysics Data System (ADS)

    Marcotullio, Peter J.; Hughes, Sara; Sarzynski, Andrea; Pincetl, Stephanie; Sanchez Peña, Landy; Romero-Lankao, Patricia; Runfola, Daniel; Seto, Karen C.

    2014-10-01

    This paper outlines the contributions of social science to the study of interactions between urbanization patterns and processes and the carbon cycle, and identifies gaps in knowledge and priority areas for future social scientific research contributions. While previously studied as a unidimensional process, we conceptualize urbanization as a multidimensional, social and biophysical process driven by continuous changes across space and time in various subsystems including biophysical, built environment, and socio-institutional (e.g., economic, political, demographic, behavioral, and sociological). We review research trends and findings focused on the socio-institutional subsystem of the urbanization process, and particularly the dynamics, relationships, and predictions relevant to energy use and greenhouse gas emissions. Our findings suggest that a multidimensional perspective of urbanization facilitates a wider spectrum of research relevant to carbon cycle dynamics, even within the socio-institutional subsystem. However, there is little consensus around the details and mechanisms underlying the relationship between urban socio-institutional subsystems and the carbon cycle. We argue that progress in understanding the relationship between urbanization and the carbon cycle may be achieved if social scientists work collaboratively with each other as well as with scientists from other disciplines. From this review, we identify research priorities where collaborative social scientific efforts are necessary in conjunction with other disciplinary approaches to generate a more complete understanding of urbanization as a process and its relationship to the carbon cycle.

  13. Modelling the effects of grassland management on the carbon cycle

    NASA Astrophysics Data System (ADS)

    Rolinski, Susanne; Heinke, Jens; Weindl, Isabelle

    2014-05-01

    Management of grassland is assumed to have a substantial impact on the global carbon cycle and large potential for carbon sequestration. There are few global assessments of the respective fluxes. Within the well-established dynamic global vegetation model LPJmL, we implemented four major options for the management and harvest regimes of grasslands. This approach enables to study the feedbacks of biomass removal through harvest and grazing on grassland productivity. We demonstrate sensitivity of carbon fluxes and stocks under different grassland management options. This opens the possibility for the integration of observation-based estimates of carbon sequestration in global models.

  14. Improving greenhouse gas reduction calculations for bioenergy systems: Incremental life cycle analysis

    NASA Astrophysics Data System (ADS)

    Ney, Richard A.

    There are many scales that can be employed to calculate net greenhouse gas emissions from bioenergy systems, ranging from single point source (stack gas) measurement, to full, multi-layered life cycle analyses considering all of the inputs and outputs throughout the economy. At an appropriate scale within these extremes, a method can be selected to support verification activities related to project-based trading of greenhouse gas emissions. The boundaries of the analysis must be carefully selected in order to meet the twin goals of the verification activity: (1) to meet scientific standards for emission balance quantification; and (2) to meet cost-effectiveness criteria of the emission trading community. The Incremental Life Cycle Analysis (ILCA) methodology is proposed and implemented for the quantification of greenhouse gas emission reductions arising from substitution of switchgrass for coal in electricity generation. The method utilizes an incremental progression through the fuel life cycle, evaluating each level of the life cycle for the quality the emission estimate produced. The method also reviews the scientific uncertainty underlying emission estimation procedures so that areas of relative weakness can be targeted and improved. The ILCA methodology is applied to the Chariton Valley Biomass Project (CVBP) for case study and evaluation. The CVBP is seeking to replace coal combustion in an existing 650-MW generation facility with switchgrass, cofired at a rate of 5 percent switchgrass to 95 percent coal. When the project reaches full capacity, the ILCA estimates that 239 pounds of carbon dioxide-equivalent (CO2-eq) emissions will be reduced and/or removed from the atmosphere for every million Btu of switchgrass utilized, generating annual greenhouse gas reductions of 305,000 tons CO2-eq, leading to revenue for the project totaling over $1.5 million annually through trading of greenhouse gas emission reduction credits.

  15. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  16. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  17. Toward an improved understanding of tropical forest carbon cycle feedbacks in the Earth's climate system

    NASA Astrophysics Data System (ADS)

    Chambers, J. Q.

    2015-12-01

    There are large uncertainties regarding the response of tropical forest carbon cycling to expected global changes over the 21st Century. Whether tropical forests continue to act as large carbon sinks, or shift to become significant carbon sources, plays a major role in determining the rate and intensity of climate change impacts. Most terrestrial models predict a large current tropical forest carbon sink due to the effects of rising atmospheric CO2 on plant productivity. Yet the strength of this sink is likely limited by multiple factors, and the magnitudes of these constraints remain in question. As atmospheric CO2 levels continue to rise, nutrient limitations are likely to become more prominent, yet the current suite of Earth system models (ESMs) have inadequate representations of nutrient constraints on tropical forest productivity. Concurrently, the negative effects of rising temperatures and shifting precipitation patterns on plant production are expected to become more pronounced, likely driving reductions in tropical forest carbon assimilation and storage. In addition to these carbon-climate feedbacks, human land-use activities in the tropics result in both carbon sources from deforestation, and carbon sinks in secondary forests, both of which are also inadequately represented in ESMs. This talk will focus on recent advances in our understanding of these key carbon cycle processes, and explore several field research activities needed to advance ESM treatment of the underlying mechanisms.

  18. Changes in the carbon cycle of northern Eurasia simulated by process models

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.

    2013-12-01

    Pronounced warming across the northern high latitudes is impacting water and carbon cycles and raising concern over possible feedbacks to global climate. Recent model studied point toward a weakening of the terrestrial land carbon sink across the northern high latitudes, one notable manifestation of a warming Arctic. We explore links between regional climate and the carbon cycle using data from models participating in the Vulnerability of Permafrost Carbon Research Coordination Network (RCN). The domain of interest is the drainage basin within the Northern Eurasia Earth Science Partnership Initiative (NEESPI) region. Model outputs examined include gross primary production (GPP), heterotrophic respiration (RH), net ecosystem exchange (NEE), and total soil carbon storage. Mean flux budgets and their changes over the period 1960-2009 are calculated from the model estimates for the entire NEESPI region and for each major land cover category within the region. Use of an independent model, which captures well the spatial pattern in soil freeze/thaw dynamics, indicates that the reduction in permafrost extent over the NEESPI basin was 4-6% over recent decades. Modeled influences of permafrost thaw on the region's water and carbon cycles are evaluated in the context of recent measurements. Estimates of the flux of CO2 due to fire are also examined in order to better understand how these disturbances are altering regional carbon sink/source dynamics.

  19. Observing terrestrial ecosystems and the carbon cycle from space

    SciTech Connect

    Schimel, David; Pavlick, Ryan; Fisher, Joshua B.; Asner, Gregory P.; Saatchi, Sassan; Townsend, Philip; Miller, Charles; Frankenberg, Christian; Hibbard, Kathy; Cox, Peter

    2015-02-06

    Modeled terrestrial ecosystem and carbon cycle feedbacks contribute substantial uncertainty to projections of future climate. The limitations of current observing networks contribute to this uncertainty. Here we present a current climatology of global model predictions and observations for photosynthesis, biomass, plant diversity and plant functional diversity. Carbon cycle tipping points occur in terrestrial regions where fluxes or stocks are largest, and where biological variability is highest, the tropics and Arctic/Boreal zones. Global observations are predominately in the mid-latitudes and are sparse in high and low latitude ecosystems. Observing and forecasting ecosystem change requires sustained observations of sufficient density in time and space in critical regions. Using data and theory available now, we can develop a strategy to detect and forecast terrestrial carbon cycle-climate interactions, by combining in situ and remote techniques.

  20. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    SciTech Connect

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton; Nellis, Gregory; Klein, Sanford

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  1. Carbon reduction emissions in South Africa

    SciTech Connect

    Temchin, Jerome

    2002-02-28

    This project is a feasibility study for a control system for existing backup generators in South Africa. The strategy is to install a system to enable backup generators (BGs) to be dispatched only when a large generator fails. Using BGs to provide ''ten minute reserve'' will save energy and reduce emissions of greenhouse gases by an estimated nearly 500,000 tons of carbon dioxide per year.

  2. Investigation of reductive dechlorination supported by natural organic carbon

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.A.; Chapelle, F.H.; Kelly, C.A.; Novak, J.T.

    2007-01-01

    Because remediation timeframes using monitored natural attenuation may span decades or even centuries at chlorinated solvent sites, new approaches are needed to assess the long-term sustainability of reductive dechlorination in ground water systems. In this study, extraction procedures were used to investigate the mass of indigenous organic carbon in aquifer sediment, and experiments were conducted to determine if the extracted carbon could support reductive dechlorination of chloroethenes. Aquifer sediment cores were collected from a site without an anthropogenic source of organic carbon where organic carbon varied from 0.02% to 0.12%. Single extraction results showed that 1% to 28% of sediment-associated organic carbon and 2% to 36% of the soft carbon were removed depending on nature and concentration of the extracting solution (Nanopure water; 0.1%, 0.5%, and 1.0% sodium pyrophosphate; and 0.5 N sodium hydroxide). Soft carbon is defined as organic carbon oxidized with potassium persulfate and is assumed to serve as a source of biodegradable carbon within the aquifer. Biodegradability studies demonstrated that 20% to 40% of extracted organic carbon was biodegraded aerobically and anaerobically by soil microorganisms in relatively brief tests (45 d). A five-step extraction procedure consisting of 0.1% pyrophosphate and base solutions was investigated to quantify bioavailable organic carbon. Using the extracted carbon as the sole electron donor source, tetrachloroethene was transformed to cis-1,2- dichloroethene and vinyl chloride in anaerobic enrichment culture experiments. Hydrogen gas was produced at levels necessary to sustain reductive dechlorination (>1 nM). ?? 2007 National Ground Water Association.

  3. Role of the seasonal cycle in coupling climate and carbon cycling in the subantarctic zone

    NASA Astrophysics Data System (ADS)

    Monteiro, Pedro M. S.; Boyd, Philip; Bellerby, Richard

    2011-07-01

    Workshop on the Seasonal Cycle of the Carbon-Climate System in the Southern Ocean; Cape Town, South Africa, 23-25 August 2010; There is increasing evidence in the Southern Ocean that mesoscales and seasonal scales play an important role in the coupling of ocean carbon cycling and climate. The seasonal cycle is one of the strongest modes of variability in different components of the carbon cycle in the Southern Ocean. It is also the mode that couples climate forcing to ecosystem responses such as productivity and ultimately biogeochemical signals including carbon export. However, not only are these scales of coupling poorly understood, but also there appear to be important regional differences in the way they couple climate to carbon. With this as an overarching theme, a workshop in South Africa brought together scientists working in the Southern Ocean, the waters south of Australia, New Zealand, and South Africa. The importance of the Subantarctic Zone (SAZ) as a carbon sink made it an ideal system on which to focus the workshop.

  4. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake.

    PubMed

    Hamilton, T L; Bovee, R J; Thiel, V; Sattin, S R; Mohr, W; Schaperdoth, I; Vogl, K; Gilhooly, W P; Lyons, T W; Tomsho, L P; Schuster, S C; Overmann, J; Bryant, D A; Pearson, A; Macalady, J L

    2014-09-01

    Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate--including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data--as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non-phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.

  5. Reduction of carbon dioxide by hydrogen on metal-carbon catalysts under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Bogdan, V. I.; Koklin, A. E.; Kozak, D. O.; Kustov, L. M.

    2016-12-01

    The reduction of carbon dioxide with hydrogen on metal-carbon (Ru, Rh, Ir) catalysts is investigated under supercritical conditions for the first time. High selectivity (close to 100%) toward methanation with good stability of catalytic activity is observed for Ru- and Rh-containing catalyst, while the preferred reduction to CO is observed for Ir/C catalyst.

  6. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    SciTech Connect

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  7. The carbon cycle and associated redox processes through time

    PubMed Central

    Hayes, John M; Waldbauer, Jacob R

    2006-01-01

    Earth's biogeochemical cycle of carbon delivers both limestones and organic materials to the crust. In numerous, biologically catalysed redox reactions, hydrogen, sulphur, iron, and oxygen serve prominently as electron donors and acceptors. The progress of these reactions can be reconstructed from records of variations in the abundance of 13C in sedimentary carbonate minerals and organic materials. Because the crust is always receiving new CO2 from the mantle and a portion of it is being reduced by photoautotrophs, the carbon cycle has continuously released oxidizing power. Most of it is represented by Fe3+ that has accumulated in the crust or been returned to the mantle via subduction. Less than 3% of the estimated, integrated production of oxidizing power since 3.8 Gyr ago is represented by O2 in the atmosphere and dissolved in seawater. The balance is represented by sulphate. The accumulation of oxidizing power can be estimated from budgets summarizing inputs of mantle carbon and rates of organic-carbon burial, but levels of O2 are only weakly and indirectly coupled to those phenomena and thus to carbon-isotopic records. Elevated abundances of 13C in carbonate minerals ca 2.3 Gyr old, in particular, are here interpreted as indicating the importance of methanogenic bacteria in sediments rather than increased burial of organic carbon. PMID:16754608

  8. CO/sub 2/ and the carbon cycle: atmospheric aspects

    SciTech Connect

    Machta, L.

    1981-09-01

    The contents of and fluxes between several reservoirs for carbon exchange are used in a simplified carbon cycle model. Variability in CO/sub 2/ measurements in the atmosphere are discussed in terms of changes observed at the Mauna Loa station. The results indicate that these changes are probably average for the global atmosphere. Analytical reproducibility has caused some problems which may be due to sampling or shipping-induced errors, rather than by errors in measurement. 7 figures.

  9. Quantifying the Indirect Effect of Sulfate Aerosol on Climate Change Through the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Cadule, P.; Friedlingstein, P.; Bopp, L.; Piao, S.; Ciais, P.

    2008-12-01

    Elevated atmospheric concentrations of greenhouse gases will continue to warm the Earth's climate in the coming century. Coupled climate-carbon models have demonstrated a significant climate-induced reduction of natural carbon sinks, which acts as a positive feedback on the atmospheric CO2 concentration (between +20 and +220 ppm in 2100, for the SRES A2 emission scenario). Sulfate aerosols are known to affect climate through a radiative direct effect and a series of indirect effects involving the atmospheric water cycle. However, the effects of sulfate aerosols and non-CO2 greenhouse gases were neglected in these coupled climate-carbon cycle models. Here we performed new coupled climate-carbon simulations wherein the evolution of sulfate aerosols and non-CO2 greenhouse gases were explicitly represented. We show a hitherto undocumented indirect effect of aerosols on climate, via the carbon cycle. While sulfate aerosols cool the climate by 0.79°C globally, this cooling reduces land carbon sinks, leaving additional CO2 in the atmosphere. At mid-to-high northern latitudes, the aerosol-induced cooling is responsible for a decline in photosynthesis and land carbon uptake (-63 PgC by 2100). On the other hand, a variety of processes yields increased tropical carbon uptake (+28 PgC) in response to aerosol induced cooling, which is insufficient to balance the decline in the northern hemisphere. Overall, including non- CO2 greenhouse gases and sulfate aerosols, in coupled simulations, doubles the additional quantity of CO2 accumulating in the atmosphere due to climate change. Our results demonstrate that any climate mitigation policy that aims to reduce warming via sulfate aerosols must also account for their indirect warming effect, which arises from interactions between climate and the carbon cycle.

  10. Decay of cacti and carbon cycling.

    PubMed

    Garvie, Laurence A J

    2006-03-01

    Cacti contain large quantities of Ca-oxalate biominerals, with C derived from atmospheric CO(2). Their death releases these biominerals into the environment, which subsequently transform to calcite via a monohydrocalcite intermediate. Here, the fate of Ca-oxalates released by plants in arid environments is investigated. This novel and widespread form of biomineralization has unexpected consequences on C cycling and calcite accumulation in areas with large numbers of cacti. The magnitude of this mineralization is revealed by studying the large columnar cactus Carnegiea gigantea (Engelm.) Britton and Rose in southwestern Arizona (locally called the saguaro). A large C. gigantea contains on the order of 1 x 10(5) g of the Ca-oxalate weddellite-CaC(2)O(4) x 2H(2)O. In areas with high C. gigantea density, there is an estimated 40 g C(atm) m(-2) sequestered in Ca-oxalates. Following the death of the plant, the weddellite transforms to calcite on the order to 10-20 years. In areas with high saguaro density, there is an estimated release of up to 2.4 g calcite m(-2) year(-1) onto the desert soil. Similar transformation mechanisms occur with the Ca-oxalates that are abundant in the majority of cacti. Thus, the total atmospheric C returned to the soil of areas with a high number density of cacti is large, suggesting that there may be a significant long-term accumulation of atmospheric C in these soils derived from Ca-oxalate biominerals. These findings demonstrate that plant decay in arid environments may have locally significant impacts on the Ca and inorganic C cycles.

  11. Decay of cacti and carbon cycling

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.

    2006-03-01

    Cacti contain large quantities of Ca-oxalate biominerals, with C derived from atmospheric CO2. Their death releases these biominerals into the environment, which subsequently transform to calcite via a monohydrocalcite intermediate. Here, the fate of Ca-oxalates released by plants in arid environments is investigated. This novel and widespread form of biomineralization has unexpected consequences on C cycling and calcite accumulation in areas with large numbers of cacti. The magnitude of this mineralization is revealed by studying the large columnar cactus Carnegiea gigantea (Engelm.) Britton and Rose in southwestern Arizona (locally called the saguaro). A large C. gigantea contains on the order of 1×105 g of the Ca-oxalate weddellite—CaC2O4·2H2O. In areas with high C. gigantea density, there is an estimated 40 g Catm m-2 sequestered in Ca-oxalates. Following the death of the plant, the weddellite transforms to calcite on the order to 10-20 years. In areas with high saguaro density, there is an estimated release of up to 2.4 g calcite m-2 year-1 onto the desert soil. Similar transformation mechanisms occur with the Ca-oxalates that are abundant in the majority of cacti. Thus, the total atmospheric C returned to the soil of areas with a high number density of cacti is large, suggesting that there may be a significant long-term accumulation of atmospheric C in these soils derived from Ca-oxalate biominerals. These findings demonstrate that plant decay in arid environments may have locally significant impacts on the Ca and inorganic C cycles.

  12. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    NASA Astrophysics Data System (ADS)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in

  13. Observatory enabled modeling of the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Fox, A. M.; Moore, D. J.; Sacks, W. J.; Berukoff, S. J.

    2011-12-01

    A central challenge to global modeling of the terrestrial carbon cycle is the scaling of organism-scale characteristics to large regions. Emerging ground- and space-based global observatories will allow coupling observations directly to state and parameter values in a state-of-the-art coupled carbon climate model. Model-data fusion will qualitatively improve understanding and forecasting of interannual to centennial scale responses of terrestrial ecosystems and carbon cycle to global environmental change. This modeling study will use the baseline measures of global terrestrial ecosystem biochemical composition to reduce uncertainty in forecasting E&CC responses to climate and land-use change. The NCAR Community Land Model (Community Land Model - Carbon/Nitrogen or CLM-CN) simulates carbon, water and energy exchange at the land surface and includes detailed parameters governing plant-mediated fluxes and storage NEON and NCAR are developing a data assimilation version of the CLM, designed to work with new observatory data. Data requirements of CLM are quite different from earlier generation land surface models because the nitrogen cycle is explicitly simulated. Nitrogen concentrations regulate plant photosynthesis and decomposition of dead organic matter but their within biome and global distributions are poorly constrained by observations. Developing a Observatory-enabled version of the CLM, and the cyberinfrastructure to support it creates a very different set of requirements for modeling and observatory information systems than traditional approaches. In the talk, we will discuss briefly the science of carbon data assimilation and the observing requirements it generates.

  14. A tree-ring perspective on the terrestrial carbon cycle.

    PubMed

    Babst, Flurin; Alexander, M Ross; Szejner, Paul; Bouriaud, Olivier; Klesse, Stefan; Roden, John; Ciais, Philippe; Poulter, Benjamin; Frank, David; Moore, David J P; Trouet, Valerie

    2014-10-01

    Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.

  15. Anthropogenic chemical carbon cycle for a sustainable future.

    PubMed

    Olah, George A; Prakash, G K Surya; Goeppert, Alain

    2011-08-24

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time, millions of years, can new fossil fuels be formed naturally. The burning of our diminishing fossil fuel reserves is accompanied by large anthropogenic CO(2) release, which is outpacing nature's CO(2) recycling capability, causing significant environmental harm. To supplement the natural carbon cycle, we have proposed and developed a feasible anthropogenic chemical recycling of carbon dioxide. Carbon dioxide is captured by absorption technologies from any natural or industrial source, from human activities, or even from the air itself. It can then be converted by feasible chemical transformations into fuels such as methanol, dimethyl ether, and varied products including synthetic hydrocarbons and even proteins for animal feed, thus supplementing our food chain. This concept of broad scope and framework is the basis of what we call the Methanol Economy. The needed renewable starting materials, water and CO(2), are available anywhere on Earth. The required energy for the synthetic carbon cycle can come from any alternative energy source such as solar, wind, geothermal, and even hopefully safe nuclear energy. The anthropogenic carbon dioxide cycle offers a way of assuring a sustainable future for humankind when fossil fuels become scarce. While biosources can play a limited role in supplementing future energy needs, they increasingly interfere with the essentials of the food chain. We have previously reviewed aspects of the chemical recycling of carbon dioxide to methanol and dimethyl ether. In the present Perspective, we extend the discussion of the innovative and feasible anthropogenic carbon cycle, which can be the basis of progressively liberating humankind from its dependence on diminishing fossil fuel reserves while also controlling harmful CO(2) emissions to the atmosphere. We also

  16. The Carbon Cycle: Teaching Youth about Natural Resource Sustainability

    ERIC Educational Resources Information Center

    Warren, William A.

    2015-01-01

    The carbon cycle was used as a conceptual construct for organizing the curriculum for a youth summer camp on natural resource use and sustainability. Several studies have indicated the importance of non-traditional youth education settings for science education and understanding responsible natural resource use. The Sixth Grade Forestry Tour, a…

  17. Using the 5E Learning Cycle Sequence with Carbon Dioxide

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Blanke, Regina; Mecca, Peter

    2007-01-01

    The authors used the 5E learning cycle (engage, explore, explain, extend, and evaluate) and a pulmonary carbon dioxide mystery to introduce eighth grade students to the study of chemistry. The activity engages students in measurement, data collection, data analysis, media and internet research, research design, and report writing as they search…

  18. Citric acid cycle biomimic on a carbon electrode.

    PubMed

    Sokic-Lazic, Daria; Minteer, Shelley D

    2008-12-01

    The citric acid cycle is one of the main metabolic pathways living cells utilize to completely oxidize biofuels to carbon dioxide and water. The overall goal of this research is to mimic the citric acid cycle at the carbon surface of an electrode in order to achieve complete oxidation of ethanol at a bioanode to increase biofuel cell energy density. In order to mimic this process, dehydrogenase enzymes (known to be the electron or energy producing enzymes of the citric acid cycle) are immobilized in cascades at an electrode surface along with non-energy producing enzymes necessary for the cycle to progress. Six enzymatic schemes were investigated each containing an additional dehydrogenase enzyme involved in the complete oxidation of ethanol. An increase in current density is observed along with an increase in power density with each additional dehydrogenase immobilized on an electrode, reflecting increased electron production at the bioanode with deeper oxidation of the ethanol biofuel. By mimicking the complete citric acid cycle on a carbon electrode, power density was increased 8.71-fold compared to a single enzyme (alcohol dehydrogenase)-based ethanol/air biofuel cell.

  19. Paleoproductivity And Carbon Cycling During The Middle Miocene Monterey Excursion

    NASA Astrophysics Data System (ADS)

    Billups, K.; Diester-Haass, L.; Emeis, K.; François, L.; Jacquemin, I.; Lefebvre, V.

    2010-05-01

    A prominent middle Miocene (17.5 to 13.5 Ma) carbon-isotope excursion (the so-called Monterey event) is punctuated by six distinct carbon isotope maxima (CM). Orbital tuning of carbon isotope records links each CM event with the long term component of eccentricity (400 kyr) highlighting the importance of insolation control on the global carbon cycle (Holbourn et al., 2008). Here we use proxy reconstructions (benthic foraminiferal accumulation rates) from six sites in the Atlantic and Pacific Oceans combined with geochemical modelling to investigate whether there is a link between long term insolation forcing and the marine carbon isotope record via marine productivity and thus atmospheric CO2 levels. Our results show that none of the CM events are associated with distinctly large changes in paleoproductivity. This observation is consistent with our previous finding that the overall mid Miocene carbon isotope maximum is not associated with a change in marine productivity (Diester-Haass et al., 2009). There are, albeit minor, fluctuations in productivity that can be related to the 400 kyr variability in the carbon isotope records with several productivity maxima between CM events, whereas CM events often show minima in productivity. Only the last of the CM events (CM 6), which occurs in close association with the major step in mid Miocene Antarctic ice growth, is accompanied by an ocean-wide increase in paleoproductivity. To tentatively explain the observed 400 kyr variability of the deep ocean carbon isotope record an improved version of the geochemical box model used Diester-Haass et al. (2009) has been forced by sealevel fluctuations reconstructed for the middle Miocene (Holbourn pers. comm., 2009). Calculations indicate that the induced changes in weathering rates and carbon cycle can explain the temporal variability of the carbon isotope record, but not the observed amplitude.

  20. Autonomous observing strategies for the ocean carbon cycle

    SciTech Connect

    Bishop, James K.; Davis, Russ E.

    2000-07-26

    Understanding the exchanges of carbon between the atmosphere and ocean and the fate of carbon delivered to the deep sea is fundamental to the evaluation of ocean carbon sequestration options. An additional key requirement is that sequestration must be verifiable and that environmental effects be monitored and minimized. These needs can be addressed by carbon system observations made from low-cost autonomous ocean-profiling floats and gliders. We have developed a prototype ocean carbon system profiler based on the Sounding Oceanographic Lagrangian Observer (SOLO; Davis et al., 1999). The SOLO/ carbon profiler will measure the two biomass components of the carbon system and their relationship to physical variables, such as upper ocean stratification and mixing. The autonomous observations within the upper 1500 m will be made on daily time scales for periods of months to seasons and will be carried out in biologically dynamic locations in the world's oceans that are difficult to access with ships (due to weather) or observe using remote sensing satellites (due to cloud cover). Such an observational capability not only will serve an important role in carbon sequestration research but will provide key observations of the global ocean's natural carbon cycle.

  1. A LEO Hyperspectral Mission Implementation for Global Carbon Cycle Observations

    NASA Technical Reports Server (NTRS)

    Gervin, Janette C.; Esper, Jaime; McClain, Charles R.; Hall, Forrest G.; Middleton, Elizabeth M.; Gregg, Watson W.; Mannino, Antonio; Knox, Robert G.; Huemmrich, K. Fred

    2004-01-01

    For both terrestrial and ocean carbon cycle science objectives, high resolution (less than l0 nm) imaging spectrometers capable of acquiring multiple regional to global scale observations per day should enable the development of new remote sensing measurements for important but as yet unobservable variables, with the overall goal of linking both terrestrial and ocean carbon cycle processes to climate variability. For terrestrial research, accurate estimates of carbon, water and energy (CWE) exchange between the terrestrial biosphere and atmosphere a needed to id- the geographical locations and temporal dynamics of carbon sources/sinks and to improve regional climate models and climate change assessments. It is an enormous challenge to estimate CWE exchange from the infrequent temporal coverage and sparse spectral information provided by most single polar-orbiting, earth-looking satellite. The available satellite observations lack a sufficient number of well-placed narrow bands from which to derive spectral indices that capture vegetation responses to stress conditions associated with down-regulation of photosynthesis. Physiological status can best be assessed with spectral indices based on continuous, narrow bands in the visible/near infrared spectra, as can seasonal and annual terrestrial productivity. For coastal and ocean constituents, narrow-band observations in the ultraviolet and visible are essential to investigate the variability, dynamics and biogeochemical cycles of the world's coastal and open ocean regions, which will in turn help in measuring ocean productivity and predicting the variability of ocean carbon uptake and its role in climate change.

  2. Urbanization and the Carbon Cycle: Synthesis of Ongoing Research

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Duren, R. M.; Hutyra, L.; Ehleringer, J. R.; Patarasuk, R.; Song, Y.; Huang, J.; Davis, K.; Kort, E. A.; Shepson, P. B.; Turnbull, J. C.; Lauvaux, T.; Rao, P.; Eldering, A.; Miller, C. E.; Wofsy, S.; McKain, K.; Mendoza, D. L.; Lin, J. C.; Sweeney, C.; Miles, N. L.; Richardson, S.; Cambaliza, M. O. L.

