Sample records for carbon replicas structural

  1. Quantum Effects in Inverse Opal Structures

    NASA Astrophysics Data System (ADS)

    Bleiweiss, Michael; Datta, Timir; Lungu, Anca; Yin, Ming; Iqbal, Zafar; Palm, Eric; Brandt, Bruce

    2002-03-01

    Properties of bismuth inverse opals and carbon opal replicas were studied. The bismuth nanostructures were fabricated by pressure infiltration into porous artificial opal, while the carbon opal replicas were created via CVD. These structures form a regular three-dimensional network in which the bismuth and carbon regions percolate in all directions between the close packed spheres of SiO_2. The sizes of the conducting regions are of the order of tens of nanometers. Static susceptibility of the bismuth inverse opal showed clear deHaas-vanAlphen oscillations. Transport measurements, including Hall, were done using standard ac four and six probe techniques in fields up to 17 T* and temperatures between 4.2 and 200 K. Observations of Shubnikov-deHaas oscillations in magnetoresistance, one-dimensional weak localization, quantum Hall and other effects will be discussed. *Performed at the National High Magnetic Field Lab (NHMFL) FSU, Tallahassee, FL. This work was partially supported by grants from DARPA-nanothermoelectrics, NASA-EPSCOR and the USC nanocenter.

  2. Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas

    DOE PAGES

    Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; ...

    2014-12-08

    Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further highmore » temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.« less

  3. Template-mediated, Hierarchical Engineering of Ordered Mesoporous Films and Powders

    NASA Astrophysics Data System (ADS)

    Tian, Zheng

    Hierarchical control over pore size, pore topology, and meso/mictrostructure as well as material morphology (e.g., powders, monoliths, thin films) is crucial for meeting diverse materials needs among applications spanning next generation catalysts, sensors, batteries, sorbents, etc. The overarching goal of this thesis is to establish fundamental mechanistic insight enabling new strategies for realizing such hierarchical textural control for carbon materials that is not currently achievable with sacrificial pore formation by 'one-pot' surfactant-based 'soft'-templating or multi-step inorganic 'hard-templating. While 'hard'-templating is often tacitly discounted based upon its perceived complexity, it offers potential for overcoming key 'soft'-templating challenges, including bolstering pore stability, accommodating a more versatile palette of replica precursors, realizing ordered/spanning porosity in the case of porous thin films, simplifying formation of bi-continuous pore topologies, and inducing microstructure control within porous replica materials. In this thesis, we establish strategies for hard-templating of hierarchically porous and structured carbon powders and tunable thin films by both multi-step hard-templating and a new 'one-pot' template-replica precursor co-assembly process. We first develop a nominal hard-templating technique to successfully prepare three-dimensionally ordered mesoporous (3DOm) and 3DOm-supported microporous carbon thin films by exploiting our ability to synthesize and assemble size-tunable silica nanoparticles into scalable, colloidal crystalline thin film templates of tunable mono- to multi-layer thickness. This robust thin film template accommodates liquid and/or vapor-phase infiltration, polymerization, and pyrolysis of various carbon sources without pore contraction and/or collapse upon template sacrifice. The result is robust, flexible 3DOm or 3DOm-supported ultra-thin microporous films that can be transferred by stamp techniques to various substrates for low-cost counter-electrodes in dye-sensitized solar cells, as we demonstrate, or as potential high-flux membranes for molecular separations. Inspired by 'one-pot' 'soft'-templating approaches, wherein the pore forming agent and replica precursor are co-assembled, we establish how 'hard'-templating can be carried out in an analogous fashion. Namely, we show how pre-formed silica nanoparticles can be co-assembled from aqueous solutions with a carbon source (glucose), leading to elucidation of a pseudo-phase behavior in which we identify an operating window for synthesis of hierarchically bi-continuous carbon films. Systematic study of the association of carbon precursors with the silica particles in combination with transient coating experiments reveals mechanistic insight into how silica-adsorbed carbon precursor modulates particle assembly and ultimately controls template particle d-spacing. We uncover a critical d-spacing defining the boundary between ordered and disordered mesoporosity within the resulting films. We ultimately extend this thin-film mechanistic insight to realize 'one'-pot, bi-continuous 3DOm carbon powders. Through a combination of X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HR-TEM), we elucidate novel synthesis-structure relations for template-mediated microstructuring of the 3DOm replica carbons. Attractive properties of the resulting bi-continuous porous carbons for applications, for example, as novel electrodes, include high surface areas, large mesopore volumes, and tunable graphitic content (i.e. >50%) and character. We specifically demonstrate their performance, in thin film form, as counter-electrodes in dye-sensitized solar cells. We also demonstrate how they can be exploited in powder form as high-performance supercapacitor electrodes exhibiting attractive retention and absolute capacitance. We conclude the thesis by demonstrating the versatility of both the thin-film and powder templating processes developed herein, for realizing ordered binary colloidal crystal templates and their bi-modal porous carbon replica films, expanding compositional diversity of the 'one-pot' thin film process beyond carbons to include an example of 3DOm ZrO2 films, and employing the hard-templating process as a strategy for realizing 3DOm carbon-supported nanocarbides.

  4. Extreme Soft Limit Observation of Quantum Hall Effect in a 3-d Semiconductor

    NASA Astrophysics Data System (ADS)

    Bleiweiss, Michael; Yin, Ming; Amirzadeh, Jafar; Preston, Harry; Datta, Timir

    2004-03-01

    We report on the evidence for quantum hall effect at 38K and in magnetic fields (B) as low as 1k-Orsted. Our specimens were semiconducting, carbon replica opal (CRO) structures. CRO are three dimensional bulk systems where the carbon is grown by CVD into the porous regions in artificial silica opals. The carbon forms layers on top of the silica spheres as eggshells. The shells are of uneven thickness and are perforated at the contacts points of the opal spheres and form a closed packed, three dimensional crystal structure. Plateaus in inverse R_xy that are conjugated with well-defined Subnikov-deHass modulations in R_xx were observed. The quantum steps that are particularly prominent were the states with fill factors v = p/q (p,q are integers) were the well know fractions, 1/3, 1/2, 3/5, 1 and 5/2. QHE steps indicate that the carriers are localized in two-dimensional regions, which may be due to the extremely large surface to volume ratio associated with replica opal structure. From the B-1 vs v straight line, the effective surface carrier density, ns = 2.2 x 10^14 m-2. To the best of our knowledge, the current work is the first to report fractional quantum hall plateaus in a bulk system.

  5. Cellular complexity captured in durable silica biocomposites

    PubMed Central

    Kaehr, Bryan; Townson, Jason L.; Kalinich, Robin M.; Awad, Yasmine H.; Swartzentruber, B. S.; Dunphy, Darren R.; Brinker, C. Jeffrey

    2012-01-01

    Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions. PMID:23045634

  6. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  7. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  8. Imaging Cytoskeleton Components by Electron Microscopy.

    PubMed

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  9. Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock

    PubMed Central

    Zhang, Zhe; Lange, Oliver F.

    2013-01-01

    Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied. PMID:24009670

  10. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.

    PubMed

    Cheng, Xingguo; Gower, Laurie B

    2006-01-01

    Natural biominerals often have exquisite morphologies, where the cells exercise a high degree of crystallographic control through secretion of biological macromolecules and regulation of ion transport. One important example is the sea urchin spine. It has recently been shown to be formed through deposition of a transient amorphous calcium carbonate (ACC) precursor phase that later transforms to single-crystalline calcite, ultimately forming an elaborate three-dimensional microporous calcium carbonate structure with interconnected pores. Macromolecules associated with the mineral phase are thought to play a key role in regulating this transformation. The work described here mimics this type of morphological control by "molding" an amorphous calcium carbonate precursor within a porous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel that has been prepared as a negative replica from the void space of an urchin spine. Using an acidic biomimetic polymer as a process-directing agent, we show that polyaspartic acid induces amorphous calcium carbonate (ACC) nanoparticles, which have fluidic character and therefore are able to infiltrate the PHEMA hydrogel replica and coalesce into the convoluted morphology that replicates the original microporous structure of the sea urchin spine. By "molding" calcium carbonate into a complex morphology at room temperature, using a precursor process that is induced by a biomimetic acidic macromolecule, the PILP process is a useful in vitro model for examining different aspects of the amorphous-to-crystalline transformation process that is apparently used by a variety of biomineralizing organisms. For example, although we were able to replicate the overall morphology of the spine, it had polycrystalline texture; further studies with this system will focus on controlling the nucleation event, which may help to elucidate how such a convoluted structure can be prepared with single-crystalline texture via an amorphous precursor. Through a better understanding of the mechanisms used by organisms to regulate crystal properties, such biomimetic processes can lead to the synthesis of materials with superior electronic, mechanical, and optical properties.

  11. Simulation studies of the fidelity of biomolecular structure ensemble recreation

    NASA Astrophysics Data System (ADS)

    Lätzer, Joachim; Eastwood, Michael P.; Wolynes, Peter G.

    2006-12-01

    We examine the ability of Bayesian methods to recreate structural ensembles for partially folded molecules from averaged data. Specifically we test the ability of various algorithms to recreate different transition state ensembles for folding proteins using a multiple replica simulation algorithm using input from "gold standard" reference ensembles that were first generated with a Gō-like Hamiltonian having nonpairwise additive terms. A set of low resolution data, which function as the "experimental" ϕ values, were first constructed from this reference ensemble. The resulting ϕ values were then treated as one would treat laboratory experimental data and were used as input in the replica reconstruction algorithm. The resulting ensembles of structures obtained by the replica algorithm were compared to the gold standard reference ensemble, from which those "data" were, in fact, obtained. It is found that for a unimodal transition state ensemble with a low barrier, the multiple replica algorithm does recreate the reference ensemble fairly successfully when no experimental error is assumed. The Kolmogorov-Smirnov test as well as principal component analysis show that the overlap of the recovered and reference ensembles is significantly enhanced when multiple replicas are used. Reduction of the multiple replica ensembles by clustering successfully yields subensembles with close similarity to the reference ensembles. On the other hand, for a high barrier transition state with two distinct transition state ensembles, the single replica algorithm only samples a few structures of one of the reference ensemble basins. This is due to the fact that the ϕ values are intrinsically ensemble averaged quantities. The replica algorithm with multiple copies does sample both reference ensemble basins. In contrast to the single replica case, the multiple replicas are constrained to reproduce the average ϕ values, but allow fluctuations in ϕ for each individual copy. These fluctuations facilitate a more faithful sampling of the reference ensemble basins. Finally, we test how robustly the reconstruction algorithm can function by introducing errors in ϕ comparable in magnitude to those suggested by some authors. In this circumstance we observe that the chances of ensemble recovery with the replica algorithm are poor using a single replica, but are improved when multiple copies are used. A multimodal transition state ensemble, however, turns out to be more sensitive to large errors in ϕ (if appropriately gauged) and attempts at successful recreation of the reference ensemble with simple replica algorithms can fall short.

  12. A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals.

    PubMed

    Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2011-03-01

    A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Secrets of the Chinese magic mirror replica

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Yip, Din-yan

    2001-03-01

    We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.

  14. Cell wall formation in zoospores of Allomyces arbuscula. II. Development of surface structure of encysted haploid zoospores, rhizoids, and hyphae.

    PubMed

    Kroh, M; Hendriks, H; Kirby, E G; Sassen, M M

    1976-08-01

    Development of haploid meiospores of Allomyces arbuscula into germling cells with rhizoids and hyphae was followed during incubation in complete growth medium. The surface structure of encysted meiospores, rhizoids and hyphae before and after extraction of amorphous materials with ethanolic KOH was studied by means of carbon-platinum replicas. After 2--3 min incubation in complete medium 10% of the meiospores were surrounded by a cell wall containing microfibrils embedded in a matrix. Structure of cell walls of encysted meiospores, rhizoids, and hyphae differ from one another by the location of amorphous materials and by the arrangement of chitin microfibrils.

  15. Coulomb replica-exchange method: handling electrostatic attractive and repulsive forces for biomolecules.

    PubMed

    Itoh, Satoru G; Okumura, Hisashi

    2013-03-30

    We propose a new type of the Hamiltonian replica-exchange method (REM) for molecular dynamics (MD) and Monte Carlo simulations, which we refer to as the Coulomb REM (CREM). In this method, electrostatic charge parameters in the Coulomb interactions are exchanged among replicas while temperatures are exchanged in the usual REM. By varying the atom charges, the CREM overcomes free-energy barriers and realizes more efficient sampling in the conformational space than the REM. Furthermore, this method requires only a smaller number of replicas because only the atom charges of solute molecules are used as exchanged parameters. We performed Coulomb replica-exchange MD simulations of an alanine dipeptide in explicit water solvent and compared the results with those of the conventional canonical, replica exchange, and van der Waals REMs. Two force fields of AMBER parm99 and AMBER parm99SB were used. As a result, the CREM sampled all local-minimum free-energy states more frequently than the other methods for both force fields. Moreover, the Coulomb, van der Waals, and usual REMs were applied to a fragment of an amyloid-β peptide (Aβ) in explicit water solvent to compare the sampling efficiency of these methods for a larger system. The CREM sampled structures of the Aβ fragment more efficiently than the other methods. We obtained β-helix, α-helix, 3(10)-helix, β-hairpin, and β-sheet structures as stable structures and deduced pathways of conformational transitions among these structures from a free-energy landscape. Copyright © 2012 Wiley Periodicals, Inc.

  16. Shape-preserving transformations of organic matter and compositions thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaehr, Bryan J.; Meyer, Kristin; Townson, Jason L.

    The present invention relates to methods of transforming organic matter into organic-inorganic composites, inorganic replicas, or conductive replicas. Organic matter, such as biological cells and tissue and organs, can be converted into such composites and replicas using the methods described herein. In particular, such methods transform organic matter (into inorganic, organic-inorganic, or conductive constructs), while simultaneously preserving microscopic and/or macroscopic structural detail.

  17. Evidence of iridescence in TiO2 nanostructures. A probably photonic effect

    NASA Astrophysics Data System (ADS)

    Rey-Gonzalez, Rafael; Quiroz, Heiddy P.; Barrera-Patiño, Claudia; Dussan, Anderson; Grupo de Optica e Informacion Cuantica Collaboration; Grupo de Materiales Nanoestructutrados y sus Aplicaciones Collaboration

    In this work, we present a study of optical properties of titanium dioxide nanotubes (TiO2). Nanotubes were obtained by electrochemical anodization method, using ethylene glycol solutions containing different amounts of water and fluoride. A complex structure is observed between nanotubes and Ti foils on surface when nanotubes are released from the sheet. These forms can be associated with replicas or marks in surface of the Ti foil. The optical response of replicas is studied by Uv-Vis spectrophotometry using white light and varying the angle of the incident light. Absorbance measurements reveal that these replicas exhibit a shift towards lower values of lambda when the angle of the incident light increases of 200 to 600. These changes may be associated with iridescent effects in this material. The concavity of the replicas in association with air could be generating photonic-like effects. Using a 2D model of replicas - air system, the photonic band structures are found through a plane wave approach. Correlations between photonic properties and iridescent effects are explored. Grupo de Optica e Informacion Cuantica.

  18. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.

    PubMed

    Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav

    2014-01-01

    Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.

  19. Sampling enhancement for the quantum mechanical potential based molecular dynamics simulations: a general algorithm and its extension for free energy calculation on rugged energy surface.

    PubMed

    Li, Hongzhi; Yang, Wei

    2007-03-21

    An approach is developed in the replica exchange framework to enhance conformational sampling for the quantum mechanical (QM) potential based molecular dynamics simulations. Importantly, with our enhanced sampling treatment, a decent convergence for electronic structure self-consistent-field calculation is robustly guaranteed, which is made possible in our replica exchange design by avoiding direct structure exchanges between the QM-related replicas and the activated (scaled by low scaling parameters or treated with high "effective temperatures") molecular mechanical (MM) replicas. Although the present approach represents one of the early efforts in the enhanced sampling developments specifically for quantum mechanical potentials, the QM-based simulations treated with the present technique can possess the similar sampling efficiency to the MM based simulations treated with the Hamiltonian replica exchange method (HREM). In the present paper, by combining this sampling method with one of our recent developments (the dual-topology alchemical HREM approach), we also introduce a method for the sampling enhanced QM-based free energy calculations.

  20. Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot.

    PubMed

    Gramich, J; Baumgartner, A; Schönenberger, C

    2015-11-20

    We report the observation of two fundamental subgap transport processes through a quantum dot (QD) with a superconducting contact. The device consists of a carbon nanotube contacted by a Nb superconducting and a normal metal contact. First, we find a single resonance with position, shape, and amplitude consistent with the theoretically predicted resonant Andreev tunneling (AT) through a single QD level. Second, we observe a series of discrete replicas of resonant AT at a separation of ~145 μeV, with a gate, bias, and temperature dependence characteristic for boson-assisted, inelastic AT, in which energy is exchanged between a bosonic bath and the electrons. The magnetic field dependence of the replica's amplitudes and energies suggest that two different bosons couple to the tunnel process.

  1. Atomistic model of the spider silk nanostructure

    NASA Astrophysics Data System (ADS)

    Keten, Sinan; Buehler, Markus J.

    2010-04-01

    Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 31-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called "prestretched" molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.

  2. Replica exchange molecular dynamics simulation of structure variation from α/4β-fold to 3α-fold protein.

    PubMed

    Lazim, Raudah; Mei, Ye; Zhang, Dawei

    2012-03-01

    Replica exchange molecular dynamics (REMD) simulation provides an efficient conformational sampling tool for the study of protein folding. In this study, we explore the mechanism directing the structure variation from α/4β-fold protein to 3α-fold protein after mutation by conducting REMD simulation on 42 replicas with temperatures ranging from 270 K to 710 K. The simulation began from a protein possessing the primary structure of GA88 but the tertiary structure of GB88, two G proteins with "high sequence identity." Albeit the large Cα-root mean square deviation (RMSD) of the folded protein (4.34 Å at 270 K and 4.75 Å at 304 K), a variation in tertiary structure was observed. Together with the analysis of secondary structure assignment, cluster analysis and principal component, it provides insights to the folding and unfolding pathway of 3α-fold protein and α/4β-fold protein respectively paving the way toward the understanding of the ongoings during conformational variation.

  3. Cellular control over spicule formation in sea urchin embryos: A structural approach.

    PubMed

    Beniash, E; Addadi, L; Weiner, S

    1999-03-01

    The spicules of the sea urchin embryo form in intracellular membrane-delineated compartments. Each spicule is composed of a single crystal of calcite and amorphous calcium carbonate. The latter transforms with time into calcite by overgrowth of the preexisting crystal. Relationships between the membrane surrounding the spiculogenic compartment and the spicule mineral phase were studied in the transmission electron microscope (TEM) using freeze-fracture. In all the replicas observed the spicules were tightly surrounded by the membrane. Furthermore, a variety of structures that are related to the material exchange process across the membrane were observed. The spiculogenic cells were separated from other cell types of the embryo, frozen, and freeze-dried on the TEM grids. The contents of electron-dense granules in the spiculogenic cells were shown by electron diffraction to be composed of amorphous calcium carbonate. These observations are consistent with the notion that the amorphous calcium carbonate-containing granules contain the precursor mineral phase for spicule formation and that the membrane surrounding the forming spicule is involved both in transport of material and in controlling spicule mineralization. Copyright 1999 Academic Press.

  4. Self-assembly of block copolymers on topographically patterned polymeric substrates

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  5. Measurements of π ^± differential yields from the surface of the T2K replica target for incoming 31 GeV/ c protons with the NA61/SHINE spectrometer at the CERN SPS

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aduszkiewicz, A.; Ajaz, M.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Ćirković, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A. E.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Johnson, S. R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A. I.; Manić, D.; Marcinek, A.; Marino, A. D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messerly, B.; Mills, G. B.; Morozov, S.; Mrówczyński, S.; Nagai, Y.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A. D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B. A.; Posiadała-Zezula, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Wąs, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B. T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Yarritu, K.; Zambelli, L.; Zimmerman, E. D.; Friend, M.; Galymov, V.; Hartz, M.; Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.; Tzanov, M.; Yu, M.

    2016-11-01

    Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of π ^± -mesons from the surface of the T2K replica target for incoming 31 GeV/ c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.

  6. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology

    PubMed Central

    Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark

    2014-01-01

    The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739

  7. Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling.

    PubMed

    Rauscher, Sarah; Neale, Chris; Pomès, Régis

    2009-10-13

    Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.

  8. Controlled replication of butterfly wings for achieving tunable photonic properties.

    PubMed

    Huang, Jingyun; Wang, Xudong; Wang, Zhong Lin

    2006-10-01

    The fine structure of the wing scale of a Morpho Peleides butterfly was examined carefully, and the entire configuration was completely replicated by a uniform Al(2)O(3) coating through a low-temperature ALD process. An inverted structure was achieved by removing the butterfly wing template at high temperature, forming a polycrystalline Al(2)O(3) shell structure with precisely controlled thickness. Other than the copy of the morphology of the structure, the optical property, such as the existence of PBG, was also inherited by the alumina replica. Reflection peaks at the violet/blue range were detected on both original wings and their replica, while a simple alumina coating shifted the reflection peak to longer wavelength because of the change of periodicity and refraction index. The alumina replicas also exhibited similar functional structures as waveguide and beam splitter, which may be used as the building blocks for photonic ICs with high reproducibility and lower fabrication cost compared to traditional lithography techniques.

  9. Pressure induced increase of the exciton phonon interaction in ZnO/(ZnMg)O quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarosz, D.; Suchocki, A.; Kozanecki, A.

    2016-03-15

    It is a well-established experimental fact that exciton-phonon coupling is very efficient in ZnO. The intensities of the phonon-replicas in ZnO/(ZnMg)O quantum structures strongly depend on the internal electric field. We performed high-pressure measurements on the single ZnO/(ZnMg)O quantum well. We observed a strong increase of the intensity of the phonon-replicas relative to the zero phonon line. In our opinion this effect is related to pressure induced increase of the strain in quantum structure. As a consequence, an increase of the piezoelectric component of the electric field is observed which leads to an increase of the intensity of the phonon-replicas.

  10. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  11. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  12. Communication: Self-assembly of a model supramolecular polymer studied by replica exchange with solute tempering

    NASA Astrophysics Data System (ADS)

    Arefi, Hadi H.; Yamamoto, Takeshi

    2017-12-01

    Conventional molecular-dynamics (cMD) simulation has a well-known limitation in accessible time and length scales, and thus various enhanced sampling techniques have been proposed to alleviate the problem. In this paper, we explore the utility of replica exchange with solute tempering (REST) (i.e., a variant of Hamiltonian replica exchange methods) to simulate the self-assembly of a supramolecular polymer in explicit solvent and compare the performance with temperature-based replica exchange MD (T-REMD) as well as cMD. As a test system, we consider a relatively simple all-atom model of supramolecular polymerization (namely, benzene-1,3,5-tricarboxamides in methylcyclohexane solvent). Our results show that both REST and T-REMD are able to predict highly ordered polymer structures with helical H-bonding patterns, in contrast to cMD which completely fails to obtain such a structure for the present model. At the same time, we have also experienced some technical challenge (i.e., aggregation-dispersion transition and the resulting bottleneck for replica traversal), which is illustrated numerically. Since the computational cost of REST scales more moderately than T-REMD, we expect that REST will be useful for studying the self-assembly of larger systems in solution with enhanced rearrangement of monomers.

  13. Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures

    PubMed Central

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A. John

    2012-01-01

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1, 2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. PMID:22806089

  14. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.

    PubMed

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John

    2012-07-02

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization (3).

  15. Crystal Ball Replica

    NASA Astrophysics Data System (ADS)

    Ajamian, John

    2016-09-01

    The A2 collaboration of the Institute for Nuclear Physics of Johannes Gutenberg University performs research on (multiple) meson photoproduction and nucleon structure and dynamics using a high energy polarized photon beam at specific targets. Particles scattered from the target are detected in the Crystal Ball, or CB. The CB is composed of 672 NaI crystals that surround the target and can analyze particle type and energy of ejected particles. Our project was to create a replica of the CB that could display what was happening in real time on a 3 Dimensional scale replica. Our replica was constructed to help explain the physics to the general public, be used as a tool when calibrating each of the 672 NaI crystals, and to better analyze the electron showering of particles coming from the target. This poster will focus on the hardware steps necessary to construct the replica and wire the 672 programmable LEDS in such a way that they can be mapped to correspond to the Crystal Ball elements. George Washington NSF Grant.

  16. Supramolecular engineering of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Jian, Kengqing

    This thesis identifies a new and flexible route to control graphene layer structure in carbons, which is the key to carbon properties and applications, and focuses on the synthesis, structure-property relationships, and potential applications of new "supramolecular" carbon nanomaterials. This new approach begins with the studies of surface anchoring and assembly mechanisms among planar discotic liquid crystals. The results show that disk-like polyaromatics exhibit weak noncovalent interactions with most surfaces and prefer edge-on anchoring at these surfaces; only on a few surfaces such as graphite and platinum, they prefer face-on anchoring. A theory of pi-pi bond preservation has been proposed to explain the wetting, anchoring, and assembly phenomena. Based on the assembly study, a supramolecular approach was developed, which uses surfaces, flows, and confinement to create well-defined order in discotic liquid crystals, which can then be covalently captured by cross-linking and converted into a carbon material whose structure is an accurate replica of the molecular order in the precursor. This technique has been successfully applied to create innovative nanocarbons with controllable nanostructures. The new nanomaterials synthesized by supramolecular route include organic and carbon films with precise crystal structure control using surface anchoring and flow. Lithographic techniques were employed to make micro-patterned surfaces with preprogrammed molecular orientations. Fully dense and ordered carbon thin films were prepared from lytropic liquid crystals. These films exhibit surfaces rich in edge-sites and are either anisotropic unidirectional or multi-domain. In addition, four different types of high-aspect-ratio nanocarbons were synthesized and analyzed: (1) "orthogonal" carbon nanofibers with perpendicular graphene layers, (2) "concentric" C/C-composite nanofibers with graphene layers parallel to the fiber axis, (3) "inverted" nanotubes exhibiting graphene edge planes at both inner and outer surfaces, and (4) nanoribbons. Finally, a set of mesoporous carbons were synthesized with both porous structure and interfacial structure systematically controlled by liquid crystal templating. A quantitative model was developed for carbon surface area prediction. In addition to synthesis, this thesis includes extensive structural analysis and some surface characterization of these nanomaterials, and offers ideas to exploit their unique properties for applications in composites, displays, nanomedicine, and the environment.

  17. Faster protein folding using enhanced conformational sampling of molecular dynamics simulation.

    PubMed

    Kamberaj, Hiqmet

    2018-05-01

    In this study, we applied swarm particle-like molecular dynamics (SPMD) approach to enhance conformational sampling of replica exchange simulations. In particular, the approach showed significant improvement in sampling efficiency of conformational phase space when combined with replica exchange method (REM) in computer simulation of peptide/protein folding. First we introduce the augmented dynamical system of equations, and demonstrate the stability of the algorithm. Then, we illustrate the approach by using different fully atomistic and coarse-grained model systems, comparing them with the standard replica exchange method. In addition, we applied SPMD simulation to calculate the time correlation functions of the transitions in a two dimensional surface to demonstrate the enhancement of transition path sampling. Our results showed that folded structure can be obtained in a shorter simulation time using the new method when compared with non-augmented dynamical system. Typically, in less than 0.5 ns using replica exchange runs assuming that native folded structure is known and within simulation time scale of 40 ns in the case of blind structure prediction. Furthermore, the root mean square deviations from the reference structures were less than 2Å. To demonstrate the performance of new method, we also implemented three simulation protocols using CHARMM software. Comparisons are also performed with standard targeted molecular dynamics simulation method. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Classification of Streptomyces Spore Surfaces into Five Groups

    PubMed Central

    Dietz, Alma; Mathews, John

    1971-01-01

    Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607

  19. Surface-Tension Replica-Exchange Molecular Dynamics Method for Enhanced Sampling of Biological Membrane Systems.

    PubMed

    Mori, Takaharu; Jung, Jaewoon; Sugita, Yuji

    2013-12-10

    Conformational sampling is fundamentally important for simulating complex biomolecular systems. The generalized-ensemble algorithm, especially the temperature replica-exchange molecular dynamics method (T-REMD), is one of the most powerful methods to explore structures of biomolecules such as proteins, nucleic acids, carbohydrates, and also of lipid membranes. T-REMD simulations have focused on soluble proteins rather than membrane proteins or lipid bilayers, because explicit membranes do not keep their structural integrity at high temperature. Here, we propose a new generalized-ensemble algorithm for membrane systems, which we call the surface-tension REMD method. Each replica is simulated in the NPγT ensemble, and surface tensions in a pair of replicas are exchanged at certain intervals to enhance conformational sampling of the target membrane system. We test the method on two biological membrane systems: a fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer and a WALP23-POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane system. During these simulations, a random walk in surface tension space is realized. Large-scale lateral deformation (shrinking and stretching) of the membranes takes place in all of the replicas without collapse of the lipid bilayer structure. There is accelerated lateral diffusion of DPPC lipid molecules compared with conventional MD simulation, and a much wider range of tilt angle of the WALP23 peptide is sampled due to large deformation of the POPC lipid bilayer and through peptide-lipid interactions. Our method could be applicable to a wide variety of biological membrane systems.

  20. A simple and effective approach towards biomimetic replication of photonic structures from butterfly wings.

    PubMed

    Zhu, Shenmin; Zhang, Di; Chen, Zhixin; Gu, Jiajun; Li, Wenfei; Jiang, Haibo; Zhou, Gang

    2009-08-05

    A general sonochemical process is reported for the replication of photonic structures from Morpho butterfly wings in several hours. By selecting appropriate precursors, we can achieve exact replications of photonic structures in a variety of transparent metal oxides, such as titania, tin oxide and silica. The exact replications at the micro- and nanoscales were characterized by a combination of FE-SEM, TEM, EDX and Raman measurements. The optical properties of the replicas were investigated by using reflectance spectroscopy, and it was found that the interesting chromaticity of the reflected light could be adjusted simply by tuning the replica materials. An ultrasensitive SnO(2)-based chemical sensor was prepared from the SnO(2) replica. The sensor has a sensitivity of 35.3-50 ppm ethanol at 300 degrees C, accompanied by a rapid response and recovery (around 8-15 s), owing to its large surface area and photonic structure. Thus, this process could be developed to produce photonic structural ceramics which could be used in many passive and active infrared devices, especially high performance optical components and sensors.

  1. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  2. Multiscale implementation of infinite-swap replica exchange molecular dynamics.

    PubMed

    Yu, Tang-Qing; Lu, Jianfeng; Abrams, Cameron F; Vanden-Eijnden, Eric

    2016-10-18

    Replica exchange molecular dynamics (REMD) is a popular method to accelerate conformational sampling of complex molecular systems. The idea is to run several replicas of the system in parallel at different temperatures that are swapped periodically. These swaps are typically attempted every few MD steps and accepted or rejected according to a Metropolis-Hastings criterion. This guarantees that the joint distribution of the composite system of replicas is the normalized sum of the symmetrized product of the canonical distributions of these replicas at the different temperatures. Here we propose a different implementation of REMD in which (i) the swaps obey a continuous-time Markov jump process implemented via Gillespie's stochastic simulation algorithm (SSA), which also samples exactly the aforementioned joint distribution and has the advantage of being rejection free, and (ii) this REMD-SSA is combined with the heterogeneous multiscale method to accelerate the rate of the swaps and reach the so-called infinite-swap limit that is known to optimize sampling efficiency. The method is easy to implement and can be trivially parallelized. Here we illustrate its accuracy and efficiency on the examples of alanine dipeptide in vacuum and C-terminal β-hairpin of protein G in explicit solvent. In this latter example, our results indicate that the landscape of the protein is a triple funnel with two folded structures and one misfolded structure that are stabilized by H-bonds.

  3. Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas

    PubMed Central

    Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.

    2009-01-01

    BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626

  4. Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies.

    PubMed

    Knox, K; Kerber, Charles W; Singel, S A; Bailey, M J; Imbesi, S G

    2005-05-01

    Our goal was to develop and prove the accuracy of a system that would allow us to re-create live patient arterial pathology. Anatomically accurate replicas of blood vessels could allow physicians to teach and practice dangerous interventional techniques and might also be used to gather basic physiologic information. The preparation of replicas has, until now, depended on acquisition of fresh cadaver material. Using rapid prototyping, it should be able to replicate vascular pathology in a live patient. We obtained CT angiographic scan data from two patients with known arterial abnormalities. We took such data and, using proprietary software, created a 3D replica using a commercially available rapid prototyping machine. From the prototypes, using a lost wax technique, we created vessel replicas, placed those replicas in the CT scanner, then compared those images with the original scans. Comparison of the images made directly from the patient and from the replica showed that with each step, the relationships were maintained, remaining within 3% of the original, but some smoothing occurred in the final computer manipulation. From routinely obtainable CT angiographic data, it is possible to create accurate replicas of human vascular pathology with the aid of commercially available stereolithography equipment. Visual analysis of the images appeared to be as important as the measurements. With 64 and 128 slice detector scanners becoming available, acquisition times fall enough that we should be able to model rapidly moving structures such as the aortic root. (c) 2005 Wiley-Liss, Inc.

  5. Exploring the protein folding free energy landscape: coupling replica exchange method with P3ME/RESPA algorithm.

    PubMed

    Zhou, Ruhong

    2004-05-01

    A highly parallel replica exchange method (REM) that couples with a newly developed molecular dynamics algorithm particle-particle particle-mesh Ewald (P3ME)/RESPA has been proposed for efficient sampling of protein folding free energy landscape. The algorithm is then applied to two separate protein systems, beta-hairpin and a designed protein Trp-cage. The all-atom OPLSAA force field with an explicit solvent model is used for both protein folding simulations. Up to 64 replicas of solvated protein systems are simulated in parallel over a wide range of temperatures. The combined trajectories in temperature and configurational space allow a replica to overcome free energy barriers present at low temperatures. These large scale simulations reveal detailed results on folding mechanisms, intermediate state structures, thermodynamic properties and the temperature dependences for both protein systems.

  6. Materials Suitable for preparing Inorganic Nanocasts of butterflies and other insects

    NASA Astrophysics Data System (ADS)

    Silver, J.; Fern, G. R.; Ireland, T. G.

    2015-06-01

    Replication of 3D-structures, in particular those that have a periodic modulation of a dielectric material at optical wavelengths and below have proven very difficult to fabricate. The majority of such replication techniques are complex or use moisture sensitive precursors requiring the use of for example a glove box. Here we demonstrate how an air stable supersaturated europium-doped yttrium nitrate phosphor precursor solution has the ability to easily impregnate a structure or produce a cast yielding faithful replicas composed of Y2O:Eu3+ after a final short annealing step. New replicas of Lepidoptera (moth) wing scales using field emission scanning electron microscopy, structures down to 10 nm have been imaged. Moreover as these replicas are made of phosphors, their luminescence in some cases may be modulated by the internal periodic modulation built into their structures. In this work we will discuss more recent results on the use of the phosphors for making nanocasts of moth wing scales and show a range of beautiful pictures to show what the method can achieve.

  7. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masataka; Okumura, Hisashi

    2017-11-01

    We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.

  8. Passive acoustic source localization using sources of opportunity.

    PubMed

    Verlinden, Christopher M A; Sarkar, J; Hodgkiss, W S; Kuperman, W A; Sabra, K G

    2015-07-01

    The feasibility of using data derived replicas from ships of opportunity for implementing matched field processing is demonstrated. The Automatic Identification System (AIS) is used to provide the library coordinates for the replica library and a correlation based processing procedure is used to overcome the impediment that the replica library is constructed from sources with different spectra and will further be used to locate another source with its own unique spectral structure. The method is illustrated with simulation and then verified using acoustic data from a 2009 experiment for which AIS information was retrieved from the United States Coast Guard Navigation Center Nationwide AIS database.

  9. Replica Exchange with Solute Tempering: Efficiency in Large Scale Systems

    PubMed Central

    Huang, Xuhui; Hagen, Morten; Kim, Byungchan; Friesner, Richard A.; Zhou, Ruhong; Berne, B. J.

    2009-01-01

    We apply the recently developed replica exchange with solute tempering (REST) to three large solvated peptide systems: an α-helix, a β-hairpin, and a TrpCage, with these peptides defined as the “central group”. We find that our original implementation of REST is not always more efficient than the replica exchange method (REM). Specifically, we find that exchanges between folded (F) and unfolded (U) conformations with vastly different structural energies are greatly reduced by the nonappearance of the water self-interaction energy in the replica exchange acceptance probabilities. REST, however, is expected to remain useful for a large class of systems for which the energy gap between the two states is not large, such as weakly bound protein–ligand complexes. Alternatively, a shell of water molecules can be incorporated into the central group, as discussed in the original paper. PMID:17439169

  10. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    PubMed

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally

    PubMed Central

    SVITKINA, Tatyana M.

    2017-01-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208

  12. Entanglement, replicas, and Thetas

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Murthy, Sameer; Wu, Jie-Qiang

    2018-01-01

    We compute the single-interval Rényi entropy (replica partition function) for free fermions in 1+1d at finite temperature and finite spatial size by two methods: (i) using the higher-genus partition function on the replica Riemann surface, and (ii) using twist operators on the torus. We compare the two answers for a restricted set of spin structures, leading to a non-trivial proposed equivalence between higher-genus Siegel Θ-functions and Jacobi θ-functions. We exhibit this proposal and provide substantial evidence for it. The resulting expressions can be elegantly written in terms of Jacobi forms. Thereafter we argue that the correct Rényi entropy for modular-invariant free-fermion theories, such as the Ising model and the Dirac CFT, is given by the higher-genus computation summed over all spin structures. The result satisfies the physical checks of modular covariance, the thermal entropy relation, and Bose-Fermi equivalence.

  13. Spatially controlled carbon sponge for targeting internalized radioactive materials in human body.

    PubMed

    Hong, Jin-Yong; Oh, Wan-Kyu; Shin, Keun-Young; Kwon, Oh Seok; Son, Suim; Jang, Jyongsik

    2012-07-01

    Carbon sponge, an adsorbent with spatially controlled structure is demonstrated for targeting internalized radiocesium and other radionuclides in human body. Three dimensionally ordered macroporous (3DOM) carbons derived from inverse opal replicas of colloidal-crystal template exhibit large surface area and high porosity, resulting in highly efficient adsorbents for radionuclides. It is also possible to enhance binding affinity and selectivity to radionuclide targets by decoration of 3DOM carbon surfaces with Prussian blue (PB) nanoparticles, and synthesized PB nanoparticles reveal low toxicity toward macrophage cells with potential advantages over oral administration. It is noteworthy that the maximum (133)Cs adsorption capacity of PB-decorated 3DOM carbons is 40.07 mmol g(-1) which is ca. 30 and 200 times higher than that of commercialized medicine Radiogardase(®) and bulk PB, respectively. Further, adsorption kinetics study indicates that the PB-decorated 3DOM carbons have the homogenous surface for (133)Cs ion adsorption and all sites have equal adsorption energies in terms of ion exchange between the cyano groups of the PB-decorated 3DOM carbons and radionuclides. As a concept of the oral-administrable "carbon sponge", the PB-decorated 3DOM carbons offer useful implications in the separation science of radioactive materials and important insight for designing novel materials for treatment of patients or suspected internal contamination with radioactive materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Validation of the replica trick for simple models

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.

  15. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  16. Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids.

