Science.gov

Sample records for carbon supported catalysts

  1. Catalytic removal of carbon monoxide over carbon supported palladium catalyst.

    PubMed

    Srivastava, Avanish Kumar; Saxena, Amit; Shah, Dilip; Mahato, T H; Singh, Beer; Shrivastava, A R; Gutch, P K; Shinde, C P

    2012-11-30

    Carbon supported palladium (Pd/C) catalyst was prepared by impregnation of palladium chloride using incipient wetness technique, which was followed by liquid phase reduction with formaldehyde. Thereafter, Pd/C catalyst was characterized using X-ray diffractometery, scanning electron microscopy, atomic absorption spectroscopy, thermo gravimetry, differential scanning calorimetry and surface characterization techniques. Catalytic removal of carbon monoxide (CO) over Pd/C catalyst was studied under dynamic conditions. Pd/C catalyst was found to be continuously converting CO to CO(2) through the catalyzed reaction, i.e., CO+1/2O(2)→CO(2). Pd/C catalyst provided excellent protection against CO. Effects of palladium wt%, CO concentration, humidity, space velocity and reaction environment were also studied on the breakthrough behavior of CO. PMID:23083941

  2. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  3. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  4. XPS studies of Pt catalysts supported on porous carbon

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Varma, Salil; Bharadwaj, S. R.

    2016-05-01

    Pt catalysts supported on porous carbon were prepared by hard templating route and used for HI decomposition reaction of Sulfur Iodine thermochemical cycle. These catalysts were characterized by X-ray photoelectron spectroscopy for oxidation state of platinum as well as nature of carbon present in the catalysts. It was found that platinum is present in metallic state and carbon is present in both sp2 and sp3 hybridization states. The catalysts were evaluated for their activity and stability for liquid phase HI decomposition reaction and it was observed that mesoporous carbon based catalysts were more active and stable under the reaction conditions.

  5. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  6. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Harvey, David; Dutta, Monica; Colbow, Vesna

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  7. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  8. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  9. Optimization of carbon-supported platinum cathode catalysts for DMFC operation.

    SciTech Connect

    Zhu, Y.; Brosha, E. L.; Zelenay, P.

    2002-01-01

    In this paper, we describe performance and optimization of carbon-supported cathode catalysts at low platinum loading. We find that at a loading below 0.6 mg cm-2 carbon-supported platinum outperforms platinum black as a DMFC cathode catalyst. A catalyst with a 1:1 volume ratio of the dry NafionTM to the electronically conducting phase (platinum plus carbon support) provides the best performance in oxygen reduction reaction. Thanks to improved catalyst utilization, carbon-supported catalysts with a platinum content varying from 40 wt% to 80 wt% deliver very good DMFC performance, even at relatively modest precious metal loadings investigated in this work.

  10. Function of titanium oxide coated on carbon nanotubes as support for platinum catalysts

    NASA Astrophysics Data System (ADS)

    Ying, Qiling; Naidoo, Sivapregasen; Vaivars, Guntars

    2015-09-01

    This study describes the outcome of the synthesis of laboratory-made (HM) Pt monometallic, binary and ternary catalysts supported on TiO2/CNT (carbon nanotubes) and based on using the dry-mix method of organometallic chemical vapor deposition (OMCVD). These multicomponent catalysts were investigated and compared with commercial Johnson Matthey (JM) catalysts for electrochemical applications.

  11. Laser Synthesis of Supported Catalysts for Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Ticich, Thomas M.; Sherry, Leif J.; Hall, Lee J.; Schubert, Kathy (Technical Monitor)

    2003-01-01

    Four methods of laser assisted catalyst generation for carbon nanotube (CNT) synthesis have been tested. These include pulsed laser transfer (PLT), photolytic deposition (PLD), photothermal deposition (PTD) and laser ablation deposition (LABD). Results from each method are compared based on CNT yield, morphology and structure. Under the conditions tested, the PLT was the easiest method to implement, required the least time and also yielded the best pattemation. The photolytic and photothermal methods required organometallics, extended processing time and partial vacuums. The latter two requirements also held for the ablation deposition approach. In addition to control of the substrate position, controlled deposition duration was necessary to achieve an active catalyst layer. Although all methods were tested on both metal and quartz substrates, only the quartz substrates proved to be inactive towards the deposited catalyst particles.

  12. Physicochemical investigations of carbon nanofiber supported Cu / ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Din, Israf Ud; Shaharun, Maizatul S.; Subbarao, Duvvuri; Naeem, A.

    2014-10-01

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu - ZrO2/ CNF ) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO3). The CNF activated with 5% HNO3 produced higher surface area which is 155 m2/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N2 adsorption-desorption. The results showed that increase of HNO3 concentration reduced the surface area and porosity of the catalyst.

  13. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    DOEpatents

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  14. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGESBeta

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; et al

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  15. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  16. Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells.

    PubMed

    Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng

    2011-09-01

    Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance.

  17. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    PubMed Central

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-01-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  18. Supporting PtRu catalysts on various types of carbon nanomaterials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Ozaki, Masahiro; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Muramoto, Hirokazu

    2013-04-01

    PtRu catalysts were supported on five types of carbon nanomaterials of various shapes, sizes, and graphitic properties and the catalyst supports evaluated. The carbon nanomaterial used included three types of nanoparticles: Arc Black (AcB), Vulcan XC-72 (Vulcan) and graphene oxide (GO), and two types of nanofibers: carbon nanocoil (CNC) and carbon nanotube (CNT). Pt and Ru were supported by the reduction method using sodium borohydride. The metal catalyst loading was confirmed by thermo-gravimetric analysis (TGA), electron microscopy, and X-ray diffraction (XRD). Transmission electron microscopy (TEM) and XRD revealed that the diameter of PtRu catalyst nanoparticles loaded on reduced GO (rGO) and AcB were ~2 nm and was the smallest among all the samples. Shifts in Pt (111) XRD peaks of CNC and CNT were larger than those of AcB, Vulcan, and rGO. These results suggest that the diameters of catalyst nanoparticles became smaller by loading on the carbon nanoparticles with a large surface area including rGO, AcB, and Vulcan. Loading onto the carbon nanofibers enhanced the degree of PtRu alloying.

  19. Effects of surface and structural properties of carbons on the behavior of carbon-supported molybdenum catalysts

    SciTech Connect

    Solar, J.M.; Debryshire, F.J.; De Beer, V.H.J.; Radovic, L.R. Eindhoven Univ. of Technology )

    1991-06-01

    Previous work on carbon-supported hydrodesulfurization (HDS) catalysts has led to the general realization that the nature of the support has a very significant influence on catalytic activity. A commercial carbon black was subjected to oxidative and/or thermal treatment to modify its surface and structural properties. These were thoroughly examined using temperature-programmed desorption, X-ray diffraction, titrations, and electrophoresis. The various carbon-supported molybdenum catalysts were prepared by equilibrium adsorption and incipient wetness impregnation using four different catalyst precursors. The catalytic activity in thiophene HDS and Fischer-Tropsch synthesis was determined in fixed-bed flow reactors connected on-line to gas chromatographs. The catalysts were characterized by X-ray photoelectron spectroscopy. It is concluded that two conflicting requirements complicate the preparation of highly active (i.e., highly dispersed) molybdenum species on carbon surfaces. On one hand, the introduction of oxygen functional groups provides anchoring sites for catalyst precursor adsorption and thus the potential for its high initial dispersion. On the other hand, this also renders the support surface negatively charged over a wide range of pH conditions. At very low pH conditions, below the isoelectric point of the support, when the attractive forces prevail between the Mo anions and the positively charged carbon surface. Mo polymerization is thought to contribute to catalyst agglomeration. No significant correlation between structural parameters of the support and catalytic activity was found.

  20. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    SciTech Connect

    Din, Israf Ud E-mail: maizats@petronas.com.my; Shaharun, Maizatul S. E-mail: maizats@petronas.com.my; Subbarao, Duvvuri; Naeem, A.

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  1. Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems.

    PubMed

    Ge, Peiyu; Scanlon, Micheál D; Peljo, Pekka; Bian, Xiaojun; Vubrel, Heron; O'Neill, Arlene; Coleman, Jonathan N; Cantoni, Marco; Hu, Xile; Kontturi, Kyösti; Liu, Baohong; Girault, Hubert H

    2012-07-01

    The activities of a series of MoS(2)-based hydrogen evolution catalysts were studied by biphasic reactions monitored by UV/Vis spectroscopy. Carbon supported MoS(2) catalysts performed best due to an abundance of catalytic edge sites and strong electronic coupling of catalyst to support.

  2. Preparation of highly dispersed NiMo catalysts supported on carbon black particles of hollow spheres

    SciTech Connect

    Sakanishi, K.; Hasuo, H.; Mochida, I.

    1995-12-01

    One of unique carbon blacks, Ketjen Black (KB) which has extremely high surface area and low specific gravity, was selected as a catalyst support to prepare a highly dispersed NiMo catalyst with the function for recovery and the high activity for hydrogenation. KB-supported NiMo catalysts were prepared by means of impregnation, ion exchange, and incipient wetness methods from various kinds and amounts of Ni and Mo salts, and their activities were examined in the hydrogenation of 1-methyinaphthalene(1-MN) using a magnetic-stirred autoclave of 50 ml capacity at 380{degrees}C for 40 min under 10 MPa H{sub 2} reaction pressure. The catalyst, prepared from (NH{sub 4}){sub 2}MoS{sub 4} and Ni(OAc){sub 2} in their methanol solution by successive impregnations of Mo10% and Ni(2 wt%) in this order supported on nitric acid-treated carbon black(KB JD-O), provided the highest conversion of 86% to methyl-tetralins. Combinations of metal salts soluble in organic solvent, impregnation solvents, and surface properties of carbon black are suggested to be important for the preparation of highly active catalysts with higher dispersions of Ni and Mo on the carbon black, because they are easily agglomerated in impregnation solvent. It is also noted that KB-supported NiMo catalysts showed much higher activity for the hydrogenation than a commercial NiMo/Al{sub 2}O{sub 3} with the smaller weight of catalyst.

  3. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.

  4. Carboxylic Group Embedded Carbon Balls as a New Supported Catalyst for Hydrogen Economic Reactions.

    PubMed

    Bordoloi, Ankur

    2016-03-01

    Carboxylic group functionalized carbon balls have been successfully synthesized by using a facile synthesis method and well characterized with different characterization techniques such as XPS, MAS NMR, SEM, ICP and N2 physi-sorption analysis. The synthesized material has been effectively utilized as novel support to immobilized ruthenium catalyst for hydrogen economic reactions.

  5. A transient kinetic study of the carbon dioxide reforming of methane over supported Ru catalysts

    SciTech Connect

    Ferreira-Aparicio, P.; Rodriguez-Ramos, I.; Marquez-Alvarez, C.; Schuurman, Y.; Mirodatos, C.; Guerrero-Ruiz, A.

    1999-05-15

    Carbon dioxide reforming of methane has been studied over ruthenium catalysts supported on silica, {gamma}-alumina, and a high surface area graphite. Transient kinetic analysis and temporal analysis of products were used to unravel the reaction mechanism and point out the specificity of each support. Over silica support, the most inert material, the whole reforming process occurs on the ruthenium phase and the fast ageing of the catalyst is related to a large residence time of surface carbon intermediates favoring polymerization and graphitization. Over graphite the support acts as a collector of CH{sub x} species which reduces the residence time of carbon species on the Ru phase and therefore leads to a very stable catalyst. Over alumina support the dry reforming of methane involves a complex reaction network in which the alumina hydroxyl groups feed continuously the active Ru phase in H and O adspecies, which also limits the catalyst ageing. Accumulation of CO{sub x} adspecies on alumina also occurs during the reaction.

  6. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  7. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells

    NASA Astrophysics Data System (ADS)

    Taylor, André D.; Kim, Edward Y.; Humes, Virgil P.; Kizuka, Jeremy; Thompson, Levi T.

    We present a method of using inkjet printing (IJP) to deposit catalyst materials onto gas diffusion layers (GDLs) that are made into membrane electrode assemblies (MEAs) for polymer electrolyte fuel cell (PEMFC). Existing ink deposition methods such as spray painting or screen printing are not well suited for ultra low (<0.5 mg Pt cm -2) loadings. The IJP method can be used to deposit smaller volumes of water based catalyst ink solutions with picoliter precision provided the solution properties are compatible with the cartridge design. By optimizing the dispersion of the ink solution we have shown that this technique can be successfully used with catalysts supported on different carbon black (i.e. XC-72R, Monarch 700, Black Pearls 2000, etc.). Our ink jet printed MEAs with catalyst loadings of 0.020 mg Pt cm -2 have shown Pt utilizations in excess of 16,000 mW mg -1 Pt which is higher than our traditional screen printed MEAs (800 mW mg -1 Pt). As a further demonstration of IJP versatility, we present results of a graded distribution of Pt/C catalyst structure using standard Johnson Matthey (JM) catalyst. Compared to a continuous catalyst layer of JM Pt/C (20% Pt), the graded catalyst structure showed enhanced performance.

  8. Characterisation of carbon supported platinum-ruthenium fuel cell catalysts of different degree of alloying

    NASA Astrophysics Data System (ADS)

    Albers, Peter W.; Weber, Winfried; Kunzmann, Kurt; Lopez, Marco; Parker, Stewart F.

    2008-12-01

    A series of PtRu/C fuel cell catalysts have been characterised by a combination of transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray microanalysis, X-ray diffraction and inelastic incoherent neutron scattering. The diffraction and microscopy studies show that a range of catalysts with different degrees of alloying can be obtained. It was possible to produce a strongly alloyed catalyst with average particle size below 10 nm. STEM/EDX results on the local compositions of the precious metal particles of different size and composition showed that the larger the particles the larger the Pt/Ru ratio. This indicates that ruthenium appears to prevent the agglomeration of the platinum particles to retain the smaller nanometer size. Inelastic neutron scattering spectroscopy shows that on the alloyed catalysts hydrogen occupies the threefold site, with no evidence for occupation of the on-top sites even under 800 mbar of hydrogen gas. Changes in the region of the out-of-plane C-H vibrational bands of the carbon black support indicated a contribution of the support during catalyst formation treatment by carbothermal reaction at lower temperature. Comparison of HREELS data from single crystal work and vibrational energy values from neutron spectroscopy allows to derive information on the site occupation of atomic hydrogen on finely divided precious metal particles supported on highly absorbing high surface area carbon blacks.

  9. Mesoporous Carbon Supported Rh Nanoparticle Catalysts for the Production of C2+ Alcohol from Syngas.

    PubMed

    Kim, Min-Ji; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong; Kim, Jeong-Rang; Ha, Kyoung-Su

    2016-02-01

    Uniform rhodium nanoparticles (NP) with three different particle sizes (1.9, 2.4, and 3.6 nm) were prepared via a polyol method with rhodium (III) acetylacetonate, poly(vinylpyrrolidone) with different concentrations of sodium citrate. The prepared Rh nanoparticles were impregnated into the ordered mesoporous carbon supports with two different pore structures (2D hexagonal and 3D cubic). The prepared Rh nanoparticle-supported ordered mesoporous carbons (OMCs) were introduced as catalysts for the CO hydrogenation of syngas to produce C2 higher alcohols. The characteristics of the Rh nanoparticle-supported ordered mesoporous carbons catalysts were analyzed through transmission electron microscopy, powder X-ray diffraction, and N2 physisorption analysis. The catalytic tests of the catalyst were performed using a fixed-bed reactor. The results revealed that the catalysts exhibited the different catalytic activity and selectivity of higher alcohols, which could be attributed to the different OMC structures, the nanoparticle size of Rh, and aggregation of Rh nanoparticles during the reaction. PMID:27433718

  10. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  11. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  12. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  13. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGESBeta

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  14. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  15. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    PubMed

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials. PMID:27155234

  16. Effect of halide-modified model carbon supports on catalyst stability.

    PubMed

    Wood, Kevin N; Pylypenko, Svitlana; Olson, Tim S; Dameron, Arrelaine A; O'Neill, Kevin; Christensen, Steven T; Dinh, Huyen N; Gennett, Thomas; O'Hayre, Ryan

    2012-12-01

    Modification of physiochemical and structural properties of carbon-based materials through targeted functionalization is a useful way to improve the properties and performance of such catalyst materials. This work explores the incorporation of dopants, including nitrogen, iodine, and fluorine, into the carbon structure of highly-oriented pyrolytic graphite (HOPG) and its potential benefits on the stability of PtRu catalyst nanoparticles. Evaluation of the changes in the catalyst nanoparticle coverage and size as a function of implantation parameters reveals that carbon supports functionalized with a combination of nitrogen and fluorine provide the most beneficial interactions, resulting in suppressed particle coarsening and dissolution. Benefits of a carefully tuned support system modified with fluorine and nitrogen surpass those obtained with nitrogen (no fluorine) modification. Ion implantation of iodine into HOPG results in a consistent amount of structural damage to the carbon matrix, regardless of dose. For this modification, improvements in stability are similar to nitrogen modification; however, the benefit is only observed at higher dose conditions. This indicates that a mechanism different than the one associated with nitrogen may be responsible for the improved durability. PMID:23194033

  17. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    SciTech Connect

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  18. Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition

    NASA Astrophysics Data System (ADS)

    Mnatsakanyan, Raman; Zhurnachyan, Alina R.; Matyshak, Valery A.; Manukyan, Khachatur V.; Mukasyan, Alexander S.

    2016-09-01

    Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30-70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.

  19. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    SciTech Connect

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  20. Enhancement of Pt-Based Catalysts Via N-Doped Carbon Supports

    SciTech Connect

    O'Hayre, R.; Zhou, Y.; Pasquarelli, R.; Berry, J.; Ginley, D.

    2008-01-01

    This study experimentally examines the enhancement of carbon supported Pt-based catalysts systems via nitrogen doping. It has been reported that nitrogen-containing carbons promote significant enhancement in Pt/C catalyst activity and durability with respect to the methanol oxidation and oxygen reduction reactions. In order to systematically investigate the effect of N-doping, in this work we have developed geometrically well-defined model catalytic systems consisting of tunable assemblies of Pt catalyst nanoparticles deposited onto both N-doped and undoped highly-oriented pyrolytic graphite (HOPG) substrates. N-doping was achieved via ion beam implantation, and Pt was electrodeposited from solutions of H{sub 2}PtCl{sub 6} in aqueous HClO{sub 4}. Morphology from scanning electron microscopy (SEM) and catalytic activity measurement from aqueous electrochemical analysis were utilized to examine the N-doping effects. The results strongly support the theory that doping nitrogen into a graphite support significantly affects both the morphology and behavior of the overlying Pt nanoparticles. In particular, nitrogen-doping was observed to cause a significant decrease in the average Pt nanoparticle size, an increase in the Pt nanoparticle dispersion, and a significant increase in catalytic activity for both methanol oxidation and oxygen reduction.

  1. Enhanced activity of urea electrooxidation on nickel catalysts supported on tungsten carbides/carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Du, Tingting; Cheng, Jin; Xie, Xing; Yang, Bolun; Li, Mingtao

    2015-04-01

    Nickel nanoparticles with tungsten carbides supported on the multi-walled carbon nanotubes, noted as Ni-WC/MWCNT catalyst, is prepared through an impregnation method and used for the electrooxidation of urea in alkaline conditions. The micro-morphology and composition of the Ni-WC/MWCNT particles are determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The electrooxidation activity and conductivity of the catalyst are investigated by cyclic voltammetry and electrochemical impedance spectroscopy, respectively. Characterization results indicate that the Ni nanoparticles are uniformly distributed on the WC/MWCNT framework, and the Ni-WC/MWCNT catalyst shows an improved activity for the urea electrooxidation. The current densities of Ni-WC/MWCNT are over 3 times and 15 times higher than those of the Ni-WC/C and Ni/C catalysts, respectively, and the electrochemical impedance also decreases markedly. The higher activity on Ni-WC/MWCNT is attributed to the support effect of MWCNT as well as the synergistic effect between Ni and WC.

  2. Carrier effects of active carbon for methanol carbonylation with supported transition metal catalysts

    SciTech Connect

    Fujimoto, K.; Omata, K.; Yagita, H.

    1996-10-01

    Transition metals such as nickel or noble metals showed excellent catalytic activities for the vapor phase carbonylation of methanol to acetic acid. Reaction proceeded via the carbonylation of methanol to methyl acetate and its successive carbonylation to acetic acid anhydride followed by the hydrolysis. Under slightly pressurized conditions and at around 250{degrees}C methanol was completely carbonylated to acetic acid with the selectivity of 97% or higher. Also, other group 8 metals including noble metals showed excellent catalytic activity only when they were supported on active carbon, whose activity, ordered by strength of metal-halogen bonding showed a volcano-shape relationship with the peak at Rh. The role of active carbon as the active carrier was clarified by kinetics and catalyst characterization which showed that active carbon promoted the reductive elimination of intermediate for acetic acid formation by donating electron from carbon to nickel species.

  3. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS).

  4. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS). PMID:25959077

  5. Preparation of multiwalled carbon nanotube-supported nickel catalysts using incipient wetness method.

    PubMed

    Azadi, Pooya; Farnood, Ramin; Meier, Emanuel

    2010-03-25

    In this paper, a systematic study on preparation of multiwalled carbon nanotube (MWCNT)-supported nickel catalyst is pursued. Functional groups are introduced on the surface of MWCNTs using nitric acid, sulfuric acid, and partial oxidation in air. Nickel oxide nanoparticles are formed on the surface of functionalized multiwalled carbon nanotubes by incipient wetness impregnation of nickel nitrate, followed by calcination in air. The effects of acid type and concentration, acid treatment time, partial oxidation, nickel loading, precursor solvent, and calcination temperature on the size of the nickel nanoparticles and homogeneity of the composite material are evaluated. Characteristics of the Ni/MWCNT catalysts were examined using BET, scanning transmission electron microscopy, X-ray diffraction, thermogravimetric analysis in air and nitrogen, temperature-programmed reduction, X-ray photoelectron spectroscopy, acid-base titration, and zeta-potential analyzer. Results of this work are useful for formulating CNT-supported nickel catalysts for a wide range of different applications, such as reforming of hydrocarbons, catalytic hydrothermal gasification of biomass, and energy storage.

  6. Preparation of multiwalled carbon nanotube-supported nickel catalysts using incipient wetness method.

    PubMed

    Azadi, Pooya; Farnood, Ramin; Meier, Emanuel

    2010-03-25

    In this paper, a systematic study on preparation of multiwalled carbon nanotube (MWCNT)-supported nickel catalyst is pursued. Functional groups are introduced on the surface of MWCNTs using nitric acid, sulfuric acid, and partial oxidation in air. Nickel oxide nanoparticles are formed on the surface of functionalized multiwalled carbon nanotubes by incipient wetness impregnation of nickel nitrate, followed by calcination in air. The effects of acid type and concentration, acid treatment time, partial oxidation, nickel loading, precursor solvent, and calcination temperature on the size of the nickel nanoparticles and homogeneity of the composite material are evaluated. Characteristics of the Ni/MWCNT catalysts were examined using BET, scanning transmission electron microscopy, X-ray diffraction, thermogravimetric analysis in air and nitrogen, temperature-programmed reduction, X-ray photoelectron spectroscopy, acid-base titration, and zeta-potential analyzer. Results of this work are useful for formulating CNT-supported nickel catalysts for a wide range of different applications, such as reforming of hydrocarbons, catalytic hydrothermal gasification of biomass, and energy storage. PMID:19821594

  7. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity. PMID:24245272

  8. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.

  9. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Bing; Yan, Zeyu; Higgins, Drew C.; Yang, Daijun; Chen, Zhongwei; Ma, Jianxin

    2014-09-01

    Carbon-supported platinum nanowires (PtNW/C) are successfully synthesized by a simple and inexpensive template-free methodology and demonstrated as novel, suitable cathode electrode materials for proton exchange membrane fuel cell (PEMFC) applications. The synthesis conditions, such as the amount of reducing agent and reaction time, were investigated to investigate the effect on the nanostructures and activities of the PtNW/C catalysts. High-resolution transmission electron microscopy (TEM) results show that the formic acid facilitated reduction is capable of producing uniformly distributed 1-dimensional PtNW with an average cross-sectional diameter of 4.0 ± 0.2 nm and length of 20-40 nm. Investigation of the electrocatalytic activity by half-cell electrochemical testing reveals that PtNW/C catalyst demonstrates significant oxygen reduction reaction (ORR) activity, superior to that of commercially available Pt/C. Using a loading of 0.4 mgPt cm-2 PtNW/C as the cathode catalyst, a maximum power density of 748.8 mW cm-2 in a 50 cm2 single cell of commercial Pt/C. In addition, accelerated degradation testing (ADT) showed that the PtNW/C catalyst exhibits better durability than commercial Pt/C, rendering PtNW/C as a promising replacement to conventional Pt/C as cathode electrocatalysts for PEMFCs applications.

  10. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    SciTech Connect

    Wang Yunyu; Luo Zhiquan; Li Bin; Ho, Paul S.; Yao Zhen; Shi Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-06-15

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO{sub 2}) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO{sub 2} and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO{sub 2}. CNT growth on SiO{sub 2} exhibited a tip growth mode with a slow growth rate of less than 100 nm/min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1 {mu}m/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO{sub 2} and showed a base growth mode with a growth rate greater than 2 {mu}m/min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process.

  11. Multiwall-carbon nanotube modified by N-doped carbon quantum dots as Pt catalyst support for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Jia; Wang, Zhen-Bo; Li, Chao; Zhao, Lei; Liu, Jing; Zhang, Li-Mei; Gu, Da-Ming

    2015-09-01

    The modification of N-doped carbon quantum dots (NCQDs) is an innovative approach to change the properties of multiwall-carbon nanotube (MWCNT). Here we report a facile hydrothermal treatment to synthesize NCQDs-MWCNT support, which acts as an improved catalyst support of Pt-based anode catalyst for direct methanol fuel cells. The structural properties of homemade catalysts are characterized by X-ray diffraction, Energy dispersive analysis of X-ray, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicate that Pt nanoparticles are well dispersed onto NCQDs-MWCNT and have a synergetic interaction with NCQDs. The results of electrochemical measurements reveal that Pt/NCQDs-MWCNT catalyst exhibits 1.3 times higher activity for methanol electrooxidation than that of Pt/MWCNT. The enhanced performance of Pt/NCQDs-MWCNT is attributed to the fact that NCQDs improve the dispersion of MWCNT and more uniform Pt nanoparticles are stabilized on NCQDs-MWCNT. NCQDs play a critical role in electrocatalytic performance for methanol electrooxidation.

  12. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

    PubMed

    Qin, Xiaojun; Peng, Fei; Yang, Feng; He, Xiaohui; Huang, Huixin; Luo, Da; Yang, Juan; Wang, Sheng; Liu, Haichao; Peng, Lianmao; Li, Yan

    2014-02-12

    The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by inhibiting the formation of metallic SWNTs via oxidation. The so-produced ultralong s-SWNT arrays are immediately ready for building field effect transistors. PMID:24392872

  13. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    SciTech Connect

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang . E-mail: zhangjc1@mail.buct.edu.cn

    2007-07-03

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid.

  14. Role of Surface Cobalt Silicate in Single-Walled Carbon Nanotube Synthesis from Silica-Supported Cobalt Catalysts

    SciTech Connect

    Li, N.; Wang, X; Derrouiche, S; Haller, G; Pfefferle, L

    2010-01-01

    A silica-supported cobalt catalyst has been developed via incipient wetness impregnation for high-yield synthesis of single-walled carbon nanotubes (SWNTs). Co/SiO{sub 2}-impregnated catalysts have not been observed to be efficient for SWNT synthesis. Using an appropriately chosen precursor, we show that effective catalysts can be obtained for SWNT synthesis with yields up to 75 wt %. Detailed characterization indicates that the active sites for SWNT synthesis are small cobalt particles resulting from the reduction of a highly dispersed surface cobalt silicate species. The SWNTs produced by this catalyst are of high quality and easy to purify, and the process is simple and scalable.

  15. Role of surface cobalt silicate in single-walled carbon nanotube synthesis from silica-supported cobalt catalysts.

    PubMed

    Li, Nan; Wang, Xiaoming; Derrouiche, Salim; Haller, Gary L; Pfefferle, Lisa D

    2010-03-23

    A silica-supported cobalt catalyst has been developed via incipient wetness impregnation for high-yield synthesis of single-walled carbon nanotubes (SWNTs). Co/SiO2-impregnated catalysts have not been observed to be efficient for SWNT synthesis. Using an appropriately chosen precursor, we show that effective catalysts can be obtained for SWNT synthesis with yields up to 75 wt %. Detailed characterization indicates that the active sites for SWNT synthesis are small cobalt particles resulting from the reduction of a highly dispersed surface cobalt silicate species. The SWNTs produced by this catalyst are of high quality and easy to purify, and the process is simple and scalable. PMID:20201563

  16. The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Rao, V.; Simonov, P. A.; Savinova, E. R.; Plaksin, G. V.; Cherepanova, S. V.; Kryukova, G. N.; Stimming, U.

    In this paper we analyse the promises of homemade carbon materials of Sibunit family prepared through pyrolysis of natural gases on carbon black surfaces as supports for the anode catalysts of direct methanol fuel cells. Specific surface area ( SBET) of the support is varied in the wide range from 6 to 415 m 2 g -1 and the implications on the electrocatalytic activity are scrutinized. Sibunit supported PtRu (1:1) catalysts are prepared via chemical route and the preparation conditions are adjusted in such a way that the particle size is constant within ±1 nm in order to separate the influence of support on the (i) catalyst preparation and (ii) fuel cell performance. Comparison of the metal surface area measured by gas phase CO chemisorption and electrochemical CO stripping indicates close to 100% utilisation of nanoparticle surfaces for catalysts supported on low (22-72 m 2 g -1) surface area Sibunit carbons. Mass activity and specific activity of PtRu anode catalysts change dramatically with SBET of the support, increasing with the decrease of the latter. 10%PtRu catalyst supported on Sibunit with specific surface area of 72 m 2 g -1 shows mass specific activity exceeding that of commercial 20%PtRu/Vulcan XC-72 by nearly a factor of 3.

  17. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst. PMID:27454194

  18. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst.

  19. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    PubMed

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media. PMID:27389659

  20. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  1. Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Calvillo, L.; Gangeri, M.; Perathoner, S.; Centi, G.; Moliner, R.; Lázaro, M. J.

    Platinum nanoparticles were supported on carbon nanofibers (CNFs) for their use as electrocatalyst for PEM fuel cells. Before platinum deposition, CNFs were oxidized using concentrated HNO 3 or a HNO 3-H 2SO 4 mixture as oxidizing agents. During these treatments, new surface oxygen groups were created. Moreover, the most severe treatments resulted in the shortening of CNFs. Both effects allow to study the influence of both the morphology and the surface chemistry of CNFs on the preparation and performance of Pt electrocatalysts. Catalysts were prepared by the incipient wetness impregnation method. CNFs and electrocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2-physisorption. Furthermore, the performance of Pt/CNF based electrodes was compared with that of a commercial Pt/carbon black electrode (E-TEK) in a 1-cm 2 PEM fuel cell. The results showed that both the surface chemistry and the morphology of the support have an important effect on the dispersion, particle size and activity of Pt catalysts. An increase in the agglomeration degree of Pt particles as the severity of oxidation treatments increased was observed. However, the performance of Pt/CNF electrodes was better than that of the commercial one. This was attributed to the CNF porous structure and to the better Pt-support interaction through the surface oxygen groups of the support.

  2. Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and O-propylaniline over carbon-supported transition metal sulfide catalysts

    SciTech Connect

    Eijsbouts, S.; Sudhakar, C.; de Beer, V.H.J.; Prins, R. )

    1991-02-01

    Carbon-supported transition metal sulfide (TMS) catalysts were prepared by impregnation of an activated carbon support with aqueous solutions of first-, second-, and third-row (group V-VIII) transition metal salts followed by drying and in situ sulfidation. Their activity for the hydrodenitrogenation of decahydroquinoline (5.2-5.5 MPa, 623-653 K), cyclohexylamine (4.8-5.5 MPa, 543-653 K), and o-propylaniline (5.1-5.5 MPa, 593-653 K) was tested in microautoclaves. When plotted versus the position of the transition metal in the Periodic System, the conversions of all three N-containing reactants to hydrocarbons over the first-row transition metal sulfides formed U-shaped curves with a minimum at Mn, while V had the highest conversion. The decahydroquinoline and cyclohexylamine conversions to hydrocarbons over the second- and third-row TMS formed volcano curves with maxima at Rh and Ir, respectively. Disproportionation reactions were found to be important side reactions in the cyclohexylamine hydrodenitrogenation. The activities of the second-row transition metal sulfides for the conversion of 0-propylaniline formed a volcano curve with a maximum at Ru or Rh sulfide, whereas the activities of the third-row transition metal sulfides formed a strongly distorted volcano curve. All catalysts and especially Re sulfide had a very high selectivity for propylbenzene.

  3. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer–Tropsch Catalysts

    PubMed Central

    2016-01-01

    The Fischer–Tropsch Synthesis converts synthesis gas from alternative carbon resources, including natural gas, coal, and biomass, to hydrocarbons used as fuels or chemicals. In particular, iron-based catalysts at elevated temperatures favor the selective production of C2–C4 olefins, which are important building blocks for the chemical industry. Bulk iron catalysts (with promoters) were conventionally used, but these deactivate due to either phase transformation or carbon deposition resulting in disintegration of the catalyst particles. For supported iron catalysts, iron particle growth may result in loss of catalytic activity over time. In this work, the effects of promoters and particle size on the stability of supported iron nanoparticles (initial sizes of 3–9 nm) were investigated at industrially relevant conditions (340 °C, 20 bar, H2/CO = 1). Upon addition of sodium and sulfur promoters to iron nanoparticles supported on carbon nanofibers, initial catalytic activities were high, but substantial deactivation was observed over a period of 100 h. In situ Mössbauer spectroscopy revealed that after 20 h time-on-stream, promoted catalysts attained 100% carbidization, whereas for unpromoted catalysts, this was around 25%. In situ carbon deposition studies were carried out using a tapered element oscillating microbalance (TEOM). No carbon laydown was detected for the unpromoted catalysts, whereas for promoted catalysts, carbon deposition occurred mainly over the first 4 h and thus did not play a pivotal role in deactivation over 100 h. Instead, the loss of catalytic activity coincided with the increase in Fe particle size to 20–50 nm, thereby supporting the proposal that the loss of active Fe surface area was the main cause of deactivation. PMID:27330847

  4. Carbon-Supported Copper Nanomaterials: Recyclable Catalysts for Huisgen [3+2] Cycloaddition Reactions.

    PubMed

    Shaygan Nia, Ali; Rana, Sravendra; Döhler, Diana; Jirsa, Franz; Meister, Annette; Guadagno, Liberata; Koslowski, Eik; Bron, Michael; Binder, Wolfgang H

    2015-07-20

    Highly disperse copper nanoparticles immobilized on carbon nanomaterials (CNMs; graphene/carbon nanotubes) were prepared and used as a recyclable and reusable catalyst to achieve Cu(I) -catalyzed [3+2] cycloaddition click chemistry. Carbon nanomaterials with immobilized N-heterocyclic carbene (NHC)-Cu complexes prepared from an imidazolium-based carbene and Cu(I) show excellent stability including high efficiency at low catalyst loading. The catalytic performance evaluated in solution and in bulk shows that both types of Cu-CNMs can function as an effective recyclable catalysts (more than 10 cycles) for click reactions without decomposition and the use of external additives.

