Science.gov

Sample records for carbon stripper foil

  1. Carbon stripper foils used in the Los Alamos PSR

    SciTech Connect

    Borden, M.J.; Plum, M.A.; Sugai, I.

    1997-12-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two foils approximately 110 {mu}g/cm{sup 2} each are sandwiched together to produce an equivalent 220 {mu}g/cm{sup 2} foil. The foil sandwitch is supported by 4-5 {mu}m diameter carbon filters attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 {mu}A average current on target. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that these foils have slower shrinkage rates than standard foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  2. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-04-01

    Thin diamond-like carbon (DLC) stripper foils ˜5 μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ˜4 μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine-saccharose as releasing agent, which were previously covered with evaporated carbon layers ˜1 μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4for the 197Au- (˜9 MeV, ˜1 μA) and 63Cu- (˜9 MeV, ˜1 μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is0.78.

  3. Mounting stripper foils on forks for maximum lifetime

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2008-06-01

    While research and development continue to produce forms of carbon for longer lasting stripper foils, relatively little attention has been paid to other factors that affect their survival in use. It becomes apparent that the form of carbon is only part of the issue. Specific mounting methods increase the lifetimes of carbon stripper foils. These methods are determined in part by the specific use and carbon type for a foil. With careful handling, appropriate adhesive, and slack mounting, premature breakage can be avoided. Foil lifetimes are then primarily affected by less easily controlled factors such as high-temperature expansion, shrinkage and evaporation.

  4. Measurement of 181 MeV H- ions stripping cross-sections by carbon stripper foil

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Yoshimoto, M.; Yamazaki, Y.; Hotchi, H.; Harada, H.; Okabe, K.; Kinsho, M.; Irie, Y.

    2015-03-01

    The stripping cross-sections of 181 MeV H- (negative hydrogen) ions by the carbon stripper foil are measured with good accuracy. The present experiment was carried out at the 3-GeV RCS (Rapid Cycling Synchrotron) of J-PARC (Japan Proton Accelerator Research Complex). The stripping cross-sections for different charge states, also known as electron loss cross-sections of H- ion, are denoted as σ-11, σ-10 and σ01, for both electrons stripping (H- →H+), one-electron stripping (H- →H0) and the 2nd-electron stripping (H0 →H+) proceeding σ-10, respectively. We have established very unique and precise techniques for such measurements so as also to determine a foil stripping efficiency very accurately. The cross-sections σ-11, σ-10 and σ01 are obtained to be (0.002 ± 0.001) ×10-18cm2, (1.580 ± 0.034) ×10-18cm2 and (0.648 ± 0.014) ×10-18cm2, respectively. The presently given cross-sections are newly available experimental results for an incident H- energy below 200 MeV and they are also shown to be consistent with recently proposed energy (1 /β2) scaled cross-sections calculated from the previously measured data at 200 and 800 MeV. The present results have a great importance not only at J-PARC for the upgraded H- beam energy of 400 MeV but also for many new and upgrading similar accelerators, where H- beam energies in most cases are considered to be lower than 200 MeV.

  5. Low-Z gas stripper as an alternative to carbon foils for the acceleration of high-power uranium beams

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Fukunishi, N.; Goto, A.; Hasebe, H.; Imao, H.; Kamigaito, O.; Kase, M.; Kuboki, H.; Yano, Y.; Yokouchi, S.; Hershcovitch, A.

    2011-03-01

    The RIKEN accelerator complex started feeding the next-generation exotic beam facility radioisotope beam factory (RIBF) with heavy-ion beams from 2007 after the successful commissioning of RIBF at the end of 2006. Many improvements made from 2007 to 2010 were instrumental in increasing the intensity of various heavy-ion beams. However, the available beam intensity of very heavy ion beams, especially uranium beams, is far below our goal of 1pμA (6×1012particles/s). In order to achieve this goal, upgrade programs are already in progress; the programs include the construction of a new 28-GHz superconducting electron cyclotron resonance ion source and a new injector linac. However, the most serious problem, that of a charge stripper for high-power uranium beams, still remains unsolved, despite extensive research and development work using large foils mounted on a rotating cylinder and a N2 gas stripper. A gas stripper is free from problems related to lifetime, though the equilibrium charge state in this stripper is considerably lower than that in a carbon foil, owing to the absence of the density effect. Nevertheless, the merits of gas strippers motivated us to develop a low-Z gas stripper to achieve a higher equilibrium charge state even in gases. We measured the electron-loss and electron-capture cross sections of uranium ions in He gas as a function of their charge state at 11, 14, and 15MeV/nucleon. The equilibrium charge states extracted from the intersection of the lines of the two cross sections were promisingly higher than those in N2 gas by more than 10. Simple simulations of charge development along the stripper thickness were performed by assuming the measured cross sections. The simulation results show that about 1mg/cm2 of He gas should be accumulated to achieve a charge state higher than that of N2 gas, notwithstanding the difficulty in accumulation of this helium amount owing to its fast dispersion. However, we now believe that the following two

  6. Comparison of carbon stripper foils under operational conditions at the Los Alamos proton storage ring

    SciTech Connect

    Spickerman, Thomas; Borden, Michael J; Macek, Robert J; Sugai, Isao

    2008-01-01

    At the 39{sup th} ICFA Advanced Beam Dynamics Workshop HB 2006 and the 23{sup rd} INTDS World Conference we reported on first results of a test of nanocrystalline diamond foils developed at ORNL under operational conditions at the Los Alamos Proton Storage Ring (PSR). We have continued these tests during the 2006 and 2007 run cycles and have been able to compare the diamond foils with the foils that are normally in use in PSR, which were originally developed by Sugai at KEK. We have gathered valuable information regarding foil lifetime, foil related beam losses and electron emission at the foil. Additional insight was gained under unusual beam conditions where the foiIs are subjected to higher temperatures. In the 2007 run cycle we also tested a Diamond-like-Carbon foil developed at TRIUMF. A Hybrid-Boron-Carbon foil, also developed by Sugai, is presently in use with the PSR production beam. We will summarize our experience with these different foil types.

  7. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  8. SNS STRIPPER FOIL FAILURE MODES AND THEIR CURES

    SciTech Connect

    Galambos, John D; Luck, Chris; Plum, Michael A; Shaw, Robert W; Ladd, Peter; Raparia, Deepak; Macek, Robert James; Kim, Sang-Ho; Peters, Charles C; Polsky, Yarom

    2010-01-01

    The diamond stripper foils in use at the Spallation Neutron Source worked successfully with no failures until May 3, 2009, when we started experiencing a rash of foil system failures after increasing the beam power to ~840 kW. The main contributors to the failures are thought to be 1) convoy electrons, stripped from the incoming H beam, that strike the foil bracket and may also reflect back from the electron catcher, and 2) vacuum breakdown from the charge developed on the foil by secondary electron emission. In this paper we will detail these and other failure mechanisms, and describe the improvements we have made to mitigate them.

  9. Spallation Neutron Source SNS Diamond Stripper Foil Development

    SciTech Connect

    Shaw, Robert W; Plum, Michael A; Wilson, Leslie L; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I; Takagi, A

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 {micro}g/cm{sup 2} foils as large as 17 x 25 mm{sup 2} have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 {micro}C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H{sup -}) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  10. Stripper-foil scan studies of the first-turn beam loss mechanism in the LAMPF proton storage ring (PSR)

    SciTech Connect

    Hutson, R.: Fitzgerald, D.; Frankle, S.; Macek, R.; Plum, M.; Wilkinson, C.

    1993-06-01

    First-turn beam losses in the LAMPF Proton Storage Ring were measured as a function of the left-right position of the carbon foil used to strip neutral hydrogen atoms to H{sup +} for proton injection into the PSR. Two foil thicknesses, 200 and 300 {mu}g/cm{sup 2}, were tested. Results indicated that first-turn loss is caused predominately by magnetic field stripping of a small fraction of the H{sub 0} atoms that pass through the stripper foil without being stripped to protons, and the results were not consistent with a mechanism involving protons originating from atoms in the halo of the neutral beam incident on the stripper foil.

  11. Stripper-foil scan studies of the first-turn beam loss mechanism in the LAMPF proton storage ring (PSR)

    SciTech Connect

    Hutson, R.: Fitzgerald, D.; Frankle, S.; Macek, R.; Plum, M.; Wilkinson, C.

    1993-01-01

    First-turn beam losses in the LAMPF Proton Storage Ring were measured as a function of the left-right position of the carbon foil used to strip neutral hydrogen atoms to H[sup +] for proton injection into the PSR. Two foil thicknesses, 200 and 300 [mu]g/cm[sup 2], were tested. Results indicated that first-turn loss is caused predominately by magnetic field stripping of a small fraction of the H[sub 0] atoms that pass through the stripper foil without being stripped to protons, and the results were not consistent with a mechanism involving protons originating from atoms in the halo of the neutral beam incident on the stripper foil.

  12. Stripper foil failure modes and cures at the Spallation Neutron Source

    SciTech Connect

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho; Ladd, Peter; Luck, Chris; Peters, Charles C; Polsky, Yarom; Shaw, Robert W; Raparia, Deepak; Macek, Robert James; Plum, Michael A

    2011-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the $H^0$ excited states created during the $H^-$ charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming $H^-$ beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  13. Stripper foil failure modes and cures at the Oak Rdige Spallation Neutron Source

    SciTech Connect

    Plum, M.A.; Raparia, D.; Cousineau, S.M.; Galambos, J.; Kim, S.H.; Ladd, P.; Luck, C.F.; Peters, C.C.; Polsky, Y.; Shaw, R.W.; Macek, R.J.

    2011-03-28

    The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H{sup 0} excited states created during the H{sup -} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H{sup -} beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  14. A new possibility of low-Z gas stripper for high power uranium beam acceleration alternative to C-foil

    SciTech Connect

    Okuno, H.; Hershcovitch, A.; Fukunishi, N.; Goto, A.; Hasebe, H.; Imao, H.; Kamigaito, O.; Kase, M.; Kuboki, H.; Yano, Y.

    2010-09-27

    The RIKEN accelerator complex started feeding the next-generation exotic beam facility RIBF (RadioIsotope Beam Factory) with heavy ion beams from 2007 after the successful commissioning at the end of 2006. Many elaborating improvements increased the intensity of the various heavy ion beams from 2007 to 2010. However, the available beam intensity especially of uranium beam is far below our goal of 1 p{micro}A (6 x 10{sup 12} particle/s). In order to achieve it, upgrade programs are well in progress, including constructions of a new 28 GHz superconducting ECR ion source and a new injector linac. However, the most serious problem of the charge stripper for uranium beam is still open although many elaborating R&D works for the problems. Equilibrium charge state in gas generally is much lower than that in carbon foil due to its density-effect. But gas stripper is free from the problems originated from its lifetime and uniformity in thickness. Such merits pushed us think about low-Z gas stripper to get higher equilibrium charge state even in gas. Electron loss and capture cross section of U ion beams in He gas were measured as a function of their charge state at 11, 14 and 15 MeV/u. The extracted equilibrium charge states from the cross point of the two lines of the cross sections were promisingly higher than those in N{sub 2} gas by more than 10. The plasma window is expected to be a key technology to solve the difficulty in accumulation of such thick as about 1 mg/cm{sup 2} of low-Z gas.

  15. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    SciTech Connect

    Plum, M.

    1995-05-01

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.

  16. Carbon foils for space plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Funsten, H. O.

    2016-05-01

    Carbon foils have been successfully used for several decades in space plasma instruments to detect ions and neutral atoms. These instruments take advantage of two properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, which usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects mainly varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. In this paper, we describe these effects and the properties of the interaction. We also summarize results from recent studies with graphene foils, which can be made thinner than carbon foils due to their superior strength. Graphene foils may soon replace carbon foils in space plasma instruments and open new opportunities for space research in the future.

  17. Efficiency and lifetime of carbon foils

    SciTech Connect

    Chou, W.; Kostin, M.; Tang, Z.; /Fermilab

    2006-11-01

    Charge-exchange injection by means of carbon foils is a widely used method in accelerators. This paper discusses two critical issues concerning the use of carbon foils: efficiency and lifetime. An energy scaling of stripping efficiency was suggested and compared with measurements. Several factors that determine the foil lifetime--energy deposition, heating, stress and buckling--were studied by using the simulation codes MARS and ANSYS.

  18. Influence and efficiency of catalytic stripper in organic carbon removal from laboratory generated soot aerosols

    EPA Science Inventory

    A catalytic stripper (CS) is a device used to remove the semi-volatile, typically organic carbon, fraction by passing raw or diluted exhaust over an oxidation catalyst heated to 300˚C. The oxidation catalyst used in this study is a commercially available diesel oxidation ca...

  19. Stray Electric Field Due to the Carbon Foil Resistance in Hydrogen Beam-Foil-Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Singer, W.; Dehaes, J. C.; Carmeliet, J.

    1980-01-01

    We have measured the linear polarization of the Hβ transition at 486.1 nm excited by passage of a 110 keV proton beam through perpendicular carbon foils. We have observed that the polarization depends upon the beam intensity and on the relative position of the foil and its holder. We have shown that these dependences are linked to the presence of a stray electric field at the immediate vicinity of the foil. The field is due to the potential distribution at the foil surface resulting from the electron radial flow in the high foil electric resistance (about 50 kΩ). It introduces a perturbation which in our case is more important than the temperature effect observed by Gay and Berry (Phys. Rev. A19, 952 (1979)). The field is proportional to the beam current density and is reduced for large foil and beam diameters.

  20. A novel carbon coating technique for foil bolometers

    NASA Astrophysics Data System (ADS)

    Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.

    2016-11-01

    Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.

  1. Carbon-Fiber/Epoxy Tube Lined With Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Gernet, Nelson J.; Kerr, Gregory K.

    1995-01-01

    Carbon-fiber/epoxy composite tube lined with welded aluminum foil useful as part of lightweight heat pipe in which working fluid ammonia. Aluminum liner provides impermeability for vacuum seal, to contain ammonia in heat pipe, and to prevent flow of noncondensable gases into heat pipe. Similar composite-material tubes lined with foils also incorporated into radiators, single- and two-phase thermal buses, tanks for storage of cryogenic materials, and other plumbing required to be lightweight.

  2. Beam Loss due to Foil Scattering in the SNS Accumulator Ring

    SciTech Connect

    Holmes, Jeffrey A; Plum, Michael A

    2012-01-01

    In order to better understand the contribution of scattering from the primary stripper foil to losses in the SNS ring, we have carried out calculations using the ORBIT Code aimed at evaluating these losses. These calculations indicate that the probability of beam loss within one turn following a foil hit is ~1.8 10-8 , where is the foil thickness in g/cm2, assuming a carbon foil. Thus, for a typical SNS stripper foil of thickness = 390 g/cm2, the probability of loss within one turn of a foil hit is ~7.0 10-6. This note describes the calculations used to arrive at this result, presents the distribution of these losses around the SNS ring, and compares the calculated results with observed ring losses for a well-tuned production beam.

  3. Charge stripping of U238 ion beam by helium gas stripper

    NASA Astrophysics Data System (ADS)

    Imao, H.; Okuno, H.; Kuboki, H.; Yokouchi, S.; Fukunishi, N.; Kamigaito, O.; Hasebe, H.; Watanabe, T.; Watanabe, Y.; Kase, M.; Yano, Y.

    2012-12-01

    Development of a nondestructive, efficient electric-charge-stripping method is a key requirement for next-generation high-intensity heavy-ion accelerators such as the RIKEN Radioactive-Isotope Beam Factory. A charge stripper employing a low-Z gas is an important candidate applicable to high-intensity uranium beams for replacing carbon-foil strippers. In this study, a high-beam-transmission charge-stripping system employing helium gas for U238 beams injected at 10.8MeV/u was developed and demonstrated for the first time. The charge-state evolution measured using helium in a thickness range of 0.24-1.83mg/cm2 is compared with theoretical predictions. Energy attenuation and energy spread due to the helium stripper are also investigated.

  4. Secondary electron emission in antiproton—carbon-foil collisions

    NASA Astrophysics Data System (ADS)

    Komaki, K.; Yamazaki, Y.; Kuroki, K.; Andersen, L. H.; Horsdal-Pedersen, E.; Hvelplund, P.; Knudsen, H.; Møller, S. P.; Uggerhøj, E.; Elsener, K.

    1991-04-01

    Energy spectra of electrons emitted in the forward direction by antiproton and proton bombardments on carbon foil targets were measured in the incident energy region from 500 to 750 keV. In the spectra for antiproton impact, no sharp anticusp, which is expected in place of the cusp in the case of the proton impact, is recognized and a small bump is found at 50 eV below the cusp energy. The spectral profile in the equivelocity region, including smearing out of the anticusp, together with the energy and intensity of the bump, is consistent with a theoretical prediction for wake-riding electrons based on the classical trajectory Monte Carlo method.

  5. Optical transition radiation from a thin carbon foil: a beam profile monitor for the SLC

    SciTech Connect

    Jenkins, E.W.

    1983-11-01

    This memo considers placement of an ultra thin carbon foil into the SLC beam. Transition radiation light would be emitted from the surface of the foil. The optical spot from the foil could be viewed with a microscope objective lens and registered with an image detector. Multiple scattering for the foil thicknesses necessary will not affect the beam emittance. Calculations show that a thin carbon foil can withstand the electron beam if the electron beam is larger than 10 ..mu..m in size. There are many possible radiation mechanisms from a foil - bremsstrahlung, black body temperature radiation, Cerenkov light, scintillation light, and transition radiation. Transition radiation is apparently dominant. It is proposed to use thin carbon foils, 75 to 150 A thick. Calculations indicate that 5 x 10/sup 10/ beam electrons will radiate a useable number of optical photons. Specifically with 150 A foils the fractional yield of useful optical photons is 10/sup -3/ photons per incident electron 5 x 10/sup +7/ optical photons imaged upon an image plane. Spread these photons over a 32 x 32 pixel CCD and one has the readout system of a monitor.

  6. Interaction of solar wind ions with thin carbon foils: Calibration of time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Gonin, M.; Buergi, Alfred; Oetliker, M.; Bochsler, P.

    1992-11-01

    With the KAFKA (German acronym for carbon foils collisions analyzer) experiment, charge exchange, energy loss and angular scattering of solar wind ions in thin (1 to 10 microg/sq cm) carbon foils, are studied. Such foils are extensively used in time of flight mass spectrometry. So far, the properties of H, He, B, C, N, O, F, Ne, Na, Mg, Al, Si, S, Cl, Ar, K, Ti, Fe, and Ni and in the 0.5 to 5 keV/u energy range have been investigated.

  7. Characterization and anticorrosion properties of carbon nanotubes directly synthesized on Ni foil using ethanol

    NASA Astrophysics Data System (ADS)

    Jeong, Namjo; Jwa, Eunjin; Kim, Chansoo; Hwang, Kyo Sik; Park, Soon-cheol; Jang, Moon Suk

    2016-07-01

    In this work, we describe the direct growth of carbon nanofilaments by the catalytic decomposition of ethanol on untreated polycrystalline Ni foil. Our work focuses on the effects of synthesis conditions on the growth of the carbon nanofilaments and their growth mechanism. Direct growth of carbon nanotubes (CNTs) is more favorable on lower-purity Ni foil. The highest yield was obtained at approximately 750 °C. The average diameter of the CNTs was approximately 20-30 nm. Raman spectra revealed that the increase of H2 concentration in the carrier gas and synthesis temperature induced the growth of better-graphitized CNTs. Additionally, we investigated the anticorrosion properties of as-prepared products under simulated seawater conditions. The corrosion rate of the CNT/Ni foil system was maximally 50-60 times slower than that of the as-received Ni foil, indicating that the CNT coating may be a good candidate for corrosion inhibition.

  8. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    SciTech Connect

    Bernardin, John D; Baca, Allen G

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  9. Carbon/graphene foils: a critical subsystem for plasma instruments in space

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Fuselier, S. A.; Bedworth, P.; Sinton, S.

    2015-12-01

    Thin carbon foils play a critical role in the time-of-flight (TOF) and charge conversion subsystems used in many of the plasma sensors developed for space. These instruments take advantage of properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, that usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. The thinnest foils flown typically have a nominal thickness (as specified by the manufacturer) of ~0.5 - 1 µg cm-2. In this presentation, we will summarize several studies that have quantified the properties of ions exiting the thin carbon foil and discuss recent work on graphene foils, a promising new technology that may be capable of mitigating the undesirable effects associated with these interactions.

  10. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  11. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    PubMed

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied. PMID:24245201

  12. SNS Injection Foil Experience

    SciTech Connect

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho; Ladd, Peter; Luck, Chris; Peters, Charles C; Polsky, Yarom; Shaw, Robert W; Macek, Robert James; Raparia, Deepak; Plum, Michael A

    2010-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H0 excited states created during the H charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we will detail these and other interesting failure mechanisms, and describe the improvements we have made to mitigate them.

  13. Charge exchange of low-energy ions in thin carbon foils

    NASA Technical Reports Server (NTRS)

    Buergi, Alfred; Oetliker, Michael; Bochsler, Peter; Geiss, Johannes; Coplan, Michael A.

    1990-01-01

    In order to calibrate a time-of-flight mass spectrometer which is to be flown in the solar wind, the charge exchange properties of low-energy ions in thin carbon foils have been investigated. Incident ions of He, C, N, O, Ne, and Ar with energies in the range 0.5-2 keV/nucleon have been used to measure charge-state distribution, residual energy, and angular distribution after transmission through thin (1-6 microgram/sq cm) carbon foils. Within such foils, an equilibrium between ionization and recombination of the projectile is rapidly established, and, consequently, the charge state of the emerging particle depends essentially on its residual velocity. A comparison of the charge exchange properties of Ne-22 with Ne-20 demonstrates that indeed the velocity (and not the energy) of the emerging particle determines its final charge. A comparison of properties of different elements provides an indication of an electron shell effect. Predictions for the energy loss of ions within the carbon foils made with the TRIM code are in good agreement with the experimental results presented in this paper.

  14. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Riteshkumar; Shinde, Sachin M.; Saufi Rosmi, Mohamad; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D.; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-01

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

  15. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil.

    PubMed

    Vishwakarma, Riteshkumar; Shinde, Sachin M; Rosmi, Mohamad Saufi; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-01

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications. PMID:27479000

  16. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  17. Low-voltage bending actuators from carbide-derived carbon improved with gold foil

    NASA Astrophysics Data System (ADS)

    Torop, Janno; Sugino, Takushi; Asaka, Kinji; Jänes, Alar; Lust, Enn; Arulepp, Mati; Aabloo, Alvo

    2012-04-01

    We report carbide-derived carbon (CDC) based polymeric actuators for the low-voltage applications. The CDC-based actuators have been designed and fabricated in combination with gold foil. The gold-foil-modified actuators exhibited high frequency response and required remarkably low operating voltage (as low as +/-0.25 V). Hot-pressed additional gold layer (thickness 100 nm) ensures better conductivity of polymer supported CDC electrodes, while maintaining the elasticity of actuator. Energy consumption of gold-foil-modified (CDC/gold) actuators increased only at higher frequency values (f > 1 Hz), which is in good correlation with enhanced conductivity and improved charge delivery capabilities. Electrochemical measurements of both actuators performed at small operating frequency values (f < 0.01 Hz) confirmed that there was no difference in consumed charge between conventional CDC and CDC/gold actuators. Due to enhanced conductivity of CDC/gold actuators the accumulated charge increased at higher operating frequency values, while initiating larger dimensional changes. For that reason, the CDC/gold actuators exhibited same deflection rate at much lower potential applied. Electrochemical impedance measurements confirmed that relaxation time constant of gold-foil-modified actuator decreased more than one order of magnitude, thus allowing faster charge/discharge cycles. Gold-foil-modified actuators obtained the strain level of 2.2 % when rectangular voltage +/-2 V was applied with frequency 0.5 Hz. The compact design and similar working principle of multi-layered actuator also provides opportunity to use actuator concurrently as energy storage device. From practical standpoint, this device concept can be easily extended to actuator-capacitor hybrid designs for generation of energy efficient actuation.

  18. Molecular effect on equilibrium charge-state distributions. [of nitrogen ions injected through carbon foil

    NASA Technical Reports Server (NTRS)

    Wickholm, D.; Bickel, W. S.

    1976-01-01

    The paper describes an experiment consisting of the acceleration of N(+) and N2(+) ions to energies between 0.25 and 1.75 MeV and their injection through a thin carbon foil, whereupon they were charge-state analyzed with an electrostatic analyzer. A foil-covered electrically suppressed Faraday cup, connected to a stepping motor, moved in the plane of the dispersed beams. The Faraday cup current, which was proportional to the number of incident ions, was sent to a current digitizer and computer programmed as a multiscaler. The energy-dependent charge-state fractions, the mean charge and the distribution width were calculated. It was shown that for incident atoms, the charge state distribution appeared to be spread over more charge states, while for the incident molecules, there was a greater fraction of charge states near the mean charge.

  19. In situ calibration of the foil detector for an infrared imaging video bolometer using a carbon evaporation technique

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Peterson, B. J.; Takayama, S.; Sano, R.

    2016-11-01

    The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.

  20. Dynamics of formation of K-hole fractions of sulfur projectiles inside a carbon foil

    SciTech Connect

    Braziewicz, J.; Majewska, U.; Slabkowska, K.; Polasik, M.; Fijal, I.; Jaskola, M.; Korman, A.; Czarnacki, W.; Chojnacki, S.; Kretschmer, W.

    2004-06-01

    The K{alpha} and K{beta} satellite and hypersatellite x-ray lines emitted by highly ionized sulfur projectiles passing with energies from 65 MeV up to 122 MeV through carbon foils of thickness of 15-210 {mu}g cm{sup -2} have been recorded using a Si(Li) detector. The additional hypersatellite Ky{sup h} peak proves that for such high energies of the sulfur ions very high subshells (4p and 5p) could be occupied. In order to study the dynamics of formation of K-shell vacancy fractions of sulfur projectiles passing through a carbon foil the dependence of sulfur K x-ray production cross sections on foil thickness has been examined separately for each recorded line using the three component model. For each projectile energy the values of K-shell hole production cross sections and K-shell electron capture cross sections (both common for all recorded x-ray lines in the case of each projectile energy) have been fitted, as well as the specific values (for each recorded x-ray line) of K-shell hole filling cross sections, which are directly connected with average lifetimes of appropriate states of sulfur ions. The obtained ''experimental'' values of K-shell vacancy production cross sections are much higher than the theoretical predictions. This suggests that apart from the ionization process the excitation from K shell into higher shells is responsible for a production of K-shell vacancies, which has been confirmed by recent classical trajectory Monte Carlo calculations.

  1. From graphene to carbon nanotube: The oxygen effect on the synthesis of carbon nanomaterials on nickel foil during CVD process

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Ching; Wu, Hsuan-Chung; Hsieh, Chien-Kuo

    2016-01-01

    In this study, we demonstrated an oxygen-assisted ultralow-pressure (20 mTorr) chemical vapor deposition (CVD) method for the synthesis of carbon nanomaterials, including multilayer graphene (MLG), double-layer graphene (DLG), single-layer graphene (SLG), and carbon nanotubes (CNTs) on a Ni foil substrate. Oxygen is typically considered undesirable to synthesize carbon nanomaterials during the CVD process. However, our study provided evidence demonstrating that the growth of MLG, DLG, SLG, and CNTs can be maintained by adjusting the oxygen concentration during the CVD process; it also provided an easy way in controlling the layer of graphene. It was observed that oxygen played an important role in controlling the synthesis of carbon nanomaterials.

  2. Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials

    NASA Astrophysics Data System (ADS)

    Na, Nuri; Hasegawa, Kei; Zhou, Xiaosong; Nihei, Mizuhisa; Noda, Suguru

    2015-09-01

    To achieve denser and taller carbon nanotube (CNT) arrays on Cu foils, catalyst and chemical vapor deposition (CVD) conditions were carefully engineered. CNTs were grown to ˜50 µm using Fe/TiN/Ta catalysts in which Ta and TiN acted as diffusion barriers for Cu and Ta, respectively. A tradeoff was found between the mass density and height of the CNT arrays, and CNT arrays with a mass density of 0.30 g cm-3 and height of 45 µm were achieved under optimized conditions. Thermal interface materials (TIMs) with CNT array/Cu foil/CNT array structures showed decreasing thermal resistance from 86 to 24 mm2 K W-1 with increasing CNT array mass densities from 0.07-0.08 to 0.19-0.26 g cm-3 for Cu and Al blocks with surfaces as rough as 20-30 µm. The best CNT/Cu/CNT TIMs showed thermal resistance values comparable to that of a typical indium sheet TIM.

  3. Measurements of Electron Spectra in the Forward Direction in Slow-Antiproton Carbon-Foil Collisions

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasunori; Kuroki, Kenro; Komaki, Ken-Ichiro; Andersen, Lars H.; Horsdal-Pedersen, Erik; Hvelplund, Preben; Knudsen, Helge; M{ø}ller, S{ø}ren P.; Uggerh{ø}j, Erik; Elsener, Konrad

    1990-08-01

    The spectrta of electrons emitted in the forward direction from antiproton and proton bombardments on carbon foils have been studied for projectile energies from 500 to 750 keV. Our main observation is that at the electron energy where the well-known convoy peak is observed for proton impact, the spectrum for equivelocity antiprotons is smooth, showing no indication of a deep anticusp. However, around 50 eV below the electron energy where the cusp is observed for proton impact, we have observed a small peak for antiproton impact. The energy and the relative intensity of the bump are found to be consistent with those predicted for electrons released from a wake-riding state.

  4. Foil Artists

    ERIC Educational Resources Information Center

    Szekely, George

    2010-01-01

    Foil can be shaped into almost anything--it is the all-purpose material for children's art. Foil is a unique drawing surface. It reflects, distorts and plays with light and imagery as young artists draw over it. Foil permits quick impressions of a model or object to be sketched. Foil allows artists to track their drawing moves, seeing the action…

  5. Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process.

    PubMed

    Liu, Mengxi; Zhang, Yanfeng; Chen, Yubin; Gao, Yabo; Gao, Teng; Ma, Donglin; Ji, Qingqing; Zhang, Yu; Li, Cong; Liu, Zhongfan

    2012-12-21

    We report the synthesis of large-scale uniform graphene films on high carbon solubility substrates of Rh foils for the first time using an ambient-pressure chemical vapor deposition method. We find that, by increasing the cooling rate in the growth process, the thickness of graphene can be tuned from multilayer to monolayer, resulting from the different segregation amount of carbon atoms from bulk to surface. The growth feature was characterized with scanning electron microscopy, Raman spectra, transmission electron microscopy, and scanning tunneling microscopy. We also find that bilayer or few-layer graphene prefers to stack deviating from the Bernal stacking geometry, with the formation of versatile moiré patterns. On the basis of these results, we put forward a segregation growth mechanism for graphene growth on Rh foils. Of particular importance, we propose that this randomly stacked few-layer graphene can be a model system for exploring some fantastic physical properties such as van Hove singularities.

  6. Angular scattering of 1-50 keV ions through graphene and thin carbon foils: potential applications for space plasma instrumentation.

    PubMed

    Ebert, Robert W; Allegrini, Frédéric; Fuselier, Stephen A; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J

    2014-03-01

    We present experimental results for the angular scattering of ~1-50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ~0.5 μg cm(-2) carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm(-2) carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ(1/2), for ~3-5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm(-2) (~20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ~50 keV. PMID:24689570

  7. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    SciTech Connect

    Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.

    2014-03-15

    We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm{sup −2} carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm{sup −2} carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ{sub 1/2}, for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm{sup −2} (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV.

  8. Angular scattering of 1-50 keV ions through graphene and thin carbon foils: potential applications for space plasma instrumentation.

    PubMed

    Ebert, Robert W; Allegrini, Frédéric; Fuselier, Stephen A; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J

    2014-03-01

    We present experimental results for the angular scattering of ~1-50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ~0.5 μg cm(-2) carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm(-2) carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ(1/2), for ~3-5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm(-2) (~20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ~50 keV.