    PubMed

    Wang, Yichun; Bahng, Joong Hwan; Che, Quantong; Han, Jishu; Kotov, Nicholas A

    2015-08-25

    Understanding transport of carbon nanotubes (CNTs) and other nanocarriers within tissues is essential for biomedical imaging and drug delivery using these carriers. Compared to traditional cell cultures in animal studies, three-dimensional tissue replicas approach the complexity of the actual organs and enable high temporal and spatial resolution of the carrier permeation. We investigated diffusional transport of CNTs in highly uniform spheroids of hepatocellular carcinoma and found that apparent diffusion coefficients of CNTs in these tissue replicas are anomalously high and comparable to diffusion rates of similarly charged molecules with molecular weights 10000× lower. Moreover, diffusivity of CNTs in tissues is enhanced after functionalization with transforming growth factor β1. This unexpected trend contradicts predictions of the Stokes-Einstein equation and previously obtained empirical dependences of diffusivity on molecular mass for permeants in gas, liquid, solid or gel. It is attributed to the planar diffusion (gliding) of CNTs along cellular membranes reducing effective dimensionality of diffusional space. These findings indicate that nanotubes and potentially similar nanostructures are capable of fast and deep permeation into the tissue, which is often difficult to realize with anticancer agents.

  17. Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nanofibers array structures

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjun; Lyu, Sungnam; Lee, Sangmin; Kim, Youn Sang; Hwang, Woonbong

    2010-09-01

    Transparent super-hydrophobic films were fabricated using the PDMS method and silane process, based on anodization in phosphoric acid. Contact angle tests were performed to determine the contact angle of each film according to the anodizing time. Transmittance tests also were performed to obtain the transparency of each TPT (trimethylolpropane propoxylate triacrylate) replica film according to the anodizing time. The contact angle was determined by studying the drop shape, and the transmittance was measured using a UV-spectrometer. The contact angle increases with increasing anodizing time, because increasing pillar length can trap more air between the TPT replica film and a drop of water. The transmittance falls with increasing anodizing time because the increasing pillar length causes a scattering effect. This study shows that the pillar length and transparency are inversely proportional. The TPT replica film having nanofibers array structures was better than other films in aspect of self-cleaning by doing quantitative experimentation.

  18. Predicting folding-unfolding transitions in proteins without a priori knowledge of the folded state

    NASA Astrophysics Data System (ADS)

    Okan, Osman; Turgut, Deniz; Garcia, Angel; Ozisik, Rahmi

    2013-03-01

    The common computational method of studying folding transitions in proteins is to compare simulated conformations against the folded structure, but this method obviously requires the folded structure to be known beforehand. In the current study, we show that the use of bond orientational order parameter (BOOP) Ql [Steinhardt PJ, Nelson DR, Ronchetti M, Phys. Rev. B 1983, 28, 784] is a viable alternative to the commonly adopted root mean squared distance (RMSD) measure in probing conformational transitions. Replica exchange molecular dynamics simulations of the trp-cage protein (with 20 residues) in TIP-3P water were used to compare BOOP against RMSD. The results indicate that the correspondence between BOOP and RMSD time series become stronger with increasing l. We finally show that robust linear models that incorporate different Ql can be parameterized from a given replica run and can be used to study other replica trajectories. This work is partially supported by NSF DUE-1003574.

  19. CFRP composite mirrors for space telescopes and their micro-dimensional stability

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2010-07-01

    Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated to demonstrate their feasibility for light wavelength applications. The CTE (coefficient of thermal expansion) of the all- CFRP sandwich panels was tailored to be smaller than 1×10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 1.8 um RMS as fabricated and the surface smoothness was improved to 20 nm RMS by using a replica technique. Moisture expansion was considered the largest in un-predictable surface preciseness errors. The moisture expansion affected not only homologous shape change but also out-of-plane distortion especially in unsymmetrical compositions. Dimensional stability due to the moisture expansion was compared with a structural mathematical model.

  20. Insights into the folding pathway of the Engrailed Homeodomain protein using replica exchange molecular dynamics simulations.

    PubMed

    Koulgi, Shruti; Sonavane, Uddhavesh; Joshi, Rajendra

    2010-11-01

    Protein folding studies were carried out by performing microsecond time scale simulations on the ultrafast/fast folding protein Engrailed Homeodomain (EnHD) from Drosophila melanogaster. It is a three-helix bundle protein consisting of 54 residues (PDB ID: 1ENH). The positions of the helices are 8-20 (Helix I), 26-36 (Helix II) and 40-53 (Helix III). The second and third helices together form a Helix-Turn-Helix (HTH) motif which belongs to the family of DNA binding proteins. The molecular dynamics (MD) simulations were performed using replica exchange molecular dynamics (REMD). REMD is a method that involves simulating a protein at different temperatures and performing exchanges at regular time intervals. These exchanges were accepted or rejected based on the Metropolis criterion. REMD was performed using the AMBER FF03 force field with the generalised Born solvation model for the temperature range 286-373 K involving 30 replicas. The extended conformation of the protein was used as the starting structure. A simulation of 600 ns per replica was performed resulting in an overall simulation time of 18 μs. The protein was seen to fold close to the native state with backbone root mean square deviation (RMSD) of 3.16 Å. In this low RMSD structure, the Helix I was partially formed with a backbone RMSD of 3.37 Å while HTH motif had an RMSD of 1.81 Å. Analysis suggests that EnHD folds to its native structure via an intermediate in which the HTH motif is formed. The secondary structure development occurs first followed by tertiary packing. The results were in good agreement with the experimental findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writing

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Wissmann, Markus; Guttmann, Markus; Kolew, Alexander; Worgull, Matthias; Barié, Nicole; Schneider, Marc; Hofmann, Andreas; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-07-01

    This paper presents the hot-embossing replication of self-centering fiber alignment structures for high-precision, single-mode optical fiber connectors. To this end, a metal mold insert was fabricated by electroforming a polymer prototype patterned by means of deep proton writing (DPW). To achieve through-hole structures, we developed a postembossing process step to remove the residual layer inherently present in hot-embossed structures. The geometrical characteristics of the hot-embossed replicas are compared, before and after removal of the residual layer, with the DPW prototypes. Initial measurements on the optical performance of the replicas are performed. The successful replication of these components paves the way toward low-cost mass replication of DPW-fabricated prototypes in a variety of high-tech plastics.

  2. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    PubMed

    Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L

    2016-08-22

    Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.

  3. Multiple Replica Repulsion Technique for Efficient Conformational Sampling of Biological Systems

    PubMed Central

    Malevanets, Anatoly; Wodak, Shoshana J.

    2011-01-01

    Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed “multiple replica repulsion” (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. PMID:21843487

  4. Soft Lithography

    NASA Astrophysics Data System (ADS)

    Xia, Younan; Whitesides, George M.

    1998-08-01

    Soft lithography represents a non-photolithographic strategy based on selfassembly and replica molding for carrying out micro- and nanofabrication. It provides a convenient, effective, and low-cost method for the formation and manufacturing of micro- and nanostructures. In soft lithography, an elastomeric stamp with patterned relief structures on its surface is used to generate patterns and structures with feature sizes ranging from 30 nm to 100 mum. Five techniques have been demonstrated: microcontact printing (muCP), replica molding (REM), microtransfer molding (muTM), micromolding in capillaries (MIMIC), and solvent-assisted micromolding (SAMIM). In this chapter we discuss the procedures for these techniques and their applications in micro- and nanofabrication, surface chemistry, materials science, optics, MEMS, and microelectronics.

  5. Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy.

    PubMed Central

    Pollanen, M. S.; Markiewicz, P.; Bergeron, C.; Goh, M. C.

    1994-01-01

    Progressive deposition of phosphorylated tau into the paired helical filaments (PHF) that compose neurofibrillary tangles, dystrophic neurites, and neuropil threads is an obligate feature of Alzheimer's disease. The standard model of PHF structure, derived from electron microscopic studies, suggests that two 8- to 10-nm filaments each composed of three to four protofilaments are wound into a helix with a maximal diameter of -20 nm and a half period of 65 to 80 nm. However, recent vertical platinum-carbon replicas of PHF more closely resemble a thin helical ribbon without constitutive protofilaments. Here we report that native PHF imaged with an atomic force microscope appear as twisted ribbons rather than the generally accepted structure derived from electron microscopic studies. These data imply that the assembly of PHF is not due to the twisting of pair-wise filaments but rather the helical winding of self-associated tau molecules arranged into a flattened structure. Future structural models of PHF should be based on quantitative data obtained from imaging techniques, such as scanning probe microscopy, which do not require harsh specimen preparation procedures. Images Figure 1 PMID:8178938

  6. Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy.

    PubMed

    Pollanen, M S; Markiewicz, P; Bergeron, C; Goh, M C

    1994-05-01

    Progressive deposition of phosphorylated tau into the paired helical filaments (PHF) that compose neurofibrillary tangles, dystrophic neurites, and neuropil threads is an obligate feature of Alzheimer's disease. The standard model of PHF structure, derived from electron microscopic studies, suggests that two 8- to 10-nm filaments each composed of three to four protofilaments are wound into a helix with a maximal diameter of -20 nm and a half period of 65 to 80 nm. However, recent vertical platinum-carbon replicas of PHF more closely resemble a thin helical ribbon without constitutive protofilaments. Here we report that native PHF imaged with an atomic force microscope appear as twisted ribbons rather than the generally accepted structure derived from electron microscopic studies. These data imply that the assembly of PHF is not due to the twisting of pair-wise filaments but rather the helical winding of self-associated tau molecules arranged into a flattened structure. Future structural models of PHF should be based on quantitative data obtained from imaging techniques, such as scanning probe microscopy, which do not require harsh specimen preparation procedures.

  7. Structure of Alzheimer's 10-35 β peptide from replica-exchange molecular dynamics simulations in explicit water

    NASA Astrophysics Data System (ADS)

    Baumketner, Andriy; Shea, Joan-Emma

    2006-03-01

    We report a replica-exchange molecular dynamics study of the 10-35 fragment of Alzheimer's disease amyloid β peptide, Aβ10-35, in aqueous solution. This fragment was previously seen [J. Str. Biol. 130 (2000) 130] to possess all the most important amyloidogenic properties characteristic of full-length Aβ peptides. Our simulations attempted to fold Aβ10-35 from first principles. The peptide was modeled using all-atom OPLS/AA force field in conjunction with the TIP3P explicit solvent model. A total of 72 replicas were considered and simulated over 40 ns of total time, including 5 ns of initial equilibration. We find that Aβ10-35 does not possess any unique folded state, a 3D structure of predominant population, under normal temperature and pressure. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is seen to be dominated by random coil and bend structures with insignificant presence of α-helical or β-sheet structure. We find that, overall, the 3D structure of Aβ10-35 is shaped by salt bridges formed between oppositely charged residues.Of all possible salt bridges, K28-D23 was seen to have the highest formation probability, totaling more than 60% of the time.

  8. Mimicking the action of folding chaperones by Hamiltonian replica-exchange molecular dynamics simulations: application in the refinement of de novo models.

    PubMed

    Fan, Hao; Periole, Xavier; Mark, Alan E

    2012-07-01

    The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH-REMD approach sampled structures in which the root-mean-square deviation (RMSD) of secondary structure elements (SSE-RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near-native conformations was also examined. Little correlation between the SSE-RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE-RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced-sampling techniques such as CH-REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near-native structures are still needed. Copyright © 2012 Wiley Periodicals, Inc.

  9. How hot? Systematic convergence of the replica exchange method using multiple reservoirs.

    PubMed

    Ruscio, Jory Z; Fawzi, Nicolas L; Head-Gordon, Teresa

    2010-02-01

    We have devised a systematic approach to converge a replica exchange molecular dynamics simulation by dividing the full temperature range into a series of higher temperature reservoirs and a finite number of lower temperature subreplicas. A defined highest temperature reservoir of equilibrium conformations is used to help converge a lower but still hot temperature subreplica, which in turn serves as the high-temperature reservoir for the next set of lower temperature subreplicas. The process is continued until an optimal temperature reservoir is reached to converge the simulation at the target temperature. This gradual convergence of subreplicas allows for better and faster convergence at the temperature of interest and all intermediate temperatures for thermodynamic analysis, as well as optimizing the use of multiple processors. We illustrate the overall effectiveness of our multiple reservoir replica exchange strategy by comparing sampling and computational efficiency with respect to replica exchange, as well as comparing methods when converging the structural ensemble of the disordered Abeta(21-30) peptide simulated with explicit water by comparing calculated Rotating Overhauser Effect Spectroscopy intensities to experimentally measured values. Copyright 2009 Wiley Periodicals, Inc.

  10. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  11. Comparative characterization of short monomeric polyglutamine peptides by replica exchange molecular dynamics simulation.

    PubMed

    Nakano, Miki; Watanabe, Hirofumi; Rothstein, Stuart M; Tanaka, Shigenori

    2010-05-27

    Polyglutamine (polyQ) diseases are caused by an abnormal expansion of CAG repeats. While their detailed structure remains unclear, polyQ peptides assume beta-sheet structures when they aggregate. To investigate the conformational ensemble of short, monomeric polyQ peptides, which consist of 15 glutamine residues (Q(15)), we performed replica exchange molecular dynamics (REMD) simulations. We found that Q(15) can assume multiple configurations due to all of the residues affecting the formation of side-chain hydrogen bonds. Analysis of the free energy landscape reveals that Q(15) has a basin for random-coil structures and another for alpha-helix or beta-turn structures. To investigate properties of aggregated polyQ peptides, we performed multiple molecular dynamics (MMD) simulations for monomeric and oligomeric Q(15). MMD revealed that the formation of oligomers stabilizes the beta-turn structure by increasing the number of hydrogen bonds between the main chains.

  12. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-967.

  13. Development and validation of a canine radius replica for mechanical testing of orthopedic implants.

    PubMed

    Little, Jeffrey P; Horn, Timothy J; Marcellin-Little, Denis J; Harrysson, Ola L A; West, Harvey A

    2012-01-01

    To design and fabricate fiberglass-reinforced composite (FRC) replicas of a canine radius and compare their mechanical properties with those of radii from dog cadavers. Replicas based on 3 FRC formulations with 33%, 50%, or 60% short-length discontinuous fiberglass by weight (7 replicas/group) and 5 radii from large (> 30-kg) dog cadavers. Bones and FRC replicas underwent nondestructive mechanical testing including 4-point bending, axial loading, and torsion and destructive testing to failure during 4-point bending. Axial, internal and external torsional, and bending stiffnesses were calculated. Axial pullout loads for bone screws placed in the replicas and cadaveric radii were also assessed. Axial, internal and external torsional, and 4-point bending stiffnesses of FRC replicas increased significantly with increasing fiberglass content. The 4-point bending stiffness of 33% and 50% FRC replicas and axial and internal torsional stiffnesses of 33% FRC replicas were equivalent to the cadaveric bone stiffnesses. Ultimate 4-point bending loads did not differ significantly between FRC replicas and bones. Ultimate screw pullout loads did not differ significantly between 33% or 50% FRC replicas and bones. Mechanical property variability (coefficient of variation) of cadaveric radii was approximately 2 to 19 times that of FRC replicas, depending on loading protocols. Within the range of properties tested, FRC replicas had mechanical properties equivalent to and mechanical property variability less than those of radii from dog cadavers. Results indicated that FRC replicas may be a useful alternative to cadaveric bones for biomechanical testing of canine bone constructs.

  14. Replica exchange with solute tempering: A method for sampling biological systems in explicit water

    NASA Astrophysics Data System (ADS)

    Liu, Pu; Kim, Byungchan; Friesner, Richard A.; Berne, B. J.

    2005-09-01

    An innovative replica exchange (parallel tempering) method called replica exchange with solute tempering (REST) for the efficient sampling of aqueous protein solutions is presented here. The method bypasses the poor scaling with system size of standard replica exchange and thus reduces the number of replicas (parallel processes) that must be used. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST is compared with standard replica exchange for an alanine dipeptide molecule in water. The comparisons confirm that REST greatly reduces the number of CPUs required by regular replica exchange and increases the sampling efficiency. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water. Author contributions: B.J.B. designed research; P.L. and B.K. performed research; P.L. and B.K. analyzed data; and P.L., B.K., R.A.F., and B.J.B. wrote the paper.Abbreviations: REST, replica exchange with solute tempering; REM, replica exchange method; MD, molecular dynamics.*P.L. and B.K. contributed equally to this work.

  15. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

    PubMed Central

    Refatul Haq, Muhammad; Kim, Youngkyu; Kim, Jun; Oh, Pyoung-hwa; Ju, Jonghyun; Kim, Seok-Min; Lim, Jiseok

    2017-01-01

    This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC) stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated. PMID:29286341

  16. Finite temperature properties of clusters by replica exchange metadynamics: the water nonamer.

    PubMed

    Zhai, Yingteng; Laio, Alessandro; Tosatti, Erio; Gong, Xin-Gao

    2011-03-02

    We introduce an approach for the accurate calculation of thermal properties of classical nanoclusters. On the basis of a recently developed enhanced sampling technique, replica exchange metadynamics, the method yields the true free energy of each relevant cluster structure, directly sampling its basin and measuring its occupancy in full equilibrium. All entropy sources, whether vibrational, rotational anharmonic, or especially configurational, the latter often forgotten in many cluster studies, are automatically included. For the present demonstration, we choose the water nonamer (H(2)O)(9), an extremely simple cluster, which nonetheless displays a sufficient complexity and interesting physics in its relevant structure spectrum. Within a standard TIP4P potential description of water, we find that the nonamer second relevant structure possesses a higher configurational entropy than the first, so that the two free energies surprisingly cross for increasing temperature.

  17. Finite Temperature Properties of Clusters by Replica Exchange Metadynamics: The Water Nonamer

    NASA Astrophysics Data System (ADS)

    Zhai, Yingteng; Laio, Alessandro; Tosatti, Erio; Gong, Xingao

    2012-02-01

    We introduce an approach for the accurate calculation of thermal properties of classical nanoclusters. Based on a recently developed enhanced sampling technique, replica exchange metadynamics, the method yields the true free energy of each relevant cluster structure, directly sampling its basin and measuring its occupancy in full equilibrium. All entropy sources, whether vibrational, rotational anharmonic and especially configurational -- the latter often forgotten in many cluster studies -- are automatically included. For the present demonstration we choose the water nonamer (H2O)9, an extremely simple cluster which nonetheless displays a sufficient complexity and interesting physics in its relevant structure spectrum. Within a standard TIP4P potential description of water, we find that the nonamer second relevant structure possesses a higher configurational entropy than the first, so that the two free energies surprisingly cross for increasing temperature.

  18. Evaluation of enhanced sampling provided by accelerated molecular dynamics with Hamiltonian replica exchange methods.

    PubMed

    Roe, Daniel R; Bergonzo, Christina; Cheatham, Thomas E

    2014-04-03

    Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency.

  19. A novel three-dimensional large-pore mesoporous carbon matrix as a potential nanovehicle for the fast release of the poorly water-soluble drug, celecoxib.

    PubMed

    Zhang, Yanzhuo; Wang, Hong; Li, Chuanjun; Sun, Baoxiang; Wang, Yu; Wang, Siling; Gao, Cunqiang

    2014-04-01

    A novel mesocellular carbon foam (MSU-FC) with a large pore size and a three-dimensional porous structure for the oral delivery of poorly water-soluble drugs was prepared. The goal of this study was to improve in vitro dissolution and in vivo absorption of celecoxib (CEB), a model drug, by means of novel carbon-based nanoparticles prepared from the MSU-FC matrix. The MSU-FC matrix was synthesized by an inverse replica templating method using mesocellular silica template. A solvent immersion/evaporation method was used to load the drug molecules. The drug-loaded nanoparticles were characterized for morphology, surface area, particle size, mesoporous structure, crystallinity, solubility and dissolution. The effect of MSU-FC on cell viability was measured using the MTT conversion assay. Furthermore, the oral bioavailability of CEB-loaded MSU-FC in fasted rats was compared with that of the marketed product. Our results demonstrate that CEB incorporation into the prepared MSU-FC resulted in an approximately 9-fold increase in aqueous solubility in comparison with crystalline CEB. MSU-FC produced accelerated immediate release of CEB in comparison with crystalline CEB (pure CEB powder or marketed formulation) and the drug-loaded conventional mesoporous carbon particles. The relative bioavailability of CEB for CEB-loaded MSU-FC was 172%. In addition, MSU-FC nanoparticles exhibited very low toxicity. The MSU-FC nanomatrix has been shown to be a promising drug delivery vehicle for improving the dissolution and biopharmaceutical characteristics of poorly water-soluble drugs.

  20. Storing files in a parallel computing system using list-based index to identify replica files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy

    Improved techniques are provided for storing files in a parallel computing system using a list-based index to identify file replicas. A file and at least one replica of the file are stored in one or more storage nodes of the parallel computing system. An index for the file comprises at least one list comprising a pointer to a storage location of the file and a storage location of the at least one replica of the file. The file comprises one or more of a complete file and one or more sub-files. The index may also comprise a checksum value formore » one or more of the file and the replica(s) of the file. The checksum value can be evaluated to validate the file and/or the file replica(s). A query can be processed using the list.« less

  1. The Construction and Validation of All-Atom Bulk-Phase Models of Amorphous Polymers Using the TIGER2/TIGER3 Empirical Sampling Method

    PubMed Central

    Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A.

    2011-01-01

    A new empirical sampling method termed “temperature intervals with global exchange of replicas and reduced radii” (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages – heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly(butyl methacrylate), and DTB-succinate copolymer. Calculated glass transition temperature (Tg) and structural parameter profile (S(q)) for each resulting polymer model were found to be in close agreement with experimental Tg values and structural measurements obtained by x-ray diffraction, thus validating that the developed methods provide realistic models of amorphous polymer structure. PMID:21769156

  2. Quantum structural fluctuation in para-hydrogen clusters revealed by the variational path integral method

    NASA Astrophysics Data System (ADS)

    Miura, Shinichi

    2018-03-01

    In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.

  3. Quantum structural fluctuation in para-hydrogen clusters revealed by the variational path integral method.

    PubMed

    Miura, Shinichi

    2018-03-14

    In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.

  4. Early stages of carbonate mineralization revealed from molecular simulations: Implications for biomineral formation

    NASA Astrophysics Data System (ADS)

    Wallace, A. F.; DeYoreo, J.; Banfield, J. F.

    2011-12-01

    The carbonate mineral constituents of many biomineralized products, formed both in and ex vivo, grow by a multi-stage crystallization process that involves the nucleation and structural reorganization of transient amorphous phases. The existence of transient phases and cluster species has significant implications for carbonate nucleation and growth in natural and engineered environments, both modern and ancient. The structure of these intermediate phases remains elusive, as does the nature of the disorder to order transition, however, these process details may strongly influence the interpretation of elemental and isotopic climate proxy data obtained from authigenic and biogenic carbonates. While molecular simulations have been applied to certain aspects of crystal growth, studies of metal carbonate nucleation are strongly inhibited by the presence of kinetic traps that prevent adequate sampling of the potential landscape upon which the growing clusters reside within timescales accessible by simulation. This research addresses this challenge by marrying the recent Kawska-Zahn (KZ) approach to simulation of crystal nucleation and growth from solution with replica-exchange molecular dynamics (REMD) techniques. REMD has been used previously to enhance sampling of protein conformations that occupy energy wells that are separated by sizable thermodynamic and kinetic barriers, and is used here to probe the initial formation and onset of order within hydrated calcium and iron carbonate cluster species during nucleation. Results to date suggest that growing clusters initiate as short linear ion chains that evolve into two- and three-dimensional structures with continued growth. The planar structures exhibit an obvious 2d lattice, while establishment of a 3d lattice is hindered by incomplete ion desolvation. The formation of a dehydrated core consisting of a single carbonate ion is observed when the clusters are ~0.75 nm. At the same size a distorted, but discernible calcite-type lattice is also apparent. Continued growth results in expansion of the dehydrated core, however, complete desolvation and incorporation of cations into the growing carbonate phase is not achieved until the cluster grows to ~1.2 nm. Exploration of the system free energy along the crystallization path reveals "special" cluster sizes that correlate with ion desolvation milestones. The formation of these species comprise critical bottlenecks on the energy landscape and for the establishment of order within the growing clusters.

  5. Accuracy and repeatability of long-bone replicas of small animals fabricated by use of low-end and high-end commercial three-dimensional printers.

    PubMed

    Cone, Jamie A; Martin, Thomas M; Marcellin-Little, Denis J; Harrysson, Ola L A; Griffith, Emily H

    2017-08-01

    OBJECTIVE To assess the repeatability and accuracy of polymer replicas of small, medium, and large long bones of small animals fabricated by use of 2 low-end and 2 high-end 3-D printers. SAMPLE Polymer replicas of a cat femur, dog radius, and dog tibia were fabricated in triplicate by use of each of four 3-D printing methods. PROCEDURES 3-D renderings of the 3 bones reconstructed from CT images were prepared, and length, width of the proximal aspect, and width of the distal aspect of each CT image were measured in triplicate. Polymer replicas were fabricated by use of a high-end system that relied on jetting of curable liquid photopolymer, a high-end system that relied on polymer extrusion, a triple-nozzle polymer extrusion low-end system, and a dual-nozzle polymer extrusion low-end system. Polymer replicas were scanned by use of a laser-based coordinate measurement machine. Length, width of the proximal aspect, and width of the distal aspect of the scans of replicas were measured and compared with measurements for the 3-D renderings. RESULTS 129 measurements were collected for 34 replicas (fabrication of 1 large long-bone replica was unsuccessful on each of the 2 low-end printers). Replicas were highly repeatable for all 3-D printers. The 3-D printers overestimated dimensions of large replicas by approximately 1%. CONCLUSIONS AND CLINICAL RELEVANCE Low-end and high-end 3-D printers fabricated CT-derived replicas of bones of small animals with high repeatability. Replicas were slightly larger than the original bones.

  6. Non-invasive Florentine Renaissance Panel Painting Replica Structures Investigation by Using Terahertz Time-Domain Imaging (THz-TDI) Technique

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, Corinna L.; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd

    2016-11-01

    The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to provide insights as to the limits and potentials of the technique in detecting different kinds of underdrawings and paint layers. Constituent layers, construction techniques, and anomalies were identified and localized by interpreting the extracted THz dielectric stratigraphy.

  7. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods

    PubMed Central

    2015-01-01

    Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency. PMID:24625009

  8. A Validation Study of the Impression Replica Technique.

    PubMed

    Segerström, Sofia; Wiking-Lima de Faria, Johanna; Braian, Michael; Ameri, Arman; Ahlgren, Camilla

    2018-04-17

    To validate the well-known and often-used impression replica technique for measuring fit between a preparation and a crown in vitro. The validation consisted of three steps. First, a measuring instrument was validated to elucidate its accuracy. Second, a specimen consisting of male and female counterparts was created and validated by the measuring instrument. Calculations were made for the exact values of three gaps between the male and female. Finally, impression replicas were produced of the specimen gaps and sectioned into four pieces. The replicas were then measured with the use of a light microscope. The values received from measuring the specimen were then compared with the values received from the impression replicas, and the technique was thereby validated. The impression replica technique overvalued all measured gaps. Depending on location of the three measuring sites, the difference between the specimen and the impression replicas varied from 47 to 130 μm. The impression replica technique overestimates gaps within the range of 2% to 11%. The validation of the replica technique enables the method to be used as a reference when testing other methods for evaluating fit in dentistry. © 2018 by the American College of Prosthodontists.

  9. Ergodicity and model quality in template-restrained canonical and temperature/Hamiltonian replica exchange coarse-grained molecular dynamics simulations of proteins.

    PubMed

    Karczyńska, Agnieszka S; Czaplewski, Cezary; Krupa, Paweł; Mozolewska, Magdalena A; Joo, Keehyoung; Lee, Jooyoung; Liwo, Adam

    2017-12-05

    Molecular simulations restrained to single or multiple templates are commonly used in protein-structure modeling. However, the restraints introduce additional barriers, thus impairing the ergodicity of simulations, which can affect the quality of the resulting models. In this work, the effect of restraint types and simulation schemes on ergodicity and model quality was investigated by performing template-restrained canonical molecular dynamics (MD), multiplexed replica-exchange molecular dynamics, and Hamiltonian replica exchange molecular dynamics (HREMD) simulations with the coarse-grained UNRES force field on nine selected proteins, with pseudo-harmonic log-Gaussian (unbounded) or Lorentzian (bounded) restraint functions. The best ergodicity was exhibited by HREMD. It has been found that non-ergodicity does not affect model quality if good templates are used to generate restraints. However, when poor-quality restraints not covering the entire protein are used, the improved ergodicity of HREMD can lead to significantly improved protein models. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Alternative Fuels Data Center: Semi Service Outfits Replica Batmobile to

    Science.gov Websites

    Run on Natural Gas Semi Service Outfits Replica Batmobile to Run on Natural Gas to someone by E -mail Share Alternative Fuels Data Center: Semi Service Outfits Replica Batmobile to Run on Natural Gas on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Semi Service Outfits Replica

  11. Precipitation behavior in austenitic and ferritic steels during fast neutron irradiation and thermal aging*1

    NASA Astrophysics Data System (ADS)

    Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.

    1988-07-01

    Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1 × 10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6C in JPCA-2.

  12. Leaf Histology--Two Modern Methods.

    ERIC Educational Resources Information Center

    Freeman, H. E.

    1984-01-01

    Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)

  13. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following: (1...

  14. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following: (1...

  15. Finite Size Corrections to the Parisi Overlap Function in the GREM

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Mottishaw, Peter

    2018-01-01

    We investigate the effects of finite size corrections on the overlap probabilities in the Generalized Random Energy Model in two situations where replica symmetry is broken in the thermodynamic limit. Our calculations do not use replicas, but shed some light on what the replica method should give for finite size corrections. In the gradual freezing situation, which is known to exhibit full replica symmetry breaking, we show that the finite size corrections lead to a modification of the simple relations between the sample averages of the overlaps Y_k between k configurations predicted by replica theory. This can be interpreted as fluctuations in the replica block size with a negative variance. The mechanism is similar to the one we found recently in the random energy model in Derrida and Mottishaw (J Stat Mech 2015(1): P01021, 2015). We also consider a simultaneous freezing situation, which is known to exhibit one step replica symmetry breaking. We show that finite size corrections lead to full replica symmetry breaking and give a more complete derivation of the results presented in Derrida and Mottishaw (Europhys Lett 115(4): 40005, 2016) for the directed polymer on a tree.

  16. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics.

    PubMed

    Czaplewski, Cezary; Karczynska, Agnieszka; Sieradzan, Adam K; Liwo, Adam

    2018-04-30

    A server implementation of the UNRES package (http://www.unres.pl) for coarse-grained simulations of protein structures with the physics-based UNRES model, coined a name UNRES server, is presented. In contrast to most of the protein coarse-grained models, owing to its physics-based origin, the UNRES force field can be used in simulations, including those aimed at protein-structure prediction, without ancillary information from structural databases; however, the implementation includes the possibility of using restraints. Local energy minimization, canonical molecular dynamics simulations, replica exchange and multiplexed replica exchange molecular dynamics simulations can be run with the current UNRES server; the latter are suitable for protein-structure prediction. The user-supplied input includes protein sequence and, optionally, restraints from secondary-structure prediction or small x-ray scattering data, and simulation type and parameters which are selected or typed in. Oligomeric proteins, as well as those containing D-amino-acid residues and disulfide links can be treated. The output is displayed graphically (minimized structures, trajectories, final models, analysis of trajectory/ensembles); however, all output files can be downloaded by the user. The UNRES server can be freely accessed at http://unres-server.chem.ug.edu.pl.

  17. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.

    PubMed

    Li, Shujuan; Schmidt, Burkhard

    2015-03-21

    The present work deals with molecular dynamics simulations of water confined in single-walled carbon nanotubes (CNTs), with emphasis on the proton-ordering of water and its polarization. First, the water occupancy of open-ended armchair and zigzag CNTs immersed in water under ambient NPT conditions is calculated for various water models, and for varying Lennard-Jones parameters of the water-carbon interaction. As a function of the CNT diameter, the water density displays several oscillations before converging to the bulk value. Based on these results, the water structures encapsulated in 10 nm long armchair CNTs (n,n) with 5 ≤ n ≤ 10, are investigated under NVT conditions. Inside the smallest nanotubes (n = 5, 6) highly ferroelectric (FE), quasi-one-dimensional water chains are found while inside the other CNTs water molecules assemble into single-walled ice nanotubes (INTs). There are several, near-degenerate minimum energy INT structures: single helical structures were found for 7 ≤ n ≤ 10, in all cases in FE arrangement. In addition, a double helical INT structure was found for n = 8 with an even higher polarization. Prism-like structures were found only for 8 ≤ n ≤ 10 with various FE, ferrielectric (FI), and antiferroelectric (AF, n = 9, 10) proton ordering. The coexistence of the nearly iso-energetic FE, FI, and AF INT structures separated by high barriers renders the molecular dynamics highly metastable, typically with nanosecond timescales at room temperature. Hence, the replica exchange simulation method is used to obtain populations of different INT states at finite temperatures. Many of the FE INT structures confined in low-diameter CNTs are still prevalent at room temperature. Both helix-helix and helix-prism structural transitions are detected which can be either continuous (around 470 K for n = 8) or discontinuous (at 218 K for n = 9). Also melting-like transitions are found in which the INT structures are disrupted leading to a loss of FE or FI ordering of the water orientations. Also these transitions can be either smooth (for n = 7, 8) or abrupt, first-order transitions, at T = 362 K for n = 9 and at T = 285 K for n = 10.

  18. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.

    PubMed

    Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Cai, Zong Wei; Uchiyama, Katsumi

    2005-05-01

    A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.

  19. Guidance of dorsal root ganglion neurites and Schwann cells by isolated Schwann cell topography on poly(dimethyl siloxane) conduits and films

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Rementer, C. W.; Bruder, Jan M.; Hoffman-Kim, D.

    2011-08-01

    Biomimetic replicas of cellular topography have been utilized to direct neurite outgrowth. Here, we cultured postnatal rat dorsal root ganglion (DRG) explants in the presence of Schwann cell (SC) topography to determine the influence of SC topography on neurite outgrowth. Four distinct poly(dimethyl siloxane) conduits were fabricated within which DRG explants were cultured. To determine the contribution of SC topographical features to neurite guidance, the extent of neurite outgrowth into unpatterned conduits, conduits with randomly oriented SC replicas, and conduits with SC replicas parallel or perpendicular to the conduit long axis was measured. Neurite directionality and outgrowth from DRG were also quantified on two-dimensional SC replicas with orientations corresponding to the four conduit conditions. Additionally, live SC migration and neurite extension from DRG on SC replicas were examined as a first step toward quantification of the interactions between live SC and navigating neurites on SC replicas. DRG neurite outgrowth and morphology within conduits and on two-dimensional SC replicas were directed by the underlying SC topographical features. Maximal neurite outgrowth and alignment to the underlying features were observed into parallel conduits and on parallel two-dimensional substrates, whereas the least extent of outgrowth was observed into perpendicular conduits and on perpendicular two-dimensional replica conditions. Additionally, neurites on perpendicular conditions turned to extend along the direction of underlying SC topography. Neurite outgrowth exceeded SC migration in the direction of the underlying anisotropic SC replica after two days in culture. This finding confirms the critical role that SC have in guiding neurite outgrowth and suggests that the mechanism of neurite alignment to SC replicas depends on direct contact with cellular topography. These results suggest that SC topographical replicas may be used to direct and optimize neurite alignment, and emphasize the importance of SC features in neurite guidance.

  20. A SIMPLE FREEZE-FRACTURE REPLICATION METHOD FOR ELECTRON MICROSCOPY

    PubMed Central

    Bullivant, Stanley; Ames, Adelbert

    1966-01-01

    A simple method to achieve results similar to the freeze-etching technique of Moor et al. (1961) is described. The frozen tissue is cut under liquid nitrogen with a razor blade outside the evaporator rather than inside with a cooled microtome. The conditions of the experiment do not favor sublimation, and it is proposed that the structure of the replica be explained by local faults in the cleavage plane which leaves structures, such as membranes, standing above the ice. Micrographs of replicas of glycerol-protected frozen small intestine of mouse prepared by the method are presented and the structural details they show are discussed. The problem of vapor-deposited contamination is discussed. It is concluded that this is a practical method for obtaining electron micrographs that are relatively free of artifact, and that further improvements may be expected from the use of rapidly frozen fresh tissue and a clean vacuum system, possibly of the ion-pumped type. PMID:5962938

  1. Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing.

    PubMed

    Gallicchio, Emilio; Xia, Junchao; Flynn, William F; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M

    2015-11-01

    Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.

  2. Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices

    NASA Astrophysics Data System (ADS)

    Wu, H.-H.; Chen, C.-C.; Chen, C.-M.

    2012-03-01

    We propose a united-residue model of membrane proteins to investigate the structures of helix bundle membrane proteins (HBMPs) using coarse-grained (CG) replica exchange Monte-Carlo (REMC) simulations. To demonstrate the method, it is used to identify the ground state of HBMPs in a CG model, including bacteriorhodopsin (BR), halorhodopsin (HR), and their subdomains. The rotational parameters of transmembrane helices (TMHs) are extracted directly from the simulations, which can be compared with their experimental measurements from site-directed dichroism. In particular, the effects of amphiphilic interaction among the surfaces of TMHs on the rotational angles of helices are discussed. The proposed CG model gives a reasonably good structure prediction of HBMPs, as well as a clear physical picture for the packing, tilting, orientation, and rotation of TMHs. The root mean square deviation (RMSD) in coordinates of Cα atoms of the ground state CG structure from the X-ray structure is 5.03 Å for BR and 6.70 Å for HR. The final structure of HBMPs is obtained from the all-atom molecular dynamics simulations by refining the predicted CG structure, whose RMSD is 4.38 Å for BR and 5.70 Å for HR.

  3. Population control of self-replicating systems

    NASA Technical Reports Server (NTRS)

    Mccord, R. L.

    1982-01-01

    The literature concerning fibonacci sequence and the mathematics of self replication are reviewed. One option allows each primary to generate n-replicas, one in each sequential time frame after its own generation with no restrictions on the number of ancestors per replica. The state vector of the replicas in an efficient manner is determined. Option-B has a fixed number of replicas per primary and no restrictions on the number of ancestors for a replica. Any element fij represents the number of elements of type-j in time frame k+1 generated from type-i in time frame k. Option-D is a diagonal matrix whose eigenvalues are precisely those of f.

  4. Evaluation of unrestrained replica-exchange simulations using dynamic walkers in temperature space for protein structure refinement.

    PubMed

    Olson, Mark A; Lee, Michael S

    2014-01-01

    A central problem of computational structural biology is the refinement of modeled protein structures taken from either comparative modeling or knowledge-based methods. Simulations are commonly used to achieve higher resolution of the structures at the all-atom level, yet methodologies that consistently yield accurate results remain elusive. In this work, we provide an assessment of an adaptive temperature-based replica exchange simulation method where the temperature clients dynamically walk in temperature space to enrich their population and exchanges near steep energetic barriers. This approach is compared to earlier work of applying the conventional method of static temperature clients to refine a dataset of conformational decoys. Our results show that, while an adaptive method has many theoretical advantages over a static distribution of client temperatures, only limited improvement was gained from this strategy in excursions of the downhill refinement regime leading to an increase in the fraction of native contacts. To illustrate the sampling differences between the two simulation methods, energy landscapes are presented along with their temperature client profiles.