    2015-12-01

    Given the explosive growth in urbanization and its dominant role in current and future global greenhouse gas emissions, urban areas have received increasing research attention from the carbon cycle science community. The emerging focus is driven by the increasingly dense atmospheric observing capabilities - ground and space-based - in addition to the rising profile of cities within international climate change policymaking. Dominated by anthropogenic emissions, urban carbon cycle research requires a cross-disciplinary perspective with contributions from disciplines such as engineering, economics, social theory, and atmospheric science. We review the recent results from a sample of the active urban carbon research efforts including the INFLUX experiment (Indianapolis), the Megacity carbon project (Los Angeles), Salt Lake City, and Boston. Each of these efforts represent unique approaches in pursuit of different scientific and policy questions and assist in setting priorities for future research. From top-down atmospheric measurement systems to bottom-up estimation, these research efforts offer a view of the challenges and opportunities in urban carbon cycle research.

  3. Some aspects of understanding changes in the global carbon cycle

    NASA Technical Reports Server (NTRS)

    Emanuel, W. R.; Moore, B., III; Shugart, H. H.

    1984-01-01

    The collective character of carbon exchanges between the atmosphere and other pools is partially revealed by comparing the record of CO2 concentration beginning in 1958 with estimates of the releases from fossil fuels during this period. In analyzing the secular increase in CO2 concentration induced by fossil fuel use, the atmosphere is generally treated as a single well-mixed reservoir; however, to study finer structure in the CO2 records, the influence of atmospheric circulation must be more carefully considered. The rate of carbon uptake by the oceans, the primary sink for fossil fuel CO2, is assessed more reliably than influences on the atmosphere due to interactions with other pools. Models of the global carbon cycle are being substantially refined while data that reflect the response of the cycle to fossil fuel use and other perturbations are being extended.

  4. [Responses of forest soil carbon pool and carbon cycle to the changes of carbon input].

    PubMed

    Wang, Qing-kui

    2011-04-01

    Litters and plant roots are the main sources of forest soil organic carbon (C). This paper summarized the effects of the changes in C input on the forest soil C pool and C cycle, and analyzed the effects of these changes on the total soil C, microbial biomass C, dissoluble organic C, and soil respiration. Different forests in different regions had inconsistent responses to C input change, and the effects of litter removal or addition and of root exclusion or not differed with tree species and regions. Current researches mainly focused on soil respiration and C pool fractions, and scarce were about the effects of C input change on the changes of soil carbon structure and stability as well as the response mechanisms of soil organisms especially soil fauna, which should be strengthened in the future.

  5. Upward-shoaling cycles in Smackover carbonates of southwest Alabama

    SciTech Connect

    Kopaska-Merkel, D.C.; Mann, S.D. )

    1993-09-01

    Upper Smackover strata in Alabama commonly consist of one or more upward-shoaling cycles about 15 to 50 ft (3 to 16 m) in thickness. Multiple forcing functions (eustasy, regional tilting, salt halokinesis, and autogenic migration of facies) and varying water depths at the start and end of each upward-shoaling cycle generated an array of sedimentary responses. The Brittain No. 1 well, Permit No. 2478, Healing Springs field, Washington County, Alabama, illustrates nucleation of an offshore bar. Bar deposits are capped by anhydritic sabkha deposits, gradationally overlain by subtidal lagoonal strata. Varying rates (and directions ) of halokinesis controlled this succession. Locally varying rates of salt movement created as many as five sabkha-capped cycles in this area. The International Paper company 20-5 Mo. 1 well, Permit No. 5242, Blacksher field, Baldwin County, Alabama, contains three upward-shoaling cycles capped by evaporites. Limited aggradational potential of supratidal evaporitic settings permitted subsidence-caused immersion, which eventually permitted reactivation of the carbonate factory and formation of the next cycle. The Chatom Unit 20-14 No. 1-04 well, Permit No. 7044, Chatom field, Washington County, contains three different cycles. The lower cycle consists of subtidal lime mudstone, capped by a 5-ft (1.5-m) thick soil zone that contains multiple exposure surfaces, tepee structures, and anhydrite pseudomorphs after lenticular gypsum crystals. The soil zone underlies an intraclastic storm deposit followed by a deepening-upward lagoonal succession. A thin ooid grainstone containing exposure surfaces caps the middle cycle. In the upper cycle, peritidal carbonate strata underlie sabkha deposits.

  6. Modelling feedback mechanisms in the carbon cycle: balancing the carbon budget

    NASA Astrophysics Data System (ADS)

    Rotmans, J.; den Elzen, M. G. J.

    1993-09-01

    Within the carbon cycle feedback, mechanisms that amplify or dampen the exchange of carbon dioxide between the different reservoirs to enhance concentrations of carbon dioxide and increase temperature from anthropogenic perturbations, play a crucial rôle. Quite a lot of these feedbacks are known, but most of them only potentially. This article evaluates the role of a number of these feedback processes within the carbon cycle. In order to assess their impact, some terrestrial feedbacks have been built into a coupled carbon cycle and climate model, as part of the integrated climate assessment model IMAGE. A number of simulation experiments have been performed with this coupled carbon cycle/climate model to compare historical atmospheric concentration values of carbon dioxide with simulated values. Also global biospheric and oceanic carbon fluxes were validated against other modelling estimates. Based on the assumptions of the IPCC's 1990 Business-as-Usual (BaU-1990) scenario, future projections of the carbon dioxide concentration have been made. A key principle in this is that we have used the modelled feedbacks in order to balance the past and present carbon budget. For atmospheric carbon dioxide, this results in substantially lower projections than the IPCC-estimates: the difference in 2100 is approximately 16% from the 1990 level. Furthermore, the IPCC's 'best guess' or 'central estimate' value of the CO2 concentration in 2100 falls outside the uncertainty range estimated with our balanced modelling approach. Sensitivity experiments with the model have been performed to quantify to what extent the terrestrial feedback processes and oceanic fluxes influence the global carbon balance in the model. It is shown that a historical and present carbon balance can be obtained in many different ways, resulting in different biospheric fluxes and thus in considerably different atmospheric CO2 projections.

  7. Sulfur Cycling Mediates Calcium Carbonate Geochemistry in Modern Marine Stromatolites

    NASA Technical Reports Server (NTRS)

    Visscher, P. T.; Hoeft, S. E.; Bebout, B. M.; Reid, R. P.

    2004-01-01

    Modem marine stromatolites forming in Highborne Cay, Exumas (Bahamas), contain microbial mats dominated by Schizothrix. Although saturating concentrations of Ca2+ and CO32- exist, microbes mediate CaCO3 precipitation. Cyanobacterial photosynthesis in these stromatolites aids calcium carbonate precipitation by removal of HS+ through CO2 use. Photorespiration and exopolymer production predominantly by oxygenic phototrophs fuel heterotrophic activity: aerobic respiration (approximately 60 umol/sq cm.h) and sulfate reduction (SR; 1.2 umol SO42-/sq cm.h) are the dominant C- consuming processes. Aerobic microbial respiration and the combination of SR and H2S oxidation both facilitate CaCO3 dissolution through H+ production. Aerobic respiration consumes much more C on an hourly basis, but duel fluctuating O2 and H2 depth profiles indicate that overall, SR consumes only slightly less (0.2-0.5) of the primary production. Moreover, due to low O2 concentrations when SR rates are peaking, reoxidation of the H2S formed is incomplete: both thiosulfate and polythionates are formed. The process of complete H2S oxidation yields H+. However, due to a low O2 concentration late in the day and relatively high O2 concentrations early in the following morning, a two-stage oxidation takes place: first, polythionates are formed from H2S, creating alkalinity which coincides with CaCO3 precipitation; secondly, oxidation of polythionates to sulfate yields acidity, resulting in dissolution, etc. Vertical profiles confirmed that the pH peaked late in the afternoon (greater than 8.8) and had the lowest values (less than 7.4) early in the morning. Thus, the effect of this S-cycling through alkalinity production, followed by acidification during H2S oxidation, results in a six times stronger fluctuation in acidity than photosynthesis plus aerobic respiration accomplish. This implies that anaerobic processes play a pivotal role in stromatolite formation.

  8. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    PubMed

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  9. The State of the Carbon Cycle: Ten Years On

    NASA Astrophysics Data System (ADS)

    King, A. W.; Dilling, L.; Fairman, D. M.; Houghton, R. A.; Marland, G.; Rose, A.; Wilbanks, T. J.; Zimmerman, G.

    2015-12-01

    It has been nearly ten years since the First State of the Carbon Cycle Report (SOCCR-1) was published in 2007. Much has changed in the intervening years, but much has remained the same. In anticipation of a Second State of the Carbon Cycle Report (SOCCR-2), we, the members of the SOCCR-1 Coordinating Team, felt that a perspective from the first SOCCR and reflection on changes in the state of carbon cycle science and policy in the intervening years would be appropriate. The purpose of SOCCR-1 was to provide "…a synthesis and integration of the current knowledge of the North American carbon budget and its context within the global carbon cycle [i]n a format useful to decision makers." Being "useful to decision makers" was a guiding theme with three stakeholder workshops an integral part of the process. Drafting and revision of SOCCR-1 took place between 2005 and early 2007; the report's carbon budget was for circa 2003. In 2003, North America's fossil-fuel CO2 emissions were approximately 27% of global emissions. Nearly 85% of North American emissions were from the US, still at that time the world's largest emitter of fossil-fuel CO2. China's annual CO2 emissions exceeded those of the US for the first time while SOCCR-1 was being written. Today global CO2 emissions are dominated by emissions from China (28% in 2013), with US emissions only 14% of global emissions. Emissions from the US and North America have actually declined by approximately 10% since 2003 while emissions from China have doubled. Based on inventories of terrestrial carbon stocks, SOCCR-1 estimated that circa 2003 North American vegetation removed and stored a net 500 Mt C y-1 (±50%) from the atmosphere. A more recent synthesis incorporating additional estimates from atmospheric inversions and terrestrial biosphere modeling estimated the North American land sink for the decade of 2000-2009 at 350-470 Mt C y-1, with a slightly greater uncertainty due to the wider range of estimates from the

  10. Bony fish and their contribution to marine inorganic carbon cycling

    NASA Astrophysics Data System (ADS)

    Salter, Michael; Perry, Chris; Wilson, Rod; Harborne, Alistair

    2016-04-01

    Conventional understanding of the marine inorganic carbon cycle holds that CaCO3 (mostly as low Mg-calcite and aragonite) precipitates in the upper reaches of the ocean and sinks to a point where it either dissolves or is deposited as sediment. Thus, it plays a key role controlling the distribution of DIC in the oceans and in regulating their capacity to absorb atmospheric CO2. However, several aspects of this cycle remain poorly understood and have long perplexed oceanographers, such as the positive alkalinity anomaly observed in the upper water column of many of the world's oceans, above the aragonite and calcite saturation horizons. This anomaly would be explained by extensive dissolution of a carbonate phase more soluble than low Mg-calcite or aragonite, but major sources for such phases remain elusive. Here we highlight marine bony fish as a potentially important primary source of this 'missing' high-solubility CaCO3. Precipitation of CaCO3 takes place within the intestines of all marine bony fish as part of their normal physiological functioning, and global production models suggest it could account for up to 45 % of total new marine CaCO3 production. Moreover, high Mg-calcite containing >25 % mol% MgCO3 - a more soluble phase than aragonite - is a major component of these precipitates. Thus, fish CaCO3 may at least partially explain the alkalinity anomaly in the upper water column. However, the issue is complicated by the fact that carbonate mineralogy actually varies among fish species, with high Mg-calcite (HMC), low Mg-calcite (LMC), aragonite, and amorphous calcium carbonate (ACC) all being common products. Using data from 22 Caribbean fish species, we have generated a novel production model that resolves phase proportions. We evaluate the preservation/dissolution potential of these phases and consider potential implications for marine inorganic carbon cycling. In addition, we consider the dramatic changes in fish biomass structure that have resulted

  11. Cenozoic carbon cycle imbalances and a variable weathering feedback

    NASA Astrophysics Data System (ADS)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, <1 million year increases in the weathering flux, which remove CO2. As runoff and temperature decline in response, the integrated weathering flux over >1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has

  12. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    NASA Astrophysics Data System (ADS)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which

  13. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  14. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; Banakar, Virupaxa K.

    2015-06-01

    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer-term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, for example via NADW temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during marine isotope stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks

  15. A Scientific Synthesis and Assessment of the Arctic Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Daniel J.; Guo, Laodong; McGuire, A. David

    2007-06-01

    The Arctic Monitoring and Assessment Programme (AMAP), along with the Climate and Cryosphere (CliC) Project and the International Arctic Science Committee (IASC), sponsored the Arctic Carbon Cycle Assessment Workshop, at the Red Lion Hotel in Seattle, Wash., between 27 February and 1 March 2007. The workshop was held in a general effort toward the scientific synthesis and assessment of the Arctic system carbon cycle, as well as to generate feedback on the working draft of an assessment document. The initial assessment was prepared by the Arctic carbon cycle assessment writing team, which is led by A. David McGuire (University of Alaska Fairbanks) and includes Leif Anderson (Goteborg University, Sweden), Torben Christensen (Lund University, Sweden), Scott Dallimore (Natural Resources Canada), Laodong Guo (University of Southern Mississippi), Martin Heimann (Max Planck Institute, Germany), Robie MacDonald (Department of Fisheries and Oceans, Canada), and Nigel Roulet (McGill University, Canada). The workshop brought together leading researchers in the fields of terrestrial, marine, and atmospheric science to report on and discuss the current state of knowledge on contemporary carbon stocks and fluxes in the Artie and their potential responses to a changing climate. The workshop was attended by 35 scientists representing institutions from 10 countries in addition to two representatives of the sponsor agencies (John Calder for AMAP and Diane Verseghy for CliC).

  16. Carbon reduction potential from recycling in primary materials manufacturing

    SciTech Connect

    Elliott, R.N.

    1993-12-31

    This study assesses the potential for energy savings and carbon emissions reduction by increasing the recycled content of energy-intensive materials. Aluminum, steel, paper, plastics, and container glass are considered. Government policies to encourage higher recycling rates and increased recycled materials content are proposed.

  17. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  18. Hidden cycle of dissolved organic carbon in the deep ocean.

    PubMed

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  19. Eocene bipolar glaciation associated with global carbon cycle changes.

    PubMed

    Tripati, Aradhna; Backman, Jan; Elderfield, Henry; Ferretti, Patrizia

    2005-07-21

    The transition from the extreme global warmth of the early Eocene 'greenhouse' climate approximately 55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica approximately 34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from approximately 42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to approximately 1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.

  20. Slow growth rates of Amazonian trees: consequences for carbon cycling.

    PubMed

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B; Selhorst, Diogo; Chambers, Jeffrey Q; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-12-20

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only approximately 1 mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests.

  1. Microbial contributions to climate change through carbon cycle feedbacks.

    PubMed

    Bardgett, Richard D; Freeman, Chris; Ostle, Nicholas J

    2008-08-01

    There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land-atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land-atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

  2. Estimating soil carbon change and biofuel life-cycle greenhouse gas emissions with economic, ecosystem and life-cycle models

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Dunn, J.; Kwon, H. Y.; Mueller, S.; Wander, M.

    2015-12-01

    Land-use change (LUC) resulting from biofuel feedstock production can alter soil organic carbon (SOC) stocks of lands producing those crops and the crops they displace, possibly resulting in greenhouse gas (GHG) emissions. LUC GHG emissions included in biofuel life cycle analysis (LCA) have at times been estimated to be so great that biofuels did not offer a greenhouse gas reduction compared to conventional fossil fuels. To improve the accuracy of emissions estimates, SOC changes must be considered at a finer spatial resolution and take into account climate, soil, land use and management factors. This study reports on the incorporation of global LUC as predicted by a computable general equilibrium model (i.e., GTAP) and spatially-explicit modeled SOC estimates (using surrogate CENTURY) for various biofuel feedstock scenarios into a widely-used LCA model (i.e., GREET). Resulting estimates suggest: SOC changes associated with domestic corn production might contribute 2-6% or offset as much as 5% of total corn ethanol life-cycle GHG emissions. On the other hand, domestic LUC GHG emissions for switchgrass ethanol have the potential offset up to 60% of GHG emissions in the fuel's life cycle. Further, large SOC sequestration is predicted for Miscanthus feedstock production, enabling Miscanthus-based ethanol systems to offset all life-cycle GHG emissions and create a net carbon sink. LUC GHG emissions for ethanol derived from corn stover are small compared to other sources. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm soil) were estimated to be 59-66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -7 - -0.6 for Miscanthus ethanol.

  3. Bacterioplankton carbon cycling along the Subtropical Frontal Zone off New Zealand

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Stuck, Esther; Morales, Sergio; Currie, Kim

    2015-06-01

    Marine heterotrophic bacterioplankton (Bacteria and Archaea) play a central role in ocean carbon cycling. As such, identifying the factors controlling these microbial populations is crucial to fully understanding carbon fluxes. We studied bacterioplankton activities along a transect crossing three water masses (i.e., Subtropical waters [STW], Sub-Antarctic waters [SAW] and neritic waters [NW]) with contrasting nutrient regimes across the Subtropical Frontal Zone. In contrast to bacterioplankton production and community respiration, bacterioplankton respiration increased in the offshore SAW, causing a seaward increase in the contribution of bacteria to community respiration (from 7% to 100%). Cell-specific bacterioplankton respiration also increased in SAW, but cell-specific production did not, suggesting that prokaryotic cells in SAW were investing more energy towards respiration than growth. This was reflected in a 5-fold decline in bacterioplankton growth efficiency (BGE) towards SAW. One way to explain this decrease in BGE could be due to the observed reduction in phytoplankton biomass (and presumably organic matter concentration) towards SAW. However, this would not explain why bacterioplankton respiration was highest in SAW, where phytoplankton biomass was lowest. Another factor affecting BGE could be the iron limitation characteristic of high-nutrient low-chlorophyll (HNLC) regions like SAW. Our field-study based evidences would agree with previous laboratory experiments in which iron stress provoked a decrease in BGE of marine bacterial isolates. Our results suggest that there is a strong gradient in bacterioplankton carbon cycling rates along the Subtropical Frontal Zone, mainly due to the HNLC conditions of SAW. We suggest that Fe-induced reduction of BGE in HNLC regions like SAW could be relevant in marine carbon cycling, inducing bacterioplankton to act as a link or a sink of organic carbon by impacting on the quantity of organic carbon they incorporate

  4. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  5. Microbial extracellular enzymes and the marine carbon cycle.

    PubMed

    Arnosti, Carol

    2011-01-01

    Extracellular enzymes initiate microbial remineralization of organic matter by hydrolyzing substrates to sizes sufficiently small to be transported across cell membranes. As much of marine primary productivity is processed by heterotrophic microbes, the substrate specificities of extracellular enzymes, the rates at which they function in seawater and sediments, and factors controlling their production, distribution, and active lifetimes, are central to carbon cycling in marine systems. In this review, these topics are considered from biochemical, microbial/molecular biological, and geochemical perspectives. Our understanding of the capabilities and limitations of heterotrophic microbial communities has been greatly advanced in recent years, in part through genetic and genomic approaches. New methods to measure enzyme activities in the field are needed to keep pace with these advances and to pursue intriguing evidence that patterns of enzyme activities in different environments are linked to differences in microbial community composition that may profoundly affect the marine carbon cycle.

  6. Comparative carbon cycle dynamics of the present and last interglacial

    NASA Astrophysics Data System (ADS)

    Brovkin, Victor; Brücher, Tim; Kleinen, Thomas; Zaehle, Sönke; Joos, Fortunat; Roth, Raphael; Spahni, Renato; Schmitt, Jochen; Fischer, Hubertus; Leuenberger, Markus; Stone, Emma J.; Ridgwell, Andy; Chappellaz, Jérôme; Kehrwald, Natalie; Barbante, Carlo; Blunier, Thomas; Dahl Jensen, Dorthe

    2016-04-01

    Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics - shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global

  7. Reduction of carbon-carbon double bonds using organocatalytically generated diimide.

    PubMed

    Smit, Christian; Fraaije, Marco W; Minnaard, Adriaan J

    2008-12-05

    An efficient method has been developed for the reduction of carbon-carbon double bonds with diimide, catalytically generated in situ from hydrazine hydrate. The employed catalyst is prepared in one step from riboflavin (vitamin B(2)). Reactions are carried out in air and are a valuable alternative when metal-catalyzed hydrogenations are problematic.

  8. Carbon Dioxide Cycling and the Climate of Ancient Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Sleep, Norman H.

    2001-01-01

    The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early Sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.

  9. Carbon Dioxide Cycling And The Climate of Ancient Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Sleep, Norman H.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.

  10. Climate, carbon cycling, and deep-ocean ecosystems.

    PubMed

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  11. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    SciTech Connect

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  12. Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

  13. Sulfate-Reducing Microorganisms in Wetlands – Fameless Actors in Carbon Cycling and Climate Change

    PubMed Central

    Pester, Michael; Knorr, Klaus-Holger; Friedrich, Michael W.; Wagner, Michael; Loy, Alexander

    2012-01-01

    Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change. PMID:22403575

  14. Carbon nanofiber polymer composites: evaluation of life cycle energy use.

    PubMed

    Khanna, Vikas; Bakshi, Bhavik R

    2009-03-15

    Holistic evaluation of emerging nanotechnologies using systems analysis is pivotal for guiding their safe and sustainable development. While toxicity studies of engineered nanomaterials are essential, understanding of the potential large scale impacts of nanotechnology is also critical for developing sustainable nanoproducts. This work evaluates the life cycle energetic impact associated with the production and use of carbon nanofiber (CNF) reinforced polymer nanocomposites (PNC). Specifically, both simple CNF and carbon nanofiber-glass fiber (CNF-GF) hybrid PNCs are evaluated and compared with steel for equal stiffness design. Life cycle inventory is developed based on published literature and best available engineering information. A cradle-to-gate comparison suggests that for equal stiffness design, CNF reinforced PNCs are 1.6-12 times more energy intensive than steel. It is anticipated that the product use phase may strongly influence whether any net savings in life cycle energy consumption can be realized. A case study involving the use of CNF and CNF-GF reinforced PNCs in the body panels of automobiles highlights that the use of PNCs with lower CNF loading ratios has the potential for net life cycle energy savings relative to steel owing to improved fuel economy benefits. Other factors such as cost, toxicity impact of CNF, and end-of-life issues specific to CNFs need to be considered to evaluate the final economic and environmental performance of CNF reinforced PNC materials.

  15. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin

    2015-12-01

    Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j

  16. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Tao, Ying; Lv, Wei; Su, Fang-Yuan; Ke, Lei; Li, Jia; Wang, Da-Wei; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2014-09-01

    Carbon-based electrocatalysts are more durable and cost-effective than noble materials for the oxygen reduction reaction (ORR), which is an important process in energy conversion technologies. Heteroatoms are considered responsible for the excellent ORR performance in many carbon-based electrocatalysts. But whether an all-carbon electrocatalyst can effectively reduce oxygen is unknown. We subtly engineered the interfaces between planar graphene sheets and curved carbon nanotubes (G-CNT) and gained a remarkable activity/selectivity for ORR (larger current, and n = 3.86, ~93% hydroxide + ~7% peroxide). This performance is close to that of Pt; and the durability is much better than Pt. We further demonstrate the application of this G-CNT hybrid as an all-carbon cathode catalyst for lithium oxygen batteries.We speculate that the high ORR activity of this G-CNT hybrid stems from the localized charge separation at the interface of the graphene and carbon nanotube, which results from the tunneling electron transfer due to the Fermi level mismatch on the planar and curved sp2 surfaces. Our result represents a conceptual breakthrough and pioneers the new avenues towards practical all-carbon electrocatalysis.

  17. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

    PubMed Central

    Wei, Wei; Tao, Ying; Lv, Wei; Su, Fang-Yuan; Ke, Lei; Li, Jia; Wang, Da-Wei; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2014-01-01

    Carbon-based electrocatalysts are more durable and cost-effective than noble materials for the oxygen reduction reaction (ORR), which is an important process in energy conversion technologies. Heteroatoms are considered responsible for the excellent ORR performance in many carbon-based electrocatalysts. But whether an all-carbon electrocatalyst can effectively reduce oxygen is unknown. We subtly engineered the interfaces between planar graphene sheets and curved carbon nanotubes (G-CNT) and gained a remarkable activity/selectivity for ORR (larger current, and n = 3.86, ~93% hydroxide + ~7% peroxide). This performance is close to that of Pt; and the durability is much better than Pt. We further demonstrate the application of this G-CNT hybrid as an all-carbon cathode catalyst for lithium oxygen batteries.We speculate that the high ORR activity of this G-CNT hybrid stems from the localized charge separation at the interface of the graphene and carbon nanotube, which results from the tunneling electron transfer due to the Fermi level mismatch on the planar and curved sp2 surfaces. Our result represents a conceptual breakthrough and pioneers the new avenues towards practical all-carbon electrocatalysis. PMID:25189141

  18. Warm Spring Reduced Impact of Summer Drought on Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Keenan, T. F.; Fisher, J. B.; Baldocchi, D. D.

    2014-12-01

    Drought severely impacts biosphere-atmosphere carbon and water fluxes of terrestrial ecosystems by reducing productivity, carbon uptake and water transport to the atmosphere. The 2012 US drought was among the most intense and widespread drought events in the U.S. since the 'Dust Bowl' period in the 1930s, and had devastating effects on agricultural production. In addition, 2012 was among the warmest years on record. Using eddy covariance measurements of carbon, water and energy exchange from 25 AmeriFlux sites along with remote sensing products, we show that this summer drought substantially reduced ecosystem productivity, net carbon uptake and water transport to the atmosphere. However, the warm spring with higher ecosystem productivity reduced the impact of the summer drought on annual carbon uptake. Shifts in vegetation activity during spring also triggered feedbacks that contributed to the summer heatwave. Although the drought was exceptional, 2012 was an example of what is expected in terms of future climate change - i.e. warmer temperatures all year and an increased frequency and duration of drought in summer. Understanding the response of ecosystem carbon and water cycling to drought will help to mitigate these changes, and our study provides important new insights for that.

  19. Warm Spring Reduced Impact of Summer Drought on Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; Baldocchi, Dennis

    2015-04-01

    Drought severely impacts biosphere-atmosphere carbon and water fluxes of terrestrial ecosystems by reducing productivity, carbon uptake and water transport to the atmosphere. The 2012 US drought was among the most intense and widespread drought events in the U.S. since the 'Dust Bowl' period in the 1930s, and had devastating effects on agricultural production. In addition, 2012 was among the warmest years on record. Using eddy covariance measurements of carbon, water and energy exchange from AmeriFlux sites along with remote sensing products, we show that this summer drought substantially reduced ecosystem productivity, net carbon uptake and water transport to the atmosphere. However, the warm spring with higher ecosystem productivity reduced the impact of the summer drought on annual carbon uptake. Shifts in vegetation activity during spring also triggered feedbacks that contributed to the summer heatwave. Although the drought was exceptional, 2012 was an example of what is expected in terms of future climate change - i.e. warmer temperatures all year and an increased frequency and duration of drought in summer. Understanding the response of ecosystem carbon and water cycling to drought will help to mitigate these changes, and our study provides important new insights for that.

  20. Linking carbon and nitrogen cycles in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Baggs, E.; Morley, N.; Paterson, E.; Villada, A.; Gougoulias, C.; Shaw, L.

    2013-12-01

    Consideration of links between C and N biogeochemical cycles is essential for advancing knowledge of ecosystem functioning. Plant-derived C is a key driver of rhizosphere processes, but the role of this C in driving components of the N cycle is poorly characterised. Here we demonstrate the role of plant-derived C in regulating nitrous oxide (N2O) production and reduction in the rhizosphere. We use isotope (13C, 14C and 15N) techniques and a new isotope-FISH-FACS approach to verify (i) the link between plant-C and activity of microbial nitrate reducers, (ii) uptake of C compounds into pseudomonads, (iii) the role of both composite rhizodeposits and individual compounds in regulating the magnitude of N2O emission, and (iv) their influence on the N2O:N2 product ratio. We examine the potential these relationships offer to use plants to manipulate the rhizosphere for reduction of N2O emissions.