  9. Electrochemical Stability of Carbon Fibers Compared to Metal Foils as Current Collectors for Lithium-Ion Batteries

    SciTech Connect

    Martha, Surendra K; Dudney, Nancy J; Kiggans, Jim; Nanda, Jagjit

    2012-01-01

    The electrochemical behaviors of highly conductive, fully-graphitic, semi-graphitic and non-graphitic carbon fibers were studied as the cathode current collectors of lithium batteries in standard electrolyte (alkyl carbonate/LiPF6) solutions and compared to bare aluminum (Al). All of these current collectors demonstrate a stable electrochemical behavior within the potential range of 2.5 to 5 V, due to passivation by surface films. Carbon fibers have comparable electrochemical stability of Al and may be used in place Al foil. While the carbon fibers do not contribute any irreversible or extra capacity when they are cycled below 4.5 V, for fully-graphitic and semi-graphitic fibers PF6 intercalation and deintercalation into the carbon fiber may occur when they are cycled at high potentials >4.5 V.

  10. Target-thickness-dependent electron emission from carbon foils bombarded with swift highly charged heavy ions

    SciTech Connect

    Rothard, H.; Caraby, C.; Cassimi, A.; Gervais, B.; Grandin, J.; Jardin, P.; Jung, M. ); Billebaud, A.; Chevallier, M. , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex ); Groeneveld, K.; Maier, R. )

    1995-04-01

    We have measured electron yields from the beam entrance and exit surfaces of thin carbon foils ([ital d][approx]4--700 [mu]g/cm[sup 2]) bombarded with swift (13.6 MeV/u) highly charged ([ital q]=16--18) argon ions. The dependence of the electron yields on target thickness and charge state of the ions is analyzed within the framework of an extended semiempirical model. Due to the high velocity of the ions, it is possible to distinguish electron production in primary ionization (related to the stopping power and the effective charge of the ions) from secondary electron production due to the transport of so-called [delta] electrons (cascade multiplication). By combining the experimental results with numerical simulations of electron transport in matter by a Monte Carlo method, we have obtained electron transport lengths of high energy ([ital E][much gt]100 eV) [delta] electrons parallel and perpendicular to the ion trajectory, as well as diffusion lengths of slow electrons ([ital E][much lt]100 eV). In order to study the velocity dependence of these transport lengths, we have not only investigated 13.6 MeV/u Ar ions, but also 1 MeV/u C and 3.9 MeV/u S, for which experimental results are available [Koschar [ital et] [ital al]., Phys. Rev. A 40, 3632 (1989)]. We discuss the origin of electron yield reductions (compared to a simple scaling with the square of the nuclear charge) with heavy ions and present measurements of double differential energy and angular electron distributions of 13.6 MeV/u Ar[sup 17+] ions.

  11. Target-thickness-dependent electron emission from carbon foils bombarded with swift highly charged heavy ions

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Caraby, Christophe; Cassimi, Amine; Gervais, Benoit; Grandin, Jean-Pierre; Jardin, Pascal; Jung, Matthias; Billebaud, Annick; Chevallier, Michel; Groeneveld, Karl-Ontjes; Maier, Robert

    1995-04-01

    We have measured electron yields from the beam entrance and exit surfaces of thin carbon foils (d~=4-700 μg/cm2) bombarded with swift (13.6 MeV/u) highly charged (q=16-18) argon ions. The dependence of the electron yields on target thickness and charge state of the ions is analyzed within the framework of an extended semiempirical model. Due to the high velocity of the ions, it is possible to distinguish electron production in primary ionization (related to the stopping power and the effective charge of the ions) from secondary electron production due to the transport of so-called δ electrons (cascade multiplication). By combining the experimental results with numerical simulations of electron transport in matter by a Monte Carlo method, we have obtained electron transport lengths of high energy (E>>100 eV) δ electrons parallel and perpendicular to the ion trajectory, as well as diffusion lengths of slow electrons (E<<100 eV). In order to study the velocity dependence of these transport lengths, we have not only investigated 13.6 MeV/u Ar ions, but also 1 MeV/u C and 3.9 MeV/u S, for which experimental results are available [Koschar et al., Phys. Rev. A 40, 3632 (1989)]. We discuss the origin of electron yield reductions (compared to a simple scaling with the square of the nuclear charge) with heavy ions and present measurements of double differential energy and angular electron distributions of 13.6 MeV/u Ar17+ ions.

  12. Modified titanium foil's surface by high temperature carbon sintering method as the substrate for bipolar lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Zhu, Junsheng

    2014-12-01

    Titanium foil can be a type of ideal material as the substrate for bipolar lead-acid battery. However, it can't be directly used because it can be oxidized in the high voltage and strong oxidizing conditions. In this paper, we coat the titanium suboxide on the titanium foil surface by means of the high temperature carbon sintering method for the improvement of corrosion resistance of titanium metal and use it as the substrate to bipolar lead-acid battery to study its effect on the battery performances. Modified titanium foils are characterized by SEM, XRD, corrosion resistance test and electronic conductivity test. The electrochemical properties of the bipolar lead-acid battery are investigated by constant current charge/discharge method. The results demonstrate that the titanium foil carbon-sintered at 800 °C for 2 h has the most excellent chemical stability and electronic conductivity. Initial specific capacities of positive active material of bipolar lead-acid battery with modified titanium as the substrate at 0.25C, 0.5C, 1C and 2C discharge rate are 99.29 mAh g-1, 88.93 mAh g-1, 77.54 mAh g-1, and 65.41 mAh g-1. After 50 cycles, the specific capacity of positive active material at 0.5C is 81.36 mAh g-1 and after 100 cycles, the specific capacity at 1C is 61.92 mAh g-1.

  13. 7 CFR 2902.39 - Floor strippers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Floor strippers. (a) Definition. Products that are formulated to loosen waxes, resins, or varnishes from floor surfaces. They can be in either liquid or gel form, and may also be used with or without... 7 Agriculture 15 2010-01-01 2010-01-01 false Floor strippers. 2902.39 Section 2902.39...

  14. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    NASA Astrophysics Data System (ADS)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the

  15. Liquid-film electron stripper

    DOEpatents

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  16. Investigation of the influence of surface composition on the charge state distribution of ∼keV hydrogen exiting thin carbon foils for space plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Allegrini, Frédéric; Coulter, Kent; Ebert, Robert W.; Nicolaou, Georgios; Poenitzsch, Vasiliki Zorbas

    2016-06-01

    Energetic neutral atom (ENA) imaging techniques have become a powerful tool for remotely probing plasma environments in space. ENA imagers cover energies from 0.01 keV up to a few MeV, and they use different techniques to cover such a broad energy range. Most of them convert the ENA into a charged particle to remove the converted ENA from the initial neutral direction. In the >∼0.2 keV/nuc to 10's of keV/nuc range, the conversion subsystem is usually an ultra-thin carbon foil. The sensitivity of ENA imagers based on charge conversion by carbon foils is driven by the ability of these foils to convert a neutral atom into an ion. The charge state distribution after the carbon foils is a strong function of the chemical and physical properties of the exit surface. In this study, we analyze the composition and structure of the surface using X-ray photoelectron spectroscopy. The surface is roughly 88% carbon and 12% oxygen, forming strong Csbnd O bonds. Annealing the foil lowers the oxygen content to about 9%. We coat the surface of the foils with Au, Al2O3, or MgO. We compare the exit charge state distributions of hydrogen prior to and post coatings. While no significant difference is observed in the exit charge state for the Au and Al2O3 coatings, there is a slight decrease of the positive fraction after MgO. The annealing of the foil has the benefit of reducing the angular scattering of hydrogen by a factor of ∼1.2. This is a significant improvement that has the potential to increase sensitivity of ENA imagers.

  17. Combined air stripper/membrane vapor separation systems. Final report

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  18. Classroom Foils

    ERIC Educational Resources Information Center

    Pafford, William N.

    1970-01-01

    Aluminum foil, because of its characteristics, can be used for many elementary science activities: demonstrating Archimedes Principle, how to reduce cohesion, reflection and mirror effect, fuse action, condensation, friction, and as containers and barriers. (BR)

  19. 21 CFR 870.4875 - Intraluminal artery stripper.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraluminal artery stripper. 870.4875 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4875 Intraluminal artery stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an...

  20. 21 CFR 870.4875 - Intraluminal artery stripper.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraluminal artery stripper. 870.4875 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4875 Intraluminal artery stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an...

  1. 21 CFR 870.4875 - Intraluminal artery stripper.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraluminal artery stripper. 870.4875 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4875 Intraluminal artery stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an...

  2. 21 CFR 870.4875 - Intraluminal artery stripper.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraluminal artery stripper. 870.4875 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4875 Intraluminal artery stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an...

  3. 21 CFR 870.4875 - Intraluminal artery stripper.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraluminal artery stripper. 870.4875 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4875 Intraluminal artery stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an...

  4. Composite heat pipe development status: Development of lightweight prototype carbon-carbon heat pipe with integral fins and metal foil liner

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rovang, Richard D.

    1995-01-01

    This report discusses development and proof-of-concept testing of a new lightweight carbon-carbon (C-C) space radiator heat pipe, carried out under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program. The prototype heat pipe, equipped with a niobium-zirconium foil liner, was filled with potassium working fluid and tested for 11 hours, including startup from ambient temperature with the working fluid initially in the frozen state to near 700 K condenser temperature. Steady-state heat pipe input power during testing was facility limited to about 300 watts. Post test inspection showed the heat pipe to be in excellent condition after eight thermal cycles from ambient to steady-state operating temperature. Utilization of other liner materials and working fluids would greatly extend the spectrum of service temperatures for this technology, with potential applications ranging from small spacecraft heat rejection to aircraft and terrestrial uses.

  5. Air stripper VOC treatment using specialized adsorbents

    SciTech Connect

    Craven, C.N.; Blystone, P.G.; Grant, A.

    1994-12-31

    Abatement of volatile organic compound (VOC) emissions is required by federal, state and local regulatory agencies. Sources of VOC emissions include air stripping processes at groundwater remediation and industrial wastewater operations. The Purus A2000 system is an innovative emission control system that utilizes specialized adsorbent resins, on-site regeneration and solvent recovery for abatement of VOCs. This paper describes two applications in which air stripper off-gas is treated by the Purus A2000 Adsorption System. The first is a groundwater remediation pump-and-treat operation in which the air stripper off-gas contains chlorinated solvents. At the second site, benzene and styrene emissions from an industrial wastewater air stripper operation were successfully treated. At both sites the recovered solvent was recycled. Capital and operating costs will be compared to other treatment methods.

  6. Equilibrium charge state distributions of 1--30 keV atomic projectiles transiting thin carbon foils

    SciTech Connect

    Funsten, H.O.; Barraclough, B.L.; McComas, D.J.

    1992-01-01

    We have investigated the exit charge state distributions of 1--30 keV H, He, C, N, O, Ne, and Ar ions that transit thin carbon foils. In this velocity regime which is less than the Bohr velocity, the dominant charge states are neutrals and singly positive ions. Therefore, the charge state distributions are dependent primarily on electron loss by neutrals with an associated electron loss cross section al and electron capture by singly ionized species with an associated electron capture cross section {sigma}{sub c}. Using empirical charge state distributions, the ratio {sigma}{sub 1}/{sigma}{sub c} is shown to have a quadratic dependence on the projectile velocity and is fit to the equation A(E{sub F}-E{sub T})/m where E{sub F} is the exit projectile energy, m is its mass, and A and E{sub T} are constants. A pronounced shell effect is observed: the constant A is dependent on the principle quantum number of the projectile, and E{sub T} depends on the number of projectile valence electrons.

  7. Equilibrium charge state distributions of 1--30 keV atomic projectiles transiting thin carbon foils

    SciTech Connect

    Funsten, H.O.; Barraclough, B.L.; McComas, D.J.

    1992-10-01

    We have investigated the exit charge state distributions of 1--30 keV H, He, C, N, O, Ne, and Ar ions that transit thin carbon foils. In this velocity regime which is less than the Bohr velocity, the dominant charge states are neutrals and singly positive ions. Therefore, the charge state distributions are dependent primarily on electron loss by neutrals with an associated electron loss cross section al and electron capture by singly ionized species with an associated electron capture cross section {sigma}{sub c}. Using empirical charge state distributions, the ratio {sigma}{sub 1}/{sigma}{sub c} is shown to have a quadratic dependence on the projectile velocity and is fit to the equation A(E{sub F}-E{sub T})/m where E{sub F} is the exit projectile energy, m is its mass, and A and E{sub T} are constants. A pronounced shell effect is observed: the constant A is dependent on the principle quantum number of the projectile, and E{sub T} depends on the number of projectile valence electrons.

  8. Evaluation of a cotton stripper yield monitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the accuracy of a microwave sensor based yield monitor for measuring yield on a cotton stripper harvester and determine if the yield monitor can discriminate differences in yield to the same level as a reference scale system. A new yield monitor was instal...

  9. Upgrading the performance of groudwater VOC air strippers

    SciTech Connect

    Nelson, A.D.; Schmitt, R.J.; Dickeson, D.

    1997-12-31

    Rocketdynes Santa Susana Field Laboratory has been treating groundwater to remove chlorinated solvents since 1987. Six air stripping treatment installations, using vapor-phase carbon to control air emissions, have consistently met effluent quality standards over nine years of operation. In 1995, Rocketdyne embarked on an inspection and maintenance program to thoroughly check tower equipment and packing condition and to improve treatment efficiency using new packing technology now available. Baseline removal efficiency measurements were made on one large-capacity air stripper, which was then shut down for inspection. The original random packing was found to be fouled, and had settled too far below the level of the spray nozzle. The packing was removed, and replaced with a newer, high-efficiency packing. As a result, single-stage removal efficiency for trichloroethylene increased from 98.5% to > 99.60%. Aside from demonstrating the improvement attainable by upgrading the packing media, Rocketdyne`s maintenance program also highlighted the critical importance of proper liquid distribution. At one point, the refurbished air stripper was overpacked, resulting in concentration of the water spray near the center of the packed section. The liquid distribution was found to remain grossly nonuniform even after the water had trickled down over 8.2 meters of packing in a 91-cm diameter column. 4 refs., 1 fig., 5 tabs.

  10. Foil bearings

    NASA Astrophysics Data System (ADS)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  11. Foil bearings

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  12. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

  13. Foil Electron Multiplier

    DOEpatents

    Funsten, Herbert O.; Baldonado, Juan R.; Dors, Eric E.; Harper, Ronnie W.; Skoug, Ruth M.

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  14. Proof of concept for a novel, binder-free and conducting carbon-free sulfur battery cathode: Composite electroformation of copper foil with incorporated polythiophene wrapped sulfur particles

    NASA Astrophysics Data System (ADS)

    Erhardt, Claudia; Sörgel, Şeniz; Meinhard, Sandra; Sörgel, Timo

    2015-11-01

    This work, for the first time, presents sulfur electrodes for lithium/sulfur (Li/S) batteries produced by a newly developed single-step electroforming process, which allows simultaneous sulfur incorporation during electroformation of an electrically conducting electrode. This metal is used as binding matrix for the sulfur particles and thereby makes any binder and conducting carbon additives redundant. Furthermore, it serves by itself as the current collector, so that all functionalities (current collector, binder and electrical conductor towards sulfur) are fulfilled by the electroformed metal, while modified sulfur particles are directly incorporated (composite electroformation). In this way, the sulfur cathode can be produced in a single continuous step in form of a metal foil with adjustable thickness and sulfur loading. The process requires functionalization of sulfur to improve its wettability, incorporation homogeneity and volume which is provided by wrapping sulfur particles with polythiophene. Electroformed copper-sulfur composite foils are chosen as a first proof of the new concept. The achieved battery capacity, cycling stability and coulombic efficiency are presented. It is shown that the electroformed copper-sulfur composite foil operates very well as a battery cathode and a discharge capacity of over 400 mAh g-1 at a rate of 0.5 C over 100 cycles is preserved.

  15. Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kei; Noda, Suguru

    2016-07-01

    Herein, we propose lithium ion batteries (LIBs) without binder or metal foils, based on a three-dimensional carbon nanotube (CNT) current collector. Because metal foils occupy 20-30 wt% of conventional LIBs and the polymer binder has no electrical conductivity, replacing such non-capacitive materials is a valid approach for improving the energy and power density of LIBs. Adding only 1 wt% of few-wall CNTs to the active material enables flexible freestanding sheets to be fabricated by simple dispersion and filtration processes. Coin cell tests are conducted on full cells fabricated from a 99 wt% LiCoO2-1 wt% CNT cathode and 99 wt% graphite-1 wt% CNT anode. Discharge capacities of 353 and 306 mAh ggraphite-1 are obtained at charge-discharge rates of 37.2 and 372 mA ggraphite-1, respectively, with a capacity retention of 65% at the 500th cycle. The suitability of the 1 wt% CNT-based composite electrodes for practical scale devices is demonstrated with laminate cells containing 50 × 50 mm2 electrodes. Use of metal combs instead of metal foils enables charge-discharge operation of the laminate cell without considerable IR drop. Such electrodes will minimize the amount of metal and maximize the amount of active materials contained in LIBs.

  16. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  17. Forward-backward correlation and its incident energy dependence in secondary-electron emission from a thin carbon foil upon proton penetration

    SciTech Connect

    Ogawa, H.; Ishii, K.; Shimada, A.; Kiuchi, M.; Hagihara, M.; Inoue, Y.; Kaneko, T.

    2010-07-15

    The statistical distributions of the number of simultaneously emitted secondary electrons (SEs) from a carbon foil have been measured with proton beams of 0.5-3.5 MeV. In this experiment, the forward- and backward-emitted SEs have been measured simultaneously with foil-transmitted protons using a digitizer. As a method to examine how the forward and backward SE emissions correlate to each other, the forward (backward) SE yields {gamma}{sub F} ({gamma}{sub B}), that is, the mean number of the forward-emitted (backward-emitted) electrons per projectile, have been evaluated as a function of the number of the backward-emitted (forward-emitted) SEs, n{sub B} (n{sub F}). At higher incident energies, {gamma}{sub F} ({gamma}{sub B}) increases with increasing n{sub B} (n{sub F}). With decreasing incident energy, this so-called positive correlation becomes weaker and then changes to negative at the lowest incident energy. Although measurements using a slightly thicker foil exhibit just the same trend, the correlation changes from positive to negative at the higher incident energy. For a given foil thickness, the range of the produced binary electron and hence the incident proton energy seems to determine the sign of the correlation. A simple Monte Carlo simulation for the forward and backward SE emission in the present experimental condition can qualitatively reproduce the observed incident-energy dependence of the positive correlation but cannot reproduce the negative one observed at the lower incident energies.

  18. 43 CFR 3103.4-2 - Stripper well royalty reductions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Stripper well royalty reductions. 3103.4-2 Section 3103.4-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Fees, Rentals and Royalty § 3103.4-2 Stripper well...

  19. Foil changing apparatus

    DOEpatents

    Crist, Charles E.; Ives, Harry C.; Leifeste, Gordon T.; Miller, Robert B.

    1988-01-01

    A self-contained hermetically sealed foil changer for advancing a portion of foil web into a position normal to the path of a high energy particle beam. The path of the beam is defined generally by an aperture plate and cooperating axially movable barrel such that the barrel can be advanced toward the plate thereby positioning a portion of the foil across the beam path and sealing the foil between the barrel and the plate to form a membrane across said beam path. A spooling apparatus contained in the foil changer permits selectively advancing a fresh supply of foil across the beam path without breaking the foil changer seal.

  20. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2005-04-27

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project were to develop and validate methodologies that can quickly and cost-effectively identify underperforming wells with remediation potential. We enhanced and streamlined our software and are using it with Microsoft's{trademark} Access and Excel programs. During the last quarter of 2002, Great Lakes provided us with additional data for approximately 2,200 wells located in their Cooperstown field situated in northwestern Pennsylvania. We identified approximately 220 potential remediation candidates and Great Lakes personnel reviewed this list for viability and selected more than twenty five wells to be reworked. Approximately fifteen wells have been successfully reworked as of year-end 2004. This field provided a rigorous test of our software and analytical methods. We processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells.

  1. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2004-07-14

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify underperforming wells with remediation potential. We have enhanced and streamlined our software and are using it with the latest versions of Microsoft's{trademark} Access and Excel programs. During the last quarter of 2002, Great Lakes provided us with additional data for approximately 2,200 wells located in their Cooperstown field situated in northwestern Pennsylvania. We identified approximately 130 potential remediation candidates, and Great Lakes personnel are currently reviewing this list for viable remediation. Within the last few weeks, a list of five candidates have been chosen for refract, in addition to two alternate wells. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We have determined whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.

  2. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2003-04-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel programs. During the last quarter of 2002, we received additional data for approximately 2,200 wells from Great Lakes. This information pertains to their Cooperstown field located in northwestern Pennsylvania. We recognized approximately 130 potential remediation candidates, and Great Lakes' personnel are currently reviewing this list for viable remediation. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We are also determining whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.

  3. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2003-04-04

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel programs. During the last quarter of 2002, we received additional data for approximately 2,200 wells from Great Lakes. This information pertains to their Cooperstown field located in northwestern Pennsylvania. We recognized approximately 130 potential remediation candidates, and Great Lakes' personnel are currently reviewing this list for viable remediation. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We have determined whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.

  4. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2003-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel based software. We have received additional data from Great Lakes pertaining to a Cooperstown field that is expected to have numerous remediation candidates. This field will provide a rigorous test of out software and analytical methods. We have processed all the information provided to us before receiving the Cooperstown data and are currently analyzing the new data. Great Lakes will be providing supplemental data in the near future that will identify the original operator of the wells. This will prove valuable in determining whether a statistically significant number of underperformers are a result of specific operators and their associated completion/stimulation methods. We have identified potential candidate wells for Phase 2 to validate the new methodologies. In addition, a draft version of a final report has been reviewed by DOE.

  5. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-12-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the eleventh quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organizing and hosting the Fall SWC Technology Transfer Workshop for the northeastern U.S., in Pittsburgh, PA, on November 9, 2006, and organizing and identifying projects to exhibit during the SWC/Gas Storage Technology Consortium (GSTC) joint reception on November 8, 2006; (2) Distributing a paper copy of the Texas Tech 2004 Final Report and a revised, complete compact disc of all 2004 final reports; (3) Invoicing current and potential members for FY2007; (4) Soliciting nominations for the 2007-2008 Executive Council seats; and (5) Communications and outreach.

  6. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States.

  7. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the tenth quarterly technical progress report for the SWC. Key activities for this reporting period include: {lg_bullet} 2004 SWC Final Project Reports distribution; {lg_bullet} Exhibit and present at the Midcontinent Oil and Gas Prospect Fair, Great Bend, KS, September 12, 2006; {lg_bullet} Participate and showcase current and past projects at the 2006 Oklahoma Oil and Gas Trade Expo, Oklahoma City, OK, October 26, 2006; {lg_bullet} Finalize agenda and identify exhibitors for the northeastern US, Fall SWC Technical Transfer Workshop, Pittsburghhh, PA, November 9, 2006; {lg_bullet} Continue distribution of the public broadcast documentary, ''Independent Oil: Rediscovering American's Forgotten Wells''; {lg_bullet} Communications/outreach; and {lg_bullet} New members update.

  8. Improved liquid-film electron stripper

    DOEpatents

    Gavin, B.F.

    1984-11-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one side of the disc's periphery and with highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90/sup 0/ angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  9. Air/Superfund National Technical Guidance Study Series. Air-Stripper Design Manual. Final report

    SciTech Connect

    Damle, A.S.; Rogers, T.N.

    1990-05-01

    A computer model package ASPAIR was developed in the project to describe the air stripping process along with processes for controlling the air emissions. The package is integrated with a commercially available process simulator called ASPEN to design and cost an air stripper and emission control system for specific applications. The applicability of the ASPAIR model package was demonstrated through several case studies which highlighted the effect of important parameters such as, Henry's Law constant, gas to liquid ratio, VOC removal efficiency, and wastewater throughput. The results of these case studies are presented in a graphical form to allow quick short-cut estimates of the performance and cost of an air stripper and associated air emissions control units. Two figures are provided in the manual that illustrate the capital and annualized costs as a function of wastewater flow rate and Henry's Law constant for a desired VOC removal efficiency of 90%. Two additional figures are provided that illustrate a similar cost correlation for a desired VOC removal rate efficiency of 99%. The manual also provides capital and annualized costs graphs for catalytic oxidation and carbon adsorption units used to control the emissions from air strippers.

  10. Combined air stripper/membrane vapor separation systems. [Volatile organic compounds

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  11. Tritium glovebox stripper system seismic design evaluation

    SciTech Connect

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological doses to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.

  12. Advanced Technologies For Stripper Gas Well Enhancement

    SciTech Connect

    Ronald J. MacDonald; Charles M. Boyer; Joseph H. Frantz Jr; Paul A. Zyglowicz

    2005-04-01

    Stripper gas and oil well operators frequently face a dilemma regarding maximizing production from low-productivity wells. With thousands of stripper wells in the United States covering extensive acreage, it is difficult to identify easily and efficiently marginal or underperforming wells. In addition, the magnitude of reviewing vast amounts of data places a strain on an operator's work force and financial resources. Schlumberger DCS, in cooperation with the National Energy Technology Laboratory (NETL) and the U.S. Department of Energy (DOE), has created software and developed in-house analysis methods to identify remediation potential in stripper wells relatively easily. This software is referred to as Stripper Well Analysis Remediation Methodology (SWARM). SWARM was beta-tested with data pertaining to two gas fields located in northwestern Pennsylvania and had notable results. Great Lakes Energy Partners, LLC (Great Lakes) and Belden & Blake Corporation (B&B) both operate wells in the first field studied. They provided data for 729 wells, and we estimated that 41 wells were candidates for remediation. However, for reasons unbeknownst to Schlumberger these wells were not budgeted for rework by the operators. The second field (Cooperstown) is located in Crawford, Venango, and Warren counties, Pa and has more than 2,200 wells operated by Great Lakes. This paper discusses in depth the successful results of a candidate recognition study of this area. We compared each well's historical production with that of its offsets and identified 339 underperformers before considering remediation costs, and 168 economically viable candidates based on restimulation costs of $50,000 per well. From this data, we prioritized a list based on the expected incremental recoverable gas and 10% discounted net present value (NPV). For this study, we calculated the incremental gas by subtracting the volumes forecasted after remediation from the production projected at its current

  13. What You Should Know about Using Paint Strippers

    MedlinePlus

    ... evaporate quickly, such as methylene chloride. However, electrical sparks from fans may increase the chance of flammable ... use flammable paint strippers near any source of sparks, flame, or high heat . Do not work near ...

  14. Hot-blade stripper for polyester insulation on FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.

  15. Energy spread of ion beams passing a gas stripper

    NASA Astrophysics Data System (ADS)

    Hartmann, B.; Kalbitzer, S.; Klatt, Ch.

    1997-05-01

    Since the energy spread of accelerated particle beams is not well known for tandem-type machines, we have measured current-energy distributions for a variety of ion beams delivered by our 3 MV tandem at varying stripper gas pressure. The energy widths of light ions produced from injected negatively charged atoms, such as H - and Fe -, are mainly due to the accelerating voltage ripple, whereas for heavier ions, such as C - and F -, energy straggling in the stripper gas dominates. In case of injected negatively charged molecules, such as NH 2- and CN -, Coulomb explosion in the gas stripper produces satellite peaks on both sides of the unshifted central line. These deviations from Gaussian line shape complicate precise lineshape analyses, as, for example, required in nuclear reaction Doppler spectrometry of vibrational states in target materials. The most relevant charge-exchange processes in the stripper gas will be discussed in some detail.

  16. The use of canisters/GC-MS and a portable gas chromatograph to characterize emissions from an air stripper

    SciTech Connect

    Figueroa, C.M.; Bennett, J.L.

    1994-12-31

    Demonstrating and maintaining removal efficiencies for various volatile organic compounds (VOCs) in an air stripper/carbon adsorption system would ideally be done through continuous real-time monitoring. However, especially for state funded cleanup operations, cost considerations and timeliness of decisions become the overriding factors. Method TO-14, consisting of whole air samples obtained in stainless steel canisters shipped for GC-MS analysis, is the conventional method to speciate and quantitate VOCs at the sub-parts per billion levels found in the carbon adsorption system outlet. Unfortunately, method TO-14 does not provide real time information, and can be expensive. This paper summarizes the results obtained from using both method TO-14 and a portable gas chromatograph with a photoionization detector to characterize emissions from an air-stripper/carbon adsorption system. Field experience indicates that a combination of both methods can achieved the desired results at a reasonable cost.

  17. Tilted foils polarization at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Törnqvist, H.; Sotty, C.; Balabanski, D.; Dhal, A.; Georgiev, G.; Hass, M.; Heinz, A.; Hirayama, Y.; Imai, N.; Johansson, H.; Kowalska, M.; Kusoglu, A.; Nilsson, T.; Stuchbery, A.; Wenander, F.; Yordanov, D. T.

    2013-12-01

    The tilted-foils nuclear-spin polarization method has been evaluated using the REX-ISOLDE linear accelerator at the ISOLDE facility, CERN. A beam of 8Li delivered with an energy of 300 keV/u traversed through one Mylar foil to degrade the beam energy to 200 keV/u and consequently through 10 thin diamond-like carbon foils to polarize the nuclear spin. The attained nuclear spin polarization of 3.6±0.3% was measured with a β-NMR setup.

  18. Simulation of ion beam scattering in a gas stripper

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-01

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  19. Flexible Flapping Foils

    NASA Astrophysics Data System (ADS)

    Marais, Catherine; Godoy-Diana, Ramiro; Wesfreid, José. Eduardo

    2010-11-01

    Hydrodynamic tunnel experiments with flexible flapping foils of 4:1 span-to-chord aspect ratio are used in the present work to study the effect of foil compliance in the dynamical features of a propulsive wake. The average thrust force produced by the foil is estimated from 2D PIV measurements and the regime transitions in the wake are characterized according to a flapping frequency-amplitude phase diagram as in Godoy-Diana et al. (Phys. Rev. E 77, 016308, 2008). We show that the thrust production regime occurs on a broader region of the parameter space for flexible foils, with propulsive forces up to 3 times greater than for the rigid case. We examine in detail the vortex generation at the trailing edge of the foils, and propose a mechanism to explain how foil deformation leads to an optimization of propulsion.

  20. Air-stripper design and costing computer program

    SciTech Connect

    Dzombak, D.A.; Roy, S.B. ); Fang, H.J. )

    1993-10-01

    Packed-tower, countercurrent air-stripping is widely used to remove volatile organic compounds from contaminated water. An air stripper is designed using a well-developed mathematical model of the process. However, the number of variables in the model exceeds the number of constraining equations by two, with the result that a number of alternative air-stripper designs are possible for a particular water treatment objective. To select one or several designs associated with minimum capital and operating costs, it is necessary to develop a large number of possible designs and to estimate the costs associated with each. The air-stripper design and costing (ASDC) program, a microcomputer-based public-domain program, automates the iterative design and cost calculations and thus enables rapid, preliminary evaluation of alternative air-stripper designs and associated costs. In this article, the design methodology and cost-estimation techniques incorporated in ASDC are described, and ASDC cost predictions are compared with costs reported for actual operating air strippers.

  1. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  2. Glovebox stripper system tritium capture efficiency-literature review

    SciTech Connect

    James, D. W.; Poore, A. S.

    2015-09-28

    Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.

  3. Random packing debottlenecks refinery de-ethanizing stripper

    SciTech Connect

    Deley, S.J. ); Graf, K. )

    1994-08-01

    BP Oil Co. successfully packed a de-ethanizing stripper at its Lima, Ohio, refinery to improve capacity and ethane removal. Design capacity increased from 76,000 b/d to 92,000 b/d, and ethane in the LPG product decreased from 6--7 LV % to 3.5 LV %. The improved performance has been evident in 2 years of operation since the revamp. Critical project decisions included: feed preheat; liquid distributor design; water decanting capability; weld-free internals supports; materials of constriction; and support-ledge removal. The paper describes the stripper tower, the project scope, design choices, modifications, start-up, and operation.

  4. Foil Face Seal Testing

    NASA Technical Reports Server (NTRS)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  5. Low-head air stripper treats oil tanker ballast water

    SciTech Connect

    Goldman, M. )

    1992-02-01

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions.

  6. What Do You Really Know About Floor Finishes & Strippers?

    ERIC Educational Resources Information Center

    Wirth, T. J.