  5. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamberaj, Hiqmet, E-mail: hkamberaj@ibu.edu.mk

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, andmore » 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.« less

  6. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    NASA Astrophysics Data System (ADS)

    Kamberaj, Hiqmet

    2015-09-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  7. Application of Enhanced Sampling Monte Carlo Methods for High-Resolution Protein-Protein Docking in Rosetta

    PubMed Central

    Zhang, Zhe; Schindler, Christina E. M.; Lange, Oliver F.; Zacharias, Martin

    2015-01-01

    The high-resolution refinement of docked protein-protein complexes can provide valuable structural and mechanistic insight into protein complex formation complementing experiment. Monte Carlo (MC) based approaches are frequently applied to sample putative interaction geometries of proteins including also possible conformational changes of the binding partners. In order to explore efficiency improvements of the MC sampling, several enhanced sampling techniques, including temperature or Hamiltonian replica exchange and well-tempered ensemble approaches, have been combined with the MC method and were evaluated on 20 protein complexes using unbound partner structures. The well-tempered ensemble method combined with a 2-dimensional temperature and Hamiltonian replica exchange scheme (WTE-H-REMC) was identified as the most efficient search strategy. Comparison with prolonged MC searches indicates that the WTE-H-REMC approach requires approximately 5 times fewer MC steps to identify near native docking geometries compared to conventional MC searches. PMID:26053419

  8. 3D-glass molds for facile production of complex droplet microfluidic chips.

    PubMed

    Tovar, Miguel; Weber, Thomas; Hengoju, Sundar; Lovera, Andrea; Munser, Anne-Sophie; Shvydkiv, Oksana; Roth, Martin

    2018-03-01

    In order to leverage the immense potential of droplet microfluidics, it is necessary to simplify the process of chip design and fabrication. While polydimethylsiloxane (PDMS) replica molding has greatly revolutionized the chip-production process, its dependence on 2D-limited photolithography has restricted the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. To break free from these restrictions while keeping fabrication straighforward, we introduce an approach to produce complex multi-height (3D) droplet microfluidic glass molds and subsequent chip production by PDMS replica molding. The glass molds are fabricated with sub-micrometric resolution using femtosecond laser machining technology, which allows directly realizing designs with multiple levels or even continuously changing heights. The presented technique significantly expands the experimental capabilities of the droplet microfluidic chip. It allows direct fabrication of multilevel structures such as droplet traps for prolonged observation and optical fiber integration for fluorescence detection. Furthermore, the fabrication of novel structures based on sloped channels (ramps) enables improved droplet reinjection and picoinjection or even a multi-parallelized drop generator based on gradients of confinement. The fabrication of these and other 3D-features is currently only available at such resolution by the presented strategy. Together with the simplicity of PDMS replica molding, this provides an accessible solution for both specialized and non-specialized labs to customize microfluidic experimentation and expand their possibilities.

  9. Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO3

    PubMed Central

    Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; Xie, Yanwu; He, Ruihua; Tang, Shujie; He, Junfeng; Li, Wei; Jia, Tao; Rebec, Slavko N.; Ma, Eric Yue; Yan, Hao; Hashimoto, Makoto; Lu, Donghui; Mo, Sung-Kwan; Hikita, Yasuyuki; Moore, Robert G.; Hwang, Harold Y.; Lee, Dunghai; Shen, Zhixun

    2017-01-01

    The observation of replica bands in single-unit-cell FeSe on SrTiO3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of Tc over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces, and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism. PMID:28186084

  10. Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO 3

    DOE PAGES

    Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; ...

    2017-02-10

    The observation of replica bands in single-unit-cell FeSe on SrTiO 3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of T c over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces,more » and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Lastly, our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism.« less

  11. Validation of the BUGJEFF311.BOLIB, BUGENDF70.BOLIB and BUGLE-B7 broad-group libraries on the PCA-Replica (H2O/Fe) neutron shielding benchmark experiment

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2016-03-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the TORT-3.2 3D SN code. PCA-Replica reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and UGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-B7 (ENDF/B-VII.0) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.

  12. A distinct group of CpG islands shows differential DNA methylation between replicas of the same cell line in vitro

    PubMed Central

    2013-01-01

    Background CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line. Results We used methylation data of 35 cell lines from the Encyclopedia of DNA Elements (ENCODE) consortium to identify CpG islands that were differentially methylated between replicas of the same cell line and denoted them Inter Replicas Differentially Methylated CpG islands (IRDM-CGIs). We identified a group of IRDM-CGIs that was consistently shared by different cell lines, and denoted it common IRDM-CGIs. X chromosome CGIs were overrepresented among common IRDM-CGIs. Autosomal IRDM-CGIs were preferentially located in gene bodies and intergenic regions had a lower G + C content, a smaller mean length, and a reduced CpG percentage. Functional analysis of the genes associated with autosomal IRDM-CGIs showed that many of them are involved in DNA binding and development. Conclusions Our results show that several specific functional and structural features characterize common IRDM-CGIs. They may represent a specific subset of CGIs that are more prone to being differentially methylated for their intrinsic characteristics. PMID:24106769

  13. An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-08-01

    Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

  14. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Laghaei, Rozita; Mousseau, Normand

    2010-04-01

    Expansion of polyglutamine (polyQ) beyond the pathogenic threshold (35-40 Gln) is associated with several neurodegenerative diseases including Huntington's disease, several forms of spinocerebellar ataxias and spinobulbar muscular atrophy. To determine the structure of polyglutamine aggregates we perform replica-exchange molecular dynamics simulations coupled with the optimized potential for effective peptide forcefield. Using a range of temperatures from 250 to 700 K, we study the aggregation kinetics of the polyglutamine monomer and dimer with chain lengths from 30 to 50 residues. All monomers show a similar structural change at the same temperature from α-helical structure to random coil, without indication of any significant β-strand. For dimers, by contrast, starting from random structures, we observe spontaneous formation of antiparallel β-sheets and triangular and circular β-helical structures for polyglutamine with 40 residues in a 400 ns 50 temperature replica-exchange molecular dynamics simulation (total integrated time 20 μs). This ˜32 Å diameter structure reorganizes further into a tight antiparallel double-stranded ˜22 Å nanotube with 22 residues per turn close to Perutz' model for amyloid fibers as water-filled nanotubes. This diversity of structures suggests the existence of polymorphism for polyglutamine with possibly different pathways leading to the formation of toxic oligomers and to fibrils.

  15. Knights in White Sneakers.

    ERIC Educational Resources Information Center

    Raggio, Susan; Zjawin, Dorothy

    1982-01-01

    A teaching unit to help students explore daily life during the Middle Ages is presented. Techniques for teaching about the medieval social structure, feudal rights and objectives, living arrangements, agricultural practices, and suggestions for building a replica of a medieval village are included. (PP)

  16. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  17. Design of replica bit line control circuit to optimize power for SRAM

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Keji, Zhou; Huihong, Zhang; Daohui, Gong

    2016-12-01

    A design of a replica bit line control circuit to optimize power for SRAM is proposed. The proposed design overcomes the limitations of the traditional replica bit line control circuit, which cannot shut off the word line in time. In the novel design, the delay of word line enable and disable paths are balanced. Thus, the word line can be opened and shut off in time. Moreover, the chip select signal is decomposed, which prevents feedback oscillations caused by the replica bit line and the replica word line. As a result, the switch power caused by unnecessary discharging of the bit line is reduced. A 2-kb SRAM is fully custom designed in an SMIC 65-nm CMOS process. The traditional replica bit line control circuit and the new replica bit line control circuit are used in the designed SRAM, and their performances are compared with each other. The experimental results show that at a supply voltage of 1.2 V, the switch power consumption of the memory array can be reduced by 53.7%. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the National Natural Science Foundation of China (Nos. 61274132, 61234002, 61474068), and the K. C. Wong Magna Fund in Ningbo University.

  18. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations

    PubMed Central

    Henriksen, Niel M.; Roe, Daniel R.; Cheatham, Thomas E.

    2013-01-01

    Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 microseconds of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations. PMID:23477537

  19. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations.

    PubMed

    Henriksen, Niel M; Roe, Daniel R; Cheatham, Thomas E

    2013-04-18

    Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example, by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 μs of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations.

  20. Effects of moiré lattice structure on electronic properties of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  1. Effects of moiré lattice structure on electronic properties of graphene

    NASA Astrophysics Data System (ADS)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; Mou, Daixiang; Schrunk, Benjamin; Tringides, Michael C.; Hupalo, Myron; Kaminski, Adam

    2017-07-01

    We study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6 √{3 }×6 √{3 } reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that is then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.

  2. Effects of moiré lattice structure on electronic properties of graphene

    DOE PAGES

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; ...

    2017-07-10

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  3. Nearly temperature-independent ultraviolet light emission intensity of indirect excitons in hexagonal BN microcrystals

    NASA Astrophysics Data System (ADS)

    Chichibu, Shigefusa F.; Ishikawa, Youichi; Kominami, Hiroko; Hara, Kazuhiko

    2018-02-01

    The radiative performance of hexagonal boron nitride (h-BN) was assessed by the spatio-time-resolved luminescence measurements on its microcrystals (MCs) annealed in an O2 gas ambient. The MCs exhibited distinct deep ultraviolet luminescence peaks higher than 5.7 eV, although h-BN is an indirect bandgap semiconductor. The result indicates a strong interaction between the indirect excitons (iXs) and LO/TO (and LA/TA) phonons at T points of the Brillouin zone. Such phonon replicas of free iXs and a luminescence band at 4.0 eV showed negligible thermal quenching, most probably assisted by the strong excitonic effect, enhanced phonon scattering, and formation of a surface BxOy layer that prevents excitons from surface recombination by the thermal excitation. Conversely, the luminescence band between 5.1 and 5.7 eV, which seems to consist of LO/TO phonon replicas of iXs localized at a certain structural singularity that are further scattered by multiple TO phonons at K points and another two emission peaks that originate from the singularity, showed the thermal quenching. In analogy with GaN and AlGaN, cation vacancy complexes most likely act as native nonradiative recombination centers (NRCs). In the present case, vacancy complexes that contain a boron vacancy (VB), such as divacancies with a nitrogen vacancy (VN), VBVN, are certain to act as NRCs. In this instance, iXs delocalized from the singularity are likely either captured by NRCs or the origin of the 4.0 eV-band; the latter is assigned to originate from a carbon on the N site or a complex between VB and an oxygen on the N site.

  4. Novel approach to the fabrication of an artificial small bone using a combination of sponge replica and electrospinning methods

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hee; Lee, Byong-Taek

    2011-06-01

    In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material.

  5. Novel approach to the fabrication of an artificial small bone using a combination of sponge replica and electrospinning methods

    PubMed Central

    Kim, Yang-Hee; Lee, Byong-Taek

    2011-01-01

    In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material. PMID:27877406

  6. Contribution to the study of the vasculature of submandibular and sublingual glands and lymph nodes of rats by corrosion cast technique combined with scanning electron microscopy.

    PubMed

    Rossi-Schneider, Tíssiana Rachel; Verli, Flaviana Dornela; Yurgel, Liliane Soares; De Souza, Maria Antonieta Lopes; Cherubini, Karen

    2008-10-01

    The study of anatomical structures in their normal state allows the identification of pathological changes that can occur in them. Angiogenesis and the vasculature have been widely studied, mainly because of their association with the development of neoplasms. One of the methods applied for such purposes is the corrosion cast technique, which provides a copy of the vessels with normal as well as pathological structures. The replica of the vasculature provided by this technique allows the three-dimensional analysis of vessels by means of scanning electron microscopy. The aim of the present study was to demonstrate, by means of corrosion casts, the angioarchitecture of the submandibular and sublingual glands and lymph nodes. Scanning electron microscopy showed that the three structures have distinct vascular patterns. The corrosion cast technique can be employed in the study of the angioarchitecture of the submandibular and sublingual glands and lymph nodes, but requires specific precautions. The removal of the structures en bloc and the handling of the replicas with the aid of a stereoscopic magnifier reduce the risk of fractures. (c) 2008 Wiley-Liss, Inc.

  7. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  8. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    PubMed

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  9. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas.

    PubMed

    Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; Duarte, Marco Antonio Húngaro; Cavenago, Bruno Cavalini; Jaramillo, David; Versiani, Marco Aurélio

    2014-01-01

    To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas.

  10. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    DOE PAGES

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. Furthermore, themore » method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.« less

  11. Acoustic sources of opportunity in the marine environment - Applied to source localization and ocean sensing

    NASA Astrophysics Data System (ADS)

    Verlinden, Christopher M.

    Controlled acoustic sources have typically been used for imaging the ocean. These sources can either be used to locate objects or characterize the ocean environment. The processing involves signal extraction in the presence of ambient noise, with shipping being a major component of the latter. With the advent of the Automatic Identification System (AIS) which provides accurate locations of all large commercial vessels, these major noise sources can be converted from nuisance to beacons or sources of opportunity for the purpose of studying the ocean. The source localization method presented here is similar to traditional matched field processing, but differs in that libraries of data-derived measured replicas are used in place of modeled replicas. In order to account for differing source spectra between library and target vessels, cross-correlation functions are compared instead of comparing acoustic signals directly. The library of measured cross-correlation function replicas is extrapolated using waveguide invariant theory to fill gaps between ship tracks, fully populating the search grid with estimated replicas allowing for continuous tracking. In addition to source localization, two ocean sensing techniques are discussed in this dissertation. The feasibility of estimating ocean sound speed and temperature structure, using ship noise across a drifting volumetric array of hydrophones suspended beneath buoys, in a shallow water marine environment is investigated. Using the attenuation of acoustic energy along eigenray paths to invert for ocean properties such as temperature, salinity, and pH is also explored. In each of these cases, the theory is developed, tested using numerical simulations, and validated with data from acoustic field experiments.

  12. Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics.

    PubMed

    Zerze, Gül H; Miller, Cayla M; Granata, Daniele; Mittal, Jeetain

    2015-06-09

    Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data.

  13. Efficiency of exchange schemes in replica exchange

    NASA Astrophysics Data System (ADS)

    Lingenheil, Martin; Denschlag, Robert; Mathias, Gerald; Tavan, Paul

    2009-08-01

    In replica exchange simulations a fast diffusion of the replicas through the temperature space maximizes the efficiency of the statistical sampling. Here, we compare the diffusion speed as measured by the round trip rates for four exchange algorithms. We find different efficiency profiles with optimal average acceptance probabilities ranging from 8% to 41%. The best performance is determined by benchmark simulations for the most widely used algorithm, which alternately tries to exchange all even and all odd replica pairs. By analytical mathematics we show that the excellent performance of this exchange scheme is due to the high diffusivity of the underlying random walk.

  14. Monte Carlo replica-exchange based ensemble docking of protein conformations.

    PubMed

    Zhang, Zhe; Ehmann, Uwe; Zacharias, Martin

    2017-05-01

    A replica-exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein-protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1-2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924-937. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Computational analysis for selectivity of histone deacetylase inhibitor by replica-exchange umbrella sampling molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Shuichiro; Sakae, Yoshitake; Itoh, Yukihiro; Suzuki, Takayoshi; Okamoto, Yuko

    2018-03-01

    We performed protein-ligand docking simulations with a ligand T247, which has been reported as a selective inhibitor of a histone deacetylase HDAC3, by the replica-exchange umbrella sampling method in order to estimate the free energy profiles along ligand docking pathways of HDAC3-T247 and HDAC2-T247 systems. The simulation results showed that the docked state of the HDAC3-T247 system is more stable than that of the HDAC2-T247 system although the amino-acid sequences and structures of HDAC3 and HDAC2 are very similar. By comparing structures obtained from the simulations of both systems, we found the difference between structures of hydrophobic residues at the entrance of the catalytic site. Moreover, we performed conventional molecular dynamics simulations of HDAC3 and HDAC2 systems without T247, and the results also showed the same difference of the hydrophobic structures. Therefore, we consider that this hydrophobic structure contributes to the stabilization of the docked state of the HDAC3-T247 system. Furthermore, we show that Tyr209, which is one of the hydrophobic residues in HDAC2, plays a key role in the instability from the simulation results of a mutated-HDAC2 system.

  16. Microbial nature of fibrous kerite of Volyn

    NASA Astrophysics Data System (ADS)

    Gorlenko, Vladimir M.; Zhmur, Stanislav I.; Duda, Vitalii I.; Osipov, George A.; Suzina, Natalia; Dmitriev, Vladimir V.

    1999-12-01

    For the last few years there have been a lot of publications in geological literature on the problem of formation of morphologically unique fine fibrous kerites, found in one of the objects of kamera pegmatites of Volyn (1800 - 1750 mln. years). According to the opinion of all researchers who deal with them, they are an excellent example of a biogenic, highly constructive carbon substance. The meeting of objectives set was carried out by means of the study of ultra-thin section and replicas of kerite cryofractures under high resolution electronic microscope. The similarity of fine structured fibrous kerite of Volyn (KV) to prokaryotic microorganisms is proved by availability in KV of clearly exposed cellular ultrastructures: multilayered cell wall, cross septa and cytoplasmatic membrane and `intracytoplasmic' inclusions. Fatty acids obtained from kerites contain a number of components typical of prokaryotic microbial community. Suggestions were made on the formation of fibrous Volyn's kerites as a result of mummification of the cyanobacterial mat components from freshwater thermal spring of moderate temperature. Thus, the detailed fine structure of microfossils and their fatty acid composition can be used to support evidence of biogenic origin of the bacteriomorphic elements in paleo- and space objects.

  17. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  18. Shaping ability of Reciproc and TF Adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas

    PubMed Central

    ORDINOLA-ZAPATA, Ronald; BRAMANTE, Clovis Monteiro; DUARTE, Marco Antonio Húngaro; CAVENAGO, Bruno Cavalini; JARAMILLO, David; VERSIANI, Marco Aurélio

    2014-01-01

    Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas. PMID:24918662

  19. Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations.

    PubMed

    Ostermeir, Katja; Zacharias, Martin

    2014-12-01

    Coarse-grained elastic network models (ENM) of proteins offer a low-resolution representation of protein dynamics and directions of global mobility. A Hamiltonian-replica exchange molecular dynamics (H-REMD) approach has been developed that combines information extracted from an ENM analysis with atomistic explicit solvent MD simulations. Based on a set of centers representing rigid segments (centroids) of a protein, a distance-dependent biasing potential is constructed by means of an ENM analysis to promote and guide centroid/domain rearrangements. The biasing potentials are added with different magnitude to the force field description of the MD simulation along the replicas with one reference replica under the control of the original force field. The magnitude and the form of the biasing potentials are adapted during the simulation based on the average sampled conformation to reach a near constant biasing in each replica after equilibration. This allows for canonical sampling of conformational states in each replica. The application of the methodology to a two-domain segment of the glycoprotein 130 and to the protein cyanovirin-N indicates significantly enhanced global domain motions and improved conformational sampling compared with conventional MD simulations. © 2014 Wiley Periodicals, Inc.

  20. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    PubMed Central

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  1. Nanostructure and molecular mechanics of spider dragline silk protein assemblies.

    PubMed

    Keten, Sinan; Buehler, Markus J

    2010-12-06

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 3₁-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.

  2. Enhanced Conformational Sampling of N-Glycans in Solution with Replica State Exchange Metadynamics.

    PubMed

    Galvelis, Raimondas; Re, Suyong; Sugita, Yuji

    2017-05-09

    Molecular dynamics (MD) simulation of a N-glycan in solution is challenging because of high-energy barriers of the glycosidic linkages, functional group rotational barriers, and numerous intra- and intermolecular hydrogen bonds. In this study, we apply different enhanced conformational sampling approaches, namely, metadynamics (MTD), the replica-exchange MD (REMD), and the recently proposed replica state exchange MTD (RSE-MTD), to a N-glycan in solution and compare the conformational sampling efficiencies of the approaches. MTD helps to cross the high-energy barrier along the ω angle by utilizing a bias potential, but it cannot enhance sampling of the other degrees of freedom. REMD ensures moderate-energy barrier crossings by exchanging temperatures between replicas, while it hardly crosses the barriers along ω. In contrast, RSE-MTD succeeds to cross the high-energy barrier along ω as well as to enhance sampling of the other degrees of freedom. We tested two RSE-MTD schemes: in one scheme, 64 replicas were simulated with the bias potential along ω at different temperatures, while simulations of four replicas were performed with the bias potentials for different CVs at 300 K. In both schemes, one unbiased replica at 300 K was included to compute conformational properties of the glycan. The conformational sampling of the former is better than the other enhanced sampling methods, while the latter shows reasonable performance without spending large computational resources. The latter scheme is likely to be useful when a N-glycan-attached protein is simulated.

  3. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    PubMed

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  4. Calculation of absolute protein-ligand binding free energy using distributed replica sampling

    NASA Astrophysics Data System (ADS)

    Rodinger, Tomas; Howell, P. Lynne; Pomès, Régis

    2008-10-01

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  5. Development of highly porous crystalline titania photocatalysts

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal is to introduce new, easily carbonizable groups in TIPO structure so that the modified precursor can serve as titania and carbon precursor simultaneously. Subsequently, during carbonization in inert atmosphere, a carbon framework is formed that works as a scaffold, protecting titania during its crystallization. Afterwards, the carbon scaffold is removed by calcination in air. This work explores the modified precursor strategy by 1) preparing titania materials from TIPO modified with different carboxylic acids and 2) investigating the effect of the modifying acid on the properties of the carbon-titania composites and the final titania materials.

  6. 3D profilometric characterization of the aged skin surface using a skin replica and alicona Mex software.

    PubMed

    Pirisinu, Marco; Mazzarello, Vittorio

    2016-05-01

    The skin's surface is characterized by a network of furrows and wrinkles showing different height and depth. Different studies showed that processes such as aging, photo aging and cancer may alter dermal ultrastructure surface. The quantitative analysis of skin topography is a key point for understanding health condition of the skin. Here, for the first time, the skin fine structure was studied via a new approach where replica method was combined with Mex Alicona software and scanning electron microscopy (SEM). The skin texture of cheek and forearm were studied in 120 healthy sardinian volunteers. Patients were divided into three different aged groups. The skin areas of interest were reproduced by the silicone replica method, each replica was explored by SEM and digital images were taken. By using Mex Alicona software were created 3D imagine and a list of 24 surface texture parameters were obtained, of these the most representative were chosen in order to assess eventual changes between groups. The skin's texture of forearm and cheek showed a gradually loss of its typical polyhedric mesh with increasing age group. In particular, the photoexposition increased loss of dermal texture. At today, Alicona mex technology was exclusively used on palaeontology studies, our results showed that a deep analyze of skin texture was performed and support Mex alicona software as a new promising tool on dermatological research. This new analytical approach provided an easy and fast process to appreciate skin texture and its changes, by using high quality 3D dimension images. SCANNING 38:213-220, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  7. Fabrication of cylindrical superhydrophobic microchannels by replicating lotus leaf structures on internal walls

    NASA Astrophysics Data System (ADS)

    Das, Ajit; Bhaumik, Soubhik Kumar

    2018-04-01

    Cylindrical superhydrophobic microchannels are fabricated by replicating lotus leaf structures on internal walls. The fabrication process comprises of three steps: the creation of a cylindrical mold of a glass rod (125 µm) with polystyrene films bearing negative imprints of lotus leaf (superhydrophobic) structures; casting polydimethylsiloxane (PDMS, Sylgard 184) over the mold; and solvent-assisted pulling off of the glass rod to leave a positive replica on the inner wall of the PDMS cast. The last crucial step is achieved through selective dissolution of the intermediate negative replica layer in the cylindrical mold without any swelling effect. The high fidelity of the replication process is confirmed through scanning electron microscope (SEM) imaging. The attained superhydrophobicity is assessed by comparing the dynamics of the advancing meniscus in the fabricated microchannels with that over a similarly fabricated smooth microchannel. Contact angle studies of the meniscus reveal a lower capillary effect and drag force experienced by the superhydrophobic microchannel compared to smooth ones. Studies based on velocity lead to a prediction of a drag reduction of 35%. A new avenue is thus opened up for microfabrication and flow analysis of closed superhydrophobic (SH) conduits in lab on chip and microfluidic applications.

  8. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting.

    PubMed

    Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm

    2013-09-01

    The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.

  9. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica-exchange molecular dynamics simulations.

    PubMed

    Olson, Mark A; Lee, Michael S; Yeh, In-Chul

    2017-06-15

    This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Replica Exchange Simulations of the Thermodynamics of Aβ Fibril Growth

    PubMed Central

    Takeda, Takako; Klimov, Dmitri K.

    2009-01-01

    Abstract Replica exchange molecular dynamics and an all-atom implicit solvent model are used to probe the thermodynamics of deposition of Alzheimer's Aβ monomers on preformed amyloid fibrils. Consistent with the experiments, two deposition stages have been identified. The docking stage occurs over a wide temperature range, starting with the formation of the first peptide-fibril interactions at 500 K. Docking is completed when a peptide fully adsorbs on the fibril edge at the temperature of 380 K. The docking transition appears to be continuous, and occurs without free energy barriers or intermediates. During docking, incoming Aβ monomer adopts a disordered structure on the fibril edge. The locking stage occurs at the temperature of ≈360 K and is characterized by the rugged free energy landscape. Locking takes place when incoming Aβ peptide forms a parallel β-sheet structure on the fibril edge. Because the β-sheets formed by locked Aβ peptides are typically off-registry, the structure of the locked phase differs from the structure of the fibril interior. The study also reports that binding affinities of two distinct fibril edges with respect to incoming Aβ peptides are different. The peptides bound to the concave edge have significantly lower free energy compared to those bound on the convex edge. Comparison with the available experimental data is discussed. PMID:19167295

  11. Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis

    NASA Astrophysics Data System (ADS)

    Sakata, Ayaka; Xu, Yingying

    2018-03-01

    We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida-Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric (RS) solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of \

  12. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images.

    PubMed

    van der Laak, Jeroen A W M; Dijkman, Henry B P M; Pahlplatz, Martin M M

    2006-03-01

    The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000 x to 200,000 x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy.

  13. Application of Replica Technique and SEM in Accuracy Measurement of Ceramic Crowns

    NASA Astrophysics Data System (ADS)

    Trifkovic, B.; Budak, I.; Todorovic, A.; Hodolic, J.; Puskar, T.; Jevremovic, D.; Vukelic, D.

    2012-01-01

    The paper presents a comparative study of the measuring values of the marginal gap related to the ceramic crowns made by dental CAD/CAM system using the replica technique and SEM. The study was conducted using three experimental groups, which consisted of ceramic crowns manufactured by the Cerec CAD/CAM system. The scanning procedure was carried out using three specialized dental 3D digitization systems from the Cerec family - two types of extraoral optical scanning systems and an intraoral optical scanner. Measurements of the marginal gap were carried out using the replica technique and SEM. The comparison of aggregate values of the marginal gap using the replica technique showed a statistically significant difference between the systems. The measured values of marginal gaps of ceramic crowns using the replica technique were significantly lower compared to those measured by SEM. The results indicate that the choice of technique for measuring the accuracy of ceramic crowns influences the final results of investigation.

  14. Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.

    PubMed

    Kubitzki, Marcus B; de Groot, Bert L

    2007-06-15

    Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of degrees of freedom involved. Aiming at increased sampling efficiency, we present a novel simulation method combining the ideas of essential dynamics and REX. Unlike standard REX, in each replica only a selection of essential collective modes of a subsystem of interest (essential subspace) is coupled to a higher temperature, with the remainder of the system staying at a reference temperature, T(0). This selective excitation along with the replica framework permits efficient approximate ensemble-preserving conformational sampling and allows much larger temperature differences between replicas, thereby considerably enhancing sampling efficiency. Ensemble properties and sampling performance of the method are discussed using dialanine and guanylin test systems, with multi-microsecond molecular dynamics simulations of these test systems serving as references.

  15. SRF Cavity Surface Topography Characterization Using Replica Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less

  16. Hollow Microneedles for Intradermal Injection Fabricated by Sacrificial Micromolding and Selective Electrodeposition

    PubMed Central

    Norman, James J.; Choi, Seong-O; Tong, Nhien T.; Aiyar, Avishek R.; Patel, Samirkumar R.; Prausnitz, Mark R.; Allen, Mark G.

    2012-01-01

    Limitations with standard intradermal injections have created a clinical need for an alternative, low-cost injection device. In this study, we designed a hollow metal microneedle for reliable intradermal injection and developed a high-throughput micromolding process to produce metal microneedles with complex geometries. To fabricate the microneedles, we laser-ablated a 70 μm × 70 μm square cavity near the tip of poly(lactic acid-co-glyoclic acid) (PLGA) microneedles. The master structure was a template for multiple micromolded PLGA replicas. Each replica was sputtered with a gold seed layer with minimal gold deposited in the cavity due to masking effects. In this way, nickel was electrodeposited selectively outside of the cavity, after which the polymer replica was dissolved to produce a hollow metal microneedle. Force-displacement tests showed the microneedles, with 12 μm thick electrodeposition, could penetrate skin with an insertion force 9 times less than their axial failure force. We injected fluid with the microneedles into pig skin in vitro and hairless guinea pig skin in vivo. The injections targeted 90% of the material within the skin with minimal leakage onto the skin surface. We conclude that hollow microneedles made by this simple microfabrication method can achieve targeted intradermal injection. PMID:23053452

  17. Fractographic ceramic failure analysis using the replica technique

    PubMed Central

    Scherrer, Susanne S.; Quinn, Janet B.; Quinn, George D.; Anselm Wiskott, H. W.

    2007-01-01

    Objectives To demonstrate the effectiveness of in vivo replicas of fractured ceramic surfaces for descriptive fractography as applied to the analysis of clinical failures. Methods The fracture surface topography of partially failed veneering ceramic of a Procera Alumina molar and an In Ceram Zirconia premolar were examined utilizing gold-coated epoxy poured replicas viewed using scanning electron microscopy. The replicas were inspected for fractographic features such as hackle, wake hackle, twist hackle, compression curl and arrest lines for determination of the direction of crack propagation and location of the origin. Results For both veneering ceramics, replicas provided an excellent reproduction of the fractured surfaces. Fine details including all characteristic fracture features produced by the interaction of the advancing crack with the material's microstructure could be recognized. The observed features are indicators of the local direction of crack propagation and were used to trace the crack's progression back to its initial starting zone (the origin). Drawbacks of replicas such as artifacts (air bubbles) or imperfections resulting from inadequate epoxy pouring were noted but not critical for the overall analysis of the fractured surfaces. Significance The replica technique proved to be easy to use and allowed an excellent reproduction of failed ceramic surfaces. It should be applied before attempting to remove any failed part remaining in situ as the fracture surface may be damaged during this procedure. These two case studies are intended as an introduction for the clinical researcher in using qualitative (descriptive) fractography as a tool for understanding fracture processes in brittle restorative materials and, secondarily, to draw conclusions as to possible design inadequacies in failed restorations. PMID:17270267

  18. The Law of Self-Acting Machines and Irreversible Processes with Reversible Replicas

    NASA Astrophysics Data System (ADS)

    Valev, Pentcho

    2002-11-01

    Clausius and Kelvin saved Carnot theorem and developed the second law by assuming that Carnot machines can work in the absence of an operator and that all the irreversible processes have reversible replicas. The former assumption restored Carnot theorem as an experience of mankind whereas the latter generated "the law of ever increasing entropy". Both assumptions are wrong so it makes sense to return to Carnot theorem (or some equivalent) and test it experimentally. Two testable paradigms - the system performing two types of reversible work and the system in dynamical equilibrium - suggest that perpetuum mobile of the second kind in the presence of an operator is possible. The deviation from the second law prediction, expressed as difference between partial derivatives in a Maxwell relation, measures the degree of structural-functional evolution for the respective system.

  19. Straightforward and precise approach to replicate complex hierarchical structures from plant surfaces onto soft matter polymer

    PubMed Central

    Speck, Thomas; Bohn, Holger F.

    2018-01-01

    The surfaces of plant leaves are rarely smooth and often possess a species-specific micro- and/or nano-structuring. These structures usually influence the surface functionality of the leaves such as wettability, optical properties, friction and adhesion in insect–plant interactions. This work presents a simple, convenient, inexpensive and precise two-step micro-replication technique to transfer surface microstructures of plant leaves onto highly transparent soft polymer material. Leaves of three different plants with variable size (0.5–100 µm), shape and complexity (hierarchical levels) of their surface microstructures were selected as model bio-templates. A thermoset epoxy resin was used at ambient conditions to produce negative moulds directly from fresh plant leaves. An alkaline chemical treatment was established to remove the entirety of the leaf material from the cured negative epoxy mould when necessary, i.e. for highly complex hierarchical structures. Obtained moulds were filled up afterwards with low viscosity silicone elastomer (PDMS) to obtain positive surface replicas. Comparative scanning electron microscopy investigations (original plant leaves and replicated polymeric surfaces) reveal the high precision and versatility of this replication technique. This technique has promising future application for the development of bioinspired functional surfaces. Additionally, the fabricated polymer replicas provide a model to systematically investigate the structural key points of surface functionalities. PMID:29765666

  20. Dynamical self-arrest in symmetric and asymmetric diblock copolymer melts using a replica approach within a local theory.

    PubMed

    Wu, Sangwook

    2009-03-01

    We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.

  1. Morpho peleides butterfly wing imprints as structural colour stamp.

    PubMed

    Zobl, Sigrid; Salvenmoser, Willi; Schwerte, Thorsten; Gebeshuber, Ille C; Schreiner, Manfred

    2016-02-02

    This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain a large positive replica using negative imprints via Polyvinylsiloxane. The developed method is low-tech and high-yield and is thus substantially easier and less expensive than previous methods. The microstructures were investigated with light microscopy, the nanostructures with both scanning and transmission electron microscopy, and the reflections with UV visible spectrometry. The influence of the release agent and the quality of the master stamp were determined by comparing measurements of the cover-scale sizes and their chromaticity values obtained by their images and with their positive imprints. The master stamp provided multiple positive replicas up to 3 cm(2) in just 1 h with structural coloration effects visible to the naked eye. Thus, the developed method proves the accuracy of the replicated nanostructure and its potential industrial application as a color-producing nanostamp.

  2. Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics.

    PubMed

    Campbell, Zachary T; Baldwin, Thomas O; Miyashita, Osamu

    2010-12-15

    Bacterial luciferase contains an extended 29-residue mobile loop. Movements of this loop are governed by binding of either flavin mononucleotide (FMNH2) or polyvalent anions. To understand this process, loop dynamics were investigated using replica-exchange molecular dynamics that yielded conformational ensembles in either the presence or absence of FMNH2. The resulting data were analyzed using clustering and network analysis. We observed the closed conformations that are visited only in the simulations with the ligand. Yet the mobile loop is intrinsically flexible, and FMNH2 binding modifies the relative populations of conformations. This model provides unique information regarding the function of a crystallographically disordered segment of the loop near the binding site. Structures at or near the fringe of this network were compatible with flavin binding or release. Finally, we demonstrate that the crystallographically observed conformation of the mobile loop bound to oxidized flavin was influenced by crystal packing. Thus, our study has revealed what we believe are novel conformations of the mobile loop and additional context for experimentally determined structures. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering

    PubMed Central

    2015-01-01

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation. PMID:25328493

  4. Axial displacement of abutments into implants and implant replicas, with the tapered cone-screw internal connection, as a function of tightening torque.

    PubMed

    Dailey, Bruno; Jordan, Laurence; Blind, Olivier; Tavernier, Bruno

    2009-01-01

    The passive fit of a superstructure on implant abutments is essential to success. One source of error when using a tapered cone-screw internal connection may be the difference between the tightening torque level applied to the abutments by the laboratory technician compared to that applied by the treating clinician. The purpose of this study was to measure the axial displacement of tapered cone-screw abutments into implants and their replicas as a function of the tightening torque level. Twenty tapered cone-screw abutments were selected. Two groups were created: 10 abutments were secured into 10 implants, and 10 abutments were secured into 10 corresponding implant replicas. Each abutment was tightened in increasing increments of 5 Ncm, from 0 Ncm to 45 Ncm, with a torque controller. The length of each sample was measured repeatedly with an Electronic Digital Micrometer. The mean axial displacement for the implant group and the replica group was calculated. The data were analyzed by the Mann-Whitney and Spearman tests. For both groups, there was always an axial displacement of the abutment upon each incremental application of torque. The mean axial displacement values varied between 7 and 12 microm for the implant group and between 6 and 21 microm for the replica group at each 5-Ncm increment. From 0 to 45 Ncm, the total mean axial displacement values were 89 microm for the implant group and 122 microm for the replica group. There was a continuous axial displacement of the abutments into implants and implant replicas when the applied torque was raised from 0 to 45 Ncm. Torque applied above the level recommended by the manufacturer increased the difference in displacement between the two groups.

  5. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering.

    PubMed

    Huang, Kun; García, Angel E

    2014-10-14

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.

  6. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho

    We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, inmore » which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.« less

  7. Fish and robot dancing together: bluefin killifish females respond differently to the courtship of a robot with varying color morphs.

    PubMed

    Phamduy, P; Polverino, G; Fuller, R C; Porfiri, M

    2014-09-01

    The experimental integration of bioinspired robots in groups of social animals has become a valuable tool to understand the basis of social behavior and uncover the fundamental determinants of animal communication. In this study, we measured the preference of fertile female bluefin killifish (Lucania goodei) for robotic replicas whose aspect ratio, body size, motion pattern, and color morph were inspired by adult male killifish. The motion of the fish replica was controlled via a robotic platform, which simulated the typical courtship behavior observed in killifish males. The positional preferences of females were measured for three different color morphs (red, yellow, and blue). While variation in preference was high among females, females tend to spend more time in the vicinity of the yellow painted robot replicas. This preference may have emerged because the yellow robot replicas were very bright, particularly in the longer wavelengths (550–700 nm) compared to the red and blue replicas. These findings are in agreement with previous observations in mosquitofish and zebrafish on fish preference for artificially enhanced yellow pigmentation.

  8. Unraveling the structural complexity in a single-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch

    PubMed Central

    Eichhorn, Catherine D.; Feng, Jun; Suddala, Krishna C.; Walter, Nils G.; Brooks, Charles L.; Al-Hashimi, Hashim M.

    2012-01-01

    Single-stranded RNAs (ssRNAs) are ubiquitous RNA elements that serve diverse functional roles. Much of our understanding of ssRNA conformational behavior is limited to structures in which ssRNA directly engages in tertiary interactions or is recognized by proteins. Little is known about the structural and dynamic behavior of free ssRNAs at atomic resolution. Here, we report the collaborative application of nuclear magnetic resonance (NMR) and replica exchange molecular dynamics (REMD) simulations to characterize the 12 nt ssRNA tail derived from the prequeuosine riboswitch. NMR carbon spin relaxation data and residual dipolar coupling measurements reveal a flexible yet stacked core adopting an A-form-like conformation, with the level of order decreasing toward the terminal ends. An A-to-C mutation within the polyadenine tract alters the observed dynamics consistent with the introduction of a dynamic kink. Pre-ordering of the tail may increase the efficacy of ligand binding above that achieved by a random-coil ssRNA. The REMD simulations recapitulate important trends in the NMR data, but suggest more internal motions than inferred from the NMR analysis. Our study unmasks a previously unappreciated level of complexity in ssRNA, which we believe will also serve as an excellent model system for testing and developing computational force fields. PMID:22009676

  9. Disordered λ φ4+ρ φ6 Landau-Ginzburg model

    NASA Astrophysics Data System (ADS)

    Diaz, R. Acosta; Svaiter, N. F.; Krein, G.; Zarro, C. A. D.

    2018-03-01

    We discuss a disordered λ φ4+ρ φ6 Landau-Ginzburg model defined in a d -dimensional space. First we adopt the standard procedure of averaging the disorder-dependent free energy of the model. The dominant contribution to this quantity is represented by a series of the replica partition functions of the system. Next, using the replica-symmetry ansatz in the saddle-point equations, we prove that the average free energy represents a system with multiple ground states with different order parameters. For low temperatures we show the presence of metastable equilibrium states for some replica fields for a range of values of the physical parameters. Finally, going beyond the mean-field approximation, the one-loop renormalization of this model is performed, in the leading-order replica partition function.