  1. Historical constraints on the origins of the carbon cycle concept

    NASA Astrophysics Data System (ADS)

    Galvez, Matthieu Emmanuel; Gaillardet, Jérôme

    2012-11-01

    Understanding the geological carbon cycle remains a major scientific challenge, although studies dedicated to this issue, in particular those of J.J. Ebelmen in the mid 19th century, have existed for over 200 years. The exact scientific and social pathways leading to the construction of the contemporaneous carbon cycle requires further investigation, which in turn may provide valuable insights into the modern state of scientific knowledge. The present study contributes to this question by demonstrating that, following the discovery of the compound nature of carbonic acid by A.L. Lavoisier at the end of the 18th century, studies initially investigated the mechanisms of respiration and photosynthesis until they were recognized as exerting an antagonistic effect on the composition of air. In the early 19th century, the consequence of these studies at the global scale had been foreseen, and applied to investigate the stability of the atmospheric composition over time. These early steps were only concerned with the fate of carbonic acid through life processes. However, between 1820 and 1840, the works of A.L. Brongniard and J.B. Boussingault established that geologic processes, such as the burial of carbonaceous material (CM) in sedimentary rocks and the release of CO2 by volcanoes, affect the composition of the atmosphere. By 1845, J.J. Ebelmen had brilliantly contributed to the emerging question of atmospheric composition by proposing that the alteration of silicates on continents and the precipitation of carbonates in the ocean should be considered as a sink of atmospheric CO2. He also used chemical formula of the time to quantify this process, which led him to mention a carbon rotation for the first time. The rotation of this element through geologic processes became, in itself, a matter worthy of investigation as was the composition of the atmosphere. We argue that J.J. Ebelmen's brilliant synthesis was made possible by the parallel development of the atomistic

  2. Calibration and testing or models of the global carbon cycle

    SciTech Connect

    Emanuel, W.R.; Killough, G.G.; Shugart, H.H. Jr.

    1980-01-01

    A ten-compartment model of the global biogeochemical cycle of carbon is presented. The two less-abundant isotopes of carbon, /sup 13/C and /sup 14/C, as well as total carbon, are considered. The cycling of carbon in the ocean is represented by two well-mixed compartments and in the world's terrestrial ecosystems by seven compartments, five which are dynamic and two with instantaneous transfer. An internally consistent procedure for calibrating this model against an assumed initial steady state is discussed. In particular, the constraint that the average /sup 13/C//sup 12/C ratio in the total flux from the terrestrial component of the model to the atmosphere be equal to that of the steady-state atmosphere is investigated. With this additional constraint, the model provides a more accurate representation of the influence of the terrestrial system on the /sup 13/C//sup 12/C ratio of the atmosphere and provides an improved basis for interpreting records, such as tree rings, reflecting historical changes in this ratio.

  3. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  4. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel.

    PubMed

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.

  5. Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, Robert L.; Taghavi, Shervin

    2011-01-01

    The use of the mercury ion isotope (201)Hg(+) was examined for an atomic clock. Taking advantage of the faster optical pumping time in (201)Hg(+) reduces both the state preparation and the state readout times, thereby decreasing the overall cycle time of the clock and reducing the impact of medium-term LO noise on the performance of the frequency standard. The spectral overlap between the plasma discharge lamp used for (201)Hg(+) state preparation and readout is much larger than that of the lamp used for the more conventional (199)Hg(+). There has been little study of (201)Hg(+) for clock applications (in fact, all trapped ion clock work in mercury has been with (199)Hg(+); however, recently the optical pumping time in (201)Hg(+) has been measured and found to be 0.45 second, or about three times faster than in (199)Hg(+) due largely to the better spectral overlap. This can be used to reduce the overall clock cycle time by over 2 seconds, or up to a factor of 2 improvement. The use of the (201)Hg(+) for an atomic clock is totally new. Most attempts to reduce the impact of LO noise have focused on reducing the interrogation time. In the trapped ion frequency standards built so far at JPL, the optical pumping time is already at its minimum so that no enhancement can be had by shortening it. However, by using (201)Hg(+), this is no longer the case. Furthermore, integrity monitoring, the mechanism that determines whether the clock is functioning normally, cannot happen faster than the clock cycle time. Therefore, a shorter cycle time will enable quicker detection of failure modes and recovery from them.

  6. [Sulfate reduction and microbial processes of the methane cycle in the sediments of the Sevastopol bay].

    PubMed

    Pimenov, N V; Egorov, V N; Kanapatskiĭ, T A; Malakhova, T V; Artemov, Iu G; Sigalevich, P A; Malakhova, L V

    2013-01-01

    The rates of microbial processes of sulfate reduction and of the methane cycle were measured in the bottom sediments of the Sevastopol basin, where seeps of gaseous methane have been previously found. Typically for marine environments, sulfate reduction played the major role in the terminal phase of decomposition of organic matter (OM) in reduced sediments of this area. The rate of this process depended on the amount of available OM. The rate of methanogenesis in the sediments increased with depth, peaking in the subsurface horizons, where decreased sulfate concentration was detected in the pore water. The highest rates of sulfate-dependent anaerobic methane oxidation were found close to the methane-sulfate transition zone as is typical of most investigated marine sediments. The data on the carbon isotopic composition of gaseous methane from the seeps and dissolved CH4 from the bottom sediments, as well as on the rates of microbial methanogenesis and methane oxidation indicate that the activity of the methane seeps results from accumulation of biogenic methane in the cavities of the underlying geological structures with subsequent periodic release of methane bubbles into the water column.

  7. Warming alters coupled carbon and nutrient cycles in experimental streams.

    PubMed

    Williamson, Tanner J; Cross, Wyatt F; Benstead, Jonathan P; Gíslason, Gísli M; Hood, James M; Huryn, Alexander D; Johnson, Philip W; Welter, Jill R

    2016-06-01

    Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital matter) act as biogeochemical hotspots by controlling important fluxes of energy and material. Understanding how biofilms respond to warming is thus critical for predicting responses of coupled elemental cycles in freshwater systems. We developed biofilm communities in experimental streamside channels along a gradient of mean water temperatures (7.5-23.6 °C), while closely maintaining natural diel and seasonal temperature variation with a common water and propagule source. Both structural (i.e. biomass, stoichiometry, assemblage structure) and functional (i.e. metabolism, N2 -fixation, nutrient uptake) attributes of biofilms were measured on multiple dates to link changes in carbon flow explicitly to the dynamics of nitrogen and phosphorus. Temperature had strong positive effects on biofilm biomass (2.8- to 24-fold variation) and net ecosystem productivity (44- to 317-fold variation), despite extremely low concentrations of limiting dissolved nitrogen. Temperature had surprisingly minimal effects on biofilm stoichiometry: carbon:nitrogen (C:N) ratios were temperature-invariant, while carbon:phosphorus (C:P) ratios declined slightly with increasing temperature. Biofilm communities were dominated by cyanobacteria at all temperatures (>91% of total biovolume) and N2 -fixation rates increased up to 120-fold between the coldest and warmest treatments. Although ammonium-N uptake increased with temperature (2.8- to 6.8-fold variation), the much higher N2 -fixation rates supplied the majority of N to the ecosystem at higher temperatures. Our results demonstrate that temperature can alter how carbon is cycled and coupled to nitrogen and phosphorus. The

  8. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    PubMed Central

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-01-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation. PMID:26603894

  9. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming.

    PubMed

    Jassey, Vincent E J; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; Mills, Robert T E; Mitchell, Edward A D; Payne, Richard J; Robroek, Bjorn J M

    2015-11-25

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  10. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    NASA Astrophysics Data System (ADS)

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-11-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  11. Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient

    USGS Publications Warehouse

    Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.

    2011-01-01

    Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.

  12. Importance of vegetation dynamics for future terrestrial carbon cycling

    NASA Astrophysics Data System (ADS)

    Ahlström, Anders; Xia, Jianyang; Arneth, Almut; Luo, Yiqi; Smith, Benjamin

    2015-05-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  13. Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle

    NASA Technical Reports Server (NTRS)

    Caldeira, K.; Rampino, M. R. (Principal Investigator)

    1991-01-01

    A carbonate-silicate geochemical cycle model is developed and used to explore dynamic and climatic consequences of constraints on shallow-water carbonate burial and possible carbon loss to the mantle associated with sea-floor subduction. The model partitions carbonate deposition between shallow-water and deep-water environments and includes carbon fluxes between the mantle and lithosphere. When total lithospheric carbonate mass is constant, there are two stable steady states, one in which the carbonate burial flux is mostly continental and another in which it is mostly pelagic. The continental steady state is characterized by a low metamorphic CO2 flux to the atmosphere and predominantly shallow-water carbonate burial. The pelagic steady state is characterized by a high metamorphic CO2 flux and predominantly deep-water carbonate burial. For reasonable parameter values, when total lithospheric carbonate mass is allowed to vary, the model oscillates between predominantly continental and predominantly pelagic modes. Model results suggest that carbonate deposition patterns established during the Cenozoic may be pushing the Earth system from the continental to the pelagic mode on a time scale of 10(8) yr, with a possible consequent order-of-magnitude increase in the metamorphic CO2 flux to the atmosphere.

  14. Molten carbonate fuel cell reduction of nickel deposits

    DOEpatents

    Smith, James L.; Zwick, Stanley A.

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  15. Effect of increasing CO2 on the terrestrial carbon cycle.

    PubMed

    Schimel, David; Stephens, Britton B; Fisher, Joshua B

    2015-01-13

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation.

  16. Forest defoliator pests alter carbon and nitrogen cycles

    PubMed Central

    Grüning, Maren; Simon, Judy; Reinhardt, Annett-Barbara; Lamersdorf, Norbert; Thies, Carsten

    2016-01-01

    Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests (Quercus petraea L.) that were heavily infested by the leaf herbivores winter moth (Operophtera brumata L.) and mottled umber (Erannis defoliaria L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha−1 and 319 kg N ha−1, respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback. PMID:27853551

  17. Effect of increasing CO2 on the terrestrial carbon cycle

    PubMed Central

    Schimel, David; Fisher, Joshua B.

    2015-01-01

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation. PMID:25548156

  18. Effect of increasing CO2 on the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Schimel, David; Stephens, Britton B.; Fisher, Joshua B.

    2015-01-01

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation.

  19. Photoassisted carbon dioxide reduction and formation of twoand three-carbon compounds. [prebiological photosynthesis

    NASA Technical Reports Server (NTRS)

    Halmann, M.; Aurian-Blajeni, B.; Bloch, S.

    1981-01-01

    The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.

  20. Impact of carbon storage through restoration of drylands on the global carbon cycle

    SciTech Connect

    Keller, A.A.; Goldstein, R.A.

    1998-09-01

    The authors evaluate the potential for global carbon storage in drylands as one of several policy options to reduce buildup of carbon dioxide in the atmosphere. They use the GLOCO model, a global carbon cycle model with eight terrestrial biomes that are described mechanistically in detail in terms of the biological processes that involve carbon and nitrogen cycling and the effect of temperature on these processes. GLOCO also considers low-latitude and high-latitude oceans, each divided further into a surface layer and several deeper layers, with an explicit description of biogeochemical processes occurring in each layer, and exchanges among ocean reservoirs and the atmosphere. GLOCO is used to study the transient response of actual vegetation, which is more realistic than looking at equilibrium conditions of potential vegetation. Using estimates of land suitable for restoration in woodlands, grasslands, and deserts, as well as estimates of the rate at which restoration can proceed, the authors estimate that carbon storage in these biomes can range up to 0.8 billion tons of carbon per year for a combination of land management strategies. A global strategy for reducing atmospheric carbon dioxide concentration will require the implementation of multiple options. The advantage of carbon storage in restored drylands is that it comes as a side benefit to programs that are also justifiable in terms of land management.

  1. Long-term climate change and the geochemical cycle of carbon.

    PubMed

    Marshall, H G; Walker, J C; Kuhn, W R

    1988-01-20

    We study the interactions between the geochemical cycles of carbon and long-term changes in climate. Climate change is studied with a simple, zonally averaged energy balance climate model that includes the greenhouse effect of carbon dioxide explicitly. The geochemical model balances the rate of consumption of carbon dioxide in silicate weathering against its release by volcanic and metamorphic processes. The silicate weathering rate is expressed locally as a function of temperature, carbon dioxide partial pressure, and runoff. The global weathering rate is calculated by integrating these quantities over the land area as a function of latitude. Carbon dioxide feedback stabilizes the climate system against a reduction in solar luminosity and may contribute to the preservation of equable climate on the early Earth, when solar luminosity was low. The system responds to reduced land area by increasing carbon dioxide partial pressure and warming the globe. Our model makes it possible to study the response of the system to changing latitudinal distribution of the continents. A concentration of land area at high latitudes leads to high carbon dioxide partial pressures and high global average temperature because weathering of high-latitude continents is slow. Conversely, concentration of the continents at low latitudes yields a cold globe and ice at low latitudes, a situation that appears to be representative of the late Precambrian glacial episode. This model is stable against ice albedo catastrophe even when the ice line occurs at low latitudes. In this it differs from energy balance models that lack the coupling to the geochemical cycle of carbon.

  2. Black carbon emissions reductions from combustion of alternative jet fuels

    NASA Astrophysics Data System (ADS)

    Speth, Raymond L.; Rojo, Carolina; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Recent measurement campaigns for alternative aviation fuels indicate that black carbon emissions from gas turbines are reduced significantly with the use of alternative jet fuels that are low in aromatic content. This could have significant climate and air quality-related benefits that are currently not accounted for in environmental assessments of alternative jet fuels. There is currently no predictive way of estimating aircraft black carbon emissions given an alternative jet fuel. We examine the results from available measurement campaigns and propose a first analytical approximation (termed 'ASAF') of the black carbon emissions reduction associated with the use of paraffinic alternative jet fuels. We establish a relationship between the reduction in black carbon emissions relative to conventional jet fuel for a given aircraft, thrust setting relative to maximum rated thrust, and the aromatic volume fraction of the (blended) alternative fuel. The proposed relationship is constrained to produce physically meaningful results, makes use of only one free parameter and is found to explain a majority of the variability in measurements across the engines and fuels that have been tested.

  3. A carbon cycle science update since IPCC AR-4.

    PubMed

    Dolman, A J; van der Werf, G R; van der Molen, M K; Ganssen, G; Erisman, J-W; Strengers, B

    2010-01-01

    We review important advances in our understanding of the global carbon cycle since the publication of the IPCC AR4. We conclude that: the anthropogenic emissions of CO2 due to fossil fuel burning have increased up through 2008 at a rate near to the high end of the IPCC emission scenarios; there are contradictory analyses whether an increase in atmospheric fraction, that might indicate a declining sink strength of ocean and/or land, exists; methane emissions are increasing, possibly through enhanced natural emission from northern wetland, methane emissions from dry plants are negligible; old-growth forest take up more carbon than expected from ecological equilibrium reasoning; tropical forest also take up more carbon than previously thought, however, for the global budget to balance, this would imply a smaller uptake in the northern forest; the exchange fluxes between the atmosphere and ocean are increasingly better understood and bottom up and observation-based top down estimates are getting closer to each other; the North Atlantic and Southern ocean take up less CO2, but it is unclear whether this is part of the 'natural' decadal scale variability; large-scale fires and droughts, for instance in Amazonia, but also at Northern latitudes, have lead to significant decreases in carbon uptake on annual timescales; the extra uptake of CO2 stimulated by increased N-deposition is, from a greenhouse gas forcing perspective, counterbalanced by the related additional N2O emissions; the amount of carbon stored in permafrost areas appears much (two times) larger than previously thought; preservation of existing marine ecosystems could require a CO2 stabilization as low as 450 ppm; Dynamic Vegetation Models show a wide divergence for future carbon trajectories, uncertainty in the process description, lack of understanding of the CO2 fertilization effect and nitrogen-carbon interaction are major uncertainties.

  4. Transparent exopolymer particles: Effects on carbon cycling in the ocean

    NASA Astrophysics Data System (ADS)

    Mari, Xavier; Passow, Uta; Migon, Christophe; Burd, Adrian B.; Legendre, Louis

    2017-02-01

    Transparent Exopolymer Particles (TEP) have received considerable attention since they were first described in the ocean more than 20 years ago. This is because of their carbon-rich composition, their high concentrations in ocean's surface waters, and especially because of their ability to promote aggregation due to their high stickiness (i.e. biological glue). As large aggregates contribute significantly to vertical carbon flux, TEP are commonly seen as a key factor that drives the downward flux of particulate organic carbon (POC). However, the density of TEP is lower than that of seawater, which causes them to remain in surface waters and even move upwards if not ballasted by other particles, which often leads to their accumulation in the sea surface microlayer. Hence we question here the generally accepted view that TEP always increase the downward flux of POC via gravitational settling. In the present reassessment of the role of TEP, we examine how the presence of a pool of non-sinking carbon-rich particulate organic matter in surface waters influences the cycling of organic carbon in the upper ocean at daily to decadal time scales. In particular, we focus on the role of TEP in the retention of organic carbon in surface waters versus downward export, and discuss the potential consequences of climate change on this process and on the efficiency of the biological carbon pump. We show that TEP sink only when ballasted with enough high-density particles to compensate their low density, and hence that their role in vertical POC export is not solely linked to their ability to promote aggregation, but also to their contribution to the buoyancy of POC. It follows that the TEP fraction of POC determines the degree of retention and remineralization of POC in surface waters versus its downward export. A high TEP concentration may temporally decouple primary production and downward export. We identify two main parameters that affect the contribution of TEP to POC cycling

  5. (The ocean's role in the global carbon cycle)

    SciTech Connect

    Joos, L.F.

    1990-12-20

    The traveler collaborated with Dr. J. L. Sarmiento of the Program in Atmospheric Sciences, Princeton University, and Dr. U. Siegenthaler of the University of Bern in box-model studies of the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. As a result of this collaboration, a letter describing the results was submitted to the journal Nature. Sensitivity studies were carried out to gain a better understanding of the processes involved for a hypothetical iron fertilization of the ocean. An article that describes this work has been submitted to the journal Global Biogeochemical Cycles. The traveler and U. Siegenthaler are preparing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler attended Oceanography 590b at the University of Washington in Friday Harbor. While at Friday Harbor, he started to collaborate with Drs. M. Warner, R. Gammon, and J. Bullister, all from the University of Washington, Seattle, to calibrate the global carbon cycle model with chlorofluorocarbon (CFC)-11 and CFC-12. The traveler started collaboration with Drs. J. C. Orr and J. L. Sarmiento to calculate apparent eddy diffusivities from the Princeton three-dimensional ocean model. The work is conducted by the University of Bern, Switzerland (the traveler is principal investigator), for a US Department of Energy program managed by Oak Ridge National Laboratory.

  6. Elevated CO2 influences microbial carbon and nitrogen cycling

    PubMed Central

    2013-01-01

    Background Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change. PMID:23718284

  7. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  8. Landslide disturbance: implications for chemical weathering, vegetation and carbon cycling

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Hilton, R. G.

    2011-12-01

    Landslides disturb physical and ecological systems by periodically stripping away soil and vegetation. This turnover influences the makeup and productivity of vegetation as well as the chemical weathering rate for the soil. Recent research has highlighted these links focusing on landslide magnitude and frequency and calculating turnover on a catchment wide basis. However, landslide probability and therefore turnover is not uniform in space. We investigate the influence of this spatial variability on the frequency distribution of landslide turnover and its implications for: vegetation disturbance, carbon cycling and chemical weathering. We use first synthetic landslide risk distributions then real distributions from the Western Southern Alps and Oregon Coast Range. We use these to generate turnover distributions then compare these with the turnover rate predicted assuming spatially uniform landslide probability. We use published relations to work through the implications for: vegetation disturbance, carbon cycling and chemical weathering. We find that: 1) landslide turnover rates are too slow even in the most active parts of the landscape to chronically disturb the vegetation; 2) the changes to productivity are generally subtle leading to only minor changes in the carbon flux; and 3) landslide related chemical weathering rates are reduced in areas with strongly non-uniform landslide risk distributions.

  9. Cycling of beryllium and carbon through hillslope soils in Iowa

    USGS Publications Warehouse

    Harden, J.W.; Fries, T.L.; Pavich, M.J.

    2002-01-01

    Isotopes of Be and C were used to reconstruct loess accumulation, hillslope evolution, and agricultural modification in soils of western Iowa. While both elements are derived from additions by the atmosphere (via plants in the case of carbon), the differences in element cycling allow erosional and depositional processes to be separated from biochemical processing. Based on 10Be, loess accumulation likely occurred simultaneously with hillslope degradation. Rates of loess accumulation declined five-fold between early stages (late Pleistocene and early Holocene) and later stages (late Holocene) of accumulation, but the absolute timing of accumulation requires independent dating methods. Based on 14C measurements, plant inputs and decomposition are significant near the surface, but below 1-1.5 m carbon inputs are minimal and decomposition is nearly arrested. The amount of carbon below 1.5 m is constant (0.1%) and is composed of soil organic matter that was buried by loess. Agricultural modification results in a dramatic redistribution of 10Be through soil erosion and deposition. By contrast, the redistribution of soil organic matter is masked by the rapid cycling of C through the topsoil as it continually decomposes and is replaced by plant inputs.

  10. Linking disturbance intensity and carbon cycle in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Gielen, B.; Hudiburg, T.; Law, B. E.; Luyssaert, S.

    2011-12-01

    There is increasing awareness that natural and anthropogenic disturbance in forests forest affects exchange of CO2, H2O and energy between the ecosystem and the atmosphere. Furthermore, severe disturbance may result in substantial emissions of greenhouse gasses to the atmosphere. Consequently quantification of land use and disturbance intensity (LUDI) is one of the next steps needed to improve our understanding of the carbon cycle, its interactions with the atmosphere and its main drivers at local as well as at global level. The conventional NPP-based approaches to quantify the intensity of land management are limited because they lack a sound ecological basis. Here we apply a new way of characterising the degree of management and disturbance in forest. The index called LUDI: land use and disturbance intensity makes use of the self thinning theory and observations of diameter at breast height and stand density. The application of LUDI was demonstrated by using a very extensive dataset from the Pacific Northwest region (PNW) in North America containing more than 5000 inventory plots. Results show significant relationships between LUDI and forest productivity (NPP) and Carbon uptake (NEP) for seven different forest types in the PNW. In addition the relationships suggest a maximal productivity at mild disturbance. These results further confirm the link between forest disturbance and carbon cycling in forest ecosystems.

  11. Microbial diversity and carbon cycling in San Francisco Bay wetlands

    SciTech Connect

    Theroux, Susanna; Hartman, Wyatt; He, Shaomei; Tringe, Susannah

    2014-03-21

    Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled the diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.

  12. Does carbon reduction increase sustainability? A study in wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2015-12-15

    This study investigates the relationships between carbon reduction and sustainability in the context of wastewater treatment, focussing on the impacts of control adjustments, and demonstrates that reducing energy use and/or increasing energy recovery to reduce net energy can be detrimental to sustainability. Factorial sampling is used to derive 315 control options, containing two different control strategies and a range of sludge wastage flow rates and dissolved oxygen setpoints, for evaluation. For each, sustainability indicators including operational costs, net energy and multiple environmental performance measures are calculated. This enables identification of trade-offs between different components of sustainability which must be considered before implementing energy reduction measures. In particular, it is found that the impacts of energy reduction measures on sludge production and nitrogen removal must be considered, as these are worsened in the lowest energy solutions. It also demonstrates that a sufficiently large range of indicators need to be assessed to capture trade-offs present within the environmental component of sustainability. This is because no solutions provided a move towards sustainability with respect to every indicator. Lastly, it is highlighted that improving the energy balance (as may be considered an approach to achieving carbon reduction) is not a reliable means of reducing total greenhouse gas emissions.

  13. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    PubMed

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO2). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  14. The Deep Carbon Cycle and CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Filipovitch, N. B.; Mao, W. L.; Chou, I.; Mu, K.

    2009-12-01

    Increased understanding of the Earth’s carbon cycle may provide insight for future carbon storage. Long term geologic sequestration of CO2 occurs in the earth via exothermic reactions between CO2 and silicate minerals to form carbonate minerals. It has been shown that while there is a large enough supply of ultra mafic igneous rock to sequester the CO2 [1], the kinetics of this natural process are too slow to effectively manage our CO2 output. Most studies have focused on studying reaction kinetics at relatively low temperatures and pressures [2,3], and have found that the reaction kinetics are either too slow or (in the case of serpentine) necessitate an uneconomical heat pretreatment [3,4]. Our experiments expand the pressures and temperatures (up to 500 bars and exceeding 200 °C) at which the CO2 + silicate reaction is studied using fused silica capillary cells and Raman and XRD analysis. By increasing our understanding of the kinetics of this process and providing a valuable input for reactive flow and transport models, these results may guide approaches for practical CO2 sequestration in carbonate minerals as a way to manage atmospheric CO2 levels. High pressure and temperature results on carbonates have implications for understanding the deep carbon cycle. Most of the previous high pressure studies on carbonates have concentrated on magnesite (MgCO3), calcite (CaCO3), or dolomite ((Ca,Mg)CO3) [5,6]. While the Mg and Ca carbonates are the most abundant, iron-rich siderite (FeCO3) may be a significant player at greater depths within the earth. We performed XRD and Raman spectroscopy experiments on siderite to lower mantle pressures (up to 40 GPa) and observed a possible phase change around 13 GPa. References 1. Lackner, Klaus S., Wendt, Christopher H., Butt, Darryl P., Joyce, Edward L., Sharp, David H., 1995, Carbon dioxide disposal in carbonate minerals, Energy, Vol.20, No. 11, pp. 1153-1170 2. Bearat, Hamdallah, McKelvy, Michael J., Chizmeshya, Andrew V

  15. Energy generation and the sulfur-carbon cycle. Progress report

    SciTech Connect

    Not Available

    1981-01-01

    Laboratory studies demonstrated that a variety of anaerobic bacterial species actively reduced dimethylsulfoxide as an electron acceptor while oxidizing organic substrates as electron donors during growth. The microbial decomposition of methionine in anaerobic Lake Mendota sediments, methanethiol and dimethylsulfide were detected as intermediates; whereas, methane, carbon dioxide, and hydrogen sulfide were the final end products of anaerobic decomposition. Dimethylsulfide and methylmercaptan were immediate methane precursors in Lake Mendota sediments. The oxidation of methane by anaerobic bacteria and characterization of an acetate fermenting methanogenic bacterium were studied. Cultures of methanogenic bacteria demonstrated that methanogens converted /sup 14/CH/sub 4/ to /sup 14/CO/sub 2/ by a pathway that involved different cellular intermediates than those involved in methane production. The general physiological properties of an acetate fermenting methanogen isolated from sewage sludge was characterized. Most notably, this species would not grow on H/sub 2/ + CO/sub 2/. Studies on the influence of sulfate metabolism on carbon turnover in Lake Mendota suggested that approximately 50% of the reduced endogenous carbon was mineralized via sulfate reduction and 50% via methanogenesis. Most of the endogenous carbon mineralized via sulfate reduction occurred in the surface sediments. Sulfate reduction was not limited by in situ sulfate concentration in surface sediments. Studies on biopolymer decomposition showed in situ turnover rate constants for /sup 14/C-pectin of 0.11 h/sup -1/ in Lake Mendota sediments and 0.004 h/sup -1/ in Knaack Lake. The number of anaerobic pectin degrading bacteria in the sediments of both lakes varied with seasons. (ERB)

  16. What Have We Learned About Arctic Carbon Since The First State of the Carbon Cycle Report?

    NASA Astrophysics Data System (ADS)

    Schuur, E.

    2015-12-01

    Large pools of organic carbon were reported in The First State of the Carbon Cycle Report, but measurements from high latitude ecosystems, in particular for deeper soils >1m depth, remained scarce. A newly enlarged soil carbon database with an order of magnitude more numerous deep sampling sites has verified the widespread pattern of large quantities of carbon accumulated deep in permafrost (perennially frozen) soils. The known pool of permafrost carbon across the northern circumpolar permafrost zone is now estimated to be 1330-1580 Pg C, with the potential for an additional ~400 Pg C in deep permafrost sediments. In addition, an uncertainty estimate of plus/minus 15% has now been calculated for the soil carbon pool in the surface 0-3m. Laboratory incubations of these permafrost soils reveal that a significant fraction can be mineralized by microbes upon thaw and converted to carbon dioxide and methane on time scales of years to decades, with decade-long average losses from aerobic incubations ranging from 6-34% of initial carbon. Carbon emissions from the same soils incubated in an anaerobic environment are, on average, 78-85% lower than aerobic soils. But, the more potent greenhouse gas methane released under anaerobic conditions in part increases the climate impact of these emissions. While mean quantities of methane are only 3% to 7% that of carbon dioxide emitted from anaerobic incubations (by weight of C), these mean methane values represent 25% to 45% of the overall potential impact on climate when accounting for the higher global warming potential of methane. Taken together though, in spite of the more potent greenhouse gas methane, a unit of newly thawed permafrost carbon could have a greater impact on climate over a century if it thaws and decomposes within a drier, aerobic soil as compared to an equivalent amount of carbon within a waterlogged soil or sediment. Model projections tend to estimate losses of carbon in line with empirical measurements, but

  17. Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin

    SciTech Connect

    Smith, L.B.; Read, J.F. )

    1994-03-01

    Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularly where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.