  5. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOEpatents

    Popov, Branko N.; Subramanian, Nalini; Colon-Mercado, Hector R.

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  6. Continuous preparation of carbon-nanotube-supported platinum catalysts in a flow reactor directly heated by electric current

    PubMed Central

    dos Santos, Antonio Rodolfo; Kunz, Ulrich; Turek, Thomas

    2011-01-01

    Summary In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale. PMID:22043252

  7. Graphitic Mesoporous Carbon as a Support of Promoted Rh Catalysts for Hydrogenation of Carbon Monoxide to Ethanol

    SciTech Connect

    Chai, Songhai; Howe, Jane Y; Wang, Xiqing; Kidder, Michelle; Schwartz, Viviane; Golden, Melissa L; Overbury, Steven {Steve} H; Dai, Sheng; Jiang, Deen

    2012-01-01

    Graphitic mesoporous carbon (GMC), prepared through high-temperature graphitization of soft-templated amorphous mesoporous carbon (AMC), was used as the support for Mn, Li, and Fe triple-promoted Rh catalysts for CO hydrogenation to ethanol. The use of GMC results in C{sub 2}H{sub 5}OH selectivity and formation rate comparable to nonporous SiO{sub 2} support along with a significant inhibition on the formation of undesired CH{sub 4} and light hydrocarbons at the expense of appreciable amounts of CO{sub 2} produced. The better catalytic performance of promoted-Rh/GMC than those supported on other carbon allotropes (AMC and non-porous graphitic carbon black) seems to be associated with the specific graphitic structure and mesoporosity of GMC. The surface modification of GMC by wet oxidation leads to considerable increases in C{sub 2}H{sub 5}OH selectivity and formation rate. The modified GMC as a support shows substantially greater CO{sub 2}-free selectivity for C{sub 2}H{sub 5}OH than the SiO{sub 2}.

  8. Nanostructured catalyst supports

    SciTech Connect

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  9. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  10. Periodic trends in the hydrodenitrogenation activity of carbon-supported transition metal sulfide catalysts

    SciTech Connect

    Eijsbouts, S.; De Beer, V.H.J.; Prins, R.

    1988-01-01

    Periodic trends of transition metals for the catalysis of reactions such as hydrogenation, hydrogenolysis, isomerization and hydrogen oxidation have been well studied. When activity versus position of the transition metal in the periodic table is plotted, quite often these trends are manifested in the form of so-called volcano-type curves. In the present study, the authors have chosen the HDN of quinoline at moderately high pressure as a model reaction, and they have used the same carbon-supported transition metal sulfide catalysts studied by Vissers et al. Results are shown for the following transition metals: V, Cr, Mn, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, and Pt. 9 references.

  11. Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Kou, Rong; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    The electrochemical behavior for Pt catalysts supported on multiwalled carbon nanotubes and Vulcan XC-72 in proton exchange membrane fuel cells under accelerated stress test was examined by cyclic voltammetry, electrochemical impedance spectroscopy, and polarization technique. Pt catalyst supported on multiwalled carbon nanotubes exhibited highly stable electrochemical surface area, oxygen reduction kinetics, and fuel cell performance at a highly oxidizing condition, indicating multiwalled carbon nanotubes show high corrosion resistance and strong interaction with Pt nanoparticles. The Tafel slope, ohmic resistances, and limiting current density determined were used to differentiate kinetic, ohmic, mass-transfer polarization losses from the actual polarization curve. Kinetic contribution to the total overpotential was larger throughout the stress test. However, the fraction of kinetic overpotential decreased and mass-transfer overpotential portion remained quite constant during accelerated stress test, whereas the fraction of ohmic overpotential primarily originating from severe proton transport limitation in the catalyst layer increased under the anodic potential hold.

  12. Higher alcohols from synthesis gas using carbon-supported doped molybdenum-based catalysts

    SciTech Connect

    Li, X.; Feng, L.; Liu, Z.; Zhong, B.; Dadyburjor, D.B.; Kugler, E.L.

    1998-10-01

    A series of carbon-supported molybdenum-based catalysts was prepared by incipient wetness impregnation. The materials, when promoted with potassium and additionally with cobalt, were screened for the selective production of mixed higher-molecular weight alcohols from syngas. The effects of the catalyst preparation parameters (Mo precursor, Mo loading, doping levels of K and Co, and calcination) and of the reaction conditions (temperature and space velocity) were studied. The screening procedure consisted of ramping the temperature steadily from 200 to 400 C and back again. Adding K results in a maximum in the space-time yield (STY) of total alcohols and the ratio of higher alcohols to methanol. Increasing the reaction temperature results in a monotonic increase in the STY of hydrocarbons, a monotonic decrease in the selectivity toward alcohols, and a maximum in the STY of alcohols. Increasing the space velocity increases the STY and selectivity to alcohols while decreasing the STY of hydrocarbons. Increasing the space velocity also decreases the higher-alcohol fraction in the alcohol products.

  13. Tungsten carbide modified high surface area carbon as fuel cell catalyst support

    NASA Astrophysics Data System (ADS)

    Shao, Minhua; Merzougui, Belabbes; Shoemaker, Krista; Stolar, Laura; Protsailo, Lesia; Mellinger, Zachary J.; Hsu, Irene J.; Chen, Jingguang G.

    Phase pure WC nanoparticles were synthesized on high surface area carbon black (800 m 2 g -1) by a temperature programmed reaction (TPR) method. The particle size of WC can be controlled under 30 nm with a relatively high coverage on the carbon surface. The electrochemical testing results demonstrated that the corrosion resistance of carbon black was improved by 2-fold with a surface modification by phase pure WC particles. However, the WC itself showed some dissolution under potential cycling. Based on the X-ray diffraction (XRD) and inductively coupled plasma (ICP) analysis, most of the WC on the surface was lost or transformed to oxides after 5000 potential cycles in the potential range of 0.65-1.2 V. The Pt catalyst supported on WC/C showed a slightly better ORR activity than that of Pt/C, with the Pt activity loss rate for Pt/WC/C being slightly slower compared to that of Pt/C. The performance and decay rate of Pt/WC/C were also evaluated in a fuel cell.

  14. Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing

    SciTech Connect

    Ichin, Yoshimichi; Mitamura, Koji; Saito, Nagahiro; Takai, Osamu

    2009-07-15

    In order to improve the energy-conversion efficiency in fuel cells, the authors loaded Pt nanoparticles on carbon nanoballs (CNBs) by using solution plasma processing (SPP) involving CNB and Pt ion with a protection group. In this study, we employed poly(vinylpyrrolidone) (PVP) or sodium dodecyl sulfate (SDS) to prepare Pt nanoparticles supported on CNB (Pt/CNB) by the SPP, and the electrochemical properties as a catalyst was evaluated by cyclic voltammetry. The carbon nanoballs were prepared by thermal decomposition process of ethylene and hydrogen gases. Color of the solution changed from yellow to dark brown as synthesis time. This change indicates the improvement of dispersibility of CNB. Moreover, transmission electron microscopy images and elemental mapping images showed the Pt nanoparticles supported on CNB. A catalytic activity of the Pt/CNB in use of SDS was shown to be higher than the Pt/CNB prepared with PVP system. The SDS-containing Pt/CNB also showed the higher activity than that obtained by the conventional method.

  15. Nanoscaled palladium catalysts on activated carbon support "Sibunit" for fine organic synthesis

    NASA Astrophysics Data System (ADS)

    Simakova, I.; Koskin, A.; Deliy, I.; Simakov, A.

    2005-08-01

    The application of nanosized palladium catalysts has gained growing importance over the last few years. Palladiumbased catalytic methods for fine organic synthesis permits the replacement of traditional labor-consuming techniques in multi-step organic syntheses and provides an improvement from the standpoint of cost and environmental impact. The use of activated carbon "Sibunit" as a substrate for catalysts has been fostered by the substrate's high surface area, chemical inertness both in acidic and basic media, and at the same time by the absence of very strong acidic centers on its surface which could promote undesirable side reactions during the catalytic run. A conversion of alpha-pinene derivatives to commercial biologically active compounds and fragrances as well as sun screens with ultra violet filtering properties, involves a catalytic hydrogenation as a key intermediate step. The aim of the present work is to clarify the factors favoring the dispersion of Pd metal on carbon. The effect of reduction temperature and pretreatment of the carbon surface on metal size during preparation of Pd on "Sibunit" catalysts for selective verbenol conversion was studied. The electron microscopy method (TEM) was used to show the influence on Pd metal dispersion of carbon surface oxidation by the oxidant H2O2, HNO3. The catalytic activity of Pd/C catalyst samples in verbenol hydrogenation reaction was determined. Kinetic peculiarities of verbenol hydrogenation over the most active catalyst sample were obtained.

  16. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  17. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  18. Effect of multiwalled carbon nanotubes with different specific surface areas on the stability of supported Pt catalysts

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Zhen-Bo; Sui, Xu-Lei; Yin, Ge-Ping

    2014-01-01

    Pt/MCNTs catalysts have been synthesized by the microwave-assisted polyol process (MAPP). Effect of multiwalled carbon nanotubes (MCNTs) with different specific surface areas on the stability of supported Pt catalysts has been investigated. The obtained Pt/MCNTs catalysts are characterized by X-ray diffraction (XRD), Energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and accelerated potential cycling tests (APCT) to present the stability of the catalysts. The experimental results indicate that the original electrochemically active specific surface areas (ESA) and the activity for methanol electrooxidation of the catalysts decrease with the decreasing of the specific surface areas of MCNTs, and the Pt/MCNTs-250 (MCNTs with pristine specific surface of 250 m2 g-1, below the same) catalysts show the best initial electrochemical activity. However, the activity of the Pt/MCNTs-250 is very close to that of the Pt/MCNTs-120 and the stability of the Pt/MCNTs-60 catalyst is the best after 1000 cycles APCT. Considering the factors of the activity and stability comprehensively, the optimized specific surface area of MCNTs in the Pt/MCNTs catalysts is 120 m2 g-1.

  19. What is below the support layer affects carbon nanotube growth: an iron catalyst reservoir yields taller nanotube carpets.

    PubMed

    Shawat, E; Mor, V; Oakes, L; Fleger, Y; Pint, C L; Nessim, G D

    2014-01-01

    Here we demonstrate an approach to enhance the growth of vertically aligned carbon nanotubes (CNTs) by including a catalyst reservoir underneath the thin-film alumina catalyst underlayer. This reservoir led to enhanced CNT growth due to the migration of catalytic material from below the underlayer up to the surface through alumina pinholes during processing. This led to the formation of large Fe particles, which in turn influenced the morphology evolution of the catalytic iron surface layer through Ostwald ripening. With inclusion of this catalyst reservoir, we observed CNT growth up to 100% taller than that observed without the catalyst reservoir consistently across a wide range of annealing and growth durations. Imaging studies of catalyst layers both for different annealing times and for different alumina support layer thicknesses demonstrate that the surface exposure of metal from the reservoir leads to an active population of smaller catalyst particles upon annealing as opposed to a bimodal catalyst size distribution that appears without inclusion of a reservoir. Overall, the mechanism for growth enhancement we present here demonstrates a new route to engineering efficient catalyst structures to overcome the limitations of CNT growth processes. PMID:24323364

  20. Improved coal liquefaction using carbon-supported hydrogenation catalysts: Quarterly report for the period 1 January-31 March 1986

    SciTech Connect

    Scaroni, A.W.; Derbyshire, F.J.; Solar, J.M.; Abotsi, G.M.K.; Spears, R.

    1986-03-01

    Catalysts have been prepared by the impregnation of different porous carbons with molybdenum-containing precursor compounds using the incipient wetness technique. Two precursors were investigated; a solution of ammonium heptamolybdate (or, in some cases, ammoniumtetrathiomolybdate) in 90% H/sub 2/O/10% EtOH; a solution of molybdenumtricarbonyltriacetonitrile in acetonitrile. The fresh catalysts were characterized by x-ray photoelectron spectroscopy. The activities of the sulfided catalysts were measured for thiophene hydrodesulfurization in a continuous flow, atmospheric pressure reactor. The principal findings are that: (1) for a given support and at similar loading, the organometallic precursor confers a much higher activity than the ammonium salt precursors. The increase in lined-out activity can be higher by as much as a factor of 1.6 and (2) with catalysts prepared from molybdenumtricarbonyltriacetonitrile, the highest thiophene conversions were obtained with a high surface area active carbon. However, when (based upon a number of assumptions) the catalysts are compared at similar dispersions and corrected for surface area differences, the most active catalyst was found to be that prepared upon a graphitic support. 3 refs., 1 fig., 4 tabs.

  1. Influence of the synthesis method on the properties of Pt catalysts supported on carbon nanocoils for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Lázaro, M. J.; Celorrio, V.; Calvillo, L.; Pastor, E.; Moliner, R.

    Pt electrocatalysts supported on carbon nanocoils (CNCs) were prepared by the sodium borohydride (BM), formic acid (FAM) and ethylene glycol (EGM) reduction methods in order to determine the influence of the synthesis method on the physicochemical and electrochemical properties of Pt/CNC catalysts. For this purpose, physicochemical properties of these materials were studied by means of energy dispersive X-ray analyses, X-ray diffraction and N 2-physisorption, whereas their electrochemical activity towards ethanol and carbon monoxide oxidation was studied using cyclic voltammetry and chronoamperometry. Furthermore, in order to complete this study, the results obtained for Pt/CNC catalysts were compared with those obtained for Pt catalysts supported on Vulcan XC-72R (commercial support) prepared by the same methods and for the commercial Pt/C catalysts from E-TEK. Results showed that, for all studied methods, CO oxidation occurred at more negative potentials on Pt/CNC catalysts than on Pt/Vulcan and Pt/C E-TEK ones. On the other hand, higher current densities for the ethanol electrooxidation were obtained when CNCs were used as support for BM and EGM. It is concluded that optimizing the synthesis method on CNC, materials with enhanced electrooxidation properties could be developed.

  2. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-01

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique

  3. TiN@nitrogen-doped carbon supported Pt nanoparticles as high-performance anode catalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Fu, Shenna; Zhao, Yi

    2016-08-01

    In this paper, TiN@nitrogen-doped carbons (NDC) composed of a core-shell structure are successfully prepared through self-assembly and pyrolysis treatment using γ-aminopropyltriethoxysilane as coupling agent, polyaniline as carbon and nitrogen source, respectively. Subsequently, TiN@NDC supporting Pt nanoparticles (Pt/TiN@NDC) are obtained by a microwave-assisted polyol process. The nitrogen-containing functional groups and TiN nanoparticles play a critical role in decreasing the average particle size of Pt and improving the electrocatalytic activity of Pt/TiN@NDC. Transmission electron microscope results reveal that Pt nanoparticles are uniformly dispersed in the TiN@NDC surface with a narrow particle size ranging from 1 to 3 nm in diameter. Moreover, the Pt/TiN@NDC catalyst shows significantly improved catalytic activity and high durability for methanol electrooxidation in comparison with Pt/NDC and commercial Pt/C catalysts, revealed by cyclic voltammetry and chronoamperometry. Strikingly, this novel Pt/TiN@NDC catalyst reveals a better CO tolerance related to Pt/NDC and commercial Pt/C catalysts, which due to the bifunctional mechanism and strong metal-support interaction between Pt and TiN@NDC. In addition, the probable reaction steps for the electrooxidation of CO adspecies on Pt NPs on the basis of the bifunctional mechanism are also proposed. These results indicate that the TiN@NDC is a promising catalyst support for methanol electrooxidation.

  4. TiN@nitrogen-doped carbon supported Pt nanoparticles as high-performance anode catalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Fu, Shenna; Zhao, Yi

    2016-08-01

    In this paper, TiN@nitrogen-doped carbons (NDC) composed of a core-shell structure are successfully prepared through self-assembly and pyrolysis treatment using γ-aminopropyltriethoxysilane as coupling agent, polyaniline as carbon and nitrogen source, respectively. Subsequently, TiN@NDC supporting Pt nanoparticles (Pt/TiN@NDC) are obtained by a microwave-assisted polyol process. The nitrogen-containing functional groups and TiN nanoparticles play a critical role in decreasing the average particle size of Pt and improving the electrocatalytic activity of Pt/TiN@NDC. Transmission electron microscope results reveal that Pt nanoparticles are uniformly dispersed in the TiN@NDC surface with a narrow particle size ranging from 1 to 3 nm in diameter. Moreover, the Pt/TiN@NDC catalyst shows significantly improved catalytic activity and high durability for methanol electrooxidation in comparison with Pt/NDC and commercial Pt/C catalysts, revealed by cyclic voltammetry and chronoamperometry. Strikingly, this novel Pt/TiN@NDC catalyst reveals a better CO tolerance related to Pt/NDC and commercial Pt/C catalysts, which due to the bifunctional mechanism and strong metal-support interaction between Pt and TiN@NDC. In addition, the probable reaction steps for the electrooxidation of CO adspecies on Pt NPs on the basis of the bifunctional mechanism are also proposed. These results indicate that the TiN@NDC is a promising catalyst support for methanol electrooxidation.

  5. Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Tang, Zheng; Zhang, Weidong; Li, Yi; Huang, Zuming; Guo, Huishan; Wu, Feng; Li, Jinjun

    2016-02-01

    This study aimed to optimize synthesis of gold catalyst supported on nanosized iron oxide and to evaluate the activity in oxidation of carbon monoxide and formaldehyde. Nanosized iron oxide was prepared from a colloidal dispersion of hydrous iron oxide through a dispersion-precipitation method. Gold was adsorbed onto nanosized iron oxide under self-generated basic conditions. Characterization results indicate that the iron oxide consisted of hematite/maghemite composite with primary particle sizes of 6-8 nm. Gold was highly dispersed on the surface of the support. The catalysts showed good activity in the oxidation of airborne carbon monoxide and formaldehyde. The optimal pH for their synthesis was ∼7. The catalytic performance could be enhanced by extending the adsorption time of gold species on the support within 21 h. The optimized catalyst was capable of achieving complete oxidation of 1% carbon monoxide at -20 °C and 33% conversion of 450 ppm formaldehyde at ambient temperature. The catalyst may be applicable to indoor air purification.

  6. Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol Over Nano-Catalysts Supported on CeO2-MgO.

    PubMed

    Jun, Jin Oh; Lee, Joongwon; Kang, Ki Hyuk; Song, In Kyu

    2015-10-01

    A series of CeO2(X)-MgO(1-X) (X = 0, 0.25, 0.5, 0.75, and 1.0) nano-catalysts were prepared by a co-precipitation method for use in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Among the CeO2(X)-MgO(1-X) catalysts, CeO2(0.25)-MgO(0.75) nano-catalyst showed the best catalytic performance. Alkali and alkaline earth metal oxides (MO = Li2O, K2O, Cs2O, SrO, and BaO) were then supported on CeO2(0.25)-MgO(0.75) by an incipient wetness impregnation method with an aim of improving the catalytic performance of CeO2(0.25)-MgO(0.75). Basicity of the catalysts was determined by CO2-TPD experiments in order to elucidate the effect of basicity on the catalytic performance. The correlation between catalytic performance and basicity showed that basicity played an important role in the reaction. Yield for dimethyl carbonate increased with increasing basicity of the catalysts. Among the catalysts tested, Li2O/CeO2(0.25)-MgO(0.75) nano-catalyst with the largest basicity showed the best catalytic performance in the synthesis of dimethyl carbonate.

  7. Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol Over Nano-Catalysts Supported on CeO2-MgO.

    PubMed

    Jun, Jin Oh; Lee, Joongwon; Kang, Ki Hyuk; Song, In Kyu

    2015-10-01

    A series of CeO2(X)-MgO(1-X) (X = 0, 0.25, 0.5, 0.75, and 1.0) nano-catalysts were prepared by a co-precipitation method for use in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Among the CeO2(X)-MgO(1-X) catalysts, CeO2(0.25)-MgO(0.75) nano-catalyst showed the best catalytic performance. Alkali and alkaline earth metal oxides (MO = Li2O, K2O, Cs2O, SrO, and BaO) were then supported on CeO2(0.25)-MgO(0.75) by an incipient wetness impregnation method with an aim of improving the catalytic performance of CeO2(0.25)-MgO(0.75). Basicity of the catalysts was determined by CO2-TPD experiments in order to elucidate the effect of basicity on the catalytic performance. The correlation between catalytic performance and basicity showed that basicity played an important role in the reaction. Yield for dimethyl carbonate increased with increasing basicity of the catalysts. Among the catalysts tested, Li2O/CeO2(0.25)-MgO(0.75) nano-catalyst with the largest basicity showed the best catalytic performance in the synthesis of dimethyl carbonate. PMID:26726512

  8. Effect of surface oxidation of the support on the thiophene hydrodesulfurization activity of Mo, Ni, and NiMo catalysts supported on activated carbon

    SciTech Connect

    Calafat, A. |; Lopez-Agudo, A.; Palacios, J.M.

    1996-08-01

    The present investigation attempts to provide a better understanding of the influence of the nature of the carbon support on the HDS activity of Mo, Ni, and NiMo catalysts. For this purpose a high purity activated carbon was subjected to oxidative treatments with HNO{sub 3} to modify its surface properties. NiMo catalysts supported on the resulting activated carbons were prepared and characterized by TPR, XRD, and SEM-EDX, and their activity for HDS of thiophene at 30 bars and 375{degrees}C was evaluated. The results obtained showed that oxidation of the carbon surface does not affect the HDS activity and other characteristics of the supported Mo phase. In contrast, the HDS activity of the Ni catalysts is enhanced by acid treatments of the carbon support. In this case, introduction of oxygen-containing functional groups (O{sub (s)}) leads to a strong interaction of O{sub (s)}-Ni during impregnation, which becomes essential to achieving and preserving high nickel dispersion. This effect on NiMo/C catalysts. The synergistic effect of the bimetallic catalysts is observed only when oxygen functional groups are present on the carbon surface, which are necessary for a good HDS activity, mainly because they enhance Ni-Mo interactions that produce the highly active Ni-Mo-S phase. A NiMoO{sub 4}-like phase formed during impregnation seems to be the precursor for the active sulfide phase over the present NiMo/C catalysts. 34 refs., 6 figs., 5 tabs.

  9. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts.

    PubMed

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-01-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times. PMID:26578426

  10. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-11-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times.

  11. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    PubMed Central

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-01-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times. PMID:26578426

  12. Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Ishiyama, Keisuke; Kosaka, Fumihiko; Shimada, Iori; Oshima, Yoshito; Otomo, Junichiro

    2013-03-01

    The electro-oxidation of glycerol on a carbon-supported platinum catalyst (Pt/C) in combination with a reaction products analysis was investigated at intermediate temperatures (235-260 °C) using a single cell with a CsH2PO4 proton conducting solid electrolyte. A high current density was achieved. The main products were H2, CO2 and CO but the formation of C2 compounds, such as glycolic acid and ethane, was also observed. In addition, several C3 compounds were detected as minor products. A reaction products analysis revealed that the C-C bond dissociation ratio of glycerol was 70-80% at both low and high potentials (>200 mV vs. reversible hydrogen electrode) at 250 °C, suggesting that rapid dissociation occurs on Pt/C. The reaction products analysis also suggested that hydrogen production via thermal decomposition and/or steam reforming of glycerol (indirect path) and direct electro-oxidation of glycerol (direct path) proceed in parallel. More detailed reaction paths involving C1, C2 and C3 reaction products are discussed as well as the possible rate-determining step in glycerol electro-oxidation at intermediate temperatures.

  13. Carbon nitride nanosheet-supported porphyrin: a new biomimetic catalyst for highly efficient bioanalysis.

    PubMed

    Deng, Shengyuan; Yuan, Peixin; Ji, Xubo; Shan, Dan; Zhang, Xueji

    2015-01-14

    A highly efficient biomimetic catalyst was fabricated based on ultrathin carbon nitride nanosheets (C3N4)-supported cobalt(II) proto-porphyrin IX (CoPPIX). The periodical pyridinic nitrogen units in C3N4 backbone could serve as electron donors for great affinity with Co(2+) in PPIX, which resembled the local electronic structure as vitamin B12 and heme cofactor of hemoglobin. UV-vis kinetics and electrochemistry revealed its competitive (electro)catalysis with conventional peroxidase, while X-ray photoelectron spectroscopy and theoretical calculations suggest that the rehybridization of Co 3d with N orbitals from the backside can result in significant changes in enthalpy and charge density, which greatly promoted the activity of CoPPIX. The prepared nanocatalyst was further conjugated with streptavidin via multiple amines on the edge plane of C3N4 for facile tagging. Using biotinylated molecular beacon as the capture probe, a sensitive electrochemiluminescence-based DNA assay was developed via the electroreduction of H2O2 as the coreactant after the hairpin unfolded by the target, exhibiting linearity from 1.0 fM to 0.1 nM and a detection limit of 0.37 fM. Our results demonstrate a new paradigm to rationally design inexpensive and durable biomimics for electrochemiluminescence quenching strategy, showing great promise in bioanalytical applications.

  14. Graphene nanoribbons hybridized carbon nanofibers: remarkably enhanced graphitization and conductivity, and excellent performance as support material for fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Gao, Hongrong; Li, Hong; Zhang, Yiren; Huang, Bowen; Zhao, Junhong; Zhu, Yan; Yuan, Wang Zhang; Zhang, Yongming

    2014-01-01

    High electronic conductivity of the support material and uniform distribution of the catalyst nanoparticles (NPs) are extremely desirable for electrocatalysts. In this paper, we present our recent progress on electrocatalysts for fuel cells with simultaneously improved conductivity of the supporting carbon nanofibers (CNFs) and distribution of platinum (Pt) NPs through facile incorporation of graphene nanoribbons (GNRs). Briefly, GNRs were obtained by the cutting and unzipping of multiwalled carbon nanotubes (MWCNTs) and subsequent thermal reduction and were first used as novel nanofillers in CNFs towards high performance support material for electrocatalysis. Through electrospinning and carbonization processes, GNR embedded carbon nanofibers (G-CNFs) with greatly enhanced graphitization and electronic conductivity were synthesized. Chemical deposition of Pt NPs onto G-CNFs generated a new Pt-G-CNF hybrid catalyst, with homogeneously distributed Pt NPs of ~3 nm. Compared to Pt-CNF (Pt on pristine CNFs) and Pt-M-CNF (Pt on MWCNT embedded CNFs), Pt-G-CNF hybrids exhibit significantly improved electrochemically active surface area (ECSA), better CO tolerance for electro-oxidation of methanol and higher electrochemical stability, testifying G-CNFs are promising support materials for high performance electrocatalysts for fuel cells.High electronic conductivity of the support material and uniform distribution of the catalyst nanoparticles (NPs) are extremely desirable for electrocatalysts. In this paper, we present our recent progress on electrocatalysts for fuel cells with simultaneously improved conductivity of the supporting carbon nanofibers (CNFs) and distribution of platinum (Pt) NPs through facile incorporation of graphene nanoribbons (GNRs). Briefly, GNRs were obtained by the cutting and unzipping of multiwalled carbon nanotubes (MWCNTs) and subsequent thermal reduction and were first used as novel nanofillers in CNFs towards high performance support material for

  15. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  16. Influence of Sulfur on the Carbon Deposition in Liquid Hydrocarbon Steam Reforming over CeO2-Al2O3 supported Ni and Rh Catalysts

    SciTech Connect

    C Xie; Y Chen; Y Li; X Wang; C Song

    2011-12-31

    This study was performed to elucidate the influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO{sub 2}-Al{sub 2}O{sub 3} supported Ni and Rh catalysts at 800 C. The characteristics of the carbon deposits on the used catalysts after the reactions without and with sulfur were investigated by temperature-programmed oxidation (TPO), transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM), temperature-programmed hydrogenation (TPH), X-ray absorption near edge structure (XANES), and scanning electron microscopy (SEM). Though abundant carbon deposits can accumulate on the pure CeO{sub 2}-Al{sub 2}O{sub 3} support due to fuel thermal cracking, the addition of Ni or Rh metal greatly reduced the carbon deposition in the sulfur-free reaction. The presence of sulfur increased the carbon deposition on both catalysts, which has a much more significant impact for the Ni catalyst. Carbon XANES study on the used catalysts revealed that graphitic carbon was dominant in the presence of sulfur, while oxidized carbon species (quinone-like carbon, carboxyl and carbonate) prevailed without sulfur. Meanwhile, the formation of carboxyl and carbonate more dramatically dropped on the Ni catalyst than that on the Rh catalyst. Our results strongly suggest that (I) the presence of sulfur can suppress carbon gasification and promote the formation of graphitic carbon on reforming catalysts due mainly to its poisoning effect on metals, and (II) Rh catalyst possesses stronger capability to maintain carbon gasification activity than Ni catalyst in the presence of sulfur.

  17. Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Carmo, M.; Paganin, V. A.; Rosolen, J. M.; Gonzalez, E. R.

    Noble metal catalysts in the form of nanoparticles supported on high surface area carbon exhibit characteristics which depend strongly on the nature of the support. This work presents results with noble metal catalysts supported on carbon nanotubes (MWNT and SWNT) and also on a high surface area carbon powder Vulcan XC-72, for proton exchange membrane fuel cells (PEMFC) fed with hydrogen contaminated with CO and also for the direct methanol fuel cell (DMFC). A high performance was achieved with PtRu supported on nanotubes for H 2 + 100 ppm CO, although it was similar to that presented by PtRu on Vulcan XC-72 with an overpotential of 100 mV at 1 A cm -2. Results for the DMFC showed power densities exceeding 100 mW cm -2 at 90 °C and 0.3 MPa and the activity of the anodes followed the sequence: PtRu/MWNT > PtRu/Vulcan XC-72 > PtRu/SWNT. The electrocatalysts were all prepared with the same method, namely impregnation of the carbons with the precursors in ethanol and reduction under a hydrogen atmosphere. The role of Ni, Fe and other contaminants contained in the as-received carbon nanotubes is discussed.

  18. Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Jia, Chuankun; Liu, Jianguo; Yan, Chuanwei

    2012-12-01

    A modified electrode for vanadium redox flow battery (VRFB) has been developed in this paper. The electrode is based on a traditional carbon felt (CF) grafted with the short-carboxylic multi-walled carbon nanotubes (MWCNTs). The microstructure and electrochemical property of the modified electrode as well as the performance of the VRFB single cell with it have been characterized. The results show that the MWCNTs are evenly dispersed and adhere to the surface of carbon fibres in the CF. The electrochemical activities of the modified CF electrode have been improved dramatically and the reversibility of the VO2+/VO2+ and V3+/V2+ redox couples increased greatly. The VRFB single cell with the modified CF exhibits higher coulombic efficiency (93.9%) and energy efficiency (82.0%) than that with the pristine CF. The SEM analysis shows that the MWCNTs still cohere with carbon fibres after charge and discharge test, indicating the stability of the MWCNTs in flowing electrolyte. Therefore, the composite electrode presents considerable potential for the commercial application of CF in VRFB.

  19. Carbon nanotubes supported by titanium dioxide nanoparticles as recyclable and green catalyst for mild synthesis of dihydropyrimidinones/thiones

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Gandomi-Ravandi, Soheila

    2014-05-01

    The catalytic activity of titanium dioxide supported on carbon nanotubes has been investigated in a one-pot three components condensation reaction (Biginelli reaction). The TiO2-CNT nanocomposites as catalyst are highly stable and completely heterogeneous and they can be recycled several times. Compared to the classical Biginelli reaction conditions, the present methodology offers several advantages such as excellent yields, simplicity, fast and clean reactions and short reaction times.

  20. Pt-Co Bimetallic Catalyst Supported on Single Walled Carbon Nanotube: XAS and Aqueous Phase Reforming Activity Studies

    SciTech Connect

    Wang, X.; Li, N; Pfefferle, L; Haller, G

    2009-01-01

    We have developed a simple method to create a catalyst with atomically dispersed Pt on top of Co nanoparticles on single walled carbon nanotubes (SWNT) supports by sequential impregnation of Pt(II) and Co(II) solutions following by hydrogen reduction. The aqueous phase reforming activity is much higher than for Pt monometallic catalysts on SWNT supports prepared by several methods, either pre-reduced in hydrogen or in the liquid phase. The high selectivity of the monometallic catalysts is maintained for the bimetallic systems. The Extended X-ray Absorption Fine Structure (EXAFS) results at the Pt LIII edge show no observable Pt-Pt bond. Only Pt-Co bonds were observed, indicating high dispersion of Pt. The enhanced activity comes from two sources: the high dispersion of Pt and the effect of the Co as co-catalyst or modifier. This contribution demonstrates the possibility to further engineer bimetallic catalysts to improve the aqueous phase reforming activity, especially to retain good selectivity at high conversion.

  1. Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium

    NASA Technical Reports Server (NTRS)

    Srinivasan, Vakula S.; Singer, Joseph

    1986-01-01

    This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.

  2. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  3. Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yabei; Liu, Chuntao; Liu, Yanying; Feng, Bo; Li, Li; Pan, Hengyu; Kellogg, Williams; Higgins, Drew; Wu, Gang

    2015-07-01

    Catalyst supports are known to play important role in governing overall catalyst activity and durability. Here, a new type of SnO2-TiO2 solid solution (TixSn1-xO2) support was prepared via a solvothermal method with substitution of Ti4+ by Sn4+ in the TiO2 lattice. Furthermore, the TixSn1-xO2 was combined with conventional carbon black (Vulcan XC-72) to prepare a hybrid support (TixSn1-xO2-C) for depositing Pt nanoparticles. The ratios of Sn vs. Ti in the solid-solution and TixSn1-xO2vs. XC-72 were systematically optimized in terms of their performance as supports for methanol oxidation. Compared to Pt/TiO2-C and commercial Pt/C catalysts, the best performing Pt/Ti0.9Sn0.1O2-C catalyst exhibited the highest activity, evidenced by methanol oxidation and CO stripping experiments. The well-dispersed Pt nanoparticles (2-3 nm) are mostly deposited on the boundaries of Ti0.9Sn0.1O2 and carbon blacks. Formation of the special triple junction structure can play an important role in improving Pt utilization with increased electrochemical active surface areas (ESA) of Pt. In addition, the enhanced activity for Pt supported on Ti0.9Sn0.1O2-C is due to high content of OH group on Ti0.9Sn0.1O2 along with the strengthened metal-supports interactions. Both promote the oxidation of poisoning CO absorbed on Pt active sites.