  10. Coupling of phonons with excitons bound to different donors and acceptors in hexagonal GaN

    NASA Astrophysics Data System (ADS)

    Korona, K. P.; Wysmoek, A.; Kuhl, J.; Kamiska, M.; Baranowski, J. M.; Look, D. C.; Park, S. S.

    2006-06-01

    Time-resolved measurements of GaN with different donors (oxygen or silicon) and acceptors (zinc or magnesium) showed pronounced bound exciton lines and their phonon replicas. The analysis included three phonon modes characteristic for the wurtzite (hexagonal) phase: A1(LO), E1(TO) and E2H. It was shown that relative amplitudes of replicas depended upon the chemical nature of the defects that the bind excitons. The replicas were stronger for acceptor- than for donor-related features. Huang-Rhys factors S = 0.06 +/- 0.02 and S = 0.025 +/- 0.01, were found for the A0X and the D0X LO replicas, respectively. A significant difference in phonon coupling to silicon and oxygen donor bound excitons has been observed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Thomas; Perez, Danny

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. Furthermore, themore » method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.« less

  12. Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading

    NASA Astrophysics Data System (ADS)

    Settgast, C.; Abendroth, M.; Kuna, M.

    2016-11-01

    Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.

  13. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations

    NASA Astrophysics Data System (ADS)

    Lei, Hongxing; Wu, Chun; Wang, Zhi-Xiang; Zhou, Yaoqi; Duan, Yong

    2008-06-01

    Reaching the native states of small proteins, a necessary step towards a comprehensive understanding of the folding mechanisms, has remained a tremendous challenge to ab initio protein folding simulations despite the extensive effort. In this work, the folding process of the B domain of protein A (BdpA) has been simulated by both conventional and replica exchange molecular dynamics using AMBER FF03 all-atom force field. Started from an extended chain, a total of 40 conventional (each to 1.0 μs) and two sets of replica exchange (each to 200.0 ns per replica) molecular dynamics simulations were performed with different generalized-Born solvation models and temperature control schemes. The improvements in both the force field and solvent model allowed successful simulations of the folding process to the native state as demonstrated by the 0.80 A˚ Cα root mean square deviation (RMSD) of the best folded structure. The most populated conformation was the native folded structure with a high population. This was a significant improvement over the 2.8 A˚ Cα RMSD of the best nativelike structures from previous ab initio folding studies on BdpA. To the best of our knowledge, our results demonstrate, for the first time, that ab initio simulations can reach the native state of BdpA. Consistent with experimental observations, including Φ-value analyses, formation of helix II/III hairpin was a crucial step that provides a template upon which helix I could form and the folding process could complete. Early formation of helix III was observed which is consistent with the experimental results of higher residual helical content of isolated helix III among the three helices. The calculated temperature-dependent profile and the melting temperature were in close agreement with the experimental results. The simulations further revealed that phenylalanine 31 may play critical to achieve the correct packing of the three helices which is consistent with the experimental observation. In addition to the mechanistic studies, an ab initio structure prediction was also conducted based on both the physical energy and a statistical potential. Based on the lowest physical energy, the predicted structure was 2.0 A˚ Cα RMSD away from the experimentally determined structure.

  14. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation solution, which suggested an energy-dependent pathway. Additionally, by means of pharmacological inhibition and vector-induced gene knockout studies, the DNA-SWCNTs were shown to enter the cells via Rac1-mediated macropinocytosis.

  15. Replica analysis for the duality of the portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  16. Nontrivial Critical Fixed Point for Replica-Symmetry-Breaking Transitions.

    PubMed

    Charbonneau, Patrick; Yaida, Sho

    2017-05-26

    The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon-the Gardner transition-has recently been predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has, however, long been questioned below their upper critical dimension, d_{u}=6. Here, we obtain evidence for the existence of these transitions in d

  17. Replica analysis for the duality of the portfolio optimization problem.

    PubMed

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  18. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    PubMed Central

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-01-01

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems. PMID:23665897

  19. The Origin and Fate of Annulate Lamellae in Maturing Sand Dollar Eggs

    PubMed Central

    Merriam, R. W.

    1959-01-01

    Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae. PMID:13630942

  20. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Garcia, G. J. M.; Mitchell, G.; Bailie, N.; Thornhill, D.; Watterson, J.; Kimbell, J. S.

    2007-10-01

    The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.

  1. Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach.

    PubMed

    Curuksu, Jeremy; Zacharias, Martin

    2009-03-14

    Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.

  2. Probing the structure and function of biopolymer-carbon nanotube hybrids with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Johnson, Robert R.

    2009-12-01

    Nanoscience deals with the characterization and manipulation of matter on the atomic/molecular size scale in order to deepen our understanding of condensed matter and develop revolutionary technology. Meeting the demands of the rapidly advancing nanotechnological frontier requires novel, multifunctional nanoscale materials. Among the most promising nanomaterials to fulfill this need are biopolymer-carbon nanotube hybrids (Bio-CNT). Bio-CNT consists of a single-walled carbon nanotube (CNT) coated with a self-assembled layer of biopolymers such as DNA or protein. Experiments have demonstrated that these nanomaterials possess a wide range of technologically useful properties with applications in nanoelectronics, medicine, homeland security, environmental safety and microbiology. However, a fundamental understanding of the self-assembly mechanics, structure and energetics of Bio-CNT is lacking. The objective of this thesis is to address this deficiency through molecular dynamics (MD) simulation, which provides an atomic-scale window into the behavior of this unique nanomaterial. MD shows that Bio-CNT composed of single-stranded DNA (ssDNA) self-assembles via the formation of high affinity contacts between DNA bases and the CNT sidewall. Calculation of the base-CNT binding free energy by thermodynamic integration reveals that these contacts result from the attractive pi--pi stacking interaction. Binding affinities follow the trend G > A > T > C. MD reveals that long ssDNA sequences are driven into a helical wrapping about CNT with a sub-10 nm pitch by electrostatic and torsional interactions in the backbone. A large-scale replica exchange molecular dynamics simulation reveals that ssDNA-CNT hybrids are disordered. At room temperature, ssDNA can reside in several low-energy conformations that contain a sequence-specific arrangement of bases detached from CNT surface. MD demonstrates that protein-CNT hybrids composed of the Coxsackie-adenovirus receptor are biologically active and function as a nanobiosensor with specific recognition of Knob proteins from the adenovirus capsid. Simulation also shows that the rigid CNT damps structural fluctuations in bound proteins, which may have important ramifications for biosensing devices composed of protein-CNT hybrids. These results expand current knowledge of Bio-CNT and demonstrate the effectiveness of MD for investigations of nanobiomolecular systems.

  3. Sublattice parallel replica dynamics.

    PubMed

    Martínez, Enrique; Uberuaga, Blas P; Voter, Arthur F

    2014-06-01

    Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full advantage of the new computing paradigm. Atomistic simulation methods that offer full fidelity to the underlying potential, i.e., molecular dynamics (MD) and parallel replica dynamics, fail to use the whole machine speedup, leaving a region in time and sample size space that is unattainable with current algorithms. In this paper, we present an extension of the parallel replica dynamics algorithm [A. F. Voter, Phys. Rev. B 57, R13985 (1998)] by combining it with the synchronous sublattice approach of Shim and Amar [ and , Phys. Rev. B 71, 125432 (2005)], thereby exploiting event locality to improve the algorithm scalability. This algorithm is based on a domain decomposition in which events happen independently in different regions in the sample. We develop an analytical expression for the speedup given by this sublattice parallel replica dynamics algorithm and compare it with parallel MD and traditional parallel replica dynamics. We demonstrate how this algorithm, which introduces a slight additional approximation of event locality, enables the study of physical systems unreachable with traditional methodologies and promises to better utilize the resources of current high performance and future exascale computers.

  4. Localization-Free Detection of Replica Node Attacks in Wireless Sensor Networks Using Similarity Estimation with Group Deployment Knowledge

    PubMed Central

    Ding, Chao; Yang, Lijun; Wu, Meng

    2017-01-01

    Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies. PMID:28098846

  5. Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes.

    PubMed

    Romano, Donato; Benelli, Giovanni; Donati, Elisa; Remorini, Damiano; Canale, Angelo; Stefanini, Cesare

    2017-07-05

    The use of robotics to establish social interactions between animals and robots, represents an elegant and innovative method to investigate animal behaviour. However, robots are still underused to investigate high complex and flexible behaviours, such as aggression. Here, Betta splendens was tested as model system to shed light on the effect of a robotic fish eliciting aggression. We evaluated how multiple signal systems, including a light stimulus, affect aggressive responses in B. splendens. Furthermore, we conducted experiments to estimate if aggressive responses were triggered by the biomimetic shape of fish replica, or whether any intruder object was effective as well. Male fishes showed longer and higher aggressive displays as puzzled stimuli from the fish replica increased. When the fish replica emitted its full sequence of cues, the intensity of aggression exceeded even that produced by real fish opponents. Fish replica shape was necessary for conspecific opponent perception, evoking significant aggressive responses. Overall, this study highlights that the efficacy of an artificial opponent eliciting aggressive behaviour in fish can be boosted by exposure to multiple signals. Optimizing the cue combination delivered by the robotic fish replica may be helpful to predict escalating levels of aggression.

  6. Localization-Free Detection of Replica Node Attacks in Wireless Sensor Networks Using Similarity Estimation with Group Deployment Knowledge.

    PubMed

    Ding, Chao; Yang, Lijun; Wu, Meng

    2017-01-15

    Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies.

  7. Portfolio optimization problem with nonidentical variances of asset returns using statistical mechanical informatics.

    PubMed

    Shinzato, Takashi

    2016-12-01

    The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.

  8. Portfolio optimization problem with nonidentical variances of asset returns using statistical mechanical informatics

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2016-12-01

    The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.

  9. A digital approach to fabricating an abutment replica to control cement volume in a cement-retained implant prosthesis.

    PubMed

    Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok

    2016-07-01

    If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Physical mapping of complex genomes

    DOEpatents

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  11. Replica Resummation of the Baker-Campbell-Hausdorff Series

    NASA Astrophysics Data System (ADS)

    Vajna, Szabolcs; Klobas, Katja; Prosen, Tomaž; Polkovnikov, Anatoli

    2018-05-01

    We developed a novel perturbative expansion based on the replica trick for the Floquet Hamiltonian governing the dynamics of periodically kicked systems where the kick strength is the small parameter. The expansion is formally equivalent to an infinite resummation of the Baker-Campbell-Hausdorff series in the undriven (nonperturbed) Hamiltonian, while considering terms up to a finite order in the kick strength. As an application of the replica expansion, we analyze an Ising spin 1 /2 chain periodically kicked with a magnetic field with a strength h , which has both longitudinal and transverse components. We demonstrate that even away from the regime of high frequency driving, if there is heating, its rate is nonperturbative in the kick strength, bounded from above by a stretched exponential: e-const h-1 /2 . This guarantees the existence of a very long prethermal regime, where the dynamics is governed by the Floquet Hamiltonian obtained from the replica expansion.

  12. Microlens fabrication by replica molding of frozen laser-printed droplets

    NASA Astrophysics Data System (ADS)

    Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí

    2017-10-01

    In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.

  13. Toward mass producible ordered bulk heterojunction organic photovoltaic devices.

    PubMed

    Kim, Taeyong; Yoon, Hyunsik; Song, Hyung-Jun; Haberkorn, Niko; Cho, Younghyun; Sung, Seung Hyun; Lee, Chang Hee; Char, Kookheon; Theato, Patrick

    2012-12-13

    A strategy to fabricate nanostructured poly(3-hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low-pressure and low- temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS-coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well-ordered anodic aluminum oxide (AAO) as a template. Also, we provide a method to fabricate reversed nanostructures by exploiting the self-replication of replica molds. The concept of the transfer method in low temperature with a flexible and reusable replica mold obtained from an AAO template will be a firm foundation for a low-cost fabrication process of ordered OPVs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices

    NASA Astrophysics Data System (ADS)

    de Dominicis, C.; Carlucci, D. M.; Temesvári, T.

    1997-01-01

    The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.

  15. Quantitative Predictions of Binding Free Energy Changes in Drug-Resistant Influenza Neuraminidase

    DTIC Science & Technology

    2012-08-30

    drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and...conformations that are virtually identical to WT [10]. Molecular simulations that rigorously model the microscopic structure and thermodynamics PLOS...influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with

  16. Initial Binding of Ions to the Interhelical Loops of Divalent Ion Transporter CorA: Replica Exchange Molecular Dynamics Simulation Study

    PubMed Central

    Zhang, Tong; Mu, Yuguang

    2012-01-01

    Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795

  17. Gamma-ray dosimetry measurements of the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  18. Creating technical heritage object replicas in a virtual environment

    NASA Astrophysics Data System (ADS)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  19. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2012-01-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  20. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2011-12-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  1. Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling.

    PubMed

    Rash, John E; Kamasawa, Naomi; Davidson, Kimberly G V; Yasumura, Thomas; Pereda, Alberto E; Nagy, James I

    2012-06-01

    Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.

  2. Ferromagnetic transition in a simple variant of the Ising model on multiplex networks

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    2018-02-01

    Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.

  3. Engineered biomimicry: polymeric replication of surface features found on insects

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  4. Replica-exchange molecular dynamics simulations of cellulose solvated in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostofian, Barmak; Cheng, Xiaolin; Smith, Jeremy C.

    2014-09-02

    Ionic liquids have become a popular solvent for cellulose pretreatment in biorefineries due to their efficiency in dissolution and their reusability. Understanding the interactions between cations, anions, and cellulose is key to the development of better solvents and the improvement of pretreatment conditions. While previous studies described the interactions between ionic liquids and cellulose fibers, shedding light on the initial stages of the cellulose dissolution process, we study the end state of that process by exploring the structure and dynamics of a single cellulose decamer solvated in 1-butyl-3-methyl-imidazolium chloride (BmimCl) and in water using replica-exchange molecular dynamics. In both solvents,more » global structural features of the cellulose chain are similar. However, analyses of local structural properties show that cellulose explores greater conformational variability in the ionic liquid than in water. For instance, in BmimCl the cellulose intramolecular hydrogen bond O3H'••• O5 is disrupted more often resulting in greater flexibility of the solute. Our results indicate that the cellulose chain is more dynamic in BmimCl than in water, which may play a role in the favorable dissolution of cellulose in the ionic liquid. Here, the calculation of the configurational entropy of the cellulose decamer confirms its higher conformational flexibility in BmimCl than in water at elevated temperatures.« less

  5. Validation of newly developed physical laparoscopy simulator in transabdominal preperitoneal (TAPP) inguinal hernia repair.

    PubMed

    Nishihara, Yuichi; Isobe, Yoh; Kitagawa, Yuko

    2017-12-01

    A realistic simulator for transabdominal preperitoneal (TAPP) inguinal hernia repair would enhance surgeons' training experience before they enter the operating theater. The purpose of this study was to create a novel physical simulator for TAPP inguinal hernia repair and obtain surgeons' opinions regarding its efficacy. Our novel TAPP inguinal hernia repair simulator consists of a physical laparoscopy simulator and a handmade organ replica model. The physical laparoscopy simulator was created by three-dimensional (3D) printing technology, and it represents the trunk of the human body and the bendability of the abdominal wall under pneumoperitoneal pressure. The organ replica model was manually created by assembling materials. The TAPP inguinal hernia repair simulator allows for the performance of all procedures required in TAPP inguinal hernia repair. Fifteen general surgeons performed TAPP inguinal hernia repair using our simulator. Their opinions were scored on a 5-point Likert scale. All participants strongly agreed that the 3D-printed physical simulator and organ replica model were highly useful for TAPP inguinal hernia repair training (median, 5 points) and TAPP inguinal hernia repair education (median, 5 points). They felt that the simulator would be effective for TAPP inguinal hernia repair training before entering the operating theater. All surgeons considered that this simulator should be introduced in the residency curriculum. We successfully created a physical simulator for TAPP inguinal hernia repair training using 3D printing technology and a handmade organ replica model created with inexpensive, readily accessible materials. Preoperative TAPP inguinal hernia repair training using this simulator and organ replica model may be of benefit in the training of all surgeons. All general surgeons involved in the present study felt that this simulator and organ replica model should be used in their residency curriculum.

  6. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).

    PubMed

    Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina

    2017-06-13

    Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.

  7. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much lessmore » computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.« less

  8. Community detection for fluorescent lifetime microscopy image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  9. A dynamic replication management strategy in distributed GIS

    NASA Astrophysics Data System (ADS)

    Pan, Shaoming; Xiong, Lian; Xu, Zhengquan; Chong, Yanwen; Meng, Qingxiang

    2018-03-01

    Replication strategy is one of effective solutions to meet the requirement of service response time by preparing data in advance to avoid the delay of reading data from disks. This paper presents a brand-new method to create copies considering the selection of replicas set, the number of copies for each replica and the placement strategy of all copies. First, the popularities of all data are computed considering both the historical access records and the timeliness of the records. Then, replica set can be selected based on their recent popularities. Also, an enhanced Q-value scheme is proposed to assign the number of copies for each replica. Finally, a reasonable copies placement strategy is designed to meet the requirement of load balance. In addition, we present several experiments that compare the proposed method with techniques that use other replication management strategies. The results show that the proposed model has better performance than other algorithms in all respects. Moreover, the experiments based on different parameters also demonstrated the effectiveness and adaptability of the proposed algorithm.

  10. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; Peer, Akshit; Cho, In Ho

    Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less

  11. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography

    DOE PAGES

    Li, Qiang; Peer, Akshit; Cho, In Ho; ...

    2018-03-02

    Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less

  12. Czechoslovak Replica X-Ray Mirrors for Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Valnicek, B.

    Imaging X-ray mirrors has been developed in Czechoslovakia since 1970 by a way of two different replica technologies based on galvanoplastics and reactoplastics as a natural part of Czechoslovak X-ray astronomy program. Until now about 30 mirros with diameters between 1.7 and 24 cm were manufactured. Seven mirrors were flown in space experiments. The new technology used since 1981 allows to produce light-weight X-ray mirrors at relatively very low cost. The technology offers interesting possibilities in construction of (1) large arrays of identical optical systems, (2) very small (microscopic) mirros and (3) lobster-eye type optics. Advantages and drawbacks of replica techology are discussed.

  13. Optimal temperature ladders in replica exchange simulations

    NASA Astrophysics Data System (ADS)

    Denschlag, Robert; Lingenheil, Martin; Tavan, Paul

    2009-04-01

    In replica exchange simulations, a temperature ladder with N rungs spans a given temperature interval. Considering systems with heat capacities independent of the temperature, here we address the question of how large N should be chosen for an optimally fast diffusion of the replicas through the temperature space. Using a simple example we show that choosing average acceptance probabilities of about 45% and computing N accordingly maximizes the round trip rates r across the given temperature range. This result differs from previous analyses which suggested smaller average acceptance probabilities of about 23%. We show that the latter choice maximizes the ratio r/N instead of r.

  14. Evaluation of a Small-Crack Monitoring System

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Johnston, William M.

    2010-01-01

    A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.

  15. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could removemore » some residue.« less

  16. Influence of collision on the flow through in-vitro rigid models of the vocal folds

    NASA Astrophysics Data System (ADS)

    Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.

    2003-12-01

    Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.

  17. Systematic expansion in the order parameter for replica theory of the dynamical glass transition.

    PubMed

    Jacquin, Hugo; Zamponi, Francesco

    2013-03-28

    It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.

  18. Producing samples for the organization of proficiency tests. Study of the homogeneity of replicas produced from two atmosphere generation systems.

    PubMed

    Freville, Laurence; Moulut, Jean-Claude; Grzebyk, Michel; Kauffer, Edmond

    2010-08-01

    This article describes two atmosphere generation systems used for the production of replicas. The first, the Sputnic system, is based on the Sputnic air sampler developed by the National Institute of Occupational Health in Oslo (Norway). It is used to generate asbestos fibres or silica particles and allows the simultaneous production, by means of sampling on filters, of up to 114 replicas. The second is a multipurpose system that allows dust sampling on foams used with the CIP 10-R device. Twenty samples can be taken simultaneously. In total, 120 series of samples allowed characterization of the variability of the two generation systems used for the production of replicas loaded with asbestos fibres or silica dust. The coefficients of variation characterizing the dispersion of the filter loading in the Sputnic system are <10% for high densities asbestos fibre or silica dust samples. The coefficient of dispersion is on average higher when the asbestos fibre density is lower. The differences observed between the measurements taken on the different crowns of the Sputnic system are low and <2%. The results obtained with the multipurpose system show that replica dispersion is on average equal to 4%, which will allow proposal in the near future of a proficiency test dedicated to the quantitative analysis of crystalline silica on foams sampled with the CIP 10-R device.

  19. 77 FR 12240 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Institute, 5353 Parkside Dr MC 19-RE, Jupiter, FL 33458. Instrument: Freeze Fracture/Freeze Etch device... localization of membrane proteins using freeze fracture replica immuno- gold labeling, including all kinds of receptors and channels. Because freeze-fracture replica immuno-gold labeling has a high sensitivity for the...

  20. Replica of the Presidential Medal of Freedom Award

    NASA Image and Video Library

    1970-04-18

    S70-35562 (April 1970) --- A photographic replica of the Presidential Medal of Freedom Award which President Richard M. Nixon presented to the Apollo 13 Missions Operations Team (MOT). The presentation was made by the Chief Executive during a visit to the Manned Spacecraft Center (MSC) in April 1970.

  1. Inexpensive Eddy-Current Standard

    NASA Technical Reports Server (NTRS)

    Berry, Robert F., Jr.

    1985-01-01

    Radial crack replicas serve as evaluation standards. Technique entails intimately joining two pieces of appropriate aluminum alloy stock and centering drilled hole through and along interface. Bore surface of hole presents two vertical stock interface lines 180 degrees apart. These lines serve as radial crack defect replicas during eddy-current technique setup and verification.

  2. Accelerating the Conformational Sampling of Intrinsically Disordered Proteins.

    PubMed

    Do, Trang Nhu; Choy, Wing-Yiu; Karttunen, Mikko

    2014-11-11

    Intrinsically disordered proteins (IDPs) are a class of proteins lacking a well-defined secondary structure. Instead, they are able to attain multiple conformations, bind to multiple targets, and respond to changes in their surroundings. Functionally, IDPs have been associated with molecular recognition, cell regulation, and signal transduction. The dynamic conformational ensemble of IDPs is highly environmental and binding partner dependent, rendering the characterization of IDPs extremely challenging. Here, we compare the sampling efficiencies of conventional molecular dynamics (MD), well-tempered metadynamics (WT-META), and bias-exchange metadynamics (BE-META). The total simulation time was over 10 μs, and a 20-mer peptide derived from the Neh2 domain of the Nuclear factor erythroid 2-related factor 2 (Nrf2) protein was simulated. BE-META, with a neutral replica and seven biased replicas employing a set of seven relevant collective variables (CVs), provided the most reliable and efficient sampling. Finally, we propose a free-energy reconstruction method based on the probability distribution of the secondary structure contents. This postprocessing analysis confirms the presence of not only the β-hairpin conformation of the free Neh2 peptide but also its rare bound-state-like conformation, both of that have been experimentally observed. In addition, our simulations also predict other possible conformations to be verified with future experiments.

  3. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  4. Replication Strategy for Spatiotemporal Data Based on Distributed Caching System

    PubMed Central

    Xiong, Lian; Tao, Yang; Xu, Juan; Zhao, Lun

    2018-01-01

    The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay. PMID:29342897

  5. Effects of the interaction range on structural phases of flexible polymers.

    PubMed

    Gross, J; Neuhaus, T; Vogel, T; Bachmann, M

    2013-02-21

    We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.

  6. Free energy landscapes of a highly structured β-hairpin peptide and its single mutant

    NASA Astrophysics Data System (ADS)

    Kim, Eunae; Yang, Changwon; Jang, Soonmin; Pak, Youngshang

    2008-10-01

    We investigated the free energy landscapes of a highly structured β-hairpin peptide (MBH12) and a less structured peptide with a single mutation of Tyr6 to Asp6 (MBH10). For the free energy mapping, starting from an extended conformation, the replica exchange molecular dynamic simulations for two β-hairpins were performed using a modified version of an all-atom force field employing an implicit solvation (param99MOD5/GBSA). With the present simulation approach, we demonstrated that detailed stability changes associated with the sequence modification from MBH12 to MBH10 are quantitatively well predicted at the all-atom level.

  7. Method to improve passive fit of frameworks on implant-supported prostheses: An in vitro study.

    PubMed

    Manzella, Carlo; Bignardi, Cristina; Burello, Valerio; Carossa, Stefano; Schierano, Gianmario

    2016-07-01

    The passivity of the superstructure to the abutments of implant-supported prostheses is necessary for implant-prosthesis success. Improvements are needed in the methods of verifying passivity. The purpose of this in vitro study was to evaluate an inexpensive, easy to make, and user-friendly device to verify the position of the implant abutment replicas of the definitive cast and to avoid framework misfit before fabrication. Eighty stone devices were constructed on a metal base for the in vitro tests. The horizontal, vertical, and angled positions of the implant replicas were created to simulate misfits. The devices were fitted on the abutment replicas, and their ability to identify misfits was evaluated. A statistical analysis was not indicated, because the probability of fracture of the stone devices was 0 or 1. Two mathematical models were built using computer-aided design software (SolidWorks Premium; Dassault Systèmes SolidWorks Corp), and the finite element method was used (Ansys; ANSYS Inc) to simulate the structural behavior of 2 implant configurations (4 and 6 implants). Horizontal misfits of 150 μm, vertical misfits of 50 μm, and angled misfits of 1 degree were detected during the in vitro tests. Different loads and bone quality in the mathematical models did not change stress in the prosthesis configurations on 4 or 6 implants in a relevant way. The fabricated device was easily able to detect the misfits in accordance with the defined parameters. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul

    2018-04-01

    We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.

  9. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    PubMed

    Atzori, Alessio; Baker, Audrey E; Chiu, Mark; Bryce, Richard A; Bonnet, Pascal

    2013-01-01

    Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29) using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29) result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids) and side-chain orientation (for reversed sequences). A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  10. Stereolithographic biomodelling to create tangible hard copies of the ethmoidal labyrinth air cells based on the visible human project.

    PubMed

    Kapakin, S

    2011-02-01

    Rapid prototyping (RP), or stereolithography, is a new clinical application area, which is used to obtain accurate three-dimensional physical replicas of complex anatomical structures. The aim of this study was to create tangible hard copies of the ethmoidal labyrinth air cells (ELACs) with stereolithographic biomodelling. The visible human dataset (VHD) was used as the input imaging data. The Surfdriver software package was applied to these images to reconstruct the ELACs as three-dimensional DXF (data exchange file) models. These models were post-processed in 3D-Doctor software for virtual reality modelling language (VRML) and STL (Standard Triangulation Language) formats. Stereolithographic replicas were manufactured in a rapid prototyping machine by using the STL format. The total number of ELACs was 21. The dimensions of the ELACs on the right and left sides were 52.91 x 13.00 x 28.68 mm and 53.79 x 12.42 x 28.55 mm, respectively. The total volume of the ELACs was 4771.1003 mm(3). The mean ELAC distance was 27.29 mm from the nasion and 71.09 mm from the calotte topologically. In conclusion, the combination of Surfdriver and 3D-Doctor could be effectively used for manufacturing 3D solid models from serial sections of anatomical structures. Stereolithographic anatomical models provide an innovative and complementary tool for students, researchers, and surgeons to apprehend these anatomical structures tangibly. The outcomes of these attempts can provide benefits in terms of the visualization, perception, and interpretation of the structures in anatomy teaching and prior to surgical interventions.

  11. MurD ligase from E. coli: Tetrahedral intermediate formation study by hybrid quantum mechanical/molecular mechanical replica path method.

    PubMed

    Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom

    2009-02-15

    MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.

  12. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    A replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis is seen, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. STS-132 astronaut Piers Sellers returned the replica during a ceremony at the museum. Photo Credit: (NASA/Paul E. Alers)

  13. Transition in coupled replicas may not imply a finite-temperature ideal glass transition in glass-forming systems.

    PubMed

    Garrahan, Juan P

    2014-03-01

    A key open question in the glass transition field is whether a finite temperature thermodynamic transition to the glass state exists or not. Recent simulations of coupled replicas in atomistic models have found signatures of a static transition as a function of replica coupling. This can be viewed as evidence of an associated thermodynamic glass transition in the uncoupled system. We demonstrate here that a different interpretation is possible. We consider the triangular plaquette model, an interacting spin system which displays (East model-like) glassy dynamics in the absence of any static transition. We show that when two replicas are coupled, there is a curve of equilibrium phase transitions, between phases of small and large overlap, in the temperature-coupling plane (located on the self-dual line of an exact temperature-coupling duality of the system) which ends at a critical point. Crucially, in the limit of vanishing coupling the finite temperature transition disappears, and the uncoupled system is in the disordered phase at all temperatures. We discuss an interpretation of atomistic simulations in light of this result.

  14. Skin microrelief profiles as a cutaneous aging index.

    PubMed

    Kim, Dai Hyun; Rhyu, Yeon Seung; Ahn, Hyo Hyun; Hwang, Eenjun; Uhm, Chang Sub

    2016-10-01

    An objective measurement of cutaneous topographical information is important for quantifying the degree of skin aging. Our aim was to improve methods for measuring microrelief patterns using a three-dimensional analysis based on silicone replicas and scanning electron microscope (SEM). Another objective was to compare the results with those obtained using a two-dimensional analysis method based on dermoscopy. Silicone replicas were obtained from forearms, dorsum of the hands and fingers of 51 volunteers. Cutaneous profiles obtained by SEM with silicone replicas showed more consistent correlations with age than data obtained by dermoscopy. This indicates the advantage of three-dimensional topography analysis using silicone replicas and SEM over the widely used dermoscopic assessment. The cutaneous age was calculated using stepwise linear regression, and the result was 57.40-9.47 × (number of furrows on dorsum of the hand) × (width of furrows on dorsum of the hand). © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    NASA Astrophysics Data System (ADS)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  16. Multidimensional generalized-ensemble algorithms for complex systems.

    PubMed

    Mitsutake, Ayori; Okamoto, Yuko

    2009-06-07

    We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.

  17. Sealant retention is better assessed through colour photographs than through the replica and the visual examination methods.

    PubMed

    Hu, Xuan; Fan, Mingwan; Rong, Wensheng; Lo, Edward C M; Bronkhorst, Ewald; Frencken, Jo E

    2014-08-01

    The aim of this study was to test the hypothesis that the colour photograph method has a higher level of validity for assessing sealant retention than the visual clinical examination and replica methods. Sealed molars were assessed by two evaluators. The scores for the three methods were compared against consensus scores derived through assessing retention from scanning electron microscopy images (reference standard). The presence/absence (survival) of retained sealants on occlusal surfaces was determined according to the traditional and modified categorizations of retention. Sensitivity, specificity, and Youden-index scores were calculated. Sealant retention assessment scores for visual clinical examinations and for colour photographs were compared with those of the reference standard on 95 surfaces, and sealant retention assessment scores for replicas were compared with those of the reference standard on 33 surfaces. The highest mean Youden-index score for the presence/absence of sealant material was observed for the colour photograph method, followed by that for the replica method; the visual clinical examination method scored lowest. The mean Youden-index score for the survival of retained sealants was highest for the colour photograph method for both the traditional (0.882) and the modified (0.768) categories of sealant retention, whilst the visual clinical examination method had the lowest Youden-index score for these categories (0.745 and 0.063, respectively). The colour photograph method had a higher validity than the replica and the visual examination methods for assessing sealant retention. © 2014 Eur J Oral Sci.

  18. The decoupling of the glass transitions in the two-component p-spin spherical model

    NASA Astrophysics Data System (ADS)

    Ikeda, Harukuni; Ikeda, Atsushi

    2016-07-01

    Binary mixtures of large and small particles with a disparate size ratio exhibit a rich phenomenology at their glass transition points. In order to gain insights on such systems, we introduce and study a two-component version of the p-spin spherical spin glass model. We employ the replica method to calculate the free energy and the phase diagram. We show that when the strengths of the interactions of each component are not widely separated, the model has only one glass phase characterized by the conventional one-step replica symmetry breaking. However when the strengths of the interactions are well separated, the model has three glass phases depending on the temperature and component ratio. One is the ‘single’ glass phase in which only the spins of one component are frozen while the spins of the other component remain mobile. This phase is characterized by the one-step replica symmetry breaking. The second is the ‘double’ glass phase obtained by cooling the single glass phase further, in which the spins of the remaining mobile component are also frozen. This phase is characterized by the two-step replica symmetry breaking. The third is also the ‘double’ glass phase, which, however, is formed by the simultaneous freezing of the spins of both components at the same temperatures and is characterized by the one-step replica symmetry breaking. We discuss the implications of these results for the glass transitions of binary mixtures.

  19. Exploring the binding pathways of the 14-3-3ζ protein: Structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints

    PubMed Central

    Nagy, Gabor; Oostenbrink, Chris; Hritz, Jozef

    2017-01-01

    The 14-3-3 protein family performs regulatory functions in eukaryotic organisms by binding to a large number of phosphorylated protein partners. Whilst the binding mode of the phosphopeptides within the primary 14-3-3 binding site is well established based on the crystal structures of their complexes, little is known about the binding process itself. We present a computational study of the process by which phosphopeptides bind to the 14-3-3ζ protein. Applying a novel scheme combining Hamiltonian replica exchange molecular dynamics and distancefield restraints allowed us to map and compare the most likely phosphopeptide-binding pathways to the 14-3-3ζ protein. The most important structural changes to the protein and peptides involved in the binding process were identified. In order to bind phosphopeptides to the primary interaction site, the 14-3-3ζ adopted a newly found wide-opened conformation. Based on our findings we additionally propose a secondary interaction site on the inner surface of the 14-3-3ζ dimer, and a direct interference on the binding process by the flexible C-terminal tail. A minimalistic model was designed to allow for the efficient calculation of absolute binding affinities. Binding affinities calculated from the potential of mean force along the binding pathway are in line with the available experimental estimates for two of the studied systems. PMID:28727767

  20. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    PubMed

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  1. Plasticity of 150-Loop in Influenza Neuraminidase Explored by Hamiltonian Replica Exchange Molecular Dynamics Simulations

    PubMed Central

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147–150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus. PMID:23593372

  2. Physical mapping of complex genomes

    DOEpatents

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.

  3. Biomineralized 3-D Nanoparticle Assemblies with Micro-to-Nanoscale Features and Tailored Chemistries

    DTIC Science & Technology

    2008-01-07

    protuberances on the pollen surface were well preserved after conversion. This hybrid approach may be applied to a variety of bio-organic templates, which are...replicas were found to be rapid, low voltage, minimally-invasive sensors of NO(g) and to exhibit photoluminescence . The kinetics of magnesiothermic...silica- organic hybrid structures via biomimetic silicification has been demonstrated. The effects of two key parameters, the polyamine content and

  4. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom

  5. Three-Dimensional Interpretation of Sculptural Heritage with Digital and Tangible 3D Printed Replicas

    ERIC Educational Resources Information Center

    Saorin, José Luis; Carbonell-Carrera, Carlos; Cantero, Jorge de la Torre; Meier, Cecile; Aleman, Drago Diaz

    2017-01-01

    Spatial interpretation features as a skill to acquire in the educational curricula. The visualization and interpretation of three-dimensional objects in tactile devices and the possibility of digital manufacturing with 3D printers, offers an opportunity to include replicas of sculptures in teaching and, thus, facilitate the 3D interpretation of…

  6. Sparks and Shocks: Replicas of Historical Instruments in Museum Education

    ERIC Educational Resources Information Center

    Rhees, David J.

    2015-01-01

    This paper discusses the variety of ways in which The Bakken Museum has made use of replicas or simulations of historical instruments and experiments and demonstrations in education programs and exhibits for school children, families with children, and other museum audiences. Early efforts were stimulated in the mid-1980s by a collaboration with…

  7. A Recovery-Oriented Approach to Dependable Services: Repairing Past Errors with System-Wide Undo

    DTIC Science & Technology

    2003-12-01

    54 4.5.3 Handling propagating paradoxes: the squash interface . . . . . . . . . . . . . . . . . . . 54 4.6 Discussion...84 6.3.3 Compensating for paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.4 Squashing propagating...the service and comparing the behavior of the replicas to detect and squash misbehaving replicas. While on paper Byzantine fault tolerance may seem to

  8. Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering.

    PubMed

    Gil-Ley, Alejandro; Bussi, Giovanni

    2015-03-10

    The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide.

  9. Sampling of Protein Folding Transitions: Multicanonical Versus Replica Exchange Molecular Dynamics.

    PubMed

    Jiang, Ping; Yaşar, Fatih; Hansmann, Ulrich H E

    2013-08-13

    We compare the efficiency of multicanonical and replica exchange molecular dynamics for the sampling of folding/unfolding events in simulations of proteins with end-to-end β -sheet. In Go-model simulations of the 75-residue MNK6, we observe improvement factors of 30 in the number of folding/unfolding events of multicanonical molecular dynamics over replica exchange molecular dynamics. As an application, we use this enhanced sampling to study the folding landscape of the 36-residue DS119 with an all-atom physical force field and implicit solvent. Here, we find that the rate-limiting step is the formation of the central helix that then provides a scaffold for the parallel β -sheet formed by the two chain ends.

  10. Replica Exchange Molecular Dynamics in the Age of Heterogeneous Architectures

    NASA Astrophysics Data System (ADS)

    Roitberg, Adrian

    2014-03-01

    The rise of GPU-based codes has allowed MD to reach timescales only dreamed of only 5 years ago. Even within this new paradigm there is still need for advanced sampling techniques. Modern supercomputers (e.g. Blue Waters, Titan, Keeneland) have made available to users a significant number of GPUS and CPUS, which in turn translate into amazing opportunities for dream calculations. Replica-exchange based methods can optimally use tis combination of codes and architectures to explore conformational variabilities in large systems. I will show our recent work in porting the program Amber to GPUS, and the support for replica exchange methods, where the replicated dimension could be Temperature, pH, Hamiltonian, Umbrella windows and combinations of those schemes.

  11. Broadband pump-probe spectroscopy at 20-MHz modulation frequency.

    PubMed

    Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario

    2016-07-01

    We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6  rms noise over 1.5 s integration time.

  12. Isolation of a spontaneous CHO amino acid transport mutant by a combination of tritium suicide and replica plating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dantzig, A.H.; Slayman, C.W.; Adelberg, E.A.

    A spontaneous transport mutant of Chinese hamster ovary cells, CHY-1, was isolated by a combination of (/sup 3/H)proline suicide and replica plating. The mutant took up less tritium than the parent, resulting in a lower killing rate during storage. Transport by four separate amino acid transport systems (A, ASC, L, Ly+) was examined. The CHY-1 mutant exhibited normal uptake via the ASC, L, and Ly+ systems. By contrast, uptake of the most specific substrate of the A system, 2-(methylamino)-isobutyric acid, was significantly reduced at low, but not high, concentrations, due to a 3.5-fold increase in Km and a 1.5-fold increasemore » in Vmax. Taken together, these data suggest that the CHY-1 mutation may be in the structural gene coding for the A transport protein. The tritium suicide procedure is discussed, and general equations are derived to predict the maximum storage time for the survival of one mutant cell and the optimum size of the cell population for maximum mutant enrichment.« less

  13. Metainference: A Bayesian inference method for heterogeneous systems.

    PubMed

    Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele

    2016-01-01

    Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.