  18. Enhanced activity and selectivity of carbon nanofiber supported Pd catalysts for nitrite reduction.

    PubMed

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R; Werth, Charles J

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment.

  19. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    NASA Astrophysics Data System (ADS)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  20. Variations in carbonate shelf cycles in response to Appalachian tectonism

    SciTech Connect

    Algeo, T.J.

    1986-05-01

    Shelf facies strata of the Upper Mississippian Bangor Limestone in northwest Georgia and southeast Tennessee comprise asymmetric regressive cycles that are similar to shallowing-upward cycles described in many ancient and modern shallow marine carbonate sequences. Typical Bangor cycles consist of a lower 0.6-m transgressive hemicycle of poorly sorted intraclast-oolite grainstones, and an upper 15-m regressive hemicycle that grades vertically from open-marine fossil wackestone and packstone through barrier-bar oolite grainstone, to burrowed lagoonal wackestone and laminated fenestral tidal-flat mudstone and dolostone. Lateral variations in the number, thickness, and facies composition of cycles were controlled by the position of each Bangor section relative to the Mississippian shoreline and shelf margin, and by localized shelf downwarping in response to Appalachian foreland basin evolution. To the northeast, at Monteagle, Tennessee, evaporitic tidal flats flanked the low-lying Nashville dome. There, laminated fenestral mudstone and dolostone dominate a thin (58-m) Bangor section, with only one major marine transgression reaching this area. At Raccoon Mountain, Tennessee, in the midshelf area, syndepositional downwarping of the Raccoon Mountain trough controlled sedimentation and deposited a thick (120-m) Bangor section containing seven cycles of highly variable thickness and facies composition. To the southeast, at Pigeon Mountain, Georgia, the outer shelf was increasingly influenced by foreland basin sedimentation during the late Bangor. There, the lower part of a thin (52-m) Bangor section contains two normal regressive cycles, but abundant thin shale laminae and frequent facies shifts in the upper 15 m document increasing clastic influx and tectonic instability in source areas to the southeast.

  1. Development of advanced off-design models for supercritical carbon dioxide power cycles

    SciTech Connect

    Dyreby, J. J.; Klein, S. A.; Nellis, G. F.; Reindl, D. T.

    2012-07-01

    In the search for increased efficiency of utility-scale electricity generation, Brayton cycles operating with supercritical carbon dioxide (S-CO{sub 2}) have found considerable interest. There are two main advantages of a S-CO{sub 2} Brayton cycle compared to a Rankine cycle: 1) equal or greater thermal efficiencies can be realized using significantly smaller turbomachinery, and 2) heat rejection is not limited by the saturation temperature of the working fluid, which has the potential to reduce or completely eliminate the need for cooling water and instead allow dry cooling. While dry cooling is especially advantageous for power generation in arid climates, a reduction of water consumption in any location will be increasingly beneficial as tighter environmental regulations are enacted in the future. Because daily and seasonal weather variations may result in a plant operating away from its design point, models that are capable of predicting the off-design performance of S-CO{sub 2} power cycles are necessary for characterizing and evaluating cycle configurations and turbomachinery designs on an annual basis. To this end, an off-design model of a recuperated Brayton cycle was developed based on the radial turbomachinery currently being investigated by Sandia National Laboratory. (authors)

  2. Methane hydrate in the global organic carbon cycle

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2002-01-01

    The global occurrence of methane hydrate in outer continental margins and in polar regions, and the magnitude of the amount of methane sequestered in methane hydrate suggest that methane hydrate is an important component in the global organic carbon cycle. Various versions of this cycle have emphasized the importance of methane hydrate, and in the latest version the role of methane hydrate is considered to be analogous to the workings of an electrical circuit. In this circuit the methane hydrate is a condenser and the consequences of methane hydrate dissociation are depicted as a resistor and inductor, reflecting temperature change and changes in earth surface history. These consequences may have implications for global change including global climate change.

  3. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect

    Bright, Ryan M. Cherubini, Francesco; Stromman, Anders H.

    2012-11-15

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black

  4. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    ERIC Educational Resources Information Center

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  5. Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling

    USGS Publications Warehouse

    Hoover, David L.; Rogers, Brendan M.

    2016-01-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle ‘press-droughts’, and shorter term but extreme ‘pulse-droughts’. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  6. Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling.

    PubMed

    Hoover, David L; Rogers, Brendan M

    2016-05-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle 'press-droughts', and shorter term but extreme 'pulse-droughts'. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  7. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  8. Methanogenic burst in the end-Permian carbon cycle.

    PubMed

    Rothman, Daniel H; Fournier, Gregory P; French, Katherine L; Alm, Eric J; Boyle, Edward A; Cao, Changqun; Summons, Roger E

    2014-04-15

    The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.

  9. Methanogenic burst in the end-Permian carbon cycle

    PubMed Central

    Rothman, Daniel H.; Fournier, Gregory P.; French, Katherine L.; Alm, Eric J.; Boyle, Edward A.; Cao, Changqun; Summons, Roger E.

    2014-01-01

    The end-Permian extinction is associated with a mysterious disruption to Earth’s carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth’s greatest mass extinction by a specific microbial innovation. PMID:24706773

  10. Methanogenic burst in the end-Permian carbon cycle

    NASA Astrophysics Data System (ADS)

    Rothman, Daniel H.; Fournier, Gregory P.; French, Katherine L.; Alm, Eric J.; Boyle, Edward A.; Cao, Changqun; Summons, Roger E.

    2014-04-01

    The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.

  11. Mission Design for Continental-Scale Carbon Cycle Applications

    NASA Astrophysics Data System (ADS)

    Gervin, J. C.; Esper, J.; McClain, C. R.; Hall, F. G.; Middleton, E. M.; Gregg, W. W.; Mannino, A.; Knox, R. G.; Dabney, P. W.; Huemmrich, K. F.; Wood, H. J.; Roberto, M.

    2003-12-01

    Carbon cycle scientific requirements in both land and ocean studies point toward the need for multiple spectrally detailed observations per day. For terrestrial research, accurate estimates of carbon, water and energy (CWE) exchange between the terrestrial biosphere and atmosphere are needed to identify the geographical locations of carbon sources/sinks and to improve regional climate models and global climate change assessments. It is an enormous challenge to estimate CWE exchange from the infrequent temporal coverage provided by most polar-orbiting satellites, and without benefit of spectral indices that capture vegetation responses to stress conditions that down-regulate photosynthesis. Physiological status can be better assessed with spectral indices based on narrow (<10 nm) bands. Sensors that can measure CWE exchange would also provide accurate biomass observations, although geosynchronous platforms are not required to observe the slowly changing land biomass and biomass change. A hyperspectral instrument (400-1000 nm) would enable improved estimates of seasonal and annual terrestrial productivity, using narrow band and red edge indices not available with current of near-future operational satellites. The overall goal for geosynchronous ocean observations is to predict the variability of carbon uptake in the ocean, and thereby evaluate its role in climate change scenarios. In the plan for developing new observations, we need to: 1)continue to improve estimates of ocean productivity; and 2 expand the emphasis of coastal ocean processes and specific regions of critical importance. Remote sensing of the coastal ocean represents a unique challenge due to the small-scale spatial variability and elevated concentrations of dissolved organic carbon, detritus and chlorophyll, which are difficult to distinguish, because they absorb light intensely in the blue spectrum. Observations in the ultraviolet are essential to improve our capability to distinguish these ocean

  12. [Mathematical model of the global carbon cycle in the biosphere].

    PubMed

    Tarko, A M

    2010-01-01

    Changes in the atmospheric carbon dioxide concentration, temperatures of the atmosphere, and parameters of land biota as a result of anthropogenic carbon dioxide emissions, forest clearance, and soil erosion are calculated in a spatial mathematical model of the global carbon cycle in the biosphere. Restrictions on the CO2 emissions to the atmosphere are deduced from the requirements of Kyoto Protocol to The UN Framework Convention on Climate Change and other scenarios. An ability is revealed for the atmospheric CO2 concentration to grow fast, which arises from a number of emerging and developing countries with large population and high CO2 emission rates and which surpasses greatly the effect of growth retardation due to Kyoto Protocol. Those countries' role will become mostly apparent to the year of 2060 and later. Russia has shown to be in an exclusive position relative to other countries: ecosystems of its territory absorb more of the atmospheric carbon dioxide than does any other country, and the inductrial emissions from its territory are practically equal to the absorption by ecosystems.

  13. Carbon and Nitrogen Cycling in a Shallow Coastal Tidal Basin

    NASA Astrophysics Data System (ADS)

    Hohn, S.; Voelker, C. D.; van Beusekom, J.; Schartau, M.

    2008-12-01

    The biogeochemical fluxes of carbon and nitrogen are tightly coupled via the production of biomass. The degree of this coupling is known to vary under different environmental conditions. Nitrogen limitation of phytoplankton organisms leads to increased C:N biomass ratios whereas light limitation at nutrient replete conditions causes a decrease in intracellular C:N ratios. The biogeochemical fluxes of carbon and nitrogen within and between a shallow coastal tidal basin in the danish-german Wadden Sea, the List tidal basin, and the adjacent North Sea are calculated with an ecosystem model that allows for variable C:N ratios in phytoplankton biomass. Differences in plankton C:N biomass ratios between both water boxes affect the net transport budgets of carbon and nitrogen between the North Sea and the List tidal basin and may also change the sign of the C:N ratio of biomass exchange, i.e. leading to net nitrogen export and net import of carbon into the tidal basin over an annual cycle. Benthic filterfeeding organisms consume phytoplankton biomass and release fresh nutrients to the water column. In the List tidal basin, the promoting effect on primary production due to nutrient release by benthic filterfeeders is found to outweigh the limiting effect due to grazing pressure on phytoplankton biomass.

  14. Cryptic carbon and sulfur cycling between surface ocean plankton

    PubMed Central

    Durham, Bryndan P.; Sharma, Shalabh; Luo, Haiwei; Smith, Christa B.; Amin, Shady A.; Bender, Sara J.; Dearth, Stephen P.; Van Mooy, Benjamin A. S.; Campagna, Shawn R.; Kujawinski, Elizabeth B.; Armbrust, E. Virginia; Moran, Mary Ann

    2015-01-01

    About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles. PMID:25548163

  15. Cryptic carbon and sulfur cycling between surface ocean plankton.

    PubMed

    Durham, Bryndan P; Sharma, Shalabh; Luo, Haiwei; Smith, Christa B; Amin, Shady A; Bender, Sara J; Dearth, Stephen P; Van Mooy, Benjamin A S; Campagna, Shawn R; Kujawinski, Elizabeth B; Armbrust, E Virginia; Moran, Mary Ann

    2015-01-13

    About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.

  16. Deep Carbon Cycling in the Deep Hydrosphere: Abiotic Organic Synthesis and Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Sutcliffe, C. N.; Ballentine, C. J.; Warr, O.; Li, L.; Ono, S.; Wang, D. T.

    2014-12-01

    Research into the deep carbon cycle has expanded our understanding of the depth and extent of abiotic organic synthesis in the deep Earth beyond the hydrothermal vents of the deep ocean floor, and of the role of reduced gases in supporting deep subsurface microbial communities. Most recently, this research has expanded our understanding not only of the deep biosphere but the deep hydrosphere - identifying for the first time the extreme antiquity (millions to billions of years residence time) of deep saline fracture waters in the world's oldest rocks. Energy-rich saline fracture waters in the Precambrian crust that makes up more than 70% of the Earth's continental lithosphereprovide important constraints on our understanding of the extent of the crust that is habitable, on the time scales of hydrogeologic isolation (and conversely mixing) of fluids relevant to the deep carbon cycle, and on the geochemistry of substrates that sustain both abiotic organic synthesis and biogeochemical cycles driven by microbial communities. Ultimately the chemistry and hydrogeology of the deep hydrosphere will help define the limits for life in the subsurface and the boundary between the biotic-abiotic fringe. Using a variety of novel techniques including noble gas analysis, clumped isotopologues of methane, and compound specific isotope analysis of CHNOS, this research is addressing questions about the distribution of deep saline fluids in Precambrian rocks worldwide, the degree of interconnectedness of these potential biomes, the habitability of these fluids, and the biogeographic diversity of this new realm of the deep hydrosphere.

  17. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    NASA Astrophysics Data System (ADS)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  18. Jet Noise Reduction Potential From Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  19. [Research on contribution decomposition by industry to China's carbon intensity reduction and carbon emission growth].

    PubMed

    Jiang, Jing-Jing; Ye, Bin; Ji, Jun-Ping; Ma, Xiao-Ming

    2014-11-01

    The binding carbon intensity index and the pilot "cap-and-trade" emission trading scheme are two important approaches currently applied by China to mitigate its greenhouse gases emissions. It is of great significance to research the influence mechanism of related factors by industry on the dynamics of national carbon intensity and emission, not only for setting industry-specified intensity reduction target but also for setting industry coverage of the ETS. Two LMDI models were applied in this paper to decompose industry contributions to the changes of China's carbon intensity and carbon emission during the period of 1996-2010. Empirical results showed that: The decline of national carbon intensity was jointly determined by the changes of carbon intensities and the added value proportions of all industries, and the impact of industry carbon intensities was larger. The increase of national carbon emission was jointly determined by the changes of carbon intensities and the added value of all industries. The former had inhibitory effect whist the latter had decisive promoting effect. The five industries making the largest contribution to the changes of national carbon emission and carbon intensity included industries of electricity, nonmetal mineral, ferrous metal, transportation service, chemical materials, which were followed by the industries of agriculture, coal mining and processing, petroleum and natural gas extraction. Petroleum refining and coking industry and construction industry made small contribution to the decline of national carbon intensity, but made large contribution to the growth of national carbon emission. The contributions of service industries to national carbon emission growth showed a rising trend, especially those of transportation service industry, wholesaling, retailing and catering service industry.

  20. Exceptionally Fast Carbon-Carbon Bond Reductive Elimination from Gold(III)

    PubMed Central

    Wolf, William J.; Winston, Matthew S.; Toste, F. Dean

    2014-01-01

    Reductive elimination of carbon-carbon (C-C) bonds occurs in numerous metal-catalyzed reactions. This process is well documented for a variety of transition metal complexes. However, C-C bond reductive elimination from a limited number of Au(III) complexes has been shown to be a slow and prohibitive process, generally requiring elevated temperature. Herein, we show that oxidation of a series of mono- and bimetallic Au(I) aryl complexes at low temperature generates observable Au(III) and Au(II) intermediates. We also show that aryl-aryl bond reductive elimination from these oxidized species is not only among the fastest observed for any transition metal, but is also mechanistically distinct from previously studied alkyl-alkyl and aryl-alkyl reductive eliminations from Au(III). PMID:24451593

  1. Quantifying carbon footprint reduction opportunities for U.S. households and communities.

    PubMed

    Jones, Christopher M; Kammen, Daniel M

    2011-05-01

    Carbon management is of increasing interest to individuals, households, and communities. In order to effectively assess and manage their climate impacts, individuals need information on the financial and greenhouse gas benefits of effective mitigation opportunities. We use consumption-based life cycle accounting techniques to quantify the carbon footprints of typical U.S. households in 28 cities for 6 household sizes and 12 income brackets. The model includes emissions embodied in transportation, energy, water, waste, food, goods, and services. We further quantify greenhouse gas and financial savings from 13 potential mitigation actions across all household types. The model suggests that the size and composition of carbon footprints vary dramatically between geographic regions and within regions based on basic demographic characteristics. Despite these differences, large cash-positive carbon footprint reductions are evident across all household types and locations; however, realizing this potential may require tailoring policies and programs to different population segments with very different carbon footprint profiles. The results of this model have been incorporated into an open access online carbon footprint management tool designed to enable behavior change at the household level through personalized feedback.

  2. Fossil clam shells reveal unintended carbon cycling consequences of Colorado River management

    PubMed Central

    Auerbach, Daniel A.; Flessa, Karl W.; Flecker, Alexander S.; Dietl, Gregory P.

    2016-01-01

    Water management that alters riverine ecosystem processes has strongly influenced deltas and the people who depend on them, but a full accounting of the trade-offs is still emerging. Using palaeoecological data, we document a surprising biogeochemical consequence of water management in the Colorado River basin. Complete allocation and consumptive use of the river's flow has altered the downstream estuarine ecosystem, including the abundance and composition of the mollusc community, an important component in estuarine carbon cycling. In particular, population declines in the endemic Colorado delta clam, Mulinia coloradoensis, from 50--125 individuals m−2 in the pre-dam era to three individuals m−2 today, have likely resulted in a reduction, on the order of 5900–15 000 t C yr−1 (4.1–10.6 mol C m−2 yr−1), in the net carbon emissions associated with molluscs. Although this reduction is large within the estuarine system, it is small in comparison with annual global carbon emissions. Nonetheless, this finding highlights the need for further research into the effects of dams, diversions and reservoirs on the biogeochemistry of deltas and estuaries worldwide, underscoring a present need for integrated water and carbon planning. PMID:27703685

  3. Fossil clam shells reveal unintended carbon cycling consequences of Colorado River management.

    PubMed

    Smith, Jansen A; Auerbach, Daniel A; Flessa, Karl W; Flecker, Alexander S; Dietl, Gregory P

    2016-09-01

    Water management that alters riverine ecosystem processes has strongly influenced deltas and the people who depend on them, but a full accounting of the trade-offs is still emerging. Using palaeoecological data, we document a surprising biogeochemical consequence of water management in the Colorado River basin. Complete allocation and consumptive use of the river's flow has altered the downstream estuarine ecosystem, including the abundance and composition of the mollusc community, an important component in estuarine carbon cycling. In particular, population declines in the endemic Colorado delta clam, Mulinia coloradoensis, from 50--125 individuals m(-2) in the pre-dam era to three individuals m(-2) today, have likely resulted in a reduction, on the order of 5900-15 000 t C yr(-1) (4.1-10.6 mol C m(-2) yr(-1)), in the net carbon emissions associated with molluscs. Although this reduction is large within the estuarine system, it is small in comparison with annual global carbon emissions. Nonetheless, this finding highlights the need for further research into the effects of dams, diversions and reservoirs on the biogeochemistry of deltas and estuaries worldwide, underscoring a present need for integrated water and carbon planning.

  4. Fossil clam shells reveal unintended carbon cycling consequences of Colorado River management

    NASA Astrophysics Data System (ADS)

    Smith, Jansen A.; Auerbach, Daniel A.; Flessa, Karl W.; Flecker, Alexander S.; Dietl, Gregory P.

    2016-09-01

    Water management that alters riverine ecosystem processes has strongly influenced deltas and the people who depend on them, but a full accounting of the trade-offs is still emerging. Using palaeoecological data, we document a surprising biogeochemical consequence of water management in the Colorado River basin. Complete allocation and consumptive use of the river's flow has altered the downstream estuarine ecosystem, including the abundance and composition of the mollusc community, an important component in estuarine carbon cycling. In particular, population declines in the endemic Colorado delta clam, Mulinia coloradoensis, from 50-125 individuals m-2 in the pre-dam era to three individuals m-2 today, have likely resulted in a reduction, on the order of 5900-15 000 t C yr-1 (4.1-10.6 mol C m-2 yr-1), in the net carbon emissions associated with molluscs. Although this reduction is large within the estuarine system, it is small in comparison with annual global carbon emissions. Nonetheless, this finding highlights the need for further research into the effects of dams, diversions and reservoirs on the biogeochemistry of deltas and estuaries worldwide, underscoring a present need for integrated water and carbon planning.

  5. Closing the carbon cycle through rational use of carbon-based fuels.

    PubMed

    MacElroy, J M Don

    2016-01-01

    In this paper, a brief overview is presented of natural gas as a fuel resource with subsequent carbon capture and re-use as a means to facilitate reduction and eventual elimination of man-made carbon emissions. A particular focus is shale gas and, to a lesser extent, methane hydrates, with the former believed to provide the most reasonable alternative as a transitional fuel toward a low-carbon future. An emphasis is placed on the gradual elimination of fossil resource usage as a fuel over the coming 35 to 85 years and its eventual replacement with renewable resources and nuclear power. Furthermore, it is proposed that synthesis of chemical feedstocks from recycled carbon dioxide and hydrogen-rich materials should be undertaken for specific applications in the transport sector which require access to high energy density fuels. To achieve the latter, carbon dioxide capture is imperative and possible synthetic routes for chemical feedstock production are briefly reviewed.

  6. Modelling the carbon cycle though Neoproterozoic Earth system changes

    NASA Astrophysics Data System (ADS)

    Bjerrum, C. J.; Canfield, D. E.

    2011-12-01

    The Neoproterozoic-Cambrian records major changes in geochemical proxies as a result of a profound reorganization of the Earth system. Extensive glaciations and the first oxygenation of the deep ocean with a shift from sulfidic/ferruginous conditions to more oxic conditions was accompanied by the radiation of the first animals. The reorganization was also recorded in enigmatic large-amplitude fluctuations in the isotopic composition of marine carbonate carbon (δ13CIC ), were only some are associated with major known glaciations. The carbon isotope events seem to grow in amplitude through the Neoproterozoic culminating in the Shuram anomaly - the largest in Earth history. The δ13CIC events are also accompanied by changes in the isotope composition of marine organic carbon (δ13COC), where the co-variation of δ13CIC and δ13COC seems to evolve from markedly positive relationship over a subdued δ13COC variation and an almost inverse pattern. There is limited understanding as to why or how the structure of these isotope events evolved over time and how these events may tie to the reorganization of the Earth system. We use our published quantitative model of the Shuram anomaly to explore carbon cycle dynamics during the Neoproterozoic. By changing in pre-event atmosphere-ocean chemistry we explore which factors contribute to the observed patterns of the large Neoproterozoic carbon isotope events. In particular, decreasing atmospheric CO2 and a slight increase of oxygen together with an increasing CO source from rising DOC concentrations results in progressively larger event amplitudes with changing co-variation between δ13CIC and δ13COC , culminating with the structure observed for the Shurum-Wonaka anomaly in the Ediacaran. In our model, the carbon isotope excursions were driven by methane from sediment-hosted clathrate hydrate deposits. Being a powerful greenhouse gas, methane increased temperature and melted icecaps. These combined to produce a negative 18O

  7. Interannual Variations of MLS Carbon Monoxide Induced by Solar Cycle

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander

    2013-01-01

    More than eight years (2004-2012) of carbon monoxide (CO) measurements from the Aura Microwave Limb Sounder (MLS) are analyzed. The mesospheric CO, largely produced by the carbon dioxide (CO2) photolysis in the lower thermosphere, is sensitive to the solar irradiance variability. The long-term variation of observed mesospheric MLS CO concentrations at high latitudes is likely driven by the solar-cycle modulated UV forcing. Despite of different CO abundances in the southern and northern hemispheric winter, the solar-cycle dependence appears to be similar. This solar signal is further carried down to the lower altitudes by the dynamical descent in the winter polar vortex. Aura MLS CO is compared with the Solar Radiation and Climate Experiment (SORCE) total solar irradiance (TSI) and also with the spectral irradiance in the far ultraviolet (FUV) region from the SORCE Solar-Stellar Irradiance Comparison Experiment (SOLSTICE). Significant positive correlation (up to 0.6) is found between CO and FUVTSI in a large part of the upper atmosphere. The distribution of this positive correlation in the mesosphere is consistent with the expectation of CO changes induced by the solar irradiance variations.

  8. Maintenance Carbon Cycle in Crassulacean Acid Metabolism Plant Leaves 1

    PubMed Central

    Kenyon, William H.; Severson, Ray F.; Black, Clanton C.

    1985-01-01

    The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations. Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants. In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant. PMID:16664005

  9. Post-combustion carbon dioxide capture cost reduction to 2030 and beyond.

    PubMed

    Adderley, B; Carey, J; Gibbins, J; Lucquiaud, M; Smith, R

    2016-10-20

    Post-combustion CO2 capture (PCC) can be achieved using a variety of technologies. Importantly it is applicable to a wide range of processes and may also be retrofitted in certain cases. This paper covers the use of PCC for low carbon power generation from new natural gas combined cycle (NGCC) plants that are expected to be built in the UK in the 2020s and 2030s and that will run into the 2050s. Costs appear potentially comparable with other low carbon and controllable generation sources such as nuclear or renewables plus storage, especially with the lower gas prices that can be expected in a carbon-constrained world. Non-fuel cost reduction is still, however, desirable and, since CO2 capture is a new application, significant potential is likely to exist. For the NGCC+PCC examples shown in this paper, moving from 'first of a kind' (FOAK) to 'nth of a kind' (NOAK) gives significant improvements through both reduced financing costs and capital cost reductions. To achieve this the main emphasis needs to be on 'commercial readiness', rather than on system-level 'technical readiness', and on improvements through innovation activities, supported by underpinning research, that develop novel sub-processes; this will also maintain NOAK status for cost-effective financing. Feasible reductions in the energy penalty for PCC capture have much less impact, reflecting the inherently high levels of efficiency for modern NGCC+PCC plants.

  10. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  11. Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Kuhlbusch, T. A. J.; Andreae, M. O.; Cachier, H.; Goldammer, J. G.; Lacaux, J.-P.; Shea, R.; Crutzen, P. J.

    1996-10-01

    During a field study in southern Africa (Southern African Fire-Atmosphere Research Initiative (SAFARI-92)), black carbon formation was quantified in the residues of savanna fires. The volatilization ratios of C, H, N, and S were determined by measuring their contents in the fuel and residue loads on six experimental sites. The volatilization of sulfur (86 ± 8%) was significantly higher than previously reported. Volatilization of H, N, and S was significantly correlated with that of carbon, enabling us to estimate their volatilization during savanna fires by extrapolation from those of carbon. By partitioning the residues in various fractions (unburned, partially burned, and ash), a strong correlation between the H/C ratio in the residue and the formation of black carbon was obtained. The ratio of carbon contained in ash to carbon contained in the unburned and partially burned fraction is introduced as an indicator of the degree of charring. As nitrogen was enriched in the residue, especially in the ash fraction of >0.63 mm, this indicator may be useful for an assessment of nutrient cycling. We show that the formation of black carbon is dependent on the volatilization of carbon as well as the degree of charring. The ratio of black carbon produced to the carbon exposed to the fire in this field study (0.6-1.5%) was somewhat lower than in experimental fires under laboratory conditions (1.0-1.8%) which may be due to less complete combustion. The average ratio of black carbon in the residue to carbon emitted as CO2 ranged from 0.7 to 2.0%. Using these ratios together with various estimates of carbon exposed or emitted by savanna fires, the worldwide black carbon formation was estimated to be 10-26 Tg C yr-1 with more than 90% of the black carbon remaining on the ground. The formation of this black carbon is a net sink of biospheric carbon and thus of atmospheric CO2 as well as a source of O2.

  12. Reduction of nitrogen- and carbon-based pollutants

    SciTech Connect

    Bowers, W.E.

    1990-05-22

    This patent describes a process for educing the concentration of nitrogen oxides in an oxygen-rich effluent from the combustion of a carbonaceous fuel. It comprises: injecting a solution comprising at least one additive compound selected from the group consisting of guanidine, guanidine carbonate, biguanide, guanylurea sulfate, melamine, dicyandiamide, biuret, 1,1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, and dimethyl urea, at a concentration and a temperature effective to achieve reduction in nitrogen oxide levels in the effluent.

  13. Carbon cycle and climate commitments from early human interference

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Solomon, S.

    2015-12-01

    According to the early anthropogenic hypothesis proposed by Ruddiman (2003), human influence on Earth's climate began several thousand years before the beginning of the industrial era. Agriculture and deforestation starting around 8000 years before present (BP) and slowly increasing over the Holocene, would have led to an increase in atmospheric methane (CH4) and carbon dioxide (CO2) concentration, preventing a natural cooling of Earth's climate. Here, the emphasis is not on testing Ruddiman's hypothesis, but rather on exploring the carbon cycle and climate commitment from potential early CH4 and CO2 emissions. In contrast to modern greenhouse gas emissions, early emissions occurred over millennia, allowing the climate system to come to near-equilibrium with the applied forcing. We perform two transient Holocene simulations with an Earth system model of intermediate complexity - the University of Victoria Earth System Climate Model (UVic ESCM). The first simulation is a standard transient Holocene simulation, forced with reconstructed changes in CO2 and CH4 concentrations and orbital and volcanic forcing. The second simulation is forced with CO2 and CH4 concentrations corrected for the net anthropogenic contribution postulated by Ruddiman (2007), with other forcings evolving as in the standard simulation. The difference in diagnosed emissions between the two simulations allows us to determine the anthropogenic emissions. After year 1850, anthropogenic CO2 and CH4 emissions are set to zero and the simulations continued for several hundred years. In this paper, we analyze the carbon cycle and climate response to the applied forcings, and quantify the resulting (post 1850) commitment from early anthropogenic interference.