    1972-01-01

    An independent testing laboratory reveals the results of comparative studies done on vinyl flooring and the question of to wax or not to wax'' and which waxes work best with what flooring; and provides six evaluation tips on floor strippers. (EA)

  7. Looking east inside of the ingot mold stripper building for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east inside of the ingot mold stripper building for the 44" slab mill at a row of ingots. A row of ingot molds are pictured east on the left. - U.S. Steel Edgar Thomson Works, 44" Slab Mill, Along Monongahela River, Braddock, Allegheny County, PA

  8. 43 CFR 3103.4-2 - Stripper well royalty reductions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... seven years after production on which the operator claims a royalty rate reduction for stripper well... assessed in accordance with 30 CFR 218.102. The BLM may terminate a royalty rate reduction if it is... charges will be assessed in accordance with 30 CFR 218.102....

  9. 7 CFR 2902.39 - Floor strippers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased content of at least 78 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  10. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    SciTech Connect

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, M.; Baker, R.W.

    1997-09-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined with a carbon adsorption off-gas treatment system. This paper describes the development and performance of a hybrid process that combines air stripping with membrane organic-vapor separation to recover VOCs from the stripper off-gas. A number of prototype systems have been constructed and evaluated. The optimum system appears to be a tray stripper fitted with a high-pressure compression-condensation membrane separation unit. Such a system can remove 95 to 99% of the VOCs present in contaminated water; the removed VOCs are recovered as a liquid condensate. The economics of the technology are competitive with alternative processes, particularly for streams containing more than 500 ppm VOC and having flow rates less than 10 to 30 gal/min.

  11. Stationary source sampling report: Ambient and source volatile organic compound testing, Production air stripper unit 1 (PASU-1) and pilot air stripper (PAS)

    SciTech Connect

    Not Available

    1984-09-05

    Tests were performed to measure the ambient concentrations of perchloroethylene, trichloroethylene, and 1,1,1-trichloroethane in the A/M area and to determine, for compliance purposes, the emissions and concentrations of those compounds issued from the Production Air Stripper Unit 1 (PASU-1) column and from the Pilot Air Stripper (PAS) column.

  12. Investigation of Nanodiamond and Silicon Carbide Foils Product for H-Stripping to Support Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Harris, Gary; Griffin, James; Vispute, Rd; CIQM Collaboration

    2015-03-01

    Diamond and silicon carbide (SiC) is an ideal material as an H- stripper foil for spallation neutron source (SNS) applications due to their high thermal conductivity, low molecular weight, and strength. Cubic silicon carbide grown on silicon is a material tension stress and the foil does not curl. Polycrystalline diamond is characterized by a high degree of internal stress, which causes the foil to curl when not supported by the substrate. the sic is grown using a RF CVD system. Hot filament chemical vapor deposition (HFCVD) was used to grow diamond on a silicon substrate. In both cases a 1.2 cm diameter window was etched in the silicon using a 1:1:3 solution of hydrofluoric, nitric, and acetic acids so that the diamond of SiC foil would be suspended while being supported on all sides by the silicon. Wax and or photoresist were used as masks to protect the outer silicon from etching. Raman spectroscopy verified the quality of the grown material. Atomic force microscopy (AFM) revealed that the diamond foil originally against the substrate had an average roughness of <6.7 nm while the foil away from the substrate had an average roughness of 13.2 nm. The SiC foils had roughness less than 3 nm. Scanning electron microscopy (SEM) revealed no cracks in the suspended foil. NSF-STC CIQM.

  13. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  14. 30 CFR 1210.155 - What reports must I submit for Federal onshore stripper oil properties?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stripper oil properties? 1210.155 Section 1210.155 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... rate by the Bureau of Land Management (BLM) under 43 CFR 3103.4-2 must submit Form MMS-4377, Stripper Royalty Rate Reduction Notification, under 43 CFR 3103.4-2(b)(3). (b) Reporting options. You may find...

  15. 30 CFR 1210.155 - What reports must I submit for Federal onshore stripper oil properties?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stripper oil properties? 1210.155 Section 1210.155 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE FORMS AND REPORTS Special-Purpose Forms and Reports-Oil... Management (BLM) under 43 CFR 3103.4-2 must submit Form ONRR-4377, Stripper Royalty Rate...

  16. 30 CFR 210.155 - What reports must I submit for Federal onshore stripper oil properties?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management (BLM) under 43 CFR 3103.4-2 must submit Form MMS-4377, Stripper Royalty Rate Reduction Notification, under 43 CFR 3103.4-2(b)(3). (b) Reporting options. You may find Form MMS-4377 on our Internet..., Gas, and Geothermal Resources § 210.155 What reports must I submit for Federal onshore stripper...

  17. Proso Millet Harvest: A Comparison of Conventional Harvest and Direct Harvest with a Stripper Header

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was conducted to determine if proso millet can be harvested with a stripper header. Stripper headers use extremely fast rotating metal teeth to rip the seed off the plant and leave the majority of residue standing in the field as opposed to cutting off the entire plant and running tha...

  18. Process for anodizing aluminum foil

    SciTech Connect

    Ball, J.A.; Scott, J.W.

    1984-11-06

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80/sup 0/ C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V.

  19. On a thermal analysis of a second stripper for rare isotope accelerator.

    SciTech Connect

    Momozaki, Y.; Nolen, J.; Nuclear Engineering Division

    2008-08-04

    This memo summarizes simple calculations and results of the thermal analysis on the second stripper to be used in the driver linac of Rare Isotope Accelerator (RIA). Both liquid (Sodium) and solid (Titanium and Vanadium) stripper concepts were considered. These calculations were intended to provide basic information to evaluate the feasibility of liquid (thick film) and solid (rotating wheel) second strippers. Nuclear physics calculations to estimate the volumetric heat generation in the stripper material were performed by 'LISE for Excel'. In the thermal calculations, the strippers were modeled as a thin 2D plate with uniform heat generation within the beam spot. Then, temperature distributions were computed by assuming that the heat spreads conductively in the plate in radial direction without radiative heat losses to surroundings.

  20. Foil radiometer accessory improves measurements

    NASA Technical Reports Server (NTRS)

    Schumacher, P. E.

    1967-01-01

    The responsiveness of a foil radiometer is increased and its time constant is simultaneously decreased by isolating the foil in a controlled environment. Using an optical system, it is coupled to the media to be measured, and the resulting concentration of energy permits the thermocouple junction temperature to respond quickly.

  1. Rhenium-Foil Witness Cylinders

    NASA Technical Reports Server (NTRS)

    Knight, B. L.

    1992-01-01

    Cylindrical portion of wall of combustion chamber replaced with rhenium foil mounted on holder. Rhenium oxidizes without melting, indicating regions of excess oxidizer in combustion-chamber flow. Rhenium witness foils also useful in detecting excess oxygen and other oxidizers at temperatures between 2,000 and 3,600 degrees F in burner cores of advanced gas-turbine engines.

  2. Consequences of FOIL for Undergraduates

    ERIC Educational Resources Information Center

    Koban, Lori; Sisneros-Thiry, Simone

    2015-01-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual…

  3. 30 CFR 1210.155 - What reports must I submit for Federal onshore stripper oil properties?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Management (BLM) under 43 CFR 3103.4-2 must submit Form MMS-4377, Stripper Royalty Rate Reduction Notification, under 43 CFR 3103.4-2(b)(3). (b) Reporting options. You may find Form MMS-4377 at...

  4. 40 CFR 435.60 - Applicability; description of the stripper subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of crude oil and which are operating at the maximum feasible rate of production and in accordance... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Stripper... in the oil and gas extraction industry....

  5. 40 CFR 435.60 - Applicability; description of the stripper subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of crude oil and which are operating at the maximum feasible rate of production and in accordance... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Stripper... in the oil and gas extraction industry....

  6. Charge stripper effects on beam dynamics in the 180-degree bending section of the RISP linac

    NASA Astrophysics Data System (ADS)

    Jang, Ji-Ho; Jin, Hyunchang; Song, Jeong Seog

    2016-09-01

    The RAON, a superconducting linear accelerator for RISP (Rare Isotope Science Project), will use a charge stripper in order to increase the charge states of the heavy ions for effective acceleration in the higher energy part of the linac. The charge stripper affects the beam distribution by scattering the heavy ions as they go through the charge stripper. Moreover we have to select and accelerate proper charge states between 77+ and 81+ for the case of a uranium beam in order to satisfy the beam-power requirement at an IF (inflight fragmentation) target. This work focuses on how the beam dynamics are affected by the charge stripper in the 180-dgree bending section.

  7. Energy performance of stripper configurations for CO{sub 2} capture by aqueous amines

    SciTech Connect

    Oyenekan, B.A.; Rochelle, G.T.

    2006-04-12

    Aqueous absorption/stripping is the state-of-the-art technology for the capture of CO{sub 2} from coal-fired power plants. This technology is energy-intensive and has been applied to CO{sub 2} removal from natural gas, ammonia, and hydrogen gas streams. Energy requirements can be reduced by the use of a more-reactive solvent, operating the cross exchanger at a lower temperature, optimizing the stripper operation, and using innovative stripper configurations (vacuum and multipressure). This work calculates stripper performance with an algorithm in Aspen Custom Modeler (ACM) that incorporates thermodynamic studies, reaction rate measurements, physical properties, and contactor-specific information for three stripper configuration-a simple stripper operating at 160 kPa, a multipressure stripper operating at three pressures (330/230/160 kPa), and a vacuum stripper (30 kPa) for two solvents: 7m (30 wt %) monoethanolamine (MEA) and 5m K{sup +}/2.5m piperazine. The temperature approach is varied from 5 to 10{sup o}C. With some approximations, we predict the influence of using solvents with varying heats of desorption {Delta}H{sub des}) on the reboiler duty and the equivalent work for stripping (reboiler duty as equivalent Carnot work plus compression work). With a rich solution giving PCO{sub 2}{asterisk} = 2.5 kPa at 40{sup o}C, the vacuum stripper is favored for solvents with Delta H{sub des} {<=} 21 kcal/(gmol of CO{sub 2}) while the multipressure configuration is attractive for solvents with {Delta}(H{sub des} {>=} 21 kcal/(gmol of CO{sub 2}).

  8. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) The contract was signed on August 20, 2000. Little work has been performed other than preliminary planning to get the project underway.

  9. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-04-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: Continued coordinating the final selection of candidates and field implementation with Oneok. Oneok plans on performing the operations early in 2003.

  10. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Continued coordinating the final selection of candidates and field implementation with Oneok. Oneok plans on performing the operations early in 2003.

  11. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Began preparing final project report, less the field implementation component. (2) Coordinated the final selection of candidates and field implementation with Oneok.

  12. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development

  13. Consequences of FOIL for undergraduates

    NASA Astrophysics Data System (ADS)

    Koban, Lori; Sisneros-Thiry, Simone

    2015-02-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual understanding of the procedure. We generalize this FOIL dichotomy and show that the ability to transfer a mathematical property from one context to a less familiar context is related to both procedural success and attitude towards math.

  14. Induction Bonding of Prepreg Tape and Titanium Foil

    NASA Technical Reports Server (NTRS)

    Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.

    1998-01-01

    Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.

  15. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Type curve matching continued during the reporting period. (2) A second data collection trip to Tulsa was performed to gather information on the additional reservoirs to be included in the analysis. Created updated database

  16. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  17. X-ray fiducial foils

    SciTech Connect

    Alford, C.; Serduke, F.; Makowiecki, D.; Jankowski, A.; Wall, M.

    1991-03-13

    An x-ray spectrum from a laser fusion experiment was passed through an Al, Si, Y multilayer foil. The position of the absorption edges of the Al, Si, and Y was used to calibrate the x-ray energy spectrum recorded on photographic film. The foil consisted of 4000 {angstrom} of Al, 6000 {angstrom} of Si and 4000 {angstrom} of Y sputter deposited on a 1.5 {mu}m thick Mylar{reg sign} film. It was necessary to layer the structure in order to achieve the required mechanical strength and dimensional stability. The results include analysis of the x-ray energy spectrum and microstructural characterization of the foil using x-ray diffraction and transmission electron microscopy.

  18. Stationary source sampling report: Volatile organic compounds testing, 300-M area air stripper exhaust stack

    SciTech Connect

    Not Available

    1985-11-25

    An air stripping column was used in the 300-M area to remove volatile organic compounds from contaminated groundwater. Tests were performed October 29, 1985, at the air stripper exhaust stack to measure the emissions of tetrachloroethylene, trichloroethylene, and 1,1,1-trichloroethane for compliance purposes. Three absorbent sampling train (AST) runs (yielding duplicate samples for each run) and three velocity traverses were performed at the air stripper exhaust stack. Ambient air sampling was not performed as scheduled because of inclement weather conditions.

  19. Integrated chemical/biological treatment of paint stripper mixed waste: Metals toxicity and separation

    SciTech Connect

    Vanderberg-Twary, L.; Grumbine, R.K.; Foreman, T.; Hanners, J.L.; Brainard, J.R.; Sauer, N.N.; Unkefer, P.J.

    1995-05-01

    The DOE complex has generated vast quantities of complex heterogeneous mixed wastes. Paint stripper waste (PSW) is a complex waste that arose from decontamination and decommissioning activities. It contains paint stripper, cheesecloth, cellulose-based paints with Pb and Cr, and suspect Pu. Los Alamos National Laboratory has 150--200 barrels of PSW and other national laboratories such as Rocky Flats Plant have many more barrels of heterogeneous waste. Few technologies exist that can treat this complex waste. Our approach to solving this problem is the integration of two established technologies: biodegradation and metals chelation.

  20. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) The search for another field site was abandoned after discussion with DOE. There is a clear absence of willing industry partners to participate in this project. The greatest obstacle is having the necessary data to perform the

  1. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-08-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Compiled information and results of field activities that Oneok has conducted in relation to the project. Field activities have included performing six pressure transient tests, and implementing six workovers, four of which were

  2. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Finished preparing the final project report, less the field implementation component. Sent to DOE for review. (2) Continued coordinating the final selection of candidates and field implementation with Oneok. Oneok postponed field

  3. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Continued to solicit industry research partners to provide test sites, including Patina Oil and Gas and EOG Resources, each of whom have previously worked with ARI on a similar projects funded by the Gas Technology Institute. Both

  4. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Completed both type curve and artificial neural network analysis of the field. Developed list of production enhancement candidates. (2) Made final presentation of results to Oneok in Tulsa (February 26). (3) Made presentations on

  5. Metal Foil Sandwiched Multiple Radiography

    NASA Astrophysics Data System (ADS)

    Takenaka, E.; Hatori, M.

    1982-11-01

    A new method to obtain simultaneously two or three radiographs with a wide dynamic range was studied. This is to divide the transmitted X-ray energy spectra through a human body into lower and higher parts than K absorption edge by a metal foil (Pb, Ta, Gd) and give radiographs using two or three pairs of an one-side coated film and an intensifying screen. The backward film has the informations filtered by the metal foil. The forward film before the metal foil, if the film density is same, relatively contains the informations of lower parts of the transmitted X-ray spectra through a human body. Secondly, a metal foil can make shadows of thin parts and thick parts of a human body displace on high region of film, respectively and separatedly. These radiographs of thin parts were useful to be observed superposing two films with a wide dynamic range. As to thick parts it was useful to view two films hanging side by side. This technique was appreciated to be applied to the organs such as extremities, knee and elbow, head and neck, lung and etc.

  6. Foil Patches Seal Small Vacuum Leaks

    NASA Technical Reports Server (NTRS)

    Spiegel, Kirk W.; Reed, David W.

    1995-01-01

    Report discloses technique to patch holes in nickel-alloy rocket-engine nozzle parts prior to vacuum brazing. Technique involves lightly spot-welding nickel foil 0.002 in. thick over hole patched, then spot-welding corrosion-resistant steel foil of same thickness over nickel foil. Once patches subject to pressure and temperature of vacuum brazing, nickel foil diffuses to bond with nickel-alloy nozzle, making vacuum-tight seal.

  7. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  8. NONPROCESS SOLVENT USE IN THE FURNITURE REFINISHING AND REPAIR INDUSTRY: EVALUATION OF ALTERNATIVE CHEMICAL STRIPPERS

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of using alternatives to high volatile organic compound/hazardous air pollutant (VOC/HAP) solvent-based, chemical strippers that are currently used in the furniture repair and refinishing industry to remove both traditi...

  9. Picker vs. stripper harvesting in the Texas High Plains: Agronomic implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many changes have occurred during the last decade in the Texas High Plains which have resulted in increased cotton yields and improved fiber quality. The main factors associated with both higher lint yield and quality include a shift in varieties planted, with virtually no "storm-proof stripper type...

  10. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution. Revision 3

    SciTech Connect

    Gupta, M.K.

    1994-06-01

    The purpose is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs (Ref. 7) and Quiet Time Runs Program (described in Section 3.6). The Filter/Stripper Test Runs and Quiet Time Runs program involves a 12,000 gallon feed tank containing an agitator, a 4,000 gallon flush tank, a variable speed pump, associated piping and controls, and equipment within both the Filter and the Stripper Building.

  11. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  12. Development of thin foils for use in generating neutral particle beams

    SciTech Connect

    Aaron, W.S.; Zevenbergen, L.A.; Adair, H.L.; Culpepper, C.A.; McCulla, W.H.; Nolan, T.A.; Hughes, M.R.

    1986-01-01

    The Isotope Research Materials Laboratory (IRML) was requested to prepare large-area, ultrathin aluminum and carbon foils for use in beam neutralization experiments. There were two major parts to this request. The first was to immediately provide a number of 5-cm-dia foils 5 to 20 ..mu..g/cm/sup 2/ thick for use in experiments at the Fusion Materials Irradiation Test (FMIT) facility and at Argonne National Laboratory (ANL). The second, longer-term request was to develop methods to prepare 25-cm x 25-cm, 10-..mu..g/cm/sup 2/ aluminum neutralizer foils. Both parts of the request have been successfully met.

  13. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    SciTech Connect

    Feng, D.C.; Yu, Z.J.; Chen, Y.; Qian, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recovery to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.

  14. Foil bearing research at Penn State

    NASA Astrophysics Data System (ADS)

    Carpino, Marc

    1993-11-01

    Foil journal bearings consist of a compliant metal shell or foil which supports a rigid journal by means of a fluid film. Foil bearings are considered to be a potential alternative to rolling element or traditional rigid surface bearings in cryogenic turbomachinery applications. The prediction of foil bearing performance requires the coupled solution of the foil deflection and the fluid flow in the bearing clearance between the rotor and the foil. The investigations being conducted in the Department of Mechanical Engineering at Penn State are focused in three areas: theoretical prediction of steady state bearing performance, modeling of the dynamic bearing characteristics to determine performance in rotor systems, and experimental verification of analysis codes. The current status and results from these efforts will be discussed.

  15. Wind turbine with adjustable air foils

    SciTech Connect

    Pryor, D.H.

    1983-05-17

    A wind turbine has axially aligned, spaced, rotatable support flanges with a plurality of vertically aligned air foils having opposed ends journaled thereto. The air foils are pivoted respective to the wind by a pitch flange mounted eccentrically respective to the support flanges. The pitch flange moves the air foils into an aligned relationship respective to the wind to optimize the energy derived from the blowing wind.

  16. Technical Development Path for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2008-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  17. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Continued to solicit industry research partners to provide test sites. A Cooperative Research Agreement has been signed with Oneok, for a test site in the Mocane-Laverne field in the Anadarko basin (Oklahoma). The site consists of

  18. A Unique Method of Retention for Gum Stripper- A Case Report

    PubMed Central

    T.S., Priyanka

    2014-01-01

    Successful restoration of partially edentulous situations, especially kennedy’s class-I, II &IV requires lot of contemporary and conventional treatment approaches. Semi precision attachments play a major role in retention of clinically challenging partially edentulous situation. Attachment retained partial dentures can be one of the successful treatment option in prosthdontics. This article presents a unique technique of retaining gum stripper using semi precision attachments. PMID:25654046

  19. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-01-01

    The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the cases of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be research and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This fifth quarterly technical report describes the data reduction and methodology to develop diagnostic tools to evaluate the cause of declines in problem wells, specifically addressing the development of data gathering forms for tubing plunger wells, casing plunger wells, pumping wells, and swab or flow wells. This report also describes the methodology to select a group of wells for field review utilizing data gathering forms developed during this quarter.

  20. Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA

    SciTech Connect

    Hassanein, Ahmed

    2013-05-24

    Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of the lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.

  1. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-04-01

    The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This sixth quarter technical progress report further describes the data reduction and methodology to develop diagnostic tools to evaluate the cause of declines in problem wells, specifically addressing the development of data gathering forms for tubing plunger wells, casing plunger wells, pumping wells, and swab or flow wells. This report also further describes the methodology to select a group of wells for field review utilizing data gathering forms further developed during this quarter.

  2. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-12-01

    A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This final technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two additional wells were selected for remediation and included into the study. Furthermore, the remediation results of wells that were a part of the study group of wells are also described.

  3. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-10-01

    A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This eight quarterly technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two to three additional wells will be selected for remediation for inclusion into the study. The results of the additional remediations will be included in the final report.

  4. Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  5. Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  6. Chromic acid anodizing of aluminum foil

    NASA Technical Reports Server (NTRS)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  7. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect

    Scott Reeves

    2003-03-01

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Prepared various materials to describe the project for promotional purposes and to attract potential industry partners. Materials included slides for DOE's displays at the SPE Eastern Regional and Annual Technical Conference, and

  8. A Preliminary Foil Gas Bearing Performance Map

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2006-01-01

    Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.

  9. Predicted Foil Temperatures in the Brookhaven NSNS Accumulator Ring

    NASA Astrophysics Data System (ADS)

    Duke, J. P.

    1997-05-01

    An investigation has been carried out into the peak equilibrium stripping foil temperatures that could be expected in the 1 GeV NSNS Accumulator Ring proposed by Brookhaven National Laboratory. A Graphite foil is assumed. Computed foil temperature distributions on the foil's surface would be presented, as well as the predicted relationships between foil temperature and quantities such as the average number of recirculated proton hits, linac current, and foil mass per unit area used.

  10. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2003-04-08

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting two fall technology transfer meetings, (2) SWC membership class expansion, and (3) planning the SWC 2003 Spring meeting. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  11. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  12. Beam-single and beam-two-foil experimental facility to study physics of highly charged ions

    SciTech Connect

    Ahmad, Nissar; Wani, A.A.; Ram, R.; Abhilash, S.R.; Kumar, Rakesh; Patnaik, J.K.; De, Sankar; Karn, R.K.; Nandi, T.

    2006-03-15

    A facility for lifetime measurement of metastable states in highly charged ions using the beam-foil technique with a single-foil and a two-foil target has been developed. In the two-foil technique, one foil moves with respect to the other and the option of varying the thickness of the fixed foil online has been implemented. A holder with multiple foils is used as a fixed target, and moved along x, y, and {theta}, the angle of rotation with respect to beam direction along the z axis. Using this facility, the He-like 1s2p {sup 3}P{sub 2}{sup o} and Li-like 1s2s2p {sup 4}P{sub 5l/2}{sup o} titanium lifetimes have been measured and compared with earlier values. In addition to this, the processes which occur when excited states collide with carbon foils of different thicknesses have also been investigated. Preliminary results suggest the scope of studying intrashell transitions during ion-solid collision using this setup. In this article, the setup is described in detail and representative results are briefly discussed.

  13. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-07-01

    The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This seventh quarterly technical progress report further describes the data reduction and methodology to develop diagnostic tools to evaluate the cause of declines in problem wells, specifically addressing the methodology to analyze the group of wells where recent problems have occurred utilizing the data gathering forms. This report also describes the methodology to select the two wells with the greatest potential for increase and also having the most frequently occurring problem. Finally, this report describes the preliminary results of the remediation applied to the two wells selected. Two wells selected and analyzed from a twenty-four well study group indicated that their current abnormal production decline was attributable to fluid build-up in the wellbore. Subsequent remediation work of putting both wells on pump to reduce fluid build-up in the well bore decreased the flowing bottom hole pressure and increased gas production dramatically.

  14. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  15. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  16. Radioactivity analysis in niobium activation foils

    SciTech Connect

    Mueller, G.E.

    1995-06-01

    The motivation for this study was to measure and analyze the activity of six (6) niobium (Nb) foils (the x-rays from an internal transition in Nb-93m) and apply this information with previously obtained activation foil data. The niobium data was used to determine the epithermal to MeV range for the neutron spectrum and fluence. The foil activation data was re-evaluated in a spectrum analysis code (STAY`SL) to provide new estimates of the exposure at the Los Alamos Spallation Radiation Effect Facility (LASREF). The activity of the niobium foils was measured and analyzed at the University of Missouri-Columbia (UMC) under the direction of Professor William Miller. The spectrum analysis was performed at the University of Missouri-Rolla (UMR) by Professor Gary Mueller.

  17. Investigation of Energy Harvesting Using Flapping Foils

    NASA Astrophysics Data System (ADS)

    Mivehchi, Amin; Persichetti, Amanda; Dunham, Brandon; Dahl, Jason M.

    2013-11-01

    When harvesting kinetic energy using a flapping foil, the separation of coherent structures in the wake is crucial for determining forces on the body. Applications for utilizing energy harvesting with a flapping foil include powering of local, low power equipment and recharging AUV batteries that use flapping foils for propulsion and maneuvering. In each of these cases, it is critical to accurately predict the physical behavior and location of vortices in relation to the motion of the body in order to maximize energy output. A two-dimensional open source boundary data immersion method (LilyPad) is used for simulating the flapping motion of a foil for energy harvesting in a current. Forced motion of the flapping body indicates theoretical efficiencies for energy harvesting near 43 percent under specific flapping conditions. A simple control scheme based on pressure sensing on the surface of the foil is developed to control pitch of the foil while energy harvesting occurs in the heave direction. The control scheme is tested through real time numerical simulation. Comparisons are made with physical laboratory experiments, demonstrating high efficiencies in energy harvesting.

  18. Innovative absorber/stripper configurations for CO{sub 2} capture by aqueous monoethanolamine

    SciTech Connect

    Jassim, M.S.; Rochelle, G.T.

    2006-04-12

    The state-of-the-art technology to capture CO, from coal-fired power plants is absorption/stripping with aqueous monoethanolamine (MEA). The energy consumption in stripping can be 15-30% of the power-plant output. A rigorous rate-based model for CO{sub 2}-MEA-H{sub 2}O qas used to simulate several flowsheet alternatives that reduce the energy requirement using Aspen Plus with RateFrac. Results were calculated for vapor recompression, multipressure, and simple strippers at 5 and 10{sup o}C approach temperatures and 70, 90, and 95% CO{sub 2} removal. The 'equivalent work of steam/mole of CO{sub 2} removed' and the reboiler duty were used to compare the proposed schemes and to show the shift of energy use from work to heat. The total equivalent work for multipressure was less than that for the simple stripper by 0.03-0.12 GJ/(ton of CO{sub 2}), and the reboiler duty was less by 0.15-0.41 GJ/(ton of CO{sub 2}). The multipressure with vapor recompression is an attractive option because it utilizes the overhead water vapor latent heat to reduce reboiler duty load, recovers the work of compression to strip more CO{sub 2}, and shows more reversible behavior.

  19. Treatability test of a stacked-tray air stripper for VOC in water

    SciTech Connect

    Pico, T., LLNL

    1998-04-01

    A common strategy for hydraulic containment and mass removal at VOC contaminated sites is `pump and treat (P&T)`. In P&T operations, contaminated ground water is pumped from wells, treated above ground, and discharged. Many P&T remediation systems at VOC sites rely on air stripping technology because VOCs are easily transferred to the vapor phase. In stacked-tray air strippers, contaminated water is aerated while it flows down through a series of trays. System operations at LLNL are strictly regulated by the California and federal Environmental Protection Agencies (Cal/EPA and EPA), the Bay Area Air Quality Management District (BAAQMD), the California Regional Water Quality Control Board (RWQCB) and the Department of Toxic Substances Control (DTSC). These agencies set discharge limits, require performance monitoring, and assess penalties for non-compliance. National laboratories are also subject to scrutiny by the public and other government agencies. This extensive oversight makes it necessary to accurately predict field treatment performance at new extraction locations to ensure compliance with all requirements prior to facility activation. This paper presents treatability test results for a stacked- tray air stripper conducted at LLNL and compares them to the vendor`s modeling software results.

  20. Experimental evaluation of foil-supported resilient-pad gas-lubricated thrust bearing

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1977-01-01

    A new type of resilient-pad gas thrust bearing was tested to determine the feasibility of the design. The bearing consists of carbon graphite pads mounted asymmetrically on foil beams. Two bearing configurations were tested at thrust loads from 27 to 80 newtons at speeds to 9000 rpm. The outside diameter of the bearing was 8.9 centimeters.

  1. ASDC: A microcomputer-based program for air stripper design and costing. Final report, March 1990-August 1991

    SciTech Connect

    Dzombak, D.A.; Fang, H.J.; Roy, S.B.

    1991-12-01

    Packed-tower, counter-current air stripping is a treatment process that can be employed for removal of volatile organic compounds (VOCS) from water and wastewater. The design of an air stripper is performed using a well-developed mathematical model of the process. However, the number of variables involved exceeds the number of constraining equations by two, with the result that a number of alternative air stripper designs exist for a particular water treatment goal. In selecting the optimum design among the various alternatives, it is important to consider the capital and operating costs associated with each alternative. This report describes an interactive, microcomputer-based program - the Air Stripper Design and Costing (ASDC) program - that enables rapid evaluation of alternative air stripper designs and approximate costs associated with these designs for user-specified treatment scenarios. The various components of the program are described in detail, a guide to program operation is provided along with example applications, and results of some verification tests are presented.

  2. ASDC: A microcomputer-based program for air stripper design and costing. Revision. Final report, March 1990-August 1991

    SciTech Connect

    Dzombak, D.A.; Fang, H.J.; Roy, S.B.

    1993-10-01

    Packed-tower, counter-current air stripping is a treatment process that can be employed for removal of volatile organic compounds (VOCs) from water and wastewater. The design of an air stripper is performed using a well-developed mathematical model of the process. However, the number of variables involved exceeds the number of constraining equations by two, with the result that a number of alternative air stripper designs exist for a particular water treatment goal. In selecting the optimum design among the various alternatives, it is important to consider the capital and operating costs associated with each alternative. This report describes an interactive, microcomputer-based program - the Air Stripper Design and Costing (ASDC) program - that enables rapid evaluation of alternative air stripper designs and approximate costs associated with these designs for user-specified treatment scenarios. The various components of the program are described in detail, a guide to program operation is provided along with example applications, and results of some verification tests are presented. Air Stripping, Computer design, Water Treatment, Volatile organic compound.

  3. Comparison of a wire belt conveyor and cross auger conveyor for conveying burr cotton on a stripper harvester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber quality begins to degrade naturally with the opening of the boll, and mechanical harvesting processes are perceived to exacerbate fiber degradation. Previous research indicates that stripper-harvested cotton generally has lower fiber quality including on average lower micronaire, length...

  4. 75 FR 61624 - Promotion of Development, Reduction of Royalty Rates for Stripper Well and Heavy Oil Properties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... that Federal lessees would have incentives to keep economically marginal oil wells in production. This... 35973 (Aug. 11, 1992); 61 FR 4750 (Feb. 8, 1996)). A stripper well property, within the meaning of... property with an average daily production of less than 15 barrels of oil per well, or less than...

  5. Cryostat with Foil and MLI

    SciTech Connect

    Hwang, Peter K.F.; Gung, Chen-yu

    2005-10-06

    Induction cores are used to accelerate heavy ion beam array, which are built around the outer diameter of the cryostat housing the superconducting quadruple array. Compact cryostat is highly desirable to reduce the cost of the induction cores. Recent experiences in fabrication of a cryostat for single beam transport revealed that it is possible to reduce the spacing in the cryostat vacuum jacket by using low-emissivity thermal insulation material instead of conventional MLI. However, it is labor-intensive to install the new type of insulation as compared with using MLI. It is promising to build a cost-effective compact cryostat for quadruple magnet array for heavy ion beam array transport by using low-emissivity material combined with conventional MLI as radiation insulation. A matrix of insulation designs and tests will be performed as the feasibility study and for the selection of the optimal thermal insulation as the Phase I work. The selected mixed insulation will be used to build prototype compact cryostats in the Phase II project, which are aiming for housing quadruple doublet array. In this STTR phase I study, a small cryostat has been designed and built to perform calorimetric characterization of the heat load in a liquid helium vessel insulated with a vacuum layer with a nominal clearance of 3.5 mm. The vacuum clearance resembled that used in the warm-bore beam tube region in a prototype cryostat previously built for the heavy ion beam transport experiment. The vacuum clearance was geometrically restricted with a heater shell with the temperature controlled at near 300 K. Various combinations of radiation and thermal shields were installed in the tight vacuum clearance for heat load measurements. The measured heat loads are reported and compared with previous test result using a compact vacuum layer. Further developments of the thermal insulations used in the present study are discussed. The compact cryostat with foil and MLI insulation may be used in the

  6. Automated searching of Stardust interstellar foils

    NASA Astrophysics Data System (ADS)

    Ogliore, Ryan C.; Floss, Christine; Stadermann, Frank J.; Kearsley, A. T.; Leitner, Jan; Stroud, Rhonda M.; Westphal, Andrew J.