  14. Classification of electronically generated phantom targets by an Atlantic bottlenose dolphin (Tursiops truncatus).

    PubMed

    Aubauer, R; Au, W W; Nachtigall, P E; Pawloski, D A; DeLong, C M

    2000-05-01

    Animal behavior experiments require not only stimulus control of the animal's behavior, but also precise control of the stimulus itself. In discrimination experiments with real target presentation, the complex interdependence between the physical dimensions and the backscattering process of an object make it difficult to extract and control relevant echo parameters separately. In other phantom-echo experiments, the echoes were relatively simple and could only simulate certain properties of targets. The echo-simulation method utilized in this paper can be used to transform any animal echolocation sound into phantom echoes of high fidelity and complexity. The developed phantom-echo system is implemented on a digital signal-processing board and gives an experimenter fully programmable control over the echo-generating process and the echo structure itself. In this experiment, the capability of a dolphin to discriminate between acoustically simulated phantom replicas of targets and their real equivalents was tested. Phantom replicas were presented in a probe technique during a materials discrimination experiment. The animal accepted the phantom echoes and classified them in the same manner as it classified real targets.

  15. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    NASA Astrophysics Data System (ADS)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  16. Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds.

    PubMed

    Yeo, L P; Yan, Y H; Lam, Y C; Chan-Park, Mary B

    2006-11-21

    As-fabricated deep reactive ion etched (DRIE) silicon mold with very high aspect ratio (>10) feature patterns is unsuitable for poly(dimethylsiloxane) (PDMS) replication because of the strong interaction between the Si surface and the replica and the corrugated mold sidewalls. The silicon mold can be conveniently passivated via plasma polymerization of octafluorocyclobutane (C4F8), which is also employed in the DRIE process itself, to enable the mold to be used repeatedly. To optimize the passivation conditions, we have undertaken a Box-Behnken experimental design on the basis of three passivation process parameters (plasma power, C4F8 flow rate, and deposition time). The measured responses were fluorinated film thickness, demolding status/success, demolding force, and fluorine/carbon ratio on the fifth replica surface. The optimal passivation process conditions were predicted to be an input power of 195 W, a C4F8 flow rate of 57 sccm, and a deposition time of 364 s; these were verified experimentally to have high accuracy. Demolding success requires medium-deposited film thickness (66-91 nm), and the thickness of the deposited films correlated strongly with deposition time. At moderate to high ranges, increased plasma power or gas flow rate promoted polymerization over reactive etching of the film. It was also found that small quantities of the fluorinated surface were transferred from the Si mold to the PDMS at each replication, entailing progressive wear of the fluorinated layer.

  17. Multi-Scale Porous Ultra High Temperature Ceramics

    DTIC Science & Technology

    2015-01-08

    different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble...the porosity, pore size, shape and morphology . X-Ray Tomography was used to study their 3D microstructure. The 3D microstructures captured with...four different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble

  18. PIN - APOLLO 11

    NASA Image and Video Library

    1969-08-05

    S69-40941 (July 1969) --- This picture is of the gold replica of an olive branch, the traditional symbol of peace, which was left on the moon's surface by Apollo 11 crewmembers. Astronaut Neil A. Armstrong, commander, was in charge of placing the small replica (less than half a foot in length) on the moon. The gesture represents a fresh wish for peace for all mankind.

  19. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    PubMed

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  20. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with alpha and alpha+beta Proteins.

    PubMed

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A

    2009-03-10

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster.

  1. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with α and α+β Proteins

    PubMed Central

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster. PMID:20161452

  2. A new Strategy to Improve Drug Delivery to the Maxillary Sinuses: The Frequency Sweep Acoustic Airflow.

    PubMed

    El Merhie, Amira; Navarro, Laurent; Delavenne, Xavier; Leclerc, Lara; Pourchez, Jérémie

    2016-05-01

    Enhancement of intranasal sinus deposition involves nebulization of a drug superimposed by an acoustic airflow. We investigated the impact of fixed frequency versus frequency sweep acoustic airflow on the improvement of aerosolized drug penetration into maxillary sinuses. Fixed frequency and frequency sweep acoustic airflow were generated using a nebulizing system of variable frequency. The effect of sweep cycle and intensity variation was studied on the intranasal sinus deposition. We used a nasal replica created from CT scans using 3D printing. Sodium fluoride and gentamicin were chosen as markers. Studies performed using fixed frequency acoustic airflow showed that each of maxillary sinuses of the nasal replica required specific frequency for the optimal aerosol deposition. Intranasal sinus drug deposition experiments under the effect of the frequency sweep acoustic airflow showed an optimal aerosol deposition into both maxillary sinus of the nasal replica. Studies on the effect of the duration of the sweep cycle showed that the shorter the cycle the better the deposition. We demonstrate the benefit of frequency sweep acoustic airflow on drug deposition into maxillary sinuses. However further in vivo studies have to be conducted since delivery rates cannot be obviously determined from a nasal replica.

  3. (Bio)Chemical Tailoring of Biogenic 3-D Nanopatterned Templates with Energy-Relevant Functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhage, Kenneth H; Kroger, Nils

    2014-09-08

    The overall aim of this research has been to obtain fundamental understanding of (bio)chemical methodologies that will enable utilization of the unique 3-D nanopatterned architectures naturally produced by diatoms for the syntheses of advanced functional materials attractive for applications in energy harvesting/conversion and storage. This research has been conducted in three thrusts: Thrust 1 (In vivo immobilization of proteins in diatom biosilica) is directed towards elucidating the fundamental mechanism(s) underlying the cellular processes of in vivo immobilization of proteins in diatom silica. Thrust 2 (Shape-preserving reactive conversion of diatom biosilica into porous, high-surface area inorganic replicas) is aimed at understandingmore » the fundamental mechanisms of shape preservation and nanostructural evolution associated with the reactive conversion and/or coating-based conversion of diatom biosilica templates into porous inorganic replicas. Thrust 3 (Immobilization of energy-relevant enzymes in diatom biosilica and onto diatom biosilica-derived inorganic replicas) involves use of the results from both Thrust 1 and 2 to develop strategies for in vivo and in vitro immobilization of enzymes in/on diatom biosilica and diatom biosilica-derived inorganic replicas, respectively. This Final Report describes progress achieved in all 3 of these thrusts.« less

  4. Electron Phonon Coupling versus Photoelectron Energy Loss at the Origin of Replica Bands in Photoemission of FeSe on SrTiO3

    NASA Astrophysics Data System (ADS)

    Li, Fengmiao; Sawatzky, George A.

    2018-06-01

    The recent observation of replica bands in single-layer FeSe /SrTiO3 by angle-resolved photoemission spectroscopy (ARPES) has triggered intense discussions concerning the potential influence of the FeSe electrons coupling with substrate phonons on the superconducting transition temperature. Here we provide strong evidence that the replica bands observed in the single-layer FeSe /SrTiO3 system and several other cases are largely due to the energy loss processes of the escaping photoelectron, resulted from the well-known strong coupling of external propagating electrons to Fuchs-Kliewer surface phonons in ionic materials in general. The photoelectron energy loss in ARPES on single-layer FeSe /SrTiO3 is calculated using the demonstrated successful semiclassical dielectric theory in describing low energy electron energy loss spectroscopy of ionic insulators. Our result shows that the observed replica bands are mostly a result of extrinsic photoelectron energy loss and not a result of the electron phonon interaction of the Fe d electrons with the substrate phonons. The strong enhancement of the superconducting transition temperature in these monolayers remains an open question.

  5. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from themore » photonic crystal structure.« less

  6. Surface modification using the biomimetic method in alumina-zirconia porous ceramics obtained by the replica method.

    PubMed

    Silva, André D R; Rigoli, Willian R; Osiro, Denise; Mello, Daphne C R; Vasconcellos, Luana M R; Lobo, Anderson O; Pallone, Eliria M J A

    2018-01-12

    The modification of biomaterials approved by the Food and Drug Administration could be an alternative to reduce the period of use in humans. Porous bioceramics are widely used as support structures for bone formation and repair. This composite has essential characteristics for an implant, including good mechanical properties, high chemical stability, biocompatibility and adequate aesthetic appearance. Here, three-dimensional porous scaffolds of Al 2 O 3 containing 5% by volume of ZrO 2 were produced by the replica method. These scaffolds had their surfaces chemically treated with phosphoric acid and were coated with calcium phosphate using the biomimetic method simulated body fluid (SBF, 5×) for 14 days. The scaffolds, before and after biomimetic coating, were characterized mechanically, morphologically and structurally by axial compression tests, scanning electron microscopy, microtomography, apparent porosity, X-ray diffractometry, near-infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and reactivity. The in vitro cell viability and formation of mineralization nodules were used to identify the potential for bone regeneration. The produced scaffols after immersion in SBF were able to induce the nodules formation. These characteristics are advantaged by the formation of different phases of calcium phosphates on the material surface in a reduced incubation period. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  7. Neutron and gamma-ray dose-rates from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distancemore » from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.« less

  8. Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering

    PubMed Central

    2015-01-01

    The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide. PMID:25838811

  9. An implementation of the maximum-caliber principle by replica-averaged time-resolved restrained simulations

    NASA Astrophysics Data System (ADS)

    Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo

    2018-05-01

    Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

  10. Proactive replica checking to assure reliability of data in cloud storage with minimum replication

    NASA Astrophysics Data System (ADS)

    Murarka, Damini; Maheswari, G. Uma

    2017-11-01

    The two major issues for cloud storage systems are data reliability and storage costs. For data reliability protection, multi-replica replication strategy which is used mostly in current clouds acquires huge storage consumption, leading to a large storage cost for applications within the loud specifically. This paper presents a cost-efficient data reliability mechanism named PRCR to cut back the cloud storage consumption. PRCR ensures data reliability of large cloud information with the replication that might conjointly function as a price effective benchmark for replication. The duplication shows that when resembled to the standard three-replica approach, PRCR will scale back to consume only a simple fraction of the cloud storage from one-third of the storage, thence considerably minimizing the cloud storage price.

  11. An implementation of the maximum-caliber principle by replica-averaged time-resolved restrained simulations.

    PubMed

    Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo

    2018-05-14

    Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

  12. Mimicking the colourful wing scale structure of the Papilio blumei butterfly.

    PubMed

    Kolle, Mathias; Salgard-Cunha, Pedro M; Scherer, Maik R J; Huang, Fumin; Vukusic, Pete; Mahajan, Sumeet; Baumberg, Jeremy J; Steiner, Ullrich

    2010-07-01

    The brightest and most vivid colours in nature arise from the interaction of light with surfaces that exhibit periodic structure on the micro- and nanoscale. In the wings of butterflies, for example, a combination of multilayer interference, optical gratings, photonic crystals and other optical structures gives rise to complex colour mixing. Although the physics of structural colours is well understood, it remains a challenge to create artificial replicas of natural photonic structures. Here we use a combination of layer deposition techniques, including colloidal self-assembly, sputtering and atomic layer deposition, to fabricate photonic structures that mimic the colour mixing effect found on the wings of the Indonesian butterfly Papilio blumei. We also show that a conceptual variation to the natural structure leads to enhanced optical properties. Our approach offers improved efficiency, versatility and scalability compared with previous approaches.

  13. A Probabilistic Framework for Constructing Temporal Relations in Replica Exchange Molecular Trajectories.

    PubMed

    Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva

    2018-05-23

    Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).

  14. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water.

    PubMed

    Paschek, Dietmar; Nymeyer, Hugh; García, Angel E

    2007-03-01

    We simulate the folding/unfolding equilibrium of the 20-residue miniprotein Trp-cage. We use replica exchange molecular dynamics simulations of the AMBER94 atomic detail model of the protein explicitly solvated by water, starting from a completely unfolded configuration. We employ a total of 40 replicas, covering the temperature range between 280 and 538 K. Individual simulation lengths of 100 ns sum up to a total simulation time of about 4 micros. Without any bias, we observe the folding of the protein into the native state with an unfolding-transition temperature of about 440 K. The native state is characterized by a distribution of root mean square distances (RMSD) from the NMR data that peaks at 1.8A, and is as low as 0.4A. We show that equilibration times of about 40 ns are required to yield convergence. A folded configuration in the entire extended ensemble is found to have a lifetime of about 31 ns. In a clamp-like motion, the Trp-cage opens up during thermal denaturation. In line with fluorescence quenching experiments, the Trp-residue sidechain gets hydrated when the protein opens up, roughly doubling the number of water molecules in the first solvation shell. We find the helical propensity of the helical domain of Trp-cage rather well preserved even at very high temperatures. In the folded state, we can identify states with one and two buried internal water molecules interconnecting parts of the Trp-cage molecule by hydrogen bonds. The loss of hydrogen bonds of these buried water molecules in the folded state with increasing temperature is likely to destabilize the folded state at elevated temperatures.

  15. Vascular corrosion casting technique steps.

    PubMed

    Verli, Flaviana Dornela; Rossi-Schneider, Tissiana Raquel; Schneider, Felipe Luís; Yurgel, Liliane Soares; de Souza, Maria Antonieta Lopes

    2007-01-01

    The vascular corrosion casting technique produces a replica of vascular beds of normal or pathological tissues. Once associated with scanning electron microscopy (SEM), this technique provides details of the three-dimensional anatomic arrangement of the vascular replica, which is the main advantage of this method. The present study is intended to describe the steps of the vascular corrosion casting technique and the different ways to perform them. them.

  16. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.

    PubMed

    Nakano, Miki; Ebina, Kuniyoshi; Tanaka, Shigenori

    2013-04-01

    Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington's disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases.

  17. Effect of continuous annealing temperature on microstructure and properties of ferritic rolled interstitial-free steel

    NASA Astrophysics Data System (ADS)

    Qiu, Chen-yang; Li, Lang; Hao, Lei-lei; Wang, Jian-gong; Zhou, Xun; Kang, Yong-lin

    2018-05-01

    In this report, the microstructure, mechanical properties, and textures of warm rolled interstitial-free steel annealed at four different temperatures (730, 760, 790, and 820°C) were studied. The overall structural features of specimens were investigated by optical microscopy, and the textures were measured by X-ray diffraction (XRD). Nano-sized precipitates were then observed by a transmission electron microscope (TEM) on carbon extraction replicas. According to the results, with increased annealing temperatures, the ferrite grains grew; in addition, the sizes of Ti4C2S2 and TiC precipitates also increased. Additionally, the sizes of TiN and TiS precipitates slightly changed. When the annealing temperature increased from 730 to 820°C, the yield strength (YS) and the ultimate tensile strength (UTS) showed a decreasing trend. Meanwhile, elongation and the strain harden exponent (n value) increased to 49.6% and 0.34, respectively. By comparing textures annealed at different temperatures, the intensity of {111} texture annealed at 820°C was the largest, while the difference between the intensity of {111}<110> and {111}<112> was the smallest when the annealing temperature was 820°C. Therefore, the plastic strain ratio (r value) annealed at 820°C was the highest.

  18. From cellulose to kerogen: molecular simulation of a geological process.

    PubMed

    Atmani, Lea; Bichara, Christophe; Pellenq, Roland J-M; Van Damme, Henri; van Duin, Adri C T; Raza, Zamaan; Truflandier, Lionel A; Obliger, Amaël; Kralert, Paul G; Ulm, Franz J; Leyssale, Jean-Marc

    2017-12-01

    The process by which organic matter decomposes deep underground to form petroleum and its underlying kerogen matrix has so far remained a no man's land to theoreticians, largely because of the geological (Myears) timescale associated with the process. Using reactive molecular dynamics and an accelerated simulation framework, the replica exchange molecular dynamics method, we simulate the full transformation of cellulose into kerogen and its associated fluid phase under prevailing geological conditions. We observe in sequence the fragmentation of the cellulose crystal and production of water, the development of an unsaturated aliphatic macromolecular phase and its aromatization. The composition of the solid residue along the maturation pathway strictly follows what is observed for natural type III kerogen and for artificially matured samples under confined conditions. After expulsion of the fluid phase, the obtained microporous kerogen possesses the structure, texture, density, porosity and stiffness observed for mature type III kerogen and a microporous carbon obtained by saccharose pyrolysis at low temperature. As expected for this variety of precursor, the main resulting hydrocarbon is methane. The present work thus demonstrates that molecular simulations can now be used to assess, almost quantitatively, such complex chemical processes as petrogenesis in fossil reservoirs and, more generally, the possible conversion of any natural product into bio-sourced materials and/or fuel.

  19. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.

    PubMed

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH 2 ). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD 3 CD in H 2 O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  20. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide

    NASA Astrophysics Data System (ADS)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  1. Rooftop Energy Potential of Low Income Communities in America REPLICA

    DOE Data Explorer

    Mooney, Meghan (ORCID:0000000309406958); Sigrin, Ben

    1970-01-01

    The Rooftop Energy Potential of Low Income Communities in America REPLICA data set provides estimates of residential rooftop solar technical potential at the tract-level with emphasis on estimates for Low and Moderate Income LMI populations. In addition to technical potential REPLICA is comprised of 10 additional datasets at the tract-level to provide socio-demographic and market context. The model year vintage of REPLICA is 2015. The LMI solar potential estimates are made at the tract level grouped by Area Median Income AMI income tenure and building type. These estimates are based off of LiDAR data of 128 metropolitan areas statistical modeling and ACS 2011-2015 demographic data. The remaining datasets are supplemental datasets that can be used in conjunction with the technical potential data for general LMI solar analysis planning and policy making. The core dataset is a wide-format CSV file seeds_ii_replica.csv that can be tagged to a tract geometry using the GEOID or GISJOIN fields. In addition users can download geographic shapefiles for the main or supplemental datasets. This dataset was generated as part of the larger NREL-led SEEDSII Solar Energy Evolution and Diffusion Studies project and specifically for the NREL technical report titled Rooftop Solar Technical Potential for Low-to-Moderate Income Households in the United States by Sigrin and Mooney 2018. This dataset is intended to give researchers planners advocates and policy-makers access to credible data to analyze low-income solar issues and potentially perform cost-benefit analysis for program design. To explore the data in an interactive web mapping environment use the NREL SolarForAll app.

  2. New approach to accuracy verification of 3D surface models: An analysis of point cloud coordinates.

    PubMed

    Lee, Wan-Sun; Park, Jong-Kyoung; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul; Yu, Chin-Ho

    2016-04-01

    The precision of two types of surface digitization devices, i.e., a contact probe scanner and an optical scanner, and the trueness of two types of stone replicas, i.e., one without an imaging powder (SR/NP) and one with an imaging powder (SR/P), were evaluated using a computer-aided analysis. A master die was fabricated from stainless steel. Ten impressions were taken, and ten stone replicas were prepared from Type IV stone (Fujirock EP, GC, Leuven, Belgium). The precision of two types of scanners was analyzed using the root mean square (RMS), measurement error (ME), and limits of agreement (LoA) at each coordinate. The trueness of the stone replicas was evaluated using the total deviation. A Student's t-test was applied to compare the discrepancies between the CAD-reference-models of the master die (m-CRM) and point clouds for the two types of stone replicas (α=.05). The RMS values for the precision were 1.58, 1.28, and 0.98μm along the x-, y-, and z-axes in the contact probe scanner and 1.97, 1.32, and 1.33μm along the x-, y-, and z-axes in the optical scanner, respectively. A comparison with m-CRM revealed a trueness of 7.10μm for SR/NP and 8.65μm for SR/P. The precision at each coordinate (x-, y-, and z-axes) was revealed to be higher than the one assessed in the previous method (overall offset differences). A comparison between the m-CRM and 3D surface models of the stone replicas revealed a greater dimensional change in SR/P than in SR/NP. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.

    PubMed

    Jiang, Wei; Roux, Benoît

    2010-07-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  4. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  5. Self-calibrating threshold detector

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Huang, M. Y. (Inventor)

    1980-01-01

    A self calibrating threshold detector comprises a single demodulating channel which includes a mixer having one input receiving the incoming signal and another input receiving a local replica code. During a short time interval, an incorrect local code is applied to the mixer to incorrectly demodulate the incoming signal and to provide a reference level that calibrates the noise propagating through the channel. A sample and hold circuit is coupled to the channel for storing a sample of the reference level. During a relatively long time interval, the correct replica code provides an output level which ranges between the reference level and a maximum level that represents incoming signal presence and synchronism with the replica code. A summer substracts the stored sample reference from the output level to provide a resultant difference signal indicative of the acquisition of the expected signal.

  6. Belief Propagation Algorithm for Portfolio Optimization Problems

    PubMed Central

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462

  7. Belief Propagation Algorithm for Portfolio Optimization Problems.

    PubMed

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  8. Evaluation of generalized degrees of freedom for sparse estimation by replica method

    NASA Astrophysics Data System (ADS)

    Sakata, A.

    2016-12-01

    We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.

  9. Quantification of water content by laser induced breakdown spectroscopy on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapin, W.; Meslin, P. -Y.; Maurice, S.

    Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed in this paper. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify amore » normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Finally, moreover, the calibration curve obtained is relatively independent of the samples types.« less

  10. Quantification of water content by laser induced breakdown spectroscopy on Mars

    DOE PAGES

    Rapin, W.; Meslin, P. -Y.; Maurice, S.; ...

    2017-02-12

    Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed in this paper. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify amore » normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Finally, moreover, the calibration curve obtained is relatively independent of the samples types.« less

  11. Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph

    NASA Astrophysics Data System (ADS)

    Contucci, Pierluigi; Dommers, Sander; Giardinà, Cristian; Starr, Shannon

    2013-10-01

    We study the antiferromagnetic Potts model on the Poissonian Erdős-Rényi random graph. By identifying a suitable interpolation structure and an extended variational principle, together with a positive temperature second-moment analysis we prove the existence of a phase transition at a positive critical temperature. Upper and lower bounds on the temperature critical value are obtained from the stability analysis of the replica symmetric solution (recovered in the framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.

  12. Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.

    2015-10-01

    We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.

  13. Free-Energy Fluctuations and Chaos in the Sherrington-Kirkpatrick Model

    NASA Astrophysics Data System (ADS)

    Aspelmeier, T.

    2008-03-01

    The sample-to-sample fluctuations ΔFN of the free-energy in the Sherrington-Kirkpatrick model are shown rigorously to be related to bond chaos. Via this connection, the fluctuations become analytically accessible by replica methods. The replica calculation for bond chaos shows that the exponent μ governing the growth of the fluctuations with system size N, ΔFN˜Nμ, is bounded by μ≤(1)/(4).

  14. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method

    DTIC Science & Technology

    2011-12-01

    REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J

  15. DIRAC File Replica and Metadata Catalog

    NASA Astrophysics Data System (ADS)

    Tsaregorodtsev, A.; Poss, S.

    2012-12-01

    File replica and metadata catalogs are essential parts of any distributed data management system, which are largely determining its functionality and performance. A new File Catalog (DFC) was developed in the framework of the DIRAC Project that combines both replica and metadata catalog functionality. The DFC design is based on the practical experience with the data management system of the LHCb Collaboration. It is optimized for the most common patterns of the catalog usage in order to achieve maximum performance from the user perspective. The DFC supports bulk operations for replica queries and allows quick analysis of the storage usage globally and for each Storage Element separately. It supports flexible ACL rules with plug-ins for various policies that can be adopted by a particular community. The DFC catalog allows to store various types of metadata associated with files and directories and to perform efficient queries for the data based on complex metadata combinations. Definition of file ancestor-descendent relation chains is also possible. The DFC catalog is implemented in the general DIRAC distributed computing framework following the standard grid security architecture. In this paper we describe the design of the DFC and its implementation details. The performance measurements are compared with other grid file catalog implementations. The experience of the DFC Catalog usage in the CLIC detector project are discussed.

  16. Zebrafish response to a robotic replica in three dimensions

    PubMed Central

    Ruberto, Tommaso; Mwaffo, Violet; Singh, Sukhgewanpreet; Neri, Daniele

    2016-01-01

    As zebrafish emerge as a species of choice for the investigation of biological processes, a number of experimental protocols are being developed to study their social behaviour. While live stimuli may elicit varying response in focal subjects owing to idiosyncrasies, tiredness and circadian rhythms, video stimuli suffer from the absence of physical input and rely only on two-dimensional projections. Robotics has been recently proposed as an alternative approach to generate physical, customizable, effective and consistent stimuli for behavioural phenotyping. Here, we contribute to this field of investigation through a novel four-degree-of-freedom robotics-based platform to manoeuvre a biologically inspired three-dimensionally printed replica. The platform enables three-dimensional motions as well as body oscillations to mimic zebrafish locomotion. In a series of experiments, we demonstrate the differential role of the visual stimuli associated with the biologically inspired replica and its three-dimensional motion. Three-dimensional tracking and information-theoretic tools are complemented to quantify the interaction between zebrafish and the robotic stimulus. Live subjects displayed a robust attraction towards the moving replica, and such attraction was lost when controlling for its visual appearance or motion. This effort is expected to aid zebrafish behavioural phenotyping, by offering a novel approach to generate physical stimuli moving in three dimensions. PMID:27853566

  17. Random forest regression for magnetic resonance image synthesis.

    PubMed

    Jog, Amod; Carass, Aaron; Roy, Snehashis; Pham, Dzung L; Prince, Jerry L

    2017-01-01

    By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T 2 -weighted brain images that include the skull and FLuid Attenuated Inversion Recovery (FLAIR) images has been reported. The method described herein, called REPLICA, addresses these limitations. REPLICA is a supervised random forest image synthesis approach that learns a nonlinear regression to predict intensities of alternate tissue contrasts given specific input tissue contrasts. Experimental results include direct image comparisons between synthetic and real images, results from image analysis tasks on both synthetic and real images, and comparison against other state-of-the-art image synthesis methods. REPLICA is computationally fast, and is shown to be comparable to other methods on tasks they are able to perform. Additionally REPLICA has the capability to synthesize both T 2 -weighted images of the full head and FLAIR images, and perform intensity standardization between different imaging datasets. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    NASA Astrophysics Data System (ADS)

    Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael

    2016-02-01

    We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.

  19. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.

    PubMed

    Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj

    2016-01-01

    Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, M. S. Ravi, E-mail: rameshg.phy@pondiuni.edu; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu

    The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 μm wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (□5) and PVDF (Polyvinylidenemore » difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.« less

  1. Influences of conformations of peptides on stereoinversions and/or isomerizations of aspartic acid residues.

    PubMed

    Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Takahashi, Ohgi

    2018-07-01

    Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (n + 1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances <3.0 Å was greater for exon 26A-2 peptide than for exon 26A-1 peptide. Furthermore, PSA for amide nitrogen of the (n + 1) residue was larger for exon 26A-2 peptide than for exon 26A-1 peptide. These results indicated that the flexibility of Asp and (n + 1) residues and hydrophilicity of peptides, especially in the (n + 1) residue, play important roles in the stereoinversion of Asp. This article is part of a Special Issue entitled: D-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Nitrogen dioxide-induced alterations in ganglioside content and structure of pulmonary artery endothelial cell plasma membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekharam, M.; Patel, J.M.; Block, E.R.

    1990-02-26

    Nitrogen dioxide (NO{sub 2}), an environmental oxidant, is known to cause injury to the surface of pulmonary artery endothelial cells (PAEC). Because gangliosides are present in the outer leaflet of plasma membranes, the authors hypothesize that NO{sub 2} exposure may alter the ganglioside content and structure of PAEC plasma membranes. To test this, confluent porcine PAEC were exposed to 5 ppm NO{sub 2} containing 5% CO{sub 2} for 48 hours at 37 C in a CO{sub 2} incubator. Controls were exposed to air containing 5% Co{sub 2} under identical conditions. After exposure: (1) total lipids were extracted and ganglioside basesmore » were separated and estimated by fluorescamine, (2) the sialic acid content of intact cells was measured by the resorcinol method, and (3) freeze-fracture analysis of the intact cell plasma membrane was done by propane jet freezing and shadowing with platinum and carbon to form a replica. The ganglioside and sialic acid/{mu}g protein, respectively. In No{sub 2}-exposed cells, ganglioside content was reduced by 45% and sialic acid content was increased by 30%. Freeze-fracture analysis of the plasma membrane of control cells showed the presence of 160{+-}12 particles/cm area at 45000x. In contrast, the number of particles on the No{sub 2}-exposed plasma membrane was reduced to 68{+-}5 particles/cm at 45000x (p < 0.05). These results demonstrate that NO{sub 2} causes structural changes in the surface of PAEC plasma membranes, and these are temporally associated with a reduction in the number of gagliosides in these cells.« less

  3. Titanium Damage Tolerant Design Data for Propulsion Systems

    DTIC Science & Technology

    1977-08-01

    for the threshold and 30 Hz tests were measured using cellulose acetate tape replicas with an accuracy of 0.001 in. (0.0025 mm) for changes in crack...monitored with the traveling telescope and verified with cellulose acetate tape replicas. Testing was performed in load control on servo-hydraulic...34 Contract F33615-75-C-5064, First Semiannual Report, AFML, December 1975. 2. Erdogan F. and M. Ratwani, "Fatigue and Fracture of Cylindrical Shells

  4. Multicast Parametric Synchronous Sampling

    DTIC Science & Technology

    2011-09-01

    enhancement in a parametric mixer device. Fig. 4 shows the principle of generating uniform, high quality replicas extending over previously un-attainable...critical part of the MPASS architecture and is responsible for the direct and continuous acquisition of data across all of the multicast signal copies...ii) ability to copy THz signals with impunity to tens of replicas ; (iii) all-optical delays > 1.9 us; (iv) 10’s of THz-fast all-optical sampling of

  5. Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco

    By using a simple interpolation argument, in previous work we have proven the existence of the thermodynamic limit, for mean field disordered models, including the Sherrington-Kirkpatrick model, and the Derrida p-spin model. Here we extend this argument in order to compare the limiting free energy with the expression given by the Parisi Ansatz, and including full spontaneous replica symmetry breaking. Our main result is that the quenched average of the free energy is bounded from below by the value given in the Parisi Ansatz, uniformly in the size of the system. Moreover, the difference between the two expressions is given in the form of a sum rule, extending our previous work on the comparison between the true free energy and its replica symmetric Sherrington-Kirkpatrick approximation. We give also a variational bound for the infinite volume limit of the ground state energy per site.

  6. Method for producing highly reflective metal surfaces

    DOEpatents

    Arnold, J.B.; Steger, P.J.; Wright, R.R.

    1982-03-04

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  7. Neutron and gamma dose and spectra measurements on the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in themore » atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.« less

  8. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  9. Method for producing highly reflective metal surfaces

    DOEpatents

    Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.

    1983-01-01

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  10. Histopathology of human superficial herpes simplex keratitis.

    PubMed Central

    Maudgal, P. C.; Missotten, L.

    1978-01-01

    In vivo corneal replicas were made in 20 cases of patients with superficial dendritic ulcers of the cornea. Histopathological study of the replicas and superficial epithelial cells showed that the dendrites are composed of rounded epithelial cells and variable sized syncytia containing bizarre shaped nuclei. Pseudopodia-like processes containing DNA and some RNA extend from the syncytia into the surrounding epithelial cells, which on coming into contact with these processes become rounded and liquefied to give rise to another syncytium. The epithelial cells adjacent to the dendrite and elongated and usually orientated parallel to the long axis of the lesion. Surrounding the terminal bulbs, they are disposed in an arcuate fashion. These cells show C-mitotic lesions, intranuclear and cytoplasmic inclusion bodies, and polykaryocyte formation. Microscopic examination of the corneal replicas shows the intranuclear lesions and rounding of cells up to about 2 mm away from the dendritic ulcers. These areas appear normal on clinical examination. Images PMID:629910

  11. Probing exciton density of states through phonon-assisted emission in GaN epilayers: A and B exciton contributions

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Gabrieli, Riccardo; Gurioli, Massimo; Bogani, Franco; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas; Vinattieri, Anna

    2010-09-01

    A detailed experimental investigation of the phonon-assisted emission in a high-quality c -plane GaN epilayer is presented up to 200 K. By performing photoluminescence and reflectivity measurements, we find important etaloning effects in the phonon-replica spectra, which have to be corrected before addressing the lineshape analysis. Direct experimental evidence for free exciton thermalization is found for the whole temperature range investigated. A close comparison with existing models for phonon replicas originating from a thermalized free exciton distribution shows that the simplified and commonly adopted description of the exciton-phonon interaction with a single excitonic band leads to a large discrepancy with experimental data. Only the consideration of the complex nature of the excitonic band in GaN, including A and B exciton contributions, allows accounting for the temperature dependence of the peak energy, intensity, and lineshape of the phonon replicas.

  12. Metainference: A Bayesian inference method for heterogeneous systems

    PubMed Central

    Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele

    2016-01-01

    Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300

  13. Novel fabrication method of microlens arrays with High OLED outcoupling efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Moon, Seong Il; Hwang, Dong Eui; Jeong, Ki Won; Kim, Chang Kyo; Moon, Dae-Gyu; Hong, Chinsoo

    2016-03-01

    We presented a novel fabrication method of pyramidal and hemispherical polymethylmethacrylate (PMMA) microlens arrays to improve the outcoupling efficiency. Pyramidal microlens arrays were fabricated by replica molding processes using concave-pyramidal silicon molds prepared by the wet etching method. Concave-hemispherical PMMA thin film was used as a template for fabrication of the hemispherical microlens array. The concave-hemispherical PMMA template was prepared by blowing a N2 gas stream onto the thin PMMA film suspended on a silicon pedestal. A PMMA microlens arrays with hemispherical structure were fabricated by a replica molding process. The outcoupling efficiency of the hemispherical microlens array was greater than that of the pyramidal microlens array. The outcoupling efficiency of hemispherical microlens arrays with a higher contact angle was larger than that of those with lower contact angle. This indicates that, for the hemispherical microlens with larger contact angle, more light can be extracted from the OLEDs due to the decrease in the incident angle of the light at the interface between an air and a hemispherical microlens arrays. After attaching a hemispherical microlens array with contact angle of 50.4° onto the OLEDs, the luminance was enhanced by approximately 117%.

  14. Chiral nematic porous germania and germanium/carbon films

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Nguyen, Thanh-Dinh; Xie, Kai; Hamad, Wadood Y.; MacLachlan, Mark J.

    2015-07-01

    We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering. Electronic supplementary information (ESI) available: TGA, IR, Raman, TEM, SEM, BET. See DOI: 10.1039/c5nr02520f

  15. Commensurability and stability in nonperiodic systems

    PubMed Central

    Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.

    2005-01-01

    We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763

  16. Replication of self-centering optical fiber alignment structures using hot embossing

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Wissmann, Markus; Barié, Nicole; Guttmann, Markus; Schneider, Marc; Kolew, Alexander; Worgull, Matthias; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-04-01

    With the demand for broadband connectivity on the rise due to various services like video-on-demand and cloud computing becoming more popular, the need for better connectivity infrastructure is high. The only future- proof option to supply this infrastructure is to deploy "fiber to the home" (FTTH) networks. One of the main difficulties with the deployment of FTTH is the vast amount of single-mode fiber (SMF) connections that need to be made. Hence there is a strong need for components which enable high performance, robust and easy-to- use SMF connectors. Since large-scale deployment is the goal, these components should be mass-producible at low cost. We discuss a rapid prototyping process on the basis of hot embossing replication of a self-centering alignment system (SCAS) based on three micro-springs, which can position a SMF independently of its diameter. This is beneficial since there is a fabrication tolerance of up to +/-1 μm on a standard G.652 SMF's diameter that can lead to losses if the outer diameter is used as a reference for alignment. The SCAS is first prototyped with deep proton writing (DPW) in polymethylmethacrylate (PMMA) after which it is glued to a copper substrate with an adhesive. Using an electroforming process, a nickel block is grown over the PMMA prototype followed by mechanical finishing to fabricate a structured nickel mould insert. Even though the mould insert shows non- ideal and rounded features it is used to create PMMA replicas of the SCAS by means of hot embossing. The SCAS possesses a central opening in which a bare SMF can be clamped, which is designed with a diameter of 121 μm. PMMA replicas are dimensionally characterized using a multisensor coordinate measurement machine and show a central opening diameter of 128.3 +/- 2.8 μm. This should be compared to the central opening diameter of the DPW prototype used for mould formation which was measured to be 120.5 μm. This shows that the electroforming and subsequent replication process is possible for complex micro-scale components and could be accurate after optimisation. We characterized the sidewall roughness of PMMA replicas using a non- contact optical profiler, resulting in a root-mean-square roughness of 48 nm over an area of 63.7 μm×47.8 μm. This low sidewall roughness is especially important in the replication of high aspect ratio structures to facilitate demoulding since the sidewalls cause the most friction with the mould insert.

  17. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-04

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation.

  18. Effects of the Pathogenic Mutation A117V and the Protective Mutation H111S on the Folding and Aggregation of PrP106-126: Insights from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Ning, Lulu; Pan, Dabo; Zhang, Yan; Wang, Shaopeng; Liu, Huanxiang; Yao, Xiaojun

    2015-01-01

    The fragment 106-126 of prion protein exhibits similar properties to full-length prion. Experiments have shown that the A117V mutation enhances the aggregation of PrP106-126, while the H111S mutation abolishes the assembly. However, the mechanism of the change in the aggregation behavior of PrP106-126 upon the two mutations is not fully understood. In this study, replica exchange molecular dynamics simulations were performed to investigate the conformational ensemble of the WT PrP106-126 and its two mutants A117V and H111S. The obtained results indicate that the three species are all intrinsically disordered but they have distinct morphological differences. The A117V mutant has a higher propensity to form β-hairpin structures than the WT, while the H111S mutant has a higher population of helical structures. Furthermore, the A117V mutation increases the hydrophobic solvent accessible surface areas of PrP106-126 and the H111S mutation reduces the exposure of hydrophobic residues. It can be concluded that the difference in populations of β-hairpin structures and the change of hydrophobic solvent accessible areas may induce the different aggregation behaviors of the A117V and the H111S mutated PrP106-126. Understanding why the two mutations have contrary effects on the aggregation of PrP106-126 is very meaningful for further elucidation of the mechanism underlying aggregation and design of inhibitor against aggregation process.

  19. Effects of the A117V mutation on the folding and aggregation of palindromic sequences (PrP113-120) in prion: insights from replica exchange molecular dynamics simulations.

    PubMed

    Ning, Lulu; Wang, Qianqian; Zheng, Yang; Liu, Huanxiang; Yao, Xiaojun

    2015-02-01

    The palindromic region AGAAAAGA (PrP113-120) in prion is highly amyloidogenic and very critical in the structural conversion of cellular prion protein to its pathogenetic form. In this region, there is an important point mutation A117V, which is closely related to the occurrence of Gerstmann-Straussler-Scheinker Syndrome. However, the detailed knowledge about the effects of the A117V mutation on the folding and aggregation of the palindromic sequences is still lacking. To investigate the impacts of A117V mutation on the earliest steps along the PrP113-120 aggregation pathway, replica exchange molecular dynamics simulations of the monomer, 2- and 4-peptide systems of PrP113-120 and its A117V mutant were carried out. The simulations of monomers indicate that both WT and the A117V mutated PrP113-120 are mostly random coils with helical structures transiently populated. Differently, the A117V mutation enhances the intrinsic disorder of PrP113-120. The simulations of 2- and 4-peptide systems of the two species show that the A117V mutation increases the sheet contents and the populations of oligomers, which may be attributed to the enhancement of inter-peptide backbone hydrogen bonding interactions and side chain hydrophobic interactions. Overall, the study provides structural insights into the impacts of the A117V mutation on the folding and assembly of the palindromic sequences, which might be helpful to elucidate the mechanism underlying prion disease and the origin of the Gerstmann-Straussler-Scheinker Syndrome.