  14. Toward a Mexican eddy covariance network for carbon cycle science

    NASA Astrophysics Data System (ADS)

    Vargas, Rodrigo; Yépez, Enrico A.

    2011-09-01

    First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.

  15. Effects of Redox Cycling of Iron in Nontronite on Reduction of Technetium

    SciTech Connect

    Yang, Junjie; Kukkadapu, Ravi K.; Dong, Hailiang; Shelobolina, Evgenya S.; Zhang, Jing; Kim, Jinwook

    2012-01-06

    In situ technetium-99 (99Tc) immobilization by Fe(II) associated with clay minerals has been studied and is a potential cost-effective method for Tc remediation at the United States Department of Energy (DOE) sites. Fe redox cycling are common in sedimentary environments, however their effect on Tc reduction and immobilization has not yet been investigated. The objective of this project was therefore to study how multiple cycles of reduction-reoxidation of Fe-rich clay mineral, nontronite, affected its reactivity toward Tc (VII) reduction. Iron-rich nontronite NAu-2 was used as a model clay mineral. NAu-2 suspension was first bioreduced by Shewanella putrefaciens CN32, which consequently was re-oxidized by air. Three cycles of reduction-oxidation were conducted and bioreduced NAu-2 samples from all three cycles were collected and used for Tc(VII) reduction experiments. Each redox cycle resulted in a small fraction of dissolution of small size and/or poorly crystalline NAu-2. The released Fe(II) from the dissolution was likely adsorbed onto NAu-2 surface/edge sites with a high reactivity. Upon exposure to O2, this reactive Fe(II) fraction was oxidized more rapidly than structural Fe(II) and may have accounted for a two-step reoxidation kinetics of NAu-2 associated Fe(II): rapid oxidation over first few hours followed by slow oxidation. Progressive increase of this reactive fraction of Fe(II), from increased dissolution, accounted for the successively higher rate of bioreduction and reoxidation with increased redox cycles. The same Fe redistribution accounted for two-step Tc(VII) reduction kinetics as well. Rapid Tc(VII) reduction in the first few hours may be attributed to a small fraction of highly reactive Fe(II) at the NAu-2 surface/edge sites, and more steady Tc(VII) reduction over longer time may be carried out by structural Fe(II). Similar to the increased rates of Fe(III) reduction and Fe(II) oxidation, the Tc(VII) reduction rate also increased with redox

  16. Biochar and biological carbon cycling in temperate soils

    NASA Astrophysics Data System (ADS)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  17. Adaptation of carbon allocation under light and nutrient reduction

    NASA Astrophysics Data System (ADS)

    Wegener, Frederik; Werner, Christiane

    2015-04-01

    The allocation of recently assimilated carbon (C) by plants depends on developmental stage and on environmental factors, but the underlying mechanisms are still a matter of debate. Whereas shifts in the allocation of photosynthates induced by reduced water availability, enhanced temperature and CO2 concentration were recently investigated in various studies, less is known about the response to light and nutrient reduction. We induced different allocation patterns in the Mediterranean shrub Halimium halimifolium L. by a reduction of light (Low L treatment) and nutrient availability (Low N treatment) and analysed allocation parameters as well as morphological and physiological traits for 15 months. Finally, we conducted a 13CO2 pulse-labelling and followed the fate of recently assimilated carbon to eight different classes of plant tissues and respiration for 13 days. The results revealed a high intraspecific variability in C distribution to tissues and in respiration. Allocation changes even varied within leaf and stem tissue classes (e.g. more C in main stems, less in lateral stems). These results show that the common separation of plant tissues in only three classes, i.e. root, shoot and leaf tissues, can result in missing information about allocation changes. The nutrient reduction enhanced the transport of recently assimilated C from leaves to roots in terms of quantity (c. 200%) and velocity compared to control plants. Interestingly, a 57% light reduction enhanced photosynthetic capacity and caused no change in final biomass after 15 months. Therefore, our results support the recently discussed sink regulation of photosynthesis. Finally, our results indicate that growing heterotrophic tissues strongly reduce the C loss from storage and structural C pools and therefore enhance the fraction of recent assimilates used for respiration. We propose that this interruption of the C reflux from storage and structural C pools could be a control mechanism for C

  18. Forest Carbon Cycling Across Gradients of Disturbance Severity: Patterns and Underlying Mechanisms

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Bohrer, G.; Nave, L. E.; Nadelhoffer, K. J.; Vogel, C. S.; Bond-Lamberty, B. P.; Goodrich-Stuart, E. J.; Curtis, P.

    2014-12-01

    Ecological disturbances alter biogeochemical processes central to forest carbon (C) storage. Disturbances to forests occur along a continuum of severity, from low intensity disturbance causing the mortality of only a subset of trees to severe stand-replacing disturbance that kills all trees; yet, considerable uncertainty exists in how and why the forest C cycle changes across gradients of disturbance intensity, and whether ecosystem models robustly simulate these responses. At the University of Michigan Biological Station, we are using multiple ecosystem-scale experiments to examine how disturbance intensity affects C cycling and to identify the underlying mechanisms that support recovery of the C cycle. The Forest Accelerated Succession Experiment (FASET), in which a third of all canopy trees were stem girdled within a 39 ha area, employs C cycling measurements within paired treatment and control meteorological flux tower footprints. A separate study examines forest C cycling following stand-replacing clear-cut harvest and fire. We found that net ecosystem production (NEP) was highly resilient following moderate disturbance, but experienced long-term reductions following stand-replacing disturbance. Using a gradient of disturbance severity within the FASET treatment, we found that forest production declined non-linearly with rising disturbance intensity, remaining stable until a threshold of ~60 % tree mortality was exceeded. NEP was sustained following moderate disturbance because of improved canopy light-use efficiency, which compensated for a temporary reduction in leaf area index. Contrastingly, NEP was reduced for several decades at the highest levels of disturbance severity. A model assessment revealed that neither big-leaf nor gap models captured the observed high resilience in NEP following low intensity disturbance, suggesting inadequate representation of the mechanisms supporting C cycling resilience.

  19. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  20. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    NASA Astrophysics Data System (ADS)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  1. Soils and Global Change in the Carbon Cycle over Geological Time

    NASA Astrophysics Data System (ADS)

    Retallack, G. J.

    2003-12-01

    Soils play an important role in the carbon cycle as the nutrition of photosynthesized biomass. Nitrogen fixed by microbes from air is a limiting nutrient for ecosystems within the first flush of ecological succession of new ground, and sulfur can limit some components of wetland ecosystems. But over the long term, the limiting soil nutrient is phosphorus extracted by weathering from minerals such as apatite (Vitousek et al., 1997a; Chadwick et al., 1999). Life has an especially voracious appetite for common alkali (Na+ and K+) and alkaline earth (Ca2+ and Mg2+) cations, supplied by hydrolytic weathering, which is in turn amplified by biological acidification (Schwartzmann and Volk, 1991; see Chapter 5.06). These mineral nutrients fuel photosynthetic fixation and chemical reduction of atmospheric CO2 into plants and plantlike microbes, which are at the base of the food chain. Plants and photosynthetic microbes are consumed and oxidized by animals, fungi, and other respiring microbes, which release CO2, methane, and water vapor to the air. These greenhouse gases absorb solar radiation more effectively than atmospheric oxygen and nitrogen, and are important regulators of planetary temperature and albedo (Kasting, 1992). Variations in solar insolation ( Kasting, 1992), mountainous topography ( Raymo and Ruddiman, 1992), and ocean currents ( Ramstein et al., 1997) also play a role in climate, but this review focuses on the carbon cycle. The carbon cycle is discussed in detail in Volume 8 of this Treatise.The greenhouse model for global paleoclimate has proven remarkably robust (Retallack, 2002), despite new challenges ( Veizer et al., 2000). The balance of producers and consumers is one of a number of controls on atmospheric greenhouse gas balance, because CO2 is added to the air from fumaroles, volcanic eruptions, and other forms of mantle degassing (Holland, 1984). Carbon dioxide is also consumed by burial as carbonate and organic matter within limestones and other

  2. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial

    USGS Publications Warehouse

    Stallard, R.F.

    1998-01-01

    This paper examines the linkages between the carbon cycle and sedimentary processes on land. Available data suggest that sedimentation on land can bury vast quantities of organic carbon, roughly 1015 g C yr-1. To evaluate the relative roles of various classes of processes in the burial of carbon on land, terrestrial sedimentation was modeled as a series of 864 scenarios. Each scenario represents a unique choice of intensities for seven classes of processes and two different global wetland distributions. Comparison was made with presumed preagricultural conditions. The classes of processes were divided into two major component parts: clastic sedimentation of soil-derived carbon and organic sedimentation of autochthonous carbon. For clastic sedimentation, masses of sediment were considered for burial as reservoir sediment, lake sediment, and combined colluvium, alluvium, and aeolian deposits. When the ensemble of models is examined, the human-induced burial of 0.6-1.5.1015 g yr-1 of carbon on land is entirely plausible. This sink reaches its maximum strength between 30 ?? and 50??N. Paddy lands stand out as a type of land use that warrants future study, but the many faces of rice agriculture limit generalization. In an extreme scenario, paddy lands alone could be made to bury about 1.1015 g C yr-1. Arguing that terrestrial sedimentation processes could be much of the sink for the so called 'missing carbon' is reasonable. Such a hypothesis, however, requires major redesign of how the carbon cycle is modeled. Unlike ecosystem processes that are amenable to satellite monitoring and parallel modeling, many aspects of terrestrial sedimentation are hidden from space.

  3. Dynamics of decadally cycling carbon in subsurface soils

    NASA Astrophysics Data System (ADS)

    Koarashi, Jun; Hockaday, William C.; Masiello, Caroline A.; Trumbore, Susan E.

    2012-09-01

    Subsurface horizons contain more than half of the global soil carbon (C), yet the dynamics of this C remains poorly understood. We estimated the amount of decadally cycling subsurface C (˜20 to 60 cm depth) from the incorporation of `bomb' radiocarbon (14C) using samples taken over 50 years from grassland and forest soils in the Sierra Nevada Mountains, California. The radiocarbon content of all organic matter fractions (roots, low-density (LF), high-density (HF), and non-oxidizable HF) increased from the pre- to post-bomb samples, indicating ˜1-6 kgC m-2, or about half of the subsoil C, consists of C fixed since 1963. Low-density (LF-C) represented <24% (grassland) to 40-55% (forest) of the subsurface C and represented a mixture of post-bomb C and varying amounts of pre-1950 charcoal, identified using13C-NMR spectroscopy. The14C content of HF-C increased rapidly from 1992 to 2009, indicating a significant time lag (>20 years) for the arrival of `bomb'14C to this fraction. A two-pool (fast-cycling and passive) model including >20 year time lag showed that 28-73% of the subsoil mineral-associated C had turnover times of 10-95 years. Microbially respired C was enriched in bomb14C compared to both LF and HF fractions in 2009. Overall, we estimate that C fluxes through decadally cycling pools in the subsurface are equivalent to 1-9% (grassland) to 10-54% (forest) of the surface litterfall at these sites. Our results demonstrate the importance of decadally cycling C for ecosystem C balance, and that a lagged response of the large subsurface C stores to changes in environmental conditions is possible.

  4. Ocean and Atmospheric Profiling Lidar Observations and Its Link to Ocean Carbon Cycle

    NASA Technical Reports Server (NTRS)

    Hu, Yongxiang

    2010-01-01

    This study introduces space-based ocean and atmospheric profiling lidar for improving modeling and understanding of ocean carbon cycle. Unique measurements from space-based profiling lidars include (1) the global ocean surface mean square slope measurements for improving air-sea turbulence exchange estimates; (2) the backscatter and beam attenuation measurements for improving the global estimate of partial pressure of CO2 of the ocean with the reduction of uncertainties in primary productivity estimates. Global statistics of CALIOP integrated ocean subsurface backscatter measurements of coastal waters will be presented. The study will also assess the impact of CALIOP on the uncertainty reduction of primary productivity and the improvement of CO2 partial pressure estimates. Ocean surface roughness statistics, its applications in air-sea interaction and its comparisons with other measurements will also be presented

  5. Biogeochemical Cycles of Carbon and Sulfur on Early Earth (and on Mars?)

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    2004-01-01

    The physical and chemical interactions between the atmosphere, hydrosphere, geosphere and biosphere can be examined for elements such as carbon (C) and sulfur (S) that have played central roles for both life and the environment. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. These multiple roles of C and S interact across a network of elemental reservoirs interconnected by physical, chemical and biological processes. These networks are termed biogeochemical C and S cycles.

  6. Amazonia and the modern carbon cycle: lessons learned.

    PubMed

    Ometto, Jean Pierre H B; Nobre, Antonio D; Rocha, Humberto R; Artaxo, Paulo; Martinelli, Luiz A

    2005-05-01

    In this paper, we review some critical issues regarding carbon cycling in Amazonia, as revealed by several studies conducted in the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA). We evaluate both the contribution of this magnificent biome for the global net primary productivity/net ecosystem exchange (NPP/NEE) and the feedbacks of climate change on the dynamics of Amazonia. In order to place Amazonia in a global perspective and make the carbon flux obtained through the LBA project comparable with global carbon budgets, we extrapolated NPP/NEE values found by LBA studies to the entire area of the Brazilian Amazon covered by rainforest. The carbon emissions due to land use changes for the tropical regions of the world produced values from 0.96 to 2.4 Pg C year(-1), while atmospheric CO2 inversion models have recently indicated that tropical lands in the Americas could be exchanging a net 0.62+/-1.15 Pg C year(-1) with the atmosphere. The difference calculated from these two methods would imply a local sink of approximately 1.6-1.7 Pg C year(-1), or a source of 0.85 ton C ha(-1) year(-1). Using our crude extrapolation of LBA values for the Amazon forests (5 million km2) we estimate a range for the C flux in the region of -3.0 to 0.75 Pg C year(-1). The exercise here does not account for environmental variability across the region, but it is an important driver for present and future studies linking local process (i.e. nutrient availability, photosynthetic capacity, and so forth) to global and regional dynamic approaches.

  7. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    NASA Astrophysics Data System (ADS)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  8. High-performance oxygen reduction catalyst derived from porous, nitrogen-doped carbon nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Kai; Cao, Yingjie; Zhu, Juntong; Jiang, Yining; Feng, Lai; Dai, Xiao; Zou, Guifu

    2016-10-01

    A facile, self-foaming strategy is reported to synthesize porous, nitrogen-doped carbon nanosheets (N-CNSs) as a metal-free electrocatalyst for oxygen reduction reaction (ORR). Benefiting from the synergistic functions of N-induced active sites, a highly specific surface area and continuous structure, the optimal N-CNS catalyst exhibits Pt-like ORR activity (positive onset potential of ˜0 V versus Ag/AgCl and limiting current density of 5 mA cm-2) through a four-electron transfer process in alkaline media with excellent cycle stability and methanol tolerance. This work not only provides a promising metal-free ORR catalyst but also opens up a new path for designing carbon-based materials towards broad applications.

  9. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles.

    PubMed

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-13

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  10. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  11. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    USGS Publications Warehouse

    Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, Pirkko; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.

  12. Bioavailability of dissolved organic carbon linked with the regional carbon cycle in the East China Sea

    NASA Astrophysics Data System (ADS)

    Gan, Shuchai; Wu, Ying; Zhang, Jing

    2016-02-01

    The regional carbon cycle on continental shelves has created great interest recently due to the enigma of whether these areas are a carbon sink or a source. It is vital for a precise carbon cycle model to take the bioavailability of dissolved organic carbon (DOC) into account, as it impacts the sink and source capacity, especially on dynamic shelves such as the East China Sea. Nine bio-decomposition experiments were carried out to assess differences in the bioavailability of DOC. Samples were collected from different water masses in the East China Sea, such as the Coastal Current, the Taiwan Current, and the Kuroshio Current, as well as from the Changjiang (Yangtze River), the main contributor of terrestrial DOC in the East China Sea. This study aimed to quantify and qualify bioavailable DOC (BDOC) in the East China Sea. Both the degradation constant of BDOC and the carbon output from microorganisms have been quantitatively evaluated. Qualitatively, excitation-emission matrix fluorescence spectra (EEMs) were used to evaluate the intrinsic reasons for BDOC variation. By using EEMs in conjunction with parallel factor analysis (PARAFAC), five individual fluorescent components were identified in this study: three humic-like and two protein-like components (P1, P2). The highest P1 and P2 fluorescence intensities were recorded in the coastal water during a phytoplankton algal bloom, while the lowest intensities were recorded in the Changjiang estuary. Quantitatively, BDOC observed during the incubation ranged from 0 to 26.1 μM. The DOC degradation rate constant varied from 0 to 0.027 (d-1), and was lowest in the Changjiang and highest in algal bloom water and warm shelf water (the Taiwan current). The Taiwan Current and mixed shelf water were the major contributors of BDOC flux to the open ocean, and the East China Sea was a net source of BDOC to the ocean. The results verified the importance of BDOC in regional carbon cycle modeling. Combining the data of BDOC and EEMs

  13. Agenda and Meeting Summary from Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    From April 15-19, 2013, EPA's partners hosted the Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources in Murmansk, Russia. Over the course of this event, participants:

  14. Agenda and Meeting Summary from Final Workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency, Battelle Memorial Institute and WWF-Russia organized the final workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources on November 5, 2014 in Murmansk, Russia.

  15. Climate cycling on early Mars caused by the carbonate-silicate cycle

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha E.; Kopparapu, Ravi Kumar; Haqq-Misra, Jacob; Kasting, James F.

    2016-12-01

    For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere. Another suggests that early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. Here, we provide a geophysical mechanism that could have induced cycles of glaciation and deglaciation on early Mars. Our model produces dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr-much longer than those generated in other episodic warming models. The cycles occur because stellar insolation was low, and because CO2 outgassing is not able to keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. While CO2 by itself is not able to deglaciate early Mars in our model, we assume that the greenhouse effect is enhanced by substantial amounts of H2 outgassed from Mars' reduced crust and mantle. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation.

  16. Understanding reduction of carbon tetrachloride at nickel surfaces.

    PubMed

    Wang, Jiankang; Blowers, Paul; Farrell, James

    2004-03-01

    Nickel has been found to be an effective cathode material and catalyst for reductive destruction of chlorinated solvents in contaminated water. This study investigated reductive dechlorination of carbon tetrachloride (CT) at a nickel rotating disk electrode using chronoamperometry and electrochemical impedance spectroscopy. Chronoamperometry experiments were performed to determine rates of CT reduction as a function of the electrode potential, pH, CT concentration, and temperature. The reaction products of CT dechlorination were 95 +/- 4% methane and 4.1 +/- 2.5% chloroform. Only trace levels of methylene chloride and chloromethane were produced, indicating that sequential hydrogenolysis was not the predominant pathway for methane production. Electrochemical impedance spectroscopy showed that the rate-limiting step for methane production was the transfer of the first electron to a physically adsorbed CT molecule. The temperature independence of the electron transfer coefficient and the decreasing activation energy with decreasing electrode potential indicated that the rate-limiting step involved an outer-sphere electron transfer. At neutral pH values, oxides inactivated much of the electrode surface for both CT reduction and hydrogen evolution. At lower pH values, oxide dissolution served to increase the electroactive surface area of the disk electrode. Anson analysis and kinetic modeling showed that CT adsorption to electroactive sites was a nonlinear function of the CT concentration and was in equilibrium with the bulk solution. CT dechlorination rates on nickel electrodes were 16 times slower than those on iron electrodes under similar conditions. However, CT reactions at nickel surfaces produced predominantly methane as the first detectable product, while reduction at iron surfaces produced chloroform. These results suggest that, although nickel is not a catalyst for the rate-limiting step for CT dechlorination, it may serve a catalytic role in subsequent

  17. Microstructural Characterization of Nanocrystalline Sn-Coated Carbon Fibre Electrodes Cycled in Li-Ion Cells

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sandeep; Shafiei, Mehdi; Alpas, Ahmet T.

    2015-12-01

    The mechanisms of electrochemical capacity retention and eventual degradation in composite anodes prepared by electrodepositing nanocrystalline Sn coating on carbon fibres (CF), Sn-CF, were studied using in situ optical microscopy, high-resolution scanning and transmission electron microscopy. Specific capacity changes of Sn-CF anodes ( vs Li/Li+) were observed to take place in three stages: during the first two galvanostatic cycles, a rapid capacity decrease (from 1045 to 930 mAh g-1) occurred, which was followed by a steady-state stage where the capacity remained constant at 922 ± 22 mAh g-1. The fast capacity drop of Sn-CF in the first cycle was attributed to the partial decohesion of Sn from CFs although the carbon substrate remained unaffected due to formation of a layer from the solid electrolyte reduction products. The pure Sn electrode with a higher initial specific capacity than the Sn-CF displayed a rapid decrease in the same range, whereas the specific capacity of the uncoated CF was already much lower as the fibres were severely damaged in the first cycle.

  18. Embodied carbon mitigation and reduction in the built environment - What does the evidence say?

    PubMed

    Pomponi, Francesco; Moncaster, Alice

    2016-10-01

    Of all industrial sectors, the built environment puts the most pressure on the natural environment, and in spite of significant efforts the International Energy Agency suggests that buildings-related emissions are on track to double by 2050. Whilst operational energy efficiency continues to receive significant attention by researchers, a less well-researched area is the assessment of embodied carbon in the built environment in order to understand where the greatest opportunities for its mitigation and reduction lie. This article approaches the body of academic knowledge on strategies to tackle embodied carbon (EC) and uses a systematic review of the available evidence to answer the following research question: how should we mitigate and reduce EC in the built environment? 102 journal articles have been reviewed systematically in the fields of embodied carbon mitigation and reduction, and life cycle assessment. In total, 17 mitigation strategies have been identified from within the existing literature which have been discussed through a meta-analysis on available data. Results reveal that no single mitigation strategy alone seems able to tackle the problem; rather, a pluralistic approach is necessary. The use of materials with lower EC, better design, an increased reuse of EC-intensive materials, and stronger policy drivers all emerged as key elements for a quicker transition to a low carbon built environment. The meta-analysis on 77 LCAs also shows an extremely incomplete and short-sighted approach to life cycle studies. Most studies only assess the manufacturing stages, often completely overlooking impacts occurring during the occupancy stage and at the end of life of the building. The LCA research community have the responsibility to address such shortcomings and work towards more complete and meaningful assessments.

  19. Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction

    SciTech Connect

    Oh, Seokjoon; Gallagher, James R.; Miller, Jeffrey T.; Surendranath, Yogesh

    2016-02-17

    Condensation of fac-Re(5,6-diamino-1,10-phenanthroline)(CO)(3)Cl to o-quinone edge defects on graphitic carbon surfaces generates graphite-conjugated rhenium (GCC-Re) catalysts that are highly active for CO2 reduction to CO in acetonitrile electrolyte. X-ray photo-electron and X-ray absorption spectroscopies establish the formation of surface-bound Re centers with well-defined coordination environments. GCC-Re species on glassy carbon surfaces display catalytic currents greater than 50 mA cm(-2) with 96 +/- 3% Faradaic efficiency for CO production. Normalized for the number of Re active sites, GCC-Re catalysts exhibit higher turnover frequencies than that of a soluble molecular analogue, fac-Re(1,10-phenanthroline)(CO)(3)Cl, and turnover numbers greater than 12,000. In contrast to the molecular analogue, GCC-Re surfaces display a Tafel slope of 150 mV/decade, indicative of a catalytic mechanism involving rate-limiting one-electron transfer. This work establishes graphite conjugation as a powerful strategy for generating well-defined, tunable, heterogeneous electrocatalysts on ubiquitous graphitic carbon surfaces.

  20. Accounting for agriculture in modelling the global terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Bondeau, A.; Smith, P.; Schaphoff, S.; Zaehle, S.; Smith, B.; Sitch, S.; Gerten, D.; Schröder, B.; Lucht, W.; Cramer, W.

    2003-04-01

    Among the different approaches that investigate the role of the terrestrial biosphere within the global carbon cycle, Dynamic Global Vegetation Models (DGVMs) are an important tool. They represent the major biogeochemical mechanisms (carbon and water fluxes), depending on climate and soil, in order to simulate vegetation type (tree/grass, evergreen/deciduous, etc) as well as ecosystem function. The models should be validated for different features at various scales, in order to be used to assess the future terrestrial productivity in relation to climate change scenarios. The Lund-Potsdam-Jena (LPJ) model (Sitch et al. 2002) is one of the few existing DGVMs, from which some interesting features have been validated like the seasonal atmospheric CO2 concentrations as measured at the global network of monitoring stations, the increase of the growing season length in the northern areas (Lucht et al. 2002), the runoff of large catchment (Gerten et al. Nice 2003, session HS25). In agreement with other models, LPJ estimates that the terrestrial biosphere is currently a carbon sink that will reduce in the middle of the century because of climate change (Cramer et al. 2000). However, regarding the terrestrial productivity, land use and cover change might be even more important than climate change. Until now, none of the global vegetation models were considering agriculture, or in the best case, agricultural areas were represented as a grassland. We describe the first implementation of crop parameterization within LPJ. As compared to natural vegetation, the main features of crops that must be accounted for in a global vegetation model are: i) the specific phenology, related to the sowing date, ii) the farming practices (nutrient inputs, irrigation), iii) the man-made dynamics (harvest, choice of variety, crop rotation). In a first step we consider the 8 crops types for which a global land cover data set is available for the 20th Century (RIVM). A simple phenological model

  1. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.; Naples, Andrew G.

    2006-01-01

    The feasibility of using carbon-carbon (C-C) recuperators in conceptual closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance expectations were forecast based on notional thermodynamic cycle state values for potential planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 30 to 60 percent were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25 to 1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, 60 percent savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  2. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2006-01-01

    The use of carbon-carbon (C-C) recuperators in closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance was forecast based on notional thermodynamic cycle state values for planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 40-55% were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25-1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, at least 50% savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  3. Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process.

    PubMed

    Qian, Jin; Wang, Lianlian; Wu, Yaoguo; Bond, Philip L; Zhang, Yuhan; Chang, Xing; Deng, Baixue; Wei, Li; Li, Qin; Wang, Qilin

    2017-06-01

    A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO3(-) + SO3(2-)) and free sulfurous acid (FSA, the unionized form: H2SO3) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10(-8) to 2.0 × 10(-4) mg H2SO3-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage.

  4. Cycle time reduction using lean six sigma in make-to-order (MTO) environment: Conceptual framework

    NASA Astrophysics Data System (ADS)

    Man, Siti Mariam; Zain, Zakiyah; Nawawi, Mohd Kamal Mohd

    2015-12-01

    This paper outlines the framework for application of lean six sigma (LSS) methodology to improve semiconductor assembly cycle time in a make-to-order (MTO) business environment. The cycle time reduction is the prime objective in the context of an overall productivity improvement particularly in the MTO environment. The interaction of the production rate and cycle time is described, while the emphasis is on Define-Measure-Analyze-Improve-Control (DMAIC) and Plan-Do-Check-Act (PDCA) activities. A framework for the conceptual understanding is provided along with practical implementation issues. A relevant measure for the degree of flexibility (DOF) in the context of quick setup is also discussed.

  5. The Carboniferous carbon isotope record from sedimentary organic matter: can we disentangle the carbon cycle?

    NASA Astrophysics Data System (ADS)

    Davies, S. J.; Bennett, C. E.; Leng, M. J.; Kearsey, T.; Marshall, J. E.; Millward, D.; Reeves, E. J.; Snelling, A.; Sherwin, J. E.

    2014-12-01

    A comprehensive analysis of the δ13C composition of sedimentary organic matter from Euramerican Carboniferous successions indicates there are significant shifts in δ13C through this key time interval. Our studies have revealed that, at an individual location, the source and delivery mechanism of the sediment contribute to the type of organic matter preserved and, in turn this influences the measured δ13C values from bulk sedimentary organic matter of organic matter. In general, where marine-derived organic matter is dominant in these Carboniferous successions then δ13C values are characteristically lower compared to the higher values encountered where terrestrial plant-derived material is most abundant. The implication of these observations is that an apparent carbon isotope excursion identified from the bulk organic matter may reflect a change in transport processes, or depositional environment, rather than a perturbation in the global carbon cycle. In our most recent studies, however, we compare δ13C values from specific wood fragments and bulk sedimentary organic matter from non-marine, marine basinal, and marine shelfal successions from the earliest Mississippian through to the early Pennsylvanian. These data indicate that early Mississippian δ13C of organic matter is far less negative (around -22%0) than material of Late Mississippian age (around -26%0), however by the early Pennsylvanian, δ13C values return to -22%0. There are some δ13C data from brachiopod carbonate from this time interval and similar shifts are indicated. Our data are beginning to address whether we can identify a primary carbon cycle signal from the Carboniferous record using δ13C from a range of sedimentary environments. If we can, there are still questions around what the record is telling us about the global carbon cycle during a period when plant groups, including lycopods and seed ferns, rapidly diversified.