    2012-04-01

    The Al foils lining the aerogel tiles of the Stardust interstellar tray represent approximately 13% of the total collecting area, about 15,300 mm2. Although the flux is poorly constrained, fewer than 100 impacts are expected in all the Al foils on the collector, and most of these are likely to be less than 1 μm in diameter. Secondary electron (SE) images of the foils at a resolution of approximately 50 nm per pixel are being collected during the Stardust Interstellar Preliminary Examination, resulting in more than two million images that will eventually need to be searched for impact craters. The unknown and complicated nature of 3-dimensional interstellar tracks in aerogel necessitated the use of a massively distributed human search to locate only a few interstellar tracks. The 2-dimensional nature of the SE images makes the problem of searching for craters tractable for algorithmic approaches. Using templates of craters from cometary impacts into Stardust foils, we present a computer algorithm for the identification of impact craters in the Stardust interstellar foils using normalized cross-correlation and template matching. We address the speed, sensitivity, and false-positive rate of the algorithm. The search algorithm can be adapted for use in other applications. The program is freely available for download at .

  7. Additional security features for optically variable foils

    NASA Astrophysics Data System (ADS)

    Marshall, Allan C.; Russo, Frank

    1998-04-01

    For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.

  8. Degrader foils for the CARIBU project

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Savard, Guy; Pardo, Richard C.; Baker, Samuel I.; Levand, Anthony F.; Zabransky, Bruce J.

    2011-11-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) project was conceived to provide neutron rich beams originating from the 3% fission decay branch of a 252Cf source to be accelerated by the Argonne Tandem Linear Accelerator System (ATLAS). This 1Ci 252Cf source will be housed in a movable shielded cask, from which it can be directly transferred into a large helium gas stopper cell. Within the gas stopper, the CARIBU 252Cf source is positioned behind an aluminum degrader foil where the radioactive recoils of interest lose most of their energy before being stopped in the helium gas. To stop recoils over the full fission mass range effectively, three degraders of increasing thickness are required, one to cover the light fission peak and two for the isotopes in the heavy fission peak. The geometry of the source within the gas cell would ideally require a hemispherically shaped degrader foil for uniform energy loss of the fission products. The fabrication of a thin foil of such a shape proved to be exceedingly difficult and, therefore, a compromise "top hat" arrangement was designed. In addition, the ultra-high vacuum (UHV) environment necessary for the gas cell to function properly prevented the use of any epoxy due to vacuum outgassing. Handling, assembling of the foils and mounting must be done under clean room conditions. Details of early attempts at producing these foils as well as handling and mounting will be discussed.

  9. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA

    SciTech Connect

    Scott Reeves; Buckley Walsh

    2003-08-01

    In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression, was

  10. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  11. Status of Genesis Mo-Pt Foils

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Allton, J. H.; Burnett, D. S.; Butterworth, A. L.; Caffee, M. W.; Clark, B.; Jurewicz, A. J. G.; Komura, K.; Westphal, A. J.; Welten, K. C.

    2005-01-01

    A total of 8,000 sq cm of Mo-coated Pt foils were exposed to solar wind for 884 days by the Genesis mission. Solar wind ions were captured in the surface of the Mo. Our objective is the measurement of long-lived radionuclides, such as Be-10, Al-26, Cl-36, and Mn-53, and short-lived radionuclides, such as Na-22 and Mn-54, in the captured sample of solar wind. The expected flux of these nuclides in the solar wind is 100 atom/sq cm yr or less. The hard landing of the SRC (Sample Return Capsule) at UTTR (Utah Test and Training Range) has resulted in contaminated and crumpled foils. Here we present a status report and revised plan for processing the foils.

  12. Applications of beam-foil spectroscopy to atomic collisions in solids

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  13. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  14. Steel Foil Improves Performance Of Blasting Caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.

    1990-01-01

    Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.

  15. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  16. Tight, Flat, Smooth, Ultrathin Metal Foils for Locating Synchrotron Beams

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2007-01-01

    It is often desired to locate a synchrotron x-ray beam precisely in space with minimal disturbance of its spatial profile and spectral content. This can be done by passing the beam through an ultrathin, flat, smooth metal foil having well-defined composition, preferably a single chemical element such as chromium, titanium or aluminum. Localized fluorescence of the foil at characteristic x-ray lines where the x-ray beam passes through the foil serves to locate the beam in two dimensions. Use of two such foils along the beam direction locates the x-ray beam spatially and identifies precisely its direction. The accuracy of determining these parameters depends in part upon high uniformity in the thickness of the foil(s), good planarity, and smoothness of the foil(s). In practice, several manufacturing steps to produce a foil must be carried out with precision. The foil must be produced on a smooth removable substrate in such a way that its thickness (or areal density) is as uniform as possible. The foil must be fastened to a support ring that maintains the foil's surface quality, and it must be then stretched onto a frame that produces the desired mirror flatness. These steps are illustrated and some of the parameters specifying the quality of the resulting foils are identified.

  17. Robust cladding light stripper for high-power fiber lasers using soft metals.

    PubMed

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  18. Air strippers and their emissions control at Superfund sites. Technical report, February-April 1987

    SciTech Connect

    Blaney, B.L.; Branscome, M.

    1988-08-01

    Air stripping, a traditional means of making slightly contaminated ground water potable, is being applied increasingly to more-severe groundwater pollution at remedial action sites. Concentrations of volatile and semivolatile compounds at such sites may reach hundreds of parts per million. As a result, several changes have resulted in air-stripping technology. New air stripping technologies are being employed to achieve very high (>99% removal of volatile compounds and to increase the removal of semivolatiles. New stripper designs are being investigated for compactness and mobility. In addition, emissions controls are being added because air-pollution impacts are larger. The paper discusses these trends and provides examples from ground-water cleanup at remedial-action sites in the United States.

  19. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amornvadee Veawab

    2006-09-30

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.

  20. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  1. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  2. Hydrogen and Palladium Foil: Two Classroom Demonstrations

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Mattson, Bruce

    2009-01-01

    In these two classroom demonstrations, students observe the reaction between H[subscript 2] gas and Pd foil. In the first demonstration, hydrogen and palladium combine within one minute at 1 atm and room temperature to yield the non-stoichiometric, interstitial hydride with formula close to the maximum known value, PdH[subscript 0.7]. In the…

  3. 6Li foil thermal neutron detector

    SciTech Connect

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  4. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  5. The Fluid Foil: The Seventh Simple Machine

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  6. Strong field electrodynamics of a thin foil

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Bulanov, Stepan S.; Rykovanov, Sergey G.; Pegoraro, Francesco

    2013-12-15

    Exact solutions describing the nonlinear electrodynamics of a thin double layer foil are presented. These solutions correspond to a broad range of problems of interest for the interaction of high intensity laser pulses with overdense plasmas, such as frequency upshifting, high order harmonic generation, and high energy ion acceleration.

  7. Transverse Emittance Reduction with Tapered Foil

    SciTech Connect

    Jiao, Yi; Chao, Alex; Cai, Yunhai; /SLAC

    2011-12-09

    The idea of reducing transverse emittance with tapered energy-loss foil is proposed by J.M. Peterson in 1980s and recently by B. Carlsten. In this paper, we present the physical model of tapered energy-loss foil and analyze the emittance reduction using the concept of eigen emittance. The study shows that, to reduce transverse emittance, one should collimate at least 4% of particles which has either much low energy or large transverse divergence. The multiple coulomb scattering is not trivial, leading to a limited emittance reduction ratio. Small transverse emittances are of essential importance for the accelerator facilities generating free electron lasers, especially in hard X-ray region. The idea of reducing transverse emittance with tapered energy-loss foil is recently proposed by B. Carlsten [1], and can be traced back to J.M. Peterson's work in 1980s [2]. Peterson illustrated that a transverse energy gradient can be produced with a tapered energy-loss foil which in turn leads to transverse emittance reduction, and also analyzed the emittance growth from the associated multiple coulomb scattering. However, what Peterson proposed was rather a conceptual than a practical design. In this paper, we build a more complete physical model of the tapered foil based on Ref. [2], including the analysis of the transverse emittance reduction using the concept of eigen emittance and confirming the results by various numerical simulations. The eigen emittance equals to the projected emittance when there is no cross correlation in beam's second order moments matrix [3]. To calculate the eigen emittances, it requires only to know the beam distribution at the foil exit. Thus, the analysis of emittance reduction and the optics design of the subsequent beam line section can be separated. In addition, we can combine the effects of multiple coulomb scattering and transverse energy gradient together in the beam matrix and analyze their net effect. We find that,when applied to an

  8. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect

    Liu, Tung-Chang Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  9. Research proposal for development of an electron stripper using a thin liquid lithium film for rare isotope accelerator.

    SciTech Connect

    Momozaki, Y.; Nuclear Engineering Division

    2006-03-06

    Hydrodynamic instability phenomena in a thin liquid lithium film, which has been proposed for the first stripper in the driver linac of Rare Isotope Accelerator (RIA), were discussed. Since it was considered that film instability could significantly impair the feasibility of the liquid lithium film stripper concept, potential issues and research tasks in the RIA project due to these instability phenomena were raised. In order to investigate these instability phenomena, a research proposal plan was developed. In the theoretical part of this research proposal, a use of the linear stability theory was suggested. In the experimental part, it was pointed out that the concept of Reynolds number and Weber number scaling may allow conducting a preliminary experiment using inert simulants, hence reducing technical difficulty, complexity, and cost of the experiments. After confirming the thin film formation in the preliminary experiment using simulants, demonstration experiments using liquid lithium were proposed.

  10. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2005-01-04

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventeenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting the SWC fall technology transfer meetings in Oklahoma City, Oklahoma and State College, Pennsylvania, (2) planning of the upcoming SWC spring proposal meeting, (3) release of the SWC Request-for-proposals (RFP), (4) revision of the SWC By-Laws, and (5) the SWC Executive Council nomination and election for 2005-2006 term members.

  11. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period focused on organizing and hosting three fall technology transfer meetings that will be held in Wyoming, Texas, and Pennsylvania. In addition, work has started on developing the 2004 SWC request-for-proposals which will be released during the next reporting period. During this reporting period, the efforts were focused primarily on the organizing the SWC fall technology transfer meetings.

  12. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) exhibit and participate in the Society of Petroleum Engineers (SPE) Regional Meeting in Charleston West Virginia, (2) finalize the organization of the two fall Technology Transfer meetings and (3) initiate the revision of the SWC By-laws.

  13. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-04-21

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Nomination and election of the Executive Council members for the 2006-07 term, (2) Finalize and release the 2006 Request for Proposals (RFP), (3) Invoice and recruit members, (4) Plan for the spring meeting, (5) Improving communication efforts, and (6) Continue distribution of the DVD entitled: ''Independent Oil: Rediscovering American's Forgotten Wells''.

  14. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-12-23

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fifteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  15. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

  16. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-05-18

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fourteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing the SWC spring meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruit the SWC base membership.

  17. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  18. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2005-02-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) host the State College, PA fall Technology Transfer meeting, (2) revision of the SWC By-laws, (3) the SWC Executive Council nomination and election for 2005-2006 term members, and (4) finalizing the plans for the Spring Proposal Meeting in San Antonio, Texas.

  19. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2005-01-03

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) exhibit and participate in the Society of Petroleum Engineers (SPE) Regional Meeting in Charleston WV, (2) host the SWC fall technology transfer meeting in Oklahoma City, OK and finalize the organization of the State College, PA fall Technology Transfer meeting, and (3) initiate the revision of the SWC By-laws.

  20. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison

    2005-08-26

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) prepare presentation for the 16th Annual Oil Recovery Conference in Wichita, Kansas, (2) continued working on the SWC technical bulletin ''Keeping the Home Wells Flowing: Helping Small Independent Oil and Gas Producers Develop New Technology Solutions'', (3) continue efforts on the Public Broadcast of Independent Oil: Rediscovering America's Forgotten Wells, and (4) continue efforts to recruit SWC members.

  1. Optical and electrical performance of commercially manufactured large GEM foils

    NASA Astrophysics Data System (ADS)

    Posik, M.; Surrow, B.

    2015-12-01

    With interest in large area GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs is being established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report here on the first of a two step quality verification of the commercially produced 10×10 cm2 and 40×40 cm2 GEM foils, which includes characterizing their electrical and geometrical properties. We have found that the Tech-Etch foils display excellent electrical properties, as well as uniform and consistent hole diameters comparable to established foils produced by CERN.

  2. Performance and lifetime of solar mirror foils in space

    SciTech Connect

    Fink, D.; Biersack, J.P.; Staedele, M.

    1985-01-01

    The results of a Monte Carlo computer analysis of the long term effects of space radiation on the surfaces of giant orbiting mirrors are presented. The mirrors, thin surfaced and made of substances like, e.g., Mylar and Hostephan, which are polymers, would reflect solar radiation to earth and be of a size equivalent to that of the area they would illumine. Possible applications are the warming of cities, melting of icebergs in shipping lanes and the illumination of solar power plants. Attention was focused on the changes produced in the reflective surface by solar wind particle bombardment. It was found that an Al covering at least 0.1 mm thick would be needed for protection. Nevertheless, the surface would be destroyed by blistering and foil carbonization within 10 yr and would then require replacement. 12 references.

  3. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2001-09-12

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional $100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved $921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding.

  4. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

  5. Impact of GEM foil hole geometry on GEM detector gain

    NASA Astrophysics Data System (ADS)

    Karadzhinova, A.; Nolvi, A.; Veenhof, R.; Tuominen, E.; Hæggström, E.; Kassamakov, I.

    2015-12-01

    Detailed 3D imaging of Gas Electron Multiplier (GEM) foil hole geometry was realized. Scanning White Light Interferometry was used to examine six topological parameters of GEM foil holes from both sides of the foil. To study the effect of the hole geometry on detector gain, the ANSYS and Garfield ++ software were employed to simulate the GEM detector gain on the basis of SWLI data. In particular, the effective gain in a GEM foil with equally shaped holes was studied. The real GEM foil holes exhibited a 4% lower effective gain and 6% more electrons produced near the exit electrode of the GEM foil than the design anticipated. Our results indicate that the GEM foil hole geometry affects the gain performance of GEM detectors.

  6. Low energy ignition of HMX using a foil bridge

    SciTech Connect

    Ewick, D.W.

    1986-01-01

    The use of an etched foil bridge to initiate the deflagration of high-density HMX is described. Two foil bridges were evaluated, each having a cross-sectional area approximately equal to that of a 0.0034-in. diameter bridgewire. One foil was 0.11 in. wide and 0.0008 in. thick; the other was 0.022 in. wide and 0.0004 in. thick. The all-fire current for the 0.022-in. wide foil bridge was roughly 15% greater than that of the 0.011-in. wide foil, which in turn was approximately 7% greater than the round wire bridge. The no-fire current for the 0.022-in. wide foil bridge was roughly 26% greater than that of the 0.011-in. wide foil, which in turn was approximately 10% greater than the round wire bridge. 7 refs., 4 figs., 3 tabs.

  7. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  8. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  9. FoilSim: Basic Aerodynamics Software Created

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth A.

    1999-01-01

    FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.

  10. Porn star/stripper/escort: economic and sexual dynamics in a sex work career.

    PubMed

    Escoffier, Jeffrey

    2007-01-01

    This article explores the career dynamics of performers in the gay male pornography industry, by focusing on a common career path- from porn star to stripper to escort. Between 1995 and 2005, most men performing in gay porn films, unlike contract actresses in the straight porn industry, have been unable to earn enough income to work exclusively as performers in front of the camera. The industry's constant search for new faces and fresh performers creates what sociologist Paul Cressey has called "the retrogressive dynamic": The longer a person works in a sexual occupation, the less one is paid, and the lower the status of the work venue. In the porn industry, one aspect of this process is referred to as "overexposure," during which the performer experiences a diminishing "fantasy potential" as fans lose erotic interest in the porn star who has appeared too frequently in too many movies. Performers attempt to confront the retrogressive dynamic by limiting the number of adult films in which they appear in a year, diversifying their sexual repertoire, or shifting into other roles within the industry (behind the camera, marketing, production, etc.). One common option is to pursue work in economically complementary forms of sex work such as stripping and escorting. PMID:18019074

  11. Porn star/stripper/escort: economic and sexual dynamics in a sex work career.

    PubMed

    Escoffier, Jeffrey

    2007-01-01

    This article explores the career dynamics of performers in the gay male pornography industry, by focusing on a common career path- from porn star to stripper to escort. Between 1995 and 2005, most men performing in gay porn films, unlike contract actresses in the straight porn industry, have been unable to earn enough income to work exclusively as performers in front of the camera. The industry's constant search for new faces and fresh performers creates what sociologist Paul Cressey has called "the retrogressive dynamic": The longer a person works in a sexual occupation, the less one is paid, and the lower the status of the work venue. In the porn industry, one aspect of this process is referred to as "overexposure," during which the performer experiences a diminishing "fantasy potential" as fans lose erotic interest in the porn star who has appeared too frequently in too many movies. Performers attempt to confront the retrogressive dynamic by limiting the number of adult films in which they appear in a year, diversifying their sexual repertoire, or shifting into other roles within the industry (behind the camera, marketing, production, etc.). One common option is to pursue work in economically complementary forms of sex work such as stripping and escorting.

  12. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor

    SciTech Connect

    Vanderberg-Twary, L.; Steenhoudt, K.; Travis, B.J.; Hanners, J.L.; Foreman, T.M.; Brainard, J.R.

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. The authors have developed a modified gas lift loop bioreactor employing a defined consortium of Thodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  13. SUCCESSFUL IMPLEMENTATION OF THE LOW MAINTENANCE AIRLIFT PUMP TO EXTEND THE LIFE OF STRIPPER WELLS

    SciTech Connect

    Adam Bennett

    2004-03-01

    This report summarizes the evolution and testing results of the Airlift pumping system. System development has passed through four versions: Gen 1, Gen 2, Gen 3, and 3.1. The DOE grant only funded the development and testing of the Gen 2 version, but the Gen 2 unit was a crucial design bridge between the primitive Gen 1 unit and the sophisticated Gen 3 unit. The DOE grant covered the years 2000 to 2002, but this report analyzes the data collected from testing on all four versions across the years 1998 through 2003. A variety of Airlift units were tested in twelve wells. The overall reliability of the Airlift versus traditional pump jack technology was compared. Although neither the Gen 2 nor Gen 3 demonstrated a reliable pumping system, the Gen 3.1 was designed to correct the flaws in these systems. Currently undergoing testing, the Gen 3.1 is operating with a reliability four times better and two-and-a-half times better in the time it requires to repair than standard pump jack technology. The high reliability and low maintenance required to operate the Airlift Gen 3.1 will make the Airlift the natural and economical choice to replace pump jacks on stripper wells.

  14. Li insertion/extraction reaction at a Si film evaporated on a Ni foil

    NASA Astrophysics Data System (ADS)

    Ohara, Shigeki; Suzuki, Junji; Sekine, Kyoichi; Takamura, Tsutomu

    In an attempt to provide a Si material having a long cycle life as an anode of Li-ion batteries, we prepared a metallic Si film on a Ni foil by a vacuum evaporation method. Due to the presence of a naturally formed compact passivation film on the Ni foil, a homogeneous, compact amorphous-like Si film strongly adhering to the Ni substrate could be obtained very easily. The Si film thus obtained on a Ni foil was evaluated electrochemically with cyclic voltammetry (CV) and constant current charge/discharge cycle test (CT) in two types of solvents containing 1 M LiClO 4, i.e. propylene carbonate (PC), and a 1:1 (v/v) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). Two strong peaks were observed on the anodic branch of the CV at 300 mV (versus Li/Li +) and 500 mV and the constant current discharge curve of CT produced a wide plateau at around 400 mV in EC/DMC with a discharge capacity of 1700-2200 mAh/g at a discharge rate of 2 C. Nearly the same performance was observed as well in PC, where no solvent decomposition was detected. The capacity depended on the preparation conditions and the film thickness. The cycleability at 2 C charge/discharge rate was over 750 cycles. One of the important issues to solve is to reduce the large initial charge loss.

  15. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  16. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  17. Method of forming a thin unbacked metal foil

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.

  18. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    PubMed

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations. PMID:27404616

  19. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    PubMed

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations.

  20. Foil fabrication and barrier layer application for monolithic fuels

    SciTech Connect

    Moore, Glenn A. Clark, Curtis R.; Jue, J.-F.; Swank, W. David; Haggard, D.C.; Chapple, Michael D.; Burkes, Douglas E.

    2008-07-15

    This presentation provides details of recent UMo fuel developments efforts at the Idaho National Laboratory. Processing of monolithic fuel foil, the friction bonding process, and hot isostatic press (HIP) sample preparation will be presented. Details of the hot rolling, foil annealing, zirconium barrier-layer application to U10Mo fuel foils via the hot-rolling process and application of silicon rich aluminum interfacial-layers via a thermal spray process will be presented. (author)

  1. Optical temperature sensing on flexible polymer foils

    NASA Astrophysics Data System (ADS)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  2. Ti foil light in the ATA (Advanced Test Accelerator) beam

    SciTech Connect

    Slaughter, D.R.; Chong, Y.P.; Goosman, D.R.; Rule, D.W.; Fiorito, R.B.

    1987-09-01

    An experiment is in progress to characterize the visible light produced when a Ti foil is immersed in the ATA 2 kA, 43 MeV beam. Results obtained to date indicate that the optical condition of the foil surface is a critical determinant of these characteristics, with a very narrow angular distribution obtained when a highly polished and flat foil is used. These data are consistent with the present hypothesis that the light is produced by transition radiation. Incomplete experiments to determine the foil angle dependence of the detected light and its polarization are summarized and remaining experiments are described.

  3. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  4. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  5. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  6. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  7. Silicon oxide permeation barrier coating of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.

  8. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  9. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2002-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second topical report. The SWC has grown and diversified its membership during its first 24 months of existence. The Consortium is now focused on building strategic alliances with additional industrial, state, and federal entities to expand further the SWC membership base and transfer technologies as they are developed. In addition, the Consortium has successfully worked to attract state support to co-fund SWC projects. Penn State has entered a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) which has provided $200,000 over the last two years to co-fund stripper well production-orientated projects that have relevance to New York state producers. During this reporting period, the Executive Council approved co-funding for 14 projects that have a total project value of $2,116,897. Since its inception, the SWC has approved cofunding for 27 projects that have a total project value of $3,632,109.84. The SWC has provided $2,242,701 in co-funding for these projects and programmatically maintains a cost share of 39%.

  10. Large-scale high-efficiency air stripper and recovery well network for removing volatile organic chlorocarbons from ground water

    SciTech Connect

    Boone, L F; Lorfenz, R; Muska, C F; Steele, J L

    1986-05-01

    The Savannah River Plant (SRP) produces special nuclear materials for the US Government. Since 1958, chemical wastes generated by an aluminum forming/metal finishing process used to manufacture fuel and target assemblies were discharged to a settling basin. This process waste stream contained acids, alkalis, metals, and chlorinated degreasing solvents. In 1981, these solvents, specifically trichloroethylene and tetrachloroethylene, were discovered in monitor wells near the settling basin. A monitor well network was installed to define the vertical and horizontal extent of the plume. The current inventory of total chlorocarbons in the saturated zone is approximately 360,000 pounds within the 100 ppB contour interval. During 1983, air stripping technology was evaluated to remove these solvents from the ground water. A 20-gpm ground water pilot air stripper with one recovery well was tested. Performance data from this unit were then used to design a 50-gpm production prototype air stripper. This unit demonstrated that degreaser solvent concentrations in ground water could be reduced from 120,000 ppB to less than the detection limit of 1 ppB. Data from these two units were then used to design an air stripper column that would process contaminated ground water at a rate of 400 gpm. Water is fed to this column from a network of 11 recovery wells. These wells were located in the zone of contamination, as defined by analytical and numerical modeling techniques. This system has been operational since April 1985. To date, over 65,000 pounds of chlorinated degreaser solvents have been removed from an underlying aquifer. The effects of this program on the hydraulic gradient and contamination movement are currently being evaluated. The purpose of this paper is to describe the ground water remediation program at the Savannah River Plant.

  11. Radiative resonant energy transfer process in projectile-like ion formed in beam-foil interaction

    NASA Astrophysics Data System (ADS)

    Mishra, Adya P.; Nandi, T.; Jagatap, B. N.

    2013-03-01

    The formation of projectile-like M2555n ion during bombardment of a thin carbon foil by V12+2351 ion beam of energies above the Coulomb barrier is inferred through the observation of unresolved 1s2pP2o3→1sS01 and 1s2pP0o3→1sS01 transitions of He-like Mn at 6.14 keV. From the decay of intensity of this line the measured radiative lifetime of the upper state is found to be 78.7±11.6 ps which is close to the theoretical lifetime of the 1s2pP0o3 state (86.18 ps), but substantially lower than that of 1s2pP2o3 state (147.1 ps). This suggests that the 1s2pP0o3 state is populated more than the 1s2pP2o3 state when He-like Mn exits the carbon foil. This behavior is explained on the basis of radiative resonant energy transfer process in beam-foil excitation as reported recently (Nandi T, et al. J Quant Spectrosc Radiat Transfer 2012;113:783-8).

  12. Instrumentation for measurement of in-flight annihilations of 130 keV antiprotons on thin target foils

    NASA Astrophysics Data System (ADS)

    Todoroki, K.; Barna, D.; Hayano, R. S.; Aghai-Khozani, H.; Sótér, A.; Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Venturelli, L.; Prest, V.; Vallazza, L.; De Salvador, D.; Hori, M.

    2016-11-01

    We describe the instrumentation for an experiment to measure the cross sections of antiprotons with kinetic energies of 130±10 keV annihilating on carbon, palladium, and platinum target foils of sub-100 nm thicknesses. A 120 ns long pulsed beam containing 105 -106 antiprotons was allowed to traverse the foils, and the signal annihilations that resulted from this were isolated using a time-of-flight method. Backgrounds arose from Rutherford scattering of the antiprotons off the target foils, their annihilations in the target chamber walls, and π → μ → e decay of the charged pions that emerged from the annihilations. Some antiprotons slowed down and annihilated in the contamination on the target surfaces. This reduced the signal-to-background ratio of the measurement.

  13. Actinide Foil Production for MPACT Research

    SciTech Connect

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  14. Insulating effectiveness of self-spacing dimpled foil

    NASA Technical Reports Server (NTRS)

    Bond, J. A.

    1972-01-01

    Experimental data are graphed for determining conductive heat losses of multilayer insulation as function of number of foil layers. Foil was 0.0051 cm thick Nb, 1% Zr refractory alloy, dimpled to 0.0254 cm with approximately 28 dimples/sq cm. Heat losses were determined at 0.1 microtorr between 700 and 1089 K.

  15. ORIC stripping foil positioner for tandem beam injection

    SciTech Connect

    Ludemann, C.A.; Lord, R.S.; Hudson, E.D.; Irwin, F.; Beckers, R.M.; Haynes, D.L.; Casstevens, B.J.; Mosko, S.W.

    1981-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) is used as an energy booster for heavy ions from a 25 MV tandem accelerator. This operation requires precise placement of a stripping foil in the cyclotron for capture of the injected ions into an acceleration orbit. The mechanical design and control of the foil positioning device are described.

  16. Foil fabrication for the ROMANO event. Revision 1

    SciTech Connect

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-06-13

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections.

  17. Gas Foil Bearing Misalignment and Unbalance Effects

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground

  18. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  19. Qualification of diode foil materials for excimer lasers

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  20. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  1. Large-area beryllium metal foils

    NASA Astrophysics Data System (ADS)

    Stoner, J. O., Jr.

    1997-02-01

    To manufacture beryllium filters having diameters up to 82 mm and thicknesses in the range 0.1-1 μm, it was necessary to construct apparatus in which the metal could safely be evaporated, and then to find an acceptable substrate and evaporation procedure. The metal was evaporated resistively from a tantalum dimple boat mounted in a baffled enclosure that could be placed in a conventional vacuum bell jar, obviating the need for a dedicated complete vacuum system. Substrates were 102 mm × 127 mm × 0.05 mm cleaved mica sheets, coated with 0.1 μm of NaCl, then with approximately 50 μg/cm 2 of cellulose nitrate. These were mounted on poly(methyl methacrylate) sheets 3 mm thick that were in turn clamped to a massive aluminum block for thermal stability. Details of the processes for evaporation, float off, and mounting are given, and the resulting foils described.

  2. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2001-06-28

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. The SWC is in its infancy; however, interest from the petroleum and natural gas industry has grown substantially during this reporting period. As of December 31, 2000, nineteen members have joined the consortium and several other companies have expressed interest. During the last three months, efforts were focused on the development of the necessary infrastructure and membership base to begin the consortium technology development activities. These efforts included: (1) preparing a draft constitution and bylaws, (2) developing draft membership application forms, (3) developing an intellectual property statement, (4) providing overview presentations to trade association meetings, and (5) marketing the consortium individually to potential members. These activities are discussed in further detail in this first quarterly technical progress report.

  3. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-05-10

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eleventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting the Spring SWC meeting in Pearl River, New York, (2) working with successful applicants and Penn State's Office of Sponsored Research to get subcontracts in place, and (3) planning three SWC technology transfer meetings to take place in the fall of 2003. During this reporting period, the efforts were focused primarily on the organizing and hosting the SWC Spring proposal meeting and organizing the fall technology transfer meetings.

  4. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison

    2005-08-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the nineteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) deliver a keynote luncheon address to the 16th Annual Oil Recovery Conference in Wichita, Kansas, (2) participated in the Interstate Oil & Gas Compact Commission's (IOGCC) Midyear Issues Summit in Anchorage, Alaska, (3) completed and distributed the SWC technical bulletin ''Keeping the Home Wells Flowing: Helping Small Independent Oil and Gas Producers Develop New Technology Solutions'', and (4) completed the primary filming of the Public Broadcast of ''Independent Oil: Rediscovering America's Forgotten Wells''.

  5. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-06-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Develop and process subcontract awards for the nine projects selected at the 2006 Spring meeting; (2) Continue distribution of the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) Improving communications; (4) New member recruitment; (5) Identify SWC projects to be showcased for booth exhibition, preparing an exhibit, promoting and marketing for the 2006 Oklahoma Oil and Gas Trade Expo organized by the OK Marginal Well Commission, Oklahoma City, OK; and (6) Identify projects and draft agenda for the fall technical workshop in Pittsburgh, PA.

  6. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect

    Joel L. Morrison

    2004-05-10

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the tenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) release of the 2003 request-for-proposal (RFP), (2) planning the spring SWC meeting in Pearl River New York, and (3) tentatively plan the SWC 2003 fall technology transfer meetings. During this reporting period, the efforts were focused primarily on the organizing and hosting the fall technology transfer meetings. Simultaneously, administrative issues such as modifying the SWC Constitution and By-Laws and creating a block membership tier to promote further industrial involvement were areas of concentration. The SWC is poised to enter its third year with a growing, diversifying membership.

  7. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    NASA Astrophysics Data System (ADS)

    Vivek, A.; Hansen, S. R.; Daehn, Glenn S.

    2014-07-01

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  8. High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness.

    PubMed

    Vivek, A; Hansen, S R; Daehn, Glenn S

    2014-07-01

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment. PMID:25085167

  9. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    SciTech Connect

    Vivek, A. Hansen, S. R.; Daehn, Glenn S.

    2014-07-15

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  10. Numerical Investigation of Finite Aspect-Ratio Flapping Foils

    NASA Astrophysics Data System (ADS)

    Mittal, R.; Najjar, F.; Bozkurttas, M.