  20. Effects of the Pathogenic Mutation A117V and the Protective Mutation H111S on the Folding and Aggregation of PrP106-126: Insights from Replica Exchange Molecular Dynamics Simulations

    PubMed Central

    Ning, Lulu; Pan, Dabo; Zhang, Yan; Wang, Shaopeng; Liu, Huanxiang; Yao, Xiaojun

    2015-01-01

    The fragment 106-126 of prion protein exhibits similar properties to full-length prion. Experiments have shown that the A117V mutation enhances the aggregation of PrP106-126, while the H111S mutation abolishes the assembly. However, the mechanism of the change in the aggregation behavior of PrP106-126 upon the two mutations is not fully understood. In this study, replica exchange molecular dynamics simulations were performed to investigate the conformational ensemble of the WT PrP106-126 and its two mutants A117V and H111S. The obtained results indicate that the three species are all intrinsically disordered but they have distinct morphological differences. The A117V mutant has a higher propensity to form β-hairpin structures than the WT, while the H111S mutant has a higher population of helical structures. Furthermore, the A117V mutation increases the hydrophobic solvent accessible surface areas of PrP106-126 and the H111S mutation reduces the exposure of hydrophobic residues. It can be concluded that the difference in populations of β-hairpin structures and the change of hydrophobic solvent accessible areas may induce the different aggregation behaviors of the A117V and the H111S mutated PrP106-126. Understanding why the two mutations have contrary effects on the aggregation of PrP106-126 is very meaningful for further elucidation of the mechanism underlying aggregation and design of inhibitor against aggregation process. PMID:25993001

  1. Survey of Cyber Moving Target Techniques

    DTIC Science & Technology

    2013-09-25

    Description: Details: The authors propose a very simple form of multivariant execution with two replicas where one replica runs with the stack growing ...upwards and the other runs with the stack growing down. Normally any single architecture only supports the stack growing in one direction, but the...April 2012. 8. “The NX Bit and ASLR,” Tom’s Hardware, 25 March 2009. 9. “Pwn2Own day 2: iPhone, BlackBerry beaten; Chrome, Firefox no-shows,” Ars

  2. Lunar Tire Close-up

    NASA Image and Video Library

    2017-02-23

    This is a close-up of an exact replica of the Apollo-era Lunar Roving Vehicle Wheel, of which twelve originals still rest on the surface of the Moon. The tire was designed to flex under load, without air, and was formed from a mesh of plated piano wire. Metal straps were hand riveted onto the mesh to reduce sinking into loose lunar soils. These replica wheels were tested in NASA Glenn's SLOPE Lab to establish a baseline for future improvements.

  3. KENNEDY SPACE CENTER, FLA. - The Rocket Garden at the KSC Visitor Complex features eight authentic rockets from the past, including a Mercury-Atlas rocket. The garden also features a climb-in Mercury, Gemino and Apollo capsule replicas, seating pods and informative graphic elements.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - The Rocket Garden at the KSC Visitor Complex features eight authentic rockets from the past, including a Mercury-Atlas rocket. The garden also features a climb-in Mercury, Gemino and Apollo capsule replicas, seating pods and informative graphic elements.

  4. 3D printed replicas for endodontic education.

    PubMed

    Reymus, M; Fotiadou, C; Kessler, A; Heck, K; Hickel, R; Diegritz, C

    2018-06-14

    To assess the feasibility of producing artificial teeth for endodontic training using 3D printing technology, to analyse the accuracy of the printing process, and to evaluate the teeth by students when used during training. Sound extracted human teeth were selected, digitalized by cone beam computed tomography (CBCT) and appropriate software and finally reproduced by a stereolithographic printer. The printed teeth were scanned and compared with the original ones (trueness) and to one another (precision). Undergraduate dental students in the third and fourth years performed root canal treatment on printed molars and were subsequently asked to evaluate their experience with these compared to real teeth. The workflow was feasible for manufacturing 3D printed tooth replicas. The absolute deviation after printing (trueness) ranged from 50.9μm to 104.3μm. The values for precision ranged from 43.5μm to 68.2μm. Students reported great benefits in the use of the replicated teeth for training purposes. The presented workflow is feasible for any dental educational institution who has access to a CBCT unit and a stereolithographic printer. The accuracy of the printing process is suitable for the production of tooth replicas for endodontic training. Undergraduate students favoured the availability of these replicas and the fairness they ensured in training due to standardization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Verification of a computer-aided replica technique for evaluating prosthesis adaptation using statistical agreement analysis.

    PubMed

    Mai, Hang-Nga; Lee, Kyeong Eun; Lee, Kyu-Bok; Jeong, Seung-Mi; Lee, Seok-Jae; Lee, Cheong-Hee; An, Seo-Young; Lee, Du-Hyeong

    2017-10-01

    The purpose of this study was to evaluate the reliability of computer-aided replica technique (CART) by calculating its agreement with the replica technique (RT), using statistical agreement analysis. A prepared metal die and a metal crown were fabricated. The gap between the restoration and abutment was replicated using silicone indicator paste (n = 25). Gap measurements differed in the control (RT) and experimental (CART) groups. In the RT group, the silicone replica was manually sectioned, and the marginal and occlusal gaps were measured using a microscope. In the CART group, the gap was digitized using optical scanning and image superimposition, and the gaps were measured using a software program. The agreement between the measurement techniques was evaluated by using the 95% Bland-Altman limits of agreement and concordance correlation coefficients (CCC). The least acceptable CCC was 0.90. The RT and CART groups showed linear association, with a strong positive correlation in gap measurements, but without significant differences. The 95% limits of agreement between the paired gap measurements were 3.84% and 7.08% of the mean. The lower 95% confidence limits of CCC were 0.9676 and 0.9188 for the marginal and occlusal gap measurements, respectively, and the values were greater than the allowed limit. The CART is a reliable digital approach for evaluating the fit accuracy of fixed dental prostheses.

  6. Order parameter free enhanced sampling of the vapor-liquid transition using the generalized replica exchange method.

    PubMed

    Lu, Qing; Kim, Jaegil; Straub, John E

    2013-03-14

    The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.

  7. Classical mutual information in mean-field spin glass models

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Inglis, Stephen; Pollet, Lode

    2016-03-01

    We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.

  8. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.

    PubMed

    Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M

    2017-09-16

    Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.

  9. Hard X-Ray and Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1998-01-01

    Studies are being carried out to compare the performance of several different separation materials used in the replication process. This report presents the results obtained during the second year of a program which consists of replicating smooth, thin substrates, depositing multilayer coatings upon them, and evaluating their performance. Replication and multilayer coatings are both critically important to the development of focussing hard X-ray telescopes that function up to 100 keV. The activities of the current year include extending the comparison between sputtered amorphous carbon and evaporated gold to include sputtered as well as evaporated gold. The figure of merit being the smoothness of the replica which has a direct effect on the specular reflectivity. These results were obtained with epoxy replication, but they should be applicable to electroformed nickel, the process we expect to use for the ultimate replicated optics.

  10. Anomalous structural transition of confined hard squares.

    PubMed

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  11. Exploring Hamiltonian dielectric solvent molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-09-01

    Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.

  12. Replicas of Snoopy and Charlie Brown decorate top of console in MCC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip 'Peanuts', decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules. The code words for the Command Module will be Charlie Brown.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Go

    We consider the situation where s replicas of a qubit with an unknown state and its orthogonal k replicas are given as an input, and we try to make c clones of the qubit with the unknown state. As a function of s, k, and c, we obtain the optimal fidelity between the qubit with an unknown state and the clone by explicitly giving a completely positive trace-preserving (CPTP) map that represents a cloning machine. We discuss dependency of the fidelity on the values of the parameters s, k, and c.

  14. Manual of Military Decorations and Awards: DoD Service Awards - Campaign, Expeditionary, and Service Medals. Volume 2

    DTIC Science & Technology

    2010-11-23

    Disaster Relief? Consider Creation of Campaign Medal National Security Threat? Advocate for Activation of National Defense Service Medal Consider...2) Arrowhead Device: The arrowhead device is a bronze replica of an Indian arrowhead 1/4 inch high. It is a Department of the Army device that...device is a bronze replica of an Indian arrowhead 1/4 inch high. It is a Department of the Army device that is authorized for wear on the AFEM. (3

  15. Neutron dosimetry of the Little Boy device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.

  16. Additive Manufacturing: A Comparative Analysis of Dimensional Accuracy and Skin Texture Reproduction of Auricular Prostheses Replicas.

    PubMed

    Unkovskiy, Alexey; Spintzyk, Sebastian; Axmann, Detlef; Engel, Eva-Maria; Weber, Heiner; Huettig, Fabian

    2017-11-10

    The use of computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing in maxillofacial prosthetics has been widely acknowledged. Rapid prototyping can be considered for manufacturing of auricular prostheses. Therefore, so-called prostheses replicas can be fabricated by digital means. The objective of this study was to identify a superior additive manufacturing method to fabricate auricular prosthesis replicas (APRs) within a digital workflow. Auricles of 23 healthy subjects (mean age of 37.8 years) were measured in vivo with respect to an anthropometrical protocol. Landmarks were volumized with fiducial balls for 3D scanning using a handheld structured light scanner. The 3D CAD dataset was postprocessed, and the same anthropometrical measurements were made in the CAD software with the digital lineal. Each CAD dataset was materialized using fused deposition modeling (FDM), selective laser sintering (SLS), and stereolithography (SL), constituting 53 APR samples. All distances between the landmarks were measured on the APRs. After the determination of the measurement error within the five data groups (in vivo, CAD, FDM, SLS, and SL), the mean values were compared using matched pairs method. To this, the in vivo and CAD dataset were set as references. Finally, the surface structure of the APRs was qualitatively evaluated with stereomicroscopy and profilometry to ascertain the level of skin detail reproduction. The anthropometrical approach showed drawbacks in measuring the protrusion of the ear's helix. The measurement error within all groups of measurements was calculated between 0.20 and 0.28 mm, implying a high reproducibility. The lowest mean differences of 53 produced APRs were found in FDM (0.43%) followed by SLS (0.54%) and SL (0.59%)--compared to in vivo, and again in FDM (0.20%) followed by SL (0.36%) and SLS (0.39%)--compared to CAD. None of these values exceed the threshold of clinical relevance (1.5%); however, the qualitative evaluation revealed slight shortcomings in skin reproduction for all methods: reproduction of skin details exceeding 0.192 mm in depth was feasible. FDM showed the superior dimensional accuracy and best skin surface reproduction. Moreover, digital acquisition and CAD postprocessing seem to play a more important role in the outcome than the additive manufacturing method used. © 2017 by the American College of Prosthodontists.

  17. New force replica exchange method and protein folding pathways probed by force-clamp technique.

    PubMed

    Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan

    2008-01-28

    We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as have been observed in recent experiments.

  18. The effects of the one-step replica symmetry breaking on the Sherrington-Kirkpatrick spin glass model in the presence of random field with a joint Gaussian probability density function for the exchange interactions and random fields

    NASA Astrophysics Data System (ADS)

    Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.

    2018-07-01

    The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.

  19. Speculation and replication in temperature accelerated dynamics

    DOE PAGES

    Zamora, Richard J.; Perez, Danny; Voter, Arthur F.

    2018-02-12

    Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less

  20. Computational aspects of the smectization process in liquid crystals: An example study of a perfectly aligned two-dimensional hard-boomerang system

    NASA Astrophysics Data System (ADS)

    Chrzanowska, Agnieszka

    2017-06-01

    A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement—of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.

  1. Computational aspects of the smectization process in liquid crystals: An example study of a perfectly aligned two-dimensional hard-boomerang system.

    PubMed

    Chrzanowska, Agnieszka

    2017-06-01

    A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement-of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.

  2. Charting the Replica Symmetric Phase

    NASA Astrophysics Data System (ADS)

    Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias

    2018-02-01

    Diluted mean-field models are spin systems whose geometry of interactions is induced by a sparse random graph or hypergraph. Such models play an eminent role in the statistical mechanics of disordered systems as well as in combinatorics and computer science. In a path-breaking paper based on the non-rigorous `cavity method', physicists predicted not only the existence of a replica symmetry breaking phase transition in such models but also sketched a detailed picture of the evolution of the Gibbs measure within the replica symmetric phase and its impact on important problems in combinatorics, computer science and physics (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In this paper we rigorise this picture completely for a broad class of models, encompassing the Potts antiferromagnet on the random graph, the k-XORSAT model and the diluted k-spin model for even k. We also prove a conjecture about the detection problem in the stochastic block model that has received considerable attention (Decelle et al. in Phys Rev E 84:066106, 2011).

  3. Speculation and replication in temperature accelerated dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Richard J.; Perez, Danny; Voter, Arthur F.

    Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less

  4. Measuring interactions between polydimethylsiloxane and serum proteins at the air-water interface.

    PubMed

    Liao, Zhengzheng; Hsieh, Wan-Ting; Baumgart, Tobias; Dmochowski, Ivan J

    2013-07-30

    The interaction between synthetic polymers and proteins at interfaces is relevant to basic science as well as a wide range of applications in biotechnology and medicine. One particularly common and important interface is the air-water interface (AWI). Due to the special energetics and dynamics of molecules at the AWI, the interplay between synthetic polymer and protein can be very different from that in bulk solution. In this paper, we applied the Langmuir-Blodgett technique and fluorescence microscopy to investigate how the compression state of polydimethylsiloxane (PDMS) film at the AWI affects the subsequent adsorption of serum protein [e.g., human serum albumin (HSA) or immunoglobulin G (IgG)] and the interaction between PDMS and protein. Of particular note is our observation of circular PDMS domains with micrometer diameters that form at the AWI in the highly compressed state of the surface film: proteins were shown to adsorb preferentially to the surface of these circular PDMS domains, accompanied by a greater than 4-fold increase in protein found in the interfacial film. The PDMS-only film and the PDMS-IgG composite film were transferred to cover glass, and platinum-carbon replicas of the transferred films were further characterized by scanning electron microscopy and atomic force microscopy. We conclude that the structure of the PDMS film greatly affects the amount and distribution of protein at the interface.

  5. A flexible docking scheme to explore the binding selectivity of PDZ domains.

    PubMed

    Gerek, Z Nevin; Ozkan, S Banu

    2010-05-01

    Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTALIGAND, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 A. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.

  6. A flexible docking scheme to explore the binding selectivity of PDZ domains

    PubMed Central

    Gerek, Z Nevin; Ozkan, S Banu

    2010-01-01

    Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using RosettaLigand, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately. PMID:20196074

  7. Directed deposition of inorganic oxide networks on patterned polymer templates

    NASA Astrophysics Data System (ADS)

    Ford, Thomas James Robert

    Inspired by nature, we have successfully directed the deposition of inorganic oxide materials on polymer templates via a combination of top-down and bottom-up fabrication methods. We have functionally mimicked the hierarchical silica exoskeletons of diatoms, where specialized proteins chaperone the condensation of silicic acid into nanoscale silica networks confined by microscopic vesicle walls. We replaced the proteins with functionally analogous polyamines and vesicles with lithographically defined polymer templates. We grafted the polyamines either to the surface or throughout the template by changing the template chemistry and altering our grafting strategy. Exposure to an inorganic oxide precursor solution led to electrostatic aggregation at the polyamine chains, catalyzing hydrolysis and condensation to form long-range inorganic oxide nanoparticle networks. Grafted to epoxy surfaces, swelling effects and the hyperbranched brush morphology lead to the formation of nanofruit features that generated thin, conformal inorganic coatings. When the polyamines were grafted throughout hydrogel templates, we obtained composite networks that yielded faithful inorganic replicas of the original patterns. By varying the polyamine chain length and combustion parameters, we controlled the nanoparticle size, morphology, and crystalline phase. The polyamine morphology affected the resulting inorganic network in both fabrication schemes and we could control the depostion over multiple length scales. Because our methods were compatible with a variety of lithographic methods, we were able to generate inorganic replicas of 1D, 2D, and 3D polymer structures. These may be used for a wide range of applications, including sensing, catalysis, photonic, phononic, photovoltaic, and others that require well-defined inorganic structures.

  8. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-05-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time.

  9. Novel nanoplasmonic biosensor integrated in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Solis-Tinoco, V.; Sepulveda, B.; Lechuga, L. M.

    2015-06-01

    An important motivation of the actual biosensor research is to develop a multiplexed sensing platform of high sensitivity fabricated with large-scale and low-cost technologies for applications such as diagnosis and monitoring of diseases, drug discovery and environmental control. Biosensors based on localized plasmon resonance (LSPR) have demonstrated to be a novel and effective platform for quantitative detection of biological and chemical analytes. Here, we describe a novel label-free nanobiosensor consisting of an array of closely spaced, vertical, elastomeric nanopillars capped with plasmonic gold nanodisks in a SU-8 channel. The principle is based on the refractive index sensing using the LSPR of gold nanodisks. The fabrication of the nanobiosensor is based on replica molding technique and gold nanodisks are incorporated on the polymer structures by e-beam evaporation. In this work, we provide the strategies for controlling the silicon nanostructure replication using thermal polymers and photopolymers with different Young's modulus, in order to minimize the common distortions in the process and to obtain a reliable replica of the Si master. The master mold of the biosensor consists of a hexagonal array of silicon nanopillars, whose diameter is ~200 nm, and whose height can range from 250 nm to 1.300 μm, separated 400 nm from the center to center, integrated in a SU-8 microfluidic channel.

  10. Temperature-induced unfolding of epidermal growth factor (EGF): insight from molecular dynamics simulation

    PubMed Central

    Yan, Chunli; Pattani, Varun; Tunnell, James W.; Ren, Pengyu

    2010-01-01

    Thermal disruption of protein structure and function is a potentially powerful therapeutic vehicle. With the emerging nanoparticle-targeting and femtosecond laser technology, it is possible to deliver heating locally to specific molecules. It is therefore important to understand how fast a protein can unfold or lose its function at high temperatures, such as near the water boiling point. In this study, the thermal damage of EGF was investigated by combining the replica exchange (136 replicas) and conventional molecular dynamics simulations. The REMD simulation was employed to rigorously explore the free energy landscape of EGF unfolding. Interestingly, besides the native and unfolded states, we also observed a distinct molten globule (MG) state that retained substantial amount of native contacts. Based on the understanding that which the unfolding of EGF is a three-state process, we have examined the unfolding kinetics of EGF (N→ MG→h multiple 20-ns conventional MD simulations. The Arrhenius prefactors and activation energy barriers determined from the simulation are within the range of previously studied proteins. In contrast to the thermal damage of cells and tissues which take place on the time scale of seconds to hours at relatively low temperatures, the denaturation of proteins occur in nanoseconds when the temperature of heat bath approaches the boiling point. PMID:20466569

  11. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    PubMed Central

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-01-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time. PMID:27162204

  12. Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations.

    PubMed

    Lei, Hongxing; Wu, Chun; Liu, Haiguang; Duan, Yong

    2007-03-20

    High-accuracy ab initio folding has remained an elusive objective despite decades of effort. To explore the folding landscape of villin headpiece subdomain HP35, we conducted two sets of replica exchange molecular dynamics for 200 ns each and three sets of conventional microsecond-long molecular dynamics simulations, using AMBER FF03 force field and a generalized-Born solvation model. The protein folded consistently to the native state; the lowest C(alpha)-rmsd from the x-ray structure was 0.46 A, and the C(alpha)- rmsd of the center of the most populated cluster was 1.78 A at 300 K. ab initio simulations have previously not reached this level. The folding landscape of HP35 can be partitioned into the native, denatured, and two intermediate-state regions. The native state is separated from the major folding intermediate state by a small barrier, whereas a large barrier exists between the major folding intermediate and the denatured states. The melting temperature T(m) = 339 K extracted from the heat-capacity profile was in close agreement with the experimentally derived T(m) = 342 K. A comprehensive picture of the kinetics and thermodynamics of HP35 folding emerges when the results from replica exchange and conventional molecular dynamics simulations are combined.

  13. Study of the injection molding of a polarizing beam splitter.

    PubMed

    Jose de Carvalho, Edson; Braga, Edmundo da Silva; Cescato, Lucila H

    2006-01-01

    We describe the replication of a relief grating that behaves like a polarizing beam splitter by injection molding. Measurements of the grating master, nickel shim, and replica, performed by atomic force microscopy, allow establishing a limit for the injection molding technique (currently used in CD fabrication) to aspect ratios of approximately 0.15. Although this limit strongly reduces the diffraction efficiency of the elements as well as their polarizing properties, extinction ratios of approximately 10:1 were measured for the replicas in a large range of wavelengths.

  14. Fluid dynamic study in a femoral artery branch casting of man with upstream main lumen curvature for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Back, M. R.

    1985-01-01

    An in-vitro, steady flow investigation was conducted in a hollow, transparent vascular replica of the profunda femoris branch of man for a range of physiological flow conditions. The replica casting tested was obtained from a human cadaver and indicated some plague formation along the main lumen and branch. The flow visualization observations and measured pressure distributions indicated the highly three-dimensional flow characteristics with arterial curvature and branching, and the important role of centrifugal effects in fluid transport mechanisms.

  15. Replicas of Snoopy and Charlie Brown decorate top of console in MCC

    NASA Image and Video Library

    1969-05-18

    S69-34314 (18 May 1969) --- Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip, "Peanuts," decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, Building 30, on the first day of the Apollo 10 lunar orbit mission. During lunar orbit operations, the Lunar Module will be called ?Snoopy? when it is separated from the Command and Service Modules. The code words for the Command Module will be ?Charlie Brown?.

  16. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE PAGES

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  17. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, left, and Dr. John Mather are seen with a replica of Mather's Nobel Prize, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned the replica that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe. Photo Credit: (NASA/Paul E. Alers)

  18. Wavefront reversal technique for self-referencing collimation testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hii, King Ung; Kwek, Kuan Hiang

    2010-02-01

    We present a wavefront reversal technique to produce a dual-field fringe pattern for self-referencing collimation testing in wedge-plate lateral-shear interferometry. The method requires only a suitably placed cubic beam splitter to produce two replicas of the fringe field formed by the wedge-plate lateral-shear interferometer. One of the replicas has a fringe pattern that is the reverse of the other. With these two fringe fields, the collimation testing has a built-in reference, and the detection sensitivity is twice that of a single-wedge-plate technique.

  19. Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities

    PubMed Central

    Deville, Sylvain

    2010-01-01

    The freeze-casting of porous materials has received a great deal of attention during the past few years. This simple process, where a material suspension is simply frozen and then sublimated, provides materials with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. This review focuses on the recent results on the process and the derived porous structures with regards to the biomaterials applications. Of particular interest is the architecture of the materials and the versatility of the process, which can be readily controlled and applied to biomaterials applications. A careful control of the starting formulation and processing conditions is required to control the integrity of the structure and resulting properties. Further in vitro and in vivo investigations are required to validate the potential of this new class of porous materials.

  20. Progress in mask replication using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta S.; Brooks, Cynthia B.; Doyle, Gary F.; Brown, Laura; Jones, Chris; Imhof, Joseph; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.

    2011-04-01

    The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105imprints. This suggests that tens of thousands of templates/masks will be required to satisfy the needs of a manufacturing environment. Electron-beam patterning is too slow to feasibly deliver these volumes, but instead can provide a high quality "master" mask which can be replicated many times with an imprint lithography tool. This strategy has the capability to produce the required supply of "working" templates/masks. In this paper, we review the development of the mask form factor, imprint replication tools and processes specifically for semiconductor applications. The requirements needed for semiconductors dictate the need for a well defined form factor for both master and replica masks which is also compatible with the existing mask infrastructure established for the 6025 semi standard, 6" x 6" x 0.25" photomasks. Complying with this standard provides the necessary tooling needed for mask fabrication processes, cleaning, metrology, and inspection. The replica form factor has additional features specific to imprinting such as a pre-patterned mesa. A PerfectaTM MR5000 mask replication tool has been developed specifically to pattern replica masks from an e-beam written master. The system specifications include a throughput of four replicas per hour with an added image placement component of 5nm, 3sigma and a critical dimension uniformity error of less than 1nm, 3sigma. A new process has been developed to fabricate replicas with high contrast alignment marks so that designs for imprint can fit within current device layouts and maximize the usable printed area on the wafer. Initial performance results of this marks are comparable to the baseline fused silica align marks.

  1. Characterization of fracture aperture for groundwater flow and transport

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.

    2007-12-01

    This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.

  2. The effect of changes in surface wettability on two-phase saturated flow in horizontal replicas of single natural fractures.

    PubMed

    Bergslien, Elisa; Fountain, John

    2006-12-15

    By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.

  3. Effect of two in-office whitening agents on the enamel surface in vivo: a morphological and non-contact profilometric study.

    PubMed

    Cadenaro, Milena; Breschi, Lorenzo; Nucci, Cesare; Antoniolli, Francesca; Visintini, Erika; Prati, Carlo; Matis, Bruce A; Di Lenarda, Roberto

    2008-01-01

    This study evaluated the morphological effects produced in vivo by two in-office bleaching agents on enamel surface roughness using a noncontact profilometric analysis of epoxy replicas. The null hypothesis tested was that there would be no difference in the micromorphology of the enamel surface during or after bleaching with two different bleaching agents. Eighteen subjects were selected and randomly assigned to two treatment groups (n=9). The tooth whitening materials tested were 38% hydrogen peroxide (HP) (Opalescence Xtra Boost) and 35% carbamide peroxide (CP) (Rembrandt Quik Start). The bleaching agents were applied in accordance with manufacturer protocols. The treatments were repeated four times at one-week intervals. High precision impressions of the upper right incisor were taken at baseline as the control (CTRL) and after each bleaching treatment (T0: first application, T1: second application at one week, T2: third application at two weeks and T3: fourth application at three weeks). Epoxy resin replicas were poured from impressions, and the surface roughness was analyzed by means of a non-contact profilometer (Talysurf CLI 1000). Epoxy replicas were then observed using SEM. All data were statistically analyzed using ANOVA and differences were determined with a t-test. No significant differences in surface roughness were found on enamel replicas using either 38% hydrogen peroxide or 35% carbamide peroxide in vivo. This in vivo study supports the null hypothesis that two in-office bleaching agents, with either a high concentration of hydrogen or carbamide peroxide, do not alter enamel surface roughness, even after multiple applications.

  4. Parallel replica dynamics with a heterogeneous distribution of barriers: Application to n-hexadecane pyrolysis

    NASA Astrophysics Data System (ADS)

    Kum, Oyeon; Dickson, Brad M.; Stuart, Steven J.; Uberuaga, Blas P.; Voter, Arthur F.

    2004-11-01

    Parallel replica dynamics simulation methods appropriate for the simulation of chemical reactions in molecular systems with many conformational degrees of freedom have been developed and applied to study the microsecond-scale pyrolysis of n-hexadecane in the temperature range of 2100-2500 K. The algorithm uses a transition detection scheme that is based on molecular topology, rather than energetic basins. This algorithm allows efficient parallelization of small systems even when using more processors than particles (in contrast to more traditional parallelization algorithms), and even when there are frequent conformational transitions (in contrast to previous implementations of the parallel replica algorithm). The parallel efficiency for pyrolysis initiation reactions was over 90% on 61 processors for this 50-atom system. The parallel replica dynamics technique results in reaction probabilities that are statistically indistinguishable from those obtained from direct molecular dynamics, under conditions where both are feasible, but allows simulations at temperatures as much as 1000 K lower than direct molecular dynamics simulations. The rate of initiation displayed Arrhenius behavior over the entire temperature range, with an activation energy and frequency factor of Ea=79.7 kcal/mol and log A/s-1=14.8, respectively, in reasonable agreement with experiment and empirical kinetic models. Several interesting unimolecular reaction mechanisms were observed in simulations of the chain propagation reactions above 2000 K, which are not included in most coarse-grained kinetic models. More studies are needed in order to determine whether these mechanisms are experimentally relevant, or specific to the potential energy surface used.

  5. Propafenone effects on the stable structures of Aβ16-22 system

    NASA Astrophysics Data System (ADS)

    Tran, Linh; Ngo, Son Tung; Nguyen, Minh Tho

    2018-03-01

    An extensive replica exchange molecular dynamics (REMD) simulation was performed to investigate the progress patterns of the molecular interactions of propafenone and Aβ16-22 system. Distinct conformational equilibrium of Aβ16-22 system with and without propafenone was analyzed in detail. Propafenone can act to prevent the Alzheimer's disease (AD) by significantly inhibiting Aβ oligomerization. Our calculated results provide insights into the inhibition mechanism of propafenone on the oligomerization process to form Aβ16-22 peptide aggregation. These findings are valuable for the development of therapeutic drugs in the AD early stage.

  6. Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap

    DOE PAGES

    Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; ...

    2016-01-26

    Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)-water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition. The lignin is found to be in a coil state, similar to that in the high-temperature miscible region. Analysis of the transition kinetics indicates that THF acts in a surfactant-like fashion. In conclusion, the present study thus suggests that THF-water based pretreatments may efficiently remove lignin from biomass even at relatively low (non-water boiling) temperatures.

  7. Statistical mechanics of the vertex-cover problem

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2003-10-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c < e, where the VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c > e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.

  8. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  9. Coarse kMC-based replica exchange algorithms for the accelerated simulation of protein folding in explicit solvent.

    PubMed

    Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V

    2016-05-14

    In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules.

  10. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malolepsza, Edyta; Keyes, Tom

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  11. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  12. Replication of surface nano-structure of the wing of dragonfly ( Pantala Flavescens) using nano-molding and UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon

    2013-07-01

    The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.

  13. Replica Approach for Minimal Investment Risk with Cost

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-06-01

    In the present work, the optimal portfolio minimizing the investment risk with cost is discussed analytically, where an objective function is constructed in terms of two negative aspects of investment, the risk and cost. We note the mathematical similarity between the Hamiltonian in the mean-variance model and the Hamiltonians in the Hopfield model and the Sherrington-Kirkpatrick model, show that we can analyze this portfolio optimization problem by using replica analysis, and derive the minimal investment risk with cost and the investment concentration of the optimal portfolio. Furthermore, we validate our proposed method through numerical simulations.

  14. Surface-initiated polymerization within mesoporous silica spheres for the modular design of charge-neutral polymer particles.

    PubMed

    Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank

    2014-06-03

    We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.

  15. Rotating stall investigation of 0.72 hub-tip ratio single-stage compressor

    NASA Technical Reports Server (NTRS)

    Graham, Robert W; Prian, Vasily D

    1954-01-01

    The rotating stall characteristics of a 0.72 hub-tip ratio, single-stage compressor were investigated. The stage was a 14-inch-diameter replica of the fourth stage of an experimental multistage compressor. No similarity existed between the frequency and propagation rate of the stall patterns observed in the single-stage replica and those observed in the multistage compressor after the fourth stage. A fatigue failure of the rotor blades occurred during the testing which was attributed to a resonance between the stall frequency and the natural bending frequency of the blades.

  16. Replica-exchange Wang Landau sampling: pushing the limits of Monte Carlo simulations in materials sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus

    We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.

  17. Replica Analysis for Portfolio Optimization with Single-Factor Model

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2017-06-01

    In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.

  18. Polyurethane Foam-Filled Skull Replica of Craniosynostosis for Surgical Training.

    PubMed

    Jeong, Yeon Jin; Lee, Jun Yong

    2016-05-01

    Craniosynostosis has a relatively low incidence in the general population and its treatment requires cautious approaches. For these reasons, patients are usually referred to several specialists or a medical center. Therefore, most trainees and young surgeons do not have any chances to experience patients of craniosynostosis, but learn about it only from textbooks. And for a surgeon who tries to operate on a craniosynostosis patient, it is hard to make a proper preoperative plan.The authors suggest a polyurethane foam-filled skull replica of craniosynostosis for trainees that can also be used in planning a craniosynostosis operation.

  19. Influence of various environmental parameters on sweat gland activity.

    PubMed

    McMullen, Roger L; Gillece, Tim; Lu, Guojin; Laura, Donna; Chen, Susan

    2013-01-01

    The choice of environmental conditions when conducting antiperspirant studies greatly affects the quantity of sweat output. Our initial goal in this work was to develop an in-house procedure to test the efficacy of antiperspirant products using replica techniques in combination with image analysis. To ameliorate the skin replica method, we conducted rheological studies using dynamic mechanical analysis of the replica formulation. In terms of sweat output quantification, our preliminary results revealed a considerable amount of variation using the replica technique, leading us to conduct more fundamental studies of the factors that influence sweating behavior and how to best design the experimental strategy. In accordance with the FDA's protocol for antiperspirant testing, we carried out gravimetric analyses of axillae sweating under a variety of environmental conditions including temperature and humidity control. Subjects were first acclimatized in an environmentally controlled room for 30 min, and then placed in a sauna for an additional 30 or 45 min, depending on which test we administered. In Test 1 (30 min total in the sauna), the first 10 min in the sauna was another equilibration period, followed by a 20 min sweat production stage. We monitored axillae sweating during the last 20 min in the sauna by gravimetric analysis. At time (t) = 30 min in the sauna, skin replicas were taken and later analyzed using imaging and image analysis techniques. Test 1 was carried out on over 25 subjects, both male and female, from various racial backgrounds. In Test 2, subjects spent 45 min in the sauna after the initial 30-min period in the environmental room. During the 45 min, we obtained gravimetric readings of absorbent pads placed in the axillae. We conducted studies at various temperature and relative humidity settings. We also studied the influence of several external parameters on sudoriferous activity. Test 2 was a range-finding experiment on two subjects to determine the optimized environmental conditions for the hot room procedure. In addition to the replica and gravimetric techniques, we also measured flux density to determine the onset of firing of sweat glands to ensure that our environmental preconditioning step (30 min in the environmental room) brought subjects to the point that their sweat glands were activated. Although flux density measurements are usually carried out to determine transepidermal water loss (TEWL), we found that they can be equally useful for monitoring the onset of sweat production. Thermal infrared imaging experiments were also carried out allowing us to generate full-body images of subjects containing anatomical thermal distribution data with high accuracy. Overall, we conclude that our in-house hot room procedure offers much potential as an effective and cost-efficient screening tool for narrowing copious antiperspirant formulations to a select few for expensive clinical evaluation.

  20. Freeze-fracture studies of photoreceptor membranes: new observations bearing upon the distribution of cholesterol

    PubMed Central

    1983-01-01

    We performed electron microscopy of replicas from freeze-fractured retinas exposed during or after fixation to the cholesterol-binding antibiotic, filipin. We observed characteristic filipin-induced perturbations throughout the disk and plasma membranes of retinal rod outer segments of various species. It is evident that a prolonged exposure to filipin in fixative enhances rather than reduces presumptive cholesterol detection in the vertebrate photoreceptor cell. In agreement with the pattern seen in our previous study (Andrews, L.D., and A. I. Cohen, 1979, J. Cell Biol., 81:215-228), filipin- binding in membranes exhibiting particle-free patches seemed largely confined to these patches. Favorably fractured photoreceptors exhibited marked filipin-binding in apical inner segment plasma membrane topologically confluent with and proximate to the outer segment plasma membrane, which was comparatively free of filipin binding. A possible boundary between these differing membrane domains was suggested in a number of replicas exhibiting lower filipin binding to the apical plasma membrane of the inner segment in the area surrounding the cilium. This area contains a structure (Andrews, L. D., 1982, Freeze- fracture studies of vertebrate photoreceptors, In Structure of the Eye, J. G. Hollyfield and E. Acosta Vidrio, editors, Elsevier/North-Holland, New York, 11-23) that resembles the active zones of the nerve terminals for the frog neuromuscular junction. These observations lead us to hypothesize that these structures may function to direct vesicle fusion to occur near them, in a domain of membrane more closely resembling outer than inner segment plasma membrane. The above evidence supports the views that (a) all disk membranes contain cholesterol, but the particle-free patches present in some disks trap cholesterol from contiguous particulate membrane regions; (b) contiguous inner and outer segment membranes may greatly differ in cholesterol content; and (c) the suggested higher cholesterol in the inner segment than in the outer segment plasma membrane may help direct newly inserted photopigment molecules to the outer segment. PMID:6411740

  1. [Ultrastructural organization of cytoplasmatic membrane of Anaerobacter polyendosporus studied by electron microscopic cryofractography].

    PubMed

    Duda, V I; Suzina, N E; Dmitriev, V V

    2001-01-01

    Anaerobacter polyendosporus cells do not have typical mesosomes. However, the analysis of this anaerobic multispore bacterium by electron microscopic cryofractography showed that its cytoplasmic membrane contains specific intramembrane structures in the form of flat lamellar inverted lipid membranes tenths of nanometers to several microns in size. It was found that these structures are located in the hydrophobic interior between the outer and inner leaflets of the cytoplasmic membrane and do not contain intramembrane particles that are commonly present on freeze-fracture replicas. The flat inverted lipid membranes were revealed in bacterial cells cultivated under normal growth conditions, indicating the existence of a complex-type compartmentalization in biological membranes, which manifests itself in the formation of intramembrane compartments having the appearance of vesicles and inverted lipid membranes.

  2. Free energy calculations of short peptide chains using Adaptively Biased Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Karpusenka, Vadzim; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2008-10-01

    We performed a computational study of monomer peptides composed of methionine, alanine, leucine, glutamate, lysine (all amino acids with a helix-forming propensities); and proline, glycine tyrosine, serine, arginine (which all have poor helix-forming propensities). The free energy landscapes as a function of the handedness and radius of gyration have been calculated using the recently introduced Adaptively Biased Molecular Dynamics (ABMD) method, combined with replica exchange, multiple walkers, and post-processing Umbrella Correction (UC). Minima that correspond to some of the left- and right-handed 310-, α- and π-helixes were identified by secondary structure assignment methods (DSSP, Stride). The resulting free energy surface (FES) and the subsequent steered molecular dynamics (SMD) simulation results are in agreement with the empirical evidence of preferred secondary structures for the peptide chains considered.

  3. Impact of airborne particle size, acoustic airflow and breathing pattern on delivery of nebulized antibiotic into the maxillary sinuses using a realistic human nasal replica.

    PubMed

    Leclerc, Lara; Pourchez, Jérémie; Aubert, Gérald; Leguellec, Sandrine; Vecellio, Laurent; Cottier, Michèle; Durand, Marc

    2014-09-01

    Improvement of clinical outcome in patients with sinuses disorders involves targeting delivery of nebulized drug into the maxillary sinuses. We investigated the impact of nebulization conditions (with and without 100 Hz acoustic airflow), particle size (9.9 μm, 2.8 μm, 550 nm and 230 nm) and breathing pattern (nasal vs. no nasal breathing) on enhancement of aerosol delivery into the sinuses using a realistic nasal replica developed by our team. After segmentation of the airways by means of high-resolution computed tomography scans, a well-characterized nasal replica was created using a rapid prototyping technology. A total of 168 intrasinus aerosol depositions were performed with changes of aerosol particle size and breathing patterns under different nebulization conditions using gentamicin as a marker. The results demonstrate that the fraction of aerosol deposited in the maxillary sinuses is enhanced by use of submicrometric aerosols, e.g. 8.155 ± 1.476 mg/L of gentamicin in the left maxillary sinus for the 2.8 μm particles vs. 2.056 ± 0.0474 for the 550 nm particles. Utilization of 100-Hz acoustic airflow nebulization also produced a 2- to 3-fold increase in drug deposition in the maxillary sinuses (e.g. 8.155 ± 1.476 vs. 3.990 ± 1.690 for the 2.8 μm particles). Our study clearly shows that optimum deposition was achieved using submicrometric particles and 100-Hz acoustic airflow nebulization with no nasal breathing. It is hoped that our new respiratory nasal replica will greatly facilitate the development of more effective delivery systems in the future.