  4. Ni-SiO₂ catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis.

    PubMed

    Lovell, Emma C; Scott, Jason; Amal, Rose

    2015-01-01

    Silica particles were prepared by flame spray pyrolysis (FSP) as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min) during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM) was probed. Increasing the precursor feed rate: (i) progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii) altered the silanol groups on the silica surface; and (iii) introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt %) nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics. PMID:25774491

  5. Ni-SiO₂ catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis.

    PubMed

    Lovell, Emma C; Scott, Jason; Amal, Rose

    2015-01-01

    Silica particles were prepared by flame spray pyrolysis (FSP) as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min) during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM) was probed. Increasing the precursor feed rate: (i) progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii) altered the silanol groups on the silica surface; and (iii) introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt %) nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics.

  6. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru; Ue, Hitoshi; Umeda, Yoshito

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe2O3/zeolite was prepared by dissolving Fe2O3 fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe2O3/Al2O3, Co/zeolite/Al2O3, Co/zeolite, and Co/Al2O3 were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C2H2/N2 = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al2O3. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al2O3. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  7. Process of making supported catalyst

    DOEpatents

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  8. Investigation of a carbon-supported quaternary PtRuSnW catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Aricò, A. S.; Poltarzewski, Z.; Kim, H.; Morana, A.; Giordano, N.; Antonucci, V.

    An investigation was carried out in the electro-oxidation of methanol on a carbon-supported quaternary PtRuSnW catalyst prepared by a liquid-phase reduction method. As derived by X-ray diffraction and X-ray photoelectron spectroscopy, the catalyst was composed of metallic Pt, microcrystalline RuO 2 and SnO 2 phases and amorphous WO 3/WO 2 species. The electrochemical analysis was carried out in half-cell containing sulfuric acid electrolyte as well as in a liquid methanol-fed solid polymer electrolyte single-cell. The activity of catalyst in the half-cell varied as a function of the methanol concentration, it increased with CH 3OH molarity in the activation-controlled region and showed a maximum in 2 M CH 3OH at high currents. IR-free polarization curves showed that the activity of the quaternary catalyst was superior to Pt metal/C samples having the same Pt amount. The presence of semi-insulating metal oxides such as RuO 2, SnO 2 and WO 3 on the electrode surface exhibited a significant uncompensated resistance. The single-cell performance was lower than that predicted by the half-cell experiments mainly due to the methanol cross-over through the Nafion membrane.

  9. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other.

  10. Oxygen reduction at carbon supported ruthenium-selenium catalysts: Selenium as promoter and stabilizer of catalytic activity

    NASA Astrophysics Data System (ADS)

    Schulenburg, Hendrik; Hilgendorff, Marcus; Dorbandt, Iris; Radnik, Jörg; Bogdanoff, Peter; Fiechter, Sebastian; Bron, Michael; Tributsch, Helmut

    Carbon supported ruthenium-based catalysts (Ru/C) for the oxygen reduction in acid electrolytes were investigated. A treatment of Ru/C catalysts with selenious acid had a beneficial effect on catalytic activity but no influence on intrinsic kinetic properties, like Tafel slope and hydrogen peroxide generation. Reasons for the increased activity of RuSe x/C catalysts are discussed. Potential step measurements suggest that at potentials around 0.8 V (NHE) a selenium or selenium-oxygen species protects the catalyst from formation of inactive RuO 2-films. This protective effect leads to an enhanced activity of RuSe x/C compared to Ru/C. No evidence was found for a catalytically active stoichiometric selenium compound. The active phase may be described as a ruthenium suboxide RuO x (x < 2) layer integrated in a RuSe y phase or RuSe yO v (y < 2, v < 2) layer at the particle surface.

  11. Catalytic Decomposition of 2,3-Dihydrobenzofuran to Monocyclic Compounds Over Palladium Catalysts Supported on Sulfonated Ordered Mesoporous Carbon.

    PubMed

    Kim, Jeong Kwon; Park, Hai Woong; Hong, Ung Gi; Lee, Yoon Jae; Song, In Kyu

    2015-11-01

    Ordered mesoporous carbon (OMC) was sulfonated at different temperature (OMC-SO3H-X, X = 125, 150, 175, 200, and 225 degrees C) in order to provide acid sites to OMC. Palladium catalysts were then supported on OMC-SO3H-X by an incipient wetness impregnation method for use in the catalytic decomposition of 2,3-dihydrobenzofuran to monocyclic compounds. 2,3-Dihydrobenzofuran was used as a lignin model compound for representing β-5 linkage of lignin. In the catalytic decomposition of 2,3-dihydrobenzofuran over Pd/OMC-SO3H-X, ethylcyclohexane and 2-ethlyphenol were mainly produced. Conversion of 2,3-dihydrobenzofuran and total yield for main products (ethylcyclohexane and 2-ethylphenol) were closely related to the acidity of the catalysts. Conversion of 2,3-dihydrobenzofuran and total. yield for main products increased with increasing acidity of Pd/OMC-SO3H-X catalysts. Among the catalysts tested, Pd/OMC-SO3H-150 with the largest acidity showed the highest conversion of 2,3-dihydrobenzofuran and the highest total yield for main products. PMID:26726658

  12. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.

    PubMed

    Van de Vyver, Stijn; Geboers, Jan; Schutyser, Wouter; Dusselier, Michiel; Eloy, Pierre; Dornez, Emmie; Seo, Jin Won; Courtin, Christophe M; Gaigneaux, Eric M; Jacobs, Pierre A; Sels, Bert F

    2012-08-01

    Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other. PMID:22730195

  13. Carbon supported Pd-Ni-P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Fei-Fei; Yang, Yao-Yue; Cai, Wen-Bin

    2013-12-01

    Carbon-supported well-dispersed Pd-Ni-P ternary catalyst targeted for ethanol oxidation reaction (EOR) in alkaline media is synthesized in a simple aqueous bath containing Pd(II) and Ni(II) salts with sodium hypophosphite as the reducing agent and the source for P and sodium citrate as the complexing agent. XRD analysis on the as-prepared Pd-Ni-P/C reveals that Ni shrinks while P expands the Pd lattice structure, and XPS measurement suggests different electronic effects of the two alloying elements on Pd. Cyclic voltammetry and chronoamperometry indicate that the Pd-Ni-P/C presents a remarkably higher electrocatalytic activity than the state-of-the-art Pd/C, Pd-P/C and Pd-Ni/C catalysts. This may be ascribed to the unique electronic, geometric and bifunctional effects involved in this ternary nanoalloy.

  14. Green synthesis of carbon-supported nanoparticle catalysts by physical vapor deposition on soluble powder substrates

    PubMed Central

    Park, Hee-Young; Jang, Injoon; Jung, Namgee; Chung, Young-Hoon; Ryu, Jae Yoon; Cha, In Young; Kim, Hyung Juhn; Jang, Jong Hyung; Yoo, Sung Jong

    2015-01-01

    Metal and metal oxide nanoparticles (NPs) supported on high surface area carbon (NP/Cs) were prepared by the physical vapor deposition of bulk materials on an α-D-glucose (Glu) substrate, followed by the deposition of the NPs on carbon supports. Using Glu as a carrier for the transport of NPs from the bulk materials to the carbon support surfaces, ultrafine NPs were obtained, exhibiting a stabilizing effect through OH moieties on the Glu surfaces. This stabilizing effect was strong enough to stabilize the NPs, but weak enough to not significantly block the metal surfaces. As only the target materials and Glu are required in our procedure, it can be considered environmentally friendly, with the NPs being devoid of hazardous chemicals. Furthermore, the resulting NP/Cs exhibited an improvement in activity for various electrochemical reactions, mainly attributed to their high surface area. PMID:26380962

  15. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    PubMed Central

    Hu, Yan; Chua, Daniel H. C.

    2016-01-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135

  16. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells.

    PubMed

    Hu, Yan; Chua, Daniel H C

    2016-06-15

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  17. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chua, Daniel H. C.

    2016-06-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt-1 as compared to standard carbon black of 7.4 W.mgPt-1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  18. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.

    PubMed

    Akbayrak, Serdar; Ozkar, Saim

    2012-11-01

    Ruthenium(0) nanoparticles supported on multiwalled carbon nanotubes (Ru(0)@MWCNT) were in situ formed during the hydrolysis of ammonia-borane (AB) and could be isolated from the reaction solution by filtration and characterized by ICP-OES, XRD, TEM, SEM, EDX, and XPS techniques. The results reveal that ruthenium(0) nanoparticles of size in the range 1.4-3.0 nm are well-dispersed on multiwalled carbon nanotubes. They were found to be highly active catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value of 329 min⁻¹. The reusability experiments show that Ru(0)@MWCNTs are isolable and redispersible in aqueous solution; when redispersed they are still active catalyst in the hydrolysis of AB exhibiting a release of 3.0 equivalents of H₂ per mole of NH₃BH₃ and preserving 41% of the initial catalytic activity even after the fourth run of hydrolysis. The lifetime of Ru(0)@MWCNTs was measured as 26400 turnovers over 29 h in the hydrolysis of AB at 25.0 ± 0.1 °C before deactivation. The work reported here also includes the kinetic studies depending on the temperature to determine the activation energy of the reaction (E(a) = 33 ± 2 kJ/mol) and the effect of catalyst concentration on the rate of the catalytic hydrolysis of AB, respectively. PMID:23113804

  19. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.

    PubMed

    Akbayrak, Serdar; Ozkar, Saim

    2012-11-01

    Ruthenium(0) nanoparticles supported on multiwalled carbon nanotubes (Ru(0)@MWCNT) were in situ formed during the hydrolysis of ammonia-borane (AB) and could be isolated from the reaction solution by filtration and characterized by ICP-OES, XRD, TEM, SEM, EDX, and XPS techniques. The results reveal that ruthenium(0) nanoparticles of size in the range 1.4-3.0 nm are well-dispersed on multiwalled carbon nanotubes. They were found to be highly active catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value of 329 min⁻¹. The reusability experiments show that Ru(0)@MWCNTs are isolable and redispersible in aqueous solution; when redispersed they are still active catalyst in the hydrolysis of AB exhibiting a release of 3.0 equivalents of H₂ per mole of NH₃BH₃ and preserving 41% of the initial catalytic activity even after the fourth run of hydrolysis. The lifetime of Ru(0)@MWCNTs was measured as 26400 turnovers over 29 h in the hydrolysis of AB at 25.0 ± 0.1 °C before deactivation. The work reported here also includes the kinetic studies depending on the temperature to determine the activation energy of the reaction (E(a) = 33 ± 2 kJ/mol) and the effect of catalyst concentration on the rate of the catalytic hydrolysis of AB, respectively.

  20. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.

    PubMed

    Cui, Zhiming; Li, Chang Ming; Jiang, San Ping

    2011-09-28

    A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system. PMID:21842101

  1. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.

    PubMed

    Cui, Zhiming; Li, Chang Ming; Jiang, San Ping

    2011-09-28

    A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.

  2. Effects of microstructure on carbon support in the catalyst layer on the performance of polymer electrolyte fuel cells

    SciTech Connect

    Uchida, Makoto; Fukuoka, Yuko; Sugawara, Yasushi

    1996-12-31

    In the case of the Polymer-electrolyte fuel cells (PEFCs), the reaction sites exist on the platinum (Pt) surface covered with PFSI. Though PFSI membrane is used as an electrolyte of the PEFC, the membrane does not soak deeply into the electrodes as a liquid electrolyte does. Therefore, PFSI solution was impregnated into the catalyst layers to increase the contact areas between Pt and PFSI. In our previous work we proposed a new preparation method of the M&E assembly which emphasized the colloid formation of the PFSI to optimize the network of PFSIs in the catalyst layer and also to simplify the fabrication process of the M&E assembly. Following this work, we focused on the microstructure of the catalyst layer. The importance of the morphological properties of the gas-diffusion electrodes on performance has been reported in several papers. The catalyst layer was claimed to have had two distinctive pore distributions with a boundary of ca. 0.1 {mu}m. The smaller pore (primary pore) was identified with the space in and between the primary particles in the agglomerate of the carbon support and the larger one (secondary pore) was that between the agglomerates. In our recent work, we reported that the PFSI was distributed only in the secondary pores, and the reaction sites were therefore limited to that location. The results indicated that the PEFC system required a particular design rather than a conventional one for the fuel cells with liquid electrolytes. We proposed that novel structure and/or preparation methods of the catalyst layer were keys to higher utilization of Pt.

  3. Improved coal liquefaction using carbon-supported hydrogenation catalysts: Quarterly reports for the period 1 April-30 September 1986. [Mo/C catalyst

    SciTech Connect

    Scaroni, A.W.; Derbyshire, F.J.; Solar, J.M.; Abotsi, G.M.K.

    1986-09-01

    Characterization studies of sulfided Mo/C catalysts have been continued. The stoichiometry of unsupported molybdenum sulfide, prepared by laboratory procedures, was confirmed to have an S/Mo atomic ratio of 2.0 after reduction in hydrogen at 400/sup 0/C. Toluene chemisorption has been used as a technique to obtain some indication of the catalyst dispersion and the active surface areas of Mo/C catalysts. The measured toluene surface areas were found to correlate with the catalyst activities for coal asphaltene conversion. Investigations of the effect of hydrogen pressure (500 to 1500 psig) have been made of the activities of an Mo/Ambersorb XE-348 catalyst and an Mo/NH/sub 3/ pretreated Ambersorb XE-348 catalyst (pretreated for 1.5 h at 873 K) for coal liquids conversion. The catalyst prepared on the pretreated support showed higher activity for asphaltene conversion. For both catalysts, asphaltene conversion increased and coking propensity decreased with increasing H/sub 2/ pressure. Mo/C catalysts have been prepared on five different supports using a molybdenum acetylacetonate precursor. The supports were loaded by adsorption from aqueous solution rather than impregnation by the incipient wetness technique. Preliminary results indicate that some of the catalysts prepared by this procedure possess higher activities for thiophene HDS than those earlier reported using molybdenumtricarbonyltriacetonitrile as a precursor. 30 refs., 9 figs., 7 tabs.

  4. Supported organoiridium catalysts for alkane dehydrogenation

    SciTech Connect

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  5. Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Young, Alan; Dutta, Monica; Ahmad, Zaid; Colbow, Vesna; Wessel, Silvia; Ye, Siyu

    2010-07-01

    The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was found to exist.

  6. Performance improvement in PEMFC using aligned carbon nanotubes as electrode catalyst support.

    SciTech Connect

    Liu, D. J.; Yang, J.; Kariuki, N.; Geonaga, G.; Call, A.; Myers, D.; Chemical Sciences and Engineering Division

    2008-01-01

    A novel membrane electrode assembly (MEA) using aligned carbon nanotubes (ACNT) as the electrocatalyst support was developed for proton exchange membrane fuel cell (PEMFC) application. A multiple-step process of preparing ACNT-PEMFC including ACNT layer growth and catalyzing, MEA fabrication, and single cell packaging is reported. Single cell polarization studies demonstrated improved fuel utilization and higher power density in comparison with the conventional, ink based MEA.

  7. Assessment of the ethanol oxidation activity and durability of Pt catalysts with or without a carbon support using Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saleh, Farhana S.; Easton, E. Bradley

    2014-01-01

    We compared the stability and performance of 3 commercially available Johnson Matthey catalysts with various Pt loadings (20, 40 and 100%) using two different accelerated durability testing (ADT) protocols. The various Pt-loaded catalysts were tested by means of a series of intermittent life tests (1, 200, 400, 1000, 2000, 3000 and 4000 cycles). The electrochemical surface area (ECSA) loss of electrode was investigated by electrochemical technique (CV). The use of EIS as an accelerated-testing protocol distinctly elucidates the extent of degradation of Johnson Matthey catalysts with various Pt loading. Using EIS, it was possible to show that Pt-black catalyst layers suffer from increased electronic resistance over the course of ADT which is not observed when a corrosion stable carbon support is present. The effect of Pt loading was further elucidated by comparing the electrocatalytic activity of the catalyst layers towards ethanol oxidation reaction (EOR). The catalyst layer with the lowest Pt loading showed the enhanced EOR performance.

  8. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    NASA Astrophysics Data System (ADS)

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-02-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g-1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates.

  9. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    PubMed Central

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-01-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g−1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates. PMID:26912370

  10. Purification of Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane using Bimetallic Fe-Co Catalysts Supported on MgO

    NASA Astrophysics Data System (ADS)

    Guan, Beh Hoe; Ramli, Irmawati; Yahya, Noorhana; Kean Pah, Lim

    2011-02-01

    This work reports the synthesis of carbon nanotubes by catalytic decomposition of methane using bimetallic Fe-Co catalysts supported on MgO. Transmission electron microscopy (TEM) results show the as-prepared carbon nanotubes are multi-walled carbon nanotubes (MWCNTs) with diameter in the range of 15nm to 45nm. Purification of as-prepared MWCNTs was carried out by acid and heat treatment method. EDX results show the Fe, Co and MgO catalysts were successfully removed by refluxing the as-prepared MWCNTs in 3M H2SO4.

  11. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh

  12. Enhancing the available specific surface area of carbon supports to boost the electroactivity of nanostructured Pt catalysts.

    PubMed

    Holade, Yaovi; Morais, Claudia; Servat, Karine; Napporn, Teko W; Kokoh, K Boniface

    2014-12-14

    We report increasing improvements in the available specific surface area of the commonly used Vulcan XC 72R and Ketjenblack EC-600JD carbons by simple thermal pre-treatment. The treated Vulcan and Ketjenblack substrates have a specific surface area of 322 and 1631 m(2) g(-1), respectively, instead of 262 and 1102 m(2) g(-1) for the as-received materials, which is a 23 and 48% improvement. Subsequently, when used as platinum nanoparticle (3 nm) supports, the electrochemical active surface area is enhanced by factors of 2.2 and 1.2 for treated Vulcan and Ketjenblack carbons, respectively. Furthermore, electrochemical investigations have highlighted a surprisingly improved catalytic activity for the pre-treated Vulcan XC 72R and Ketjenblack EC-600JD supported Pt nanoparticles. In fact, the synthesized nanostructures from the so-called "Bromide Anion Exchange" method exhibit good catalytic activity toward glucose electrooxidation, both in the alkaline medium and the phosphate buffered solution at pH 7.4. More importantly, the present catalysts are four times more active than those in the literature prepared under similar conditions for glucose dehydrogenation at low potential (0.27 V vs. Reversible Hydrogen Electrode). Consequently, these remarkable trends uncovered herein provide ample new strategic routes for the pre-treatment of Vulcan XC 72R and Ketjenblack carbons for widespread uses. PMID:25351933

  13. Facile method to control the diameter and density of carbon nanotubes by using a catalyst-embedded supporting layer

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woong; Han, Jaeseok; Im, Hyunsik; Choi, WonChel; Park, Young S.; Yoon, Seok-Beom

    2015-06-01

    We have investigated an effective method to control the diameter and the density of carbon nanotubes (CNTs) by introducing a catalyst-embedded supporting layer (CSL) prepared by using rf-magnetron sputtering with a mixed target consisting of Fe and Al2O3. The type of CNTs was changed from single-walled CNTs with a diameter of 0.85 ~ 1.55 nm to multi-walled CNTs with increasing rf-magnetron sputtering power. The controllability of the diameter and the density of the CNTs was confirmed to have been improved by using the rf power during the sputtering of the CSL and the concentration of Fe in the mixed target, respectively.

  14. Chemical kinetic considerations for postflame synthesis of carbon nanotubes in premixed flames using a support catalyst

    SciTech Connect

    Gopinath, Prarthana; Gore, Jay

    2007-11-15

    Multiwalled carbon nanotubes (MWCNTs) on a grid supported cobalt nanocatalyst were grown, by exposing it to combustion gases from ethylene/air rich premixed flames. Ten equivalence ratios ({phi}) were investigated, as follows: 1.37, 1.44, 1.47, 1.50, 1.55, 1.57, 1.62, 1.75, 1.82, and 1.91. MWCNT growth could be observed for the range of equivalence ratios between 1.45 and 1.75, with the best yield restricted to the range 1.5-1.6. A one-dimensional premixed flame code with a postflame heat loss model, including detailed chemistry, was used to estimate the gas phase chemical composition that favors MWCNT growth. The results of the calculations show that the mixture, including the water gas shift reaction, is not even in partial chemical equilibrium. Therefore, past discussions of compositional parameters that relate to optimum carbon nanotube (CNT) growth are revised to include chemical kinetic effects. Specifically, rapid departures of the water gas shift reaction from partial equilibrium and changes in mole fraction ratios of unburned C{sub 2} hydrocarbons to hydrogen correlate well with experimentally observed CNT yields. (author)

  15. Bismuth - modified supported catalysts

    SciTech Connect

    Nadirov, N.K.; Lykova, L.F.; Petrosyan, L.S.

    1985-09-01

    Bismuth was used as an additive to three-component catalysts prepared through modification of an aluminoplatinorhenium catalyst by III and IV nontransition and iron subgroup elements. Since there is conflicting information on bismuth additions, the role of bismuth in polycomponent catalysts and whether it promotes aromatization catalysts was considered. The effect of temperature on the yield of n-hexane conversion products in the presence of Pt-Re-Co-Bi/gamma-A1/sub 2/O/sub 3/ is shown. Conclusive results establish that the addition of 0.5% nickel to a 0.3 Pt-0.3 Re/gamma-A1/sub 2/O/sub 3/ catalyst (in wt.%) increased the yield of benzene from n-hexane by 5.7%. It was also shown that 0.1 to 0.25 wt.% bismuth poisons two- and three-component samples containing 0.25 to 0.3 wt.% platinum.

  16. Polarization losses under dynamic load cycle using multiwall carbon nanotube supported Pt catalyst in PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Irmawati, Yuyun; Indriyati, Chaldun, Elsy Rahimi; Devianto, Hary

    2016-02-01

    Durability is one of the most important issues that are still being a hindrance for commercialization of polymer electrolyte membrane fuel cell (PEMFC). In this study, the degradation of PEMFC using multiwall carbon nanotube supported Pt catalyst (Pt/CNT) was investigated under dynamic load cycle procedure. The degradation was characterized by current density-voltage curves, cross-sectional scanning electron microscopy (SEM) images, and Fourier transforms infrared spectroscopy (FTIR) spectra. The load-cycle procedure was carried out for 50 cycles, where one cycle consisted of three steps (OCV-load current-constant voltage). An analysis of cell overpotentials indicated that the predominant source of performance degradation was due to ohmic losses, especially significant increase in the area specific resistance (Ra). After 50 cycles, Ra was calculated three times higher than that before durability test, from 0.67 to 1.74 Ωcm2. Based on the results from SEM images and FTIR spectra, there was no evidence of membrane degradation or thinning. Noticeable degradation was only observed from the increase in the interface gap between membrane, catalyst layer, and gas diffusion layer.

  17. Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent.

    PubMed

    Liu, Rui; Guo, Yunlong; Odusote, Gloria; Qu, Fengli; Priestley, Rodney D

    2013-09-25

    We present the synthesis and multifunctional utilization of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) to serve as the enabling platform for a range of applications including responsive drug delivery, recyclable catalyst support, and adsorbent. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach were coated with a polydopamine shell layer of ~20 nm in thickness. The as prepared Fe3O4@PDA NPs were used for the controlled drug release in a pH-sensitive manner via reversible bonding between catechol and boronic acid groups of PDA and the anticancer drug bortezomib (BTZ), respectively. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The nanocatalysts exhibited high catalytic performance for the reduction of o-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 10 times without any detectible loss in activity. Finally, the PDA layers were converted into carbon to obtain Fe3O4@C and used as an adsorbent for the removal of Rhodamine B from an aqueous solution. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for multiple applications.

  18. Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Takei, Chikara; Kakinuma, Katsuyoshi; Kawashima, Kazuhito; Tashiro, Keisuke; Watanabe, Masahiro; Uchida, Makoto

    2016-08-01

    We focus on Pt degradation occurring during fuel cell vehicle (FCV) combined drive cycles involving load and open circuit voltage (OCV) just after startup and during idling. Load cycle durability is evaluated as a function of OCV/load holding time, load rate and relative humidity (RH) with a graphitized carbon black-supported platinum catalyst (Pt/GCB) in the cathode. The degradation of Pt/GCB is suppressed for shorter OCV holding times, lower load rates and lower RH. Scanning ion microscopy (SIM) images of membrane cross-sections indicate that the amount of Pt deposited in the membrane decreases during drive cycles involving load with short OCV holding times. Investigations of the Pt distribution in the cathode catalyst layer (CL) by using scanning TEM-EDX show that the dissolution of Pt is suppressed on the membrane side in the CL. The Pt dissolution is accelerated by the high Pt oxidation due to the long OCV holding time. A load cycle with both long OCV holding time and low load inhibits the Pt2+ migration into the membrane but accelerates the Pt particle growth due to electrochemical Ostwald ripening; meanwhile, a load cycle with long OCV holding time at lower RH prevents both the Pt dissolution and particle growth.

  19. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, Luis A.; Rodríguez, H. G.; Álvarez-Contreras, L.; Arriaga, L. G.

    Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H 2SO 4 aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs.

  20. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  1. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell

    PubMed Central

    Xin, Le; Zhang, Zhiyong; Wang, Zhichao; Qi, Ji; Li, Wenzhen

    2013-01-01

    A solution phase-based nanocapsule method was successfully developed to synthesize non-platinum metal catalyst—carbon supported Ag nanoparticles (Ag/C). XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm) and narrow size distribution (2–9 nm) are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR) on the Ag/C and commercial Pt/C were investigated using rotating ring disk electrode (RRDE) tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell (AEMFC) with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80°C. PMID:24790944

  2. Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Hailin; Kakade, Bhalchandra A.; Tamaki, Takanori; Yamaguchi, Takeo

    2014-08-01

    The restacking of graphene or reduced graphite oxide (r-GO) is commonly regarded as a severe obstacle for potential applications. We propose the application of exfoliated carbon nanotube (e-CNT) as an effective carbon spacer for fabricating a sandwich-like three-dimensional (3D) carbon composite with GO. The 3D carbon combination of GO + e-CNT is successfully prepared via homogenously mixing of GO and e-CNT in an aqueous dispersion in which carbon spacers are homogenously intercalated with graphene layers. With the addition of a carbon spacer, the BET surface area of 3D carbon (51.6 m2 g-1) is enhanced by a factor of three compared with r-GO (17.2 m2 g-1) after thermal reduction. In addition, the 3D GO + e-CNT supported PtPd catalyst (PtPd-GO + e-CNT) shows homogenous distribution of PtPd nanoparticles of 3.9 ± 0.6 nm in size, with an enlarged electrochemical active surface area (ECSA) value of 164 m2 g-1 and a mass activity of 690 mA mg-1 toward the methanol oxidation reaction (MOR), which is the typical anode reaction for direct methanol fuel cells (DMFC).

  3. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    NASA Astrophysics Data System (ADS)

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained ~ 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was ~ 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  4. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Soares, Layciane A.; Morais, Claudia; Napporn, Teko W.; Kokoh, K. Boniface; Olivi, Paulo

    2016-05-01

    This work investigates ethanol electrooxidation on Pt/C, PtxRhy/C, Pt-SnO2/C, and PtxRhy-SnO2/C catalysts synthesized by the Pechini and microwave-assisted polyol methods. The catalysts are characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The electrochemical properties of these electrode materials are examined by cyclic voltammetry and chronoamperometry experiments in acid medium. The products obtained during ethanol electrolysis are identified by high performance liquid chromatography (HPLC). The adsorbed intermediates are evaluated by an in situ reflectance Infrared Spectroscopy technique combined with cyclic voltammetry. Catalysts performance in a direct ethanol fuel cell (DEFC) is also assessed. The electrical performance of the electrocatalysts in a single DEFC at 80 °C decreases in the following order Pt70Rh30SnO2 > Pt80Rh20SnO2 > Pt60Rh40SnO2 ∼ PtSnO2 > PtxRhy ∼ Pt, showing that the presence of SnO2 enhances the ability of Pt to catalyze ethanol electrooxidation.

  5. Pore structure effects on Ca-based sorbent sulfation capacity at medium temperatures: activated carbon as sorbent/catalyst support.

    PubMed

    Tseng, Hui-Hsin; Wey, Ming-Yen; Lin, Chiou-Liang; Chang, Yu-Chen

    2002-11-01

    The reaction between three different Ca-based sorbents and SO2 were studied in a medium temperature range (473-773 K). The largest SO2 capture was found with Ca(OH)2 at 773 K, 126.31 mg SO2 x g Ca(OH)2(-1), and the influence of SO2 concentration on the sorbent utilization was observed. Investigations of the internal porous structure of Ca-based sorbents showed that the initial reaction rate was controlled by the surface area, and once the sulfated products were produced, pore structure dominated. To increase the surface area of Ca-based sorbents available to interact with and retain SO2, one kind of CaO/ activated carbon (AC) sorbent/catalyst was prepared to study the effect of AC on the dispersion of Ca-based materials. The results indicated that the Ca-based material dispersed on high-surface-area AC had more capacities for SO2 than unsupported Ca-based sorbents. The initial reaction rates of the reaction between SO2 and Ca-based sorbents and the prepared CaO/AC sorbents/catalysts were measured. Results showed that the reaction rate apparently increased with the presence of AC. It was concluded that CaO/AC was the active material in the desulfurization reaction. AC acting as the support can play a role to supply O2 to increase the affinity to SO2. Moreover, when AC is acting as a support, the surface oxygen functional group formed on the surface of AC can serve as a new site for SO2 adsorption.

  6. Carbon nanotube supported MnO₂ catalysts for oxygen reduction reaction and their applications in microbial fuel cells.

    PubMed

    Lu, Min; Kharkwal, Shailesh; Ng, How Yong; Li, Sam Fong Yau

    2011-08-15

    Three types of manganese dioxide, α-MnO(2), β-MnO(2), γ-MnO(2) were tested as alternative cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Prepared by solution-based methods, the MnO(2) nanomaterials were comprehensively characterized, and their electrocatalytic activities in neutral electrolyte were investigated with the supporting material of carbon nanotubes (CNTs) by cyclic voltammetry (CV). The CV results showed that all MnO(2) species could catalyze ORR in neutral NaCl solution with different catalytic activities. β-MnO(2) had the highest catalytic activity due to its intrinsic structure and better interaction with CNTs. Three MnO(2) species were further used as cathode catalysts under optimized conditions in air-cathode cubic MFCs, in which mixed culture was inoculated as biocatalysts and domestic wastewater was used as the substrate in the anode chamber. It was also found that β-MnO(2) based MFC yielded the best performance with a power density of 97.8 mWm(-2) which was 64.1% that of the Pt-based MFC, and a lower internal resistance of 165 Ω. Furthermore, the COD removal efficiency of β-MnO(2) based MFC was estimated as 84.8%, higher than that of the Pt-based MFC. This study demonstrated that using β-MnO(2) on CNT support instead of Pt could potentially improve the feasibility of scaling up air-cathode MFCs for practical applications by lowering the material cost.

  7. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  8. Carbon fiber cloth supported Au nano-textile fabrics as an efficient catalyst for hydrogen peroxide electroreduction in acid medium

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-09-01

    The size-controlled hierarchical textile-like Au nanostructures supported carbon fiber cloth (Au NTs/CFC) is successfully fabricated through a simple low-cost electrochemical route. The electrodes are characterised by scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, transmission electron microscopy and X-ray diffractometer. Without any conducting carbons and polymer binders, the 3D electrode with unique structure is directly used as the electrocatalyst for H2O2 reduction in acid solution and the catalytic performance is evaluated by voltammetry and chronoamperometry. The Au NTs/CFC electrode exhibits much higher catalytic activity and remarkably improved utilization of Au than Au nanoparticles (Au NPs/CFC) prepared by the same method owing to its unique structure. In the solution of 3.0 mol L-1 H2SO4 + 0.1 mol L-1 H2O2, with the reduction potential of 0 V, the current of -0.72 A cm-2 mg-1 can be obtained on Au NTs/CFC electrode and only a current of -0.09 A cm-2 mg-1 can be achieved on Au NPs/CFC electrode. All these results reveal that the novel Au NTs/CFC electrode exhibits excellent catalytic performance and superior stability for H2O2 electroreduction in acid medium, benefitting from the unique 3D structure which can ensure high utilization of catalyst.

  9. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    PubMed

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-01

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. PMID:27144965

  10. Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Kim, Jeong Kwon; Lee, Joongwon; Lee, Jong Kwon; Yi, Jongheop; Song, In Kyu

    2014-11-01

    Copper-containing mesoporous carbons (XCu-MC) with different copper content (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) were prepared by a single-step surfactant-templating method. Rhenium nano-catalysts supported on copper-containing mesoporous carbons (Re/XCu-MC) were then prepared by an incipient wetness method. Re/XCu-MC (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) catalysts were characterized by nitrogen adsorption-desorption isotherm, HR-TEM, FT-IR, and H2- TPR analyses. Liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO) via dimethyl succinate (DMS) was carried out over Re/XCu-MC catalysts in a batch reactor. The effect of copper content on the physicochemical properties and catalytic activities of Re/XCu-MC catalysts in the hydrogenation of succinic acid to BDO was investigated. Re/XCu-MC catalysts retained different physicochemical properties depending on copper content. In the hydrogenation of succinic acid to BDO, yield for BDO showed a volcano-shaped trend with respect to copper content. Thus, an optimal copper content was required to achieve maximum catalytic performance of Re/XCu-MC. It was also observed that yield for BDO increased with increasing the amount of hydrogen consumption by copper in the Re/XCu-MC catalysts. PMID:25958619

  11. Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Kim, Jeong Kwon; Lee, Joongwon; Lee, Jong Kwon; Yi, Jongheop; Song, In Kyu

    2014-11-01

    Copper-containing mesoporous carbons (XCu-MC) with different copper content (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) were prepared by a single-step surfactant-templating method. Rhenium nano-catalysts supported on copper-containing mesoporous carbons (Re/XCu-MC) were then prepared by an incipient wetness method. Re/XCu-MC (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) catalysts were characterized by nitrogen adsorption-desorption isotherm, HR-TEM, FT-IR, and H2- TPR analyses. Liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO) via dimethyl succinate (DMS) was carried out over Re/XCu-MC catalysts in a batch reactor. The effect of copper content on the physicochemical properties and catalytic activities of Re/XCu-MC catalysts in the hydrogenation of succinic acid to BDO was investigated. Re/XCu-MC catalysts retained different physicochemical properties depending on copper content. In the hydrogenation of succinic acid to BDO, yield for BDO showed a volcano-shaped trend with respect to copper content. Thus, an optimal copper content was required to achieve maximum catalytic performance of Re/XCu-MC. It was also observed that yield for BDO increased with increasing the amount of hydrogen consumption by copper in the Re/XCu-MC catalysts.