    2003-11-01

    Most wings and fins found in nature tend to be of low aspect-ratio. However, despite this preponderence of low aspect-ratio foils in nature, most experimental and numerical studies in this area of bio-hydrodynamics have focussed on examining infinite aspect-ratio flapping foils. Here we have used numerical simulations to investigate the flow associated with finite aspect-ratio foils. Particular focus of the study is on examining the effect of aspect-ratio on the thrust chracteristics and the wake topology of the foil. The simulations employ a newly developed Cartesian grid method which allows us to simulate flows with complex three-dimensional bodies on fixed Cartesian grids. The simulations indicate that the wake topology of these relatively low aspect-ratio foils is significantly different from that observed for infinite-aspect-ratio foils. The simulations also allow us to assess the advantage/disadvantage that the lower aspect ratio might confer on the performance of a flapping foil. Results from this study will be presented.

  11. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  12. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  13. Experimental evidence of beam-foil plasma creation during ion-solid interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Nandi, Tapan

    2016-08-01

    Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion-solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance between charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion-solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.

  14. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2009-12-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  15. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2010-03-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  16. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  17. Mechanical properties of micro- and nanocrystalline diamond foils

    PubMed Central

    Lodes, M. A.; Kachold, F. S.; Rosiwal, S. M.

    2015-01-01

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  18. Functional multi-band THz meta-foils

    PubMed Central

    Wu, Jianfeng; Moser, Herbert O.; Xu, Su; Jian, Linke; Banas, Agnieszka; Banas, Krzysztof; Chen, Hongsheng; Bettiol, Andrew A.; Breese, Mark B. H.

    2013-01-01

    In this paper, we present the first experimental demonstration of double- and triple-band negative refraction index meta-foils in the terahertz (THz) region. Multi-band meta-foils constructed by multi-cell S-string resonators in a single structure exhibit simultaneously negative permittivity and negative permeability responses at multiple frequencies. The phenomena are confirmed by numerical simulations and Fourier transform infrared spectroscopy measurements. The flexible, freestanding multi-band meta-foils provide a promising candidate for the development of multi-frequency THz materials and devices. PMID:24346309

  19. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  20. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  1. Synchronization and Phase Dynamics of Oscillating Foils

    NASA Astrophysics Data System (ADS)

    Finkel, Cyndee L.

    In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is

  2. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    USGS Publications Warehouse

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field

  3. Characterization of Electrodeposited Technetium on Gold Foil

    SciTech Connect

    Mausolf, Edward; Poineau, Frederic; Hartmann, Thomas; Droessler, Janelle; Czerwinski, Ken

    2011-11-17

    The reduction and electrodeposition of TcO{sub 4}{sup -} on a smooth gold foil electrode with an exposed area of 0.25 cm{sup 2} was performed in 1 M H{sub 2}SO{sub 4} supporting electrolyte using bulk electrolysis with a constant current density of 1.0 A/cm{sup 2} at a potential of -2.0 V. Significant hydrogen evolution accompanied the formation of Tc deposits. Tc concentrations consisted of 0.01 M and 2 x 10{sup -3} M and were electrodeposited over various times. Deposited fractions of Tc were characterized by powder x-ray diffraction, x-ray absorption fine structure spectroscopy, and scanning electron microscopy with the capability to measure semiquantitative elemental compositions by energy-dispersive x-ray emission spectroscopy. Results indicate the presence of Tc metal on all samples as the primary electrodeposited constituent for all deposition times and Tc concentrations. Thin films of Tc have been observed followed by the formation of beads that are removable by scratching. After 2000, the quantity of Tc removed from solution and deposited was 0.64 mg Tc per cm{sup 2}. The solution, after electrodeposition, showed characteristic absorbances near 500 nm corresponding to hydrolyzed Tc(IV) produced during deposition of Tc metal. No detectable Tc(IV) was deposited to the cathode.

  4. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  5. Stratification in Al and Cu foils exploded in vacuum

    SciTech Connect

    Baksht, R. B.; Rousskikh, A. G.; Zhigalin, A. S.; Artyomov, A. P.; Oreshkin, V. I.

    2015-10-15

    An experiment with exploding foils was carried out at a current density of 0.7 × 10{sup 8} A/cm{sup 2} through the foil with a current density rise rate of about 10{sup 15} A/cm{sup 2} s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20–26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ∼(5–9) × 10{sup 3} cm/s. It is supposed that the most probable reason for the stratification is the thermal instability that develops due to an increase in the resistivity of the metal with temperature.

  6. Planar Foil MRT Instability Measurements Using a 1-MA LTD

    NASA Astrophysics Data System (ADS)

    Zier, J. C.; Chalenski, D. A.; Patel, S. G.; French, D. M.; Gilgenbach, R. M.; Gomez, M. R.; Lau, Y. Y.; Steiner, A. M.; Rittersdorf, I. M.; Weis, M. R.; Mazarakis, M. G.; Lopez, M. R.; Cuneo, M. E.

    2011-10-01

    Initial dynamic load experiments were performed on UM's 1-MA linear transformer driver (LTD) facility, MAIZE, to characterize magneto-Rayleigh-Taylor (MRT) instability growth and plasma dynamics on planar-foil plasmas. The loads utilized a double current return plate geometry with a 400 nm-thick Al foil positioned between the return plates. Magnetic pressure accelerated the foil plasma to drive MRT instability that was measured using shadowgraphy. Plasma dynamics were observed to be dominated by an initial expansion phase where both foil interfaces were found to be MRT unstable with 85-105 ns e-folding times. This research was supported by US DoE award number DE-SC0002590, US DoE through SNL award numbers 240985 and 768225 to UM, and from NSF award number PHY 0903340 to UM. JC Zier and SG Patel were supported by NPSC fellowships through SNL.

  7. Study of a gold-foil-based multisphere neutron spectrometer.

    PubMed

    Wang, Z; Hutchinson, J D; Hertel, N E; Burgett, E; Howell, R M

    2008-01-01

    Multisphere neutron spectrometers with active thermal neutron detectors cannot be used in high-intensity radiation fields due to pulse pile-up and dead-time effects. Thus, a multisphere spectrometer using a passive detection system, specifically gold foils, has been investigated in this work. The responses of a gold-foil-based Bonner sphere neutron spectrometer were studied for two different gold-foil holder designs; an aluminium-polyethylene holder and a polyethylene holder. The responses of the two designs were calculated for four incident neutron beam directions, namely, parallel, perpendicular and at +/-45 degrees relative to the flat surface of the foil. It was found that the use of polyethylene holder resulted in a more isotropic response to neutrons for the four incident directions considered. The computed responses were verified by measuring the neutron spectrum of a 252Cf source with known strength.

  8. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  9. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  10. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  11. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition

  12. Fluid-film foil bearings control engine heat

    NASA Astrophysics Data System (ADS)

    O'Connor, Leo

    1993-05-01

    The state-of-the-art of fluid-film foil bearings and their current and prospective applications are briefly reviewed. In particular, attention is given to the general design of fluid-film foil bearings, the materials used, and bearing performance. The applications discussed include launch vehicle turbopumps, turbines used to cool aircraft cabins, and turbocompressors and turboexpanders used in the processing of cryogenic fluids. Future applications may include turbochargers, textile spindles, cryocoolers, motor blowers, heat pumps, and solar chillers.

  13. Evidence of muonium formation using thin gold foils in vacuum

    NASA Technical Reports Server (NTRS)

    Barnett, B. A.; Chang, C. Y.; Steinberg, P.; Yodh, G. B.; Orr, H. D.; Carroll, J. B.; Eckhause, M.; Kane, J. R.; Spence, C. B.; Hsieh, C. S.

    1977-01-01

    The production of thermal muonium in a vacuum region has been investigated using an array of 200 thin (about 1000 A thick) gold foils exposed to a stopping positive-muon beam. By examining the observed time dependence of the positive-muon decay spectra in various transverse magnetic field, it is estimated that the lower limit of the probability of muonium formation by these gold foils placed in vacuum was 0.28 plus or minus 0.05.

  14. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    PubMed

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of <0.008±0.006  dB/cm. Finally we demonstrate the successful cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives. PMID:27139854

  15. FeN foils by nitrogen ion-implantation

    SciTech Connect

    Jiang, Yanfeng; Wang, Jian-Ping; Al Mehedi, Md; Fu, Engang; Wang, Yongqiang

    2014-05-07

    Iron nitride samples in foil shape (free standing, 500 nm in thickness) were prepared by a nitrogen ion-implantation method. To facilitate phase transformation, the samples were bonded on the substrate followed by a post-annealing step. By using two different substrates, single crystal Si and GaAs, structural and magnetic properties of iron nitride foil samples prepared with different nitrogen ion fluences were characterized. α″-Fe{sub 16}N{sub 2} phase in iron nitride foil samples was obtained and confirmed by the proposed approach. A hard magnetic property with coercivity up to 780 Oe was achieved for the FeN foil samples bonded on Si substrate. The feasibility of using nitrogen ion implantation techniques to prepare FeN foil samples up to 500 nm thickness with a stable martensitic phase under high ion fluences has been demonstrated. A possible mechanism was proposed to explain this result. This proposed method could potentially be an alternative route to prepare rare-earth-free FeN bulk magnets by stacking and pressing multiple free-standing thick α″-Fe{sub 16}N{sub 2} foils together.

  16. Globally shed wakes for three distinct retracting foil geometries

    NASA Astrophysics Data System (ADS)

    Steele, Stephanie; Triantafyllou, Michael

    2015-11-01

    In quickly retracting foils at an angle of attack, the boundary layer vorticity along with the added mass energy is immediately and globally shed from the body into the surrounding fluid. The deposited vorticity quickly reforms into lasting vortex structures, which could be used for purposes such as manipulating or exploiting the produced flow structures by additional bodies in the fluid. The globally shed wake thus entrains the added mass energy provided by the initially moving body, reflected by the value of the circulation left in the wake. In studying experimentally as well as numerically this phenomenon, we find that the three different tested geometries leave behind distinct wakes. Retracting a square-ended foil is undesirable because the deposited wake is complicated by three-dimensional ring vorticity effects. Retracting a tapered, streamlined-tipped foil is also undesirable because the shape-changing aspect of the foil geometry actually induces energy recovery back to the retracting foil, leaving a less energetic globally shed wake. Finally, a retracting hollow foil geometry avoids both of these detrimental effects, leaving relatively simple, yet energetic, vortex structures in the wake.

  17. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique.

    PubMed

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2014-03-19

    In this study, we developed a novel electrospray ionization (ESI) technique based on household aluminum foil (Al foil) and demonstated the desirable features and applications of this technique. Al foil can be readily cut and folded into desired configuration for effective ionization and for holding sample solution in bulk to allowing acquisition of durable ion signals. The present technique was demonstrated to be applicable in analysis of a wide variety of samples, ranging from pure chemical and biological compounds, e.g., organic compounds and proteins, to complex samples in liquid, semi-solid, and solid states, e.g., beverages, skincare cream, and herbal medicines. The inert, hydrophobic and impermeable surface of Al foil allows convenient and effective on-target extraction of solid samples and on-target sample clean-up, i.e., removal of salts and detergents from proteins and peptides, extending ESI device from usually only for sample loading and ionization to including sample processing. Moreover, Al foil is an excellent heat-conductor and highly heat-tolerant, permitting direct monitoring of thermal reactions, e.g., thermal denaturation of proteins. Overall, the present study showed that Al-foil ESI could be an economical and versatile method that allows a wide range of applications. PMID:24594810

  18. SU-E-T-151: Enhanced Radiation Attenuation with Multi-Layer Foils

    SciTech Connect

    Warmington, L; Watanabe, Y

    2014-06-01

    Purpose: To evaluate the effect of increasing the number of thin high Z foils on the dose enhancement and the overall radiation attenuation with a 24MV photon beam. Methods: DOSXYZnrc was used to perform Monte Carlo simulations of multi-layer lead foil configurations. The foil size was 7cm x 7cm. and the foil thickness was adjusted to give a combined thickness of 1mm. The number of foils used was 4, 6, 8, and 10. The separation between foils was also varied from 3 to 9 mm. The Mohan 24MV energy spectrum was used as a photon source. The field size was 5cm x 5cm and SSD was 100 cm. The phantom size was 16cm × 16cm × 28cm. The number of histories ranged from 1 to 2 billion. The percentage difference of the dose between the medium with foils and the homogeneous water was computed along the beam axis. The minimum dose enhancement and the change of integrated dose between the foils were determined. Results: Increasing the number of foils resulted in a decrease in the minimum dose enhancement. The highest dose region occurred in the last section for the 4 and 6 foil cases, whereas the 8 and 10 foil configurations showed the maximum dose region towards the center of the foil group. Increasing the number of foils increased the total integrated dose between foils. For example, the total integrated dose increase between the first and the last foils with a 3mm foil separation were 34.2, 43.4, 57.4, and 64.7% for 4, 6, 8 and 10 foils, respectively. Conclusion: This work showed the degree of dose enhancement around multiple thin lead foils. The results suggest that the total attenuation of photon beam can be increased by increasing the number of foils with a fixed total foil thickness.

  19. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tin-coated lead foil capsules for wine bottles. 189... lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin layer of tin. Tin-coated lead foil has been used as a capsule (i.e., as...

  20. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  1. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  2. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terry; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Wood, Gary; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to

  3. Methods for the recovery of sulfur components from flue gas and recycle sodium sulfite by reduction-smelting and carbonating to strip hydrogen sulfide

    SciTech Connect

    Farin, W.G.

    1980-12-23

    An improved method for recovering sulfur from flue gas which contains sulfur dioxide formed from burning sulfur containing fuels is disclosed. The method first involves the reduction burning of auxilary fuel in the presence of sodium sulfite to convert it to smelt containing sodium sulfide and sodium carbonate. The smelt is dissolved, and the solution reacted with carbon dioxide, hydrogen sulfide and water vapor forming sodium hydrosulfide. The sodium hydrosulfide is reacted with a high concentration of recycled sodium bicarbonate and stripped with carbon dioxide to form sodium carbonate and release the sulfides as hydrogen sulfide from the stripper. The hydrogen sulfide released is then converted to sulfur dioxide, sulfuric acid or elemental sulfur. Pressurized carbon dioxide is used for pressure carbonation of recycled solution from the stripper to convert the sodium carbonate to the high concentration of recycled sodium bicarbonate used for stripping. The sodium carbonate and sodium bicarbonate from the stripper are reacted under pressure with sodium bisulfite in a decarbonator to form sodium sulfite and release carbon dioxide under pressure for use in the pressure carbonation. A portion of the sodium sulfite formed by decarbonation is then reduced in the smelter. The balance of the sodium sulfite is then used for absorption of the sulfur dioxide from the flue gas forming the sodium bisulfite used for decarbonation.

  4. Evaluation of the Brinecell{reg_sign} electrochemical oxidation unit for destruction of noncyanide strippers and other colored compounds in wastewaters

    SciTech Connect

    Wikoff, P.M.; Suciu, D.F.

    1994-08-01

    The noncyanide strippers used in the plating operations at Kelly Air Force Base, in San Antonio, Texas, develop an intense red color during use. Currently, the spent strippers cannot be treated in the Industrial Wastewater Treatment Plant because, even after biological treatment, the color remains too high for discharge. The Brinecell{reg_sign} process was evaluated for its application in treating the spent stripping solutions. The Brinecell{reg_sign} produces strong oxidizing agents that could treat the color causing compounds. The Brinecell{reg_sign} process was used to treat a 1 to 400 dilution of spent Clepo 204-T at 50 C and 60 g/L salt. After 8 hours of treatment, the color remaining was 8 units and the solution appeared colorless. Treatment of the Metalx B-9 reduced the color to 60 units. The effect of salt concentration, solution temperature, and solution pH was evaluated on the Brinecell{reg_sign} treatment process.

  5. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  6. Misalignment in Gas Foil Journal Bearings: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.

  7. Nanowire LEDs grown directly on flexible metal foil

    NASA Astrophysics Data System (ADS)

    May, Brelon J.; Sarwar, A. T. M. Golam; Myers, Roberto C.

    2016-04-01

    Using molecular beam epitaxy, self-assembled AlGaN nanowires are grown directly on Ta and Ti foils. Scanning electron microscopy shows that the nanowires are locally textured with the underlying metallic grains. Photoluminescence spectra of GaN nanowires grown on metal foils are comparable to GaN nanowires grown on single crystal Si wafers. Similarly, photoluminescence lifetimes do not vary significantly between these samples. Operational AlGaN light emitting diodes are grown directly on flexible Ta foil with an electroluminescence peak emission of ˜350 nm and a turn-on voltage of ˜5 V. These results pave the way for roll-to-roll manufacturing of solid state optoelectronics.

  8. Laser shock microforming of aluminum foil with fs laser

    NASA Astrophysics Data System (ADS)

    Ye, Yunxia; Feng, Yayun; Xuan, Ting; Hua, Xijun; Hua, Yinqun

    2014-12-01

    Laser shock microforming of Aluminum(Al) foil through fs laser has been researched in this paper. The influences of confining layer, clamping method and impact times on induced dent depths were investigated experimentally. Microstructure of fs laser shock forming Al foil was observed through Transmission electron microscopy (TEM). Under the condition of tightly clamping, the dent depths increase with impact times and finally tend to saturating. Another new confining layer, the main component of which is polypropylene, was applied and the confining effect of it is better because of its higher impedance. TEM results show that dislocation is one of the main deformation mechanisms of fs laser shock forming Al foil. Specially, most of dislocations exist in the form of short and discrete dislocation lines. Parallel straight dislocation slip line also were observed. We analyzed that these unique dislocation arrangements are due to fs laser-induced ultra high strain rate.

  9. Observation of beam-induced changes in the polarization of Balmer-{alpha} radiation emitted following beam--tilted-foil transmission

    SciTech Connect

    Harper, D.L.; Albridge, R.G.; Tolk, N.H.; Qi, W.; Allred, D.D.; Knight, L.V.

    1995-12-01

    Measurements of the circular polarization of Balmer-{alpha} radiation emitted by excited hydrogen atoms, following the transmission of (20--50)-keV protons through thin, tilted amorphous carbon foils, exhibit markedly unexpected behavior as a function of exposure of the foil to the proton beam. Specifically, the circular polarization changes from an initially well understood tilt-angle dependence to a behavior which, for low tilt angles, gives the {ital opposite} {ital handedness} {ital of} {ital circular} {ital polarization} from that predicted. In addition, the degree of alignment, indicated by the linear Stokes parameter {ital M}/{ital I}, is enhanced also as a function of dose. These changes in the tilt-angle dependence of the Stokes parameters have been systematically correlated with beam-induced graphitization of the foil, which is observed to occur from Raman measurements.

  10. Fabrication of antiferroelectric PLZT films on metal foils.

    SciTech Connect

    Ma, B.; Kwon, D.-K.; Narayanan, M.; Balachandran, U.; Energy Systems

    2009-01-01

    Fabrication of high-dielectric-strength antiferroelectric (AFE) films on metallic foils is technically important for advanced power electronics. To that end, we have deposited crack-free Pb{sub 0.92}La{sub 0.08}Zr{sub 0.95}Ti{sub 0.05}O{sub 3} (PLZT 8/95/5) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was coated by chemical solution deposition on the nickel foil before the deposition of PLZT. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be processed in air. With the PLZT 8/95/5 deposited on LNO-buffered Ni foils, we observed field- and thermal-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, E{sub AF} = 225 kV/cm, and the reverse phase transition field, E{sub FA} = 190 kV/cm, were measured at room temperature on a {approx}1.15 {micro}m-thick PLZT 8/95/5 film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were {approx}600 and {approx}730, respectively, with dielectric loss {approx}0.04 at room temperature. The Curie temperature was {approx}210 C. The thermal-induced transition of AFE-to-FE phase occurred at {approx}175 C. Breakdown field strength of 1.2 MV/cm was measured at room temperature.

  11. Fabrication of antiferroelectric PLZT films on metal foils

    SciTech Connect

    Ma Beihai Kwon, Do-Kyun; Narayanan, Manoj; Balachandran, U.

    2009-01-08

    Fabrication of high-dielectric-strength antiferroelectric (AFE) films on metallic foils is technically important for advanced power electronics. To that end, we have deposited crack-free Pb{sub 0.92}La{sub 0.08}Zr{sub 0.95}Ti{sub 0.05}O{sub 3} (PLZT 8/95/5) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was coated by chemical solution deposition on the nickel foil before the deposition of PLZT. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be processed in air. With the PLZT 8/95/5 deposited on LNO-buffered Ni foils, we observed field- and thermal-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, E{sub AF} = 225 kV/cm, and the reverse phase transition field, E{sub FA} = 190 kV/cm, were measured at room temperature on a {approx}1.15 {mu}m-thick PLZT 8/95/5 film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were {approx}600 and {approx}730, respectively, with dielectric loss {approx}0.04 at room temperature. The Curie temperature was {approx}210 deg. C. The thermal-induced transition of AFE-to-FE phase occurred at {approx}175 deg. C. Breakdown field strength of 1.2 MV/cm was measured at room temperature.

  12. H Ly-alpha transmittance of thin foils of C, Si/C, and Al/C for keV particle detectors

    NASA Technical Reports Server (NTRS)

    Drake, V. A.; Sandel, B. R.; Jenkins, D. G.; Hsieh, K. C.

    1992-01-01

    A class of instruments designed for remote sensing of space plasmas by measuring energetic neutral atoms (ENA) uses a thin foil as both a signal generator and a light shield. An ENA imager must look directly at the ENA source region, which is also usually an intense source of H Ly-alpha (1216 A) photons. It is desirable to minimize the energy threshold for ENA detectors, at the same time maximizing the blocking of H Ly-alpha. Optimizing filter design to meet these two contrary requirements has led us to measure the transmittance of thin C, Si/C, and Al/C foils at H Ly-alpha. Our results indicate that (1) transmittance of less than 0.0007 can be achieved with 7 micro-g/sq cm Si on 1.7 micro-g/sq cm C; (2) an Si/C composite foil with a thin carbon layer is more effective in blocking UV radiation while having the lowest energy threshold of all the foils measured; and (3) transmittance of Si/C foils of known Si and C thicknesses cannot be accurately predicted, but must be measured.

  13. Method and apparatus for tensile testing of metal foil

    NASA Technical Reports Server (NTRS)

    Wade, O. W. (Inventor)

    1976-01-01

    A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box.

  14. Effect of Smoked Foil Thickness and Location on Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Chung, K. M.; Wen, C. S.

    Smoked foil has been employed to visualize triple point pattern (or cell width), indicating detonation phenomena. However, the aluminum sheet also corresponds to sudden contraction in a smooth tube. It might induce early trigger on detonation initiation and result in a reduction in deflagration-to-detonation transition (DDT) run-up distance. Test results showed the thickness of aluminum sheet of less than 1.3 mm is required to eliminate the effect of smoked foil. A reduction in Xdtt is observed when the thickness of aluminum sheet increases.

  15. Prediction of forming limit strains of thin foils using shim

    NASA Astrophysics Data System (ADS)

    Joshi, Sanket Vivek; Bade, Rohit A.; Narasimhan, K.

    2013-12-01

    Thin foils of metallic alloys find utility in metallic thermal protection systems, such as honeycomb structures. Understanding the formability of these thin foils becomes imperative so as to design accurate tooling and also to ensure mechanical robustness of the honeycomb structures during service. It has been found that, obtaining the precise limit strains of these foils directly using the conventional limiting dome test tooling is difficult, because of the excessive draw in and wrinkling that occurs during the punch travel, resulting in erroneous measurement or prediction of limit strains. To address this issue, the blank over blank stacking methodology was developed, which helped keep the draw-in and wrinkling at negligible and thus acceptable levels. Although the blank over blank stacking methodology offers a way to predict and measure limit strains, the same may not be accurate enough due to the effect the substrate properties may impose on the thin foil. To avoid this effect, a different methodology has been proposed herein, which uses a shim stacked over the blank to avoid draw in of these foil blanks and thus help accurate clamping of the blank between the die and blank holder. It is thus understood that either a critical local or global increase in the thickness of the blank material in and around the draw bead is essential to obtain effective clamping of foil and to avoid draw-in and wrinkling. Although, miniaturized hemispherical dome tests may be beneficial for obtaining limit strains as far as foils are concerned, the methodologies proposed herein provide a route to obtaining the same using available equipment, thus saving resources and time involved in development of new miniaturized testing devices. The forming limit strains of thin foils of IN 718 (inconel) alloy having a thickness of 50μm, C263 (nimonic) alloy having a thickness of 100μm and CP Ti (commercially pure titanium) having a thickness of 200μm have been predicted using this methodology

  16. Simulation of the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin foils

    SciTech Connect

    Barriga-Carrasco, Manuel D.; Garcia-Molina, Rafael

    2004-09-01

    This work presents the results of computer simulations for the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin amorphous carbon foils, for a broad range of incident energies. A detailed description of the projectile motion through the target has been done, including nuclear scattering and Coulomb repulsion as well as electronic self-retarding and wake forces; the two latter are calculated in the dielectric formalism framework. Differences in the energy spectra of recombined and original transmitted H{sub 2}{sup +} molecular ions clearly appear in the simulations, in agreement with the available experimental data. Our simulation code also differentiates the contributions due to original and to recombined H{sub 2}{sup +} molecular ions when the energy spectra contain both contributions, a feature that could be used for experimental purposes in estimating the ratio between the number of original and recombined H{sub 2}{sup +} molecular ions transmitted through thin foils.

  17. Use of sputtered zinc oxide film on aluminium foil substrate to produce a flexible and low profile ultrasonic transducer.

    PubMed

    Hou, Ruozhou; Fu, Yong Qing; Hutson, David; Zhao, Chao; Gimenez, Esteban; Kirk, Katherine J

    2016-05-01

    A flexible and low profile ultrasonic transducer was fabricated for non-destructive testing (NDT) applications by DC sputtering of 3 μm thick, c-axis oriented, ZnO film on 50 μm aluminium foil. Due to the thin foil-based construction, the transducer can be applied to curved objects and used in sites of restricted accessibility. The device has been used to demonstrate detection of simulated defects in a 45 mm diameter steel pipe, and for thickness measurement on a 3.1 mm thick flat carbon steel plate. Centre frequency measured on the flat plate was 24-29 MHz, with -6 dB bandwidth 4-7 MHz. The pulse duration depended on the couplant, at best 3 cycles or 0.12 μs using SONO Ultragel or epoxy couplant. Transducer performance was found to be comparable to a commercial 10 MHz piezoelectric ultrasonic transducer. PMID:26913377

  18. Spectral content of buried Ag foils at 1016 W/cm2 laser illuminationa)

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Maddox, B. R.; Park, H.-S.; Prisbrey, S.; Remington, B. A.

    2014-11-01

    Sources of 5-12 keV thermal Heα x-rays are readily generated by laser irradiation of mid-Z foils at intensities >1014 W/cm2, and are widely used as probes for inertial confinement fusion and high-energy-density experiments. Higher energy 17-50 keV x-ray sources are efficiently produced from "cold" Kα emission using short pulse, petawatt lasers at intensities >1018 W/cm2 [H.-S. Park, B. R. Maddox et al., "High-resolution 17-75 keV backlighters for high energy density experiments," Phys. Plasmas 15(7), 072705 (2008); B. R. Maddox, H. S. Park, B. A. Remington et al., "Absolute measurements of x-ray backlighter sources at energies above 10 keV," Phys. Plasmas 18(5), 056709 (2011)]. However, when long pulse (>1 ns) lasers are used with Z > 30 elements, the spectrum contains contributions from both K shell transitions and from ionized atomic states. Here we show that by sandwiching a silver foil between layers of high-density carbon, the ratio of Kα:Heα in the x-ray spectrum is significant increased over directly illuminated Ag foils, with narrower lines from K-shell transitions. Additionally, the emission volume is more localized for the sandwiched target, producing a more planar x-ray sheet. This technique may be useful for generating probes requiring spectral purity and a limited spatial extent, for example, in incoherent x-ray Thomson scattering experiments.

  19. Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2007-01-01

    Foil gas bearings are self-acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost top foil layer traps a gas pressure film that supports a load while a layer or layers underneath provide an elastic foundation. Foil bearings are used in many lightly loaded, high-speed turbo-machines such as compressors used for aircraft pressurization, and small micro-turbines. Foil gas bearings provide a means to eliminate the oil system leading to reduced weight and enhanced temperature capability. The general lack of familiarity of the foil bearing design and manufacturing process has hindered their widespread dissemination. This paper reviews the publicly available literature to demonstrate the design, fabrication and performance testing of both first and second generation bump style foil bearings. It is anticipated that this paper may serve as an effective starting point for new development activities employing foil bearing technology.

  20. Novel two stage bio-oxidation and chlorination process for high strength hazardous coal carbonization effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas

    2011-05-15

    Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. PMID:21371822

  1. Using Aluminum Foil to Record Structures in Sedimentary Rock.

    ERIC Educational Resources Information Center

    Metz, Robert

    1982-01-01

    Aluminum foil can be used to make impressions of structures preserved in sedimentary rock. The impressions can be projected onto a screen, photographed, or a Plaster of Paris model can be made from them. Impressions of ripple marks, mudcracks, and raindrop impressions are provided in photographs illustrating the technique. (Author/JN)

  2. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  3. Age Differences in Depth of Retrieval: Memory for Foils

    ERIC Educational Resources Information Center

    Jacoby, L.L.; Shimizu, Y.; Velanova, K.; Rhodes, M.G.

    2005-01-01

    Control over memory can be achieved in two ways: by constraining retrieval such that only sought after information comes to mind or, alternatively, by means of post-access monitoring. We used a memory-for-foils paradigm to gain evidence of differences in retrieval constraints. In this paradigm, participants studied words under deep or shallow…

  4. Modified Monkman-Grant relationship for austenitic stainless steel foils

    NASA Astrophysics Data System (ADS)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  5. Fullerene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-09-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  6. Fullurene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2005-03-01

    The paper considers the physical principles of developing the fullerene - oxygen - iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanopartickles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  7. Fullerene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-06-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  8. Tribalism as a Foiled Factor of Africa Nation-Building

    ERIC Educational Resources Information Center

    Okogu, J. O.; Umudjere, S. O.

    2016-01-01

    This paper tends to examine tribalism as a foiled factor on Africa nation-building and proffers useful tips to salvaging the Africa land from this deadly social problem. Africans in times past had suffered enormous attacks, injuries, losses, deaths, destruction of properties and human skills and ideas due to the presence of tribalistic views in…

  9. Geometry-function relationship in meta-foils

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Jian, L. K.; Chen, H. S.; Kalaiselvi, S. M. P.; Virasawmy, S.; Cheng, X. X.; Banas, A.; Banas, K.; Heussler, S. P.; Bahou, M.; Wu, B.-I.; Hua, Wei; Yi, Zhu

    2010-04-01

    Meta-foils are all-metal free-standing electromagnetic metamaterials based on interconnected S-string architecture. They provide a versatile applications' platform. Lacking any substrate or embedding matrix, they feature arrays of parallel upright S-strings with each string longitudinally shifted by half an S compared to its neighbour to form capacitance-inductance loops. Geometric parameters include length a, width b, thickness t, and height h of an S, the gap between adjacent S-strings d, and the periodicity p of the interconnecting lines. Equidistant strings at p=1 form a 1SE meta-foil. Grouped in pairs of gap d, exhibiting a gap dp between pairs, they are named 2SP. Geometric parameters a, b, t, h, d, dp, pS(E or P) and materials' properties like electric conductivity, Young's modulus, thermal expansion coefficient, and heat capacity determine the electromagnetic, mechanical, and thermal properties of meta-foils including the spectral dependence of resonance frequencies, refractive index, transmission, reflection, and bending. We show how the frequency and transmission of left-handed pass-bands depend on a, p, and dp, the pSP geometry exhibiting higher resonance frequency and transmission. Equivalent circuit considerations serve to explain physical reasons. We also demonstrate mechanical behavior versus p and dp justifying the design of a cylindrical hyperlens depending on bent meta-foils.

  10. Validation of calculated self-shielding factors for Rh foils

    NASA Astrophysics Data System (ADS)

    Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.

    2010-10-01

    Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.