  4. Enhanced conformational sampling using replica exchange with concurrent solute scaling and hamiltonian biasing realized in one dimension.

    PubMed

    Yang, Mingjun; Huang, Jing; MacKerell, Alexander D

    2015-06-09

    Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost due to the multidimensionality of exchanges becomes challenging for use on complex systems under explicit solvent conditions. In this study, we develop a one-dimensional (1D) REX algorithm to concurrently combine the advantages of overall enhanced sampling from Hamiltonian solute scaling and the specific enhancement of collective variables using Hamiltonian biasing potentials. In the present Hamiltonian replica exchange method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom. The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6 to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a wide range of macromolecular systems.

  5. Marginal and Internal Adaptation of Zirconia Crowns: A Comparative Study of Assessment Methods.

    PubMed

    Cunali, Rafael Schlögel; Saab, Rafaella Caramori; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Ornaghi, Bárbara Pick; Ritter, André V; Gonzaga, Carla Castiglia

    2017-01-01

    Marginal and internal adaptation is critical for the success of indirect restorations. New imaging systems make it possible to evaluate these parameters with precision and non-destructively. This study evaluated the marginal and internal adaptation of zirconia copings fabricated with two different systems using both silicone replica and microcomputed tomography (micro-CT) assessment methods. A metal master model, representing a preparation for an all-ceramic full crown, was digitally scanned and polycrystalline zirconia copings were fabricated with either Ceramill Zi (Amann-Girrbach) or inCoris Zi (Dentslpy-Sirona), n=10. For each coping, marginal and internal gaps were evaluated by silicone replica and micro-CT assessment methods. Four assessment points of each replica cross-section and micro-CT image were evaluated using imaging software: marginal gap (MG), axial wall (AW), axio-occlusal angle (AO) and mid-occlusal wall (MO). Data were statistically analyzed by factorial ANOVA and Tukey test (a=0.05). There was no statistically significant difference between the methods for MG and AW. For AO, there were significant differences between methods for Amann copings, while for Dentsply-Sirona copings similar values were observed. For MO, both methods presented statistically significant differences. A positive correlation was observed determined by the two assessment methods for MG values. In conclusion, the assessment method influenced the evaluation of marginal and internal adaptation of zirconia copings. Micro-CT showed lower marginal and internal gap values when compared to the silicone replica technique, although the difference was not always statistically significant. Marginal gap and axial wall assessment points showed the lower gap values, regardless of ceramic system and assessment method used.

  6. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli

    PubMed Central

    Howard, Thomas P.; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M.; Taylor, George N.; Parker, David A.; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J.; Love, John

    2013-01-01

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules. PMID:23610415

  7. KSC-2011-8198

    NASA Image and Video Library

    2011-12-07

    CAPE CANAVERAL, Fla. – Space shuttle Discovery sports three replica shuttle main engines (RSMEs) in Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida. The RSMEs were installed on Discovery during Space Shuttle Program transition and retirement activities. The replicas are built in the Pratt & Whitney Rocketdyne engine shop at Kennedy to replace the shuttle engines which will be placed in storage to support NASA's Space Launch System, under development. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann

  8. Combining Ultrasound Pulse-Echo and Transmission Computed Tomography for Quantitative Imaging the Cortical Shell of Long Bone Replicas

    NASA Astrophysics Data System (ADS)

    Shortell, Matthew P.; Althomali, Marwan A. M.; Wille, Marie-Luise; Langton, Christian M.

    2017-11-01

    We demonstrate a simple technique for quantitative ultrasound imaging of the cortical shell of long bone replicas. Traditional ultrasound computed tomography instruments use the transmitted or reflected waves for separate reconstructions but suffer from strong refraction artefacts in highly heterogenous samples such as bones in soft tissue. The technique described here simplifies the long bone to a two-component composite and uses both the transmitted and reflected waves for reconstructions, allowing the speed of sound and thickness of the cortical shell to be calculated accurately. The technique is simple to implement, computationally inexpensive and sample positioning errors are minimal.

  9. Computation of free energy profiles with parallel adaptive dynamics

    NASA Astrophysics Data System (ADS)

    Lelièvre, Tony; Rousset, Mathias; Stoltz, Gabriel

    2007-04-01

    We propose a formulation of an adaptive computation of free energy differences, in the adaptive biasing force or nonequilibrium metadynamics spirit, using conditional distributions of samples of configurations which evolve in time. This allows us to present a truly unifying framework for these methods, and to prove convergence results for certain classes of algorithms. From a numerical viewpoint, a parallel implementation of these methods is very natural, the replicas interacting through the reconstructed free energy. We demonstrate how to improve this parallel implementation by resorting to some selection mechanism on the replicas. This is illustrated by computations on a model system of conformational changes.

  10. A pilot study on the use of geometrically accurate face models to replicate ex vivo N95 mask fit.

    PubMed

    Golshahi, Laleh; Telidetzki, Karla; King, Ben; Shaw, Diana; Finlay, Warren H

    2013-01-01

    To test the feasibility of replicating a face mask seal in vitro, we created 5 geometrically accurate reconstructions of the head and neck of an adult human subject using different materials. Three breathing patterns were simulated with each replica and an attached N95 mask. Quantitative fit testing on the subject and the replicas showed that none of the 5 isotropic materials used allowed duplication of the ex vivo mask seal for the specific mask-face combination studied. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Comparing generalized ensemble methods for sampling of systems with many degrees of freedom

    DOE PAGES

    Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa

    2016-11-03

    Here, we compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchangemore » (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-β peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium.« less

  12. Measurements of the absolute neutron fluence spectrum emitted at 0/sup 0/ and 90/sup 0/ from the Little-Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.H.; Gold, R.; Preston, C.C.

    Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2m, 0/sup 0/ and 2m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. At the 2m,more » 90/sup 0/ location the NRE neutron spectrum extends from 0.37 up to 8.2 MeV, whereas the NRE neutron spectrum at the 2m, 0/sup 0/ location is much softer and extends only up to 2.7 MeV. NRE neutron spectrometry results at these two locations are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. 7 refs., 3 figs.« less

  13. Replica approach to mean-variance portfolio optimization

    NASA Astrophysics Data System (ADS)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  <  1, where N is the dimension of the portfolio and T the length of the time series used to estimate the covariance matrix. At the critical point r  =  1 a phase transition is taking place. The out of sample estimation error blows up at this point as 1/(1  -  r), independently of the covariance matrix or the expected return, displaying the universality not only of the critical exponent, but also the critical point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  14. Evaluating the Use of Synthetic Replicas for SEM Identification of Bloodstains (with Emphasis on Archaeological and Ethnographic Artifacts).

    PubMed

    Hortolà, Policarp

    2015-12-01

    Some archaeological or ethnographic specimens are unavailable for direct examination using a scanning electron microscope (SEM) due to methodological obstacles or legal issues. In order to assess the feasibility of using SEM synthetic replicas for the identification of bloodstains (BSs) via morphology of red blood cells (RBCs), three fragments of different natural raw material (inorganic, stone; plant, wood; animal, shell) were smeared with peripheral human blood. Afterwards, molds and casts of the bloodstained areas were made using vinyl polysiloxane (VPS) silicone impression and polyurethane (PU) resin casting material, respectively. Then, the original samples and the resulting casts were coated with gold and examined in secondary-electron mode using a high-vacuum SEM. Results suggest that PU resin casts obtained from VPS silicone molds can preserve RBC morphology in BSs, and consequently that synthetic replicas are feasible for SEM identification of BSs on cultural heritage specimens made of natural raw materials. Although the focus of this study was on BSs, the method reported in this paper may be applicable to organic residues other than blood, as well as to the surface of other specimens when, for any reason, the original is unavailable for an SEM.

  15. Marshall Team Recreates Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  16. Around Marshall

    NASA Image and Video Library

    2003-07-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  17. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography.

    PubMed

    Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald

    2007-04-01

    This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.

  18. Population Control of Self-Replicating Systems: Option C

    NASA Technical Reports Server (NTRS)

    Mccord, R. L.

    1983-01-01

    From the conception and development of the theory of self-replicating automata by John von Neumann, others have expanded on his theories. In 1980, Georg von Tiesenhausen and Wesley A. Darbro developed a report which is a "first' in presenting the theories in a conceptualized engineering setting. In that report several options involving self-replicating systems are presented. One of the options allows each primary to generate n replicas, one in each sequential time frame after its own generation. Each replica is limited to a maximum of m ancestors. This study involves determining the state vector of the replicas in an efficient manner. The problem is cast in matrix notation, where F = fij is a non-diagonalizable matrix. Any element fij represents the number of elements of type j = (c,d) in time frame k+1 generated from type i = (a,b) in time frame k. It is then shown that the state vector is: bar F(k)=bar F (non-zero) X F sub K = bar F (non-zero) xmx J sub kx m sub-1 where J is a matrix in Jordan form having the same eigenvalues as F. M is a matrix composed of the eigenvectors and the generalized eigenvectors of F.

  19. Comparing generalized ensemble methods for sampling of systems with many degrees of freedom.

    PubMed

    Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa

    2016-11-07

    We compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchange (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-β peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium (http://www.omnia.md/).

  20. Effects of spatially displaced feedback on remote manipulation tasks

    NASA Technical Reports Server (NTRS)

    Manahan, Meera K.; Stuart, Mark A.; Bierschwale, John M.; Hwang, Ellen Y.; Legendre, A. J.

    1992-01-01

    Several studies have been performed to determine the effects on computer and direct manipulation task performance when viewing conditions are spatially displaced. Whether results from these studies can be directly applied to remote manipulation tasks is quenstionable. The objective of this evaluation was to determine the effects of reversed, inverted, and inverted/reversed views on remote manipulation task performance using two 3-Degree of Freedom (DOF) hand controllers and a replica position hand controller. Results showed that trials using the inverted viewing condition showed the worst performance, followed by the inverted/reversed view and the reversed view when using the 2x3 DOF. However, these differences were not significant. The inverted and inverted/reversed viewing conditions were significantly worse than the normal and reversed viewing conditions when using the Kraft Replica. A second evaluation was conducted in which additional trials were performed with each viewing condition to determine the long term effects of spatially displaced views on task performance for the hand controllers. Results of the second evaluation indicated that there was more of a difference in performance between the perturbed viewing conditions and the normal viewing condition with the Kraft Replica than with the 2x3 DOF.

  1. [Use of bacteriphages against Salmonella Enteritidis: a prevention tool].

    PubMed

    García, Cristina; Marín, Clara; Catalá-Gregori, Pablo; Soriano, Jose Miguel

    2015-06-01

    Salmonellosis is a highly prevalent disease still searching for preventive tools to avoid contamination level priority public health. The in vitro effect of bacteriophages against Salmonella enteritidis was evaluated as a prevention tool. Two tests with three concentrations of bacteriophages were conducted against two strains of Salmonella Enteritidis inoculated in fresh faeces of laying hens. Each test had a positive control. Thus, four groups in each test were evaluated. Each experimental group included two replicates, and three plates were incubated per replicate. The concentrations tested were three: commercial solution (5 × 10(7) pfu/mL), and two dilutions (1/10 and 1/30). One of the strains tested was CECT 4300, a certified strain of Colección Española de Cultivo Tipo and the other a field isolated strain in a sacrificed hen farm. Both strains were inoculated at 1.3 × 10(5) cfu/g of faeces in each of the four groups. Isolation and identification of bacteria by ISO6579 was done at various times after inoculation: 1 minute, 24 hours and 7 days. In the first test, with certified strain, Salmonella was isolated in all groups at time 1 minute. After 24 hours, Salmonella was isolated in all groups except in one of the replicas treated with 1/10 dilution of bacteriophages, one of the other replica plate treated with 1/10 dilution, and two plates of the two replicas treated with the commercial solution. After 7 days, the bacteria were not isolated from any of the experimental groups. In the second test, with the field strain, Salmonella was isolated in all groups at time 1 minute. After 24 hours, Salmonella was isolated in all groups except in one of the replicas treated with 1/10 dilution of bacteriophages and the two replicas treated with the commercial solution. Salmonella was not isolated in any of the experimental groups at 7 days. The use of bacteriophages reduced Salmonella enteritidis isolates in faeces at 24 hours after the application, so it could be considered as a prevention tool. At 7 days after inoculation of bacteria, no one was isolated in any of the experimental groups. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Structure and atomic correlations in molecular systems probed by XAS reverse Monte Carlo refinement

    NASA Astrophysics Data System (ADS)

    Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela; D'Angelo, Paola; Filipponi, Adriano

    2018-03-01

    The Reverse Monte Carlo (RMC) algorithm for structure refinement has been applied to x-ray absorption spectroscopy (XAS) multiple-edge data sets for six gas phase molecular systems (SnI2, CdI2, BBr3, GaI3, GeBr4, GeI4). Sets of thousands of molecular replicas were involved in the refinement process, driven by the XAS data and constrained by available electron diffraction results. The equilibrated configurations were analysed to determine the average tridimensional structure and obtain reliable bond and bond-angle distributions. Detectable deviations from Gaussian models were found in some cases. This work shows that a RMC refinement of XAS data is able to provide geometrical models for molecular structures compatible with present experimental evidence. The validation of this approach on simple molecular systems is particularly important in view of its possible simple extension to more complex and extended systems including metal-organic complexes, biomolecules, or nanocrystalline systems.

  3. Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy

    NASA Astrophysics Data System (ADS)

    Krishna, Ram; Atkinson, Helen V.; Hainsworth, Sarah V.; Gill, Simon P.

    2016-01-01

    Inconel 617 is a solid-solution-strengthened Ni-based superalloy with a small amount of gamma prime (γ') present. Here, samples are examined in the as-received condition and after creep exposure at 923 K (650 °C) for 574 hours and 45,000 hours and at 973 K (700 °C) for 4000 hours. The stress levels are intermediate (estimated, respectively, as of the order of 350, 275, and 200 MPa) and at levels of interest for the future operation of power plant. The hardness of the specimens has been measured in the gage length and the head. TEM thin foils have been obtained to quantify dislocation densities (3.5 × 1013 for the as-received, 5.0 × 1014, 5.9 × 1014, and 3.5 × 1014 lines/m2 for the creep-exposed specimens, respectively). There are no previous data in the literature for dislocation densities in this alloy after creep exposure. There is some evidence from the dislocation densities that for the creep-exposed samples, the higher hardness in the gage length in comparison with the creep test specimen head is due to work hardening rather than any other effect. Carbon replicas have been used to extract gamma prime precipitates. The morphology of γ' precipitates in the `as-received' condition was spheroidal with an average diameter of 18 nm. The morphology of these particles does not change with creep exposure but the size increases to 30 nm after 574 hours at 923 K (650 °C) but with little coarsening in 45,000 hours. At 973 K (700 °C) 4000 hours, the average gamma prime size is 32 nm. In the TEM images of the replicas, the particles overlap, and therefore, a methodology has been developed to estimate the volume fraction of gamma prime in the alloy given the carbon replica film thickness. The results are 5.8 vol pct in the as-received and then 2.9, 3.2, and 3.4 vol pct, respectively, for the creep-exposed specimens. The results are compared with predictions from thermodynamic analysis given the alloy compositions. Thermodynamic prediction shows that nitrogen content is important in determining the gamma prime volume fraction. This has not previously been identified in the literature. The higher the nitrogen content, the lower the gamma prime volume fraction. This may explain inconsistencies between previous experimental estimates of gamma prime volume fraction in the literature and the results here. The observed decrease in the γ' volume fraction with creep exposure would correspond to an increase in TiN. At present, there are insufficient experimental data to prove that this predicted relationship occurs in practice. However, it is observed that there is a higher volume fraction of TiN precipitates in the gage length of a creep sample than in the head. This suggests that secondary TiN particles are precipitating at the expense of existing γ' due to the ingress of N from the atmosphere, possibly via creep cracks penetrating in from the surface of the gage length. This effect is not expected to be observed in real components which are much larger and operate in different atmospheres. However, this highlights the need to be conscious of this possibility when carrying out creep testing.

  4. On metric structure of ultrametric spaces

    NASA Astrophysics Data System (ADS)

    Nechaev, S. K.; Vasilyev, O. A.

    2004-03-01

    In our work we have reconsidered the old problem of diffusion at the boundary of an ultrametric tree from a 'number theoretic' point of view. Namely, we use the modular functions (in particular, the Dedekind eegr-function) to construct the 'continuous' analogue of the Cayley tree isometrically embedded in the Poincaré upper half-plane. Later we work with this continuous Cayley tree as with a standard function of a complex variable. In the framework of our approach, the results of Ogielsky and Stein on dynamics in ultrametric spaces are reproduced semi-analytically or semi-numerically. The speculation on the new 'geometrical' interpretation of replica n rarr 0 limit is proposed.

  5. Blind test of physics-based prediction of protein structures.

    PubMed

    Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A

    2009-02-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.

  6. Modulation of phase transition of thermosensitive liposomes with leucine zipper-structured lipopeptides.

    PubMed

    Xu, Xiejun; Xiao, Xingqing; Wang, Yiming; Xu, Shouhong; Liu, Honglai

    2018-06-13

    Targeted therapy for cancer requires thermosensitive components in drug carriers for controlled drug release against viral cells. The conformational transition characteristic of leucine zipper-structured lipopeptides is utilized in our lab to modulate the phase transition temperature of liposomes, thus achieving temperature-responsive control. In this study, we computationally examined the conformational transition behaviors of leucine zipper-structured lipopeptides that were modified at the N-terminus by distinct functional groups. The conformational transition temperatures of these lipopeptides were determined by structural analysis of the implicit-solvent replica exchange molecular dynamics simulation trajectories using the dihedral angle principal component analysis and the dictionary of protein secondary structure method. Our calculations revealed that the computed transition temperatures of the lipopeptides are in good agreement with the experimental measurements. The effect of hydrogen bonds on the conformational stability of the lipopeptide dimers was examined in conventional explicit-solvent molecular dynamics simulations. A quantitative correlation of the degree of structural dissociation of the dimers and their binding strength is well described by an exponential fit of the binding free energies to the conformation transition temperatures of the lipopeptides.

  7. Blind Test of Physics-Based Prediction of Protein Structures

    PubMed Central

    Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.

    2009-01-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130

  8. Calcium Sensing by Recoverin: Effect of Protein Conformation on Ion Affinity.

    PubMed

    Timr, Štěpán; Kadlec, Jan; Srb, Pavel; Ollila, O H Samuli; Jungwirth, Pavel

    2018-04-05

    The detailed functional mechanism of recoverin, which acts as a myristoyl switch at the rod outer-segment disk membrane, is elucidated by direct and replica-exchange molecular dynamics. In accord with NMR structural evidence and calcium binding assays, simulations point to the key role of enhanced calcium binding to the EF3 loop of the semiopen state of recoverin as compared to the closed state. This 2-4-order decrease in calcium dissociation constant stabilizes the semiopen state in response to the increase of cytosolic calcium concentration in the vicinity of recoverin. A second calcium ion then binds to the EF2 loop and, consequently, the structure of the protein changes from the semiopen to the open state. The latter has the myristoyl chain extruded to the cytosol, ready to act as a membrane anchor of recoverin.

  9. Influence of Copper on the Hot Ductility of 20CrMnTi Steel

    NASA Astrophysics Data System (ADS)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% copper (x = 0, 0.34) was investigated. Results show that copper can reduce its hot ductility, but there is no significant copper-segregation at the boundary tested by EPMA. The average copper content at grain boundaries and substrate is 0.352% and 0.318% respectively in steel containing 0.34% copper tensile-tested at 950 °C. The fracture morphology was examined with SEM and many small and shallow dimples were found on the fracture of steel with copper, and fine copper sulfide was found from carbon extraction replicas using TEM. Additionally, adding 0.34% copper caused an increase in the dynamic recrystallization temperature from 950 °C to 1000 °C, which indicates that copper can retard the dynamic recrystallization (DRX) of austenite. The detrimental influence of copper on hot ductility of 20CrMnTi steel is due mainly to the fine copper sulfide in the steel and its retarding the DRX.

  10. Thermodynamic limitations on the resolution obtainable with metal replicas.

    PubMed

    Woodward, J T; Zasadzinski, J A

    1996-12-01

    The major factor limiting resolution of metal-shadowed surfaces for electron and scanning tunnelling microscopy is the granularity of the metal film. This granularity had been believed to result from a recrystallization of the evaporated film, and hence could be limited by use of higher melting point materials for replication, or inhibited by adding carbon or other impurities to the film. However, evaporated and sputtered films of amorphous metal alloys that do not crystallize also show a granularity that decreases with increasing alloy melting point. A simple thermodynamic analysis shows that the granularity results from a dewetting of the typically low surface energy sample by the high surface energy metal film, similar to the beading up of drops of spilled mercury. The metal granularity and the resulting resolution of the metal-coated surface is proportional to the mobility of the metal on the surface after evaporation, which is related to the difference in temperature between the melting point of the metal and the sample surface temperature.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haixia; Zhang, Jing

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less

  12. Efficiency reduction and pseudo-convergence in replica exchange sampling of peptide folding unfolding equilibria

    NASA Astrophysics Data System (ADS)

    Denschlag, Robert; Lingenheil, Martin; Tavan, Paul

    2008-06-01

    Replica exchange (RE) molecular dynamics (MD) simulations are frequently applied to sample the folding-unfolding equilibria of β-hairpin peptides in solution, because efficiency gains are expected from this technique. Using a three-state Markov model featuring key aspects of β-hairpin folding we show that RE simulations can be less efficient than conventional techniques. Furthermore we demonstrate that one is easily seduced to erroneously assign convergence to the RE sampling, because RE ensembles can rapidly reach long-lived stationary states. We conclude that typical REMD simulations covering a few tens of nanoseconds are by far too short for sufficient sampling of β-hairpin folding-unfolding equilibria.

  13. Extreme ultraviolet performance of a multilayer coated high density toroidal grating

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Keski-Kuha, Ritva A. M.; Neupert, Werner M.; Condor, Charles E.; Gum, Jeffrey S.

    1991-01-01

    The performance of a multilayer coated diffraction grating has been evaluated at EUV wavelengths both in terms of absolute efficiency and spectral resolution. The application of ten-layer Ir/Si multilayer coating to a 3600-lines/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength of about 30 nm in first order, without degrading its excellent quasistigmatic spectral resolution. The measured EUV efficiency peaked at 3.3 percent and was improved over the full spectral range between 25 and 35 nm compared with the premultilayer replica which had a standard gold coating. In addition, the grating's spectral resolution of greater than 5000 was maintained.

  14. Photographic replica of the plaque Apollo 13 astronauts will leave on moon

    NASA Image and Video Library

    1970-04-13

    S70-34685 (April 1970) --- A photographic replica of the plaque which the Apollo 13 astronauts will leave behind on the moon during their lunar landing mission. Astronauts James A. Lovell Jr., commander; and Fred W. Haise Jr., lunar module pilot, will descend to the lunar surface in the Lunar Module (LM) "Aquarius". Astronaut John L. Swigert Jr., command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. The plaque will be attached to the ladder of the landing gear strut on the LM?s descent stage. Commemorative plaques were also left on the moon by the Apollo 11 and Apollo 12 astronauts.

  15. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).

    PubMed

    Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo

    2015-01-27

    A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.

  16. Shuttle structural dynamics characteristics: The analysis and verification

    NASA Technical Reports Server (NTRS)

    Modlin, C. T., Jr.; Zupp, G. A., Jr.

    1985-01-01

    The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.

  17. Femtosecond laser fabricated spike structures for selective control of cellular behavior.

    PubMed

    Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N

    2010-09-01

    In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.

  18. Light and transmission electron microscopy of the intact interfaces between non-submerged titanium-coated epoxy resin implants and bone or gingiva.

    PubMed

    Listgarten, M A; Buser, D; Steinemann, S G; Donath, K; Lang, N P; Weber, H P

    1992-02-01

    This experiment was aimed at studying the intact tissue/implant interface of non-submerged dental implants with a titanium surface. Epoxy-resin replicas were fabricated from 3.05 x 8 mm cylindrical titanium implants with a plasma-sprayed apical portion and a smooth coronal collar. The replicas were coated with a 90-120-nm-thick layer of pure titanium and autoclaved. The coated replicas were inserted as non-submerged endosseous implants in the edentulous premolar region of dog mandibles and allowed to heal for three months. Jaw sections containing the implants were processed for light and electron microscopic study of the intact tissue/implant interface with and without prior demineralization. Gingival connective tissue fibers were closely adapted to the titanium layer, in an orientation more or less parallel to the implant surface. There was no evidence of any fiber insertions into the surface irregularities of the smooth or rough titanium surface. Undemineralized bone was intimately adapted to the titanium surface without any intervening space. In demineralized sections, the collagen fibers of the bone matrix tended to be somewhat thinner and occasionally less densely packed in the vicinity of the implant surface. However, they extended all the way to the titanium surface, without any intervening fibril-free layer.

  19. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques.

    PubMed

    Shah, Sinal; Sundaram, Geeta; Bartlett, David; Sherriff, Martyn

    2004-11-01

    Several studies have made comparisons in the dimensional accuracy of different elastomeric impression materials. Most have used two-dimensional measuring devices, which neglect to account for the dimensional changes that exist along a three-dimensional surface. The aim of this study was to compare the dimensional accuracy of an impression technique using a polyether material (Impregum) and a vinyl poly siloxane material (President) using a laser scanner with three-dimensional superimpositional software. Twenty impressions, 10 with a polyether and 10 with addition silicone, of a stone master model that resembled a dental arch containing three acrylic posterior teeth were cast in orthodontic stone. One plastic tooth was prepared for a metal crown. The master model and the casts were digitised with the non-contacting laser scanner to produce a 3D image. 3D surface viewer software superimposed the master model to the stone replica and the difference between the images analysed. The mean difference between the model and the stone replica made from Impregum was 0.072mm (SD 0.006) and that for the silicone 0.097mm (SD 0.005) and this difference was statistically significantly, p=0.001. Both impression materials provided an accurate replica of the prepared teeth supporting the view that these materials are highly accurate.

  20. A compression algorithm for the combination of PDF sets.

    PubMed

    Carrazza, Stefano; Latorre, José I; Rojo, Juan; Watt, Graeme

    The current PDF4LHC recommendation to estimate uncertainties due to parton distribution functions (PDFs) in theoretical predictions for LHC processes involves the combination of separate predictions computed using PDF sets from different groups, each of which comprises a relatively large number of either Hessian eigenvectors or Monte Carlo (MC) replicas. While many fixed-order and parton shower programs allow the evaluation of PDF uncertainties for a single PDF set at no additional CPU cost, this feature is not universal, and, moreover, the a posteriori combination of the predictions using at least three different PDF sets is still required. In this work, we present a strategy for the statistical combination of individual PDF sets, based on the MC representation of Hessian sets, followed by a compression algorithm for the reduction of the number of MC replicas. We illustrate our strategy with the combination and compression of the recent NNPDF3.0, CT14 and MMHT14 NNLO PDF sets. The resulting compressed Monte Carlo PDF sets are validated at the level of parton luminosities and LHC inclusive cross sections and differential distributions. We determine that around 100 replicas provide an adequate representation of the probability distribution for the original combined PDF set, suitable for general applications to LHC phenomenology.

  1. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method

    NASA Astrophysics Data System (ADS)

    Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke

    2016-12-01

    Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.

  2. Comparison of two adaptive temperature-based replica exchange methods applied to a sharp phase transition of protein unfolding-folding.

    PubMed

    Lee, Michael S; Olson, Mark A

    2011-06-28

    Temperature-based replica exchange (T-ReX) enhances sampling of molecular dynamics simulations by autonomously heating and cooling simulation clients via a Metropolis exchange criterion. A pathological case for T-ReX can occur when a change in state (e.g., folding to unfolding of a protein) has a large energetic difference over a short temperature interval leading to insufficient exchanges amongst replica clients near the transition temperature. One solution is to allow the temperature set to dynamically adapt in the temperature space, thereby enriching the population of clients near the transition temperature. In this work, we evaluated two approaches for adapting the temperature set: a method that equalizes exchange rates over all neighbor temperature pairs and a method that attempts to induce clients to visit all temperatures (dubbed "current maximization") by positioning many clients at or near the transition temperature. As a test case, we simulated the 57-residue SH3 domain of alpha-spectrin. Exchange rate equalization yielded the same unfolding-folding transition temperature as fixed-temperature ReX with much smoother convergence of this value. Surprisingly, the current maximization method yielded a significantly lower transition temperature, in close agreement with experimental observation, likely due to more extensive sampling of the transition state.

  3. Fundamental Bounds for Sequence Reconstruction from Nanopore Sequencers.

    PubMed

    Magner, Abram; Duda, Jarosław; Szpankowski, Wojciech; Grama, Ananth

    2016-06-01

    Nanopore sequencers are emerging as promising new platforms for high-throughput sequencing. As with other technologies, sequencer errors pose a major challenge for their effective use. In this paper, we present a novel information theoretic analysis of the impact of insertion-deletion (indel) errors in nanopore sequencers. In particular, we consider the following problems: (i) for given indel error characteristics and rate, what is the probability of accurate reconstruction as a function of sequence length; (ii) using replicated extrusion (the process of passing a DNA strand through the nanopore), what is the number of replicas needed to accurately reconstruct the true sequence with high probability? Our results provide a number of important insights: (i) the probability of accurate reconstruction of a sequence from a single sample in the presence of indel errors tends quickly (i.e., exponentially) to zero as the length of the sequence increases; and (ii) replicated extrusion is an effective technique for accurate reconstruction. We show that for typical distributions of indel errors, the required number of replicas is a slow function (polylogarithmic) of sequence length - implying that through replicated extrusion, we can sequence large reads using nanopore sequencers. Moreover, we show that in certain cases, the required number of replicas can be related to information-theoretic parameters of the indel error distributions.

  4. Replica exchange and expanded ensemble simulations as Gibbs sampling: simple improvements for enhanced mixing.

    PubMed

    Chodera, John D; Shirts, Michael R

    2011-11-21

    The widespread popularity of replica exchange and expanded ensemble algorithms for simulating complex molecular systems in chemistry and biophysics has generated much interest in discovering new ways to enhance the phase space mixing of these protocols in order to improve sampling of uncorrelated configurations. Here, we demonstrate how both of these classes of algorithms can be considered as special cases of Gibbs sampling within a Markov chain Monte Carlo framework. Gibbs sampling is a well-studied scheme in the field of statistical inference in which different random variables are alternately updated from conditional distributions. While the update of the conformational degrees of freedom by Metropolis Monte Carlo or molecular dynamics unavoidably generates correlated samples, we show how judicious updating of the thermodynamic state indices--corresponding to thermodynamic parameters such as temperature or alchemical coupling variables--can substantially increase mixing while still sampling from the desired distributions. We show how state update methods in common use can lead to suboptimal mixing, and present some simple, inexpensive alternatives that can increase mixing of the overall Markov chain, reducing simulation times necessary to obtain estimates of the desired precision. These improved schemes are demonstrated for several common applications, including an alchemical expanded ensemble simulation, parallel tempering, and multidimensional replica exchange umbrella sampling.

  5. Batesian mimicry promotes pre- and postmating isolation in a snake mimicry complex.

    PubMed

    Pfennig, David W; Akcali, Christopher K; Kikuchi, David W

    2015-04-01

    We evaluated whether Batesian mimicry promotes early-stage reproductive isolation. Many Batesian mimics occur not only in sympatry with their model (as expected), but also in allopatry. As a consequence of local adaptation within both sympatry (where mimetic traits are favored) and allopatry (where nonmimetic traits are favored), divergent, predator-mediated natural selection should disfavor immigrants between these selective environments as well as any between-environment hybrids. This selection might form the basis for both pre- and postmating isolation, respectively. We tested for such selection in a snake mimicry complex by placing clay replicas of sympatric, allopatric, or hybrid phenotypes in both sympatry and allopatry and measuring predation attempts. As predicted, replicas with immigrant phenotypes were disfavored in both selective environments. Replicas with hybrid phenotypes were also disfavored, but only in a region of sympatry where previous studies have detected strong selection favoring precise mimicry. By fostering immigrant inviability and ecologically dependent selection against hybrids (at least in some habitats), Batesian mimicry might therefore promote reproductive isolation. Thus, although Batesian mimicry has long been viewed as a mechanism for convergent evolution, it might play an underappreciated role in fueling divergent evolution and possibly even the evolution of reproductive isolation and speciation. © 2015 The Author(s).

  6. Replication of Muscle Cell Using Bioimprint

    NASA Astrophysics Data System (ADS)

    Samsuri, Fahmi; Mitchell, John S.; Alkaisi, Maan M.; Evans, John J.

    2009-07-01

    In our earlier study a heat-curable PDMS or a UV curable elastomer, was used as the replicating material to introduce Bioimprint methodology to facilitate cell imaging [1-2] But, replicating conditions for thermal polymerization is known to cause cell dehydration during curing. In this study, a new type of polymer was developed for use in living cell replica formation, and it was tested on human muscle cells. The cells were incubated and cultured according to standard biological culturing procedures, and they were grown for about 10 days. The replicas were then separated from the muscle cells and taken for analysis under an Atomic Force Microscope (AFM). The new polymer was designed to be biocompatible with higher resolution and fast curing process compared to other types of silicon-based organic polymers such as polydimethylsiloxane (PDMS). Muscle cell imprints were achieved and higher resolution images were able to show the micro structures of the muscle cells, including the cellular fibers and cell membranes. The AFM is able to image features at nanoscale resolution. This capacity enables a number of characteristics of biological cells to be visualized in a unique manner. Polymer and muscle cells preparations were developed at Hamilton, in collaboration between Plant and Food Research and the Department of Electrical and Computer Engineering, University of Canterbury. Tapping mode was used for the AFM image analysis as it has low tip-sample forces and non-destructive imaging capability. We will be presenting the bioimprinting processes of muscle cells, their AFM imaging and characterization of the newly developed polymer.

  7. Replica symmetric evaluation of the information transfer in a two-layer network in the presence of continuous and discrete stimuli.

    PubMed

    Del Prete, Valeria; Treves, Alessandro

    2002-04-01

    In a previous paper we have evaluated analytically the mutual information between the firing rates of N independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the information carried by a population of M output units, again about continuous and discrete correlates. The mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a method that, by taking into account only the term linear in N of the input information, is equivalent to assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input noise, the output information approaches asymptotically the information carried in input. Finally, we show that the information loss in output does not depend much on the structure of the stimulus, whether purely continuous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between input and output noise.

  8. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lunan

    2016-01-01

    This dissertation consists of three parts. First, we study magnetic domains in Nd 2Fe 14B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√more » 3 6√ 3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe 2 by ARPES and experimentally con rmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identi ed Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.« less

  9. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.

    PubMed

    Wille, Marie-Luise; Langton, Christian M

    2016-02-01

    The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Quantifying Antimicrobial Resistance at Veal Calf Farms

    PubMed Central

    Bosman, Angela B.; Wagenaar, Jaap; Stegeman, Arjan; Vernooij, Hans; Mevius, Dik

    2012-01-01

    This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s) by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution) and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p≤0.05). Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which 90 isolates are tested for their susceptibility by replica plating. PMID:22970313

  11. A Dual-Channel Acquisition Method Based on Extended Replica Folding Algorithm for Long Pseudo-Noise Code in Inter-Satellite Links.

    PubMed

    Zhao, Hongbo; Chen, Yuying; Feng, Wenquan; Zhuang, Chen

    2018-05-25

    Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR), complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST) and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST) and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST). This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher detection probability and lower false alarm probability, it has a lower mean acquisition time than traditional XFAST, DF-XFAST and zero-padding.

  12. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result.

    PubMed

    Wu, Yang; Kelly, Damien P

    2014-12-12

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of [Formula: see text] and [Formula: see text] type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of [Formula: see text] and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by [Formula: see text], where [Formula: see text] is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  13. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Kelly, Damien P.

    2014-12-01

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of ? and ? type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of ? and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by ?, where ? is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  14. Trapping self-propelled micromotors with microfabricated chevron and heart-shaped chips† †Electronic supplementary information (ESI) available: Supporting videos (S1; S2 and S3). See DOI: 10.1039/c3lc51419f Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Restrepo-Pérez, Laura; Soler, Lluís; Martínez-Cisneros, Cynthia S.; Schmidt, Oliver G.

    2014-01-01

    We demonstrate that catalytic micromotors can be trapped in microfluidic chips containing chevron and heart-shaped structures. Despite the challenge presented by the reduced size of the traps, microfluidic chips with different trapping geometries can be fabricated via replica moulding. We prove that these microfluidic chips can capture micromotors without the need for any external mechanism to control their motion. PMID:24643940

  15. Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation.

    PubMed

    Yamaguchi, Takumi; Sakae, Yoshitake; Zhang, Ying; Yamamoto, Sayoko; Okamoto, Yuko; Kato, Koichi

    2014-10-06

    Exploration of the conformational spaces of flexible biomacromolecules is essential for quantitatively understanding the energetics of their molecular recognition processes. We employed stable isotope- and lanthanide-assisted NMR approaches in conjunction with replica-exchange molecular dynamics (REMD) simulations to obtain atomic descriptions of the conformational dynamics of high-mannose-type oligosaccharides, which harbor intracellular glycoprotein-fate determinants in their triantennary structures. The experimentally validated REMD simulation provided quantitative views of the dynamic conformational ensembles of the complicated, branched oligosaccharides, and indicated significant expansion of the conformational space upon removal of a terminal mannose residue during the functional glycan-processing pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  17. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting.

    PubMed

    Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon

    2009-09-23

    The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132 degrees +/- 2 degrees , which was slightly lower than that of the original cicada wing (138 degrees +/- 2 degrees ), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86 degrees ).

  18. Structure of a low-population binding intermediate in protein-RNA recognition

    PubMed Central

    Bardaro, Michael F.; Aprile, Francesco A.; Varani, Gabriele; Vendruscolo, Michele

    2016-01-01

    The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution. PMID:27286828

  19. Exploring protein kinase conformation using swarm-enhanced sampling molecular dynamics.

    PubMed

    Atzori, Alessio; Bruce, Neil J; Burusco, Kepa K; Wroblowski, Berthold; Bonnet, Pascal; Bryce, Richard A

    2014-10-27

    Protein plasticity, while often linked to biological function, also provides opportunities for rational design of selective and potent inhibitors of their function. The application of computational methods to the prediction of concealed protein concavities is challenging, as the motions involved can be significant and occur over long time scales. Here we introduce the swarm-enhanced sampling molecular dynamics (sesMD) method as a tool to improve sampling of conformational landscapes. In this approach, a swarm of replica simulations interact cooperatively via a set of pairwise potentials incorporating attractive and repulsive components. We apply the sesMD approach to explore the conformations of the DFG motif in the protein p38α mitogen-activated protein kinase. In contrast to multiple MD simulations, sesMD trajectories sample a range of DFG conformations, some of which map onto existing crystal structures. Simulated structures intermediate between the DFG-in and DFG-out conformations are predicted to have druggable pockets of interest for structure-based ligand design.

  20. Oligomerization of the protein tau in the Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Larini, Luca

    The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the microtubule associated protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau is extremely flexible and is classified as an intrinsically disordered protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules, which are an essential component of the cytoskeleton of the axon. The microtubule binding region of tau consists of 4 pseudo-repeats that are critical for aggregation as well. In this study, we focus on the aggregation propensity of different segments of the microtubule binding region as well as post-translational modifications that can alter tau dynamics and structure. We have performed replica exchange molecular dynamics simulations to characterize the ensemble of conformations of the monomer and small oligomers as well as how these structures are stabilized or destabilized by mutations and post-translational modifications.