  12. Controlling the catalyst during carbon nanotube growth.

    PubMed

    Robertson, J; Hofmann, S; Cantoro, M; Parvez, A; Ducati, C; Zhong, G; Sharma, R; Mattevi, C

    2008-11-01

    We have recently been able to grow single-walled carbon nanotubes by purely thermal chemical vapour deposition (CVD) at temperatures as low as 400 degrees C. This has been achieved by separating the catalyst pre-treatment step from the growth step. In the pre-treatment step, a thin film catalyst is re-arranged into a series of nano-droplets, which are then the active catalysts. Both steps have been studied by in-situ environmental transmission electron microscopy and X-ray photoemission spectroscopy. We have also studied the catalyst yield, the weight of nanotubes grown per weight of transition metal catalyst. Using very thin layers of Fe on Al2O3 support in a remote plasma-assisted CVD, we have achieved yields of order 100,000. This may be due to control of catalyst poisoning by ensuring an etching path.

  13. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  14. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.

    PubMed

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-20

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  15. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    PubMed Central

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-01-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method. PMID:27198855

  16. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.

    PubMed

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-01-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method. PMID:27198855

  17. Nanosized CuO and ZnO Catalyst Supported on Honeycomb-Typed Monolith for Hydrogenation of Carbon Dioxide to Methyl Alcohol.

    PubMed

    Park, Chul-Min; Ahn, Won-Ju; Jo, Woong-Kyu; Song, Jin-Hun; Oh, Chang-Yeop; Jeong, Young-Shin; Chung, Min-Chul; Park, Kwon-Pil; Kim, Ki-Joong; Jeong, Woon-Jo; Sohn, Bo-Kyun; Jung, Sang-Chul; Lee, Do-Jin; Ahn, Byeong-Kwon; Ahn, Ho-Geun

    2015-01-01

    The greenhouse effect of carbon dioxide (CO2) has been recognized as one of the most serious problems in the world. Conversion of CO2 to methyl alcohol (CH3OH) was studied using catalytic chemical methods. Honeycomb-typed monolith used as catalyst support was 400 cell/inch2. Pretreatment of the monolith surface was carried out by thermal treatment and acid treatment. Monolith-supported nanosized CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using SEM, TEM, and XRD. The catalytic activity for CO2 hydrogenation to CH3OH was investigated using a flow-type reactor with varying reaction temperature, reaction pressure and contact time. Conversion of CO2 was increased with increasing reaction temperature, but selectivity to CH3OH was decreased. Optimum reaction temperature was about 250 degrees C under 20 atm. Because of the reverse water gas shift reaction.

  18. Tailoring of Single Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports

    SciTech Connect

    Hu, Hui; Zhao, Bin; Puretzky, Alexander A; Rouleau, Christopher M; Styers-Barnett, David J; Geohegan, David B; Brown, Craig M.; Liu, Yun; Zhou, Wei; Kabbour, Houria; Neumann, Dan

    2007-01-01

    We report the post-processing chemical treatments of single walled carbon nanohorns (SWNHs) as a medium with tunable porosity to optimize hydrogen adsorption. Laser synthesized SWNHs are oxidized in air to achieve surface areas up to 1900 m2/g. Chemistry methods are described for the decoration of SWNHs with 1-3 nm Pt nanoparticles to probe spillover and metal-assisted hydrogen storage mechanisms. Hydrogen storage of opened SWNHs is 2.6 wt% at 77K, which is 3 times as that of as-prepared SWNHs.

  19. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane

    PubMed Central

    Zhang, Sheng; Kang, Peng; Bakir, Mohammed; Lapides, Alexander M.; Dares, Christopher J.; Meyer, Thomas J.

    2015-01-01

    Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world’s continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd–H sites and Cu–CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices. PMID:26668386

  20. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  1. Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt

    NASA Astrophysics Data System (ADS)

    Qing, Xin; Shi, Jingjing; Ma, Chengyu; Fan, Mengyang; Bai, Zhengyu; Chen, Zhongwei; Qiao, Jinli; Zhang, Jiujun

    2014-11-01

    In this work, we report a spontaneous formation of copper (Cu-N-S/C) catalysts containing both nitrogen (N) and sulfur (S) elements using a one-step pyrolysis of carbon supported copper phthalocyanine tetrasulfonic acid tetrasodium salt (CuTSPc/C). The obtained catalysts exhibit high catalytic activities for oxygen reduction reaction (ORR) in alkaline media. Through electrochemical measurements and physical characterizations, several observations are reached as follows: (1) different pyrolysis temperatures can result in different catalyst structures and performances, and the optimum pyrolysis temperature is found to be 700 °C; (2) the electron transfer number of the ORR process catalyzed by the unpyrolyzed catalyst is about 2.5, after the pyrolysis, this number is increased to 3.5, indicating that the pyrolysis process can change the ORR pathway from a 2-electron transfer dominated process to a 4-electron transfer dominated one; (3) increasing catalyst loading from 40 μg cm-2 to 505 μg cm-2 can effectively improve the catalytic ORR activity, under which the percentage of H2O2 produced decreases sharply from 39.5% to 7.8%; and (4) the Cu ion can bond on pyridinic-N, graphite-N and C-Sn-C to form Cu-N-S/C catalyst active sites, which play the key role in the ORR activity.

  2. Sulfated SnO2 modified multi-walled carbon nanotubes - A mixed proton-electron conducting support for Pt catalysts in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xinwei; Zhu, Hong; Guo, Zhijun; Wei, Yongsheng; Wang, Fanghui

    2011-03-01

    We report on the synthesis of sulfated SnO2 modified multi-walled carbon nanotubes (MWCNTs) composites as new supports of Pt catalyst (Pt-S-SnO2/MWCNTs) with the aims to enhance electron and proton conductivity and also catalytic activity for ethanol oxidation. The Pt-S-SnO2/MWCNTs catalyst is synthesized by a combination of improved sol-gel and pulse-microwave assisted polyol methods. The surface presence, morphology and structure of the Pt-S-SnO2/MWCNTs catalyst are characterized by Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. The electrocatalytic properties of the Pt-S-SnO2/MWCNTs catalyst for ethanol oxidation reactions are investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that Pt-S-SnO2/MWCNTs catalyst exhibits higher catalytic activity for ethanol oxidation than Pt supported on non-sulfated SnO2/MWCNTs composites.

  3. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  4. Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks

    NASA Astrophysics Data System (ADS)

    Artyushkova, Kateryna; Pylypenko, Svitlana; Dowlapalli, Madhu; Atanassov, Plamen

    2012-09-01

    Linking durability of carbon blacks, expressed as their oxidation resistance, used in PEMFCs as catalyst supports, with their chemistry and morphology is an important task towards designing carbon blacks with desired properties. Structure-to-property relationship between surface chemistry determined by X-ray photoelectron spectroscopy (XPS), morphological structure determined by digital image processing of scanning electron microscopy (SEM) images, physical properties, and electrochemical corrosion behavior determined in an air-breathing gas-diffusion electrode is studied for several un-altered and several modified carbon blacks. We are showing that surface chemistry, graphitic content and certain physical characteristics such as Brunauer-Emmett-Teller (BET) surface area and pore volume, determined by nitrogen adsorptions are not sufficient to explain high corrosion instability of types of carbon blacks. Inclusion of morphological characteristics, such as roughness, texture and shape parameters provide for more inclusive description and therefore more complete structure-to-property correlations of corrosion behavior of carbon blacks. This paper presents the first direct statistically-derived structure-to-property relationship, developed by multivariate analysis (MVA) that links chemical and physical structural properties of the carbon blacks to their critical properties as supports for PEMFC catalysts. We have found that balance between electrocatalytic activity and high resistance towards oxidation and corrosion is achieved by balance between amount of graphitic content and surface oxide coverage, smaller overall roughness and, finally, larger amount of big elongated and loose, and, hypothetically, more hydrophobic pores.

  5. Nickel supported carbon nanofibers as an active and selective catalyst for the gas-phase hydrogenation of 2-tert-butylphenol.

    PubMed

    Díaz, José Antonio; Díaz-Moreno, Rebeca; Silva, Luz Sánchez; Dorado, Fernando; Romero, Amaya; Valverde, José Luis

    2012-08-15

    Nickel supported fishbone carbon nanofibers (CNFs) have been prepared by vacuum impregnation (VI) and homogeneous deposition-precipitation (HDP) methods with different nickel loadings (ca. 5%, 9% and 12%) with the aim to study the influence of the metal incorporation method and the nickel loading in the catalytic activity of gas-phase hydrogenation of 2-tert-butylphenol (2-TBP). Moreover, the influence of the nature of the support was also studied by preparing nickel catalysts supported on other carbon (active carbon (AC) and graphite (G)) and non-carbonaceous materials (alumina (AL) and yttria-stabilized zirconia (YSZ)). Different techniques were employed to characterize both the supports and the final Ni catalysts: atomic absorption spectrometry, N(2) adsorption-desorption analysis, temperature-programed reduction (TPR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Catalytic results revealed that the nickel particle size and support properties affected directly to both the catalytic activity of hydrogenation of 2-TBP, and the rate of secondary reactions such as cis to trans isomerization and 2-tert-butylcyclohexanone (2-TBCN) hydrogenation.

  6. Nickel supported carbon nanofibers as an active and selective catalyst for the gas-phase hydrogenation of 2-tert-butylphenol.

    PubMed

    Díaz, José Antonio; Díaz-Moreno, Rebeca; Silva, Luz Sánchez; Dorado, Fernando; Romero, Amaya; Valverde, José Luis

    2012-08-15

    Nickel supported fishbone carbon nanofibers (CNFs) have been prepared by vacuum impregnation (VI) and homogeneous deposition-precipitation (HDP) methods with different nickel loadings (ca. 5%, 9% and 12%) with the aim to study the influence of the metal incorporation method and the nickel loading in the catalytic activity of gas-phase hydrogenation of 2-tert-butylphenol (2-TBP). Moreover, the influence of the nature of the support was also studied by preparing nickel catalysts supported on other carbon (active carbon (AC) and graphite (G)) and non-carbonaceous materials (alumina (AL) and yttria-stabilized zirconia (YSZ)). Different techniques were employed to characterize both the supports and the final Ni catalysts: atomic absorption spectrometry, N(2) adsorption-desorption analysis, temperature-programed reduction (TPR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Catalytic results revealed that the nickel particle size and support properties affected directly to both the catalytic activity of hydrogenation of 2-TBP, and the rate of secondary reactions such as cis to trans isomerization and 2-tert-butylcyclohexanone (2-TBCN) hydrogenation. PMID:22682327

  7. Catalytic Oxidation of Hydroquinone in Aqueous Solution over Bimetallic PdCo Catalyst Supported on Carbon: Effect of Interferents and Electrochemical Measurement.

    PubMed

    Ye, Weichun; Shi, Xuezhao; Zhang, Yane; Hong, Chenghui; Wang, Chunming; Budzianowski, Wojciech M; Xue, Desheng

    2016-02-10

    Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals. PMID:26788813

  8. A kinetic study on the adsorption and reaction of hydrogen over silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide

    SciTech Connect

    VanderWiel, D.P.

    1999-02-12

    Although the catalytic hydrogenation of carbon monoxide has been a subject of considerable investigation for many years, its increasing economical attractiveness as an industrial source of hydrocarbons has recently led to a search for more active and selective catalysts. A fundamental problem in the development of such catalysts is an incomplete knowledge of the operative surface processes, due in large part to the inability to accurately measure surface concentrations of reactant species during reaction. Specifically, the concentration of surface hydrogen proves difficult to estimate using normally revealing techniques such as transient isotopic exchange due to kinetic isotope effects. Knowledge of such concentrations is essential to the determination of the mechanisms of adsorption and reaction, since many kinetic parameters are concentration dependent. It is the aim of this research to investigate the mechanism and kinetics of the adsorption and reaction of hydrogen on silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide. By preadsorbing carbon monoxide onto the surface of ruthenium and silver-ruthenium catalysts, the kinetics of hydrogen adsorption and reaction can be monitored upon exposure of this surface to ambient hydrogen gas. This is accomplished by conducting identical experiments on two separate systems. First, the formation of methane is monitored using mass spectroscopy, and specific reaction rates and apparent activation energies are measured. Next, in situ {sup 1}H-NMR is used to monitor the amount of hydrogen present on the catalyst surface during adsorption and reaction. The results for these two sets of experiments are then combined to show a correlation between the rate of reaction and the surface hydrogen concentration. Finally, transition state theory is applied to this system and is used to explain the observed change in the apparent activation energy. The structure sensitivity of hydrogen

  9. Modeling the cathode in a proton exchange membrane fuel cell using density functional theory How the carbon support can affect durability and activity of a platinum catalyst

    NASA Astrophysics Data System (ADS)

    Groves, Michael Nelson

    The current global energy and environmental challenges need to be addressed by developing a new portfolio of clean power producing devices. The proton exchange membrane fuel cell has the potential to be included and can fit into a variety of niches ranging from portable electronics to stationary residential applications. One of the many barriers to commercial viability is the cost of the cathode layer which requires too much platinum metal to achieve a comparable power output as well as would need to be replaced more frequently when compared to conventional sources for most applications. Using density functional theory, an ab initio modeling technique, these durability and activity issues are examined for platinum catalysts on graphene and carbon nanotube supports. The carbon supports were also doped by replacing individual carbon atoms with other second row elements (beryllium, boron, nitrogen, and oxygen) and the effect on the platinum-surface interaction along with the interaction between the platinum and the oxygen reduction reaction intermediates are discussed. Keywords: proton exchange membrane fuel cell, density functional theory, platinum catalyst, oxygen reduction reaction, doped carbon surfaces

  10. Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst

    SciTech Connect

    Dai, Sheng; Mayes, Richard T; Fulvio, Pasquale F; Ma, Zhen

    2011-01-01

    Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

  11. Preferential catalytic oxidation of carbon monoxide in presence of hydrogen over bimetallic AuPt supported on zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Naknam, Pattarasuda; Luengnaruemitchai, Apanee; Wongkasemjit, Sujitra; Osuwan, Somchai

    A series of AuPt/A zeolite and Pt/A zeolite catalysts prepared by incipient wetness impregnation are investigated for the preferential oxidation (PROX) of carbon monoxide in the presence of hydrogen over the temperature range of 50-310 °C under atmospheric pressure. The results indicate that when a small amount of gold is added to the Pt/A zeolite catalyst, the CO selectivity is improved at low temperatures, and 1% AuPt/A zeolite (at a weight ratio of Au:Pt = 1:2) gives the best performance, which provides a high CO conversion in combination with a high CO selectivity. In more realistic simulated reformate gases containing 10% CO 2 and 10% H 2O, there is not much difference between those in the presence and the absence of CO 2 and H 2O. Transmission electron microscopic and X-ray diffraction studies show that the two metals, Au and Pt, appear to be severely phase separated, which is confirmed by energy dispersive investigations.

  12. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark H.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-01-03

    Studying the corrosion behavior of catalyst support materials is of great significance for understanding the degradation of PEM fuel cell performance and developing durable catalysts. The oxidation of Vulcan carbon black (the most widely-used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential step cycling), among which the potential step cycling was considered to mimic more closely the real drive cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential step conditions as compared with the fixed-potential holding condition. Increasing potential step frequency or decreasing the lower potential limit in the potential step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast screening durable catalyst support.

  13. XAFS study on the sulfidation mechanisms of Co-Mo catalysts supported on activated carbon and alumina: effect of complexing agent.

    PubMed

    Tsuji, K; Umeki, T; Yokoyama, Y; Kitada, T; Iwanami, Y; Nonaka, O; Shimada, H; Matsubayashi, N; Nishijima, A; Nomura, M

    2001-03-01

    The effect of nitrilotriacetic acid (NTA) as a complexing agent on the sulfidation mechanisms of Co-Mo catalysts supported on activated carbon and alumina was examined by the XAFS technique. The XAFS results revealed that NTA interacted with Co atoms and formed the Co-NTA interaction, while it showed almost no influence on the local structures around Mo atoms. The Co-NTA interaction suppressed the aggregation of cobalt atoms and the interaction between cobalt and alumina during sulfiding, and consequently promoted the formation of the Co-Mo-S phase.

  14. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    SciTech Connect

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael; Abbou, Sofyane; Didierjean, Sophie; Lamibrac, Adrien; Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan

    2015-09-14

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO2 accounts for less than 25% of the total exchanged charge.

  15. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    DOE PAGESBeta

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael; Abbou, Sofyane; Didierjean, Sophie; Lamibrac, Adrien; Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan

    2015-09-14

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO2 accounts for less than 25% of the total exchanged charge.

  16. Carbon cloth supported electrode

    DOEpatents

    Lu, Wen-Tong P.; Ammon, Robert L.

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  17. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  18. Bismuth-palladium heterometallic carboxylate as a single-source precursor for the carbon-supported Pd-Bi/C catalysts.

    PubMed

    Li, Bo; Zhang, Haitao; Huynh, Lan; Diverchy, Chantal; Hermans, Sophie; Devillers, Michel; Dikarev, Evgeny V

    2009-07-01

    The heterometallic complex [Bi(2)Pd(2)(O(2)CCF(3))(10)(HO(2)CCF(3))(2)] (1) was obtained by the solid state reaction of Bi(III) trifluoroacetate/trifluoroacetic acid adduct with unsolvated trinuclear Pd(II) trifluoroacetate. The crystal structure of 1 consists of discrete tetranuclear molecules, in which two paddlewheel [BiPd(O(2)CCF(3))(4)] units are connected by two chelating-bridging trifluoroacetate ligands through bismuth ends. There are no metal-metal bonds in the tetrameric structure of 1, since both Bi...Pd (3.0843(4) A) and Bi...Bi (4.5074(4) A) distances are too long to be considered as bonding interactions. A study of the solution behavior revealed that not only the coordinated trifluoroacetic acid in 1 can be effectively replaced by other donor solvent molecules but also the tetranuclear complex can be cleaved in solution into discrete dinuclear Bi-Pd species. Complex 1 was used as precursor for the preparation of a bimetallic Pd-Bi carbon-supported catalyst. The preparation procedure included the modification of the carbon support to increase the number of oxygenated functions at its surface followed by grafting complex 1 via ligand exchange for surface carboxylates and activating thermally. The resulting catalyst, consisting of small supported metallic particles, was found to be more active than the reference materials prepared from multisource homometallic Pd and Bi precursors. PMID:19499893

  19. Hydrogen recombiner catalyst test supporting data

    SciTech Connect

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  20. Structural and Morphological Properties of Carbon Supports: Effect of Catalyst degradation, ECS Transactions 33(1), 425 (2010)

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; A. Young; M. Dutta; Z. Ahmad; V. Colbow; S. Wessel; S. Ye

    2011-04-01

    The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was found to exist.

  1. Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.

    1980-01-01

    The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.

  2. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.

    2016-09-01

    The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.

  3. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation

    NASA Astrophysics Data System (ADS)

    Zhu, Fuchun; Ma, Guanshui; Bai, Zhongchao; Hang, Ruiqiang; Tang, Bin; Zhang, Zhonghua; Wang, Xiaoguang

    2013-11-01

    In this study, we have synthesized a series of multi-walled carbon nanotubes supported Pd, PdCu(molar ratio 1:1), PdSn(1:1) and PdCuSn(1:1:1) catalysts by chemical reduction with NaBH4 as a reducing agent. These catalysts are characterized using X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry and chronoamperometry. During the potential cycling activation, it is found that the additive Cu is prone to suffer leaching while the dissolution of Sn rarely occurs. Electrochemical measurements demonstrate that, the co-alloying of Pd with Cu and Sn can trigger the best catalytic activity enhancement as compared with the binary PdCu/CNTs, PdSn/CNTs and mono-component Pd/CNTs catalysts. The PdCuSn/CNTs reveals the most excellent activities toward methanol, ethanol and formic acid electro-oxidation and the corresponding mass activity can attain to 395.94, 872.70 and 534.83 mA mg-1 Pd, respectively. The possible promotion effect of additive Sn or/and Cu on the electrocatalytic activity improvement is also analyzed.

  4. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  5. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  6. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  7. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  8. Steam gasification of carbon: Catalyst properties

    SciTech Connect

    Falconer, J.L.

    1991-12-13

    This research uses several techniques to measure the concentration of catalyst sites and determine their stoichiometry for the catalyzed gasification of carbon. Both alkali and alkaline earth oxides are effective catalysts for accelerating the gasification rate of coal chars, but only a fraction of the catalyst appears to be in a form that is effective for gasification, and the composition of that catalyst is not established. Transient techniques with {sup 13}C labeling, are being used to study the surface processes, to measure the concentration of active sites, and to determine the specific reaction rates. We have used secondary ion mass spectrometry (SIMS) for both high surface area samples of carbon/alkali carbonate mixtures and for model carbon surfaces with deposited alkali atoms. SIMS provides a direct measure of surface composition. The combination of these results can provide knowledge of catalyst dispersion and composition, and thus indicate the way to optimally utilize carbon gasification catalysts.

  9. Graphene supported heterogeneous catalysts for Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.

    2016-09-01

    In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.

  10. Design and preparation of highly active carbon nanotube-supported sulfated TiO 2 and platinum catalysts for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Song, Huanqiao; Xiao, Pu; Qiu, Xinping; Zhu, Wentao

    A novel electrocatalyst structure of carbon nanotube-supported sulfated TiO 2 and Pt (Pt-S-TiO 2/CNT) is reported. The Pt-S-TiO 2/CNT catalysts are prepared by a combination of improved sol-gel and ethylene glycol reduction methods. Transmission electron microscopy and X-ray diffraction show that the sulfated TiO 2 is amorphous and is coated uniformly on the surface of the CNTs. Pt nanoparticles of about 3.6 nm in size are homogenously dispersed on the sulfated TiO 2 surface. Fourier transform infrared spectroscopy analysis proves that the CNT surfaces are modified with sulfated TiO 2 and a high concentration of SO x, and adsorbed OH species exist on the surface of the sulfated TiO 2. Electrochemical studies are carried out using chronoamperometry, cyclic voltammetry, CO stripping voltammetry and impedance spectroscopy. The results indicate that Pt-S-TiO 2/CNT catalysts have much higher catalytic activity and CO tolerance for methanol electrooxidation than Pt/TiO 2/CNTs, Pt/CNTs and commercial Pt/C.

  11. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells.

    PubMed

    Yuan, Yong; Zhao, Bo; Jeon, Yongwon; Zhong, Shengkui; Zhou, Shungui; Kim, Sunghyun

    2011-05-01

    Amino-functionalized multi-walled carbon nanotube (a-MWCNT)-supported iron phthalocyanine (FePc) (a-MWCNT/FePc) has been investigated as a catalyst for the oxygen reduction reaction (ORR) in an air-cathode single-chambered microbial fuel cell (MFC). Cyclic and linear sweep voltammogram are employed to investigate the electrocatalytic activity of the a-MWCNT/FePc for ORR. The maximum power density of 601 mWm(-2) is achieved from a MFC with the a-MWCNT/FePc cathode, which is the highest energy output compared to those MFCs with other materials supported FePc, such as carbon black, pristine MWCNT (p-MWCNT), carboxylic acid functionalized MWCNT (c-MWCNT), and even with a Pt/C cathode. Furthermore, cyclic voltammetry performed on the a-MWCNT/FePc electrode suggests that the a-MWCNT/FePc has an electrochemical activity for ORR via a four-electron pathway in a neutral pH solution. This work provides a potential alternative to Pt in MFCs for sustainable energy generation.

  12. Carbon Nanotube-Supported Butyl 1-Sulfonic Acid Groups as a Novel and Environmentally Compatible Catalyst for the Synthesis of 1,8-Dioxo-octahydroxanthenes.

    PubMed

    Boroujeni, Parvanak Keveh; Heidari, Zahra; Khalifeh, Reza

    2016-01-01

    A novel multiwalled carbon nanotube catalyst with -SO3H functional groups was easily prepared from its starting materials and used as an efficient heterogeneous catalyst for one-pot Knoevenagel condensation, Michael addition, and cyclodehydration of 5,5-dimethyl-1,3-cyclohexanedione (dimedone) with various aromatic aldehydes. Using this method 1,8-dioxo-octahydroxanthenes were obtained in excellent yields at room temperature. The present method is superior in terms of reaction temperature, reaction time, easy work-up, high yields, and ease of recovery of catalyst. PMID:27640387

  13. Catalyst for Carbon Monoxide Oxidation

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    catalyst composition in an amount of about 5 to 25 (especially 7) percent by weight, SnO2 is present in an amount of about 30 to 40 (especially 40) percent by weight, and silica gel is present in an amount of 45 to 55 (especially 50) percent by weight. The composition of this catalyst was suggested by preliminary experiments in which a Pt/SnO2 catalyst was needed for bound water to enhance its activity. These experimental results suggested that if the water were bound to the surface, this water would enhance and prolong catalyst activity for long time periods. Because the catalyst is to be exposed to a laser gas mixture, and because a CO2 laser can tolerate only a very small amount of moisture, a hygroscopic support for the catalyst would provide the needed H2O into the gas. Silica gel is considered to be superior because of its property to chemisorb water on its surface over a wide range of moisture content.

  14. Ex-situ and In-situ Stability Studies of PEM Fuel Cell Catalysts: the effect of carbon type and humidification on the thermal degradation of carbon supported catalysts

    SciTech Connect

    Haugen, G. M.; Stevens, D. A.; Hicks, M. T.; Dahn, J. R.

    2005-11-01

    One of the most significant challenges for proton exchange membrane fuel cells in stationary power generation systems is lifetime, where 40,000 hours of operation with less than 10% decay in performance is desired. There are several different membrane electrode assembly (MEA) associated degradation mechanisms inhibiting MEAs from obtaining their desired lifetime targets. The focus of this research is on the loss of cathode surface area over time, which results in MEA performance losses, since MEA performance is proportional to cathode catalyst surface area. Two proposed mechanisms, support oxidation and platinum dissolution, are studied using different accelerated tests. These results are compared to cathode catalyst surface area loss data from real-time fuel cell tests in order to decouple the two degradation mechanisms.

  15. Catalyst supports for polymer electrolyte fuel cells.

    PubMed

    Subban, Chinmayee; Zhou, Qin; Leonard, Brian; Ranjan, Chinmoy; Edvenson, Heather M; Disalvo, F J; Munie, Semeret; Hunting, Janet

    2010-07-28

    A major challenge in obtaining long-term durability in fuel cells is to discover catalyst supports that do not corrode, or corrode much more slowly than the current carbon blacks used in today's polymer electrolyte membrane fuel cells. Such materials must be sufficiently stable at low pH (acidic conditions) and high potential, in contact with the polymer membrane and under exposure to hydrogen gas and oxygen at temperatures up to perhaps 120 degrees C. Here, we report the initial discovery of a promising class of doped oxide materials for this purpose: Ti(1-x)M(x)O(2), where M=a variety of transition metals. Specifically, we show that Ti(0.7)W(0.3)O(2) is electrochemically inert over the appropriate potential range. Although the process is not yet optimized, when Pt nanoparticles are deposited on this oxide, electrochemical experiments show that hydrogen is oxidized and oxygen reduced at rates comparable to those seen using a commercial Pt on carbon black support. PMID:20566509

  16. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, Lawrence J.

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  17. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  18. Photocatalytic reduction of carbon dioxide using sol-gel derived titania-supported CoPc catalysts.

    PubMed

    Liu, Shaohua; Zhao, Zhihuan; Wang, Zhizhong

    2007-06-01

    CoPc loaded titania was synthesized by an improved sol-gel method using a homogeneous hydrolysis technique. The grain size of TiO2 and CoPc-TiO2 was uniform and average diameters were less than 20 nm. Both catalysts had two crystal phases, of which rutile accounted for about 28%. When they were used for the photoreduction of CO2 in NaOH solution under ambient conditions, the formate yield was significantly higher than that of the others, such as formaldehyde, methanol and so on. In order to increase the activity of the photocatalysts some factors were optimized, including the quantity of CoPc-TiO2 catalyst, concentration of Na(2)SO(3) hole scavenger, concentration of the NaOH solution and irradiation time. Under the optimal conditions, the gross photocatalytic reduction of CO2 was 1032 micromol (g cat)(-1). Furthermore, the yield of CH4 did not increase in the presence of CH(3)OH or HCHO, showing that the generation of CH4 from CO2 did not proceed via methanol as an intermediate under these conditions.

  19. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell

    DOEpatents

    Liu, Di-Jia; Yang, Junbing

    2012-03-20

    A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.

  20. Control of carbon monoxide (CO) from automobile exhaust by a dealuminated zeolite supported regenerative MnCo2O4 catalyst.

    PubMed

    Arun, P S; Ranjith, B P; Shibli, S M A

    2013-03-19

    We synthesized MnCo(2)O(4) catalyst with very high porosity on the surface of dealuminated zeolite molecular sieves (DAZMS) for CO oxidation under actual automobile conditions. The MnCo(2)O(4) catalyst was selected on the basis of preliminary DFT study using the software ADF BAND. The MnCo(2)O(4) catalyst had comparatively higher CO adsorption energy and very low oxygen vacancy formation energy. The synthesized MnCo(2)O(4)/DAZMS catalyst was characterized by XRD, XRF, BET, SEM, and Confocal Microscopy. The Confocal microscopic analysis revealed that porosity of the dealuminated zeolite surface was significantly enhanced after the catalyst loading process. The completely precious metal free and DAZMS-supported catalyst exhibited excellent CO oxidation ability with renewed activity for seven months under actual automobile conditions with reference to normal and cold start conditions. The synthesized MnCo(2)O(4)/DAZMS not only exhibited surprisingly high catalytic activity for CO oxidation at a temperature resembling a cold start period but was also sufficiently stable/active under actual automobile conditions and ambient conditions containing large amounts of CO,H(2)O,CO(2), and NO(x) at 155-715 °C. These significant results revealed the flexible use of the present catalyst system for a wide variety of automobiles from a small gasoline-fuelled vehicle to a large diesel-fuelled vehicle that may produce high CO-content exhaust. PMID:23406461

  1. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  2. Thermodynamic Properties of Supported Catalysts

    SciTech Connect

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  3. Catalysis science of supported vanadium oxide catalysts.

    PubMed

    Wachs, Israel E

    2013-09-01

    Supported vanadium oxide catalysts contain a vanadium oxide phase deposited on a high surface area oxide support (e.g., Al2O3, SiO2, TiO2, etc.) and have found extensive applications as oxidation catalysts in the chemical, petroleum and environmental industries. This review of supported vanadium oxide catalysts focuses on the fundamental aspects of this novel class of catalytic materials (molecular structures, electronic structures, surface chemistry and structure-reactivity relationships). The molecular and electronic structures of the supported vanadium oxide phases were determined by the application of modern in situ characterization techniques (Raman, IR, UV-vis, XANES, EXAFS, solid state (51)V NMR and isotopic oxygen exchange). The characterization studies revealed that the supported vanadium oxide phase consists of two-dimensional surface vanadia sites dispersed on the oxide supports. Corresponding surface chemistry and reactivity studies demonstrated that the surface vanadia sites are the catalytic active sites for oxidation reactions by supported vanadia catalysts. Combination of characterization and reactivity studies demonstrate that the oxide support controls the redox properties of the surface vanadia sites that can be varied by as much as a factor of ~10(3).

  4. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell

    DOEpatents

    Liu, Di-Jia; Yang, Junbing

    2010-07-20

    A method of making a membrane electrode assembly (MEA) having an anode and a cathode and a proton conductive membrane there between. A bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated in the nanotubes forms at least one portion of the MEA and is in contact with the membrane. A combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into a first reaction zone maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is transmitted to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes. The nanotubes are in contact with a portion of the MEA at production or being positioned in contact thereafter. Methods of forming a PEMFC are also disclosed.

  5. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  6. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  7. Influence of the nature of a Co-catalyst support on the synthesis of hydrocarbons from CO and H{sub 2}

    SciTech Connect

    Lapidus, A.L.; Budtsov, V.S.; Krylova, A.Yu.

    1994-12-31

    The chemical preparation of hydrocarbons from carbon monoxide and hydrogen is described. Cobalt was utilized as the catalyst, and aluminosilicates were utilized as catalyst supports. Catalyst activity and specificity are described.

  8. DOE Hydrogen Sorption Center of Excellence: Synthesis and Processing of Single-Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports

    SciTech Connect

    David B. Geohegan; Hui Hu; Mina Yoon; Alex A. Puretzky; Christopher M. Rouleau; Norbert Thonnard; Gerd Duscher; Karren More

    2011-05-24

    The objective of the project was to exploit the unique morphology, tunable porosity and excellent metal supportability of single-walled carbon nanohorns (SWNHs) to optimize hydrogen uptake and binding energy through an understanding of metal-carbon interactions and nanoscale confinement. SWNHs provided a unique material to understand these effects because they are carbon nanomaterials which are synthesized from the 'bottom-up' with well-defined, sub-nm pores and consist of single-layer graphene, rolled up into closed, conical, horn-shaped units which form ball-shaped aggregates of {approx}100-nm diameter. SWNHs were synthesized without metal catalysts by the high-temperature vaporization of solid carbon, so they can be used to explore metal-free hydrogen storage. However, SWNHs can also be decorated with metal nanoparticles or coatings in post-processing treatments to understand how metals augment hydrogen storage. The project first explored how the synthesis and processing of SWNHs could be modified to tailor pore sizes to optimal size ranges. Nanohorns were rapidly synthesized at 20g/hr rates by high-power laser vaporization enabling studies such as neutron scattering with gram quantities. Diagnostics of the synthesis process including high-speed videography, fast pyrometry of the graphite target, and differential mobility analysis monitoring of particle size distributions were applied in this project to provide in situ process control of SWNH morphology, and to understand the conditions for different pore sizes. We conclude that the high-temperature carbon-vaporization process to synthesize SWNHs is scalable, and can be performed by electric arc or other similar techniques as economically as carbon can be vaporized. However, the laser vaporization approach was utilized in this project to permit the precise tuning of the synthesis process through adjustment of the laser pulse width and repetition rate. A result of this processing control in the project was to

  9. Deuterium-Labeling Study of the Hydrogenation of 2-Methylfuran and 2,5-Dimethylfuran over Carbon-Supported Noble Metal Catalysts.