  11. Characteristic Differences Between Wire and Foil X-pinches

    NASA Astrophysics Data System (ADS)

    Collins, Gilbert; Valenzuela, Julio; Krasheninnikov, Igor; Beg, Farhat; Wei, Mingsheng

    2015-11-01

    We conducted X-pinch experiments using laser-cut Ni and Cu foils on the 250kA GenASIS current driver at UC San Diego. General Atomics' Laser Micro-Machining (LMM) Center manufactured the X's. To characterize the foil X-pinches, we measured and compared the evolution, emission spectra, yield, and source size of these new arrays to that of comparably massed wire X-pinches on the same driver. Diagnostics included Si PN diodes and diamond PCDs, optical probing, X-ray spectroscopy, an XUV framing camera, a slit-wire camera, and current probes. We used novel structures machined into the crosspoint in an effort to better understand the effects of the initial geometry on the final pinch and to spatially confine the source location. Some designs entirely prohibited pinching. In other designs, when pinching occurred, the sources were comparable to ideal wire shots on GenASIS both in size (at or less than five microns) and X-ray flux (5-10 MW @ 1-10 keV). The data collected here also show considerable differences between successful foil and wire pinches. The X-ray spectra are not identical, and we find that the foil X's produce a single >2.5 keV emission pulse with none of the additional later and longer-lasting hard emission pulses found in wire X-pinches.

  12. Exploding metallic foil fuse modeling at Los Alamos

    SciTech Connect

    Lindemuth, I.R.; Reinovsky, R.E.; Goforth, J.H.

    1989-01-01

    A ''first-principles'' computational model of exploding metallic foil behavior has been developed at Los Alamos. The model couples zero-dimensional magnetohydrodynamics with ohmic heating and electrical circuit equations and uses the Los Alamos SESAME atomic data base computer library to determine the foil material's temperature- and density-dependent pressure, specific energy, and electrical conductivity. The model encompasses many previously successful empirical models and offers plausible physical explanations of phenomena not treated by the empirical models. In addition to addressing the electrical circuit performance of an exploding foil, the model provides information on the temporal evolution of the foil material's density, temperature, pressure, electrical conductivity, and expansion and translational velocities. In this paper, we report the physical insight gained by computational studies of two opening switch concepts being developed for application in an FCG-driven 1-MJ-class imploding plasma z-pinch experiment. The first concept considered is a ''conventional'' electrically exploded fuse, which has been demonstrated to operate at 16 MA driven by the 15-MJ-class FCG to be used in the 1 MJ implosion experiment. The second concept considered is a Type 2 explosively formed fuse (EFF), which has been demonstrated to operate at the 8 MA level by a 1-MJ-class FCG.

  13. Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2009-01-01

    Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.

  14. Exploding metallic foil fuse modeling at Los Alamos

    NASA Astrophysics Data System (ADS)

    Lindemuth, Irvin R.; Reinovsky, Robert E.; Goforth, James H.

    A first-principles computational model of exploding metallic foil behavior was developed at Los Alamos. The model couples zero-dimensional magnetohydrodynamics with ohmic heating and electrical circuit equations and uses the Los Alamos SESAME atomic data base computer library to determine the foil material's temperature- and density-dependent pressure, specific energy, and electrical conductivity. The model encompasses many previously successful empirical models and offers plausible physical explanations of phenomena not treated by the empirical models. In addition to addressing the electrical circuit performance of an exploding foil, the model provides information on the temporal evolution of the foil material's density, temperature, pressure, electrical conductivity, and expansion and translational velocities. The physical insight gained by computational studies of two opening switch concepts being developed for application in an FCG-driven 1-MJ-class imploding plasma z-pinch experiment are reported. The first concept considered is a conventional electrically exploded fuse, which was demonstrated to operate at 16 MA driven by the 15-MJ-class FCG to be used in the 1 MJ implosion experiment. The second concept considered is a Type 2 explosively formed fuse (EFF), which was demonstrated to operate at the 8 MA level by a 1-MJ-class FCG.

  15. Foil bearing performance in liquid nitrogen and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  16. Plastic foils as primary hydrogen standards for nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Rudolph, W.; Bauer, C.; Brankoff, K.; Grambole, D.; Grötzschel, R.; Heiser, C.; Herrmann, F.

    1986-04-01

    Plastic materials like polypropylene, polyester (Mylar) and polycarbonate (Lexan or Makrofol E) contain large amounts of hydrogen and their compositions are well known. However, these materials are not stable during ion bombardment. Using the 1H( 15N,αγ) 12C and 1H( 19F, αγ) 16O nuclear resonance reaction at energies EN = 6.50 MeV and EF = 6.83 MeV, respectively, we have investigated the behaviour of plastic foils during 15N and 19F ion bombardment. By means of a rotating sample holder low current densities of 1-2 {nA}/{cm 2} and large irradiated foil areas of up to 10 cm 2 were realized. Under these measuring conditions the γ-ray yields change only slightly and the initial yields, which correspond to the known compositions of the foils, can be determined with good accuracy. In this way the plastic foils can be used as primary standards for hydrogen content calibration. The method was employed to calibrate an a-Si(H) reference target.

  17. Secret in the Margins: Rutherford's Gold Foil Experiment

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Hanuscin, Deborah L.

    2011-01-01

    In this article, the authors describe a lesson that uses the 5E Learning Cycle to help students not only understand the atomic model but also how Ernest Rutherford helped develop it. The lesson uses Rutherford's gold foil experiment to focus on three aspects of the nature of science: the empirical nature of science, the tentativeness of scientific…

  18. Laser-induced structure formation on stretched polymer foils

    SciTech Connect

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter; Arenholz, Enno

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  19. Large deflection analysis of a tension-foil bearing

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1996-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are as follows: rolling or sliding contact within the bearing has life-limiting consequences; and REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's. CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contacts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exist for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. Recently, a new tension-foil bearing configuration has been proposed for turbomachinery applications.

  20. Precision lifetime measurements of N ii levels with the beam-foil-laser method

    NASA Astrophysics Data System (ADS)

    Baudinet-Robinet, Y.; Garnir, H.-P.; Dumont, P.-D.; Résimont, J.

    1990-08-01

    Precision lifetime measurements using laser excitation of a fast ion beam preexcited in a carbon foil are reported for two levels in N ii. The cascade-free decays of the fluorescence intensities give lifetimes of 0.249+/-0.004 and 0.267+/-0.010 ns for the N ii 2p3d 1F° and 2p3s 1P° levels, respectively. The lifetime result for the 2p3d 1F° level-which is weakly repopulated by long-lived cascades-is in good agreement with beam-foil values and with the theoretical lifetime of McEachran and Cohen [J. Quant. Spectrosc. Radiat. Transfer 27, 119 (1982)]. The lifetime result for the 2p3s 1P ° level-which is strongly repopulated by cascades-differs significantly from most of the previous experimental values but is in good agreement with the theoretical lifetimes of Luken and Sinanoglu [J. Chem. Phys. 64, 3141 (1976)], Beck and Nicolaides [Phys. Lett. 56A, 265 (1976)], McEachran and Cohen, and Fawcett [At. Data Nucl. Data Tables 37, 411 (1987)]. The f-value trend for the 2p2 1D-2p3s 1P° transition along the C i sequence is discussed.

  1. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tin-coated lead foil capsules for wine bottles... Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin...

  2. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGESBeta

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; Gatu Johnson, M.; Bionta, R. M.; Frenje, J. A.

    2016-08-01

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils, with nomore » primary signal saturation.« less

  3. Ink-jet printed colorimetric gas sensors on plastic foil

    NASA Astrophysics Data System (ADS)

    Courbat, Jerome; Briand, Danick; de Rooij, Nico F.

    2010-08-01

    An all polymeric colorimetric gas sensor with its associated electronics for ammonia (NH3) detection targeting low-cost and low-power applications is presented. The gas sensitive layer was inkjet printed on a plastic foil. The use of the foil directly as optical waveguide simplified the fabrication, made the device more cost effective and compatible with large scale fabrication techniques, such as roll to roll processes. Concentrations of 500 ppb of NH3 in nitrogen with 50% of RH were measured with a power consumption of about 868 μW in an optical pulsed mode of operation. Such sensors foresee applications in the field of wireless systems, for environmental and safety monitoring. The fabrication of the planar sensor was based on low temperature processing. The waveguide was made of PEN or PET foil and covered with an ammonia sensitive layer deposited by inkjet printing, which offered a proper and localized deposition of the film. The influence of the substrate temperature and its surface pretreatment were investigated to achieve the optimum deposition parameters for the printed fluid. To improve the light coupling from the light source (LED) to the detectors (photodiodes), polymeric micro-mirrors were patterned in an epoxy resin. With the printing of the colorimetric film and additive patterning of polymeric micro-mirrors on plastic foil, a major step was achieved towards the implementation of full plastic selective gas sensors. The combination with printed OLED and PPD would further lead to an integrated all polymeric optical transducer on plastic foil fully compatible with printed electronics processes.

  4. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-07-31

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  5. Influence of physico-chemical factors on leaching of chemical additives from aluminium foils used for packaging of food materials.

    PubMed

    Ojha, Priyanka; Ojha, C S; Sharma, V P

    2007-01-01

    In recent years, the use of aluminium foils to wrap foodstuff and commodities has been increased to a great extent. Aluminium was found to leach out from the foil in different simulants particularly in distilled water, acidic and alkaline medium at 60 +/- 2 degrees C for 2 hours and 40 +/- 2 degrees C for 24 hours. The migration was found to be above the permissible limit as laid down by WHO guidelines, that is of 0.2 mg/L of water. The protocol used for this study was based on the recommendation of Bureau of Indian Standard regarding the migration of chemical additives from packaging materials used to pack food items. Migration of the aluminium metal was found significantly higher in acidic and aqueous medium in comparison to alcoholic and saline medium. Higher temperature conditions also enhanced the rate of migration of aluminium in acidic and aqueous medium. Leaching of aluminium metal occurred in double distilled water, acetic acid 3%, normal saline and sodium carbonate, except ethanol 8%, in which aluminium migration was below the detection limit of the instrument where three brands of the aluminium foil samples studied.

  6. Measurements of laser generated soft X-ray emission from irradiated gold foils

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Frank, Y.; Raicher, E.; Fraenkel, M.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D.

    2016-11-01

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  7. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    SciTech Connect

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  8. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  9. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  10. Temperature Measurements at Material Interfaces with Thin-Foil Gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike J.; Chapman, David J.; Proud, William G.

    2009-12-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  11. Temperature measurements at material interfaces with thin-foil gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike; Chapman, David; Proud, William

    2009-06-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  12. Reduction of Viologen Bisphosphonate Dihalide with Aluminum Foil

    NASA Astrophysics Data System (ADS)

    Abeta Iyere, Peter

    1996-05-01

    An elegant undergraduate experiment similar to the popular "Iodine Clock Reaction" employs the reduction of methyl viologen by hydroxide ion. A major problem with the hydroxide reduction demonstration is that the mechanism is complicated by the existence of competing reaction pathways. It has been suggested that layered metal viologen phosphonates could be used in the design and construction of molecular materials. The active unit in the reversible photocoloration of these layered materials is the viologen bisphosphonate dihalide (VPX). During our study of these phoshponate systems, we discovered the reduction of viologen bisphosphonate dihalide by aluminum foil, mossy zinc, or magnesium turnings in dilute aqueous hydrofluoric acid solution. When we demonstrated this phenomenon with aluminum foil and VPBr in the classroom, the response of our students was enthusiastic. This demonstration can be used as prelaboratory discussion for an undergraduate kinetic experiment based on the same phenomenon.

  13. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    SciTech Connect

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-03-01

    Understanding fuel foil mechanical properties, and fuel / cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel – cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel / cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results.

  14. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  15. Plasma flow switch and foil implosion experiments on Pegasus 2

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. R.; Forman, P. R.; Gribble, R. F.; Ladish, J. S.; Oona, H.; Parker, J. V.; Scudder, D. W.; Shlachter, J. S.

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground Experiments) program. A goal of the program is to produce an intense (greater than 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  16. Direct drive foil implosion experiments on Pegasus 2

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. F.; Forman, P. R.; Gribble, R. F.; Hockaday, M. Y. P.; Hockaday, R. G.; Ladish, J. S.; Oona, H.; Parker, J. V.

    Pegasus 2 is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos Above Ground Experiments (AGEX) program. The goal of the program is to produce an intense (greater than 100 TW) source of soft x-rays from the thermalization of the KE of a 1 to 10 MJ collapsing plasma source. The radiation pulse should have a maximum duration of several tens of nanoseconds and will be used in the study of fusion conditions and material properties. This paper addresses z-pinch experiments done on a capacitor bank where the radiating plasma source is formed by an imploding annular aluminum foil driven by the J X B forces generated by the current flowing through the foil.

  17. Direct Drive Foil Implosion Experiments on Pegasus II

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. F.; Forman, P. R.; Gribble, R. F.; Hockaday, M. Y. P.; Hockaday, R. G.; Ladish, L. S.; Oona, H.; Parker, J. V.; Shlachter, J. S.; Wysocki, F. J.

    1994-03-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos Above Ground Experiments (AGEX) program. The goal of the program is to produce an intense (>100 TW) source of soft x-rays from the thermalization of the KE of a 1 to 10 MJ collapsing plasma source. The radiation pulse should have a maximum duration of several tens of nanoseconds and will be used in the study of fusion conditions and material properties. This paper addresses z-pinch experiments done on a capacitor bank where the radiating plasma source is formed by an imploding annular aluminum foil driven by the JxB forces generated by the current flowing through the foil.

  18. Silicon Foils Growth by Interface-controlled Crystallization

    NASA Technical Reports Server (NTRS)

    Helmreich, D.

    1984-01-01

    During interface controlled crystallization (ICC) the chance to accelerate the removal of crystallization heat is the basis for high pulling rates of about 100 mm/min. The forced heat flow from the extended crystallization front to a cooling ramp is controlled by a lubricating melt film which also influences the crystallization behavior by suppressing nucleation centers. The basic principles of this full casting technique are presented and the influences of process parameters on the morphology of prepared silicon foils are demonstrated. Three different types of crystalline structure were found in silicon foils grown to ICC technique: dendritic, coarse granular and monocrystalline with (111) 211 orientation. The criteria for their appearance of process variables are discussed.

  19. International Nuclear Target Development Society workshop 1983: proceedings

    SciTech Connect

    Thomas, G.

    1983-01-01

    Separate abstracts were prepared for 11 of the 19 papers presented. Eight papers were previously included in the data base. Discussion group session papers on carbon stripper foils, problems in producing heavy-ion targets, and problems in producing general type targets are included. (WHK)

  20. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  1. Comparison of EXAFS Foil Spectra from Around the World

    SciTech Connect

    Kelly, S. D.; Bare, S. R.; Greenlay, N.; Azevedo, G.; Balasubramanian, M.; Barton, D.; Chattopadhyay, S.; Fakra, S.; Johannessen, B.; Newville, M.; Pena, J.; Pokrovski, G. S; Proux, O.; Priolkar, K.; Ravel, B.; Webb, S. M.

    2010-07-16

    The EXAFS spectra of Cu and Pd foil from many different beamlines and synchrotrons are compared to address the dependence of the amplitude reduction factor (S{sub 0}{sup 2}) on beamline specific parameters. Even though S{sub 0}{sup 2} is the same parameter as the EXAFS coordination number, the value for S{sub 0}{sup 2} is given little attention, and is often unreported. The S{sub 0}{sup 2} often differs for the same material due to beamline and sample attributes, such that no importance is given to S{sub 0}{sup 2}-values within a general range of 0.7 to 1.1. EXAFS beamlines have evolved such that it should now be feasible to use standard S{sub 0}{sup 2} values for all EXAFS measurements of a specific elemental environment. This would allow for the determination of the imaginary energy (Ei) to account for broadening of the EXAFS signal rather than folding these errors into an effective S{sub 0}{sup 2}-value. To test this concept, we model 11 Cu-foil and 6 Pd-foil EXAFS spectra from around the world to compare the difference in S{sub 0}{sup 2}- and Ei-values.

  2. Structure and mechanical properties of foils made of nanocrystalline beryllium

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Semenov, A. A.; Zabrodin, A. V.; Khmelenin, D. N.; Brylev, D. A.; Lizunov, A. V.; Nebera, A. L.; Morozov, I. A.; Anikin, A. S.; Orekhov, A. S.; Kuskova, A. N.; Mishin, V. V.; Seryogin, A. V.

    2016-07-01

    The phase composition and structural features of (45-90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (BeO) of different modifications with tetragonal (sp. gr. P42/ mnm) and hexagonal (sp. gr. P63/ mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries in their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.

  3. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  4. Aluminium contents in baked meats wrapped in aluminium foil.

    PubMed

    Turhan, Sadettin

    2006-12-01

    In this investigation, the effect of cooking treatments (60min at 150°C, 40min at 200°C, and 20min at 250°C) on aluminium contents of meats (beef, water buffalo, mutton, chicken and turkey) baked in aluminium foil were evaluated. Cooking increased the aluminium concentration of both the white and red meats. The increase was 89-378% in red meats and 76-215% in poultry. The least increase (76-115%) was observed in the samples baked for 60min at 150°C, while the highest increase (153-378%) was in samples baked for 20min at 250°C. It was determined that the fat content of meat in addition to the cooking process affected the migration of aluminium (r(2)=0.83; P<0.01). It was also found that raw chicken and turkey breast meat contained higher amounts of aluminium than the raw chicken and turkey leg meat, respectively. Regarding the suggested provisional tolerable daily intake of 1mg Al/kg body weight per day of the FAO/WHO Expert Committee on Food Additives, there are no evident risks to the health of the consumer from using aluminium foil to cook meats. However, eating meals prepared in aluminium foil may carry a risk to the health by adding to other aluminium sources.

  5. Measurement of H{sup {minus}}, H{sup 0}, and H{sup +} yields produced by foil stripping of 800-MeV H{sup {minus}} ions

    SciTech Connect

    Gulley, M.S.; Keating, P.B.; Bryant, H.C.; MacKerrow, E.P.; Miller, W.A.; Rislove, D.C.; Cohen, S.; Donahue, J.B.; Fitzgerald, D.H.; Frankle, S.C.; Funk, D.J.; Hutson, R.L.; Macek, R.J.; Plum, M.A.; Stanciu, N.G.; van Dyck, O.B.; Wilkinson, C.A.; Planner, C.W.

    1996-05-01

    Measurements of H{sup {minus}} stripping and H{sup 0} excited-state production for a wide range of foil thicknesses and experimental conditions are reported. An 800-MeV H{sup {minus}} beam was passed through carbon or aluminum oxide foils of thicknesses ranging from 10 to 550 {mu}g/cm{sup 2} and the excited states produced were analyzed by field stripping in a special magnet downstream of the foil. The foil thicknesses were independently determined. The H{sup 0} atoms emerging in excited states with {ital n}{approx_gt}2 can be stripped to protons in fields of up to 1.3 T. The yield of excited states as a function of foil thickness and the cross sections for the various interactions are presented. The cross-section ratio of double to single ionization of H{sup {minus}} in carbon is found to be (1.8{plus_minus}0.9){percent}. {copyright} {ital 1996 The American Physical Society.}

  6. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  7. Air/Superfund National Technical Guidance Study Series. Comparisons of air-stripper simulations and field-performance data. Final report

    SciTech Connect

    Saunders, G.L.

    1990-02-01

    One of the more common problems noted at Superfund sites is the contamination of ground water by volatile organic compounds (VOCs). One remedial alternative that is used to reduce or remove the VOC contamination from water is air stripping in a tower that uses either packing media or trays. The ability to strip a compound from the water depends on several factors, including the air/water ratio, the packing or tray type, and the Henry's Law value for the compounds of interest. The objective is to remove the VOCs from the water. When being considered for remediation purposes, the air stripper design should be evaluated for removal efficiency and cost of operation. The purpose of the project was to collect available design and operating data on operating air strippers and to input the design and operating parameters into the ASPEN simulator through a user interface program. The results from the ASPEN simulator were compared to the operating data gathered for the sites to determine the relative accuracy of the ASPEN model results when compared with the actual performance data.

  8. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  9. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  10. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  11. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  12. Efficient laser-proton acceleration from an insulating foil with an attached small metal disk

    SciTech Connect

    Otani, Kazuto; Tokita, Shigeki; Nishoji, Toshihiko; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2011-10-17

    Efficient proton acceleration by the interaction of an intense femtosecond laser pulse with a solid foil has been demonstrated. An aluminum coating (thickness: 0.2 {mu}m) on a polyethylene (PE) foil was irradiated at 2 x 10{sup 18} W/cm{sup 2} intensity. The protons from the aluminum-disk (diameter: 150 {mu}m to 15 mm) foil were accelerated to much higher energy in comparison with conventional targets such as PE and aluminum-coated PE foils. The fast electron signal along the foil surface was significantly higher from the aluminum-coated PE foil. The laser-proton acceleration appeared to be affected to the size of surrounding conductive material.

  13. The effect of Sn on the reactions of n-hexane and cyclohexane over polycrystalline Pt foils

    SciTech Connect

    Fujikawa, T.; Ribeiro, F.H.; Somorjai, G.A. |

    1998-08-15

    The modification of the catalytic properties of a polycrystalline platinum foil by the addition of tin was studied by the reactions of n-hexane and cyclohexane in excess H{sub 2}. The reactions were studied at 13.3 kPa of n-hexane, 450 kPa of H{sub 2} and 740 K, and 6.7 kPa of cyclohexane, 450 kPa of H{sub 2} and 573 K. The Pt-Sn catalyst was characterized by Auger electron spectroscopy and by temperature-programmed desorption of CO before and after the reactions. The sites that bind CO most strongly on the Pt foil also have the highest initial turnover rate and are the first ones to be poisoned by carbon deposits from hydrocarbon reactions or by sulfur when a sulfur-containing compound (thiophene) is present in the feed. The addition of tin can block these sites preferentially, thus decreasing the undesirable high initial hydrogenolysis rate of platinum catalysts in reforming reactions and eliminating the need for presulfiding the catalyst. Also, tin suppressed the hydrogenolysis reaction preferentially to the isomerization and cyclization reactions thus increasing the selectivities to isomerization and cyclization. The amount of carbon deposited was smaller on tin containing platinum catalysts during the dehydrogenation of cyclohexane and n-hexane.

  14. Direct observation of spin-like reaction fronts in planar energetic multilayer foils.

    SciTech Connect

    Adams, David Price; Hodges, V. Carter; Jones, Eric D., Jr.; McDonald, Joel Patrick

    2008-10-01

    Propagating reactions in initially planar cobalt/aluminum exothermic multilayer foils have been investigated using high-speed digital photography. Real-time observations of reactions indicate that unsteady (spinlike) reaction propagation leads to the formation of highly periodic surface morphologies with length scales ranging from 1 {micro}m to 1 mm. The characteristics of propagating spinlike reactions and corresponding reacted foil morphologies depend on the bilayer thickness of multilayer foils.

  15. Beam-foil-gas spectroscopy - A technique for studying steady-state non-equilibrium processes.

    NASA Technical Reports Server (NTRS)

    Bickel, W. S.; Veje, E.; Carriveau, G.; Anderson, N.

    1971-01-01

    When a thin foil is inserted in the beam of a beam-gas experiment, the beam particle state populations are driven far from their beam-gas equilibrium values. Downstream from the foil, the 'new beam' and gas species interact to produce a new equilibrium, usually different from the beam-gas equilibrium. Experimental results are presented to demonstrate this effect and to show how relative cross-section measurements can be used to study the beam-foil interaction.

  16. Short-pulse high intensity laser thin foil interaction

    NASA Astrophysics Data System (ADS)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  17. Analysis of cartilage-polydioxanone foil composite grafts.

    PubMed

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  18. Recycling of aluminum foil from post-consumer beverage cartons

    SciTech Connect

    Charlier, P.; Sjoeberg, G.

    1995-12-31

    Recycling of aluminium contained in used aseptic beverage cartons is a difficult task which has nevertheless to be tackled by modern societies. Techniques have earlier been developed by the paper and pulp industry for the recycling of the board fibers from collected post-consumer beverage cartons. A joint technical feasibility study by Graenges and a leading beverage carton producer has dealt with different techniques for handling residues from repulsing facilities. The aluminium obtained can be used as raw material for the production of thin gauge foil, thus closing the recycling loop.

  19. Prediction of Gas Lubricated Foil Journal Bearing Performance

    NASA Technical Reports Server (NTRS)

    Carpino, Marc; Talmage, Gita

    2003-01-01

    This report summarizes the progress in the first eight months of the project. The objectives of this research project are to theoretically predict the steady operating conditions and the rotor dynamic coefficients of gas foil journal bearings. The project is currently on or ahead of schedule with the development of a finite element code that predicts steady bearing performance characteristics such as film thickness, pressure, load, and drag. Graphical results for a typical bearing are presented in the report. Project plans for the next year are discussed.

  20. Foil system fatigue load environments for commercial hydrofoil operation

    NASA Technical Reports Server (NTRS)

    Graves, D. L.

    1979-01-01

    The hydrofoil fatigue loads environment in the open sea is examined. The random nature of wave orbital velocities, periods and heights plus boat heading, speed and control system design are considered in the assessment of structural fatigue requirements. Major nonlinear load events such as hull slamming and foil unwetting are included in the fatigue environment. Full scale rough water load tests, field experience plus analytical loads work on the model 929 Jetfoil commercial hydrofoil are discussed. The problem of developing an overall sea environment for design is defined. State of the art analytical approaches are examined.

  1. Promising HE for explosive welding of thin metallic foils

    NASA Astrophysics Data System (ADS)

    Deribas, A. A.; Mikhaylov, A. L.; Titova, N. N.; Zocher, Marvin A.

    2012-03-01

    Experimental results are presented on the development of a high explosive (HE) suitable for the welding of thin metallic foils. The explosive is formed from a mixture of brisant HE (RDX or PETN) and an inert material, namely sodium bicarbonate. Sodium bicarbonate releases a rather large quantity of gas during decomposition, the effects of which are discussed. Measurements of detonation velocity and critical thickness for specific mixture combinations are presented. It is shown that particle size (of the RDX or PETN component) has a significant effect upon detonation velocity and critical thickness. Compositions were developed which have a stable detonation velocity ~2 km/s with a layer thickness ~ 2 mm.

  2. Laser Proton acceleration from mass limited silicon foils

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  3. Critical mass experiment using U-235 foils and lucite plates

    SciTech Connect

    Sanchez, R.; Butterfield, K.; Kimpland, R.; Jaegers, P.

    1998-05-01

    The main objective of this experiment was to show how the multiplication of the system increases as moderated material is placed between highly enriched uranium foils. In addition, this experiment served to demonstrate the hand-stacking techniques, and approach to criticality by remote operation. This experiment was designed by Tom McLaughlin in the mid seventies as part of the criticality safety course that is taught at Los Alamos Critical Experiment Facility (LACEF). The W-U-235 ratio for this experiment was 215 which is where the minimum critical mass for this configuration occurs.

  4. Composite thin-foil bandpass filter for EUV astronomy Titanium-antimony-titanium

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Martin, C.; Kimble, R.; Bowyer, S.; Steele, G.

    1983-01-01

    Thin metallic foils of antimony and titanium have been investigated in an attempt to develop an EUV filter with a bandpass from 350 to 550 A. A composite filter has been developed composed of antimony sandwiched between two titanium foils. The transmissions of sample composite foils and of pure titanium foils from 130 to 1216 A are presented. The absorption coefficients of anatimony and titanium and the effect of titanium oxide on the transmission are derived. The composite filter has been found to be quite stable and mechanically rugged. Among other uses, the filter shows substantial promise for EUV astronomy.

  5. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    NASA Astrophysics Data System (ADS)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  6. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding.

  7. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. PMID:27431039

  8. A simple method for the measurement of reflective foil emissivity

    SciTech Connect

    Ballico, M. J.; Ham, E. W. M. van der

    2013-09-11

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  9. Hydrodynamics of a biologically inspired tandem flapping foil configuration

    NASA Astrophysics Data System (ADS)

    Akhtar, Imran; Mittal, Rajat; Lauder, George V.; Drucker, Elliot

    2007-05-01

    Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal-tail fin interaction observed in a swimming bluegill sunfish. The simulations have been carried out using a Cartesian grid method that allows us to simulate flows with complex moving boundaries on stationary Cartesian grids. The simulations indicate that vortex shedding from the upstream (dorsal) fin is indeed capable of increasing the thrust of the downstream (tail) fin significantly. Vortex structures shed by the upstream dorsal fin increase the effective angle-of-attack of the flow seen by the tail fin and initiate the formation of a strong leading edge stall vortex on the downstream fin. This stall vortex convects down the surface of the tail and the low pressure associated with this vortex increases the thrust on the downstream tail fin. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. The numerical simulations allows us to examine in detail, the underlying physical mechanism for this thrust augmentation.

  10. The correlation between wake transition and propulsive efficiency of a flapping foil: A numerical study

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Sun, Liping; Teng, Lubao; Pan, Dingyi; Shao, Xueming

    2016-09-01

    We study numerically the propulsive wakes produced by a flapping foil. Both pure pitching and pure heaving motions are considered, respectively, at a fixed Reynolds number of Re = 1700. As the major innovation of this paper, we find an interesting coincidence that the efficiency maximum agrees well with the 2D-3D transition boundary, by plotting the contours of propulsive efficiency in the frequency-amplitude parametric space and comparing to the transition boundaries. Although there is a lack of direct 3D simulations, it is reasonable to conjecture that the propulsive efficiency increases with Strouhal number until the wake transits from a 2D state to a 3D state. By comparing between the pure pitching motion and the pure heaving motion, we find that the 2D-3D transition occurs earlier for the pure heaving foil than that of the pure pitching foil. Consequently, the efficiency for the pure heaving foil peaks more closely to the wake deflection boundary than that of the pure pitching foil. Furthermore, since we have drawn the maps on the same parametric space with the same Reynolds number, it is possible to make a direct comparison in the propulsive efficiency between a pure pitching foil and a pure heaving foil. We note that the maximum efficiency for a pure pitching foil is 15.6%, and that of a pure heaving foil is 17%, indicating that the pure heaving foil has a slightly better propulsive performance than that of the pure pitching foil for the currently studied Reynolds number.

  11. 75 FR 1596 - Grant of Authority for Subzone Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... Register (74 FR 14956, 4-2-2009) and the application has been processed pursuant to the FTZ Act and the... (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its authority under the Foreign-Trade Zones... to the Board for authority to establish a special-purpose subzone at the aluminum foil liner...

  12. The research of interaction of the capillary discharge with metal foils

    NASA Astrophysics Data System (ADS)

    Kirko, D. L.; Egorov, I. D.

    2016-09-01

    The properties of capillary discharge under its interaction with various metal foils are analysed. Spectral composition of capillary discharge jet is investigated. Upon jet interaction with metal foils, plasma domains occur. The properties of glowing plasma domains, which occur in a constant magnetic field, are analysed. The possible internal structure of plasma domains is analysed.

  13. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    DOE PAGESBeta

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less

  14. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    SciTech Connect

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected by the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.

  15. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  16. Foil assisted replica molding for fabrication of microfluidic devices and their application in vitro.

    PubMed

    Micheal, Issac J; Vidyasagar, Aditya J; Bokara, Kiran Kumar; Mekala, Naveen Kumar; Asthana, Amit; Rao, Ch Mohan

    2014-10-01

    We present a simple, rapid, benchtop, Foil Assisted Rapid Molding (FARM) method for the fabrication of microfluidic devices. This novel technique involves the use of aluminium foil, pen and an X-Y plotter to create semi-circular or plano-concave, shallow microchannels. It is an easy do-it-yourself (DIY) technique for creating a microfluidic device in three simple steps: (1) create a channel design using the CAD software, (2) plot the patterns on aluminium foil and (3) use the reverse of the engraved foil as a mold to create microfluidic devices. In this report, we present a detailed study of the proposed method by varying a range of parameters such as foil thickness, tip material, and tip sizes and by investigating their effect on the creation of channels with varying geometry. Furthermore, we demonstrated the cytocompatibility of these devices in vitro. PMID:25102283

  17. Application of aluminum and titanium foils in low-energy wide-aperture electron accelerators

    NASA Astrophysics Data System (ADS)

    Bodakin, L. V.; Gusakov, A. I.; Komarov, O. V.; Kosogorov, S. L.; Motovilov, S. A.; Uspenskii, N. A.

    2016-09-01

    We have reported on the results of theoretical and experimental investigations of characteristics of aluminum and titanium foils used in devices to extract electron beams from wide-aperture low-energy accelerators with a high current density. The mechanical properties of foils at different temperatures and the electron beam transmission and absorption coefficients have been compared. The results of analyzing the dependences of the efficiency of the electron beam extraction from accelerators on the type of the electron-optical system, material, and thickness of the foil for various sizes of extraction windows and the same type of the slot support grids have been presented. We have proposed an analytic model for calculating the temperature of the foil in the unit cell of the support grid. The electron transmittance and absorbance, as well as the temperature regimes of the foils, have been calculated using different methods.