  1. Simultaneous NMR characterisation of multiple minima in the free energy landscape of an RNA UUCG tetraloop.

    PubMed

    Borkar, Aditi N; Vallurupalli, Pramodh; Camilloni, Carlo; Kay, Lewis E; Vendruscolo, Michele

    2017-01-25

    RNA molecules in solution tend to undergo structural fluctuations of relatively large amplitude and to populate a range of different conformations some of which with low populations. It is still very challenging, however, to characterise the structures of these low populated states and to understand their functional roles. In the present study, we address this problem by using NMR residual dipolar couplings (RDCs) as structural restraints in replica-averaged metadynamics (RAM) simulations. By applying this approach to a 14-mer RNA hairpin containing the prototypical UUCG tetraloop motif, we show that it is possible to construct the free energy landscape of this RNA molecule. This free energy landscapes reveals the surprisingly rich dynamics of the UUCG tetraloop and identifies the multiple substates that exist in equilibrium owing to thermal fluctuations. The approach that we present is general and can be applied to the study of the free energy landscapes of other RNA or RNA-protein systems.

  2. Nanostructured Diamond Device for Biomedical Applications.

    PubMed

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kononchik, Joseph P.; Vancini, Ricardo; Brown, Dennis T., E-mail: dennis_brown@ncsu.edu

    Sindbis Virus (SV), the prototype alphavirus in the family togaviridae, infects both mammalian and insect cells. The ability of SV to infect cells possessing significantly different biochemical environments suggests that there may be a common mode of entry into each cell type. Previous studies show that up to 4 h post infection cells are permeable to small ions and alpha sarcin suggesting that the plasma membrane is compromised as infection takes place. Thin-section electron microscopy has also shown SV to bind to the plasma membrane and lose its electron dense core through a pore like structure developed upon interaction ofmore » the virus with the cell surface. Using freeze-fracture replicas, thin-sections and antibody labeling the data presented herein show virus associated with intramembrane particles on mosquito cells. These data suggest that the intramembrane particles associated with SV may be part of the pore structure consisting of virus proteins and cell receptor.« less

  4. Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods.

    PubMed

    Campbell, Michael G; Liu, Qingkun; Sanders, Aric; Evans, Julian S; Smalyukh, Ivan I

    2014-04-11

    Using liquid crystalline self-assembly of cellulose nanocrystals, we achieve long-range alignment of anisotropic metal nanoparticles in colloidal nanocrystal dispersions that are then used to deposit thin structured films with ordering features highly dependent on the deposition method. These hybrid films are comprised of gold nanorods unidirectionally aligned in a matrix that can be made of ordered cellulose nanocrystals or silica nanostructures obtained by using cellulose-based nanostructures as a replica. The ensuing long-range alignment of gold nanorods in both cellulose-based and nanoporous silica films results in a polarization-sensitive surface plasmon resonance. The demonstrated device-scale bulk nanoparticle alignment may enable engineering of new material properties arising from combining the orientational ordering of host nanostructures and properties of the anisotropic plasmonic metal nanoparticles. Our approach may also allow for scalable fabrication of plasmonic polarizers and nanoporous silica structures with orientationally ordered anisotropic plasmonic nanoinclusions.

  5. The air-conditioning capacity of the human nose.

    PubMed

    Naftali, Sara; Rosenfeld, Moshe; Wolf, Michael; Elad, David

    2005-04-01

    The nose is the front line defender of the respiratory system. Unsteady simulations in three-dimensional models have been developed to study transport patterns in the human nose and its overall air-conditioning capacity. The results suggested that the healthy nose can efficiently provide about 90% of the heat and the water fluxes required to condition the ambient inspired air to near alveolar conditions in a variety of environmental conditions and independent of variations in internal structural components. The anatomical replica of the human nose showed the best performance and was able to provide 92% of the heating and 96% of the moisture needed to condition the inspired air to alveolar conditions. A detailed analysis explored the relative contribution of endonasal structural components to the air-conditioning process. During a moderate breathing effort, about 11% reduction in the efficacy of nasal air-conditioning capacity was observed.

  6. Exploring RNA structure and dynamics through enhanced sampling simulations.

    PubMed

    Mlýnský, Vojtěch; Bussi, Giovanni

    2018-04-01

    RNA function is intimately related to its structural dynamics. Molecular dynamics simulations are useful for exploring biomolecular flexibility but are severely limited by the accessible timescale. Enhanced sampling methods allow this timescale to be effectively extended in order to probe biologically relevant conformational changes and chemical reactions. Here, we review the role of enhanced sampling techniques in the study of RNA systems. We discuss the challenges and promises associated with the application of these methods to force-field validation, exploration of conformational landscapes and ion/ligand-RNA interactions, as well as catalytic pathways. Important technical aspects of these methods, such as the choice of the biased collective variables and the analysis of multi-replica simulations, are examined in detail. Finally, a perspective on the role of these methods in the characterization of RNA dynamics is provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. On the validity and robustness of the scale error phenomenon in early childhood.

    PubMed

    DeLoache, Judy S; LoBue, Vanessa; Vanderborght, Mieke; Chiong, Cynthia

    2013-02-01

    Scale errors is a term referring to very young children's serious efforts to perform actions on miniature replica objects that are impossible due to great differences in the size of the child's body and the size of the target objects. We report three studies providing further documentation of scale errors and investigating the validity and robustness of the phenomenon. In the first, we establish that 2-year-olds' behavior in response to prompts to "pretend" with miniature replica objects differs dramatically from scale errors. The second and third studies address the robustness of the phenomenon and its relative imperviousness to attempts to influence the rate of scale errors. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Difference in dimer conformation between amyloid-β(1-42) and (1-43) proteins: Replica exchange molecular dynamics simulations in water

    NASA Astrophysics Data System (ADS)

    Yano, Atsushi; Okamoto, Akisumi; Nomura, Kazuya; Higai, Shin'ichi; Kurita, Noriyuki

    2014-03-01

    We searched stable conformations of amyloid-β (Aβ) dimers composed of Aβ(1-42) or Aβ(1-43) protein in water by replica-exchange molecular dynamics simulations and found that Thr43 of the C-terminal of Aβ(1-43) is hydrogen bonded to Arg5 of the same monomer in the Aβ(1-43) dimer, resulting in its ring-shaped conformation, while Aβ(1-42) has no such hydrogen-bond. This conformation is expected to aggregate more easily into a compact conformation of Aβ fibrils. We also investigated the binding affinity and the specific interactions between Aβ monomers by ab initio fragment molecular orbital calculations to elucidate which Aβ residues contribute to the dimerization.

  9. [Cervical adaptation of complete cast crowns of various metal alloys, with and without die spacers].

    PubMed

    Stephano, C B; Roselino, R F; Roselino, R B; Campos, G M

    1989-01-01

    A metallic replica from a dental preparation for crown was used to make 8 class-IV stone dies. The wax patterns for the casting of the crowns were obtained in two conditions: a) from the stone die with no spacer; and b) from the stone die with an acrylic spacer. Thus, 64 metallic crowns were casted, using 4 different alloys: DURACAST (Cu-Al), NICROCAST (Ni-Cr) and DURABOND (Ni-Cr), and gold. The casted crowns were fitted in the metallic replica and measured as to the cervical discrepance of fitting. The results showed that the use of die spacers decreases the clinical discrepancies of fitting of the casted crowns (in a statistically significant level), no matter the metallic alloy employed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenman, David J.; Wang, Chunyu; García, Angel E.

    We found that amyloid β (Aβ) monomers represent a base state in the pathways of aggregation that result in the fibrils and oligomers implicated in the pathogenesis of Alzheimer’s disease (AD). The structural properties of these intrinsically disordered peptides remain unclear despite extensive experimental and computational investigations. Further, there are mutations within Aβ that change the way the peptide aggregates and are known to cause familial AD (FAD). Here, we analyze the ensembles of different isoforms (Aβ42 and Aβ40) and mutants (E22Δ, D23N, E22K, E22G, and A2T in Aβ40) of Aβ generated with all-atom replica exchange molecular dynamics (REMD) simulationsmore » on the μs/replica time scale. These were run using three different force field/water model combinations: OPLS-AA/L and TIP3P (“OPLS”), AMBER99sb-ILDN and TIP4P-Ew (“ILDN”), as well as CHARMM22* and TIP3SP (“CHARMM”). Despite fundamental changes in simulation parameters, we find that the resulting ensembles demonstrate a strong convergence in structural properties. In particular, antiparallel contacts between L17–A21 and A30–L34 are prevalent in ensembles of Aβ40, directly forming β sheets in the OPLS and ILDN combinations. A21–A30 commonly forms an interceding region that rarely interacts with the rest of the peptide. Further, Aβ42 contributes new β hairpin motifs involving V40–I41 in both OPLS and ILDN. However, the structural flexibility of the central region and the electrostatic interactions that characterize it are notably different between the different conditions. Further, for OPLS, each of the FAD mutations disrupts central bend character and increases the polymorphism of antiparallel contacts across the central region. However, the studied mutations in the ILDN set primarily encourage more global contacts involving the N-terminus and the central region, and promote the formation of new β topologies that may seed different aggregates involved in disease phenotypes. Furthermore, these differences aside, the large degree of agreement between simulation sets across multiple force fields provides a generalizable characterization of Aβ that is also consistent with experimental data and models.« less

  11. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers

    PubMed Central

    Zhang, Sichao; Chen, Yifang

    2015-01-01

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell’s Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings. PMID:26577813

  12. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers.

    PubMed

    Zhang, Sichao; Chen, Yifang

    2015-11-18

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell's Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings.

  13. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers

    NASA Astrophysics Data System (ADS)

    Zhang, Sichao; Chen, Yifang

    2015-11-01

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell’s Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings.

  14. A programmable nanoreplica molding for the fabrication of nanophotonic devices.

    PubMed

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  15. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    PubMed Central

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-01-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828

  16. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.

    PubMed

    Watts, Charles R; Gregory, Andrew; Frisbie, Cole; Lovas, Sándor

    2018-03-01

    The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1-40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER-ff99sb-ILDN, AMBER-ff99sb*-ILDN, AMBER-ff99sb-NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER-ff99sb-ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α-helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER-ff99sb-NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER-ff99sb-NMR force field, the others tended to under estimate the expected amount of β-sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER-ff99sb-NMR, reproduce a theoretically expected β-sheet-turn-β-sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C-terminal hydrophobic cores from residues 17-21 and 30-36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different. © 2017 Wiley Periodicals, Inc.

  17. Evaluation on the Perception of the New Portable Set for Hajj Course (P.A.H.A.M) Based on Design Characteristics

    NASA Astrophysics Data System (ADS)

    Shahir Yahya, Mohd; Rahim, Abd Khalil Abd; Mohammad, Musli; Ibrahim, Mustaffa; Kadis, Ghazali

    2017-08-01

    This paper is about the perceptions of the pilgrims to the innovation of the portable training set for hajj course (P.A.H.A.M). The acronym P.A.H.A.M come from the Malay word “Praktikal Haji Mudahalih” as a tool in helping the hajj and umrah pilgrims to better understand the concept while doing the hajj and umrah practical. In Malaysia, one of the managing bodies of pilgrimage for Muslims in is Pilgrims Fund Board. It provides a series of courses every year to help in boosting the understanding of the pilgrims before leaving for the Holy Land. During the practical session, they will provide the replica model to help pilgrims to familiarise themselves with the actual situation in Mecca. However, the current replica model was built using an iron structure that is relatively heavy, not portable and embarks more cost of transportation and labour. Therefore, this paper discusses the perceptions of the pilgrims on the characteristics of Portable Training Set for Hajj Course (P.A.H.A.M) compared to the existing set in order to increase the understanding of pilgrims. A total of 53 samples of hajj and umrah pilgrims participated in this study consisted of the general public. From the data analysed using Statistical Software for Social Sciences (SPSS v19), the results of the survey showed that more than 90% of respondents agreed that this portable training set meets the characteristics such as easy to handle, more safety in crowd, portable, stability, light weight, suitable in-door and out-door activity, easy to clean, and more structured with average score 4.00 (agreed) and above. In conclusion, it is expected that this Portable Training Set for Hajj Course (P.A.H.A.M) can be used by Muslim’s communities in Malaysia particularly and Muslim countries in general to better understand the hajj and umrah activities before leaving to the Holy Land.

  18. Kinetic Network Study of the Diversity and Temperature Dependence of Trp-Cage Folding Pathways: Combining Transition Path Theory with Stochastic Simulations

    PubMed Central

    Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M.

    2011-01-01

    We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, Transition Path Theory (TPT) for constructing folding pathways and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270K and 566K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the Weighted-Histogram-Analysis Method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (Pfold) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding “tubes”, a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways. PMID:21254767

  19. Kinetic network study of the diversity and temperature dependence of Trp-Cage folding pathways: combining transition path theory with stochastic simulations.

    PubMed

    Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M

    2011-02-17

    We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways.

  20. Impact of Data Placement on Resilience in Large-Scale Object Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carns, Philip; Harms, Kevin; Jenkins, John

    Distributed object storage architectures have become the de facto standard for high-performance storage in big data, cloud, and HPC computing. Object storage deployments using commodity hardware to reduce costs often employ object replication as a method to achieve data resilience. Repairing object replicas after failure is a daunting task for systems with thousands of servers and billions of objects, however, and it is increasingly difficult to evaluate such scenarios at scale on realworld systems. Resilience and availability are both compromised if objects are not repaired in a timely manner. In this work we leverage a high-fidelity discrete-event simulation model tomore » investigate replica reconstruction on large-scale object storage systems with thousands of servers, billions of objects, and petabytes of data. We evaluate the behavior of CRUSH, a well-known object placement algorithm, and identify configuration scenarios in which aggregate rebuild performance is constrained by object placement policies. After determining the root cause of this bottleneck, we then propose enhancements to CRUSH and the usage policies atop it to enable scalable replica reconstruction. We use these methods to demonstrate a simulated aggregate rebuild rate of 410 GiB/s (within 5% of projected ideal linear scaling) on a 1,024-node commodity storage system. We also uncover an unexpected phenomenon in rebuild performance based on the characteristics of the data stored on the system.« less

  1. Nuclear research emulsion neutron spectrometry at the Little-Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gold, R.; Roberts, J.H.; Preston, C.C.

    Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2 m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2 m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2-m, 0/sup 0/ and 2-m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. Neutronmore » spectra obtained from these NRE proton-recoil spectra are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. NRE and liquid scintillator neutron spectra generally agree within experimental uncertainties at the 2-m, 90/sup 0/ location. However, at the 2-m, 0/sup 0/ location, the neutron spectra derived from these two independent experimental methods differ significantly. NRE spectra and Monte Carlo calculations exhibit general agreement with regard to both intensity as well as energy dependence. Better agreement is attained between theory and experiment at the 2-m, 90/sup 0/ location, where the neutron intensity is considerably higher. 14 refs., 18 figs., 11 tabs.« less

  2. Marshall Team Fires Recreated Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.

  3. Around Marshall

    NASA Image and Video Library

    2003-07-23

    In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.

  4. A generic implementation of replica exchange with solute tempering (REST2) algorithm in NAMD for complex biophysical simulations

    NASA Astrophysics Data System (ADS)

    Jo, Sunhwan; Jiang, Wei

    2015-12-01

    Replica Exchange with Solute Tempering (REST2) is a powerful sampling enhancement algorithm of molecular dynamics (MD) in that it needs significantly smaller number of replicas but achieves higher sampling efficiency relative to standard temperature exchange algorithm. In this paper, we extend the applicability of REST2 for quantitative biophysical simulations through a robust and generic implementation in greatly scalable MD software NAMD. The rescaling procedure of force field parameters controlling REST2 "hot region" is implemented into NAMD at the source code level. A user can conveniently select hot region through VMD and write the selection information into a PDB file. The rescaling keyword/parameter is written in NAMD Tcl script interface that enables an on-the-fly simulation parameter change. Our implementation of REST2 is within communication-enabled Tcl script built on top of Charm++, thus communication overhead of an exchange attempt is vanishingly small. Such a generic implementation facilitates seamless cooperation between REST2 and other modules of NAMD to provide enhanced sampling for complex biomolecular simulations. Three challenging applications including native REST2 simulation for peptide folding-unfolding transition, free energy perturbation/REST2 for absolute binding affinity of protein-ligand complex and umbrella sampling/REST2 Hamiltonian exchange for free energy landscape calculation were carried out on IBM Blue Gene/Q supercomputer to demonstrate efficacy of REST2 based on the present implementation.

  5. Precision of Fit of Titanium and Cast Implant Frameworks Using a New Matching Formula

    PubMed Central

    Sierraalta, Marianella; Vivas, Jose L.; Razzoog, Michael E.; Wang, Rui-Feng

    2012-01-01

    Statement of the Problem. Fit of prosthodontic frameworks is linked to the lifetime survival of dental implants and maintenance of surrounding bone. Purpose. The purpose of this study was to evaluate and compare the precision of fit of milled one-piece Titanium fixed complete denture frameworks to that of conventional cast frameworks. Material and Methods. Fifteen casts fabricated from a single edentulous CAD/CAM surgical guide were separated in two groups and resin patterns simulating the framework for a fixed complete denture developed. Five casts were sent to dental laboratories to invest, cast in a Palladium-Gold alloy and fit the framework. Ten casts had the resin pattern scanned for fabrication of milled bars in Titanium. Using measuring software, positions of implant replicas in the definitive model were recorded. The three dimensional spatial orientation of each implant replica was matched to the implant replica. Results. Results demonstrated the mean vertical gap of the Cast framework was 0.021 (+0.004) mm and 0.012 (0.002) mm determined by fixed and unfixed best-fit matching coordinate system. For Titanium frameworks they were 0.0037 (+0.0028) mm and 0.0024 (+0.0005) mm, respectively. Conclusions. Milled one-piece Titanium fixed complete denture frameworks provided a more accurate precision of fit then traditional cast frameworks. PMID:22550486

  6. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  7. The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings.

    PubMed

    Zada, Imran; Zhang, Wang; Zheng, Wangshu; Zhu, Yuying; Zhang, Zhijian; Zhang, Jianzhong; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di

    2017-12-08

    The negative replica of biomorphic TiO 2 with nano-holes structure has been effectively fabricated directly from nano-nipple arrays structure of cicada wings by using a simple, low-cost and highly effective sol-gel ultrasonic method. The nano-holes array structure was well maintained after calcination in air at 500 °C. The Ag nanoparticles (10 nm-25 nm) were homogeneously decorated on the surface and to the side wall of nano-holes structure. It was observed that the biomorphic Ag-TiO 2 showed remarkable photocatalytic activity by degradation of methyl blue (MB) under UV-vis light irradiation. The biomorphic Ag-TiO 2 with nano-holes structure showed superior photocatalytic activity compared to the biomorphic TiO 2 and commercial Degussa P25. This high-performance photocatalytic activity of the biomorphic Ag-TiO 2 may be attributed to the nano-holes structure, localized surface plasmon resonance (LSPR) property of the Ag nanoparticles, and enhanced electron-hole separation. Moreover, the biomorphic Ag-TiO 2 showed more absorption capability in the visible wavelength range. This work provides a new insight to design such a structure which may lead to a range of novel applications.

  8. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    PubMed

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  9. Neutron and gamma-ray dose measurements at various distances from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntzinger, C.J.; Hankins, D.E.

    We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore Nationalmore » Laboratory (LLNL). 12 references, 7 figures, 6 tables.« less

  10. SEM/EDX and vis spectrophotometry study of the stability of resin-bound mortars used for casting replicas and filling missing parts of historic stone fountains.

    PubMed

    Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza

    2003-04-01

    A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.

  11. Maximizing and minimizing investment concentration with constraints of budget and investment risk

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-01-01

    In this paper, as a first step in examining the properties of a feasible portfolio subset that is characterized by budget and risk constraints, we assess the maximum and minimum of the investment concentration using replica analysis. To do this, we apply an analytical approach of statistical mechanics. We note that the optimization problem considered in this paper is the dual problem of the portfolio optimization problem discussed in the literature, and we verify that these optimal solutions are also dual. We also present numerical experiments, in which we use the method of steepest descent that is based on Lagrange's method of undetermined multipliers, and we compare the numerical results to those obtained by replica analysis in order to assess the effectiveness of our proposed approach.

  12. Stability of the Mézard-Parisi Solution for Random Manifolds

    NASA Astrophysics Data System (ADS)

    Carlucci, D. M.; de Dominicis, C.; Temesvari, T.

    1996-08-01

    The eigenvalues of the Hessian associated with random manifolds are constructed for the general case of R steps of replica symmetry breaking. For the Parisi limit Rrightarrow infty (continuum replica symmetry breaking) which is relevant for the manifold dimension D<2, they are shown to be non negative. Les valeurs propres de la hessienne, associée avec une variété aléatoire, sont construites dans le cas général de R étapes de brisure de la symétrie des répliques. Dans la limite de Parisi, Rrightarrow infty (brisure continue de la symétrie des répliques) qui est pertinente pour la dimension de la variété D<2, on montre qu'elles sont non négatives.

  13. Acousto-optic replication of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  14. A practical guide to replica-exchange Wang—Landau simulations

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Li, Ying Wai; Landau, David P.

    2018-04-01

    This paper is based on a series of tutorial lectures about the replica-exchange Wang-Landau (REWL) method given at the IX Brazilian Meeting on Simulational Physics (BMSP 2017). It provides a practical guide for the implementation of the method. A complete example code for a model system is available online. In this paper, we discuss the main parallel features of this code after a brief introduction to the REWL algorithm. The tutorial section is mainly directed at users who have written a single-walker Wang–Landau program already but might have just taken their first steps in parallel programming using the Message Passing Interface (MPI). In the last section, we answer “frequently asked questions” from users about the implementation of REWL for different scientific problems.

  15. Importance of many-body dispersion and temperature effects on gas-phase gold cluster (meta)stability

    NASA Astrophysics Data System (ADS)

    Goldsmith, Bryan R.; Gruene, Philipp; Lyon, Jonathan T.; Rayner, David M.; Fielicke, André; Scheffler, Matthias; Ghiringhelli, Luca M.

    Gold clusters in the gas phase exhibit many structural isomers that are shown to intercovert frequently, even at room temperature. We performed ab initio replica-exchange molecular dynamics (REMD) calculations on gold clusters (of sizes 5-14 atoms) to identify metastable states and their relative populations at finite temperature, as well as to examine the importance of temperature and van der Waals (vdW) on their isomer energetic ordering. Free energies of the gold cluster isomers are optimally estimated using the Multistate Bennett Acceptance Ratio. The distribution of bond coordination numbers and radius of gyration are used to address the challenge of discriminating isomers along their dynamical trajectories. Dispersion effects are important for stabilizing three-dimensional structures relative to planar structures and brings isomer energetic predictions to closer quantitative agreement compared with RPA@PBE calculations. We find that higher temperatures typically stabilize metastable three-dimensional structures relative to planar/quasiplanar structures. Computed IR spectra of low free energy Au9, Au10, and Au12 isomers are in agreement with experimental spectra obtained by far-IR multiple photon dissociation in a molecular beam at 100 K.

  16. Replica exchange molecular dynamics simulation of cross-fibrillation of IAPP and PrP106-126.

    PubMed

    Chua, Khi Pin; Chew, Lock Yue; Mu, Yuguang

    2016-08-01

    Aggregation of proteins into amyloid is the central hallmark of a number of protein diseases. Most studies were carried out on the aggregation between proteins of similar species. However, it was observed that some patients with certain protein disease can easily acquire another unrelated protein disease. As such, it is also important to examine aggregation between proteins of different species. Usually aggregation between proteins of the same species can be attributed to the similarity between their respective amino acid sequences. In this article, we were motivated by an experimental study of aggregation between amylin (Islet Amyloid Polypeptide, IAPP) and prion106-126 (PrP106-126) fragment (JACS, 2013, 135, 13582-9). It was found that the two non-homologous peptides can aggregate quickly to form fibrils in the presence of negatively charged lipid bilayer. We attempted to elucidate the molecular mechanism of the early stage of dimerization of these two peptides through extensive replica exchange molecular dynamics simulations. Conformations consisting of various degrees of β-sheets structures, both intra-chain and inter-chain, were found in the simulations. The conformations of the aggregated complex are very diverse, which suggests that the cross-species fibrils formed between the two proteins are highly polymorphic. The driving forces are mainly hydrophobic interactions, including aromatic-aliphatic interactions. The palindromic region of PrP106-126 and SNNFGAIL region of IAPP were found to play important roles in the interaction. Our study sheds insight into the exciting research of protein cross-fibrillation. Proteins 2016; 84:1134-1146. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Wafer-level manufacturing technology of glass microlenses

    NASA Astrophysics Data System (ADS)

    Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.

    2014-08-01

    In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.

  18. Statistical mechanics of complex neural systems and high dimensional data

    NASA Astrophysics Data System (ADS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-03-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.

  19. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    PubMed

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.

  20. 2PI effective action for the SYK model and tensor field theories

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario; Gurau, Razvan

    2018-05-01

    We discuss the two-particle irreducible (2PI) effective action for the SYK model and for tensor field theories. For the SYK model the 2PI effective action reproduces the bilocal reformulation of the model without using replicas. In general tensor field theories the 2PI formalism is the only way to obtain a bilocal reformulation of the theory, and as such is a precious instrument for the identification of soft modes and for possible holographic interpretations. We compute the 2PI action for several models, and push it up to fourth order in the 1 /N expansion for the model proposed by Witten in [1], uncovering a one-loop structure in terms of an auxiliary bilocal action.

  1. Correlations of RMT characteristic polynomials and integrability: Hermitean matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100

    Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less

  2. A prospective study of anti-aging topical therapies using a quantitative method of assessment.

    PubMed

    Rubino, Corrado; Farace, Francesco; Dessy, Luca A; Sanna, Marco P G; Mazzarello, Vittorio

    2005-04-01

    In the treatment of photoaged skin, glycolic acid works by removing superficial portions of the epidermis and stimulating dermis regeneration. Vitamins A, C, and E should stimulate collagen production and antioxidants should prevent free radical damage and skin aging. However, the effectiveness of different therapies has often relied on subjective methods of assessment. Histologic analysis has seldom been used because of the drawback of permanent scarring. In the literature, the use of a quantitative method for the assessment of facial rejuvenation has been described: the silicone replica technique. The authors' aim was to promote and recommend the use of this technique and, in particular, to test the effect of glycolic acid and multivitamin- and antioxidant-based products on skin texture. The authors performed a prospective, randomized, double-blind, controlled study on 30 women treated topically in the outer canthal region (crow's-feet area). Patients were divided into three groups (groups A, B, and C); each group consisted of five patients between the ages of 31 and 40 years and five patients between the ages of 41 and 50 years. Group A was treated by glycolic acid application, initially at home for 2 weeks, followed by a higher concentration administered in the office weekly for six applications. Group B was treated by topical application at home of a multivitamin product daily for 3 months. Group C was treated with a cream base (placebo) for 3 months and represented the control group. Skin areas under treatment were photographed and reproduced by the silicone replica technique at baseline and at the end of treatment. This technique reproduces exactly the skin's texture. Digital images were obtained from skin replicas and analyzed by specific software for different parameters: roughness, microsulcus number, and width. Pretreatment and posttreatment values were compared using the Wilcoxon signed-rank test. In group A, microsulcus number and width were statistically decreased, but roughness was not. In groups B and C, parameters were not statistically modified. The silicone replica technique allowed a quantitative analysis of results obtained with different topical therapies. In particular, it confirmed the efficacy of glycolic acid in skin rejuvenation.

  3. Preload evaluation of different screws in external hexagon joint.

    PubMed

    Assunção, Wirley Gonçalves; Delben, Juliana Aparecida; Tabata, Lucas Fernando; Barão, Valentim Adelino Ricardo; Gomes, Erica Alves; Garcia, Idelmo Rangel

    2012-02-01

    This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns. Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05). Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P > 0.05). All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage.

  4. Development of Carbon/Carbon Composites with Through-Thickness Carbon Nanotubes for Thermal and Structural Applications

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-WP-TR-2009-4013 DEVELOPMENT OF CARBON / CARBON COMPOSITES WITH THROUGH-THICKNESS CARBON NANOTUBES FOR THERMAL AND STRUCTURAL...31 August 2008 4. TITLE AND SUBTITLE DEVELOPMENT OF CARBON / CARBON COMPOSITES WITH THROUGH- THICKNESS CARBON NANOTUBES FOR THERMAL AND STRUCTURAL...13. SUPPLEMENTARY NOTES PAO Case Number: 88ABW-2009-1253; Clearance Date: 31 Mar 2009. Report contains color. 14. ABSTRACT Carbon / carbon

  5. Strategic planning toolset for reproduction of machinebuilding engines and equipment

    NASA Astrophysics Data System (ADS)

    Boyko, A. A.; Kukartsev, V. V.; Lobkov, K. Y.; Stupina, A. A.

    2018-05-01

    This article illustrates a replica of a dynamic model of machine-building equipment. The model was designed on the basis of a ‘system dynamics method’ including the Powersim Studio toolset. The given model provides the basis and delineates the reproduction process of equipment in its natural as well as appraisal forms. The presented model was employed as a tool to explore reproduction of a wide range of engines and equipment in machine-building industry. As a result of these experiments, a variety of reproducible options were revealed which include productive capacity and distribution of equipment among technology groups. The authors’ research concludes that the replica of the dynamic model designed by us has proved to be universal. This also opens the way for further research exploring a wide range of industrial equipment reproduction.

  6. Domestic dogs comprehend human communication with iconic signs.

    PubMed

    Kaminski, Juliane; Tempelmann, Sebastian; Call, Josep; Tomasello, Michael

    2009-11-01

    A key skill in early human development is the ability to comprehend communicative intentions as expressed in both nonlinguistic gestures and language. In the current studies, we confronted domestic dogs (some of whom knew many human 'words') with a task in which they had to infer the intended referent of a human's communicative act via iconic signs--specifically, replicas and photographs. Both trained and untrained dogs successfully used iconic replicas to fetch the desired item, with many doing so from the first trial. Dogs' ability to use photographs in this same situation was less consistent. Because simple matching to sample in experimental contexts typically takes hundreds of trials (and because similarity between iconic sign and target item did not predict success), we propose that dogs' skillful performance in the current task reflects important aspects of the comprehension of human communicative intentions.

  7. An application of computer image-processing and filmy replica technique to the copper electroplating method of stress analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Seika, M.

    1994-02-01

    In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.

  8. Investigation of correlation between full-scale and fifth-scale wind tunnel tests of a Bell helicopter Textron Model 222

    NASA Technical Reports Server (NTRS)

    Squires, P. K.

    1982-01-01

    Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.

  9. Multiband full-bandwidth anisotropic Eliashberg theory of interfacial electron-phonon coupling and high - Tc superconductivity in FeSe /SrTiO3

    NASA Astrophysics Data System (ADS)

    Aperis, Alex; Oppeneer, Peter M.

    2018-02-01

    We examine the impact of interfacial phonons on the superconducting state of FeSe /SrTiO3 developing a material's specific multiband, full bandwidth, and anisotropic Eliashberg theory for this system. Our self-consistent calculations highlight the importance of the interfacial electron-phonon interaction, which is hidden behind the seemingly weak-coupling constant λm=0.4 , in mediating the high Tc, and explain other puzzling experimental observations, such as the s -wave symmetry and replica bands. We discover that the formation of replica bands has a Tc decreasing effect that is nevertheless compensated by deep Fermi-sea Cooper pairing which has a Tc enhancing effect. We predict a strong-coupling dip-hump signature in the tunneling spectra due to the interfacial coupling.

  10. L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib† †Electronic supplementary information (ESI) available: pKa shift for Cys797; geometries of TSs identified with QM/MM calculations; analysis of the minimum free-energy path for Cys797 alkylation; analysis of MD replicas; convergence for US simulations; replica of simulation of Cys797 alkylation; conformational FESs obtained from each MD replica. See DOI: 10.1039/c7sc04761d

    PubMed Central

    Callegari, D.; Ranaghan, K. E.; Woods, C. J.; Minari, R.; Tiseo, M.; Mor, M.; Mulholland, A. J.

    2018-01-01

    Osimertinib is a third-generation inhibitor approved for the treatment of non-small cell lung cancer. It overcomes resistance to first-generation inhibitors by incorporating an acrylamide group which alkylates Cys797 of EGFR T790M. The mutation of a residue in the P-loop (L718Q) was shown to cause resistance to osimertinib, but the molecular mechanism of this process is unknown. Here, we investigated the inhibitory process for EGFR T790M (susceptible to osimertinib) and EGFR T790M/L718Q (resistant to osimertinib), by modelling the chemical step (i.e., alkylation of Cys797) using QM/MM simulations and the recognition step by MD simulations coupled with free-energy calculations. The calculations indicate that L718Q has a negligible impact on both the activation energy for Cys797 alkylation and the free-energy of binding for the formation of the non-covalent complex. The results show that Gln718 affects the conformational space of the EGFR–osimertinib complex, stabilizing a conformation of acrylamide which prevents reaction with Cys797. PMID:29732058

  11. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation.

    PubMed

    Sidler, Dominik; Schwaninger, Arthur; Riniker, Sereina

    2016-10-21

    In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.

  12. Unlearning of Mixed States in the Hopfield Model —Extensive Loading Case—

    NASA Astrophysics Data System (ADS)

    Hayashi, Kao; Hashimoto, Chinami; Kimoto, Tomoyuki; Uezu, Tatsuya

    2018-05-01

    We study the unlearning of mixed states in the Hopfield model for the extensive loading case. Firstly, we focus on case I, where several embedded patterns are correlated with each other, whereas the rest are uncorrelated. Secondly, we study case II, where patterns are divided into clusters in such a way that patterns in any cluster are correlated but those in two different clusters are not correlated. By using the replica method, we derive the saddle point equations for order parameters under the ansatz of replica symmetry. The same equations are also derived by self-consistent signal-to-noise analysis in case I. In both cases I and II, we find that when the correlation between patterns is large, the network loses its ability to retrieve the embedded patterns and, depending on the parameters, a confused memory, which is a mixed state and/or spin glass state, emerges. By unlearning the mixed state, the network acquires the ability to retrieve the embedded patterns again in some parameter regions. We find that to delete the mixed state and to retrieve the embedded patterns, the coefficient of unlearning should be chosen appropriately. We perform Markov chain Monte Carlo simulations and find that the simulation and theoretical results agree reasonably well, except for the spin glass solution in a parameter region due to the replica symmetry breaking. Furthermore, we find that the existence of many correlated clusters reduces the stabilities of both embedded patterns and mixed states.

  13. Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis

    PubMed Central

    2017-01-01

    PURPOSE The purposes of this study were to evaluate the marginal and internal gaps, and the potential clinical applications of three different methods of dental prostheses fabrication, and to compare the prostheses prepared using the silicone replica technique (SRT) and those prepared using the three-dimensional superimposition analysis (3DSA). MATERIALS AND METHODS Five Pekkton, lithium disilicate, and zirconia crowns were each manufactured and tested using both the SRT and the two-dimensional section of the 3DSA. The data were analyzed with the nonparametric version of a two-way analysis of variance using rank-transformed values and the Tukey's post-hoc test (α = .05). RESULTS Significant differences were observed between the fabrication methods in the marginal gap (P < .010), deep chamfer (P < .001), axial wall (P < .001), and occlusal area (P < .001). A significant difference in the occlusal area was found between the two measurement methods (P < .030), whereas no significant differences were found in the marginal gap (P > .350), deep chamfer (P > .719), and axial wall (P > .150). As the 3DSA method is three-dimensional, it allows for the measurement of arbitrary points. CONCLUSION All of the three fabrication methods are valid for measuring clinical objectives because they produced prostheses within the clinically acceptable range. Furthermore, a three-dimensional superimposition analysis verification method such as the silicone replica technique is also applicable in clinical settings. PMID:28680546

  14. Characterisation of oil and aluminium complex on replica and historical 19th c. Turkey red textiles by non-destructive diffuse reflectance FTIR spectroscopy.

    PubMed

    Wertz, Julie H; Tang, Pik Leung; Quye, Anita; France, David J

    2018-06-11

    This work investigates historical and replica Turkey red textiles with diffuse reflectance infrared (DRIFT) spectroscopy to study the coordination complex between cellulose, fatty acids, and the aluminium ions that form the basis of the colour lake. Turkey red was produced in Scotland for around 150 years, and is held in many museum and archive collections. The textile was renowned for its brilliant red hue, and for its fastness to light, washing, rubbing, and bleaching. This was attributed to its unusual preparatory process, the chemistry of which was never fully understood, that involved imbuing cotton with a solution of aqueous fatty acids and then aluminium in the following step. Here we show, for the first time, a characterisation of the Turkey red complex on replica and historical textiles. The development of techniques for non-destructive and in situ analysis of historical textiles is valuable for improving understanding of their chemistry, hopefully contributing to better conservation and display practices. The results show the fatty acids condense onto the cellulose polymer via hydrogen bonding between the CO and OH of the respective compounds, then the aluminium forms a bridging complex with the fatty acid carboxyl. This contributes to an improved understanding of Turkey red textiles, and shows the useful application of handheld diffuse FTIR instruments for heritage textile research. Copyright © 2018. Published by Elsevier B.V.

  15. Variations in the structure of nexuses in the myocardium of the golden hamster Mesocricetus auratus.

    PubMed Central

    Skepper, J N; Navaratnam, V

    1986-01-01

    The structure of nexuses in the atrioventricular node of the golden hamster was studied with the transmission electron microscope, using thin sections and freeze-fracture replicas, and was compared with that of nexuses in the working myocardium of the right ventricular wall. Whereas ventricular myocardium contained macular nexuses only, nodal tissue contained annular and linear configurations as well as maculae of varying size. The significance of such variations in nexus pattern is not clear although several hypotheses are discussed in the literature. Measurements made on electron micrographs, after allowing for tilt of the specimen, yielded a particle diameter of 10.59 nm for nodal myocardium and 10.95 nm for ventricular myocardium, both measurements being substantially higher than figures generally cited in the literature. In each area the measurements had a normal distribution suggesting a single type of particle. The small but significant difference in particle size between the two areas is more likely to be caused by dissimilarities in packing arrangement rather than by differences in intrinsic structure or in functional state. Images Fig. 1 Fig. 3 PMID:3693102

  16. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon

    2009-09-01

    The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132° ± 2°, which was slightly lower than that of the original cicada wing (138° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86°).

  17. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch

    PubMed Central

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H. W.

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  18. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.

    PubMed

    Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu

    2014-06-25

    A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.

  19. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations

    PubMed Central

    Chen, Alan A.; García, Angel E.

    2013-01-01

    We report the de novo folding of three hyperstable RNA tetraloops to 1–3 Å rmsd from their experimentally determined structures using molecular dynamics simulations initialized in the unfolded state. RNA tetraloops with loop sequences UUCG, GCAA, or CUUG are hyperstable because of the formation of noncanonical loop-stabilizing interactions, and they are all faithfully reproduced to angstrom-level accuracy in replica exchange molecular dynamics simulations, including explicit solvent and ion molecules. This accuracy is accomplished using unique RNA parameters, in which biases that favor rigid, highly stacked conformations are corrected to accurately capture the inherent flexibility of ssRNA loops, accurate base stacking energetics, and purine syn-anti interconversions. In a departure from traditional quantum chemistrycentric approaches to force field optimization, our parameters are calibrated directly from thermodynamic and kinetic measurements of intra- and internucleotide structural transitions. The ability to recapitulate the signature noncanonical interactions of the three most abundant hyperstable stem loop motifs represents a significant milestone to the accurate prediction of RNA tertiary structure using unbiased all-atom molecular dynamics simulations. PMID:24043821

  20. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    PubMed

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

Top