    PubMed

    Kang, Jungshik; Vonderheide, Anne; Guliants, Vadim V

    2015-09-21

    2-Methylfuran and 2,5-dimethylfuran were deuterated over Pd and Pt catalysts at 90-220 °C. Furan ring saturation over a Pd/C catalyst occurred at low reaction temperatures, which led to deuterated THFs, followed by progressive D exchange in the THF ring at higher temperatures. Finally, H/D exchange occurred in the methyl groups on the THF ring. Cleavage of the C-O bond also occurred over a Pd/C catalyst at elevated temperatures, which resulted in deuterated ketones, for which all H atoms were exchanged for D. Alcohols were produced over a Pt/C catalyst at low temperatures because they are more stable than the corresponding ketones. D replaced H on all carbon atoms of the furan ring and saturated the O and C atoms of the broken C-O bond in both deuterated 2-pentanol and 2-hexanol. At low temperatures (90-105 °C), all H atoms in the deuterated alcohols were exchanged for D except for the last two hydrogen atoms on the methyl groups. PMID:26373360

  10. Catalyst for carbon monoxide oxidation

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, David R. (Inventor); Davis, Patricia P. (Inventor); Schryer, David R. (Inventor); Brown, Kenneth G. (Inventor); Vannorman, John D. (Inventor)

    1991-01-01

    A catalyst for the combination of CO and O2 to form CO2 which includes a platinum group metal, e.g., platinum; a reducible metal oxide having mulitple valence states, e.g., SnO2; and a compound which can bind water to its structure, e.g., silica gel. This catalyst is ideally suited for application to high powered, pulsed, CO2 lasers operating in a sealed or closed cycle condition.

  11. Catalyst for carbon monoxide oxidation

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, David R. (Inventor); Davis, Patricia (Inventor); Schryer, David R. (Inventor); Brown, Kenneth G. (Inventor); Vannorman, John D. (Inventor)

    1990-01-01

    A catalyst is disclosed for the combination of CO and O2 to form CO2, which includes a platinum group metal (e.g., platinum); a reducable metal oxide having multiple valence states (e.g., SnO2); and a compound which can bind water to its structure (e.g., silica gel). This catalyst is ideally suited for application to high-powered pulsed, CO2 lasers operating in a sealed or closed-cycle condition.

  12. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performances of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer.

  13. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  14. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought. PMID:27549910

  15. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  16. Optimized CeO2 content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Kunitomo, Hikari; Ishitobi, Hirokazu; Nakagawa, Nobuyoshi

    2015-11-01

    A series of CeO2 embedded carbon nanofibers, CECNFs, with different CeO2 contents was prepared by an electrospinning technique. About 15 wt% PtRu nanoparticles were deposited on the fibers, and the effect of the CeO2 content on the methanol oxidation activity of the catalyst, PtRu/CECNF, was investigated. Cyclic voltammetry (CV), chronoamperometry (CA) and CO stripping electrochemical measurements and physical characterization along with X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were carried out on the prepared catalysts. The mass activity of the PtRu was significantly increased by the CeO2 addition up to Ce/C = 0.4, and the maximized activity was 2 times higher than that without CeO2. The increased activity was attributed to the strong interaction between the metal and oxide in the embedded nanofiber structure. A DMFC with the PtRu/CECNF exhibited more than 2.5 times high power density with one half the PtRu loading compared to that of the commercial catalyst, PtRu/Ccom.

  17. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  18. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  19. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  20. Role of support in the catalytic hydrogenation of benzene over ruthenium catalysts

    SciTech Connect

    Viniegra, M.; Gomez, R.; Gonzalez, R.D.

    1988-06-01

    It is generally agreed that the hydrogenation of benzene over supported noble metal catalysts is a facile reaction which is independent of particle size. Previous benzene hydrogenation studies over supported Ru catalysts have been carried out using relatively noninteractive supports such as alumina and silica. Because of the possibility that more interactive supports such as magnesia or lanthana may modify the catalytic activity of supported Ru catalysts in the hydrogenation of benzene, the authors have extended previous studies to include magnesia, silica-alumina, and graphitic carbon as support materials. 12 references.

  1. Investigating the performance of CoxOy/activated carbon catalysts for ethyl acetate catalytic combustion

    NASA Astrophysics Data System (ADS)

    Xie, Hongmei; Zhao, Xiaoping; Zhou, Guilin; He, Xiaoling; Lan, Hai; Jiang, Zongxuan

    2015-01-01

    The catalytic properties of Co-supported activated carbon (AC) catalysts for ethyl acetate catalytic elimination in air were investigated. Results showed that air atmosphere promoted the generation of high-valence state cobalt oxides, and promote the production of reactive oxygen species (ROS) in the Co3O4/AC catalyst. ROS crucially functioned in improving the catalytic activity of Co3O4/AC catalysts. Therefore, CoACA catalyst prepared in air exhibited higher catalytic activity than CoACN catalyst prepared in nitrogen, and CoACA catalyst led to high ethyl acetate conversion (>93%) and stability at a low reaction temperature (210 °C).

  2. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C H

    1991-02-14

    Progress is reported for a four-year fundamental investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which were to (1) determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation and (2) model the global rates of deactivation at the surface of the catalyst for the same catalysts. A computer-automated reactor system to be used in the kinetic and deactivation studies was designed, constructed and tested. Kinetic data for CO hydrogenation on unsupported, unpromoted iron, 99% Fe/1% Al{sub 2}O{sub 3}, and K-promoted 99% Fe/1% Al{sub 2}O{sub 3} catalysts were obtained as functions of temperature, reactant particle pressures and time. The activity/selectivity and kinetic data are consistent with those previously reported for supported, unpromoted and promoted iron. Two kinds of deactivation were observed during FT synthesis on these samples: (1) loss of surface area after reduction of unsupported, unpromoted iron at 400{degree}C and (2) loss of activity with time due to carbon deposition, especially in the case of K-promoted 99% Fe/1% A1{sub 2}O{sub 3}. Deactivation rate data were obtained for CO hydrogenation on promoted Fe as a function of time, temperature, and H{sub 2}/CO ratio. 50 refs., 24 figs., 5 tabs.

  3. Growth of carbon nanotubes using nanocrystalline carbon catalyst

    NASA Astrophysics Data System (ADS)

    Park, Yong Seob; Choi, Eun Chang; Hong, Byungyou

    2009-03-01

    The basic growth of carbon nanotubes (CNTs) involves dissociation of hydrocarbon molecules over a metal layer as a catalyst. Generally, the metals used for the catalyst include nickel, cobalt, gold, iron, platinum, and palladium. However, the metal catalyst used with CNTs could have a harmful influence on the electrical properties of electronic devices. Therefore, we propose the use of nanocrystalline carbon (nc-C) as the catalyst for the growth of CNTs. We used a nc-C catalyst layer deposited by the closed-field unbalanced magnetron (CFUBM) sputtering method, and CNTs were grown by the hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH 3) as a pretreatment and acetylene gas (C 2H 2) as a carbon source. The CNTs were grown on the nc-C layers pretreated with a variation of the pretreatment time. The characteristics of the pretreated nc-C layers and the grown CNTs were investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) measurements. Also, the structural variation of the pretreated nc-C layers was investigated by Raman measurement. We used the nc-C catalyst without metal, and we confirmed that our CNTs were composed with only carbon elements through an EDS measurement. Also, the pretreatment time was attributed to the growth of CNTs.

  4. Interaction of carbon and sulfur on metal catalysts. Progress report

    SciTech Connect

    McCarty, J.G.

    1988-01-21

    Goal is to study selective poisoning by fractional monolayers of chemisorbed sulfur on metal catalysts. A Pt catalyst on alumina support has been synthesized. Stabilized Fe catalysts without and with half monolayers of chemicsorbed S have been prepared. These catalysts, along with a Ni-alumina reference catalyst, will be used in experimental studies. 2 figs.

  5. Coarse-pored ceramic supports for pyrolysis catalysts

    SciTech Connect

    Potapova, L.L.; Cherches, B.Kh.; Egiazarov, Yu.G.

    1988-03-20

    One promising trend in improvement of pyrolysis of hydrocarbon feedstocks is the use of heterogeneous catalysts in the process. The industrial use of highly effective catalysts would result in substantially increased product yields and in decrease of energy consumption in comparison with the requirements of drastic thermal processes. The aims of the present work were to obtain a mechanically strong coarse-pored ceramic support for pyrolysis catalysts and to study the influence of various factors on formation of its structure. The support material was made from an industrial ceramic mass of the following composition (%): koalin 30, plastic refractory clay 21, quartz 32, pegmatite 17. Various additives were used for formation of a porous structure: noncombustible highly porous (pumice, claydite), partially combustible (shungite), and completely combustible (SKT) activated carbon). The authors results show that 15 mass % of SKT carbon (particle size 0.1-0.2 mm) and 1-2 mass % of sodium trimetaphosphate should be added to the ceramic mass. The crushing strength of the resultant support samples reaches 550-630 kg/cm/sup 2/, with 34-35% porosity. Under the optimal conditions of pyrolysis of a straight-run gasoline fraction the catalyst obtained by deposition of 12 mass % of In/sub 2/O/sub 3/ and 4% K/sub 2/O on the synthesized support gives a yield of 39-41 mass % of ethylene and 61-62 mass % of unsaturated C/sub 2/-C/sub 4/ hydrocarbons, with 88-90 mass % gasification.

  6. Permafrost carbon: Catalyst for deglaciation

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.

    2016-09-01

    The sources contributing to the deglacial rise in atmospheric CO2 concentrations are unclear. Climate model simulations suggest thawing permafrost soils were the initial source, highlighting the vulnerability of modern permafrost carbon stores.

  7. Catalysts for Efficient Production of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  8. Influence of sp(3)-sp(2) Carbon Nanodomains on Metal/Support Interaction, Catalyst Durability, and Catalytic Activity for the Oxygen Reduction Reaction.

    PubMed

    Campos-Roldán, Carlos A; Ramos-Sánchez, Guadalupe; Gonzalez-Huerta, Rosa G; Vargas García, Jorge R; Balbuena, Perla B; Alonso-Vante, Nicolas

    2016-09-01

    In this work, platinum nanoparticles were impregnated by two different techniques, namely the carbonyl chemical route and photodeposition, onto systematically surface-modified multiwalled carbon nanotubes. The different interactions between platinum nanoparticles with sp(2)-sp(3) carbon nanodomains were investigated. The oxidation of an adsorbed monolayer of carbon monoxide, used to probe electronic catalytic modification, suggests a selective nucleation of platinum nanoparticles onto sp(2) carbon nanodomains when photodeposition synthesis is carried out. XPS attests the catalytic center electronic modification obtained by photodeposition. DFT calculations were used to determine the interaction energy of a Pt cluster with sp(2) and sp(3) carbon surfaces as well as with oxidized ones. The interaction energy and electronic structure of the platinum cluster presents dramatic changes as a function of the support surface chemistry, which also modifies its catalytic properties evaluated by the interaction with CO. The interaction energy was calculated to be 8-fold higher on sp(3) and oxidized surfaces in comparison to sp(2) domains. Accelerated Stability Test (AST) was applied only on the electronic-modified materials to evaluate the active phase degradation and their activity toward oxygen reduction reaction (ORR). The stability of photodeposited materials is correlated with the surface chemical nature of supports indicating that platinum nanoparticles supported onto multiwalled carbon nanotubes with the highest sp(2) character show the higher stability and activity toward ORR. PMID:27494283

  9. Influence of sp(3)-sp(2) Carbon Nanodomains on Metal/Support Interaction, Catalyst Durability, and Catalytic Activity for the Oxygen Reduction Reaction.

    PubMed

    Campos-Roldán, Carlos A; Ramos-Sánchez, Guadalupe; Gonzalez-Huerta, Rosa G; Vargas García, Jorge R; Balbuena, Perla B; Alonso-Vante, Nicolas

    2016-09-01

    In this work, platinum nanoparticles were impregnated by two different techniques, namely the carbonyl chemical route and photodeposition, onto systematically surface-modified multiwalled carbon nanotubes. The different interactions between platinum nanoparticles with sp(2)-sp(3) carbon nanodomains were investigated. The oxidation of an adsorbed monolayer of carbon monoxide, used to probe electronic catalytic modification, suggests a selective nucleation of platinum nanoparticles onto sp(2) carbon nanodomains when photodeposition synthesis is carried out. XPS attests the catalytic center electronic modification obtained by photodeposition. DFT calculations were used to determine the interaction energy of a Pt cluster with sp(2) and sp(3) carbon surfaces as well as with oxidized ones. The interaction energy and electronic structure of the platinum cluster presents dramatic changes as a function of the support surface chemistry, which also modifies its catalytic properties evaluated by the interaction with CO. The interaction energy was calculated to be 8-fold higher on sp(3) and oxidized surfaces in comparison to sp(2) domains. Accelerated Stability Test (AST) was applied only on the electronic-modified materials to evaluate the active phase degradation and their activity toward oxygen reduction reaction (ORR). The stability of photodeposited materials is correlated with the surface chemical nature of supports indicating that platinum nanoparticles supported onto multiwalled carbon nanotubes with the highest sp(2) character show the higher stability and activity toward ORR.

  10. Surface Chemistry and Properties of Oxides as Catalyst Supports

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar; Contescu, Cristian I

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  11. In situ FTIR investigation of acetic acid electrooxidation on carbon supported Pt-Sn based trimetallic catalysts: Influence of the nature of the third metal

    NASA Astrophysics Data System (ADS)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2014-12-01

    The effect of adding a third metal (Ni, Co, Pd, Rh) to Pt-Sn/C catalyst has been investigated for the adsorption and oxidation of acetic acid in acidic medium using in situ Fourier transform infrared (FTIR) spectroscopy. The results showed that the decomposition of acetic acid on the surface leads to the formation of different intermediate species and products such as acetate, acetyl, carbonate, CO and CO2. The reaction pathway of CO2 production proceeds via the formation of acetyl or carbonate through surface acetate species. It has been found that the selectivity of the acetate was enhanced by the addition of any third metal. However, the presence of Pd or Co increases the relative intensity of IR band for CO2. This is probably due to success in facilitating of the Csbnd C bond cleavage of acetyl. On the other hand, the conversion of acetate to carbonate is strongly affected by the adsorbed water, as is evident from the pronounced changes in the OH stretching region with the presence of Pd or Ni.

  12. Surface chemistry of metal catalyst under carbon nanotube growth conditions

    NASA Astrophysics Data System (ADS)

    Back, Tyson Cody

    The catalyst nanoparticle is critical to the yield, type, and diameter in the growth and nucleation of carbon nanotubes. The objective of this study is focused on determining what changes take place with the catalyst chemistry under growth conditions typically seen in chemical vapor deposition, CVD, experiments. It is well known that catalyst poisoning can occur and in turn effects the catalytic activity of the nanoparticle. A complete description of this mechanism is as of yet undetermined. In order to elucidate this process iron films were deposited onto Si substrates that contained a support layer of Al2O3 or SiO2. These samples were investigated with various surface chemistry techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and electron energy loss spectroscopy (EELS). In addition, structural characteristics were investigated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface techniques were used in-situ in order to observe chemistries that might not be observable outside a CVD reactor. Two sets of experiments were performed on the silica and alumina supports. The first consisted of carbon nanotube growth at near atmospheric pressure, while the second was performed under vacuum. The oxide support was shown to have an affect on the type of nanotubes grown under identical conditions. The silica support films produced more MWNT, while the alumina support films produced more SWNT. This difference was due to the amount of ripening that takes place on the oxide supports. Also in-situ XPS revealed differences in the chemistry of iron catalyst during growth and these differences were attributed to substrate interactions between alumina and iron. Finally, in-situ XPS analysis showed no evidence of carbides or oxides acting as a catalyst during the nucleation process.

  13. Attrition resistant Fischer-Tropsch catalyst and support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  14. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    NASA Astrophysics Data System (ADS)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  15. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Karr, Laurel J.; Paley, Mark S.; Donovan, David N.; Kramer, Teersa J.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  16. Development of Novel Supported Gold Catalysts: A Materials Perspective

    SciTech Connect

    Dai, Sheng; Ma, Zhen

    2011-01-01

    Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by supported gold nanoparticles has attracted tremendous attention. The majority of publications deal with the preparation and characterization of conventional gold catalysts (e.g., Au/TiO{sub 2}), the use of gold catalysts in various catalytic reactions, as well as elucidation of the nature of the active sites and reaction mechanisms. In this overview, we highlight the development of novel supported gold catalysts from a materials perspective. Examples, mostly from those reported by our group, are given concerning the development of simple gold catalysts with single metal-support interfaces and heterostructured gold catalysts with complicated interfacial structures. Catalysts in the first category include active Au/SiO{sub 2} and Au/metal phosphate catalysts, and those in the second category include catalysts prepared by pre-modification of supports before loading gold, by post-modification of supported gold catalysts, or by simultaneous dispersion of gold and an inorganic component onto a support. CO oxidation has generally been employed as a probe reaction to screen the activities of these catalysts. These novel gold catalysts not only provide possibilities for applied catalysis, but also furnish grounds for fundamental research.

  17. Growth Mechanism Of Carbon Nanotubes Prepared By Fluidized Floating Catalyst Method

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    In this paper, carbon nanotubes were synthesized by fluidized floating catalyst method which yielded high yield even at low temperature; 650° C using camphor oil as carbon source and Argon as carrier gas. Optimum concentration for trimetal alloy catalyst; Fe/Ni/Mg has been found to be the suitable catalyst for producing carbon nanotubes at high yield. Carbon nanotubes are formed by the evaporation of the camphor oil (precursor), which decomposes `in situ' and aggregates on the metal alloy catalyst particles present in the ceramic boat. The morphology of carbon nanotubes were characterized by field emission scanning electron microscopy (FESEM). This result demonstrates that fluidized floating catalyst method is suitable for effective formation of CNTs with average size ˜11.5 nm. The morphological studies support `tip growth mechanism' for the growth of the CNT's in our case.

  18. Novel Catalyst Support Materials for PEM Fuel Cells: Current Status and Future Prospects

    SciTech Connect

    Shao, Yuyan; Liu, Jun; Wang, Yong; Lin, Yuehe

    2008-12-15

    The catalyst supports exhibit great influence on the cost, performance, and durability of polymer electrolyte membrane (PEM) fuel cells. This review paper is to summarize several important kinds of novel support materials for PEM fuel cells (including direct methanol fuel cell, DMFC): nanostructured carbon materials (carbon nanotubes/carbon nanofibers, mesoporous carbon), conductive doped diamonds and nanodiamonds, conductive oxides (tin oxide/indium tin oxide, titanium oxide, tungsten oxide) and carbides (tungsten carbides). The advantages and disadvantages, the acting mechanism to promote electrocatalysis, and the strategies to improve present catalyst support materials and to search for new ones are discussed. This is expected to throw light on future development of catalyst support for PEM fuel cells.

  19. Tethered catalysts for the hydration of carbon dioxide

    SciTech Connect

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  20. Thief carbon catalyst for oxidation of mercury in effluent stream

    DOEpatents

    Granite, Evan J.; Pennline, Henry W.

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  1. Ceramic wash-coat for catalyst support

    SciTech Connect

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  2. Microcalorimetric study of silica- and zeolite-supported platinum catalysts

    SciTech Connect

    Sharma, S.B.; Dumesic, J.A. ); Miller, J.T. )

    1994-07-01

    Microcalorimetric measurements of the differential heats of hydrogen and carbon monoxide adsorption versus adsorbate coverate were made at 403 K for platinum supported on silica, magnesia/alumina, L-zeolite, Y-zeolite, and ZSM-5. The differential heats at zero coverage for hydrogen and carbon monoxide adsorption were 90 and 140 kJ/mol, respectively, for platinum supported on silica and nonacidic zeolites. The differential heats were large by approximately 20 kJ/mol for hydrogen and carbon monoxide adsorption on platinum particles supported on basis supports such as potassium/silica, magnesia/alumina, and zeolites containing basic cations (K[sup +], Ba[sup 2+]) exchanged in excess of the zeolite framework aluminum content. The microcalorimetric results suggest that the high paraffin aromatization activity and selectivity observed for L-zeolite-supported platinum catalysts do not appear to be caused solely by changes in the adsorptive properties of the cluster-size platinum particles located within the zeolite. 35 refs., 10 figs., 2 tabs.

  3. Effect of support materials on supported platinum catalyst prepared using a supercritical fluid deposition technique and their catalytic performance for hydrogen-rich gas production from lignocellulosic biomass.

    PubMed

    Kaya, Burçak; Irmak, Sibel; Hesenov, Arif; Erbatur, Oktay; Erkey, Can

    2012-11-01

    A number of supported Pt catalysts have been prepared by supercritical carbon dioxide deposition technique using various supports. The reduction of Pt precursor to metal performed by heat treatment under nitrogen flow. The prepared catalysts were evaluated for gasification of wheat straw biomass hydrolysates and glucose solution for hydrogen-rich gas production. The activities of the catalysts were highly affected by distribution, amount and particle sizes of platinum on the support. In general carbon-based supported Pt catalysts exhibited better catalytic activity compared to other supports to be used. Compared to biomass hydrolysate feed, gasification of glucose always resulted in higher volume of gas mixture, however, hydrogen selectivity was decreased in all catalyst except multi-walled carbon nanotube. The deposition of Pt particles inner side of that support makes the large organic substrates inaccessible to reach and react with those metal particles.

  4. Method of forming supported doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  5. Evaluation of some new zeolite-supported metal catalysts for synthesis gas conversion

    SciTech Connect

    Melson, G.A.; Crawford, J.E.; Crites, J.W.; Mbadcam, K.J.; Rao, V.U.S.; Stencel, J.M.

    1982-03-01

    The use of bifunctional zeolite-based catalysts for the conversion of synthesis gas (carbon monoxide and hydrogen) to gasoline range hydrocarbons has recently attracted much attention. For example, the combination of metal oxides with the medium pore (about 6A) zeolite ZSM-5 and the use of a metal nitrate impregnated ZSM-5 catalyst have been shown to produce gasoline range hydrocarbons containing a high percentage of aromatics from synthesis gas. The production of gasoline range hydrocarbons which have a high olefin content has also been reported by using iron or cobalt impregnated ZSM-5 catalysts. The efficiency and selectivity of supported metal heterogeneous catalysts is closely related to the dispersion and particle size of the metal component and to the nature of the interaction between the metal and the support. For a particular metal, catalytic activity may be varied by changing the metal dispersion and the support, thus, the method of synthesis and any pre-treatment of the catalyst is important in the overall process of catalyst evaluation. Supported metal catalysts have traditionally been prepared by impregnation techniques that involve treatment of a support with an aqueous solution of a metal salt followed by calcination. In the Fe/ZSM-5, system, the decomposition of the iron nitrate during calcination usually produces iron oxides of relatively large crystallite size. This work was initiated in an attempt to produce highly dispersed, thermally stable supported metal catalysts which may be effective for synthesis gas conversion.

  6. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  7. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth

    SciTech Connect

    Hofmann, S.; Cantoro, M.; Kleinsorge, B.; Casiraghi, C.; Parvez, A.; Robertson, J.; Ducati, C.

    2005-08-01

    A systematic study is presented of the influence of catalyst film thickness on carbon nanostructures grown by plasma-enhanced chemical-vapor deposition from acetylene and ammonia mixtures. We show that reducing the Fe/Co catalyst film thickness below 3 nm causes a transition from larger diameter (>40 nm), bamboolike carbon nanofibers to small diameter ({approx}5 nm) multiwalled nanotubes with two to five walls. This is accompanied by a more than 50 times faster growth rate and a faster catalyst poisoning. Thin Ni catalyst films only trigger such a growth transition when pretreated with an ammonia plasma. We observe a limited correlation between this growth transition and the coarsening of the catalyst film before deposition. For a growth temperature of {<=}550 deg. C, all catalysts showed mainly a tip growth regime and a similar activity on untreated silicon, oxidized silicon, and silicon nitride support.

  8. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  9. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    DOEpatents

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  10. A Longitudinal Investigation of Relational Catalyst Support of Goal Strivings

    PubMed Central

    Tomlinson, Jennifer M.; Feeney, Brooke C.; Van Vleet, Meredith

    2015-01-01

    The goal of this work was to test a theoretical model of relational catalyst support provision that promotes thriving in non-adverse times. We tested a pathway proposed by Feeney and Collins (2014) that explains how relational catalyst support in the context of close relationships might lead to thriving. We proposed that once relational catalyst support has been received, it functions through the mechanisms of being perceived to be responsive to one’s needs and promoting perceived capability. Perceived capability should promote indices of thriving including self-esteem, goal accomplishment, growth, and specific and general availability of support. This model was supported in two studies of married couples using observational and longitudinal methods surrounding the support of goal-strivings. Results indicate that (a) partner support of goal-strivings predicted important indicators of thriving over time, and (b) both received and perceived relational catalyst support work together and play important roles in predicting these outcomes. PMID:26997969

  11. Growth of carbon nanotubes on surfaces: the effects of catalyst and substrate.

    PubMed

    Murcia, Angel Berenguer; Geng, Junfeng

    2013-08-01

    We report a study of synthesising air-stable, nearly monodispersed bimetallic colloids of Co/Pd and Fe/Mo of varying compositions as active catalysts for the growth of carbon nanotubes. Using these catalysts we have investigated the effects of catalyst and substrate on the carbon nanostructures formed in a plasma-enhanced chemical vapour deposition (PECVD) process. We will show how it is possible to assess the influence of both the catalyst and the support on the controlled growth of carbon nanotube and nanofiber arrays. The importance of the composition of the catalytic nuclei will be put into perspective with other results from the literature. Furthermore, the influence of other synthetic parameters such as the nature of the nanoparticle catalysts will also be analysed and discussed in detail. PMID:23882847

  12. Fischer–Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis Over Ru Nanoparticle and Supported Ru Catalysts

    SciTech Connect

    Pendyala, Venkat Ramana Rao; Shafer, Wilson D.; Jacobs, Gary; Graham, Uschi M.; Khalid, Syed; Davis, Burtron H.

    2014-12-27

    The effect of the reducing agent on the performance of a ruthenium nanoparticle catalyst was investigated during aqueous-phase Fischer–Tropsch synthesis using a 1 L stirred tank reactor in the batch mode of operation. For the purpose of comparison, the activity and selectivity of NaY zeolite supported Ru catalyst were also studied. NaBH4 and hydrogen were used as reducing agents in our study, and hydrogen reduced catalysts exhibited higher activities than the NaBH4 reduced catalysts, because of higher extent of reduction and a relatively lower tendency toward agglomeration of Ru particles. The Ru nanoparticle catalyst displayed higher activities than the NaY zeolite supported Ru catalyst for both reducing agents. NaBH4 reduced catalysts are less active and the carbon dioxide selectivity is higher than the hydrogen reduced catalysts. The activity of the supported Ru catalyst (Ru/NaY) was 75 % of that of the Ru nanoparticle catalyst, and has the benefit of easy wax/catalyst slurry separation by filtration. Finally, the hydrogen reduced supported Ru catalyst exhibited superior selectivity towards hydrocarbons (higher C5+ selectivity and lower selectivity to methane) than all other catalysts tested.

  13. Novel supports for coal liquefaction catalysts

    SciTech Connect

    Haynes, H.W. Jr.

    1992-01-01

    This research is divided into three parts: (1) Evaluation of Alkaline-Earth-Promoted CoMo/Alumina Catalysts in a Bench Scale Hydrotreater, (2) Development of a Novel Catalytic Coal Liquefaction Microreactor (CCLM) Unit, and (3) Evaluation of Novel Catalyst Preparations for Direct Coal Liquefaction. (VC)

  14. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, N.

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  15. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  16. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  17. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts

    SciTech Connect

    Pei Fang Ng; Li Li; Shaobin Wang; Zhonghua Zhu; Gaoqing Lu; Zifeng Yan

    2007-05-15

    Industrial solid wastes (fly ash and red mud, a by-product of the aluminium industry) have been employed as supports for preparation of Ru-based catalysts. Physical and chemical treatments on red mud were conducted and these modified supports were also used for preparation of Ru-based catalysts. Those Ru catalysts were characterized by various techniques such as N2 adsorption, H{sub 2} adsorption, XRD, XPS, and temperature-programmed reduction (TPR), and were then tested for catalytic ammonia decomposition to hydrogen. It was found that red-mud-supported Ru catalyst exhibits higher ammonia conversion and hydrogen production than fly-ash-supported catalyst. Heat and chemical treatments of the red mud greatly improve the catalytic activity. Moreover, a combination of acid and heat treatments produces the highest catalytic conversion of ammonia. 35 refs., 4 figs., 4 tabs.

  18. Atomic structure of PtCu nanoparticles in PtCu/C catalysts prepared by simultaneous and sequential deposition of components on carbon support

    NASA Astrophysics Data System (ADS)

    Bugaev, L. A.; Srabionyan, V. V.; Pryadchenko, V. V.; Bugaev, A. L.; Avakyan, L. A.; Belenov, S. V.; Guterman, V. E.

    2016-05-01

    Nanocatalysts PtCu/C with different distribution of components in bimetallic PtCu nanoparticles (NPs) were synthesized by simultaneous and sequential deposition of Cu and Pt on carbon support. Electrochemical stability of the obtained samples PtCu/C was studied using the cyclic voltammetry. Characterization of atomic structure of as prepared PtCu NPs and obtained after acid treatment was performed by Pt L 3- and Cu K-edge EXAFS using the technique for determining local structure parameters of the absorbing atom under strong correlations among them. EXAFS derived parameters were used for generation of structural models of PtCu NPs by the method of cluster simulations. Within this approach, the models of atomic structure of PtCu NPs obtained by the two methods of synthesis, before and after post treatment and after two months from their preparation were revealed.

  19. Steam gasification of carbon: Catalyst properties

    SciTech Connect

    Falconer, J.L.

    1993-01-10

    Coal gasification by steam is of critical importance in converting coal to gaseous products (CO, H[sub 2], CO[sub 2], CH[sub 4]) that can then be further converted to synthetic natural gas and higher hydrocarbon fuels. Alkali and alkaline earth metals (present as oxides) catalyze coal gasification reactions and cause them to occur at significantly lower temperatures. A more fundamental understanding of the mechanism of the steam gasification reaction and catalyst utilization may well lead to better production techniques, increased gasification rates, greater yields, and less waste. We are studying the gasification of carbon by steam in the presence of alkali and alkaline earth oxides, using carbonates as the starting materials. Carbon dioxide gasification (CO[sub 2] + C --> 2CO) has been studied in some detail recently, but much less has been done on the actual steam gasification reaction, which is the main thrust of our work. In particular, the form of the active catalyst compound during reaction is still questioned and the dependence of the concentration of active sites on reaction parameters is not known. Until recently, no measurements of active site concentrations during reaction had been made. We have recently used transient isotope tracing to determine active site concentration during CO[sub 2] gasification. We are investigating the mechanism and the concentration of active sites for steam gasification with transient isotopic tracing. For this technique, the reactant feed is switched from H[sub 2]0 to isotopically-labeled water at the same concentration and tow rate. We can then directly measure, at reaction the concentration of active catalytic sites, their kinetic rate constants, and the presence of more than one rate constant. This procedure allows us to obtain transient kinetic data without perturbing the steady-state surface reactions.

  20. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOEpatents

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  1. CVD Growth of Carbon Nanotubes: Structure, Catalyst, and Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance

    2003-01-01

    Carbon nanotubes (CNTs) exhibit extraordinary mechanical and unique electronic properties and hence have been receiving much attention in recent years for their potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many more applications. Catalytic decomposition of hydrocarbon feedstock with the aid of supported transition metal catalysts - also known as chemical vapor deposition (CVD) - has become popular to produce single-walled and multi-walled nanotubes (SWNTs, MWNTs) and multiwalled nanofibers (MWNFs). The ability to grow CNTs on patterned substrates and in vertically aligned arrays, and the simplicity of the process, has made CVD growth of CNTs an attractive approach.

  2. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  3. Oxidation of methane over palladium catalysts: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2005-01-01

    This work is focused on the deep catalytic oxidation of methane over supported palladium catalysts. The influences of the metal loading, oxidation state of palladium, nature of supports, presence of promoters in the supports (for zirconia-based supports), and thermal stability have been studied experimentally. Catalysts were prepared by incipient wetness of commercially available supports with aqueous solutions of palladium nitrate. For gamma-alumina support, it was observed that the optimal amount of palladium is between 0.5% and 2%, with higher amounts leading to a loss in specific activity. Concerning the oxidation state of the catalyst, it is concluded that for all the supports tested in the present work, a reduction of the catalyst is not needed, yielding the same conversion at steady state catalysts reduced and oxidised. The thermal stability of various supported catalysts were also studied, zirconia supports being the most active. These supports, specially Y-modified zirconia support, do not suffer appreciable deactivation below 500 degrees C.

  4. Supported Oxide Catalysts from Chelating Precursors

    NASA Astrophysics Data System (ADS)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  5. Supported Molten Metal Catalysis. A New Class of Catalysts

    SciTech Connect

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  6. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  7. Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification.

    PubMed

    Ye, Tao; Durkin, David P; Hu, Maocong; Wang, Xianqin; Banek, Nathan A; Wagner, Michael J; Shuai, Danmeng

    2016-07-20

    We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity.

  8. Effect of nitrogen post-doping on a commercial platinum-ruthenium/carbon anode catalyst

    NASA Astrophysics Data System (ADS)

    Corpuz, April R.; Wood, Kevin N.; Pylypenko, Svitlana; Dameron, Arrelaine A.; Joghee, Prabhuram; Olson, Tim S.; Bender, Guido; Dinh, Huyen N.; Gennett, Thomas; Richards, Ryan M.; O'Hayre, Ryan

    2014-02-01

    This work investigates the effects of after-the-fact chemical modification of a state-of-the-art commercial carbon-supported PtRu catalyst for direct methanol fuel cells (DMFCs). A commercial PtRu/C (JM HiSPEC-10000) catalyst is post-doped with nitrogen by ion-implantation, where "post-doped" denotes nitrogen doping after metal is carbon-supported. Composition and performance of the PtRu/C catalyst post-modified with nitrogen at several dosages are evaluated using X-ray photoelectron spectroscopy (XPS), rotating disk electrode (RDE), and membrane electrode assemblies (MEAs) for DMFC. Overall, implantation at high dosage results in 16% higher electrochemical surface area and enhances performance, specifically in the mass transfer region. Rotating disk electrode (RDE) results show that after 5000 cycles of accelerated durability testing to high potential, the modified catalyst retains 34% more electrochemical surface area (ECSA) than the unmodified catalyst. The benefits of nitrogen post-doping are further substantiated by DMFC durability studies (carried out for 425 h), where the MEA with the modified catalyst exhibits higher surface area and performance stability in comparison to the MEA with unmodified catalyst. These results demonstrate that post-doping of nitrogen in a commercial PtRu/C catalyst is an effective approach, capable of improving the performance of available best-in-class commercial catalysts.

  9. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOEpatents

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  10. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  11. Durability testing of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H. W.; Mroz, T. S.