  18. Effects of injection beam parameters and foil scattering for CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  19. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo

    2016-04-01

    Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foilfoil. Moreover, the Vulcan-coated graphite foil showed 5-10% higher power density than the metal mesh electrodes. From the polarization curve of the Vulcan-coated graphite foil electrode, it was found that total resistance decreased as thickness and geometric surface area of the electrode increased.

  20. Characterization of the Fine Component of Comet Wild 2: Analysis of 11 Stardust Craters from Foil C2010W

    NASA Astrophysics Data System (ADS)

    Haas, B. A.; Croat, T. K.; Floss, C.

    2016-08-01

    NASA's Stardust mission returned cometary material from comet Wild 2 in Al foil collectors. We report on SEM-EDX and Auger elemental analysis as well as FIB-TEM analysis performed on 11 craters from foil C2010W.

  1. Vortex-wake interactions of a flapping foil that models animal swimming and flight.

    PubMed

    Lentink, David; Muijres, Florian T; Donker-Duyvis, Frits J; van Leeuwen, Johan L

    2008-01-01

    The fluid dynamics of many swimming and flying animals involves the generation and shedding of vortices into the wake. Here we studied the dynamics of similar vortices shed by a simple two-dimensional flapping foil in a soap-film tunnel. The flapping foil models an animal wing, fin or tail in forward locomotion. The vortical flow induced by the foil is correlated to (the resulting) thickness variations in the soap film. We visualized these thickness variations through light diffraction and recorded it with a digital high speed camera. This set-up enabled us to study the influence of foil kinematics on vortex-wake interactions. We varied the dimensionless wavelength of the foil (lambda*=4-24) at a constant dimensionless flapping amplitude (A*=1.5) and geometric angle of attack amplitude (A(alpha,geo)=15 degrees ). The corresponding Reynolds number was of the order of 1000. Such values are relevant for animal swimming and flight. We found that a significant leading edge vortex (LEV) was generated by the foil at low dimensionless wavelengths (lambda*<10). The LEV separated from the foil for all dimensionless wavelengths. The relative time (compared with the flapping period) that the unstable LEV stayed above the flapping foil increased for decreasing dimensionless wavelengths. As the dimensionless wavelength decreased, the wake dynamics evolved from a wavy von Kármán-like vortex wake shed along the sinusoidal path of the foil into a wake densely packed with large interacting vortices. We found that strongly interacting vortices could change the wake topology abruptly. This occurred when vortices were close enough to merge or tear each other apart. Our experiments show that relatively small changes in the kinematics of a flapping foil can alter the topology of the vortex wake drastically.

  2. Magnetic acceleration of aluminum foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, Stephan; Martinez, David; Plechaty, Christopher; Stein, Sandra; Presura, Radu

    2010-06-01

    Scaled experiments studying the interaction of shock waves with inhomogeneous background media are essential for understanding many astrophysical phenomena, since they can be used to test analytical theories and simulation codes. We are currently developing such experiments at the Nevada Terawatt Facility. We are using a pulsed power generator (1 MA peak current) to accelerate thin aluminum flyer plates. By impacting these foils on low-density foam targets, we will be able to carry out scaled experiments. We have demonstrated velocities of up to 8 km/s for 50 μm thick aluminum flyers, and are planning to further increase the flyer velocities. We have also carried out first impact tests with transparent polycarbonate targets. Several improvements for our setup are currently in planning, and these improvements will enable us to design scaled experiments for our facility.

  3. An Innovative Method for Manufacturing Gamma-TiAl Foil

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Saqib, Mohammad; Alexa, Joel A.

    2003-01-01

    The manufacture and entrance into service of thin gage gamma-TiAl product has been hampered by the inherent low room temperature ductility of the material. In the present study a new approach was explored for the efficient manufacture of gamma-TiAl foil with improved ductility. The objective was to produce a very clean material (low interstitial content) with a highly refined, homogeneous microstructure placed in a fully lamellar condition. The processing route involved the use of RF plasma spray deposition of pre-alloyed powders, followed by consolidation via vacuum hot pressing and heat treatment. The approach took advantage of a deposition process which included no electrodes, no binders and high cooling rates. Results and discussion of the work performed to date are presented.

  4. Visualization of terahertz surface waves propagation on metal foils

    PubMed Central

    Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan

    2016-01-01

    Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652

  5. Flow structures in the wake of heaving and pitching foils

    NASA Astrophysics Data System (ADS)

    Najdzin, Derek; Pardo, Enrique; Leftwich, Megan C.; Bardet, Philippe M.

    2012-11-01

    A 10-bar mechanism drives a cambering hydrofoil in an oscillatory heaving and pitching motion that replicates the flapping motion of a dolphin tail. The mechanism sits on a force-balance with six strain gages that together measure the forces and moments experienced by the fin during an oscillation. Planar Laser-Induced Fluorescence is used to image the flow structures created downstream of the cambering fin for a range of Reynolds and Strouhal numbers. The images are taken in the mid-plane, parallel to the bottom of the water tunnel. These results are compared to a rigid foil at matching conditions to investigate the role of camber changes during the flapping cycle.

  6. Conical foil x-ray mirrors: performance and projections.

    PubMed

    Serlemitsos, P J

    1988-04-15

    For the past decade, we have been developing at Goddard conical grazing incidence mirrors in an effort to increase the sensitivity and resolution of astronomical observations in the iron K spectral band around 7 keV. Tightly packed conical foils give us the option of trading some imaging capability for light weight, large throughput, and low cost, all crucial requirements at the higher energies where grazing angles become very small. Nearing the completion of the broad band x-ray telescope for NASA's SHEAL II mission, we have decided important design and fabrication issues including reflector substrate material and supports and most techniques for reflector preparation, mirror assembly, and alignment. We will review the design, fabrication, status, and performance of our present mirrors. Future applications along with prospects for improved spatial resolution for these mirrors will be discussed. PMID:20531595

  7. Gas permeability through thin-foil x-ray filters

    NASA Astrophysics Data System (ADS)

    Tveekrem, June L.; Keski-Kuha, Ritva A.; Webb, Andrew T.

    1997-10-01

    We have measured the permeation rates of helium and water through thin-foil UV-blocking filters used in the ASTRO-E/x- ray spectrometer (XRS) instrument. In the XRS program, there is a concern that outgassed contaminants such as water could permeate through the outermost filter which will be at room temperature and freeze on the inner filters which will be at cryogenic temperatures. The filters tested consisted of approximately 1000 angstroms Al on approximately 1000 angstroms of either Lexan or polyimide. Measurements were made using a vacuum apparatus consisting essentially of two small chambers separated by the filter under test. A helium leak detector was used to measure helium permeation rates, and a residual gas analyzer (RGA) was used to detect water. Results discussed include permeation rate as a function of pressure difference across a filter, the ratio of helium permeation rate over water permeation rate, and the effect of the aluminum layer thickness on permeation.

  8. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect

    Offermann, Dustin Theodore

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  9. Transmission filter for the extreme ultraviolet spectral region composed of a thin Saran (C2H2Cl2) foil

    NASA Astrophysics Data System (ADS)

    Seely, John F.; Shirey, L.; Kingman, A.

    1989-05-01

    Saran foils of 4000-A thickness have been fabricated and used as transmission filters in the extreme ultraviolet spectral region. The transmittances of the Saran foils were determined for the 20-620-A wavelength region. The foils transmitted radiation with wavelengths between the L absorption edge of chlorine at 61.4 and about 120 A.

  10. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

    PubMed

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-12-01

    This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray. PMID:27401089

  11. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-07-01

    This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

  12. Heat transfer measurements in fully turbulent flows: basic investigations with an advanced thin foil triple sensor

    NASA Astrophysics Data System (ADS)

    Mocikat, H.; Herwig, H.

    2008-07-01

    In a former article in this journal a double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil was introduced as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. For further investigations with respect to the underlying sensor concept a triple sensor has been built which consists of three double layer film sensors very close to each other. Various aspects of heat transfer measurements in active modes can be addressed by this sensor.

  13. Gas Electron Multiplier foil holes: a study of mechanical and deformation effects

    NASA Astrophysics Data System (ADS)

    Benussi, L.; Bianco, S.; Saviano, G.; Muhammad, S.; Piccolo, D.; Suhaj, A.; Sharma, A.; Caponero, M.; Passamonti, L.; Pierluigi, D.; Russo, A.; Lalli, A.; Valente, M.; Ferrini, M.; Langeslag, S. A. E.; Sgobba, S.; Aviles, I.; Magnani, A.; Vai, I.

    2016-08-01

    The GEM detectors will be installed at the Compact Muon Solenoid (CMS) experiment during Long Shutdown II of the LHC in 2018. The GEM foil is a basic part of the detector which consists of a composite material, i.e. polyimide coated with copper and perforated with a high density of micro holes. In this paper the results of the GEM foil material characterization are reported, and a campaign of tensile and holes deformation tests is performed. During the tests, the complex radiation environment at CMS is taken into account and samples are prepared accordingly to see the impacts of the radiation on the GEM foil, i.e. non-irradiated samples are used as the reference and compared with neutrons- and gamma- irradiated. These studies provide the information necessary to optimize the stress level without damaging the foil and holes during the detector assembly in which the GEM foils stack is stretched simultaneously to maintain the uniform gap among the foils in order to get the designed performance of the detector. Finally, an estimate of the Young's modulus of the GEM foil is provided by using the tensile test data.

  14. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  15. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-01

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  16. Shock compression response of highly reactive Ni + Al multilayered thin foils

    NASA Astrophysics Data System (ADS)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  17. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    SciTech Connect

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  18. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  19. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    DOEpatents

    Viertl, John R. M.; Lee, Martin K.

    2001-01-01

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  20. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Leshma; Chaurasia, S.

    2012-07-01

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  1. Life cycle Analysis of Aluminum Foil Packaging Material.

    PubMed

    El Sebaie, Olfat; Ahmed, Manal; Hussein, Ahmed; El Sharkawy, Fahmay; Samy, Manal

    2006-01-01

    A fundamental tent of life cycle analysis (LCA) is that every material product must become a waste. To choose the greener products, it is necessary to take into account their environmental impacts from cradle to grave. LCA is the tool used to measure environmental improvements. Aluminum (Al) is the third most common element found in the earth's crust, after oxygen and silicon. Al packaging foil was chosen as the material for the study with its life cycle perspective at Alexandria. The Al packaging produced from virgin and recycled Al was investigated through life cycle stages in these two production processes; primary and secondary. The aim of this study is to evaluate the environmental impact of aluminum packaging process by using life cycle analysis of its product from two different starting raw materials (virgin and recycled aluminum). The input and output materials, energy, water, natural gas consumptions, and solid waste uses in the foil industry had been analyzed in order to identify those with significant contribution to the total environmental impacts. From the survey done on the two life cycles, it was found that in environmental terms, the most important emissions from the primary process are the emission of CO(2) and perfluorocarbon (PFC) gases, which produce the greenhouse effect, and SO(2) as well as the emission of fluorides and polyaromatic hydrocarbons (PAH compounds), which are toxic to humans and the environment. On over all material balance, it was found that the ingot shares by 45% of the feed to the casthouse furnaces at Egyptian Copper Work (ECW), net production of the casthouse is 43.76% and the yield of rotary dross furnace (RDF) is 28.8%. The net production of the foil unit represents 35% of the total input to the unit. By comparing the two life cycles, it is obvious that, for water consumption, 93.5% is used in the primary cycle, while 6.5% is used in the secondary cycle. For electricity consumption, 99.3% is used in the primary cycle

  2. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marus Hiilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2006-12-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion rate in 5 M MEA/1,2M PZ is 22 mpy. With 1 wt% heat stable salt, the corrosion rate increases by 50% to 160% in the order: thiosulfate< oxalatecarbonate is ineffective in the absence of oxygen, but 50 to 250 ppm reduces corrosion to less than 2 mpy in the presence of oxygen.

  3. Static and dynamic performances of refrigerant-lubricated foil bearings

    NASA Astrophysics Data System (ADS)

    Bouchehit, B.; Bou-Saïd, B.; Garcia, M.

    2016-08-01

    Gas bearings are successfully used over a large panel of turbo-machineries. Some of these systems run in controlled environments such as refrigerating gas. We present in this paper a theoretical and numerical model which consider the vapor/liquid lubricant transition, the laminar/turbulent flow transition and both temperature and viscosity 3D variations in the fluid and the solids for both static and dynamic situations. The foil deflection is considered using the Heshmat's approach. This model involves: the resolution of the generalized Reynolds equation for compressible fluids with 3D variable viscosity, the description of the turbulence effects by the phenomenological approach of Elrod, using a 3D eddy viscosity field, the resolution of a non-linear equation of state for the lubricant, able to describe the vapor/liquid transition and a local thermal approach to obtain a 3D estimation of the fluid temperature, thanks to the thin-film energy equation and an actualisation of the film thickness. The thermal effects in solids are also taken into account. Both static and dynamic behaviours of GFBs are analysed.

  4. In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils

    PubMed Central

    2016-01-01

    The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749

  5. Thin foil planar radiometers: application for designing contactless ? sensors

    NASA Astrophysics Data System (ADS)

    Gaviot, E.; Godts, P.; Guths, S.; Leclercq, D.

    1996-04-01

    This paper is devoted to describing a new sensor allowing one to measure the net radiant flux exchanged by the wall surface it is mounted on. The device is constructed by mounting a thermopile-type radiometer on a larger thin metallic foil support. When the emissivity of the paint covering the support is the same as that of the wall surface on which the sensor is applied, a direct reading (positive or negative emf) of the radiant flux (absorbed or emitted) by the wall surface is given, whatever the convective losses. The calibration is carried out in a simple and useful apparatus designed to produce a prescribed total radiant exchange between two metallic plates at different temperatures and is estimated to be accurate to within two per cent. Simplicity and ruggedness make the radiometer appropriate for direct measurement of heat exchanged between surfaces heated up to 500 K. Notable applications include use as a traditional total hemispheric radiometer and a contactless temperature difference sensor.

  6. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  7. Optical fiber sensors embedded in flexible polymer foils

    NASA Astrophysics Data System (ADS)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  8. Laboratory soft x-ray source with foil target

    NASA Astrophysics Data System (ADS)

    Stephan, Karl-Heinz; Braeuninger, Heinrich W.

    1993-02-01

    We have developed a comparatively small soft x-ray source for application in our test facilities, which are used at present to support the developments of the astrophysical space projects XMM and AXAF. The instrument comprises a commercially available color television tube for generation of the electron beam, which is focused on exchangeable metal films serving as targets. The x rays are taken off after having transversed the foil target and have a sufficient spectral purity with regard to the experimental requirements. The maximum electric operating parameters correspond to an emission current of 100 (mu) A generated by a filament heating power of 6.6 watt at an accelerating voltage of 25 kV. The technical advantages of the instrument are lightweight construction, no water cooling, small size electric supply, cost efficient manufacturing, small sized focus, and quick access to the desired characteristic spectral line by exchange of a complete tube. We describe the measurements on the local x-ray intensity profile of the focus, the spectral features of the beam, and present the resulting performance data. A special development could be used as calibration sources in x-ray telescopes.

  9. Polarization and collision-induced coherence in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.; Church, D. A.

    1974-01-01

    Monatomic systems were excited by the beam-foil method in order to re-examine the possibility that a particular magnetic substate was preferentially populated. O II, Ar II and He I levels were used. The results reveal that: (1) with a tilted foil substantial polarization (up to 15%) may be achieved, (2) the polarization is due to the foil, (3) the foil induces coherence among Zeeman substates with the appearance of quantum beats among these substates and that their coherence is due to the externally applied magnetic field perpendicular to the beam direction, and (4) the angular momentum of the emitted photon is perpendicular to the ion velocity. The possibility for detecting separate effects of alignment and polarization is noted.

  10. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOEpatents

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  11. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    SciTech Connect

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.; Kennedy, Patrick K.; Edwards, Randall L.; Duffield, Andrew N.; Dombrowski, David E.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield. This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.

  12. Self-propelled swimming of a flexible plunging foil near a solid wall.

    PubMed

    Dai, Longzhen; He, Guowei; Zhang, Xing

    2016-01-01

    Numerical simulations are conducted to investigate the influences of a solid wall on the self-propelled swimming of a flexible plunging foil. It is found that the presence of a solid wall enhances the cruising speed, with the cost of increasing input power. Rigid foil can achieve high percentage increase in cruising speed when swimming near a solid wall, but the propulsive efficiency may be reduced. Foils with some flexibility can enjoy the enhancements in both cruising speed and propulsive efficiency. Another advantage of the flexible foils in near-wall swimming is that smaller averaged lateral forces are produced. The effects of wall confinement on the wake structure and the vortex dynamics are also studied in this paper. The results obtained in this study shed some light on the unsteady wall effect experienced by aquatic animals and also inform the design of bio-mimetic underwater vehicles which are capable of exploiting the wall effect. PMID:27377880

  13. 78 FR 28577 - Notification of Proposed Production Activity, LLFlex, LLC, Subzone 29J (Foil Backed Paperboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... (duty-free) for the foreign status input (converter foil, duty rate 5.8%). Customs duties also could..., U.S. Department of Commerce, 1401 Constitution Avenue NW., Washington, DC 20230-0002, and in...

  14. Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils

    NASA Astrophysics Data System (ADS)

    Dong, H.; Mittal, R.; Najjar, F. M.

    2006-11-01

    Numerical simulations are used to investigate the effect of aspect ratio on the wake topology and hydrodynamic performance of thin ellipsoidal flapping foils. The study is motivated by the quest to understand the hydrodynamics of fish pectoral fins. The simulations employ an immersed boundary method that allows us to simulate flows with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the vortex topology shows that the wake of low-aspect-ratio flapping foils is dominated by two sets of interconnected vortex loops that evolve into distinct vortex rings as they convect downstream. The flow downstream of these flapping foils is characterized by two oblique jets and the implications of this characteristic on the hydrodynamic performance are examined. Simulations are also used to examine the thrust and propulsive efficiency of these foils over a range of Strouhal and Reynolds numbers as well as pitch-bias angles.

  15. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery.

    PubMed

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper--fabricated by compressing a copper wire mesh--with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250,000 rpm and axial displacements as a function of rotational speed are presented. PMID:24182175

  16. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOEpatents

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  17. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper—fabricated by compressing a copper wire mesh—with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250 000 rpm and axial displacements as a function of rotational speed are presented.

  18. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and

  19. Coherence and its application in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.

    1974-01-01

    The beam-foil light source is shown to be very useful in spectroscopic work. Not only the lifetimes of highly excited, multiply charged atoms can be measured in a straightforward way, but also the fine-structure and hyperfine-structure separations and the Lande factors can be obtained due to the fact that the coherent excitations are created in the impulsive beam-foil collision. The theories suggested to explain the origin of coherence are presently incomplete.

  20. Study of the polarization mechanism of beam-foil interaction ions using the channeling effect*

    SciTech Connect

    TANG Jia-yong; GE Qi-yun; LU Fu-quan; SUN Chang-nian; WENG Tai-meng; YANG Jian-jun; YE hui; YANG Fu-jia

    1986-01-01

    In order to provide experimental evidence for the controversial polarization mechanism of the beam-foil ions, He/sup +/ ions with energy of 1 MeV have been used to pass through a single crystal gold foil along the <110> direction and random direction; the Stokes parameters of the HeII 4686 A 4f ..-->.. 3d transition have been accurately measured.

  1. A review of progress and challenges in flapping foil power generation

    NASA Astrophysics Data System (ADS)

    Young, John; Lai, Joseph C. S.; Platzer, Max F.

    2014-05-01

    Power may be extracted from a flowing fluid in a variety of ways. Turbines using one or more oscillating foils are under increasingly active investigation, as an alternative to rotary wind turbines and river, oceanic and tidal current water turbines, although industrial development is at a very nascent stage. Such flapping foil turbines promise some key potential advantages, including lower foil velocities (and hence lower noise and wildlife impact), and more effective small-scale and shallow water operation. The role of a number of parameters is investigated, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect). Details of the kinematics are shown to have the single largest influence on power output and efficiency (measured as the ratio of power output to that available and accessible in the fluid stream). The highest levels of power and efficiency are associated with very large foil pitch angles (upwards of 70°) and angles of attack (30-40°), such that the flow is massively separated for much of the flapping cycle, in contrast to rotary turbines which rely on attached flow over as much of the rotor disk as possible. This leads to leading edge vortices comparable in size to the foil chord, and the evolution and interaction of these vortices with the foil as it moves play a central role in determining performance. The other parameters also influence the vortex behaviour, but in general to a lesser degree. Numerous gaps in the research literature and outstanding issues are highlighted.

  2. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  3. Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process

    SciTech Connect

    G. A. Moore; M. C. Marshall

    2010-01-01

    Integral to the current UMo fuel foil processing scheme being developed at Idaho National Laboratory (INL) is the incorporation of a zirconium barrier layer for the purpose of controlling UMo-Al interdiffusion at the fuel-meat/cladding interface. A hot “co-rolling” process is employed to establish a ~25-µm-thick zirconium barrier layer on each face of the ~0.3-mm-thick U10Mo fuel foil.

  4. Modeling the transmission of beta rays through thin foils in planar geometry.

    PubMed

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ionescu, E

    2016-01-01

    This paper is concerned with the modeling of the transmission of beta rays through thin foils in planar geometry based on the plane source concept, using Monte Carlo simulation of electron transport and least squares fitting. Applications of modeling results for calculating the efficiency of large-area beta sources, transmission coefficient of beta rays through thin foils and the beta detection efficiency of large-area detectors used in surface contamination measurements are also presented. PMID:26524407

  5. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  6. Active-matrix organic light-emitting diode displays on flexible metal foil substrates

    NASA Astrophysics Data System (ADS)

    Chuang, Ta-Ko

    This dissertation presents the research efforts that deal with the development of polysilicon thin film transistors (TFTs) on stainless-steel-foil substrates, the implementation of high-resolution flexible active-matrix backplanes, and the integration of the flexible polysilicon TFT backplanes with polymer light-emitting diodes. This research investigated the preparation of the steel foil substrates, the fabrication of flexible polysilicon TFT backplanes and polymer light emitting diodes (PLEDs), and the encapsulation of the flexible Active Matrix Polymer Light Emitting Diode displays. The first successful integration of polysilicon TFT backplane with PLEDs onto light-weight, robust, and flexible stainless-steel-foil substrates is presented. A top-emitting, monochrome active-matrix polymer light-emitting diode (AM-PLED) display, having the VGA (640x480) format and a 230 dpi resolution, is demonstrated for the first time on flexible stainless-steel-foil substrates. This work validates the compatibility of the polysilicon technology for high-resolution flexible AM-PLED displays. Furthermore, this work shows that a variety of other large-area microelectronics could also be implemented onto flexible metal foils, benefiting by the metal oil dimensional stability and ability to withstand high process temperature. In conclusion, the polysilicon TFT technology combining with metal-foil substrates opens up a new road for flexible displays as well as large-area flexible electronic applications.

  7. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  8. Deformation Behaviors of HIPped Foil Compared with Those of Sheet Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1999-01-01

    Micromechanics-based modeling of composite material behaviors requires an accurate assessment of the constituent properties and behaviors. For the specific case of continuous-fiber-reinforced metal matrix composites (MMC's) manufactured from a foil/fiber/foil process, much emphasis has been placed on characterizing foil-based matrix materials that have been fabricated in the same way as the composite. Such materials are believed to yield mechanical properties and behaviors that are representative of the matrix constituent within the composite (in situ matrix). Therefore, these materials are desired for micromechanics modeling input. Unfortunately, such foils are extremely expensive to fabricate and procure because of the labor-intensive rolling process needed to produce them. As a potential solution to this problem that would maintain appropriately representative in situ properties, the matrix constituent could be characterized with sheet-based materials, which are considerably less expensive to manufacture than foils, are more readily procured, and result in fewer plies to obtain a desired panel thickness. The critical question is, however, does the consolidated sheet material exhibit the same properties and behaviors as do the consolidated foils? Researchers at NASA Lewis Research Center's Life Prediction Branch completed a detailed experimental investigation to answer this question for three titanium alloys commonly used in metal matrix composite form.

  9. Fabrication of ultra-thin nanostructured bimetallic foils by Accumulative Roll Bonding and Asymmetric Rolling

    PubMed Central

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Godbole, Ajit; Su, Lihong; Sun, Yong; Liu, Mao; Tang, Delin; Kong, Charlie

    2013-01-01

    This paper reports a new technique that combines the features of Accumulative Roll Bonding (ARB) and Asymmetric Rolling (AR). This technique has been developed to enable production of ultra-thin bimetallic foils. Initially, 1.5 mm thick AA1050 and AA6061 foils were roll-bonded using ARB at 200°C, with 50% reduction. The resulting 1.5 mm bimetallic foil was subsequently thinned to 0.04 mm through four AR passes at room temperature. The speed ratio between the upper and lower AR rolls was 1:1.3. The tensile strength of the bimetallic foil was seen to increase with reduction in thickness. The ductility of the foil was seen to reduce upon decreasing the foil thickness from 1.5 mm to 0.14 mm, but increase upon further reduction in thickness from 0.14 mm to 0.04 mm. The grain size was about 140 nm for the AA6061 layer and 235 nm for the AA1050 layer, after the third AR pass. PMID:23918002

  10. Development of a twin-flapping-foils unit to generate hydroelectric power from a water current

    NASA Astrophysics Data System (ADS)

    Abiru, H.; Yoshitake, A.; Nishi, M.

    2014-03-01

    Most of the conventional hydraulic turbines have been used for those sites having the static head larger than around 1 m. To extensively utilize not only large hydro-power but small one, which is one of renewable energy resources, development of an energy conversion system being operable under an extremely low head stream is crucial. A twin-flapping-foils unit which works based on the lift acting on the flapping foils in a stream is proposed. The foils oscillate in the transverse direction of the flow due to the lift. The pitching motion of the foils is caused by their own transverse movement through the mechanism consisting of crankshafts and con-rods. In the unit, each foil is supported vertically with a shaft in a manner of a cantilever so that no other parts need to be submerged in a water current. An experimental model with symmetric foils of 100 mm chord and 300 mm span was designed to generate average power output of 10 W at a flow velocity of 1 m/s. Through the tests carried out in the circulating water channel, the performance of the unit was verified to satisfy the design specifications. Further, the demonstration tests by using an irrigation stream performed for over a half year clarified the performance equivalent to that in the in-door water channel and the durability to a certain extent, and showed the applicability to the practical use of lighting a LED street lamp during night even at this scale model.

  11. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Andrew Sexton; Jason Davis; Marcus Hilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2007-03-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best K{sup +}/PZ solvent, 4.5 m K{sup +}/4.5 m PZ, requires equivalent work of 31.8 kJ/mole CO{sub 2} when used with a double matrix stripper and an intercooled absorber. The oxidative degradation of piperazine or organic acids is reduced significantly by inhibitor A, but the production of ethylenediamine is unaffected. The oxidative degradation of piperazine in 7 m MEA/2 m PZ is catalyzed by Cu{sup ++}. The thermal degradation of MEA becomes significant at 120 C. The solubility of potassium sulfate in MEA/PZ solvents is increased at greater CO{sub 2} loading. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion

  12. Dynamical features of the wake behind a pitching foil.

    PubMed

    Deng, Jian; Sun, Liping; Shao, Xueming

    2015-12-01

    As an extension of the previous study on the three-dimensional transition of the wake behind a pitching foil [Deng and Caulfield, Phys. Rev. E 91, 043017 (2015)], this investigation draws a comprehensive map on the pitching frequency-amplitude phase space. First, by fixing the Reynolds number at Re=1700 and varying the pitching frequency and amplitude, we identify three key dynamical features of the wake: first, the transition from Bénard-von Kármán (BvK) vortex streets to reverse BvK vortex streets, and second, the symmetry breaking of this reverse BvK wake leading to a deflected wake, and a further transition from two-dimensional (2D) wakes to three-dimensional (3D) wakes. The transition boundary between the 2D and 3D wakes lies top right of the wake deflection boundary, implying a correlation between the wake deflection and the 2D to 3D wake transition, confirming that this transition occurs after the wake deflection. This paper supports the previous extensive numerical studies under two-dimensional assumption at low Reynolds number, since it is indeed two dimensional except for the cases at very high pitching frequencies or large amplitudes. Furthermore, by three-dimensional direct numerical simulations (DNSs), we confirm the previous statement about the physical realizability of the short wavelength mode at β=30 (or λ(z)=0.21) for Re=1500. By comparing the three-dimensional vortical structures by DNSs with that from the reconstruction of Floquet modes, we find a good consistency between them, both exhibiting clear streamwise structures in the wake. PMID:26764810

  13. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    SciTech Connect

    Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.; Manuel, Michelle V.

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

  14. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

    NASA Astrophysics Data System (ADS)

    Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin

    2013-12-01

    Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  15. Strengthening effect of Cr 2O 3 thermally grown on alloy 617 foils at high temperature

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Li, F. X.; Ko, G. D.; Kang, K. J.

    2010-10-01

    Alloy 617 has been selected for the intermediate heat exchanger (IHX) of the very high temperature gas-cooled reactor (VHTR) for the economic production of electricity and hydrogen. In this work, the strengthening effects of Cr 2O 3 thermally grown on alloy 617 foils at 800 and 900 °C were investigated. A micro-tensile test system was used for in situ measurement of tensile strain in the foils and superficial thermally-grown Cr 2O 3. Each foil was heated until the thermally-grown Cr 2O 3 reached a predetermined thickness; then, a load was applied to measure the tensile response. As the Cr 2O 3 layer thickened on the surface of the metal foils, the strengths and stiffnesses of the foils were enhanced. We assumed that there was no interaction between the substrate and the superficial chromia, and the strength of Cr 2O 3 itself was measured. At 800 °C, the Cr 2O 3 was brittle and the strength was governed by crack initiation. At 900 °C, the Cr 2O 3 was much more ductile, and strain hardening was observed for even the smallest thickness. The strength was maintained even after crack initiation was observed on the surface.

  16. Investigations on electroluminescent tapes and foils in relation to their applications in automotive

    NASA Astrophysics Data System (ADS)

    Plotog, Ioan

    2015-02-01

    The electroluminescent (EL) tapes or foils having barrier films for an additional level of protection against the toughest environments conditions, offer a large area of applications. The EL lights, due to their characteristics, began to be used not only in the entertainment industry, but also for automotive and aerospace applications. In the paper, the investigations regarding EL foils technical performances in relation to their applications as light sources in automotive ambient light were presented. The experiments were designed based on the results of EL foils electrical properties previous investigations done in laboratory conditions, taking into account the range of automotive ambient temperatures for sinusoidal alternative supply voltage. The measurements for different temperatures were done by keeping the EL foils into electronic controlled oven that ensures the dark enclosure offering conditions to use a lux-meter in order to measure and maintain under control light emission intensity. The experiments results define the EL foils characteristics as load in automotive ambient temperatures condition, assuring so the data for optimal design of a dedicated inverter.

  17. Initial Tests of Commercially Manufactured Large GEM Foils and EIC Triple-GEM Detector Design

    NASA Astrophysics Data System (ADS)

    Kraishan, Amani

    2015-10-01

    Tracking detectors exist in many different varieties and operate on different physical principles, depending on the type of particle that has to be tracked, on the desired spatial resolution, and on the area that has to be covered. Gas electron multiplier (GEM) detectors, operating on the principle of electron amplification in gases, provide good spatial resolution for charged particles and can be built with large sensitive areas. Currently CERN is the only main distributor of large area GEM foils, and will be hard pressed to keep up with the increasing demand. To help satisfy the GEM foil demand, the commercialization of large area GEM foils via the single mask process has been established by Tech-Etch of Plymouth, MA, USA. Here we present our initial quality assurance tests of the foil's electrical and geometrical properties for sizes up to 40 X 40 cm2. Using our electrical and optical measurement setup, we also measured 10 X 10 cm2 GEMs produced by CERN and compare it with the Tech-Etch foils. Furthermore, we will present initial R&D design work done toward building a potential triple-GEM tracking detector to be used at a future experiment at an Electron-Ion Collider (EIC) facility.

  18. Spectroscopic Measurements of Planar Foil Plasmas Driven by a MA LTD

    NASA Astrophysics Data System (ADS)

    Patel, Sonal; Yager-Elorriaga, David; Steiner, Adam; Jordan, Nick; Gilgenbach, Ronald; Lau, Y. Y.