  6. Uncertainties and Key Open Questions in the Geological Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Burton, M. R.

    2015-12-01

    The geological carbon cycle determines the long term distribution of CO2 between the mantle, crust and atmosphere, and therefore controls the concentration of CO2 in the Earth's atmosphere. Records of CO2 concentrations and temperature for the last 600,000 years indicate a relative stability in atmospheric CO2 concentrations, reflecting a balance between CO2 input to the atmosphere from volcanism and metamorphism, and output via silicate weathering. The absolute rates of these global fluxes contributes to controlling the lifetime of CO2 in the atmosphere. It is therefore extremely relevant and important to quantify the rate of the geological cycle for CO2, as this will contribute to the timescale of recovery from a change in policy on anthropogenic CO2 emissions. Here we review the state of the art in our knowledge of Earth's geological CO2 output, and highlight causes of large underestimates, largely due to methodological errors in measurement of CO2 flux. We produce a new, corrected estimate and use this to estimate a CO2 lifetime which is significantly shorter than previously thought.

  7. Gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. ); Johnson, R.A. )

    1993-01-01

    Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

  8. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    PubMed

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  9. Role of the vomeronasal organ on the estral cycle reduction by pheromones in the rat.

    PubMed

    Mora, O A; Sánchez-Criado, J E; Guisado, S

    1985-09-01

    The role of he vomeronasal organ on the estral cycle reduction induced by pheromones is studied in adult female wistar rats. The animals were divided in three groups: I, intact rats; II, vomeronasalectomized rats (VNX); and III, sham operated rats (sham). Each group was submitted to another three distinct conditions from the day they were weaned (21 days old): Isolated female rats; with male odors from two adult males of tested sexual potency, and isolated rats again. The isolated intact rats show mainly 5 day length cycles. The groups I and III (intacts and sham) with male odors, show 4 day length cycles. The VNX animals show 5 day cycles in any one experimental conditions. These results support the idea that the vomeronasal organ is the receptor of the male reducing cycle pheromone in the female rat.

  10. Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)

    ScienceCinema

    Balsara, Nitash

    2016-07-12

    Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  11. Carbon Cycle 2.0: Bill Collins: A future without CC2.0

    ScienceCinema

    Bill Collins

    2016-07-12

    Bill Collins speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  12. Carbon Cycle 2.0: Mary Ann Piette: Impact of efficient buildings

    ScienceCinema

    Mary Ann Piette

    2016-07-12

    Mary Ann Piette speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  13. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    NASA Astrophysics Data System (ADS)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  14. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle.

    PubMed

    Swart, Peter K

    2008-09-16

    The carbon isotopic (delta(13)C) composition of bulk carbonate sediments deposited off the margins of four carbonate platforms/ramp systems (Bahamas, Maldives, Queensland Plateau, and Great Australian Bight) show synchronous changes over the past 0 to 10 million years. However, these variations are different from the established global pattern in the delta(13)C measured in the open oceans over the same time period. For example, from 10 Ma to the present, the delta(13)C of open oceanic carbonate has decreased, whereas platform margin sediments analyzed here show an increase. It is suggested that the delta(13)C patterns in the marginal platform deposits are produced through admixing of aragonite-rich sediments, which have relatively positive delta(13)C values, with pelagic materials, which have lower delta(13)C values. As the more isotopically positive shallow-water carbonate sediments are only produced when the platforms are flooded, there is a connection between changes in global sea level and the delta(13)C of sediments in marginal settings. These data indicate that globally synchronous changes in delta(13)C can take place that are completely unrelated to variations in the global carbon cycle. Fluctuations in the delta(13)C of carbonate sediments measured during previous geological periods may also be subject to similar processes, and global synchroniety of delta(13)C can no longer necessarily be considered an indicator that such changes are related to, or caused by, variations in the burial of organic carbon. Inferences regarding the interpretation of changes in the cycling of organic carbon derived from delta(13)C records should be reconsidered in light of the findings presented here.

  15. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle

    PubMed Central

    Swart, Peter K.

    2008-01-01

    The carbon isotopic (δ13C) composition of bulk carbonate sediments deposited off the margins of four carbonate platforms/ramp systems (Bahamas, Maldives, Queensland Plateau, and Great Australian Bight) show synchronous changes over the past 0 to 10 million years. However, these variations are different from the established global pattern in the δ13C measured in the open oceans over the same time period. For example, from 10 Ma to the present, the δ13C of open oceanic carbonate has decreased, whereas platform margin sediments analyzed here show an increase. It is suggested that the δ13C patterns in the marginal platform deposits are produced through admixing of aragonite-rich sediments, which have relatively positive δ13C values, with pelagic materials, which have lower δ13C values. As the more isotopically positive shallow-water carbonate sediments are only produced when the platforms are flooded, there is a connection between changes in global sea level and the δ13C of sediments in marginal settings. These data indicate that globally synchronous changes in δ13C can take place that are completely unrelated to variations in the global carbon cycle. Fluctuations in the δ13C of carbonate sediments measured during previous geological periods may also be subject to similar processes, and global synchroniety of δ13C can no longer necessarily be considered an indicator that such changes are related to, or caused by, variations in the burial of organic carbon. Inferences regarding the interpretation of changes in the cycling of organic carbon derived from δ13C records should be reconsidered in light of the findings presented here. PMID:18772393

  16. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  17. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, N.; Zeebe, R. E.

    2016-01-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here we identify the deficiencies of a simplified calcium model employed in several previous studies, and we demonstrate the importance of a fully coupled carbon cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6°C.

  18. Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase.

    PubMed

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Richardson, Jason R; Hossain, Muhammad M; Heindel, Ned D; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-03-01

    Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity.

  19. Sensitivity of the marine carbonate cycle to atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Gangstø, R.; Joos, F.; Gehlen, M.

    2010-09-01

    Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr-1 to between 0.36 and 0.82 Pg C yr-1 by the year 2100. By the year 2500, the ratio of open water CaCO3 dissolution to production stabilizes at a value that is 30-50% higher than at pre-industrial times when carbon emissions are set to zero after 2100. Despite the wide range of parameterizations, model versions and scenarios included in our study, the changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of 1-11 ppm by the year 2100.

  20. Benchmark analysis of parameterization for terrestrial carbon cycle model (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhou, X.; Verburg, P.; Arnone, J.

    2010-12-01

    Parameterization of terrestrial ecosystem models plays an important role in accurately predicting carbon-climate feedback. More and more studies have shown that a fixed set of parameters cannot adequately represent spatial and temporal variations of ecosystem functions over broad geographical locations and/or over long time. In this study, we conducted benchmark analysis of a terrestrial ecosystem (TECO) model against a highly accurate data set from mesocosm study in Ecologically Controlled Enclosed Lysimeter Laboratories (EcoCELLs) at Desert Research Institute, Reno, Nevada. The mesocosm study involved shoot and whole plant harvests in fall, fallow during winter, and fertilization treatments in year 2. We used a Markov chain Monte Carlo (MCMC) technique to estimate parameters of the TECO model and measure the model performance with estimated parameters. Our analysis showed that the model performance with one set of estimated parameters was poor over a two-year experimental duration. The model performance was slightly improved with root exudation as an additional mechanism of carbon transfer from plants to rhizosphere. The performance was significantly improved when five sets of parameters were estimated for five respective periods, which spanned from seeding to shoot harvest in year 1, from shoot to whole plant harvest in year 1, fallow, from seeding to plant harvest with fertilization in year 2, and from plant harvest to the end of the project in year 2. The five sets of parameter values are significantly different, indicating that experimental treatments caused discontinuous (or discrete) changes in ecosystem processes. The discontinuous changes in ecosystem processes pose significant challenges for carbon cycle model parameterization and generate uncertainties for model prediction.

  1. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin

    NASA Astrophysics Data System (ADS)

    Schefuß, Enno; Eglinton, Timothy I.; Spencer-Jones, Charlotte L.; Rullkötter, Jürgen; de Pol-Holz, Ricardo; Talbot, Helen M.; Grootes, Pieter M.; Schneider, Ralph R.

    2016-09-01

    The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. Although elevated ages in fluvially transported organic matter are usually explained by erosion of soils and sedimentary deposits, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and rapid carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River, in conjunction with molecular markers for methane-producing land cover reflecting wetland extent. We find that the Congo River has been discharging aged organic matter for several thousand years, with apparently increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from atmospheric nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology, mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter, we infer that this process may cause a profound direct climate feedback that is at present underestimated in carbon cycle assessments.

  2. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.

  3. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod.

    PubMed

    Templeton, Ryan C; Ferguson, P Lee; Washburn, Kate M; Scrivens, Wally A; Chandler, G Thomas

    2006-12-01

    Single-walled carbon nanotubes (SWNT) are finding increasing use in consumer electronics and structural composites. These nanomaterials and their manufacturing byproducts may eventually reach estuarine systems through wastewater discharge. The acute and chronic toxicity of SWNTs were evaluated using full life-cycle bioassays with the estuarine copepod Amphiascus tenuiremis (ASTM method E-2317-04). A synchronous cohort of naupliar larvae was assayed by culturing individual larvae to adulthood in individual 96-well microplate wells amended with SWNTs in seawater. Copepods were exposed to "as prepared" (AP) SWNTs, electrophoretically purified SWNTs, or a fluorescent fraction of nanocarbon synthetic byproducts. Copepods ingesting purified SWNTs showed no significant effects on mortality, development, and reproduction across exposures (p < 0.05). In contrast, exposure to the more complex AP-SWNT mixture significantly increased life-cycle mortality, reduced fertilization rates, and reduced molting success in the highest exposure (10 mg x L(-1)) (p < 0.05). Exposure to small fluorescent nanocarbon byproducts caused significantly increased life-cycle mortality at 10 mg x L(-1) (p < 0.05). The fluorescent nanocarbon fraction also caused significant reduction in life-cycle molting success for all exposures (p < 0.05). These results suggest size-dependent toxicity of SWNT-based nanomaterials, with the smallest synthetic byproduct fractions causing increased mortality and delayed copepod development over the concentration ranges tested.

  4. Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life.

    PubMed

    Hou, Hongshuai; Banks, Craig E; Jing, Mingjun; Zhang, Yan; Ji, Xiaobo

    2015-12-16

    A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.

  5. The energetics of the reductive citric acid cycle in the pyrite-pulled surface metabolism in the early stage of evolution.

    PubMed

    Kalapos, Miklós Péter

    2007-09-21

    The chemoautotrophic theory concerning the origin of life postulates that a central role is played in the prebiotic chemical machinery by a reductive citric acid cycle operating without enzymes. The crucial point in this scenario is the formation of pyrite from hydrogen sulfide and ferrous sulfide, a reaction suggested to be linked to endergonic reactions, making them exergonic. This mechanism is believed to provide the driving force for the cycle to operate as a carbon dioxide fixation network. The present paper criticizes the thermodynamic calculations and their presentation in the original version of the archaic reductive citric acid cycle [Wächtershäuser, 1990. Evolution of the first metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200-204.]. The most significant differences between the Wächtershäuser hypothesis and the present proposal: Wächtershäuser did not consider individual reactions in his calculations. A particularly questionable feature is the involvement of seven molecules of pyrite which does not emerge as a direct consequence of the chemical reactions presented in the archaic reductive citric acid cycle. The involvement of a considerable number of sulfur-containing organic intermediates as building blocks is also disputed. In the new scheme of the cycle proposed here, less free energy is liberated than hypothesized by Wächtershäuser, but it has the advantages that the free energy changes for the individual reactions can be calculated, the number of pyrite molecules involved in the cycle is reduced, and fewer sulfur-containing intermediates are required for the cycle to operate. In combination with a plausible route for the anaplerotic reactions [Kalapos, 1997a. Possible evolutionary role of methylglyoxalase pathway: anaplerotic route for reductive citric acid cycle of surface metabolists. J. Theor. Biol. 188, 201-206.], this new presentation of the cycle assigns a special meaning to hydrogen sulfide formation in the early stage of biochemical

  6. Catalytic reduction of carbon dioxide with a hydrogen fuel cell

    SciTech Connect

    Ogura, K.; Migita, C.T.; Imura, H. )

    1990-06-01

    This paper reports the catalytic reduction of carbon dioxide to methanol achieved with a hydrogen fuel cell. This process involves a homogeneous and a heterogeneous catalysis. In the former, the catalyst consisting of a metal complex and methanol were applied, and in the latter Everitt's salt (K{sub 2}Fe{sup II}(Fe{sup II}(CN{sub 6}))) which functions as an electron relay was used. The initial {ital p}H of the catholyte was fixed at 2, and the {ital p}H of the anolyte was required to be higher than 1.75 for the hydrogen fuel cell with CO{sub 2} as oxidant to be feasible thermodynamically.

  7. Coal companies hope to receive carbon credits for methane reductions

    SciTech Connect

    2007-09-30

    Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The example they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.

  8. Reduction and melting behavior of carbon composite lateritic bauxite pellets

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-yi; Zhao, Jie; Qi, Yuan-hong; Cheng, Xiang-li; Zou, Zong-shu

    2015-04-01

    Direct reduction of low-grade lateritic bauxite was studied at high temperature to recover Fe and beneficiate Al2O3 slag. The results show that a metallization rate of 97.9% and a nugget recovery rate of 85.1% can be achieved when the reducing and melting temperatures are 1350 and 1480°C, respectively. Moreover, a higher-grade calcium aluminate slag (Al2O3 = 50.52wt%) can also be obtained, which is mainly composed of α-Al2O3, hercynite (FeAl2O4), and gehlenite (Ca2Al2SiO7). In addition, high-quality iron nuggets have been produced from low-grade lateritic bauxite. The nugget is mainly composed of iron (93.82wt%) and carbon (3.86wt%), with almost no gangue (slag).

  9. Rate of reduction of ore-carbon composites: Part II. Modeling of reduction in extended composites

    SciTech Connect

    Fortini, O.M.; Fruehan, R.J.

    2005-12-01

    A new process for ironmaking was proposed using a rotary hearth furnace and an iron bath smelter to produce iron employing wood charcoal as an energy source and reductant. This paper examines reactions in composite pellet samples with sizes close to sizes used in industrial practice (10 to 16 min in diameter). A model was constructed using the combined kinetic mechanism developed in Part I of this series of articles along with equations for the computation of pellet temperature and shrinkage during the reaction. The analysis of reaction rates measured for pellets with wood charcoal showed that heat transfer plays a significant role in their overall rate of reaction at elevated temperatures. The slower rates measured in pellets containing coal char show that the intrinsic kinetics of carbon oxidation is more significant than heat transfer. Model calculations suggest that the rates are highly sensitive to the thermal conductivity of pellets containing wood charcoal and are less sensitive to the external conditions of heat transfer. It was seen that the changes in pellet surface area and diameter due to shrinkage introduce little change on reaction rates. The model developed provides an adequate description of pellets of wood charcoal up to circa 90% of reduction. Experimentally determined rates of reduction of iron oxide by wood charcoal were approximately 5 to 10 times faster than rates measured in pellets with coal char.

  10. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy

    NASA Astrophysics Data System (ADS)

    Li, Xueying; Peng, Ying; Zhang, Jing

    2017-01-01

    Under the background of a low carbon economy, this paper examines the impact of carbon tax policy on supply chain network emission reduction. The integer linear programming method is used to establish a supply chain network emission reduction such a model considers the cost of CO2 emissions, and analyses the impact of different carbon price on cost and carbon emissions in supply chains. The results show that the implementation of a carbon tax policy can reduce CO2 emissions in building supply chain, but the increase in carbon price does not produce a reduction effect, and may bring financial burden to the enterprise. This paper presents a reasonable carbon price range and provides decision makers with strategies towards realizing a low carbon building supply chain in an economical manner.

  11. Nitrogen management through coupling carbon and nitrogen cycling in agroecosystems

    NASA Astrophysics Data System (ADS)

    Tonitto, C.; Gardner, J. B.; David, M. B.; Drinkwater, L. E.

    2011-12-01

    We examined the potential to reduce N loss from agroecosystems through management practices which promote coupled C and N cycling. Point application of inorganic N fertilizer in conventional agricultural systems has decoupled C and N cycling. We compared alternative rotations which reduce bare fallow periods to conventional corn-soybean rotations with a winter bare fallow which are common across the Corn Belt. In a review using meta-analysis we demonstrated that including cover crops in current annual grain rotations reduces nitrate leaching an average of 70% relative to conventional rotations, with no statistically significant change in crop yield. The potential for significant reductions in nitrate leaching in alternative relative to conventional rotations was also demonstrated through simulations using the DNDC model. Rotations including a winter cover crop showed a 35% and 55% reduction in nitrate leaching from corn and soybean fields respectively relative to conventional management; more complex rotations which included a legume N source averaged a 50% reduction in nitrate leaching from corn and soybean fields relative to the conventional system. Our comparison of crop rotations using the DNDC model also demonstrated increasing rotation complexity reduced N2O emissions relative to conventional systems. Examination of N2O loss under different crop rotations using an empirical modeling approach verified a reduced cumulative N2O emission rate under complex rotations. However, while extreme N2O emissions were observed in DNDC simulation outcomes, empirical modeling work concludes extreme N2O flux events are statistically rare given currently available observations. Quantification of 15N recovery using meta-analysis demonstrated that management which varies the type, timing, or placement of inorganic fertilizer resulted in 0-26% recovery of N applied in vegetation or soil. In contrast in legume-fertilized systems 42% of legume-derived N inputs are recovered in

  12. Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle*♦

    PubMed Central

    Gameiro, Paulo A.; Laviolette, Laura A.; Kelleher, Joanne K.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)+ ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle. PMID:23504317

  13. Valley Formation on Early Mars Caused by Carbonate-Silicate Cycle-Induced Climate Cycling

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha; Kopparapu, Ravi Kumar; Haqq-Misra, Jacob; Kasting, James

    2016-10-01

    For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere. Another suggests early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. We suggest that both schools of thought are partly correct. Mars experienced dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr. Cycles of repeated glaciation and deglaciation occurred because stellar insolation was low, and because CO2 outgassing could not keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. In order to deglaciate early Mars , substantial outgassing of molecular hydrogen from Mars' reduced crust and mantle was also required. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation.

  14. Carbon dioxide reduction in low-pressure ICP

    NASA Astrophysics Data System (ADS)

    Dudin, Stanislav; Dakhov, Alexander

    2016-09-01

    This work experimentally investigates the efficiency of carbon dioxide dissociation in inductively coupled plasma (ICP) at low gas pressure. The plasma source operates at 13.56 MHz in the RF power range of 100-500 W. Pure CO2 is fed into the plasma while the output gas composition is measured by a mass spectrometer. The pressure range inside the source was changed in the range of 1-200 mTorr. Excitation processes in the plasma are studied by means of optical emission spectroscopy, and the plasma density along with the electron temperature are monitored using a Langmuir probe. Experimental results have shown that the conversion efficiency of CO2 to CO and O2 increases with the RF and reaches the values more than 50%. A theoretical treatment of the dissociation pathway is also given allowing estimation of the mean dissociation length of the carbon dioxide molecule in plasma. The plasma parameters necessary for efficient CO2 reduction are discussed.

  15. Improving the Modelled Global Terrestrial Carbon Cycle by Assimilating CO2 Mole Fractions and FAPAR with the MPI Carbon Cycle Data Assimilation System (MPI-CCDAS)

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor; Köstler, Christoph; Kaminski, Thomas; Giering, Ralf; Scholze, Marko; Kattge, Jens; Carvalhais, Nuno; Voßbeck, Michael; Rödenbeck, Christian; Reick, Christian; Zaehle, Sönke

    2015-04-01

    Long-term monitoring of ecosystem carbon fluxes and atmospheric CO2 concentrations provides independent observations of the land's carbon balance at different scales. However, the scale-gap between these observations makes a direct quantification of regional carbon balances based on these data impossible. Here, we describe first results of the MPI Carbon Cycle Data Assimilation System (MPI-CCDAS), designed to use multiple data streams at different scales to constrain parameters in the biosphere model JSBACH. We constrain the MPI-CCDAS with two complementary data-streams: CO2 mole fractions observed at a network of atmospheric monitoring stations, and remotely-sensed fraction of absorbed photosynthetically active radiation (TIP-FAPAR). The assimilation procedure greatly improves the representation of the seasonal cycle of atmospheric CO2, and reduces the global gross primary productivity (GPP) from 160 PgC/year to 118 PgC/year. Applying the MPI-CCDAS separately and jointly on both data streams allows to analyse the contribution of each data stream to the improved global carbon cycle model. Evaluation against independent carbon cycle estimates based on upscaled ecosystem flux measurements corroborates the adequacy of the model improvements, and demonstrates the utility of the CCDAS framework in consistently integrating carbon cycle data.

  16. The Campanian - Maastrichtian (Late Cretaceous) climate transition linked to a global carbon cycle perturbation

    NASA Astrophysics Data System (ADS)

    Voigt, S.; Friedrich, O.; Gale, A. S.

    2009-04-01

    Pacific shows the prominent negative CIE in the early Maastrichtian, which perfectly resembles the carbon isotope data of planktonic and benthic foraminifers (Barrera and Savin, 1999). Numerous stratigraphic details, represented only by single points in the foraminiferal record, are clearly resolved in the bulk-carbonate carbon isotope signal. Of special importance are several positive excursions, which are superimposed on the CIE. These detailed carbon isotope features can be correlated to the shelf-sea carbon isotope curves of Europe (Lägerdorf-Kronsmoor) in a surprisingly good precision supported by calcareous nannoplankton stratigraphy (Lees & Bown 2005). The possibility to correlate small-scale carbon isotope variations proves their robustness as significant signals. The carbon isotope variations seem to reflect minor changes in the global carbon cycle, possibly triggered by orbital forcing. The negative CIEs in the Campanian-Maastrichtian lasted about 0.8-1 million years and are associated with major regressions on epicontinental shelves. Intensified ventilation of the 12C enriched deep-water reservoir, lowering of the CCD and increased rates of terrestrial and marine organic matter oxidation during the sea-level fall could have caused an increase of 12C in the inorganic carbon reservoir. The associated change in the slope of seawater strontium isotopes possibly suggests an increased continental weathering flux as result of long-term (first order) sea-level fall and widespread continental shelf exposure. Activation of silicate weathering could have triggered enhanced atmospheric CO2 reduction, which again became a positive feedback for ongoing climate cooling at the end of the Cretaceous greenhouse climate.

  17. The Iron Redox Engine Drives Carbon, Nitrogen, and Phosphorus Cycling in Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Hall, S. J.; Liptzin, D.; Yang, W. H.

    2011-12-01

    Iron (Fe) is the most abundant redox-active metal on earth and thus is a dominant driver of redox sensitive biogeochemical cycling in terrestrial and aquatic environments. In terrestrial ecosystems, coupled Fe-carbon (C) and Fe-nitrogen (N) cycling directly affect greenhouse gas production through fermentative and respiratory processes, and indirectly affect greenhouse gas dynamics through microbial competition for C and electron donors. Fe-phosphorus (P) cycling influences nutrient availability, particularly in highly weathered Fe-rich soils, and ultimately feeds back on net primary productivity and C storage. Recent research documenting rapid high magnitude fluctuations in soil oxygen and redox potential in upland soils highlights the relevance of Fe biogeochemistry. We review recent research on Fe redox biogeochemical cycling in relation to C, N, and P transformations. A significant amount of C oxidation can result from Fe reduction leading to the production and emission of CO2. In humid tropical forests with rapidly fluctuating redox potential, Fe reduction accounted for up to 44% of soil C oxidation, an amount equivalent to approximately one third of total annual litterfall C inputs to soils. Microorganisms capable of Fe reduction are extremely abundant in these soils (6% of total microbial cells), and likely drive the high rate of Fe associated C oxidation. However, abiotic Fe oxidation may indirectly oxidize C through the production of free radicals. This process has the potential to oxidize complex C molecules, previously thought to be degraded only by microbial enzymes. Iron redox reactions indirectly affect methane (CH4) emissions from soil. Competition for acetate between methanogens and Fe reducers may ultimately decrease the emissions of CH4 from soils. However, laboratory studies in slurries and intact cores suggest that Fe reducers and methanogens may be spatially segregated in soils. Iron directly interacts with N cycling in soils in a number of

  18. Authigenic carbonate precipitation at the end-Guadalupian (Middle Permian) in China: Implications for the carbon cycle in ancient anoxic oceans

    NASA Astrophysics Data System (ADS)

    Saitoh, Masafumi; Ueno, Yuichiro; Isozaki, Yukio; Shibuya, Takazo; Yao, Jianxin; Ji, Zhansheng; Shozugawa, Katsumi; Matsuo, Motoyuki; Yoshida, Naohiro

    2015-12-01

    Carbonate precipitation is a major process in the global carbon cycle. It was recently proposed that authigenic carbonate (carbonate precipitated in situ at the sediment-water interface and/or within the sediment) played a major role in the carbon cycle throughout Earth's history. The carbon isotopic composition of authigenic carbonates in ancient oceans have been assumed to be significantly lower than that of dissolved inorganic carbon (DIC) in seawater, as is observed in the modern oceans. However, the δ13Ccarb values of authigenic carbonates in the past has not been analyzed in detail. Here, we report authigenic carbonates in the uppermost Guadalupian (Middle Permian) rocks at Chaotian, Sichuan, South China. Monocrystalline calcite crystals <20 mm long are common in the black mudstone/chert sequence that was deposited on a relatively deep anoxic slope/basin along the continental margin. Textures of the crystals indicate in situ precipitation on the seafloor and/or within the sediments. The calcite precipitation corresponds stratigraphically with denitrification and sulfate reduction in the anoxic deep-water mass, as indicated by previously reported nitrogen and sulfur isotope records, respectively. Relatively high δ13Ccarb values of the authigenic carbonates (largely -1 ‰) compared with those of organic matter in the rocks (ca. -26 ‰) suggest that the main carbon source of the carbonates was DIC in the water column. The calcite crystals precipitated in an open system with respect to carbonate, possibly near the sediment-water interface rather than deep within the sediments. The δ13Ccarb values of the carbonates were close to the δ13CDIC value of seawater due to mixing of 13C-depleted remineralized organic carbon (that was released into the water column by the water-mass anaerobic respiration) with the large DIC pool in the oceans. Our results imply that δ13Ccarb values of authigenic carbonates in the anoxic oceans might have been systematically

  19. The effects of climate sensitivity and carbon cycle interactions on mitigation policy stringency

    EPA Science Inventory

    Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect o...

  20. Estimates of carbon cycle surface fluxes from the NASA Carbon Monitoring System Flux Pilot Project

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Liu, J.; Lee, M.; Gurney, K. R.; Menemenlis, D.; Brix, H.; Hill, C. N.; Denning, S.; Haynes, K.; Baker, I. T.; Henze, D. K.; Bousserez, N.; Marland, G.; Marland, E.; Badurek, C. A.

    2013-12-01

    The goal of NASA Carbon Monitoring Study (CMS) Flux Pilot Project is to incorporate the full suite of NASA observational, modeling, and assimilation capabilities in order to attribute changes in globally distributed CO2 concentrations to spatially resolved surface fluxes across the entire carbon cycle. To that end, CMS has initiated a coordinated effort between land surface, ocean, fossil fuel, and atmospheric scientists to provide global estimates of CO2 constrained by satellite observations and informed by contemporaneous estimates of 'bottom up' fluxes from land surface, ocean, and fossil fuel models. The CMS Flux has evolved to incorporate a spatially explicit fossil fuel data assimilation system (FFDAS), an updated ECCO2 Darwin biogeochemical adjoint ocean state estimation system, and the new Simple Biospheric Model (Sib4) terrestrial ecosystem model. We compare GOSAT xCO2 observations, processed by the JPL ACOS v33, to predicted CMS Flux atmospheric CO2 concentrations for 2010-2011, and attribute the differences to spatially-resolved fluxes. We examine these fluxes in terms of interannual variability, correlative satellite measurements, and uncertainty across the carbon cycle

  1. Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies.

    PubMed

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    The climate change impacts of U.S. petroleum-based fuels consumption have contributed to the development of legislation supporting the introduction of low carbon alternatives, such as biofuels. However, the potential greenhouse gas (GHG) emissions reductions estimated for these policies using life cycle assessment methods are predominantly based on deterministic approaches that do not account for any uncertainty in outcomes. This may lead to unreliable and expensive decision making. In this study, the uncertainty in life cycle GHG emissions associated with petroleum-based fuels consumed in the U.S. is determined using a process-based framework and statistical modeling methods. Probability distributions fitted to available data were used to represent uncertain parameters in the life cycle model. Where data were not readily available, a partial least-squares (PLS) regression model based on existing data was developed. This was used in conjunction with probability mixture models to select appropriate distributions for specific life cycle stages. Finally, a Monte Carlo simulation was performed to generate sample output distributions. As an example of results from using these methods, the uncertainty range in life cycle GHG emissions from gasoline was shown to be 13%-higher than the typical 10% minimum emissions reductions targets specified by low carbon fuel policies.