    1979-01-01

    The paper presents new information on the durability of a CATCOM catalyst operating at low-emission combustion temperatures (about 1527 K) with a liquid fuel, No. 2 diesel. Information on the activity of No. 2 diesel after 1000 hr of aging is given. In addition, a unique in situ activity test developed for monitoring the subtle changes in the catalyst activity of the CATCOM catalyst is also detailed. The study demonstrated the feasibility of using a CATCOM catalyst in catalytically supported thermal combustion for extended operating periods

  12. Steam reforming of glycerol for hydrogen production over supported nickel catalysts on alumina.

    PubMed

    Choi, Ga Young; Kim, Young Chul; Moon, Dong Ju; Seo, Gon; Park, Nam Cook

    2013-01-01

    The experiment was carried out to produce hydrogen through steam reforming of glycerol over nano-sized Ni catalysts supported on alumina (Al2O3). The catalysts were characterized by BET surface area, metal dispersion, XRD, TPR, NH3-TPD and SEM. 15 wt% Ni/Al2O3 catalysts presented carbon nano fiber after the catalyst was used. However, when the Ni loading was higher than that of 15 wt%, the catalytic activity reduced, and the increase of the Ni particle size and the formation of graphitic carbon occurred. The Ni/SiO2(70)-Al2O3 with the high surface area and the small Ni particle size promoted the catalytic activity and could easily reduce from NiO to Ni, inhibiting the formation of NiAl2O4. PMID:23646792

  13. Theoretical study of support effect of Au catalyst for glucose oxidation of alkaline fuel cell anode

    NASA Astrophysics Data System (ADS)

    Ishimoto, Takayoshi; Hamatake, Yumi; Kazuno, Hiroki; Kishida, Takayuki; Koyama, Michihisa

    2015-01-01

    We theoretically analyzed the glucose oxidation reaction mechanism and reaction activity of Au catalyst supported by carbon (graphite(0 0 0 1), (1 0 1 bar 0), and (1 1 2 bar 0)) and oxide (ZrO2(1 1 1) and SnO2(1 1 0)) in alkaline solution environment by using density functional theory method. We observed large stabilization of Au catalyst on support materials due to the electron transfer in the case of graphite(1 1 2 bar 0) and SnO2(1 1 0) systems. The catalytic activity for glucose oxidation reaction over Au supported by graphite(1 0 1 bar 0) and (1 1 2 bar 0) is calculated to be low in comparison with those of unsupported system. We found that SnO2(1 1 0) supported Au catalyst shows high activity toward the glucose oxidation. One of the main factors for the observed high catalytic activity is charge transfer from Au catalyst to support materials. When the atomic charge of Au catalyst becomes positive by the support effect, the activity of glucose oxidation reaction on Au catalyst is improved.

  14. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts

    NASA Astrophysics Data System (ADS)

    Li, She-Qiang; Fu, Xing-Qiu; Hu, Bing; Deng, Jia-Jun; Chen, Lei

    2009-11-01

    The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7V, respectively. A specific surface area activity of 1.76 mA·cm-2 at 0.4 V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.

  15. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction

    NASA Astrophysics Data System (ADS)

    Kumar, Bijandra; Asadi, Mohammad; Pisasale, Davide; Sinha-Ray, Suman; Rosen, Brian A.; Haasch, Richard; Abiade, Jeremiah; Yarin, Alexander L.; Salehi-Khojin, Amin

    2013-12-01

    The development of an efficient catalyst system for the electrochemical reduction of carbon dioxide into energy-rich products is a major research topic. Here we report the catalytic ability of polyacrylonitrile-based heteroatomic carbon nanofibres for carbon dioxide reduction into carbon monoxide, via a metal-free, renewable and cost-effective route. The carbon nanofibre catalyst exhibits negligible overpotential (0.17 V) for carbon dioxide reduction and more than an order of magnitude higher current density compared with the silver catalyst under similar experimental conditions. The carbon dioxide reduction ability of carbon nanofibres is attributed to the reduced carbons rather than to electronegative nitrogen atoms. The superior performance is credited to the nanofibrillar structure and high binding energy of key intermediates to the carbon nanofibre surfaces. The finding may lead to a new generation of metal-free and non-precious catalysts with much greater efficiency than the existing noble metal catalysts.

  16. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. PMID:26851453

  17. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Goldberg, Robert I.

    1987-04-07

    A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: and for olefinic hydrocarbons: where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  18. Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.

    1977-01-01

    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.

  19. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    PubMed

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  20. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    EPA Science Inventory

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  1. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    PubMed

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed. PMID:27347922

  2. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P.; Brinker, C.J.

    1988-01-01

    In this paper, the application of low-field NMR to both surface area and pore structure analysis of catalyst supports will be presented. Low-field (20 MHz) spin-lattice relaxation (T/sub 1/) experiments are performed on fluids contained in alumina and silica catalyst supports. Pore size distributions (PSD) calculated from these NMR experiments are compared to those obtained from mercury porosimetry and nitrogen condensation. 18 refs., 4 figs., 2 tabs.

  3. Methods for making a supported iron-copper catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  4. Catalyst for the methanation of carbon monoxide in sour gas

    DOEpatents

    Kustes, William A.; Hausberger, Arthur L.

    1985-01-01

    The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

  5. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  6. Sulphate-activated growth of bamboo-like carbon nanotubes over copper catalysts

    NASA Astrophysics Data System (ADS)

    Lin, Jarrn-Horng; Chen, Ching-Shiun; Zeng, Zhi-Yan; Chang, Chia-Wei; Chen, Hsiu-Wei

    2012-07-01

    A sulphate-activated mechanism is proposed to describe the growth of bamboo-like carbon nanotubes (CNTs) over copper catalysts using chemical vapour deposition with helium-diluted ethylene. Sulphate-assisted copper catalysts afford a high-yield growth of bamboo-like CNTs at a mild temperature, 800 °C however, non-sulphate-assisted copper catalysts, e.g., copper acetate and copper nitrate prepared catalysts, were inert to CNT growth and only gave amorphous carbons (a-C) surrounding copper nanoparticles under the same conditions. Nevertheless, the addition of sulphate ions in the preparation step for the two inert catalysts can activate their abilities for CNT growth with remarkable yields. Furthermore, Raman spectra analysis demonstrates a linear dependence between the concentration of sulphate ions in copper catalysts and the ratio of CNT-a-C in the as-grown carbon soot. The sulphate-activated effect on CNT growth over copper catalysts could be related to a three-way interaction of sulphate ions, copper nanoparticles and support. In situ TEM images of an as-grown CNT irradiated by electron beams without the inlet of carbon sources reveal a new pathway of carbon diffusion through the bulk of copper nanoparticles and an enlarged inner-wall thickness of the on-site CNT. This carbon diffusion model over copper catalysts can provide new insights into the CNT growth mechanism over non-magnetic metal catalysts.A sulphate-activated mechanism is proposed to describe the growth of bamboo-like carbon nanotubes (CNTs) over copper catalysts using chemical vapour deposition with helium-diluted ethylene. Sulphate-assisted copper catalysts afford a high-yield growth of bamboo-like CNTs at a mild temperature, 800 °C however, non-sulphate-assisted copper catalysts, e.g., copper acetate and copper nitrate prepared catalysts, were inert to CNT growth and only gave amorphous carbons (a-C) surrounding copper nanoparticles under the same conditions. Nevertheless, the addition of

  7. Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride.

    PubMed

    Ayán-Varela, M; Villar-Rodil, S; Paredes, J I; Munuera, J M; Pagán, A; Lozano-Pérez, A A; Cenis, J L; Martínez-Alonso, A; Tascón, J M D

    2015-11-01

    The liquid-phase exfoliation of graphitic carbon nitride (g-C3N4) to afford colloidal dispersions of two-dimensional flakes constitutes an attractive route to facilitate the processing and implementation of this novel material toward different technological applications, but quantitative knowledge about its dispersibility in solvents is lacking. Here, we investigate the dispersion behavior of exfoliated g-C3N4 in a wide range of solvents and evaluate the obtained results on the basis of solvent surface energy and Hildebrand/Hansen solubility parameters. Estimates of the three Hansen parameters for exfoliated g-C3N4 from the experimentally derived data yielded δD ≈ 17.8 MPa(1/2), δP ≈ 10.8 MPa(1/2), and δH ≈ 15.4 MPa(1/2). The relatively high δH value suggested that, contrary to the case of other two-dimensional materials (e.g., graphene or transition metal dichalcogenides), hydrogen-bonding plays a substantial role in the efficient interaction, and thus dispersibility, of exfoliated g-C3N4 with solvents. Such an outcome was attributed to a high density of primary and/or secondary amines in the material, the presence of which was associated with incomplete condensation of the structure. Furthermore, cell proliferation tests carried out on thin films of exfoliated g-C3N4 using murine fibroblasts suggested that this material is highly biocompatible and noncytotoxic. Finally, the exfoliated g-C3N4 flakes were used as supports in the synthesis of Pd nanoparticles, and the resulting hybrids exhibited an exceptional catalytic activity in the reduction of nitroarenes.

  8. Bimetallic ruthenium-copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst.

    PubMed

    Liu, Jiajia; Zhang, Li Li; Zhang, Jiatao; Liu, Tao; Zhao, X S

    2013-11-21

    Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in D-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal. PMID:24072134

  9. Bimetallic ruthenium-copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Zhang, Li Li; Zhang, Jiatao; Liu, Tao; Zhao, X. S.

    2013-10-01

    Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in d-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal.Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in d-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03813k

  10. Enhanced Oxygen Reduction Activity In Acid By Tin-Oxide Supported Au Nanoparticle Catalysts

    SciTech Connect

    Baker,W.; Pietron, J.; Teliska, M.; Bouwman, P.; Ramaker, D.; Swider-Lyons, K.

    2006-01-01

    Gold nanoparticles supported on hydrous tin-oxide (Au-SnO{sub x}) are active for the four-electron oxygen reduction reaction in an acid electrolyte. The unique electrocatalytic of the Au-SnO is confirmed by the low amount of peroxide detected with rotating ring-disk electrode voltammetry and Koutecky-Levich analysis. In comparison, 10 wt % Au supported on Vulcan carbon and SnO{sub x} catalysts both produce significant peroxide in the acid electrolyte, indicating only a two-electron reduction reaction. Characterization of the Au-SnO{sub x} catalyst reveals a high-surface area, amorphous support with 1.7 nm gold metal particles. The high catalytic activity of the Au-SnO is attributed to metal support interactions. The results demonstrate a possible path to non-Pt catalysts for proton exchange membrane fuel cell cathodes.

  11. Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.

    PubMed

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  12. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  13. Understanding of catalyst deactivation caused by sulfur poisoning and carbon deposition in steam reforming of liquid hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Xie, Chao

    2011-12-01

    The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. Steam reforming of Norpar13 (a liquid hydrocarbon fuel from Exxon Mobile) without and with sulfur was performed on various metal catalysts (Rh, Ru, Pt, Pd, and Ni) supported on different materials (Al2O3, CeO2, SiO2, MgO, and CeO2- Al2O3). A number of characterization techniques were applied to study the physicochemical properties of these catalysts before and after the reactions. Especially, X-ray absorption near edge structure (XANES) spectroscopy was intensively used to investigate the nature of sulfur and carbon species in the used catalysts to reveal the catalyst deactivation mechanism. Among the tested noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalyst is the most sulfur tolerant. Al2O3 and CeO2 are much better than SiO2 and MgO as the supports for the Rh catalyst to reform sulfur-containing hydrocarbons. The good sulfur tolerance of Rh/Al2O3 can be attributed to the acidic nature of the Al2O3 support and its small Rh crystallites (1-3 nm) as these characteristics facilitate the formation of electron-deficient Rh particles with high sulfur tolerance. The good catalytic performance of Rh/CeO2 in the presence of sulfur can be ascribed to the promotion effect of CeO2 on carbon gasification, which significantly reduced the carbon deposition on the Rh/CeO2catalyst. Steam reforming of Norpar13 in the absence and presence of sulfur was further carried out over CeO2-Al2O3 supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 °C. Both monometallic catalysts rapidly deactivated at 550 °C, iv and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 °C dramatically improved the sulfur tolerance of the Rh catalyst. Sulfur K-edge XANES revealed that metal sulfide and organic sulfide are the dominant sulfur

  14. Graphitic-Carbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions.

    PubMed

    Xiong, Haifeng; Schwartz, Thomas J; Andersen, Nalin I; Dumesic, James A; Datye, Abhaya K

    2015-06-26

    Conversion of biomass-derived molecules involves catalytic reactions under harsh conditions in the liquid phase (e.g., temperatures of 250 °C and possibly under either acidic or basic conditions). Conventional oxide-supported catalysts undergo pore structure collapse and surface area reduction leading to deactivation under these conditions. Here we demonstrate an approach to deposit graphitic carbon to protect the oxide surface. The heterogeneous catalysts supported on the graphitic carbon/oxide composite exhibit excellent stability (even under acidic conditions) for biomass conversion reactions. PMID:25973732

  15. Graphitic-Carbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions.

    PubMed

    Xiong, Haifeng; Schwartz, Thomas J; Andersen, Nalin I; Dumesic, James A; Datye, Abhaya K

    2015-06-26

    Conversion of biomass-derived molecules involves catalytic reactions under harsh conditions in the liquid phase (e.g., temperatures of 250 °C and possibly under either acidic or basic conditions). Conventional oxide-supported catalysts undergo pore structure collapse and surface area reduction leading to deactivation under these conditions. Here we demonstrate an approach to deposit graphitic carbon to protect the oxide surface. The heterogeneous catalysts supported on the graphitic carbon/oxide composite exhibit excellent stability (even under acidic conditions) for biomass conversion reactions.

  16. Sulfur and carbon deposition on Claus catalysts examined

    SciTech Connect

    Goodboy, K.P.; Downing, J.C.; Fleming, H.L.

    1985-11-04

    The authors discuss Alcoa's study of the deactivation of Claus catalysts caused by sulfur and carbon deposits. Although these two deactivation mechanisms are primarily affected by operation a study of the causes, extent, avoidance and reversal of these mechanisms yields information useful to both catalyst manufacturers and users. As a result of these studies, the following procedures are recommended for extending catalyst life and to increase catalyst activity: Conduct heat soak, exceed 280/sup 0/C, high frequency in third bed; minimize toluene levels; use SP-100 for alkylated aromatics, COS and/or CS/sub 2/ decomposition.

  17. Synthesis and characterization of supported sugar catalyst by dip coating method

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Siambun, N. J.; Safie, N. N.

    2016-06-01

    Sugar catalyst is a novel solid acid catalyst with reactivity comparable to that of sulphuric acid in biodiesel production. However, the fine powder form of sugar catalyst with the non-porous structure might cause large pressure drop in a packed bed reactor due to low bed porosity, affecting the reaction conversion especially in gas phase reaction. Furthermore, higher pressure drop requires higher electrical energy to drive the fluid through. Increasing the particle size is anticipated to be able to overcome the pressure drop matter. Hence, a deposition of sugar catalyst on larger particle materials was studied. Three types of materials were used for this investigation namely aluminum, silica and clay. The deposition was done via dip-coating method. The materials were characterized for their total acidity, thermal stability, functional groups, surface area, and element composition. The total acidity for SCDCAl, SCDCSi, and SCDCCl were 0.9 mmol/g, 0.2 mmol/g, and 0.4 mmol/g, respectively. The ratio of char deposited on SCDCAl, SCDCSi and SCDCCl were 0.9 g of support/g of carbon, 0.040 g of support/g of carbon, and 0.014 g of support/g of carbon respectively. FTIR and EDX analyses were carried out to determine the presence of active sites of the catalysis by identifying the functional groups such as -COOH, -OH, -SO3H. The results showed that -SO3H was detected on the surface of synthesized catalysts, except for SCDCC1.The pore size of SCDCAl, SCDCSi and SCDCCl were classified as macropores because the average diameter were greater than 50nm.. The catalysts were stable up to 400°C. The results showed that the dipcoating method could deposit sugar catalyst on aluminum, silica, and clay at low total acidity concentration.

  18. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    NASA Astrophysics Data System (ADS)

    Kruszka, Bartosz; Terzyk, Artur P.; Wiśniewski, Marek; Gauden, Piotr A.; Szybowicz, Mirosław

    2014-09-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices.

  19. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation.

    PubMed

    Hofmann, Stephan; Sharma, Renu; Ducati, Caterina; Du, Gaohui; Mattevi, Cecilia; Cepek, Cinzia; Cantoro, Mirco; Pisana, Simone; Parvez, Atlus; Cervantes-Sodi, Felipe; Ferrari, Andrea C; Dunin-Borkowski, Rafal; Lizzit, Silvano; Petaccia, Luca; Goldoni, Andrea; Robertson, John

    2007-03-01

    We present atomic-scale, video-rate environmental transmission electron microscopy and in situ time-resolved X-ray photoelectron spectroscopy of surface-bound catalytic chemical vapor deposition of single-walled carbon nanotubes and nanofibers. We observe that transition metal catalyst nanoparticles on SiOx support show crystalline lattice fringe contrast and high deformability before and during nanotube formation. A single-walled carbon nanotube nucleates by lift-off of a carbon cap. Cap stabilization and nanotube growth involve the dynamic reshaping of the catalyst nanocrystal itself. For a carbon nanofiber, the graphene layer stacking is determined by the successive elongation and contraction of the catalyst nanoparticle at its tip.

  20. Supported Molecular Catalysts: Synthesis, in-situ Characterization and Performance

    SciTech Connect

    Haw, James F

    2010-12-14

    The technological advantages of solid catalysts (robustness for operation at high temperatures, lack of corrosion, and ease of separation of products) can be combined with the advantages of soluble catalysts (e.g., selectivity) by synthesis of structurally discrete, nearly uniform catalysts on supports. Our goal is to synthesize, characterize, test, and model such catalysts and their reactions, thereby opening a door to unprecedented fundamental understanding of the properties of such materials. We employ molecular chemistry in nano-scale cages of zeolites and on surfaces of tailored porous solids for the precise synthesis of catalysts with discrete, uniform, well-defined sites, primarily mononuclear metal complexes, characterizing them (sometimes in the functioning state) with a broad range of complementary experimental techniques and using computational chemistry to interpret the results, map out reaction paths, provide bases for the design of new catalysts, improve methods of data analysis, and identify key experiments. The effort is directly in support of DOE's energy, environmental, and national security missions as well as the support of DOE's basic science mission to develop the tools and understanding needed for the success of the applied mission areas. The research is demonstrating progress in understanding, modeling, and controlling chemical reactivity at interfaces to develop a fundamental understanding of how to control catalytic reactions for a broad range of applications.

  1. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support

  2. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support

  3. Supported catalysts using nanoparticles as the support material

    DOEpatents

    Wong, Michael S.; Wachs, Israel E.; Knowles, William V.

    2010-11-02

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  4. Growth of Single-Walled Carbon Nanotubes by High Melting Point Metal Oxide Catalysts

    NASA Astrophysics Data System (ADS)

    Qian, Yang; Xiang, Rong; An, Hua; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo

    We report on the growth of single-walled carbon nanotubes (SWNTs) from Co oxide catalysts. The concept is using the relatively lower mobility of metal oxide (than metal) to suppress catalyst aggregation at high temperatures. Compared to the SWNTs grown by pre-reduced catalysts, SWNTs grown from oxidized Co catalysts have shown narrower diameter distribution and smaller average diameter. Different growth parameters are discussed regarding the resulting morphology of SWNTs. Transmission electron microscopy (TEM) investigations reveal the information that Co catalysts are transformed to Co3O4 after reduction-calcination process. X-ray photoelectron spectroscopy (XPS) investigations indicate that Co3O4 has decomposed to CoO before growth at a typical growth temperature (800 ºC) in Ar atmosphere. We propose that CoO has higher melting point than Co and thus is more stable during the growth. Our results indicate that besides the bimetallic catalysts, monometallic catalytic system could also be useful in stabilizing the catalysts to grow chirality-specific SWNTs by transforming the relatively low melting point metal catalysts to high melting point metal oxide catalysts. Yang Qian was supported through ``Global Leader Program for Social Design and Management''.

  5. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  6. Hydrogen Production from Ethanol Steam Reforming over Supported Cobalt Catalysts

    SciTech Connect

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2008-05-01

    Hydrogen production was carried out via ethanol steam reforming over supported cobalt catalysts. Wet incipient impregnation method was used to support cobalt on ZrO2, CeO2 and CeZrO4 followed by pre-reduction with H2 up to 677 °C to attain supported cobalt catalysts. It was found that the non-noble metal based 10 wt % Co/CeZrO4 is an efficient catalyst to achieve ethanol conversion of 100% and hydrogen yield of 82% (4.9 mol H2/ mol ethanol) at 450 oC , which is superior to 0.5 wt % Rh/Al2O3. The pre-reduction process is required to activate supported cobalt catalysts for high H2 yield of ethanol steam reforming. In addition, support effect is found significant for cobalt during ethanol steam reforming. 10% Co/CeO2 gave high H2 selectivity while suffered low conversion due to the poor thermal stability. In contrast to CeO2, 10 wt % Co/ZrO2 achieved high conversion while suffered lower H2 yield due to the production of methane. The synergistic effect of ZrO2 and CeO2 to promote high ethanol conversion while suppress methanation was observed when CeZrO4 was used as a support for cobalt. This synergistic effect of CeZrO4 support leads to a high hydrogen yield at low temperature for 10 wt % Co/CeZrO4 catalyst. Under the high weight hourly space velocity (WHSV) of ethanol (2.5 h-1), the hydrogen yield over 10 wt % Co/CeZrO4 was found to gradually decrease to 70% of its initial value in 6 hours possibly due to the coke formation on the catalyst.

  7. Synthesis, characterization and catalytic activity of carbon-silica hybrid catalyst from rice straw

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Safie, N. N.; Siambun, N. J.

    2016-07-01

    The hybrid-carbon catalyst has been studied because of its promising potential to have high porosity and surface area to be used in biodiesel production. Silica has been used as the support to produce hybrid carbon catalyst due to its mesoporous structure and high surface area properties. The chemical synthesis of silica-carbon hybrid is expensive and involves more complicated preparation steps. The presence of natural silica in rice plants especially rice husk has received much attention in research because of the potential as a source for solid acid catalyst synthesis. But study on rice straw, which is available abundantly as agricultural waste is limited. In this study, rice straw undergone pyrolysis and functionalized using fuming sulphuric acid to anchor -SO3H groups. The presence of silica and the physiochemical properties of the catalyst produced were studied before and after sulphonation. The catalytic activity of hybrid carbon silica acid catalyst, (H-CSAC) in esterification of oleic acid with methanol was also studied. The results showed the presence of silica-carbon which had amorphous structure and highly porous. The carbon surface consisted of higher silica composition, had lower S element detected as compared to the surface that had high carbon content but lower silica composition. This was likely due to the fact that Si element which was bonded to oxygen was highly stable and unlikely to break the bond and react with -SO3H ions. H-CSAC conversions were 23.04 %, 35.52 % and 34.2 7% at 333.15 K, 343.15 K and 353.15 K, respectively. From this research, rice straw can be used as carbon precursor to produce hybrid carbon-silica catalyst and has shown catalytic activity in biodiesel production. Rate equation obtained is also presented.

  8. Preparation of arrays of long carbon nanotubes using catalyst structure

    DOEpatents

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  9. Direct imaging of copper catalyst migration inside helical carbon nanofibers.

    PubMed

    Dong, Lifeng; Yu, Liyan; Cui, Zuolin; Dong, Hongzhou; Ercius, Peter; Song, Chengyu; Duden, Thomas

    2012-01-27

    By using a double-aberration-corrected (scanning) transmission electron microscope (STEM/TEM) at an acceleration voltage of only 80 kV, we demonstrate that, due to the low solubility of copper (Cu) in carbon and its affinity with oxygen (O), single-crystal Cu catalysts dissociate into small cuprous oxide (Cu2O) nanoparticles after the growth of carbon nanofibers, and Cu2O nanoparticles ultimately localize on the fiber surfaces. This new finding is a step toward a better understanding of the interactions between Cu catalysts and carbon nanomaterials and could suggest a simple and effective method for eliminating Cu impurities from the fibers. PMID:22172975

  10. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    PubMed Central

    2012-01-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure. PMID:22546416

  11. Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped grapheme.

    PubMed

    Tang, Yanan; Yang, Zongxian; Dai, Xianqi; Lu, Zhansheng; Zhang, Yanxing; Fu, Zhaoming

    2014-09-01

    The geometry, electronic structure and catalytic properties of the anchored Pt atom on the Ge-doped graphene (Pt/Ge-graphene) substrates are investigated using the first-principles computations. It is found that Ge atoms can form strong covalent bonds with the carbon atoms at the vacancy site on the defective graphene. The Ge-graphene as substrate can effectively anchored Pt atoms and form supported Pt catalyst, which exhibits good catalytic activity for CO oxidation with a two-step route, starting with the Langmuir-Hinshelwood (LH) reaction followed by the Eley-Rideal (ER) reaction. The Ge dopant in graphene plays a vital role in enhancing the substrate-adsorbate interaction through facilitating the charge redistribution at their interfaces. The Ge-graphene can be used as the reactive support to control the stability and activity of the Pt catalysts. This work provides valuable guidance on fabricating carbon-based catalysts for CO oxidation, and validates the reactivity of single-atom catalyst for designing atomic-scale catalysts.

  12. Partial Oxidation of Hydrocarbons in a Segmented Bed Using Oxide-based Catalysts and Oxygen-conducting Supports

    NASA Astrophysics Data System (ADS)

    Smith, Mark W.

    Two objectives for the catalytic reforming of hydrocarbons to produce synthesis gas are investigated herein: (1) the effect of oxygen-conducting supports with partially substituted mixed-metal oxide catalysts, and (2) a segmented bed approach using different catalyst configurations. Excess carbon deposition was the primary cause of catalyst deactivation, and was the focus of the experiments for both objectives. The formation and characterization of deposited carbon was examined after reaction for one of the selected catalysts to determine the quantity and location of the carbon on the catalyst surface leading to deactivation. A nickel-substituted barium hexaaluminate (BNHA), with the formula BaAl 11.6Ni0.4O18.8, and a Rh-substituted lanthanum zirconate pyrochlore (LCZR) with the formula La1.89Ca0.11 Zr1.89Rh0.11, were combined with two different doped ceria supports. These supports were gadolinium-doped ceria (GDC) and zirconium-doped ceria (ZDC). The active catalyst phases were combined with the supports in different ratios using different synthesis techniques. The catalysts were characterized using several different techniques and were tested under partial oxidation (POX) of n-tetradecane (TD), a diesel fuel surrogate. It was found that the presence of GDC and ZDC reduced the formation of carbon for both catalysts; the optimal ratio of catalyst to support was different for the hexaaluminate and the pyrochlore; a loading of 20 wt% of the pyrochlore with ZDC produced the most stable performance in the presence of common fuel contaminants (>50 h); and, the incipient wetness impregnation synthesis method of applying the active catalyst to the support produced more stable product yields than the catalyst prepared by a solid-state mixing technique. Different hexaaluminate and pyrochlore catalysts were used in different configurations in a segmented bed approach. The first strategy was to promote the indirect reforming mechanism by placing a combustion catalyst in the

  13. Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Gould, Troy D.

    Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (< 3 nm) where nanoscale properties can have a dramatic effect on reaction activity and selectivity. This thesis presents the first ALD synthesis of non-noble metal nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm, which increased the selectivity for C 3H6 hydrogenolysis by an order of magnitude over a much larger Ni/Al2O3 catalyst. Pt particles were deposited by varying the number of ALD cycles and the reaction chemistry (H2 or O 2) to control the particle size from approximately 1 to 2 nm, which allowed lower-coordinated surface atoms to populate the particle surface. These Pt ALD catalysts demonstrated some of the highest oxidative dehydrogenation of propane selectivities (37%) of a Pt catalyst synthesized by a scalable technique. Dry reforming of methane (DRM) is a reaction of interest due to the recent increased recovery of natural gas, but this reaction is hindered from industrial implementation because the Ni catalysts are plagued by deactivation from sintering and coking. This work utilized Ni ALD and NiPt ALD catalysts for the DRM reaction. These catalysts did not form destructive carbon whiskers and had enhanced reaction rates due to increased bimetallic interaction. To further limit sintering, the Ni and NiPt ALD catalysts were coated with a porous alumina matrix by molecular layer deposition (MLD). The catalysts were evaluated for DRM at 973 K, and the MLD-coated Ni catalysts outperformed the uncoated Ni catalysts in either activity (with 5 MLD cycles) or stability (with 10 MLD cycles). In summary, this thesis developed a

  14. Spectroscopic studies of alumina-supported nickel catalysts precursors. Part I. Catalysts prepared from acidic solutions

    NASA Astrophysics Data System (ADS)

    Pasieczna-Patkowska, S.; Ryczkowski, J.

    2007-04-01

    Nickel alumina-supported catalysts were prepared from acidic solutions of nickel nitrate by the CIM and DIM methods (classical and double impregnation, respectively). The catalysts exhibited different nickel species due to the existence of various metal-support interaction strengths. As a consequence, the reducibility and other surface properties changed as a function of the preparation method. The aim of this work was to study the interaction between the metal precursor and the alumina surface by means of FT-IR (Fourier transform infrared) and FT-IR/PAS (FT-IR photoacoustic spectroscopy).

  15. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra; Albrecht, Karl O.; Kovarik, Libor; Flake, Matt; Dagle, Robert A.

    2013-06-07

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl2O4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR

  16. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts.

    PubMed

    Edwards, Jennifer K; Carley, Albert F; Herzing, Andrew A; Kiely, Christopher J; Hutchings, Graham J

    2008-01-01

    The direct synthesis of H2O2 at low temperature (2 degrees C) from H2 and O2 using carbon-supported Au, Pd and Au-Pd catalysts is described and contrasted with data for TiO2, Al2O3 and Fe2O3 as supports. The Au-Pd catalysts all perform significantly better than the pure Pd/TiO2 and Au/ TiO2 materials. The Au Pd/carbon catalysts gave the highest rate of H2O2 production, and the order of reactivity observed is: carbon > TiO2 > Al2O3. Catalysts were prepared by co-impregnation of the supports using incipient wetness with aqueous solutions of PdCl2 and HAuCl4, and following calcination at 400 degrees C the catalysts were stable and could be reused several time without loss of metal. The method of preparation is critical, however, to achieve stable catalysts. No promoters are required (e.g. halides) to achieve the high rates of hydrogen peroxide synthesis. The surface and bulk composition of the gold palladium nanoparticles was investigated by STEM-XEDS spectrum imaging. For TiO2 and Al2O3 as supports the Au Pd particles were found to exhibit a core-shell structure, Pd being concentrated on the surface. In contrast, the Au-Pd/carbon catalyst exhibited Au Pd nanoparticles which were homogeneous alloys and X-ray photoelectron studies were consistent with these observations. The origin of the enhanced activity for the carbon supported catalysts is a result of higher H2 selectivity for the formation of hydrogen peroxide which is due to the surface composition and size distribution of the nanoparticles. The key problem remaining is the sequential hydrogenation of hydrogen peroxide which limits the utilisation of the direct synthesis methodology and this is discussed in detail. PMID:18447018

  17. Synthesis And Characterization of Dendrimer-Derived Supported Iridium Catalysts

    SciTech Connect

    Jesus, Y.Lopez-De; Vicente, A.; Lafaye, G.; Marecot, P.; Williams, C.T.

    2009-05-19

    The synthesis of Ir/{gamma}-Al{sub 2}O{sub 3} using the dendrimer metal nanocomposites (DMN) approach is reported. Fourth generation hydroxyl-terminated polyamidoamine dendrimer was complexed with Ir{sup 3+} in aqueous solution and the process monitored using ultraviolet-visible and X-ray absorption spectroscopy. No discernible reduction of Ir{sup 3+} to form zerovalent nanoparticles was observed after bubbling hydrogen or adding NaBH{sub 4} into the complex solution. Standard wet impregnation of the DMN precursors were used to prepare Ir/{gamma}-Al{sub 2}O{sub 3}, which were compared with conventionally prepared samples. In situ transmission Fourier transform infrared spectroscopy during dendrimer thermal decomposition in different atmospheres and CO adsorption allowed for identification of catalyst activation treatments that expose the maximum metal surface area. The particle size distributions of these catalysts were investigated using high resolution transmission electron microscopy, revealing that all of the catalysts have small particle sizes (0.4-3 nm) with narrow distributions. An optimized oxidation/reduction treatment produced a DMN-derived supported catalyst with higher metallic dispersion. DMN-derived catalysts were tested for liquid-phase hydrogenation of benzonitrile, and show an increase in TOF with increasing dispersion. The selectivity toward dibenzylamine is affected by the catalyst preparation method, with the oxidation/reduction treatment resulting in lower selectivity.

  18. Novel zeolite-supported rhodium catalysts for ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Campos-Skrobot, Fabiana C.; Rizzo-Domingues, Roberta C. P.; Fernandes-Machado, Nádia R. C.; Cantão, Mauricio P.

    Renewable bioethanol is an interesting hydrogen source for fuel cells through steam reforming, but its C-C bond promotes parallel reactions, mainly coke and by-products formation. In this way, good ethanol reforming catalysts are still needed, which explains current research and development efforts around the world. Most catalysts proposed for ethanol reforming are based on oxide-supported noble metals with surface area below 100 m 2 g -1 and reaction temperatures above 500 °C. Novel Rh and Rh-K catalysts supported on NaY zeolite with surface area above 440 m 2 g -1 are presented in this work. Reaction temperature was fixed at 300 °C and H 2O/EtOH molar ratio and reagent flow were varied. Ethanol conversion varied from 50 to 99%, with average increase of 50% due to K promoter, and hydrogen production yield achieved 68%.

  19. Investigation on C-TiO2 nanotubes composite as Pt catalyst support for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Sui, Xu-Lei; Wang, Zhen-Bo; Yang, Min; Huo, Li; Gu, Da-Ming; Yin, Ge-Ping

    2014-06-01

    In this paper, Pt nanoparticles have been successfully deposited on the mixture of carbon black and one-dimensional self-ordered TiO2 nanotubes (TNTs) array by a microwave-assisted polyol process to synthesize Pt/C-TNTs catalyst. TiO2 nanoparticles (TNPs) are used instead of TNTs to prepare catalyst as a reference. The obtained samples are characterized by physical characterization and electrochemical measurements. The results show that Pt nanoparticles are uniformly deposited on the three-phase interfaces between carbon and TNTs. The Pt/C-TNTs possesses substantially enhanced activity and stability in electrochemical performance. Such remarkable properties are due to the excellent composite carrier of C-TNTs: (1) TNTs has strong corrosion resistance in acidic and oxidative environment and a metal support interaction between Pt and TNTs; (2) Compared to TNPs, TNTs is more suitable for electro-catalytic field on account of its better electronic conductivity; (3) Compared to TNPs, TNTs can improve the anti-poisoning ability of catalyst for methanol oxidation. (4) Amorphous carbon can improve the dispersion of platinum particles; (5) The distribution of carbon improves the poor conductivity of TNTs. These studies indicate that Pt/C-TNTs compound is a promising catalyst for methanol electrooxidation.