    2014-10-01

    Planar foil ablation experiments are being conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The experiment consists of a 400 nm-thick, Al planar foil and a current return post. An optical fiber is placed perpendicular to the magnetic field and linear polarizers are used to isolate the pi and sigma lines. The LTD is charged to +/-70 kV with approximately 400-500 kA passing through the foil. Laser shadowgraphy has previously imaged the plasma and measured anisotropy in the Magneto Rayleigh-Taylor (MRT) instability. Localized magnetic field measurements using Zeeman splitting during the current rise is expected to yield some insight into this anisotropy. Initial experiments use Na D lines of Al foils seeded with sodium to measure Zeeman splitting. Several ion lines are also currently being studied, such as Al III and C IV, to probe the higher temperature core plasma. In planned experiments, several lens-coupled optical fibers will be placed across the foil, and local magnetic field measurements will be taken to measure current division within the plasma. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant DGE 1256260.

  19. Experimental Investigation of the Electrothermal Instability on Planar Foil Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Steiner, Adam; Patel, Sonal; Yager-Elorriaga, David; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.

    2014-10-01

    The electrothermal instability (ETI) is an important early-time physical effect on pulsed power foil ablation experiments due to its ability to seed the destructive magneto-Rayleigh-Taylor (MRT) instability. ETI occurs whenever electrical resistivity has temperature dependence; when resistivity increases with temperature, as with solid metal liners or foils, ETI forms striation structures perpendicular to current flow. These striations provide an initial perturbation for the MRT instability, which is the dominant late-time instability in planar foil ablations. The MAIZE linear transformer driver was used to drive current pulses of approximately 600 kA into 400 nm-thick aluminum foils in order to study ETI in planar geometry. Shadowgraph images of the aluminum plasmas were taken for multiple shots at various times within approximately 50 ns of current start. Fourier analysis extracted the approximate wavelengths of the instability structures on the plasma-vacuum interface. Surface metrology of pre-shot foils was performed to provide a comparison between surface roughness features and resulting plasma structure. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant # DGE 1256260.

  20. The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.

  1. A New Analysis Tool Assessment for Rotordynamic Modeling of Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; SanAndres, Luis

    2010-01-01

    Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years, although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code, named XLGFBTH (Texas A&M University). A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC, with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH represent the dynamics of the system reasonably well, especially as they pertain to predicting critical speeds.

  2. Protection of aluminium foil AA8021 by molybdate-based conversion coatings

    NASA Astrophysics Data System (ADS)

    Liang, Chang-Sheng; Lv, Zhong-Fei; Zhu, Ye-Ling; Xu, Shi-Ai; Wang, Hong

    2014-01-01

    A quick method for surface treatment of aluminium foil with environment-friendly and effective molybdate-based coating was developed in this study. Aluminium foil samples were treated with molybdate-based solution. The microstructure and composition of the resulting molybdate-based conversion coatings were explored by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectric spectroscopy (XPS). We found that the molybdate-based conversion coating was composed mainly of MoO3, (MoO3)x(P2O5)y and Al2(MoO4)3 compounds. Furthermore, corrosion resistance of the treated aluminium foil was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Our results show that all of the aluminium foils with molybdate-based conversion coatings have much better corrosion resistance than bare aluminium foil. Notably, the sample treated at 40 °C exhibited the best corrosion resistance. The new method is very suitable for continuous processing.

  3. An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation

    NASA Technical Reports Server (NTRS)

    Bauman, Steve

    2005-01-01

    New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.

  4. Solving corrosion problems at the NEA Bellingham Massachusetts carbon dioxide recovery plant

    SciTech Connect

    DeHart, T.R.; Mariz, C.L.; McCullough, J.G.

    1999-11-01

    The Northeast Energy Associates (NEA) carbon dioxide recovery plant at Bellingham, MA utilizes a 30 wt % monoethanol amine (MEA) solution with a proprietary additive to inhibit the corrosion of carbon steel. This plant was the first application of this technology to gas turbine flue gas, which has high concentrations of oxygen (typically 13 vol. %) and low concentrations of carbon dioxide (typically 3 vol. %). Prior to the operation of the Bellingham plant, the technology had been applied to boiler flue gas streams, which typically contain more than 8 vol. % carbon dioxide and 2--4 vol. % oxygen. In this first application of the technology to gas turbine flue gas, unexpected corrosion occurred in both the absorber and stripper towers. The causes of the corrosion and its successful elimination are the subject of this paper.

  5. The Anomalous Currents In The Front Foils of the JET Lost Alpha Diagnostic KA-2

    SciTech Connect

    Cecil, F. E.; Kiptily, V.; Salmi, A.; Horton, A.; Fullard, K.; Murari, A.; Darrow, D.; Hill, K.

    2011-05-04

    We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions both deuterium and impurity in the vicinity of the detector including charge exchange neutrals and photoemission from scattered UV radiation. Based upon modeling and empirical observation, the latter source appears most likely and, moreover, seems to be applicable to the currents in the front foil during ELMy H-mode plasmas. A very thin gold or nickel foil attached to the present detector aperture is proposed as a solution to this problem, and realistic calculations of expected fluxes of lost energetic neutral beam ions during TF ripple experiments are presented as justification of this proposed solution.

  6. Identification of Impact Craters in Foils from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Stroud, R. M.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Gruen, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Sandford, S. A.; Tsou, P.; Zolensky, M. E.

    2011-01-01

    The Stardust Interstellar Dust Collection tray provides the first opportunity for the direct laboratory-based measurement of contemporary interstellar dust. The total exposed surface of the tray was approximately 0.1 square meters, including 153 square centimeters of Al foil in addition to the silica aerogel tiles that are the primary collection medium. Preliminary examination of aerogel tiles has already revealed 16 tracks from particle impacts with an orientation consistent with an interstellar origin, and to date four of the particles associated with these tracks have a composition consistent with an extraterrestrial origin. Tentative identification of impact craters on three foil samples was also reported previously. Here we present the definitive identification of 20 impact craters on five foils.

  7. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  8. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers.

    PubMed

    Kang, Dongwoo; Kwon, Jee Youn; Cho, Hyun; Sim, Jae-Hyoung; Hwang, Hyun Sick; Kim, Chul Su; Kim, Yong Jung; Ruoff, Rodney S; Shin, Hyeon Suk

    2012-09-25

    Protecting the surface of metals such as Fe and Cu from oxidizing is of great importance due to their widespread use. Here, oxidation resistance of Fe and Cu foils was achieved by coating them with reduced graphene oxide (rG-O) sheets. The rG-O-coated Fe and Cu foils were prepared by transferring rG-O multilayers from a SiO(2) substrate onto them. The oxidation resistance of these rG-O-coated metal foils was investigated by Raman spectroscopy, optical microscopy, and scanning electron microscopy after heat treatment at 200 °C in air for 2 h. The bare metal surfaces were severely oxidized, but the rG-O-coated metal surfaces were protected from oxidation. This simple solution process using rG-O is one advantage of the present study.

  9. Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating

    NASA Astrophysics Data System (ADS)

    Zeng, Ou; Wang, Xian; Yuan, Zhiqing; Wang, Menglei; Huang, Juan

    2015-09-01

    A simple and low cost approach was developed to fabricate a superhydrophobic surface on copper foil. The oxidation and etching of the copper foil surface were promoted in NH4HCO3 solution using a water and ethanol admixture as a component solvent. After 28 h in this solution, a hydrophilic rough surface structure was obtained on the copper foil surface. With modification using a paraffin wax coating, the hydrophilic rough copper surface changed to become hydrophobic or superhydrophobic. The surface morphology and wettability were characterized by scanning electron microscopy (SEM) and contact angle measurements, respectively. When the optimum concentration of paraffin wax was about 2 g L-1, its water contact angle could reach about 152 ± 1.5° and its sliding angle was around 7°. The formation mechanism of the rough copper surface was also explored in detail. Both the experimental process and the material are environmentally friendly.

  10. VO₂/Si-Al gel nanocomposite thermochromic smart foils: largely enhanced luminous transmittance and solar modulation.

    PubMed

    Liu, C; Cao, X; Kamyshny, A; Law, J Y; Magdassi, S; Long, Y

    2014-08-01

    VO2 nanoparticles with a dimension of approximately 20 nm were obtained by simple mechanical bead-milling method, which were well dispersed in transparent silica-alumina (Si-Al) gel matrix to form nanocomposites. The VO2/Si-Al gel thermochromic nanocomposite foils were fabricated with various VO2 solid contents and foil thickness. With 10% VO2 loading and 3 μm foil thickness, high luminous transmittance (T(lum(20°C))=63.7% and T(lum(90°C))=54.4%), and large solar modulation ability (ΔTsol=12%) can be obtained which surpasses the best reported results (nanoporous films:T(lum(20°C))=43.3%, T(lum(90°C))=39.9% and ΔTsol=14.1%). This current approach provided a simple and scalable preparation method with the best combined thermochromic performance.

  11. Production and dynamics of positrons in ultrahigh intensity laser-foil interactions

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.

    2016-09-01

    The electron-positron pair production accompanying interaction of a circularly polarized laser pulse with a foil is studied for laser intensities higher than 1024 W cm-2. The laser energy penetrates into the foil due to the effect of the relativistic hole-boring. It is demonstrated that the electron-positron plasma is produced as a result of quantum-electrodynamical cascading in the field of the incident and reflected laser light in front of the foil. The incident and reflected laser light make up the circularly polarized standing wave in the reference frame of the hole-boring front and the pair density peaks near the nodes and anti-nodes of the wave. A model based on the particle dynamics with radiation reaction effect near the magnetic nodes is developed. The model predictions are verified by three dimensional particle-in-cell Monte Carlo simulations.

  12. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil

    NASA Astrophysics Data System (ADS)

    Calabrese, Gabriele; Corfdir, Pierre; Gao, Guanhui; Pfüller, Carsten; Trampert, Achim; Brandt, Oliver; Geelhaar, Lutz; Fernández-Garrido, Sergio

    2016-05-01

    We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single crystalline. Low-temperature photoluminescence spectroscopy demonstrates that in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit an equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.

  13. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    PubMed

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  14. Sonofusion: Heat and ^4He Created by Cavitationally Induced Loading of Metal Foils

    NASA Astrophysics Data System (ADS)

    Stringham, Roger

    2003-03-01

    Helium four was produced in a vacuum tight system and measured by mass spectrometry with no measurable accompanying radiation. This fusion product from a piezo driven, acoustic reactor forces deuterons into a metallic foil. We believe the reaction is the result of the adiabatic collapse of transient bubbles in D_2O. The collapse process forms high-density plasma jets that are further z-pinched and then implanted into the foil lattices where the DD fusion takes place. With no evidence of long range radiation, the mc^2 energy was converted to heat. The reactor gases were analyzed at levels as high as 500 ppm of ^4He, which is 100 times that found in air. The SEM, Scanning Electron Microscope, photos of target foil surfaces show evidence of violent activity identified as ejecta sites varying in size from 100 to 10000 nm in diameter. The ^4He, radiation, excess heat, and SEM measurements support the DD fusion explanation.

  15. A new flexible titanium foil cell for hydrothermal experiments and fluid sampling

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Jun; Cai, Min-Jian; Yang, Can-Jun; Li, Ke-Wei

    2016-09-01

    This paper describes the design of a flexible titanium foil cell, as well as its applications in hydrothermal experiments and in non-contaminating storage of seafloor hydrothermal fluids. A flexible cell constructed totally from pure titanium (Grade 1) can be used in corrosive environment because of the excellent chemical stability and temperature tolerance of the material. Theoretical calculation and finite element analysis of the titanium foil cell have been conducted to identify its flexibility and deformation mode. Two applications, i.e., hydrothermal reaction and non-contaminating fluid sampling, were introduced subsequently. The flexible titanium foil cell was successfully tested at elevated temperature and pressure of up to 400 °C and 40 MPa, respectively, demonstrating that it could be widely used under supercritical water conditions.

  16. Effects of heat-treatment and hydrogen adsorption on Graphene grown on Cu foil

    NASA Astrophysics Data System (ADS)

    Cho, Jongweon; Gao, Li; Tian, Jifa; Cao, Helin; Yu, Qingkai; Guest, Jeffrey; Chen, Yong; Guisinger, Nathan

    2011-03-01

    Graphene has recently been a subject of intense research efforts due to its remarkable physical properties as an ideal two-dimensional material. While numerous different methods for graphene synthesis are being explored, CVD-grown graphene on Cu foil presents the possibility of a large-scale and high-quality synthesis of graphene.[1] To improve the quality of graphene films on Cu foil prepared by CVD and better understand its microscopic growth, atomic-scale characterization becomes of great importance. We have investigated the effects of thermal annealing and hydrogen adsorption/desorption on ex-situ CVD-grown monolayer graphene on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy, and we will report on these studies.

  17. Demonstration of {sup 99}MO production using LEU metal-foil targets in the cintichem process.

    SciTech Connect

    Vandegrift, G. F.; Conner, C.; Hofman, G. L.; Snelgrove, J. L.; Mutalib, A.; Purwadi, B.; Adang, H. G.; Hotman, L.; Kadarisman, Sukmana, A.; Dicky, T. J.; Sriyono, Suripto, A.; Lutfi, D.; Amin; Basiran, A.; Gogo, A.; Sarwani; Taryo, T.

    1999-09-30

    In March and September 1999, demonstrations of the irradiation, disassembly, and processing of LEU metal foil targets were performed in the Indonesian BATAN PUSPIPTEK Facilities. These demonstrations showed that (1) irradiation and disassembly can be performed so that the uranium foil can be easily removed from the target body, and (2) with only minor changes to the current process, the LEU foil can produce yield and purity of the {sup 99}Mo product at least as great as that obtained with the HEU target. Further, because of these modifications, two hours are cut from the processing time, and the liquid waste volume is reduced. Results of these demonstrations will be presented along with conclusions and plans for future work.

  18. Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab P.; Darpe, Ashish K.

    2013-09-01

    Investigation on nonlinear dynamics of a flexible rotor supported on the gas foil journal bearings is attempted. A time domain orbit simulation is carried out that couples the equations of rotor motion, unsteady Reynolds equation and foil deformation. The unsteady Reynolds equation is solved using control volume formulation with power law hybrid scheme and Gauss-Seidel method. The nonlinear dynamic response is analyzed using disc center and journal center trajectories, Poincaré maps, Fast Fourier transforms and bifurcation plots. The analysis is carried out for different system parameters, namely, rotating speed, unbalance eccentricity, compliance and loss factor of gas foil bearing. The analysis reveals highly nonlinear behavior with periodic, multi-periodic and quasiperiodic motion of the disc and the journal center. The present analysis can be useful in designing and selection of suitable operating parameters of rotor bearing system.

  19. Creep Strength and Microstructure of Al20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recurperators

    SciTech Connect

    Maziasz, Philip J; Shingledecker, John P; Evans, Neal D; Yamamoto, Yukinori; More, Karren Leslie; Trejo, Rosa M; Lara-Curzio, Edgar

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) and ATI Allegheny Ludlum worked together on a collaborative program for about two years to produce a wide range of commercial sheets and foils of the new AL20-25+Nb{trademark} (AL20-25+Nb) stainless alloy for advanced microturbine recuperator applications. There is a need for cost-effective sheets/foils with more performance and reliability at 650-750 C than 347 stainless steel, particularly for larger 200-250 kW microturbines. Phase 1 of this collaborative program produced the sheets and foils needed for manufacturing brazed plated-fin air cells, while Phase 2 provided foils for primary surface air cells, and did experiments on modified processing designed to change the microstructure of sheets and foils for improved creep-resistance. Phase 1 sheets and foils of AL20-25+Nb have much more creep-resistance than 347 steel at 700-750 C, and those foils are slightly stronger than HR120 and HR230. Results for Phase 2 showed nearly double the creep-rupture life of sheets at 750 C/100 MPa, and similar improvements in foils. Creep data show that Phase 2 foils of AL20-25+Nb alloy have creep resistance approaching that of alloy 625 foils. Testing at about 750 C in flowing turbine exhaust gas for 500 h in the ORNL Recuperator Test Facility shows that foils of AL20-25+Nb alloy have oxidation-resistance similar to HR120 alloy, and much better than 347 steel.

  20. MULPEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris.

    NASA Astrophysics Data System (ADS)

    Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.

    Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.

  1. MULPEX: A compact multi-layered polymer foil collector for micrometeoroids and orbital debris

    NASA Astrophysics Data System (ADS)

    Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.

    Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MUlti- Layer Polymer EXperiment (MULPEX) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 and 40 μm) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 μm olivine) and space debris (4 μm alumina and 1 mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.

  2. MUPLEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris

    SciTech Connect

    Kearsley, A T; Graham, G A; Burchell, M J; Taylor, E A; Drolshagen, G; Chater, R J; McPhail, D

    2004-10-04

    Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit. We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimized for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminum casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilizing buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimeter dimensions. Penetrations of the top foil are easily recognized, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.

  3. Measurement of short lifetimes in highly-charged ions using a two-foil target

    SciTech Connect

    Berry, H.G.; Dunford, R.W.; Gemmell, D.S.

    1995-08-01

    One of the frontiers in the study of the atomic physics of highly-charged ions is the measurement of lifetimes in the 100 fs to 10 ps regime. The standard technique for measuring lifetimes of states in highly-charged ions is the beam-foil time-of-flight method in which the intensity of an emission line is monitored as a function of the separation between the exciting foil and the portion of the beam being viewed by the detector. This method becomes increasingly difficult as the decay lengths of the states of interest become shorter. At a typical beam velocity of 10% of the speed of light, the beam travels 30 microns in a picosecond. The standard beam-foil time-of-flight method necessitates observation of the decay radiation within one or two decay lengths from the foil while preventing the detectors from observing the beam spot at the foil. For short-lived states this requires tight collimation of the detector with a resulting loss in solid angle. We are developing a method for measuring ultrashort atomic lifetimes utilizing a two-foil target. As a specific case to demonstrate the feasibility of our method, we are studying the decay of the 2 {sup 3}P{sub 2} level in helium-like Kr{sup 34+}. This level has a calculated lifetime of 9.5 ps which corresponds to a decay length of 380 {mu}m. For krypton, theory predicts that 90% of the 2 {sup 3}P{sub 2} states decay via M2 radiation to the ground state. A measurement of the lifetime of this state would contribute to an important current problem which concerns the understanding of atomic structure when both electron correlations and relativistic effects are simultaneously important.

  4. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.

    PubMed

    Shelton, Ryan M; Thornycroft, Patrick J M; Lauder, George V

    2014-06-15

    An undulatory pattern of body bending in which waves pass along the body from head to tail is a major mechanism of creating thrust in many fish species during steady locomotion. Analyses of live fish swimming have provided the foundation of our current understanding of undulatory locomotion, but our inability to experimentally manipulate key variables such as body length, flexural stiffness and tailbeat frequency in freely swimming fish has limited our ability to investigate a number of important features of undulatory propulsion. In this paper we use a mechanical flapping apparatus to create an undulatory wave in swimming flexible foils driven with a heave motion at their leading edge, and compare this motion with body bending patterns of bluegill sunfish (Lepomis macrochirus) and clown knifefish (Notopterus chitala). We found similar swimming speeds, Reynolds and Strouhal numbers, and patterns of curvature and shape between these fish and foils, suggesting that flexible foils provide a useful model for understanding fish undulatory locomotion. We swam foils with different lengths, stiffnesses and heave frequencies while measuring forces, torques and hydrodynamics. From measured forces and torques we calculated thrust and power coefficients, work and cost of transport for each foil. We found that increasing frequency and stiffness produced faster swimming speeds and more thrust. Increasing length had minimal impact on swimming speed, but had a large impact on Strouhal number, thrust coefficient and cost of transport. Foils that were both stiff and long had the lowest cost of transport (in mJ m(-1) g(-1)) at low cycle frequencies, and the ability to reach the highest speed at high cycle frequencies.

  5. Magneto Themoelectric Generator with Carbon Nanotube Thermal Interfaces

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick T.; Fisher, Timothy S.; Marinero, Ernesto E.

    2013-03-01

    We report the thermal behavior of Gd foils used in a magneto thermoelectric generator cells. The device exploits the ferromagnetic phase transition of gadolinium to drive the movement of a diaphragm ``shuttle'' whose mechanical energy is converted to electrical form and which enhances heat transfer through both conduction and convection. Efficient heat transfer at mechanical interfaces is critical to increase shuttle speed and the commensurate rate of heat transfer. The synthesis and characterization of carbon nanotube thermal interfaces for the Gd foils are described. The samples generated in this study were consistently measured with total thermal interface resistances in the range of 65-105 mm2 K/W, a reduction of 55-70% compared to bare Gd (Rint ~ 230 mm2 K/W). The addition of carbon nanotube arrays did not alter the magnetic properties of the gadolinium foils and only a slight decrease in the magnetic moment of the gadolinium samples (8-13%) was measured after growth.

  6. Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS).

    PubMed

    Hao, X D; van Loosdrecht, M C M

    2006-01-01

    Phosphate removal and recovery can be combined in BNR processes. This may be realised by struvite precipitation from the supernatant of the sludge in anaerobic compartments. This can be beneficial for either improving bio-P removal effluent quality or lowering the influent COD/P ratio required for bio-P removal. For this reason, a patented BNR process, BCFS, was developed and applied in The Netherlands. Several questions relating to P-recovery and behaviour of the system remain unclear and need to be ascertained. For this purpose, a modelling technique was employed in this study. With the help of a previous developed model describing carbon oxidation and nutrient removal, three cases were fully simulated. The simulations demonstrated that there was an optimal stripping flow rate and P-recovery would increase in costs and bio-P activity might be negatively affected due to decreased bio-P efficiency if this value was exceeded. The simulations indicated that the minimal COD(biod)/P ratio required for the effluent standard (1 g P/m3) could be lowered from 20 to 10 with 36% of P-recovery. A simulation with dynamic inflow revealed that the dynamic influent loads affected slightly the anaerobic supernatant phosphate concentration but the effluent phosphate concentration would not be affected with regular P-recovery.

  7. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration

    NASA Astrophysics Data System (ADS)

    Huang, C.-K.; Albright, B. J.; Yin, L.; Wu, H.-C.; Bowers, K. J.; Hegelich, B. M.; Fernández, J. C.

    2011-03-01

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of hundreds of MeV energy and <10% energy spread. The break-out afterburner (BOA) is one mechanism proposed to generate such beams; however, the late stages of the BOA tend to produce too large of an energy spread. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the comoving electrons and improve the ion beam energy spread, leading to ion beams of energy hundreds of MeV and 6% energy spread.

  8. Elastic Properties of Rolled Uranium -- 10 wt.% Molybdenum Nuclear Fuel Foils

    SciTech Connect

    D. W. Brown; D. J. Alexander; K. D. Clarke; B. Clausen; M. A. Okuniewski; T. A. Sisneros

    2013-11-01

    In situ neutron diffraction data was collected during elastic loading of rolled foils of uranium-10 wt.% molybdenum bonded to a thin layer of zirconium. Lattice parameters were ascertained from the diffraction patterns to determine the elastic strain and, subsequently, the elastic moduli and Poisson’s ratio in the rolling and transverse directions. The foil was found to be elastically isotropic in the rolling plane with an effective modulus of 86 + / - 3 GPa and a Poisson’s ratio 0.39 + / - 0.04.

  9. Foil Blanking Mechanism Research Using Rubber Tool by Finite Element Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yang-Kai; Li, Xiao-Xing; Lang, Li-Hui; Xiao, Rui; Ge, Yu-Long

    2016-08-01

    For foil blanking process, the usage of flexible tool can effectively reduce the requirement of the manufacturing and assembling precision, compared with using conventional tool. However, the blanking mechanism using rubber tool is not clear. To investigate this question, the Finite Element (FE) model of rubber and process is established using ABAQUS package. The result of FE simulation affirm that the fracture emerges as a result of shear, not tensile. Then, for titanium foil with 0.08mm thickness, the cutting experiment is executed to verify the validity of blanking mechanism and FE simulation.

  10. Direct evidence of gas-induced laser beam smoothing in the interaction with thin foils

    NASA Astrophysics Data System (ADS)

    Benocci, R.; Batani, D.; Dezulian, R.; Redaelli, R.; Lucchini, G.; Canova, F.; Stabile, H.; Faure, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Dudzak, R.; Koenig, M.; Tikhonchuk, V.; Nicolaï, Ph.; Malka, V.

    2009-01-01

    The process of laser beam homogenization in a gas medium placed in front of a thin metallic foil has been studied. Experiments were performed using the Prague Asterix Laser System iodine laser [Jungwirth et al., Phys. Plasmas 8, 2495 (2001)] working at 0.44μm wavelength and irradiance of about 1015W/cm2. Homogenization was detected both by directly analyzing the transmitted laser beam and by studying the shock breakout on the foil rear side. Results show that the gas ionization by the laser pulse induces a strong refraction and produces an effective smoothing of large-scale intensity nonuniformities.

  11. Direct evidence of gas-induced laser beam smoothing in the interaction with thin foils

    SciTech Connect

    Benocci, R.; Batani, D.; Dezulian, R.; Redaelli, R.; Lucchini, G.; Canova, F.; Stabile, H.; Faure, J.; Malka, V.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Dudzak, R.; Koenig, M.; Tikhonchuk, V.; Nicolaie, Ph.

    2009-01-15

    The process of laser beam homogenization in a gas medium placed in front of a thin metallic foil has been studied. Experiments were performed using the Prague Asterix Laser System iodine laser [Jungwirth et al., Phys. Plasmas 8, 2495 (2001)] working at 0.44 {mu}m wavelength and irradiance of about 10{sup 15} W/cm{sup 2}. Homogenization was detected both by directly analyzing the transmitted laser beam and by studying the shock breakout on the foil rear side. Results show that the gas ionization by the laser pulse induces a strong refraction and produces an effective smoothing of large-scale intensity nonuniformities.

  12. Laser-foil acceleration of high-energy protons in small-scale plasma gradients.

    PubMed

    Fuchs, J; Cecchetti, C A; Borghesi, M; Grismayer, T; d'Humières, E; Antici, P; Atzeni, S; Mora, P; Pipahl, A; Romagnani, L; Schiavi, A; Sentoku, Y; Toncian, T; Audebert, P; Willi, O

    2007-07-01

    Proton beams laser accelerated from thin foils are studied for various plasma gradients on the foil rear surface. The beam maximum energy and spectral slope reduce with the gradient scale length, in good agreement with numerical simulations. The results also show that the jxB mechanism determines the temperature of the electrons driving the ion expansion. Future ion-driven fast ignition of fusion targets will use multikilojoule petawatt laser pulses, the leading part of which will induce target preheat. Estimates based on the data show that this modifies by less than 10% the ion beam parameters. PMID:17678159

  13. Nonlinear Dynamics of a Foil Bearing Supported Rotor System: Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Li, Feng; Flowers, George T.

    1996-01-01

    Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.

  14. Stopping power and scattering angle calculations of charged particle beams through thin foils

    SciTech Connect

    Nassiri, A.

    1991-03-01

    It is important to understand the effects of introducing foils into the path of charged particle beams. In the APS linac system, the intention is to insert thin foils before and after the positron generating target to protect the accelerating structures immediately before and after the target. Electron beams that pass through a dense material lose energy in collisions with the atomic electrons. The scattering path of electrons is much less straight than that of heavier particles (mu, pi meson, K meson, proton, etc.). After a short distance electrons tend to diffuse into the material, rather than proceeding in a rectilinear path.

  15. Windage Power Loss in Gas Foil Bearings and the Rotor-Stator Clearance of High Speed Generators Operating in High Pressure Environments

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2009-01-01

    Closed Brayton Cycle (CBC) and Closed Supercritical Cycle (CSC) engines are prime candidates to convert heat from a reactor into electric power for robotic space exploration and habitation. These engine concepts incorporate a permanent magnet starter/generator mounted on the engine shaft along with the requisite turbomachinery. Successful completion of the long-duration missions currently anticipated for these engines will require designs that adequately address all losses within the machine. The preliminary thermal management concept for these engine types is to use the cycle working fluid to provide the required cooling. In addition to providing cooling, the working fluid will also serve as the bearing lubricant. Additional requirements, due to the unique application of these microturbines, are zero contamination of the working fluid and entirely maintenance-free operation for many years. Losses in the gas foil bearings and within the rotor-stator gap of the generator become increasingly important as both rotational speed and mean operating pressure are increased. This paper presents the results of an experimental study, which obtained direct torque measurements on gas foil bearings and generator rotor-stator gaps. Test conditions for these measurements included rotational speeds up to 42,000 revolutions per minute, pressures up to 45 atmospheres, and test gases of nitrogen, helium, and carbon dioxide. These conditions provided a maximum test Taylor number of nearly one million. The results show an exponential rise in power loss as mean operating density is increased for both the gas foil bearing and generator windage. These typical "secondary" losses can become larger than the total system output power if conventional design paradigms are followed. A nondimensional analysis is presented to extend the experimental results into the CSC range for the generator windage.

  16. Friction and Wear Characteristics of Cu-4Al Foil Bearing Coating at 25 and 650 degree C

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2004-01-01

    The friction and wear performance of a Cu-4Al top foil coating has been investigated in Generation I foil air bearings. The copper alloy was applied by a novel deposition technique (ion diffusion) and the journal was coated with PS304, a plasma spray deposited high temperature composite solid lubricant coating. The ion diffusion coating process deposits a desirable smooth layer compared to other methods like cathodic arc deposition. The tribological performance of bearings with and without Cu-4Al foil coatings were evaluated through start-stop tests on an air bearing test rig at 25 and 650 C. The results indicate that the Cu-4Al assists during the initial break-in period, gives more stable friction performance with respect to temperature, and appears to prevent top foil wear at high temperature. The measured load capacity coefficient was 0.5, which was comparable to earlier testing of more advanced design Generation III bearings coated with standard cathodic arc deposited Cu-4Al. However, further studies are needed to determine if deeper penetration of the copper alloy into the foil would help make the transition in friction behavior from contact with the Cu-4Al coated foil to contact with the base foil material more gradual. Also, future work is recommended to assess the performance of ion diffusion coatings with different Cu-based alloy compositions and to investigate the effect the coating has on the elastic modulus of the foil material.

  17. A study of optimal handle shape and muscle strength distribution on lower arm when holding a foil.

    PubMed

    Chang, Chih-Lin; Lin, Fang-Tsan; Li, Kai-Way; Jou, Yung-Tsan; Huang, Chuen-Der

    2009-04-01

    The strength of five working muscle groups of the lower arms of 8 male fencers, including adductor pollicis, extensor carpi radialis, flexor carpi radialis, extensor carpi ulnaris, and flexor carpi ulnaris, were examined during competition. Root mean square values of muscular electromyographic signals indicated that the shape of foil handles significantly influenced distribution of working strength of each muscle group. Use of the Pistol-Viscounti type of foil handle showed better distribution of strength among the 5 muscle groups than did other types of foils. Using the Pistol-Viscounti foil handle not only reduced muscular fatigue but also lessened cumulative trauma symptoms while holding a foil for a long duration. PMID:19544957

  18. Development of mirrors made of chemically tempered glass foils for future X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Salmaso, Bianca; Civitani, Marta; Brizzolari, Claudia; Basso, Stefano; Ghigo, Mauro; Pareschi, Giovanni; Spiga, Daniele; Proserpio, Laura; Suppiger, Yves

    2015-10-01

    Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla® glass (produced by Corning®), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla® glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the overall shape changes in the final resolution performance of the glass mirrors was studied by simulating the glass foils integration with our innovative approach based on glass reinforcing ribs. The preliminary tests performed so far suggest that this approach has the potential to be applied to the X-ray telescopes of the next generation.

  19. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils.

    SciTech Connect

    Graham, G A; Teslich, N; Dai, Z R; Bradley, J P; Kearsley, A T; Horz, F

    2005-11-04

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 {micro}m thick) that are wrapped around the sample tray assembly. Soda lime spheres ({approx}49 {micro}m in diameter) have been accelerated with a Light Gas Gun into flight-grade Al foils at 6.35 km s{sup -1} to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover ''pure'' melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  20. Preparation of high-strength nanometer scale twinned coating and foil

    DOEpatents

    Zhang, Xinghang; Misra, Amit; Nastasi, Michael A.; Hoagland, Richard G.

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.