  2. Further Studies on Oceanic Biogeochemistry and Carbon Cycling

    NASA Technical Reports Server (NTRS)

    Signorini, S. R.; McClain, C. R.

    2003-01-01

    This TM consists of two chapters. Chapter I describes the development of a coupled, one-dimensional biogeochemical model using turbulence closure mixed layer (TCMLM) dynamics. The model is applied to the Sargasso Sea at the BATS (Bermuda Atlantic Time Series) site and the results are compared with a previous model study in the same region described in NASNTP-2001-209991. The use of the TCMLM contributed to some improvements in the model simulation of chlorophyll, PAR, nitrate, phosphate, and oxygen, but most importantly, the current model achieved good agreement with the data with much more realistic background eddy diffusivity. However, off-line calculations of horizontal transport of biogeochemical properties revealed that one-dimensional dynamics can only provide a limited assessment of the nutrient and carbon balances at BATS. Future studies in the BATS region will require comprehensive three-dimensional field studies, combined with three-dimensional eddy resolving numerical experiments, to adequately quantify the impact of the local and remote forcing on ecosystem dynamics and carbon cycling. Chapter II addresses the sensitivity of global sea-air CO, flux estimates to wind speed, temperature, and salinity. Sensitivity analyses of sea-air CO, flux to wind speed climatologies, gas transfer algorithms, SSS and SST were conducted for the global oceans and regional domains. Large uncertainties in the global sea-air flux are identified, primarily due to the different gas transfer algorithms used. The sensitivity of the sea-air flux to SST and SSS is similar in magnitude to the effect of using different wind climatologies. Globally, the mean ocean uptake of CO, changes by 5 to 16%, depending upon the combination of SST and SSS used.

  3. Capturing and sequestering carbon by enhancing the natural carbon cycle: Prelimary identification of basic science needs and opportunities

    SciTech Connect

    Benson, S.M.

    1997-07-01

    This document summarizes proceedings and conclusions of a US DOE workshop. The purpose of the workshop was to identify the underlying research needed to answer the following questions: (1) Can the natural carbon cycle be used to aid in stabilizing or decreasing atmospheric CO{sub 2} and CH{sub 4} by: (a) Increasing carbon capture; (b) Preventing carbon from returning to the atmosphere through intermediate (<100 years) to long-term sequestration (> 100 years)?; and (2) What kind of ecosystem management practices could be used to achieve this? Three working groups were formed to discuss the terrestrial biosphere, oceans, and methane. Basic research needs identified included fundamental understanding of carbon cycling and storage in soils, influence of climate change and anthropogenic emissions on the carbon cycle, and carbon capture and sequestration in oceans. 2 figs., 4 tabs.

  4. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    NASA Astrophysics Data System (ADS)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  5. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  6. Carbon and Nitrogen cycling in a permafrost soil profile

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.

    2015-12-01

    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  7. Relating black carbon content to reduction of snow albedo

    NASA Astrophysics Data System (ADS)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  8. Changes in biocrust cover drive carbon cycle responses to climate change in drylands

    PubMed Central

    Maestre, Fernando T.; Escolar, Cristina; de Guevara, Mónica Ladrón; Quero, José L.; Lázaro, Roberto; Delgado-Baquerizo, Manuel; Ochoa, Victoria; Berdugo, Miguel; Gozalo, Beatriz; Gallardo, Antonio

    2013-01-01

    Dryland ecosystems account for ~27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2–3°C promoted a drastic reduction in biocrust cover (~ 44% in four years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust-dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2. This decrease may act synergistically with other warming-induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities, to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term. PMID:23818331

  9. Changes in biocrust cover drive carbon cycle responses to climate change in drylands.

    PubMed

    Maestre, Fernando T; Escolar, Cristina; de Guevara, Mónica Ladrón; Quero, José L; Lázaro, Roberto; Delgado-Baquerizo, Manuel; Ochoa, Victoria; Berdugo, Miguel; Gozalo, Beatriz; Gallardo, Antonio

    2013-12-01

    Dryland ecosystems account for ca. 27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2-3 °C promoted a drastic reduction in biocrust cover (ca. 44% in 4 years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust-dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2 . This decrease may act synergistically with other warming-induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term.

  10. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    SciTech Connect

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  11. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times.

    PubMed

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-02-02

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85-88%) in contrast to higher latitudes (73-82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42-0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64-0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types.

  12. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times

    PubMed Central

    Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856

  13. Low/Medium Density Biomass, Coastal and Ocean Carbon: A Carbon Cycle Mission

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Gervin, Jan; Kirchman, Frank; Middleton, Elizabeth; Knox, Robert; Gregg, Watson; Mannino, Antonio; McClain, Charles; Herman, Jay; Hall, Forrest

    2003-01-01

    As part of the Global Carbon Cycle research effort, an agency-wide planning initiative was organized between October 2000 and June 2001 by the NASA Goddard Space Flight Center (GSFC) at the behest of the Associate Administrator for Earth Science. The goal was to define future research and technology development activities needed for implementing a cohesive scientific observation plan. A timeline for development of missions necessary to acquire the selected new measurements was laid out, and included missions for low - medium density terrestrial biomass / coastal ocean / and ocean carbon. This paper will begin with the scientific justification and measurement requirements for these specific activities, explore the options for having separate or combined missions, and follow-up with an implementation study centered on a hyperspectral imager at geosynchronous altitudes.

  14. Capture and release of carbon dioxide by carbon nanotubes via temperature cycling

    NASA Astrophysics Data System (ADS)

    Rende{2}, Deniz; Baysal, Nihat; Ozisik, Rahmi

    2011-03-01

    Carbon nanotubes (CNTs) received remarkable attention since they were shown to possess many unique properties as well as being effective and stable adsorbent materials that make them potentially useful for gas storage and separation of various gas mixtures. In this study, the effect of temperature variations on carbon dioxide (CO2) capture via single walled carbon nanotubes (SWNTs) and multi walled carbon nanotubes (MWNTs) were investigated with molecular dynamics simulations. SWNTs of type (10,10), (15,15), and (20,20) and MWNTs formed from the combination of these were simulated. The temperature was varied between 300 and 360 K. The results suggest that absorption of CO2 into the CNTs were directly related to the internal volume of the nanotube, but the cross-sectional area of the tube entrance had a significant effect on the number of CO2 molecules retained. The number of CO2 molecules collected in CNTs gradually decreases with increasing temperature. Separate simulations were performed to understand the potential use of CNTs as thermal pumps to collect/discharge CO2 molecules via temperature cycling. Supported by the NSF (CMMI-0500324 and DMR-0117792).

  15. Black carbon reduction will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  16. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.

    PubMed

    Yergeau, Etienne; Kang, Sanghoon; He, Zhili; Zhou, Jizhong; Kowalchuk, George A

    2007-06-01

    Soil-borne microbial communities were examined via a functional gene microarray approach across a southern polar latitudinal gradient to gain insight into the environmental factors steering soil N- and C-cycling in terrestrial Antarctic ecosystems. The abundance and diversity of functional gene families were studied for soil-borne microbial communities inhabiting a range of environments from 51 degrees S (cool temperate-Falkland Islands) to 72 degrees S (cold rock desert-Coal Nunatak). The recently designed functional gene array used contains 24,243 oligonucleotide probes and covers >10,000 genes in >150 functional groups involved in nitrogen, carbon, sulfur and phosphorus cycling, metal reduction and resistance and organic contaminant degradation (He et al. 2007). The detected N- and C-cycle genes were significantly different across different sampling locations and vegetation types. A number of significant trends were observed regarding the distribution of key gene families across the environments examined. For example, the relative detection of cellulose degradation genes was correlated with temperature, and microbial C-fixation genes were more present in plots principally lacking vegetation. With respect to the N-cycle, denitrification genes were linked to higher soil temperatures, and N2-fixation genes were linked to plots mainly vegetated by lichens. These microarray-based results were confirmed for a number of gene families using specific real-time PCR, enzymatic assays and process rate measurements. The results presented demonstrate the utility of an integrated functional gene microarray approach in detecting shifts in functional community properties in environmental samples and provide insight into the forces driving important processes of terrestrial Antarctic nutrient cycling.

  17. Electricity generation: options for reduction in carbon emissions.

    PubMed

    Whittington, H W

    2002-08-15

    Historically, the bulk production of electricity has been achieved by burning fossil fuels, with unavoidable gaseous emissions, including large quantities of carbon dioxide: an average-sized modern coal-burning power station is responsible for more than 10 Mt of CO(2) each year. This paper details typical emissions from present-day power stations and discusses the options for their reduction. Acknowledging that the cuts achieved in the past decade in the UK CO(2) emissions have been achieved largely by fuel switching, the remaining possibilities offered by this method are discussed. Switching to less-polluting fossil fuels will achieve some measure of reduction, but the basic problem of CO(2) emissions continues. Of the alternatives to fossil fuels, only nuclear power represents a zero-carbon large-scale energy source. Unfortunately, public concerns over safety and radioactive waste have still to be assuaged. Other approaches include the application of improved combustion technology, the removal of harmful gases from power-station flues and the use of waste heat to improve overall power-station efficiency. These all have a part to play, but many consider our best hope for emissions reduction to be the use of renewable energy. The main renewable energy contenders are assessed in this paper and realistic estimates of the contribution that each could provide are indicated. It appears that, in the time-scale envisaged by planners for reduction in CO(2) emission, in many countries renewable energy will be unlikely to deliver. At the same time, it is worth commenting that, again in many countries, the level of penetration of renewable energy will fall short of the present somewhat optimistic targets. Of renewable options, wind energy could be used in the short to medium term to cover for thermal plant closures, but for wind energy to be successful, the network will have to be modified to cope with wind's intermittent nature. Globally, hydroelectricity is currently the

  18. Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.

    1993-01-01

    The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.

  19. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    PubMed

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  20. Carbon Cycle 2.0: Don DePaolo: Geo and Bio Sequestration

    ScienceCinema

    Don DePaolo:

    2016-07-12

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  1. Carbon Cycle 2.0: Ramamoorthy Ramesh: Low-cost Solar

    ScienceCinema

    Ramamoorthy Ramesh:

    2016-07-12

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  2. The role of nutricline depth in regulating the ocean carbon cycle.

    PubMed

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G

    2008-12-23

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.

  3. Linking the lithogenic, atmospheric, and biogenic cycles of silicate, carbonate, and organic carbon in the ocean

    NASA Astrophysics Data System (ADS)

    Smith, S. V.; Gattuso, J.-P.

    2009-07-01

    Geochemical theory describes long term cycling of atmospheric CO2 between the atmosphere and rocks at the Earth surface in terms of rock weathering and precipitation of sedimentary minerals. Chemical weathering of silicate rocks takes up atmospheric CO2, releases cations and HCO3- to water, and precipitates SiO2, while CaCO3 precipitation consumes Ca2+ and HCO3- and releases one mole of CO2 to the atmosphere for each mole of CaCO3 precipitated. At steady state, according to this theory, the CO2 uptake and release should equal one another. In contradiction to this theory, carbonate precipitation in the present surface ocean releases only about 0.6 mol of CO2 per mole of carbonate precipitated. This is a result of the buffer effect described by Ψ, the molar ratio of net CO2 gas evasion to net CaCO3 precipitation from seawater in pCO2 equilibrium with the atmosphere. This asymmetry in CO2 flux between weathering and precipitation would quickly exhaust atmospheric CO2, posing a conundrum in the classical weathering and precipitation cycle. While often treated as a constant, Ψ actually varies as a function of salinity, pCO2, and temperature. Introduction of organic C reactions into the weathering-precipitation couplet largely reconciles the relationship. ψ in the North Pacific Ocean central gyre rises from 0.6 to 0.9, as a consequence of organic matter oxidation in the water column. ψ records the combined effect of CaCO3 and organic reactions and storage of dissolved inorganic carbon in the ocean, as well as CO2 gas exchange between the ocean and atmosphere. Further, in the absence of CaCO3 reactions, Ψ would rise to 1.0. Similarly, increasing atmospheric pCO2 over time, which leads to ocean acidification, alters the relationship between organic and inorganic C reactions and carbon storage in the ocean. Thus, the carbon reactions and ψ can cause large variations in oceanic carbon storage with little exchange with the atmosphere.

  4. Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction.

    PubMed

    Fu, Xiaorui; Hu, Xiaofei; Yan, Zhenhua; Lei, Kaixiang; Li, Fujun; Cheng, Fangyi; Chen, Jun

    2016-01-28

    Porous graphitic carbon nitride/carbon composite spheres were synthesized using melamine and cyanuric acid, and glucose as the carbon nitride and carbon precursor, respectively. The 3D hierarchical composites efficiently catalyzed the oxygen reduction reaction with an onset potential of 0.90 V and a kinetic current density of 23.92 mA cm(-2). These merit their promising applications in fuel cells and metal-air batteries.

  5. Carbon Cycle Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to carbon cycle includes: • Terrestrial Carbon Sequestration Data Sets • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2002) (Trends Online) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) • Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 (Trends Online) • Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Cement Production, and Gas Flaring: 1751-1999 (updated 2002) • Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (1997) • Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (1998) • AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Intergovernmental Panel on Climate Change (IPCC), Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995) • Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994) (2003) • Global

  6. Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol.

    PubMed

    Baskaya, F Suhan; Zhao, Xueyan; Flickinger, Michael C; Wang, Ping

    2010-09-01

    Production of valuable chemicals from CO(2) is highly desired for the purpose of controlling CO(2) emission. Toward that, enzymatic reduction of CO(2) for the production of methanol appeared to be especially promising. That has been achieved by reversing the biological metabolic reaction pathways. However, hitherto, there has been little discussion on the thermodynamic feasibility of reversing such biological pathways. The reported yields of methanol have been generally very low under regular reaction conditions preferred by naturally evolved enzymes. The current work examines the sequential enzymatic conversion of CO(2) into methanol from a thermodynamic point of view with a focus on factors that control the reaction equilibrium. Our analysis showed that the enzymatic conversion of carbon dioxide is highly sensitive to the pH value of the reaction solution and, by conducting the reactions at low pHs (such as pH 6 or 5) and ionic strength, it is possible to shift the biological methanol metabolic reaction equilibrium constants significantly (by a factor of several orders of magnitude) to favor the synthesis of methanol.

  7. Carbon Dioxide Reduction Post-Processing Sub-System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine

    2012-01-01

    The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.

  8. Designed protein aggregates entrapping carbon nanotubes for bioelectrochemical oxygen reduction.

    PubMed

    Garcia, Kristen E; Babanova, Sofia; Scheffler, William; Hans, Mansij; Baker, David; Atanassov, Plamen; Banta, Scott

    2016-11-01

    The engineering of robust protein/nanomaterial interfaces is critical in the development of bioelectrocatalytic systems. We have used computational protein design to identify two amino acid mutations in the small laccase protein (SLAC) from Streptomyces coelicolor to introduce new inter-protein disulfide bonds. The new dimeric interface introduced by these disulfide bonds in combination with the natural trimeric structure drive the self-assembly of SLAC into functional aggregates. The mutations had a minimal effect on kinetic parameters, and the enzymatic assemblies exhibited an increased resistance to irreversible thermal denaturation. The SLAC assemblies were combined with single-walled carbon nanotubes (SWNTs), and explored for use in oxygen reduction electrodes. The incorporation of SWNTs into the SLAC aggregates enabled operation at an elevated temperature and reduced the reaction overpotential. A current density of 1.1 mA/cm(2) at 0 V versus Ag/AgCl was achieved in an air-breathing cathode system. Biotechnol. Bioeng. 2016;113: 2321-2327. © 2016 Wiley Periodicals, Inc.

  9. Carbon Dioxide reduction by non-equilibrium electrocatalysis plasma reactor

    NASA Astrophysics Data System (ADS)

    Amouroux, J.; Cavadias, S.; Doubla, A.

    2011-03-01

    A possible strategy to increase the added value from CCS, is to consider it as a raw material for the production of liquid fuels, or chemical products. The most studied ways related to CO2 reduction, with formation of molecules such as CH3OH or syngas, is the reaction with H2 (exothermic reaction needing catalytic activation), or CH4 (endothermic reaction taking place at high temperature) with the use of a catalyst. The synthesis of CH3OH is performed on Lewis acid type sites (default of electrons) Cu/Zn/Al2O3. However the products of the reaction i.e. the water and methanol molecules, are very polar, resulting in a very low desorption rate. So in this reaction the key step is water desorption (Lewis basis). The increase of temperature in order to increase this desorption rate, leads to a cracking and the deposition of carbon in the catalyst, limiting its lifetime. Plasma driven catalysis allows firstly, a vibrational activation of CO2, H2 or CH4 through electron-molecule collisions, making easier their dissociation at low temperature and secondly expels water from the catalyst sites by supplying electrons (electropolarisation). The results show an increase of the yield in CH3OH with plasma and catalyst, confirming the action of the plasma. However energy consumption remains relatively high.

  10. The HIPPO Project Archive: Carbon Cycle and Greenhouse Gas Data

    NASA Astrophysics Data System (ADS)

    Christensen, S. W.; Aquino, J.; Hook, L.; Williams, S. F.

    2012-12-01

    The HIAPER (NSF/NCAR Gulfstream V Aircraft) Pole-to-Pole Observations (HIPPO) project measured a comprehensive suite of atmospheric trace gases and aerosols pertinent to understanding the global carbon cycle from the surface to the tropopause and approximately pole-to-pole over the Pacific Ocean. Flights took place over five missions during different seasons from 2009 to 2011. Data and documentation are available to the public from two archives: (1) NCAR's Earth Observing Laboratory (EOL) provides complete aircraft and flight operational data, and (2) the U.S. DOE's Carbon Dioxide Information Analysis Center (CDIAC) provides integrated measurement data products. The integrated products are more generally useful for secondary analyses. Data processing is nearing completion, although improvements to the data will continue to evolve and analyses will continue many years into the future. Periodic new releases of integrated measurement (merged) products will be generated by EOL when individual measurement data have been updated as directed by the Lead Principal Investigator. The EOL and CDIAC archives will share documentation and supplemental links and will ensure that the latest versions of data products are available to users of both archives. The EOL archive (http://www.eol.ucar.edu/projects/hippo/) provides the underlying investigator-provided data, including supporting data sets (e.g. operational satellite, model output, global observations, etc.), and ancillary flight operational information including field catalogs, data quality reports, software, documentation, publications, photos/imagery, and other detailed information about the HIPPO missions. The CDIAC archive provides integrated measurement data products, user documentation, and metadata through the HIPPO website (http://hippo.ornl.gov). These merged products were derived by consistently combining the aircraft state parameters for position, time, temperature, pressure, and wind speed with meteorological

  11. Black carbon, a 'hidden' player in the global C cycle

    NASA Astrophysics Data System (ADS)

    Santín, C.; Doerr, S. H.

    2012-04-01

    During the 2011 alone more than 600 scientific papers about black carbon (BC) were published, half of them dealing with soils (ISI Web of Knowledge, accessed 15/01/2012). If the search is extended to the other terms by which BC is commonly named (i.e. biochar, charcoal, pyrogenic C or soot), the number of 2011 publications increases to >2400, 20% of them also related to soils. These figures confirm BC as a well-known feature in the scientific literature and, thus, in our research community. In fact, there is a wide variety of research topics where BC is currently studied: from its potential as long-term C reservoir in soils (man-made biochar), to its effects on the Earth's radiation balance (soot-BC), including its value as indicator in paleoenvironmental studies (charcoal) or, even surprisingly, its use in suicide attempts. BC is thus relevant to many aspects of our environment, making it a very far-reaching, but also very complex topic. When focusing 'only' on the role of BC in the global C cycle, numerous questions arise. For example: (i) how much BC is produced by different sources (i.e. vegetation fires, fossil fuel and biofuel combustion); (ii) what are the main BC forms and their respective proportions generated (i.e. proportion of atmospheric BC [BC-soot] and the solid residues [char-BC]); (iii) where does this BC go (i.e. main mobilization pathways and sinks); (iv) how long does BC stay in the different systems (i.e. residence times in soils, sediments, water and atmosphere); (v) which are the BC stocks and its main transformations within and between the different systems (i.e. BC preservation, alteration and mineralization); (vi) what is the interaction of BC with other elements and how does this influence BC half-life (i.e. physical protection, interaction with pollutants, priming effects in other organic materials)? These questions, and some suggestions about how to tackle these, will be discussed in this contribution. It will focus in particular on the

  12. Response of annual grassland carbon cycling to experimental rainfall additions

    NASA Astrophysics Data System (ADS)

    Chou, W. W.; Silver, W. L.; Allen-Diaz, B.; Thompson, A.; Jackson, R.

    2006-12-01

    Annual grassland ecosystems are likely to be sensitive to changes in the timing and amount of rainfall, with important implications for climate feedback effects. Many climate models have forecasted rainfall increases for northern California over the next century. We hypothesized that increased rainfall in annual grasslands would increase soil respiration and decrease soil carbon (C) storage. Using microsprinklers, we augmented wet- season (typically November to April) rain events by 50 %, and each year, we added an early-season and a late-season rainfall event to extend wet-season length. Control plots received ambient rainfall only. We measured soil respiration and net primary production over three water years (defined as September to August) to estimate the net change in the soil C pool. The added early- and late-season rain events significantly increased soil respiration for three to four weeks after wetting, but did not significantly increase C respired per year. Soil respiration was not significantly increased by 50 % augmentation of wet-season rainfall over the study. An ANOVA of annual respiration from control plots showed significantly more respired carbon (F = 8.157, p = 0.02) in water year 2004 (WY 04; 1452 ± 152 g m-2 y-1), compared to WY 03 or WY 05 (998 ± 40 and 925 ± 71 g m-2 y-1, respectively). Greater soil respiration in WY 04 resulted not from higher annual rainfall totals, but from unusually late natural storms which occurred under warm summer conditions. Relative to controls, grass in treatment plots allocated more C to roots in the first (drier) year, and slightly more C to shoots in the second (wetter) year. Combined above- and below-ground net primary production was greater in WY04 (913 ± 171 g m-2 y-1 and 668 ± 93 g m-2 y-1 for treatment and control plots, respectively) than in WY03 (588 ± 85 g m-2 y-1 and 483 ± 46 g m-2 y-1 for treatment and controls, respectively), partly offsetting increased C losses from respiration. Our results

  13. Recent climate-induced variations in terrestrial carbon cycle over tropics: A model simulation

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Nemani, R. R.; Hashimoto, H.

    2003-12-01

    Tropical forests accounts for about 20 percent of the world terrestrial carbon and one-third of global terrestrial NPP. Atmospheric inversion studies show that additional factors such as CO2 fertilization and climate changes, should work as a carbon sink despite of CO2 emission due to deforestation in tropical regions. However, responses of tropical ecosystems to environmental changes and current carbon sink mechanisms are still unknown. The goal of this study is (1) to characterize the climate influences on tropical carbon cycle such as GPP, NPP and NEP, and (2) to analyze recent interannual variations in terrestrial carbon cycle over tropics. We investigated the relationship between climate factors (temperature, precipitation, radiation, and VPD) and several carbon cycle components, and analyzed recent carbon cycle variations over tropics using Biome BGC with NCEP reanalysis climate data from 1982 to 1999. In tropical ecosystems, interannual variations in GPP are mainly explained by radiation variations, and temperature and precipitation variation are secondary important. NPP and NEP interannual variations are primarily determined by temperature variation, and radiation came as a secondary important factors. Precipitation, which was considered as an important climate factor that control interannual variations in carbon cycle in tropics, has little effects on interannual variation in tropical carbon cycle possibly because of abundant rainfall. Then, recent interannual variations in terrestrial carbon cycle over tropics were analyzed from 1982-1999. Tropics show gradual increases in GPP, NPP, and NEP at a rate of several percent per recent 18 years with large drop in 1998. Both climate change and CO2 fertilization have impact on recent enhancement of terrestrial carbon uptake. Of all climate factors, radiation-induced enhancement shows important role in enhancing CO2 uptake over Amazon. On the other hand, variations in precipitation and vapor pressure did not make

  14. Cycles of soils. Carbon, nitrogen phosphorus, sulfur, micronutrients

    SciTech Connect

    Stevenson, F.J.

    1985-01-01

    This book is a single-volume treatment of the biochemical cycles in soil. It examines all major aspects of nutrient cycling, including fluxes with other ecosystems, biochemical pathways and transformation, gains and losses, chemical fixation reactions, and plant availability. It integrates environmental issues into the classical treatment of cycling processes. Two chapters are devoted exclusively to pollution of the environment.

  15. Factors influencing anthropogenic carbon dioxide uptake in the North Atlantic in models of the ocean carbon cycle

    SciTech Connect

    Smith, R.S.; Marotzke, J.

    2008-09-30

    The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO{sub 2} uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO{sub 2} uptake as the ocean absorbs increasing amounts of CO{sub 2}. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO{sub 2} in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO{sub 2} forcing scenario. Neglecting physical climate change effects, North Atlantic CO{sub 2} uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO{sub 2} in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO{sub 2} compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO{sub 2} uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO{sub 2} uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation

  16. Integrating the nitrogen cycle in carbon and GHG observation systems

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Brummer, C.

    2013-12-01

    Nitrogen is an important factor for the regulation of carbon and GHG fluxes within ecosystems and between ecosystems and the atmosphere. Nitrogen fertilization is important for high agricultural yields but also increases N2O emissions. In Germany, e.g., N2O emissions from agriculture comprise about 6 % of the total GHG inventory. Nitrogen deposition may enhance productivity of ecosystems (e.g. forests, natural grasslands or wetlands) but may also change community structure - in particular in ecosystems that are adapted to low nitrogen availability. It also can lead to increased N2O emissions. Global nitrogen fluxes due to the trade of agricultural products may concentrate nitrogen in specific areas (e.g. in areas with high animal stock). In these areas increased N2O emissions are to be expected. The Thünen Institute of Climate-Smart Agriculture drives parts of the German ICOS consortium with a special focus on agricultural sites or indirect effects of agriculture on GHG emissions. We propose a concept to integrate nitrogen into research infrastructures for GHG monitoring. A conceptual frame will identify the most important parameters of the N cycle. Data from the CarboEurope and NitroEurope core site Gebesee (crop) will be presented to show first integrative results.Finally, first experiences with new technologies will be presented, comprising quantum cascade laser measurements of N2O and ammonia used with eddy covariance (EC) and chambers and EC measurements of total reactive nitrogen with the TRANC methodology (Marx et al. 2012).

  17. Belowground carbon cycle of Napier and Guinea grasses

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Y.; Crow, S. E.; Litton, C. M.; Deenik, J. L.

    2011-12-01

    Soil carbon (C) sequestration may partially offset rising atmospheric CO2 concentration. Napier grass (Pennisetum purpureum) and Guinea grass (Panicum maximum), in particular, are perennial C4 grasses with high capacity to produce large amounts of both aboveground and belowground biomass. Thus, they have a potential to sequester soil C while simultaneously provide aboveground biomass for energy production. In this study, both grasses were ratooned (no-till) to leave belowground biomass intact and facilitate C accumulation through improvement of soil aggregation. The primary objective of the study was to determine if and how these grasses sequester soil C. For 8 selected grass varieties, we: (1) determined the quantity and quality of belowground C input, (2) quantified changes in soil organic C (SOC) during two harvesting cycles (May 2010 to July 2011), and (3) fractionated soil C pools to determine where changes in SOC occurred. Soil-surface CO2 efflux and root biomass were used as measures of the quantity of belowground C input. Root lignin/N ratios and decay constants from litterbag studies were used as measures of the belowground C input quality. We hypothesized that grass varieties with higher quantity and lower quality of belowground C input would sequester more soil C. Root biomass collected on May 2010 ranged from 13 to 302 g m-2 at 15 cm depth, where Local (Napier) and OG05 (Guinea) varieties were significantly greater than the K06 variety (Guinea). However, cumulative soil-surface CO2 efflux showed no significant differences between the three varieties. Root Lignin/N ranged from 16 to 55 and Guinea varieties were significantly higher on average than Napier varieties. Root decay constants were variable among varieties, with OG05 and K06 showing higher resistance to decay compared to Local. Soil C sequestration potentials and factors affecting the process are imperative to determine suitable variety for bioenergy production.