  20. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    DOE PAGESBeta

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; Senanayake, S. D.

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects ofmore » studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).« less

  1. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    SciTech Connect

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; Senanayake, S. D.

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects of studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).

  2. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    NASA Astrophysics Data System (ADS)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  3. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    PubMed

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-01

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  4. An evaluation of Pt sulfite acid (PSA) as precursor for supported Pt catalysts

    SciTech Connect

    Regalbuto, J.R.; Ansel, O.; Miller, J.T.

    2010-11-12

    As a catalyst precursor, platinum sulfite acid (PSA) is easy to use and not relatively expensive, and is a potentially attractive precursor for many types of supported catalysts. The ultimate usefulness for many catalyst applications will depend on the extent that Pt can be dispersed and sulfur eliminated. To our knowledge, there exists no detailed characterization in the catalysis literature of PSA and the nanoparticulate Pt phases derived from it during catalyst pretreatment. To this end a series of supports including alumina, silica, magnesia, niobia, titania, magnesia and carbon were contacted with PSA solutions and subsequently analyzed with extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) analysis, and x-ray photoelectron spectroscopy (XPS) to characterize the Pt species formed upon impregnation, calcination, and reduction. While all catalysts show retention of some S, reasonably small particle sizes with relatively little Pt-S can in some instances be produced using PSA. The amount of retained sulfur appears to decrease with decreasing surface acidity, although even the most acidic supports (niobia and silica) display some storage of S even while only Pt-O bands are observed after calcination or reoxidation. More sulfur was eliminated by high temperature calcinations followed by reduction in hydrogen, at the expense of increasing Pt particle size.

  5. N2O decomposition by mesoporous silica supported Rh catalysts.

    PubMed

    Hussain, Murid; Fino, Debora; Russo, Nunzio

    2012-04-15

    Nitrous oxide (N(2)O), a greenhouse gas produced by nitric acid and adipic acid plants, damages the ozone layer and causes many environmental problems. The potential of MCM-41, SBA-15-Conventional (SBA-15-C), SBA-15-Spherical (SBA-15-S) and KIT-6 supported Rh catalysts has been explored at specific conditions for N(2)O decomposition in order to investigate the characteristics of new catalyst supports (SBA-15-S, KIT-6) for this application. A Rh metal loading of 1 wt% was impregnated to synthesize mesoporous silica supported Rh catalysts. The catalysts were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), N(2) adsorption/desorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and CO-chemisorption techniques. Of all the catalysts, Rh/SBA-15-S not only showed the highest activity, but also the best strength against ageing impact, O(2) inhibiting effect and long-term stability. The higher metal dispersion due to the smaller Rh particle size and a greater formation of Rh(+1) than Rh(0) or Rh(+3) on SBA-15-S compared to the other supports, favoured a higher N(2)O decomposition. The larger pore size of SBA-15-S in Rh/SBA-15-S might favour a better Rh access, diffusion and dispersion and lead to higher activity. The higher long-term stability of Rh/SBA-15-S, with preserved support characteristics, than the other supports indicates its significance.

  6. STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS

    EPA Science Inventory

    The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...

  7. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  8. Interaction of carbon and sulfur on metal catalysts: Technical progress report

    SciTech Connect

    McCarty, J.G.; Vajo, J.

    1989-02-17

    At high coverage, sulfur generally deactivates metal catalysts, but at low coverage, chemisorbed sulfur can have a more subtle effect on catalyst activity and selectivity. The general goal of the current project is to examine fundamental aspects of selective poisoning by fractional monolayers of chemisorbed sulfur on a variety of metal catalysts used for commercially important reactions such as hydrocarbon re-forming, light alkane steam re-forming, and hydrocarbon synthesis. Specific objectives of the research program are to experimentally measure as a function of coverage the influence of chemisorbed sulfur on the thermodynamics, reactivity, and structure of surface and bulk carbon occupying both dispersed and well-characterized metal catalyst surfaces. Special methods, such as reversible sulfur chemisorption on supported metals and temperature-programmed reaction (TPR) characterization of catalyst carbon, have been developed that are well suited to examining the interaction of sulfur and carbon on metal surfaces. New analytical instruments with greatly improved sensitivity have been recently developed and applied: a helium discharge ionization detector (DID) is being used with a gas recirculation thermodynamic system, and the surface analysis by laser ionization (SALI) technique is used with surface carbon segregation systems.

  9. Understanding properties of engineered catalyst supports using contact angle measurements and X-ray reflectivity.

    PubMed

    Amama, Placidus B; Islam, Ahmad E; Saber, Sammy M; Huffman, Daniel R; Maruyama, Benji

    2016-02-01

    There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the first time, new correlations between the physicochemical properties of pristine and engineered catalyst substrates and CNT growth behavior have been established. The engineered surfaces obtained after exposure to different degrees of ion beam damage have distinct physicochemical properties (porosity, layer thickness, and acid-base properties). The CAM data were analyzed using the van Oss-Chaudhury-Good model, enabling the determination of the acid-base properties of the substrate surfaces. For the XRR data, a Fourier analysis of the interference patterns enabled extraction of layer thickness, while the atomic density and interfacial roughness were extracted by analyzing the amplitude of the interference oscillations. The dramatic transformation of the substrate from "inactive" to "active" is attributed to a combined effect of substrate porosity or damage depth and Lewis basicity. The results reveal that the efficiency of catalyst substrates can be further improved by increasing the substrate basicity, if the minimum surface porosity is established. This study advances the use of a non-thermochemical approach for catalyst substrate engineering, as well as demonstrates the combined utility of CAM and XRR as a powerful, nondestructive, and reliable tool for rational catalyst design.

  10. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.

    PubMed

    Wang, Fagen; Zhang, Haojie; He, Dannong

    2014-01-01

    The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition. PMID:24600874

  11. Polymer - supported cobalt (II) catalysts for the oxidation of alkenes.

    PubMed

    Błaz, Edyta; Pielichowski, Jan

    2006-01-31

    Polymer-supported heterogeneous catalysts in a form of complexes of 8-hydroxy- quinoline with cobalt acetate were synthesized. Conjugated polymers - polyaniline (PANI), poly-o-toluidine (POT), poly-o-anisidine (POA) - were used as supports. Oxidation reactions of aliphatic and aromatic hydrocarbons were carried out in the presence of molecular oxygen at atmospheric pressure and epoxides or ketones were obtained as the main products with high selectivity.

  12. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    NASA Astrophysics Data System (ADS)

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-09-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.

  13. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    PubMed Central

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-01-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst. PMID:27671143

  14. Study of Supported Particle Catalysts by Electron Microscopy Methods.

    NASA Astrophysics Data System (ADS)

    Yao, Ming-Hui

    1994-01-01

    The imaging conditions for electron microscopy study of supported ultrafine particle catalysts were investigated both theoretically and experimentally. Particles supported on crystalline supports were simulated and compared in high resolution electron microscopy (HREM) plan view and profile view as a function of defocus, voltage, aperture size, and support thickness. Possibilities and techniques for improving particle visibility and resolution by selecting objective lens defocus, Fourier filtering, and profile imaging were discussed. Various microscopy techniques, including HREM, high resolution scanning electron microscopy (HRSEM) and high-angle annular dark field imaging (HAADF) were used in parallel to study supported metal particle catalysts, and relative merits and shortcomings of each method were evaluated. It was pointed out that HREM profile imaging was the most effective technique for direct observation of microstructure, especially the surface structure of supported particles, whereas HRSEM and HAADF, respectively, were preferred for characterizing the surface topology of catalyst supports and the size distribution of supported particles. The HREM profile imaging method was used to study the strong metal-support interaction on various temperature treated Pt/CeO_2, and Pt/TiO _2 samples. Ti oxide monolayer on Pt/TiO _2 was observed, and related to the suppressed hydrogenolysis activity observed after high temperature reduction. No similar surface layer was observed on Pt/CeO_2 after high temperature treatment even though the hydrogenolysis activity was also strongly suppressed. It is proposed that decoration model is the main mechanism responsible for the SMSI for Pt/TiO _2, while morphological change and epitaxial relation is the major cause for the metal-support interaction for Pt/CeO_2. As well as surface structure, surface area was also studied in detail. A procedure for measuring surface area of supported particles by TEM was developed and applied to

  15. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  16. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  17. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal.

    PubMed

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  18. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  19. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production. PMID:27240230

  20. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production.

  1. Carbon nanotube patterning with capillary micromolding of catalyst.

    PubMed

    Lee, Jaewon; Ryu, Choonghan; Lee, Sungwoo; Jung, Donggeun; Kim, Hyoungsub; Chae, Heeyeop

    2007-11-01

    Patterning of multi-walled carbon nanotube (MWNT) in a plasma enhanced chemical vapor deposition (PECVD) chamber has been achieved by catalyst patterning using capillary micromolding process. Iron acetate catalyst nanoparticles were dissolved in ethanol and mold was fabricated with polydimethylsiloxane (PDMS). The ethanol solution containing catalyst nanoparticles was filled into the microchannel formed between PDMS mold and Si-wafer by capillary force. The capillary action of different solvents was simulated by commercial CFD-ACE+ simulation code to determine optimal solvents. Simulated result shows that the choice of solvent was critical in this capillary filling process. After the catalyst patterning, MWNT was grown at 700 approximately 800 degrees C by PECVD process using CH4 and Ar gas in a scale of approximately 10 micro-meters in a tubular inductively coupled plasma reactor. Grown CNTs were analyzed by FE-SEM and Raman Spectroscopy. PMID:18047145

  2. Carbon nanotube patterning with capillary micromolding of catalyst.

    PubMed

    Lee, Jaewon; Ryu, Choonghan; Lee, Sungwoo; Jung, Donggeun; Kim, Hyoungsub; Chae, Heeyeop

    2007-11-01

    Patterning of multi-walled carbon nanotube (MWNT) in a plasma enhanced chemical vapor deposition (PECVD) chamber has been achieved by catalyst patterning using capillary micromolding process. Iron acetate catalyst nanoparticles were dissolved in ethanol and mold was fabricated with polydimethylsiloxane (PDMS). The ethanol solution containing catalyst nanoparticles was filled into the microchannel formed between PDMS mold and Si-wafer by capillary force. The capillary action of different solvents was simulated by commercial CFD-ACE+ simulation code to determine optimal solvents. Simulated result shows that the choice of solvent was critical in this capillary filling process. After the catalyst patterning, MWNT was grown at 700 approximately 800 degrees C by PECVD process using CH4 and Ar gas in a scale of approximately 10 micro-meters in a tubular inductively coupled plasma reactor. Grown CNTs were analyzed by FE-SEM and Raman Spectroscopy.

  3. Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Yu, Xianqin; Huo, Yujia; Yang, Jing; Chang, Sujie; Ma, Yunsheng; Huang, Weixin

    2013-09-01

    Various Au/C catalysts were prepared by Au nanoparticels supported on different carbonaceous supports including reduced graphene oxide (RGO), activated carbon (AC) and graphite (GC) using sol-immobilization method. Au/RGO shows a much higher activity than Au/AC and Au/GC in the liquid phase aerobic oxidation of benzyl alcohol. The superior catalytic performance of Au/RGO may be related to the presence of surface O-containing functional groups and moderate graphite character of RGO supports.

  4. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  5. Supported Copper, Nickel and Copper-Nickel Nanoparticle Catalysts for Low Temperature Water-Gas-Shift Reaction

    NASA Astrophysics Data System (ADS)

    Lin, Jiann-Horng

    Hydrogen is being considered worldwide as a future replacement for gasoline, diesel fuel, natural gas in both the transportation and non-transportation sectors. Hydrogen is a versatile energy carrier that can be produced from a variety of widely available primary energy sources, including coal, natural gas, biomass, solar, wind, and nuclear power. Coal, the most abundant fossil fuel on the planet, is being looked at as the possible future major source of H2, due to the development of the integrated gasification combined cycle (IGCC) and integrated gasification fuel cell technologies (IGFC). The gasification of coal produces syngas consisting of predominately carbon monoxide and hydrogen with some remaining hydrocarbons, carbon dioxide and water. Then, the water-gas shift reaction is used to convert CO to CO2 and additional hydrogen. The present work describes the synthesis of model Cu, Ni and Cu-Ni catalysts prepared from metal colloids, and compares their behavior in the WGS reaction to that of traditional impregnation catalysts. Initially, we systematically explored the performance of traditional Cu, Ni and Cu-Ni WGS catalysts made by impregnation methods. Various bimetallic Cu-Ni catalysts were prepared by supported impregnation and compared to monometallic Cu and Ni catalysts. The presence of Cu in bimetallic catalysts suppressed undesirable methanation side reaction, while the Ni component was important for high WGS activity. Colloidal Cu, Ni and Cu-Ni alloy nanoparticles obtained by chemical reduction were deposited onto alumina to prepare supported catalysts. The resulting Cu and Ni nanoparticle catalysts were found to be 2.5 times more active in the WGS reaction per unit mass of active metal as compared to catalysts prepared by the conventional impregnation technique. The powder XRD and HAADF-STEM provided evidence supporting the formation of Cu-Ni particles containing the Cu core and Cu-Ni alloy shell. The XPS data indicated surface segregation of Cu in

  6. Hydrogenation of aniline on a low-percentage, supported rhodium catalyst

    SciTech Connect

    Ualikhanova, A.; Temirbulatova, A.E.

    1992-01-10

    The products of hydrogenation of aniline and their derivatives exhibit biological activity and are used in the pharmaceutical industry for preparation of analgesic, antipyretic, and sulfanilamide drugs. Up to 30% of the total consumption of aniline is for synthesis of drugs. Hydrogenation of aniline on platinum metals supported on carbon was studied by Rylander et al. The authors investigated the catalytic properties of rhodium supported on oxides in saturation of aniline with hydrogen in water. In most cases, the amount of noble metal in the supported catalyst was 5%. Decreasing the concentration of active phase in the catalyst is economically advantageous. The features of hydrogenation of aniline in the presence of 1% Rh/MgO in solutions with wide variation of the technological parameters of the process were investigated in the present study. 19 refs., 3 figs., 2 tabs.

  7. Alumoxane precursors to designer catalysts and catalyst supports: Catalytic oxidation of dichloromethane

    SciTech Connect

    Cook, R.L.; Wong, C.; Harlan, C.J.; Kareiva, A.; Barron, A.R.

    1997-12-31

    Carboxylato-alumoxanes are aluminum-oxygen macromolecules consisting of a boehmite-like core surrounded by a sheath of carboxylate groups. The alumoxanes may be processed like organic polymers yet when fired are readily transformed into ceramic oxides. The alumoxanes can be precisely doped at room temperature in aqueous solution with a range of metal cations to prepare novel catalyst and catalyst support materials. The ease of introduction of multiple cations into the alumina lattice via the alumoxane approach provides a method for fine-tuning catalyst support properties and the fabrication of new catalyst materials themselves. Manganese-doped alumina (Mn-Al{sub 2}O{sub 3}), formed via the doping of an alumoxane with Mn at room temperature, is presented as an example where the alumoxane route provides enhanced catalytic performance over traditional approaches for the low temperature catalytic oxidation of chlorinated hydrocarbons (CHCs). The Mn-Al{sub 2}O{sub 3} formed from the Mn-doped alumoxane is compared with MnO{sub 2}/Al{sub 2}O{sub 3} prepared by the incipient wetness method, and commercial Pt/Al{sub 2}O{sub 3} for the oxidation/destruction of dichloromethane (CH{sub 2}Cl{sub 2}).

  8. Resonance Raman Spectroscopy of 0-A12O3- Supported Vanadium Oxide Catalysts for Butane Dehydrogenation

    SciTech Connect

    Wu, Zili; Kim, Hack-Sung; Stair, Peter

    2008-01-01

    This chapter contains sections titled: Introduction; Structure of Al{sub 2}O{sub 3}-Supported Vanadia Catalysts; Quantification of Surface VOx Species on Supported Vanadia Catalysts; Conclusion; Acknowledgements; and References.

  9. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation.

    PubMed

    Chizari, Kambiz; Deneuve, Adrien; Ersen, Ovidiu; Florea, Ileana; Liu, Yu; Edouard, David; Janowska, Izabela; Begin, Dominique; Pham-Huu, Cuong

    2012-01-01

    Catalytic reactions are generally carried out on supported metals or oxides, which act as an active phase and require impregnation and thermal treatment steps. During tests, the metal or oxide nanoparticles could be further sintered, which would induces deactivation. Direct incorporation of the active phase into the matrix of a support could be an elegant alternative to prevent catalyst deactivation. Here, we report that nitrogen-doped carbon nanotubes (N-CNTs) can be efficiently employed as a metal-free catalyst for oxidative reactions that allow the selective transformation of the harmful, gaseous H(2)S into solid sulfur. The catalyst exhibits a high stability during the test at high space velocity. The macroscopic shaping of the catalyst on the silicon carbide foam also increases its catalytic activity by improving the contact between the reactants and the catalyst. Such macroscopic shaping allows the avoidance of problems linked with transport and handling of nanoscopic materials and also reduces the pressure drop across the catalyst bed to a large extent.

  10. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  11. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Goldberg, Robert I.

    1987-01-01

    A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n+1).gtoreq.x.gtoreq.O and for olefinic hydrocarbons: 2n.gtoreq.x.gtoreq.O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  12. Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

    SciTech Connect

    Bhatia, S.

    1993-12-07

    The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.

  13. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

  14. Improving the durability of methanol oxidation reaction electro-catalysts through the modification of carbon architectures

    NASA Astrophysics Data System (ADS)

    Wood, Kevin N.

    Carbon materials represent one of the largest areas of studied research today, having integrated applications stretching from energy production and storage to medical use and far beyond. One of these many intriguing applications is fuel cells, which offers the promise of clean electricity through a direct electrochemical energy conversion process. Unfortunately, at the present time the cost per watt-hour produced by fuel cells is more expensive than conventional methods of energy production/storage (i.e. combustion engines, batteries, etc.). Under the umbrella of fuel cell systems, methanol is a promising fuel source because of its high energy density and convenience of direct liquid fuel operation. In this field, recent advancements are bringing direct methanol fuel cells (DMFCs) closer to commercial viability. However, just as in other fuel cell systems, further improvements are greatly needed, particularly in the area of catalyst durability. This need for improved durability has led to increased research activity focused on improving catalyst stability and utilization. This thesis explores one of the most promising areas of enhancing catalyst-support interactions; namely, modification of carbon support architectures. Through the use of heteroatom modifiers, such as nitrogen, fuel cell support systems can be enhanced in such a way as to improve metal nucleation and growth, catalyst durability and catalytic activity. To this end, this thesis employs advanced characterization techniques to study the changes in catalyst particle morphology before and after nitrogen modification of the support structure. These results clearly show the beneficial effects of nitrogen moieties on carbon structures and help elucidate the effects of nitrogen on the stability of supported catalytic nanoparticles systems. Similarly, the novel concept of post-modifying commercially available supported catalysts with nitrogen ion implantation gives further insight into the behavior of

  15. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    PubMed

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the

  16. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  17. Synthesis of amorphous carbon nanofibers using iron nanoparticles as catalysts

    NASA Astrophysics Data System (ADS)

    Ali, Mokhtar; Ramana, G. Venkata; Padya, Balaji; Srikanth, V. V. S. S.; Jain, P. K.

    2013-06-01

    Amongst various carbon nanomaterials, carbon nanofibers (CNFs) have lately attracted considerable interest as a promising reinforcement in polymer matrix composites. CNFs are often synthesized using copper nanoparticles as catalysts and by using chemical vapor deposition (CVD). In this work iron (Fe) nanoparticles are used as catalysts to synthesize amorphous carbon nanofibers. This owes significance since Fe nanoparticles often lead to tubes rather than fibers. Fe nanoparticles (size ˜30-60nm) are prepared by first mixing an appropriate quantity of potassium sodium tartrate tetrahydrate salt with iron (II) chloride dehydrate to obtain iron tartrate and then dried and heated in vacuum oven at about 250°C to remove tartrate. In a subsequent step, CNFs are obtained by using CVD. Acetylene was used as the carbon source in the CVD process. Scanning and transmission electron microscopy show the formation of nanofibers whose diameter is dependent on the size of Fe catalysts. Raman scattering from the fibers show that they are made up of carbon and are amorphous.

  18. Identification of surface states on finely divided supported palladium catalysts by means of inelastic incoherent neutron scattering.

    PubMed

    Albers, Peter W; Krauter, Jürgen G E; Ross, D K; Heidenreich, Roland G; Köhler, Klaus; Parker, Stewart F

    2004-09-14

    The purpose of the present investigation was to utilize the inelastic incoherent neutron scattering (INS) technique to reveal changes at the surface of technical catalysts under the influence of hydrogen in gas/solid interactions and during chemical reactions in a liquid-phase process. The formation and the properties of supported palladium hydride and changes of the hydrogen-related surface chemistry of the corresponding activated carbon supports in 20% Pd/C catalysts after short-term and long-term hydrogen cycling at different hydrogen pressures and temperatures were studied. The spectra indicate that hydrogenation of the activated carbon support by hydrogen spillover occurs to, partly, give a material that strongly resembles a-C:H (amorphous hydrogenated carbon). Indications for different relaxation phenomena and long-range phase coherence inside of supported particles of palladium hydride compared to hydrogenated palladium black were obtained. A 5% Pd/C catalyst after use in C-C coupling reactions, the Heck reaction of bromobenzene and styrene to stilbenes, was also studied after subsequent solvent extraction. Evidence for a preferential adsorption and accumulation of cis-stilbene at the catalyst surface was obtained. INS allows identification of a certain isomer from a complex reaction mixture preferentially adsorbed at the surface of a finely divided industrial heterogeneous catalyst.

  19. The oxidation of carbon monoxide using tin oxide based catalysts

    NASA Technical Reports Server (NTRS)

    Sampson, Christopher F.; Jorgensen, Norman

    1990-01-01

    The preparation conditions for precious metal/tin oxide catalysts were optimized for maximum carbon monoxide/oxygen recombination efficiency. This was achieved by controlling the tin digestion, the peptization to form the sol, the calcination process and the method of adding the precious metals. Extensive studies of the tin oxide structure were carried out over the temperature range 20 to 500 C in air or hydrogen environments using Raman scattering and X ray diffraction. Adsorbed species on tin oxide, generated in an environment containing carbon monoxide, gave rise to a Raman band at about 1600 cm(exp -1) which was assigned to carbonaceous groups, possible carbonate.

  20. A novel catalyst support for DMFC: Onion-like fullerenes

    NASA Astrophysics Data System (ADS)

    Xu, Bingshe; Yang, Xiaowei; Wang, Xiaomin; Guo, Junjie; Liu, Xuguang

    Onion-like fullerenes (OLFs) were employed as the support for Pt in direct methanol fuel cells (DMFCs). A Pt/OLFs catalyst was synthesized by an impregnation-reduction method. Its structure and morphology were characterized by XRD, HRTEM and XPS. The Pt nanoparticles uniformly dispersed on OLFs had an average diameter of 3.05 nm, compared to 4.10 nm in Pt/Vulcan XC-72 prepared by the same method. XPS analysis revealed that Pt/OLF contained mostly Pt(0), with traces of Pt(II) and Pt(IV). Cyclic voltammetry showed that the real surface area of the Pt/OLFs was larger than Pt/XC-72 and the electrocatalytic activity of the Pt/OLFs catalyst, from the peak current value at around 0.78 V, outperformed the Pt/Vulcan XC-72 by about 20% in the electrooxidation of methanol.

  1. Iron-based dehydrogenation catalysts supported on zirconia. I. Preparation and characterization

    SciTech Connect

    Boot, L.A.; Dillen, A.J. van; Geus, J.W.

    1996-09-15

    Zirconia-supported iron oxide catalysts were prepared by incipient wetness impregnation, followed by drying and calcination in air. Characterization of the catalysts were performed with electron microscopy combined with element analysis (HR-TEM/EDAX), X-ray diffraction (XRD), temperature-programmed reduction (TPR), and thermomagnetic analysis. A homogeneous distribution of the iron containing phase can be obtained by using the metal complexes ammonium iron (III) citrate or ammonium (III) iron EDTA. A simple salt, such as iron nitrate, proved to be less suitable for this purpose. By HR-TEM/EDAX, it was shown that coverage of the zirconia support had been accomplished. XRL showed that crystalline Fe{sub 2}O{sub 3} particles were formed at loadings {ge} 3 wt% Fe. TPR studies point to a bi-modal particle size distribution for the catalysts with 3 wt% Fe. Above this loading (>3 wt%) bulk properties prevail in TPR, whereas at lower loadings (<3 wt%) no distinct iron oxide species could be indicated. Magnetization measurements confirmed the results obtained by TPR. Catalysts prepared by coimpregnation of iron and potassium were also studied. TEM and XRD results show that a well-dispersed phase is obtained, but from XRD only potassium carbonate and no iron oxide or ferrite is evident. It was also found that the presence of potassium increases the onset of reduction of the iron phase by about 100{degrees}C. 25 refs., 11 figs., 2 tabs.

  2. Effect of Pt and Fe catalysts in the transformation of carbon black into carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Asokan, Vijayshankar; Myrseth, Velaug; Kosinski, Pawel

    2015-06-01

    In this research carbon nanotubes and carbon nano onion-like structures were synthesized from carbon black using metal catalysts at 400 °C and 700 °C. Platinum and iron-group metals were used as catalysts for the transformation of CB into graphitized nanocarbon and the effect of both metals was compared. The synthesized products were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM) and Raman spectroscopy. The characterization shows that this process is very efficient in the synthesis of high quality graphitized products from amorphous carbon black, even though the process temperature was relatively low in comparison with previous studies. Distinguished graphitic walls of the newly formed carbon nanostructures were clearly visible in the HRTEM images. Possible growth difference related to the type of catalyst used is briefly explained with the basis of electron vacancies in d-orbitals of metals.

  3. Selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts

    SciTech Connect

    Duca, D; Liotta, L.F.; Deganello, G.

    1995-06-01

    The liquid phase, selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts has been studied for a large range of metallic dispersions (14% {le} D{sub x} {le} 62%). The kinetics were analyzed by a five-parameter mathematical model. The mechanism was determined by the contribution of three basic routes involving only surface species in the rate-determining steps. The hydrogenation of phenylacetylene to styrene is {open_quotes}structure insensitive{close_quotes}. The disappearance rate constant of styrene produced from phenylacetylene is slightly lower than that of phenylacetylene and does not change in the case of the direct hydrogenation of styrene on the same Pd/pumice catalyst. However, Q{sub 3} (the ratio of adsorption constants K{sub Eb}/K{sub St}, where Eb is ethylbenzene and St is styrene), which is typical of a zero-order reaction (Q{sub 3}{r_arrow}0) in the case of the direct hydrogenation, is practically constant (Q{sub 3}{approx_equal}2) in the case of dehydrogenation of styrene produced from phenylacetylene. This is explained by the formation, in the latter case, of polymeric species or other species which are difficult to hydrogenate and by the consequent occupation of active sites so that the adsorption of styrene is inhibited. These species are also thought to be responsible for a flattening effect in the catalytic activity. Activity and selectivity data are critically analyzed and compared with those reported for other supported palladium catalysts. Since Pd/pumice catalysts also show high activity and selectivity at high metal dispersions, they could be of interest for industrial applications. 48 refs., 9 figs., 3 tabs.

  4. Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure

    NASA Astrophysics Data System (ADS)

    Benito, M.; Padilla, R.; Rodríguez, L.; Sanz, J. L.; Daza, L.

    Three new catalysts have been prepared in order to study the active phase influence in ethanol steam reforming reaction. Nickel, cobalt and copper were the active phases selected and were supported on zirconia with monoclinic and tetragonal structure, respectively. To characterize the behaviour of the catalysts in reaction conditions a study of catalytic activity with temperature was performed. The highest activity values were obtained at 973 K where nickel and cobalt based catalysts achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. Nickel supported on tetragonal zirconia exhibited the highest hydrogen production efficiency, higher than 4.5 mol H 2/mol EtOH fed. The influence of steam/carbon (S/C) ratio on product distribution was another parameter studied between the range 3.2-6.5. Nickel supported on tetragonal zirconia at S/C = 3.2 operated at 973 K without by-product production such as ethylene or acetaldehyde. In order to consider a further application in an ethanol processor, a long-term reaction experiment was performed at 973 K, S/C = 3.2 and atmospheric pressure. After 60 h, nickel supported on tetragonal zirconia exhibited high stability and selectivity to hydrogen production.

  5. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Qiannan; Wang, Likai; Tang, Zhenghua; Wang, Fucai; Yan, Wei; Yang, Hongyu; Zhou, Weijia; Li, Ligui; Kang, Xiongwu; Chen, Shaowei

    2016-03-01

    Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets.Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as

  6. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  7. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  8. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    SciTech Connect

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  9. Understanding properties of engineered catalyst supports using contact angle measurements and X-Ray reflectivity

    NASA Astrophysics Data System (ADS)

    Amama, Placidus B.; Islam, Ahmad E.; Saber, Sammy M.; Huffman, Daniel R.; Maruyama, Benji

    2016-01-01

    There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the first time, new correlations between the physicochemical properties of pristine and engineered catalyst substrates and CNT growth behavior have been established. The engineered surfaces obtained after exposure to different degrees of ion beam damage have distinct physicochemical properties (porosity, layer thickness, and acid-base properties). The CAM data were analyzed using the van Oss-Chaudhury-Good model, enabling the determination of the acid-base properties of the substrate surfaces. For the XRR data, a Fourier analysis of the interference patterns enabled extraction of layer thickness, while the atomic density and interfacial roughness were extracted by analyzing the amplitude of the interference oscillations. The dramatic transformation of the substrate from ``inactive'' to ``active'' is attributed to a combined effect of substrate porosity or damage depth and Lewis basicity. The results reveal that the efficiency of catalyst substrates can be further improved by increasing the substrate basicity, if the minimum surface porosity is established. This study advances the use of a non-thermochemical approach for catalyst substrate engineering, as well as demonstrates the combined utility of CAM and XRR as a powerful, nondestructive, and reliable tool for rational catalyst design.There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the

  10. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    SciTech Connect

    Keith James Stanger

    2003-05-31

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-{alpha}-acetamidocinnamate (MAC), has the illustrated structure as established by {sup 31}P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]{sub 4}, [Rh(COD){sub 2}]{sup +}BF{sub 4}{sup -}, [Rh(COD)Cl]{sub 2}, and RhCl{sub 3} {center_dot} 3H{sub 2}O, adsorbed on SiO{sub 2} are optimally activated for toluene hydrogenation by pretreatment with H{sub 2} at 200 C. The same complexes on Pd-SiO{sub 2} are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH{sub 2}){sub 3}s-]Re(O)(Me)(PPh{sub 3}) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  11. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti; Gleize, Jérôme; Lamura, Gianrico; Hérold, Claire; Vigolo, Brigitte

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel-yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni2+ ions, belonging to NiCl2 formed during the Cl-based purification process. In particular, NiCl2 compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature.

  12. Novel aluminosilicate hollow sphere as a catalyst support for methane decomposition to COx-free hydrogen production

    NASA Astrophysics Data System (ADS)

    Awadallah, A. E.; Ahmed, W.; El-Din, M. R. Noor; Aboul-Enein, A. A.

    2013-12-01

    Novel Ni and Co supported on aluminosilicate hollow sphere catalysts were investigated to decompose methane into CO and CO2 free hydrogen and carbon nanotube. The hollow sphere structure was prepared by reverse microemulsion method and then Ni and Co were loaded by the impregnation method. The fresh catalysts and deposited carbon were characterized by several microscopic and spectroscopic techniques. The catalytic results showed that the Co based catalyst exhibited higher activity and durability at longer reaction time, due to the higher number and distribution of metal sites. The hollow sphere structure of the support could protect the metal particles against aggregation during the catalytic reactions. Accordingly, higher metal dispersion, stabilization and catalytic performance were achieved. The formation of nickel silicate is the main reason for the lower decomposition activity of Ni based catalyst at longer reaction time. TEM and Raman spectroscopic data revealed that the Co-based catalyst produced a relatively uniform diameter of MWCNTs with higher crystallinity and graphitization degree compared to the Ni-based catalyst.

  13. Infrared investigations on metal-support interactions in Ni-SiO{sub 2} catalyst precursors: Role of silica

    SciTech Connect

    Ghuge, K.D.; Babu, G.P.

    1995-02-01

    In a Ni-silica catalyst system prepared by the precipitation/deposition method the silica is reported to play a role in forming the {open_quotes}support{close_quotes} to nickel carbonate (or hydroxide) species. The support formed is identified as various types of nickel silicate species and also as the species comprising -Ni-O-Si- linkages. Further, the support is shown to (i) provide the definite porous structure to the catalyst and (ii) influence the reducibility of nickel species. Also, in nickel catalyst system prepared by impregnation method, formation of silicate species on surface and its influence on reduction of nickel and restriction in metal sintering is well established. However, the mechanism of silica conversion to support species and influence on metal dispersion, the formation of a definite porous network and catalytic activity in Ni-silica catalyst system prepared by precipitation is not well established. In this paper Ni-silica catalyst precursors were prepared by adding separate solutions of nickel sulfate and sodium carbonate simultaneously to the precipitation vessel containing a silica slurry as described by Nitta et al. and maintaining a SiO{sub 2}/Ni ratio of 0.5, precipitation temperature = 92{degrees}C, and pH = 8.5. 15 refs., 1 fig., 1 tab.

  14. Single atom catalysts on amorphous supports: A quenched disorder perspective

    SciTech Connect

    Peters, Baron; Scott, Susannah L.

    2015-03-14

    Phenomenological models that invoke catalyst sites with different adsorption constants and rate constants are well-established, but computational and experimental methods are just beginning to provide atomically resolved details about amorphous surfaces and their active sites. This letter develops a statistical transformation from the quenched disorder distribution of site structures to the distribution of activation energies for sites on amorphous supports. We show that the overall kinetics are highly sensitive to the precise nature of the low energy tail in the activation energy distribution. Our analysis motivates further development of systematic methods to identify and understand the most reactive members of the active site distribution.

  15. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  16. Evaluating the potential of CNT-supported Co catalyst used for gas pollution removal in the incineration flue gas.

    PubMed

    Lu, Chi-Yuan; Tseng, Hui-Hsin; Wey, Ming-Yen; Chuang, Kui-Hao; Kuo, Jia-Hong

    2009-04-01

    This study investigated the use of Cu/Al(2)O(3), Co/Al(2)O(3), Fe/Al(2)O(3), and Ni/Al(2)O(3) catalysts for the growth of carbon nanotubes (CNTs). These CNTs were used as support for Co catalyst preparation and Co/CNT catalysts were applied to a catalytic reaction to remove BTEX, PAHs, SO(2), NO, and CO simultaneously in a pilot-scale incineration system. The analyzed results of EDS and XRD showed low metal content and good dispersion characteristics of the Al(2)O(3)-supported catalysts by excess-solution impregnation. FESEM analyzed results showed that the CNTs that were synthesized from Co, Fe, and Ni catalysts had a diameter of 20nm, whereas those synthesized from Cu/Al(2)O(3) had a diameter of 50nm. Pilot-scale test results demonstrated that the Co/CNT catalyst effectively removed air pollutants in the catalytic reaction and that there was no obvious deactivation by Pb, water vapor, and coke deposited in the process. The thermal stabilization at 250 degrees C and hydrophobicity properties of CNTs enhanced the application of CNT catalysts in flue gas.