  18. Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model

    SciTech Connect

    Delire, C; Foley, J A; Thompson, S

    2002-08-21

    We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

  19. Simulations of the carbon cycle in the oceans

    SciTech Connect

    Not Available

    1992-01-01

    This study includes models of oceanic CO{sub 2} uptake. This perturbation simulation of carbon dioxide uptake gives strong support to estimates of oceanic uptake of fossil CO{sub 2} of order 2 GtC/yr. over the last decade. Carbon and carbon-nitrogen models are considered.

  20. Simulations of the carbon cycle in the oceans

    SciTech Connect

    Not Available

    1992-07-01

    This study includes models of oceanic CO{sub 2} uptake. This perturbation simulation of carbon dioxide uptake gives strong support to estimates of oceanic uptake of fossil CO{sub 2} of order 2 GtC/yr. over the last decade. Carbon and carbon-nitrogen models are considered.

  1. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  2. Formulating energy policies related to fossil fuel use: Critical uncertainties in the global carbon cycle

    SciTech Connect

    Post, W.M.; Dale, V.H.; DeAngelis, D.L.; Mann, L.K.; Mulholland, P.J.; O'Neill, R.V.; Peng, T.-H.; Farrell, M.P.

    1990-01-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs. 87 refs.

  3. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments Database

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  4. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    PubMed

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  5. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    SciTech Connect

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  6. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    SciTech Connect

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  7. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  8. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  9. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  10. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  11. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  12. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Model Year Automobiles-Test Procedures § 600.114-08 Vehicle-specific 5-cycle fuel economy and carbon... to calculate 5-cycle carbon-related exhaust emissions values for the purpose of determining optional... each vehicle tested, determine the 5-cycle city carbon-related exhaust emissions using the...

  13. Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes.

    PubMed

    Chen, Kuiyong; Huang, Xiaobin; Wan, Chaoying; Liu, Hong

    2015-05-07

    Oxygen reduction catalysts based on heteroatom-doped mesoporous carbon nanotubes loaded with Co2P nanoparticles were skilfully fabricated. The electronic interaction between the embedded Co2P nanoparticles and the heteroatom-doped carbon structures could strongly promote the ORR catalytic performance of the heteroatom-doped carbon nanotubes.

  14. Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle

    SciTech Connect

    Cooper, J F; Cherepy, N; Upadhye, R; Pasternak, A; Steinberg, M

    2000-12-12

    Concerns over global warning have motivated the search for more efficient technologies for electric power generation from fossil fuels. Today, 90% of electric power is produced from coal, petroleum or natural gas. Higher efficiency reduces the carbon dioxide emissions per unit of electric energy. Exercising an option of deep geologic or ocean sequestration for the CO{sub 2} byproduct would reduce emissions further and partially forestall global warming. We introduce an innovative concept for conversion of fossil fuels to electricity at efficiencies in the range of 70-85% (based on standard enthalpy of the combustion reaction). These levels exceed the performance of common utility plants by up to a factor of two. These levels are also in excess of the efficiencies of combined cycle plants and of advanced fuel cells now operated on the pilot scale. The core of the concept is direct carbon conversion a process that is similar to that a fuel cell but differs in that synthesized forms of carbon, not hydrogen, are used as fuel. The cell sustains the reaction, C + O{sub 2} = CO{sub 2} (E {approx} 1.0 V, T = 800 C). The fuel is in the form of fine particulates ({approx}100 nm) distributed by entrainment in a flow of CO{sub 2} to the cells to form a slurry of carbon in the melt. The byproduct stream of CO{sub 2} is pure. It affords the option of sequestration without additional separation costs, or can be reused in secondary oil or gas recovery. Our experimental program has discovered carbon materials with orders of magnitude spreads in anode reactivity reflected in cell power density. One class of materials yields energy at about 1 kW/m{sup 2} sufficiently high to make practical the use of the cell in electric utility applications. The carbons used in such cells are highly disordered on the nanometer scale (2-30 nm), relative to graphite. Such disordered or turbostratic carbons can be produced by controlled pyrolysis (thermal decomposition) of hydrocarbons extracted from

  15. Phase heterogeneity in carbonate production by marine fish influences their roles in sediment generation and the inorganic carbon cycle.

    PubMed

    Salter, Michael A; Harborne, Alastair R; Perry, Chris T; Wilson, Rod W

    2017-04-10

    Marine teleost fish are important carbonate producers in neritic and oceanic settings. However, the fates of the diverse carbonate phases (i.e., mineral and amorphous forms of CaCO3) they produce, and their roles in sediment production and marine inorganic carbon cycling, remain poorly understood. Here we quantify the carbonate phases produced by 22 Bahamian fish species and integrate these data with regional fish biomass data from The Bahamas to generate a novel platform-scale production model that resolves these phases. Overall carbonate phase proportions, ordered by decreasing phase stability, are: ~20% calcite, ~6% aragonite, ~60% high-Mg calcite, and ~14% amorphous carbonate. We predict that these phases undergo differing fates, with at least ~14% (amorphous carbonate) likely dissolving rapidly. Results further indicate that fisheries exploitation in The Bahamas has potentially reduced fish carbonate production by up to 58% in certain habitats, whilst also driving a deviation from natural phase proportions. These findings have evident implications for understanding sedimentary processes in shallow warm-water carbonate provinces. We further speculate that marked phase heterogeneity may be a hitherto unrecognised feature of fish carbonates across a wide range of neritic and oceanic settings, with potentially major implications for understanding their role in global marine inorganic carbon cycling.

  16. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  17. Research and application of role theory in ocean carbon cycle ontology construction

    NASA Astrophysics Data System (ADS)

    Jia, Haipeng; Xiong, Jing; Xu, Jianliang; Wang, Jipeng

    2014-12-01

    Many researchers have studied the ocean carbon cycle model trying to regulate the level of CO2 in atmosphere from viewpoint of quantification. Unlike other researches, this paper analyzes the conversion process of carbon element in the ocean from the qualitative viewpoint. There are many complex roles in the ocean carbon cycle, and it is hard to represent the case that an entity plays different role in different environment. An ontology technology Hozo role theory developed by Osaka University Mizoguchi Laboratory is proposed as a solution. The basic concepts and representation mode of Hozo role theory is introduced. The conversion process of ocean carbon cycle is abstracted and an ontology model using Hozo role theory is proposed. Instead of comprehensive common ontology construction method, we propose our own ontology development steps. Then an ontology about ocean carbon cycle is built in order to describe and share the basic knowledge of ocean carbon cycle. A knowledge base of material circulation is proposed based on the ontology. Its construction framework is described and some knowledge base query examples are also illustrated. Conclusions show that the role theory can effectively solve the problem of multirole description in ocean carbon cycle, and knowledge reasoning based on ontology is also effective.

  18. Investigating the Early Carbon Cycle Using Carbonaceous Inclusions and Dissolved Carbon in Detrital Zircon

    NASA Astrophysics Data System (ADS)

    Bell, E. A.; Boehnke, P.; Harrison, M.; Mao, W. L.

    2015-12-01

    Because the terrestrial rock record extends only to ~4 Ga and older materials thus far identified are limited to detrital zircons, information about volatile abundances and cycles on early Earth is limited. Carbon, for instance, plays an important role not only in the modern biosphere but also in deep recycling of materials between the crust and mantle. We are investigating the record of carbon abundance and origin in Hadean zircons from Jack Hills (W. Australia) using two main approaches. First, carbon may partition into the zircon structure at trace levels during crystallization from a magma, and better understanding of this partitioning behavior will allow for zircon's use as a monitor of magmatic carbon contents. We have measured carbon abundances in zircon from a variety of igneous rocks (gabbro; I-, A-, and S-type granitoids) via SIMS and found that although abundances are typically low (average raw 12C/30Si ~ 1x10-6), S-type granite zircons can reach a factor of 1000 over this background. Around 10% of Hadean zircons investigated show similar enrichments, consistent with other evidence for the derivation of many Jack Hills zircons from S-type granitoids and with the establishment of modern-level carbon abundances in the crust by ca. 4.2 Ga. Diamond and graphite inclusions reported in the Jack Hills zircons by previous studies proved to be contamination by polishing debris, leaving the true abundance of these materials in the population uncertain. On a second front, we have identified and investigated primary carbonaceous inclusions in these zircons. From a population of over 10,000 Jack Hills zircons, we identified one concordant 4.10±0.01 Ga zircon that contains primary graphite inclusions (so interpreted due to their enclosure in a crack-free zircon host as shown by transmission X-ray microscopy and their crystal habit). Their δ13CPDB of -24±5‰ is consistent with a biogenic origin and, in the absence of a likely inorganic mechanism to produce such a

  19. The U.S. Carbon Cycle Science Program: Overview, Developments and Priorities

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Kuperberg, J.; Cavallaro, N.; Carbon Cycle Interagency Working Group

    2013-05-01

    Eleven U.S. government (federal) agencies and departments coordinate and support the activities of the U.S. Carbon Cycle Science Program through the Carbon Cycle Interagency Working Group (CCIWG). For almost two decades, this interagency partnership has been providing a coordinated and focused scientific strategy for U.S. carbon cycle research. The CCIWG exists within the U.S. Global Change Research Program (USGCRP). The Carbon Cycle Science Program responds to USGCRP goals and objectives and to feedback from the scientific community (U.S. Carbon Cycle Science Plans 1999 and 2011). The mission of the Program is to better understand past changes and current trends in atmospheric carbon dioxide and methane, deliver credible predictions of future atmospheric carbon dioxide and methane levels, and strengthen the scientific foundation for management decisions in numerous areas of public interest related to carbon and climate change. The CCIWG will provide an overview of the Program, its history and achievements as an interagency partnership and its plans and priorities for the next decade. Recent findings from research funded through the interagency process will also be highlighted.

  20. Impact of volcanic eruptions on the marine carbon cycle

    NASA Astrophysics Data System (ADS)

    Segschneider, Joachim; Ulrike, Niemeier; Martin, Wiesner; Claudia, Timmreck

    2010-05-01

    The impact of volcanic eruptions on the marine carbon cycle is investigated for the example of the Pinatubo eruption with model simulations of the distribution of the ash cloud and deposition on the ocean surface and the impact of the nutrient addition from ash leachates on the oceanic biological production and hence biological carbon pump. Natural variations of aerosols, especially due to large-magnitude volcanic eruptions, are recognized as a significant climate forcing, altering the Earth's radiation balance and thus tending to cause global temperature changes. While the impact of such events on climate and the terrestrial biosphere is relatively well documented, scientific knowledge of their effects on marine ecosystems and consequent feedbacks to the atmosphere is still very limited. In the deep sea, subaerial eruptive events of global significance are commonly recorded as widespread ash layers, which were often found to be associated with increased abundances of planktic organisms. This has led to the hypothesis that the influx of volcanic ash may provide an external nutrient source for primary production (in particular through iron fertilization) in ocean surface waters. Recent laboratory experiments have demonstrated that pristine volcanic ash indeed releases significant amounts of macronutrients and bioactive trace metals (including phosphate, iron and silica) adsorbed to the surface of the ash particles. The release of these components most likely has its largest impact in ocean regions where their availability is crucial for the growth of oceanic biomass, which are the high-nutrient but low-productivity (low-iron) areas in the Pacific and the Southern Ocean. These in turn are neighbored by most of those subaerially active volcanoes that are capable of ejecting huge amounts of aerosols into the high-velocity stratospheric wind fields. The dispersal and fallout of ash thus has a high potential to induce globally significant, transient net CO2 removal from

  1. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    SciTech Connect

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  2. Is Titan's shape explained by its meteorology and carbon cycle?

    NASA Astrophysics Data System (ADS)

    Choukroun, M.; Sotin, C.

    2012-04-01

    Titan, Saturn's largest satellite, is unique in the Solar System: it is the only satellite bearing a dense atmosphere and it is the only place besides Earth with stable liquid bodies at its surface. In addition complex organics are produced in its atmosphere by the photolysis of methane, the second most abundant atmospheric molecule that irreversibly produces ethane and other more complex carbon bearing molecules. The Cassini/Huygens mission has revealed that the difference between its equatorial and polar radii is several hundred meters larger than that expected from its spin rate, and that it is in hydrostatic equilibrium. Global circulation models predict a large meridional circulation with upwelling at the summer hemisphere and downwelling at the winter pole where ethane can condense and fall at the surface. Lakes and Mare have been observed at the poles only (Stofan et al., Nature, 2007). Ethane has been spectroscopically identified in one of the lakes (Brown et al., Nature, 2008). The present study investigates the subsidence associated with ethane rain at the poles. As suggested by laboratory experiments, ethane flows very easily in a porous crust made of either pure water ice or methane clathrates. Loading of the lithosphere by liquid hydrocarbons induces a tendency of the polar terrains to subside relative to the lower latitudes terrains. In addition, laboratory experiments suggest that ethane substitutes to methane in a methane clathrate crust. The present study estimates the kinetics of this transformation. It suggests that such a transformation would occur on timescales much smaller than geological timescales. To explain a value of 270 m of the subsidence as determined by the radar instrument onboard the Cassini spacecraft (Zebker et al., Science, 2009), our study predicts that the percolation of ethane liquid in the polar crust should have operated during the last 300 - 1,200 Myr. This number is in agreement with the isotopic age of the atmospheric

  3. Ocean Margins Program: Closure on the global carbon cycle. Program description

    SciTech Connect

    Riches, M.R.

    1994-08-01

    The Department of Energy`s Ocean Margins Program (OMP) is designed to quantitatively assess the importance of coastal ocean systems in the global carbon cycle. Since the beginning of the Industrial Revolution, human energy-related activities have dramatically altered the global carbon cycle, and consequently, this cycle is not presently in a steady-state. To reduce major uncertainties in predicting future global environmental quality, it is imperative to understand the sources and sinks of atmospheric CO{sub 2}, the role of anthropogenic activities in disrupting the natural carbon cycle, and the effects of, and feedbacks between, these activities and the natural carbon cycle. Due to continuously increased loading of nutrients to the margins, which, globally, is related to the rate of human population growth and high population densities in coastal states, biological carbon fixation has been stimulated. Depending on the fate of the fixed carbon, this stimulation has the potential to mitigate the anthropogenically derived Co{sub 2}. Determining the factors that control the magnitude of carbon exchanges between the ocean margins and the atmosphere, and the subsequent fate of this carbon, is crucial to predicting the strength and capacity of the oceans to absorb excess anthropogenic atmospheric CO{sub 2}. The goals of the OMP are to: quantify the ecological and biogeochemical processes and mechanisms that define the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; identify how ocean-margin sources and sinks of carbon change in response to human activities; and determine whether continental shelves are quantitatively significant in removing atmospheric carbon dioxide and isolating it via burial in sediments or export to the interior of the open ocean.

  4. Global geochemical cycles of carbon, sulfur and oxygen

    NASA Technical Reports Server (NTRS)

    Walker, J. C.

    1986-01-01

    Time resolved data on the carbon isotopic composition of carbonate minerals and the sulfur isotopic composition or sulfate minerals show a strong negative correlation during the Cretaceous. Carbonate minerals are isotopically heavy during this period while sulfate minerals are isotopically light. The implication is that carbon is being transferred from the oxidized, carbonate reservoir to the reservoir of isotopically light reduced organic carbon in sedimentary rocks while sulfur is being transferred from the reservoir of isotopically light sedimentary sulfide to the oxidized, sulfate reservoir. These apparently oppositely directed changes in the oxidation state of average sedimentary carbon and sulfur are surprising because of a well-established and easy to understand correlation between the concentrations of reduced organic carbon and sulfide minerals in sedimentary rocks. Rocks rich in reduced carbon are also rich in reduced sulfur. The isotopic and concentration data can be reconciled by a model which invokes a significant flux of hydrothermal sulfide to the deep sea, at least during the Cretaceous.

  5. Impacts of dung combustion on the carbon cycle of alpine grassland of the north Tibetan plateau.

    PubMed

    Xu, Zengrang; Cheng, Shengkui; Zhen, Lin; Pan, Ying; Zhang, Xianzhou; Wu, Junxi; Zou, Xiuping; Bijaya, G C Dhruba

    2013-08-01

    Alpine grassland of Tibet is a frangible ecosystem in terms of carbon (C) emission. Yak dung is an important resident energy with about 80 % of yak dung combusted for energy in the north Tibetan plateau. This paper investigated the impact of dung combustion on the C cycle of the alpine grassland ecosystem in north Tibet, China. During the growing season of 2011, from a field survey and household questionnaires, the main impacts of dung collection for fuel on the C cycle of the ecosystem were identified. (1) The C sequestration and storage capacity, including the dung-derived C stored in soil and C captured by vegetation, decreased. The net primary production decreased remarkably because of the reduction of dung returned to soil. (2) In a given period, more C was emitted to the atmosphere in the dung combustion situation than that in the dung returned to soil situation. (3) The energy grazing alpine meadow ecosystem changed into a net C source, and the net biome production of the ecosystem dropped to -15.18 g C/m2 year in the dung combustion situation, 42.95 g C/m2 year less than that in the dung returned situation. To reduce the CO2 emission derived from dung use, the proportion of dung combustion should be reduced and alternative renewable energy such as solar, wind, or hydro energy should be advocated, which is suitable for, and accessible to, the north Tibetan plateau.

  6. The importance of interacting climate modes on Australia’s contribution to global carbon cycle extremes

    PubMed Central

    Cleverly, James; Eamus, Derek; Luo, Qunying; Restrepo Coupe, Natalia; Kljun, Natascha; Ma, Xuanlong; Ewenz, Cacilia; Li, Longhui; Yu, Qiang; Huete, Alfredo

    2016-01-01

    The global carbon cycle is highly sensitive to climate-driven fluctuations of precipitation, especially in the Southern Hemisphere. This was clearly manifested by a 20% increase of the global terrestrial C sink in 2011 during the strongest sustained La Niña since 1917. However, inconsistencies exist between El Niño/La Niña (ENSO) cycles and precipitation in the historical record; for example, significant ENSO–precipitation correlations were present in only 31% of the last 100 years, and often absent in wet years. To resolve these inconsistencies, we used an advanced temporal scaling method for identifying interactions amongst three key climate modes (El Niño, the Indian Ocean dipole, and the southern annular mode). When these climate modes synchronised (1999–2012), drought and extreme precipitation were observed across Australia. The interaction amongst these climate modes, more than the effect of any single mode, was associated with large fluctuations in precipitation and productivity. The long-term exposure of vegetation to this arid environment has favoured a resilient flora capable of large fluctuations in photosynthetic productivity and explains why Australia was a major contributor not only to the 2011 global C sink anomaly but also to global reductions in photosynthetic C uptake during the previous decade of drought. PMID:26976754

  7. Electrochemical Capture and Release of Carbon Dioxide Using a Disulfide-Thiocarbonate Redox Cycle.

    PubMed

    Singh, Poonam; Rheinhardt, Joseph H; Olson, Jarred Z; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Buttry, Daniel A

    2017-01-25

    We describe a new electrochemical cycle that enables capture and release of carbon dioxide. The capture agent is benzylthiolate (RS(-)), generated electrochemically by reduction of benzyldisulfide (RSSR). Reaction of RS(-) with CO2 produces a terminal, sulfur-bound monothiocarbonate, RSCO2(-), which acts as the CO2 carrier species, much the same as a carbamate serves as the CO2 carrier for amine-based capture strategies. Oxidation of the thiocarbonate releases CO2 and regenerates RSSR. The newly reported S-benzylthiocarbonate (IUPAC name benzylsulfanylformate) is characterized by (1)H and (13)C NMR, FTIR, and electrochemical analysis. The capture-release cycle is studied in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP TFSI) and dimethylformamide. Quantum chemical calculations give a binding energy of CO2 to benzyl thiolate of -66.3 kJ mol(-1), consistent with the experimental observation of formation of a stable CO2 adduct. The data described here represent the first report of electrochemical behavior of a sulfur-bound terminal thiocarbonate.

  8. Homogeneous Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide by Ni(cyclam)

    NASA Astrophysics Data System (ADS)

    Froehlich, Jesse Dan

    The homogeneous electrochemical reduction of CO2 by the molecular catalyst [Ni(cyclam)]2+ was studied by electrochemistry and infrared spectroelectrochemistry. This catalyst has been previously shown to have increased CO2 reduction activity when adsorbed on a mercury electrode. The homogeneous reactivity, without a mercury electrode, was often ignored in the literature. Ni(cyclam) was found to efficiently and selectively produce CO at moderate overpotentials in both aqueous and mixed organic solvent systems in a homogenous fashion at an inert glassy carbon electrode. Methylated analogs of Ni(cyclam) were also studied and observed to have more positive reduction potentials and attenuated CO2 reduction activity. The electrochemical kinetics were probed by varying CO2 substrate and proton concentrations. Products of CO2 reduction are observed in infrared spectra obtained from spectroelectrochemical experiments. The two major species observed were a Ni(I) carbonyl, [Ni(cyclam)(CO)]+, and a Ni(II) coordinated bicarbonate, [Ni(cyclam)(CO2OH)] +. The rate-limiting step during electrocatalysis was determined to be CO loss from the deactivated species, [Ni(cyclam)(CO)]+, to produce the active catalyst, [Ni(cyclam)]+. Another macrocyclic complex, [Ni(TMC)]+, was deployed as a CO scavenger in order to inhibit the deactivation of [Ni(cyclam)] + by CO. Addition of the CO scavenger was shown to dramatically increase the catalytic current observed for CO2 reduction by [Ni(cyclam)] +. Evidence for the [Ni(TMC)]+ acting as a CO scavenger includes the observation of [Ni(TMC)(CO)]+ by IR. Density functional theory calculations, probing the optimized geometry of the [Ni(cyclam)(CO)] + species, are also presented. These findings have implications on the increased activity for CO2 reduction when [Ni(cyclam)] + is adsorbed on a mercury electrode. The [Ni(cyclam)(CO)] + structure has significant distortion of the Ni center out of the plane of the cyclam nitrogens. This distortion

  9. The viability of a nonenzymatic reductive citric acid cycle--kinetics and thermochemistry.

    PubMed

    Ross, David S

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate --> pyruvate --> oxaloacetate --> malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  10. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  11. A "footprint" of plant carbon fixation cycle functions during the development of a heterotrophic fungus.

    PubMed

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-08-11

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution.

  12. Microbial Phosphite Oxidation and Its Potential Role in the Global Phosphorus and Carbon Cycles.

    PubMed

    Figueroa, I A; Coates, J D

    2017-01-01

    Phosphite [Formula: see text] is a highly soluble, reduced phosphorus compound that is often overlooked in biogeochemical analyses. Although the oxidation of phosphite to phosphate is a highly exergonic process (E(o)(')=-650mV), phosphite is kinetically stable and can account for 10-30% of the total dissolved P in various environments. There is also evidence that phosphite was more prevalent under the reducing conditions of the Archean period and may have been involved in the development of early life. Its role as a phosphorus source for a variety of extant microorganisms has been known since the 1950s, and the pathways involved in assimilatory phosphite oxidation have been well characterized. More recently, it was demonstrated that phosphite could also act as an electron donor for energy metabolism in a process known as dissimilatory phosphite oxidation (DPO). The bacterium described in this study, Desulfotignum phosphitoxidans strain FiPS-3, was isolated from brackish sediments and is capable of growing by coupling phosphite oxidation to the reduction of either sulfate or carbon dioxide. FiPS-3 remains the only isolated organism capable of DPO, and the prevalence of this metabolism in the environment is still unclear. Nonetheless, given the widespread presence of phosphite in the environment and the thermodynamic favorability of its oxidation, microbial phosphite oxidation may play an important and hitherto unrecognized role in the global phosphorus and carbon cycles.

  13. Switchgrass Biofuel Research: Carbon Sequestration and Life Cycle Analysis (a.k.a. Second Generation Biofuels: Carbon Sequestration and Life Cycle Analysis)

    SciTech Connect

    Liska, Adam J.; Suyker, Andrew E.; Arkebauer, Timothy J.; Pelton, Matthew P.; Fang, Xiao Xue

    2013-12-20

    Soil emissions have been inadequately characterized in life cycle assessment of biofuels (see section 3.2.3). This project measures the net differences in field-level greenhouse gas emissions (CO2, N2O, and CH4) due to corn residue removal for cellulosic ethanol production. Gas measurements are then incorporated into life cycle assessment of the final biofuel product to determine whether it is in compliance with federal greenhouse gas emissions standards for biofuels (Renewable Fuel Standard 2, RFS2). The field measurements have been conducted over three years on two, quarter-section, production-scale, irrigated corn fields (both roughly 50 hectares, as this size of field is necessary for reproducible eddy covariance flux measurements of CO2; chamber measurements are used to determine N2O and CH4 emissions). Due to a large hail storm in 2010, estimates of the emission from residue could not be separated from the total CO2 flux in 2011. This led us to develop soil organic carbon (SOC) modeling techniques to estimate changes in CO2 emissions from residue removal. Modeling has predicted emissions of CO2 from oxidation of SOC that are consistent (<12%) with 9 years of CO2 flux measurements at the two production field sites, and modeling is also consistent with other field measurements (Liska et al., submitted). The model was then used to estimate the average change in SOC and CO2 emissions from nine years of simulated residue removal (6 Mg biomass per hectare per year) at the sites; a loss of 0.43 Mg C ha-1 yr-1 resulted. The model was then used to estimate SOC changes over 10 years across Nebraska using supercomputing, based on 61 million, 30 x 30 meter, grid cells to account for regional variability in initial SOC, crop yield, and temperature; an average loss of 0.47 Mg C ha-1 yr-1 resulted. When these CO

  14. A bioinspired approach to protectively decorate platinum-carbon for enhanced activity and durability in oxygen reduction

    NASA Astrophysics Data System (ADS)

    Huang, Yiyin; Fu, Fang; Wu, Peng; Wang, Yaobing; Yao, Jiannian

    2014-12-01

    This work develops a versatile and effective approach of protective decoration to improve the catalytic performance of nanostructured catalysts. The commercial platinum-carbon catalyst is decorated with polydopamine carbide via self-polymerization and pyrolysis processes. The electrocatalytic performance of the novel polydopamine carbide decorated platinum-carbon catalyst is characterized by voltammogram. Origin of improvement in its performance is analyzed by X-ray photoelectron spectroscopy and transmission electron microscope. It is exhibited that the catalytic activity and durability for oxygen reduction reaction and methanol tolerance of the polydopamine carbide decorated platinum-carbon catalyst are enhanced. The promoted effects result from the thermal treatment and decoration of polydopamine carbide which provides N species, slightly alters the Pt electronic structure and prevents Pt from agglomeration during long-term potential cycling.

  15. The large influence of climate model bias on terrestrial carbon cycle simulations

    NASA Astrophysics Data System (ADS)

    Ahlström, Anders; Schurgers, Guy; Smith, Benjamin

    2017-01-01

    Global vegetation models and terrestrial carbon cycle models are widely used for projecting the carbon balance of terrestrial ecosystems. Ensembles of such models show a large spread in carbon balance predictions, ranging from a large uptake to a release of carbon by the terrestrial biosphere, constituting a large uncertainty in the associated feedback to atmospheric CO2 concentrations under global climate change. Errors and biases that may contribute to such uncertainty include ecosystem model structure, parameters and forcing by climate output from general circulation models (GCMs) or the atmospheric components of Earth system models (ESMs), e.g. as prepared for use in IPCC climate change assessments. The relative importance of these contributing factors to the overall uncertainty in carbon cycle projections is not well characterised. Here we investigate the role of climate model-derived biases by forcing a single global ecosystem-carbon cycle model, with original climate outputs from 15 ESMs and GCMs from the CMIP5 ensemble. We show that variation among the resulting ensemble of present and future carbon cycle simulations propagates from biases in annual means of temperature, precipitation and incoming shortwave radiation. Future changes in carbon pools, and thus land carbon sink trends, are also affected by climate biases, although to a smaller extent than the absolute size of carbon pools. Our results suggest that climate biases could be responsible for a considerable fraction of the large uncertainties in ESM simulations of land carbon fluxes and pools, amounting to about 40% of the range reported for ESMs. We conclude that climate bias-induced uncertainties must be decreased to make accurate coupled atmosphere-carbon cycle projections.

  16. A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction.

    PubMed

    Zhao, Lu; Wang, Lei; Yu, Peng; Zhao, Dongdong; Tian, Chungui; Feng, He; Ma, Jing; Fu, Honggang

    2015-08-11

    Chromium nitride nanoparticles supported on graphitic carbon nanocapsules containing carbon nitride (CrN/GC) have been synthesized by a solvothermal-assisted ion-exchange route. As a Pt-free catalyst, the CrN/GC hybrid exhibits superior activity, stability, methanol immunity and a dominant 4-electron pathway towards oxygen reduction reaction.

  17. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    NASA Technical Reports Server (NTRS)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  18. Graphitic mesoporous carbon based on aromatic polycondensation as catalyst support for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Pen