  17. Robust bifunctional aluminium–salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides

    PubMed Central

    Rulev, Yuri A; Gugkaeva, Zalina; Maleev, Victor I

    2015-01-01

    Summary Two new one-component aluminium-based catalysts for the reaction between epoxides and carbon dioxide have been prepared. The catalysts are composed of aluminium–salen chloride complexes with trialkylammonium groups directly attached to the aromatic rings of the salen ligand. With terminal epoxides, the catalysts induced the formation of cyclic carbonates under mild reaction conditions (25–35 °C; 1–10 bar carbon dioxide pressure). However, with cyclohexene oxide under the same reaction conditions, the same catalysts induced the formation of polycarbonate. The catalysts could be recovered from the reaction mixture and reused. PMID:26664580

  18. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  19. The role of carbon overlayers on Pt-based catalysts for H2-cleanup by CO-PROX

    NASA Astrophysics Data System (ADS)

    Romero-Sarria, F.; Garcia-Dali, S.; Palma, S.; Jimenez-Barrera, E. M.; Oliviero, L.; Bazin, P.; Odriozola, J. A.

    2016-06-01

    In this work, we analyze the effect of the activation method on the catalytic activity of Pt-based catalysts supported on alumina in the PROX reaction. For this, model Pt/Al2O3 catalysts with variable amounts of acetic acid were prepared and their thermal evolution studied by FTIR spectroscopy. From the analysis of the nature of the platinum surface upon acetic acid decomposition and the gas phase evolved products, we have demonstrated the formation of partially hydrogenated carbon overlayers that tailor the activity of Pt-based catalysts in the PROX reaction.

  20. A high performance Ru-ZrO2/carbon nanotubes-Ni foam composite catalyst for selective CO methanation

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Dong, Xinfa; Song, Yibing; Dong, Yingchao

    2013-11-01

    A novel Ru-ZrO2/carbon nanotubes (CNTs)-Ni foam composite catalyst for selective CO methanation is prepared by using CNTs-Ni foam as support. This catalyst exhibits an improved performance of CO selectivity and excellent catalytic stability, which may be attributed to the high thermal conductivity and unique microstructure of the Ru-based CNTs-Ni foam composite. The SEM and XRD measurements reveal that amorphous Ru-ZrO2 particles with fine size (<20 nm) are well dispersed on the CNTs surface of the composite catalyst reduced at 350 °C, possibly leading to its high catalytic activity.

  1. Graphyne-supported single Fe atom catalysts for CO oxidation.

    PubMed

    Wu, Ping; Du, Pan; Zhang, Hui; Cai, Chenxin

    2015-01-14

    Single atom catalysts (SACs) are highly desirable for the effort to maximize the efficiency of metal atom use. However, the synthesis of SACs is a major challenge that largely depends on finding an appropriate supporting substrate to achieve a well-defined and highly dispersed single atom. This work demonstrates that, based on the density functional theory (DFT) calculation, graphyne is a good substrate for single Fe atom catalysts. The Fe atom can be tightly embedded in a graphyne sheet with a high binding energy of ∼4.99 eV and a high diffusion energy barrier of ∼1.0 eV. The graphyne-supported Fe (Fe-graphyne) SAC shows high catalytic activity towards CO oxidation, which is often regarded as a prototype reaction for designing atomic-scale catalysts. We studied the adsorption characteristics of CO and O2 on Fe-graphyne SACs, and simulated the reaction mechanism of CO oxidation involving Fe-graphyne. The simulation results indicate that O2 binding on Fe-graphyne is much stronger than that of CO, and the adsorbed O2 prior to occupy the Fe atoms as the co-existence of O2 and CO. The reaction of CO oxidation by adsorbed O2 on Fe-graphyne SACs favors to proceed via the Eley-Rideal (ER) mechanism with the energy barrier of as low as ∼0.21 eV in the rate-limiting step. Calculation of the electronic density of states (DOS) of each reaction step demonstrates that the strong interaction of the O2 and Fe adatom promotes the CO oxidation on Fe-graphyne SACs. The results presented here suggest that graphyne could provide a unique platform to synthesize SACs, and the Fe-graphyne SACs could find potential use in solving the growing environmental problems caused by CO emission from automobiles and industrial processes, in removing CO contamination from vehicle exhaust and in fuel cells.

  2. Supported iron nanoparticles as catalysts for sustainable production of lower olefins.

    PubMed

    Torres Galvis, Hirsa M; Bitter, Johannes H; Khare, Chaitanya B; Ruitenbeek, Matthijs; Dugulan, A Iulian; de Jong, Krijn P

    2012-02-17

    Lower olefins are key building blocks for the manufacture of plastics, cosmetics, and drugs. Traditionally, olefins with two to four carbons are produced by steam cracking of crude oil-derived naphtha, but there is a pressing need for alternative feedstocks and processes in view of supply limitations and of environmental issues. Although the Fischer-Tropsch synthesis has long offered a means to convert coal, biomass, and natural gas into hydrocarbon derivatives through the intermediacy of synthesis gas (a mixture of molecular hydrogen and carbon monoxide), selectivity toward lower olefins tends to be low. We report on the conversion of synthesis gas to C(2) through C(4) olefins with selectivity up to 60 weight percent, using catalysts that constitute iron nanoparticles (promoted by sulfur plus sodium) homogeneously dispersed on weakly interactive α-alumina or carbon nanofiber supports. PMID:22344440

  3. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P. )

    1988-09-01

    The pore structures of two types of catalyst support material were studied: {gamma}-alumina and silica aerogel. The alumina samples were commercial catalyst supports made in 1/8 inch diameter pellet form by Harshaw Chemical. Aerogels were prepared by forming a gel in a two-step, base-catalyzed process using TEOS, followed by supercritical drying to form the aerogel. Two different aerogels were made, one undergoing the drying process immediately after gel formation (non-aged), and the other being aged in the gel state for two weeks in a basic solution of 0.1 molar NH{sub 4}OH at 323 K before being supercritically dried (aged). The aging process is believed to alter the aerogel pore structure. The pore size distribution of the alumina material was determined via NMR and compared to results obtained by mercury intrusion and nitrogen adsorption/condensation techniques. The pore size distributions of the two aerogel samples were measured via NMR and nitrogen adsorption/condensation; the material was too compressible for porosimetry.

  4. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C.

    2015-06-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells.

  5. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    SciTech Connect

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  6. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles

  7. Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst.

    PubMed

    Dora, Sambha; Bhaskar, Thallada; Singh, Rawel; Naik, Desavath Viswanatha; Adhikari, Dilip Kumar

    2012-09-01

    An amorphous carbon based catalyst was prepared by sulfonation of the bio-char obtained from fast pyrolysis (N(2) atm; ≈ 550°C) of biomass. The sulfonated carbon catalyst contained high acidity of 6.28 mmol/g as determined by temperature programmed desorption of ammonia of sulfonated carbon catalyst and exhibited high catalytic performance for the hydrolysis of cellulose. Amorphous carbon based catalyst containing -SO(3)H groups was successfully tested and the complete conversion of cellulose in methanol at moderate temperatures with high yields ca. ≥ 90% of α, β-methyl glucosides in short reaction times was achieved. The methyl glucosides formed in methanol are more stable for further conversion than the products formed in water. The carbon catalyst was demonstrated to be stable for five cycles with slight loss in catalytic activity. The utilization of bio-char as a sulfonated carbon catalyst provides a green and efficient process for cellulose conversion. PMID:22776237

  8. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets.

    PubMed

    Wang, Qiannan; Wang, Likai; Tang, Zhenghua; Wang, Fucai; Yan, Wei; Yang, Hongyu; Zhou, Weijia; Li, Ligui; Kang, Xiongwu; Chen, Shaowei

    2016-03-28

    Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets. PMID:26940367

  9. Starch saccharification by carbon-based solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Hara, Michikazu

    2010-06-01

    The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO 3H, COOH and OH groups, was investigated at 353-393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8-1.0 mL; starch, 0.3-0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.

  10. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu

    Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.

  11. The structure and activity of titania supported cobalt catalysts

    SciTech Connect

    Ho Suiwen; Houalla, M.; Hercules, D.M. ); Cruz, J.M. )

    1992-05-01

    A series of titania supported cobalt catalysts (0.5-6%) were prepared by incipient wetness impregnation, and were characterized by ESCA, XRD, and hydrogen chemisorption. After calcination at 400 C, a surface CoTiO[sub 3]-like phase was the main species present in the 0.5 and 1% cobalt catalysts. For higher cobalt loadings, discrete Co[sub 3]O[sub 4] particles were formed in addition to surface CoTiO[sub 3]. ESCA indicates that after reduction the cobalt metal particle size (6-13 nm) increases with increasing cobalt loadings, but does not vary with reduction temperature (400-500 C). Hydrogen chemisorption was found to be activated and suppressed. The extent of hydrogen chemisorption suppression increases with increasing reduction temperature and decreasing cobalt particle size. The turnover frequency (based on cobalt dispersion derived from ESCA) for benzene and CO hydrogenation decreases with increasing reduction temperature and decreasing cobalt particle size. The decline in activity correlates with the extent of suppression of H[sub 2] chemisorption. The results were interpreted in terms of a decrease in the fraction of exposed surface cobalt due to site blocking by reduced TiO[sub 3] moieties.

  12. Pristine and supported ZnO-based catalysts for phenazopyridine degradation with direct solar light

    NASA Astrophysics Data System (ADS)

    Hilal, Hikmat S.; Al-Nour, Ghazi Y. M.; Zyoud, Ahed; Helal, Muath H.; Saadeddin, Iyad

    2010-04-01

    In search for safe techniques to manage waste pharmaceutical compounds drained in water, solar-driven degradation of phenazopyridine (a model drug) was investigated in aqueous media using different ZnO-based catalyst systems. Naked ZnO, CdS-sensitized ZnO (ZnO/CdS) and activated carbon-supported ZnO (AC/ZnO) have been studied. Both naked ZnO and AC/ZnO were highly efficient in mineralizing phenazopyridine, reaching complete removal in ˜50 min, with AC/ZnO having the higher edge. The ZnO/CdS system showed lower efficiency, due to screening of light by CdS. Moreover, the tendency of CdS to leach out Cd 2+ ions discouraged the use of CdS as sensitizer in this work. In both ZnO and AC/ZnO systems, the photo-degradation reaction was induced by the UV tail of the solar light. The visible region, with wavelength longer than 400 nm, failed to induce photo-degradation. The reaction was faster with higher catalyst loading, until a maximum efficiency was reached at a certain concentration. The rate of reaction increased with higher drug concentrations up to a certain limit. The effect of pH value was studied, and the catalysts showed highest efficiencies at pH close to 7. Stability of ZnO to degradation was studied. Both catalyst systems showed lowered efficiencies on recovery and reuse. The results suggest that complete mineralization of waste drugs, commonly dumped in sewage water, with direct solar light is a potentially feasible strategy using the AC/ZnO catalyst.

  13. HYDRODEHALOGENATION OF 1- TO 3-CARBON HALOGENATED ORGANIC COMPOUNDS IN WATER USING A PALLADIUM CATALYST AND HYDROGEN GAS. (R825421)

    EPA Science Inventory

    Supported palladium (Pd) metal catalysts along with H2 gas show
    significant potential as a technology which can provide rapid, on-site
    destruction of halogenated groundwater contaminants. Pd catalyzes the rapid
    hydrodehalogenation of nine 1- to 3-carbon ...

  14. Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst.

    PubMed

    Duan, Feng; Yang, Yuezhu; Li, Yuping; Cao, Hongbin; Wang, Yi; Zhang, Yi

    2014-05-01

    Ordered mesoporous carbon supported iron catalysts (Fe/OMC) were prepared by the incipient wetness impregnation method and investigated in Fenton-like degradation of 4-chlorophenol (4CP) in this work. XRD and TEM characterization showed that the iron oxides were well dispersed on the OMC support and grew bigger with the increasing calcination temperature. The catalyst prepared with a lower calcination temperature showed higher decomposition efficiency towards 4CP and H2O2, but more metals were leached. The effect of different operational parameters such as initial pH, H2O2 dosage, and reaction temperature on the catalytic activity was evaluated. The results showed that 96.1% of 4CP and 47.4% of TOC was removed after 270 min at 30°C, initial pH of 3 and 6.6 mmol/L H2O2. 88% of 4CP removal efficiency was retained after three successive runs, indicating Fe/OMC a stable catalyst for Fenton reaction. 4CP was degraded predominately by the attack of hydroxyl radical formed on the catalyst surface and in the bulk solution due to iron leaching. Based on the degradation intermediates detected by high performance liquid chromatography, possible oxidation pathways were proposed during the 4CP degradation. PMID:25079648

  15. Evaluation of microporous carbon filters as catalysts for ozone decomposition

    SciTech Connect

    Whinnery, L.; Coutts, D.; Shen, C.; Adams, R.; Quintana, C.; Showalter, S.

    1994-12-31

    Ozone is produced in small quantities in photocopiers and laser printers in the workplace and large quantities in industrial waste water treatment facilities. Carbon filters are commonly used to decompose this unwanted ozone. The three most important factors in producing a filter for this purpose are flow properties, efficiency, and cost. Most ozone decomposition applications require very low back-pressure at modest flow rates. The tradeoff between the number of pores and the size of the pores will be discussed. Typical unfiltered emissions in the workplace are approximately 1 ppm. The maximum permissible exposure limit, PEL, for worker exposure to ozone is 0.1 ppm over 8 hours. Several methods have been examined to increase the efficiency of ozone decomposition. Carbon surfaces were modified with catalysts, the surface activated, and the surface area was increased, in attempts to decompose ozone more effectively. Methods to reduce both the processing and raw material costs were investigated. Several sources of microporous carbon were investigated as ozone decomposition catalysts. Cheaper processing routes including macropore templating, faster drying and extracting methods were also studied.

  16. Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction.

    PubMed

    Oh, Seokjoon; Gallagher, James R; Miller, Jeffrey T; Surendranath, Yogesh

    2016-02-17

    Condensation of fac-Re(5,6-diamino-1,10-phenanthroline)(CO)3Cl to o-quinone edge defects on graphitic carbon surfaces generates graphite-conjugated rhenium (GCC-Re) catalysts that are highly active for CO2 reduction to CO in acetonitrile electrolyte. X-ray photoelectron and X-ray absorption spectroscopies establish the formation of surface-bound Re centers with well-defined coordination environments. GCC-Re species on glassy carbon surfaces display catalytic currents greater than 50 mA cm(-2) with 96 ± 3% Faradaic efficiency for CO production. Normalized for the number of Re active sites, GCC-Re catalysts exhibit higher turnover frequencies than that of a soluble molecular analogue, fac-Re(1,10-phenanthroline)(CO)3Cl, and turnover numbers greater than 12,000. In contrast to the molecular analogue, GCC-Re surfaces display a Tafel slope of 150 mV/decade, indicative of a catalytic mechanism involving rate-limiting one-electron transfer. This work establishes graphite-conjugation as a powerful strategy for generating well-defined, tunable, heterogeneous electrocatalysts on ubiquitous graphitic carbon surfaces. PMID:26804469

  17. Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation.

    PubMed

    Buffet, Jean-Charles; Byles, Coral F H; Felton, Ryan; Chen, Chunping; O'Hare, Dermot

    2016-03-14

    We report the synthesis of solid catalysts based on a zirconocene supported on either silica@AMO-LDH or zeolite@AMO-LDH for the slurry phase polymerisation of ethylene. The hybrid catalysts demonstrate synergistic effects in which the polymerisation activity is up to three times higher than the zirconocene supported on analogous single phase silica or zeolite supports.

  18. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  19. Method for preparing high activity silica supported hydrotreating catalysts

    SciTech Connect

    Thompson, M.S.

    1986-03-04

    A method is described for preparing a silica supported hydrotreating catalyst containing from about 10-25%w molybdenum and from about 1-5%w nickel and/or cobalt as hydrogenation metals. The method consists of: (a) reacting a mixture of MoCl/sub 5/ and a compound selected from the group consisting of Ni(H/sub 2/O)/sub 6/Cl/sub 2/, Co(H/sub 2/O)/sub 6/Cl/sub 2/ and mixutres in amounts to provide a desired catalytic metals concentration of the support in the presence of a solubilizing amount of acetonitrile; (b) heating the mixture to between about 25/sup 0/ and 80/sup 0/C until most of the metal compounds have reacted and/or dissolved; (c) removing any undissolved solids from the solution; (d) impregnating the dried silica support with the hydrogenation metals-containing solution in one or more steps; and (e) drying the impregnated silica support at elevated temperature.

  20. Steam gasification of carbon: Catalyst properties. Reporting period, September 15, 1991--December 14, 1991

    SciTech Connect

    Falconer, J.L.

    1991-12-13

    This research uses several techniques to measure the concentration of catalyst sites and determine their stoichiometry for the catalyzed gasification of carbon. Both alkali and alkaline earth oxides are effective catalysts for accelerating the gasification rate of coal chars, but only a fraction of the catalyst appears to be in a form that is effective for gasification, and the composition of that catalyst is not established. Transient techniques with {sup 13}C labeling, are being used to study the surface processes, to measure the concentration of active sites, and to determine the specific reaction rates. We have used secondary ion mass spectrometry (SIMS) for both high surface area samples of carbon/alkali carbonate mixtures and for model carbon surfaces with deposited alkali atoms. SIMS provides a direct measure of surface composition. The combination of these results can provide knowledge of catalyst dispersion and composition, and thus indicate the way to optimally utilize carbon gasification catalysts.

  1. Preparation and evaluation of novel hydrous metal oxide (HMO)-supported noble metal catalysts

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Evans, L.R.; Datye, A.K.

    1998-04-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials that, because of their high cation exchange capacity, possess a unique ability to allow the preparation of highly dispersed supported-metal catalyst precursors with high metal loadings. This study evaluates high weight loading Rh/HMO catalysts with a wide range of HMO support compositions, including hydrous titanium oxide (HTO), silica-doped hydrous titanium oxide (HTO:Si), hydrous zirconium oxide (HZO), and silica-doped hydrous zirconium oxide (HZO:Si), against conventional oxide-supported Rh catalysts with similar weight loadings and support chemistries. Catalyst activity measurements for a structure-sensitive model reaction (n-butane hydrogenolysis) as a function of catalyst activation conditions show superior activity and stability for the ZrO{sub 2}, HZO, and HZO:Si supports, although all of the Rh/HMO catalysts have high ethane selectivity indicative of high Rh dispersion. For the TiO{sub 2}-, HTO-, and HTO:Si supported Rh catalysts, a significant loss of both catalyst activity and Rh dispersion is observed at more aggressive activation conditions, consistent with TiO{sub x} migration associated with SMSI phenomena. Of all the Rh/HMO catalysts, the Rh/HZO:Si catalysts appear to offer the best tradeoff in terms of high Rh dispersion, high activity, and high selectivity.

  2. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  3. Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Liu, Renjie; Xu, Yan; Ma, Xinbin

    2015-08-01

    Iron-based catalysts supported on N-doped CNTs (NCNTs) treated by various concentrations of nitric acid for Fischer-Tropsch synthesis (FTS) were investigated. An improved catalytic performance for the iron catalyst supported on acid treated NCNTs was obtained and the suitable nitric acid concentration was 10 M. The physiochemical properties of the NCNTs and the corresponding catalysts were characterized by BET, TEM, XRD, XPS, TGA and H2-TPR. The acid treatment removed the impurity and amorphous carbon, damaged the bamboo-like structure and increased the number of oxygen-containing functional groups and graphitization degree on the NCNTs. The more iron particles located inside the channels of NCNTs, the better catalytic FTS performance due to high dispersion and reducibility.

  4. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    PubMed Central

    Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina

    2016-01-01

    Summary An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  5. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports.

    PubMed

    Skowerski, Krzysztof; Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina; Grela, Karol

    2016-01-01

    An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  6. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    SciTech Connect

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  7. Carbon-resistant Ni-Zr0.92Y0.08O2-δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methane-steam as fuel

    NASA Astrophysics Data System (ADS)

    Hua, Bin; Li, Meng; Luo, Jing-li; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Two types of anode-supported cell are fabricated by tape casting, screen printing and sintering processes. The first one is a conventional anode supported cell (ASC); and the other, namely CASC, contains an extra layer of Ni-Cu/Ni-Fe alloys-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (NCF-BZCYYb) cermet catalyst on the surface of the anode-support. Using CH4-3 mol. % H2O as the fuel, the initial performance of the CASC is moderately improved, compared with that of the ASC; the power density of the CASC and ASC at 500 mA cm-2 and 800 °C remain stable on the level of 470 mW cm-2 for approximately 11 and 0.8 h, respectively, before cell disintegration caused by carbon formation. The performances of the CASC in the fuel of CH4-33.3 mol. % H2O are significantly increased above the level of the ASC, demonstrating an initial peak power density ranging from 280 to 1638 mW cm-2 at temperatures between 600 and 800 °C and a stable power density of 485 mW cm-2 at 500 mA cm-2 and 800 °C for 48 h. Carbon deposition in the anode region of the tested CASC cell is not detected, as the NCF-BZCYYb is a more active catalyst than the Ni-Zr0.92Y0.08O2-δ (YSZ) anode-support for CH4 steam reforming.

  8. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    NASA Astrophysics Data System (ADS)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  9. Optimization of Fe/Ni/Mg Trimetallic Catalyst for Carbon Nanotubes Growth by Using Fluidized Floating Catalyst Method

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Fluidized floating catalyst method has been used for preparing carbon nanotubes with average size ˜11 nm which yielded high yield even at low temperature; 650° C. Optimum concentration of the Fe/Ni/Mg metal alloy catalyst has been found to be at 2.133% for producing carbon nanotubes with high yield. Carbon nanotubes are formed by the evaporation of the camphor oil (precursor), which decomposes `in situ' and aggregates on the metal alloy catalyst particles present in the ceramic boat. From the PXRD analyses, graphite layers detected which provide an indication of the degree of graphitic character. However, by using the Scherrer equation is not suitable for carbon nanotubes as the value is slightly different from the average diameter determine from FESEM micrographs. Since the metallic alloy was obtained by calcining the respective nitrates, it is expected to have residual entrapped nitrogen, which may bond with the depositing CNTs as observed from FTIR spectroscopy.

  10. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    PubMed Central

    Takashima, Akito; Izumi, Yudai; Ikenaga, Eiji; Ohkochi, Takuo; Kotsugi, Masato; Matsushita, Tomohiro; Muro, Takayuki; Kawabata, Akio; Murakami, Tomo; Nihei, Mizuhisa; Yokoyama, Naoki

    2014-01-01

    The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs) achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification. PMID:25075343

  11. Carbon Deposition Onto Ni-Based Catalysts for Combined Steam/CO2 Reforming of Methane.

    PubMed

    Li, Peng; Park, Yoon Hwa; Moon, Dong Ju; Park, Nam Cook; Kim, Young Chul

    2016-02-01

    The present study was performed to suppress carbon deposition by Ce and Fe onto Ni-based catalysts in combined steam/CO2 reforming of methane (CSCRM), which is a process for producing synthesis gas (H2:CO = 2:1) for gas-to-liquids (GTL). The catalytic reaction was evaluated at 900 degrees C and 20 bar with a reactant feed ratio CH4:CO2:H20:Ar = 1:0.8:1.3:1 and gas hourly space velocity GHSV = 25,000 h(-1). The Ce and Fe modified Ni/gamma-A120, catalyst was characterized by BET surface area analysis, X-ray diffraction (XRD), H2 temperature-programmed reduction (TPR), H2 chemisorption, CO2 temperature-programmed desorption (TPD) and SEM. Ce- and Fe-modified Ni/Al2O3 catalysts exhibited remarkable activity and stability during the CSCRM over the course of 50 hours. It suggested that the Ni(12)-Ce(5)-Fe(5)/Al2O3 catalyst shows highly dispersed Ni particles with strong metal-to-support interaction (SMSI) as well as excellent catalytic activity. PMID:27433622

  12. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    DOE PAGESBeta

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-09-27

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviors after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to revealmore » the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. As a result, correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.« less

  13. Partial oxidation of liquid hydrocarbons in the presence of oxygen-conducting supports: Effect of catalyst layer deposition

    SciTech Connect

    Smith, M.; Berry, D.; Shekhawt, D.; Haynes, D.; Spivey, J.

    2010-01-01

    Ni-substituted barium hexaaluminate (BNHA) catalysts supported onto gadolinium-doped ceria (GDC), an oxygen-conductor, were prepared using two different methods: (1) conventional incipient wetness impregnation (IWI), in which a non-porous GDC support was impregnated in the conventional manner with aqueous precursors, then dried and calcined to form a supported hexaaluminate, and (2) solid-state mixing (SSM), in which solid hexaaluminate and GDC particles were mechanically ground together and thermally treated to produce a final catalyst. These catalysts were compared to bulk, unsupported BNHA; 3 wt% Ni/alumina; and 3 wt% Ni/GDC (the latter two prepared by conventional impregnation) for the partial oxidation (POX) of n-tetradecane. The reaction studies included examining the effect of 50 ppm S as dibenzothiophene (DBT) and 5 wt% 1-methylnaphthalene (MN) on the product yield under POX conditions. Temperature programmed oxidation (TPO) was used to characterize carbon formation in the reactor. The materials were characterized by BET, ICP-OES, XRD, and SEM/EDS prior to the reaction tests. Characterization of the two GDC-supported BNHA catalysts prior to the reaction studies indicated no significant differences in the bulk composition, surface area, and crystal structure. However, SEM images showed a larger amount of exposed GDC support surface area for the material prepared by IWI. Both of the GDC-supported BNHA materials demonstrated greatly reduced deactivation, with significantly reduced carbon formation compared to bulk BNHA. This was attributed to the oxygen-conducting property of the GDC, which reduced the rate of deactivation of the reaction sites by DBT and MN. The material prepared by IWI demonstrated more stable hydrogen and carbon monoxide yield than the material prepared by SSM. Although both catalysts deactivated in the presence of DBT and MN, the activity of the catalyst prepared by IWI recovered activity more quickly after the contaminants were removed

  14. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    PubMed

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-01

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst. PMID:21336405

  15. Different routes to methanol: Inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts

    DOE PAGESBeta

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F.; Studt, Felix; Lennon, David; Schlögl, Robert; Behrens, Malte

    2016-04-14

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. Furthermore, these results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process.

  16. Different routes to methanol: inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts.

    PubMed

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F; Studt, Felix; Lennon, David; Schlögl, Robert; Behrens, Malte

    2016-06-29

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. These results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process. PMID:27075638

  17. Au/TiO2 supported on ferritic stainless steel monoliths as CO oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Milt, V. G.; Ivanova, S.; Sanz, O.; Domínguez, M. I.; Corrales, A.; Odriozola, J. A.; Centeno, M. A.

    2013-04-01

    Metallic supported structured catalysts were obtained by washcoating AluchromYHf monoliths with an Au/TiO2 catalyst. The powder catalyst was synthesized by DAE (direct anionic exchange) method. Using this catalyst, a stable slurry was prepared and used to washcoat the monoliths. TEM and SEM studies revealed that gold nanoparticles in the Au/TiO2 powder catalyst had an average diameter of 3-4 nm, but during the preparation of the structured catalyst, aggregate Au particles of the slurry reached diameters of 9 nm. Before coating, Aluchrom YHf monoliths were thermally treated to generate a homogeneous and well-adhered oxide rough surface layer, mainly composed of α-Al2O3 whiskers, which favored the anchoring of the catalyst. The catalytic layer deposited was well attached and contained not only the Au/TiO2 catalyst but also metallic oxides formed from stainless steel components that diffused through the oxide scale. The structural characterization was performed by XRD, XRF, TEM, SEM, GD-OES and SBET. The catalytic activity of the powder and structured catalysts was tested in the oxidation of the CO reaction. Catalysts demonstrated to be active at room temperature. After a first activation run, and in spite of their larger gold particle size, the catalytic activities of the structured catalysts overcame those of the powder catalyst. This improvement is probably due to the segregation of the transition metal oxides toward the surface oxide scale.

  18. Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

    DOEpatents

    Lee, James Weifu; Lowndes, Douglas H.; Merkulov, Vladimir I.; Eres, Gyula; Wei, Yayi; Greenbaum, Elias; Lee, Ida

    2004-06-29

    A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.

  19. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination

    NASA Astrophysics Data System (ADS)

    Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min

    2016-01-01

    In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d

  20. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  1. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    SciTech Connect

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  2. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.

    PubMed

    Wang, Jia; Huang, Rui; Feng, Zhenbao; Liu, Hongyang; Su, Dangsheng

    2016-07-21

    Multi-walled carbon nanotubes (CNTs) were directly used as a sustainable and green catalyst to convert ethanol into acetaldehyde in the presence of molecular oxygen. The C=O groups generated on the nanocarbon surface were demonstrated as active sites for the selective oxidation of ethanol to acetaldehyde. The transformation of disordered carbon debris on the CNT surface to ordered graphitic structures induced by thermal-treatment significantly enhanced the stability of the active C=O groups, and thus the catalytic performance. A high reactivity with approximately 60 % ethanol conversion and 93 % acetaldehyde selectivity was obtained over the optimized CNT catalyst at 270 °C. More importantly, the catalytic performance was quite stable even after 500 h, which is comparable with a supported gold catalyst. The robust catalytic performance displayed the potential application of CNTs in the industrial catalysis field. PMID:27282126

  3. Effect of CeO₂ addition to Al₂O₃ supports for Pt catalysts on the aqueous-phase reforming of glycerol.

    PubMed

    Rahman, M M; Church, Tamara L; Minett, Andrew I; Harris, Andrew T

    2013-06-01

    A series of Pt catalysts supported on Al₂O₃ that was doped with different amounts of CeO₂ was developed, characterized, and tested in the aqueous-phase reforming (APR) of glycerol to H₂. Catalyst 3Pt/3CeAl, which bore 3 wt% Pt on a support that contained 3 wt % CeO₂, showed the highest carbon conversion to gas (85%) and the highest H₂ yield (80%) for a feedstock of 1 wt% glycerol in water at 240 °C and 40 bar. A CeO₂/Al₂O₃ support with only 1 wt% Pt also showed high H₂ selectivity and carbon conversion to gas, as well as a much lower CH₄ yield than the benchmark 3Pt/Al catalyst, clearly demonstrating that doping the support with 3 wt% CeO2 improved the APR of glycerol. H₂ chemisorption results showed that the highest metal dispersion (58%) and active surface area (4.3 m(2)g(-1)) were achieved for the support that contained 3 wt% CeO₂, and this effect appeared to be primarily responsible for the high H₂ yield and carbon conversion to gas. No CO was observed in the product gas; therefore, this gas could potentially be used directly in proton exchange membrane fuel cells. Thus, including CeO₂ in the Al₂O₃ catalyst support enhanced both the activity and selectivity towards H₂ of a Pt catalyst for the APR of glycerol.

  4. Fourier transform infrared spectroscopic study of the oxidation of propylene over supported silver catalysts

    SciTech Connect

    Freriks, I.L.C.; Bouwman, R.; Geenen, P.V.

    1980-10-01

    The reaction of 2.6 kPa propylene over preoxidized 20% silver on aerosil silica yielded only carbon dioxide, water, and a carbon-rich deposit, which could be oxidized to carbon dioxide and water. The carbon deposit presumably formed by polymerization of adsorbed acrolein species, which were observed in the IR spectra of the reaction of a 1:3 oxygen-propylene mixture over the same catalyst. In the presence of oxygen, a steady-state amount of the acrolein species apparently formed on the reoxidized silver, which underwent polymerization and subsequent oxidation. These surface processes explain the low selectivity for epoxide formation of propylene on silver catalyst.

  5. Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts.

    PubMed

    Gärtner, Christian A; van Veen, André C; Lercher, Johannes A

    2014-09-10

    Ethane is oxidatively dehydrogenated with a selectivity up to 95% on catalysts comprising a mixed molten alkali chloride supported on a mildly redox-active Dy2O3-doped MgO. The reactive oxyanionic OCl(-) species acting as active sites are catalytically formed by oxidation of Cl(-) at the MgO surface. Under reaction conditions this site is regenerated by O2, dissolving first in the alkali chloride melt, and in the second step dissociating and replenishing the oxygen vacancies on MgO. The oxyanion reactively dehydrogenates ethane at the melt-gas phase interface with nearly ideal selectivity. Thus, the reaction is concluded to proceed via two coupled steps following a Mars-van-Krevelen-mechanism at the solid-liquid and gas-liquid interface. The dissociation of O2 and/or the oxidation of Cl(-) at the melt-solid interface is concluded to have the lowest forward rate constants. The compositions of the oxide core and the molten chloride shell control the catalytic activity via the redox potential of the metal oxide and of the OCl(-). Traces of water may be present in the molten chloride under reaction conditions, but the specific impact of this water is not obvious at present. The spatial separation of oxygen and ethane activation sites and the dynamic rearrangement of the surface anions and cations, preventing the exposure of coordinatively unsaturated cations, are concluded to be the origin of the surprisingly high olefin selectivity. PMID:25118821

  6. Vapor-phase catalytic oxidesulfurization (ODS) of organosulfur compounds over supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon

    Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and

  7. Iron Catalyst Chemistry in High Pressure Carbon Monoxide Nanotube Reactor

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Povitsky, Alexander; Dateo, Christopher; Gokcen, Tahir; Smalley, Richard E.

    2001-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single wall carbon nanotubes (SWNT) is analyzed using a chemical reaction model coupled with properties calculated along streamlines. Streamline properties for mixing jets are calculated by the FLUENT code using the k-e turbulent model for pure carbon monixide. The HiPco process introduces cold iron pentacarbonyl diluted in CO, or alternatively nitrogen, at high pressure, ca. 30 atmospheres into a conical mixing zone. Hot CO is also introduced via three jets at angles with respect to the axis of the reactor. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Cluster reaction rates are from Krestinin, et aI., based on shock tube measurements. Another model is from classical cluster theory given by Girshick's team. The calculations are performed on streamlines that assume that a cold mixture of Fe(CO)5 in CO is introduced along the reactor axis. Then iron forms clusters that catalyze the formation of SWNTs from the Boudouard reaction on Fe-containing clusters by reaction with CO. To simulate the chemical process along streamlines that were calculated by the fluid dynamics code FLUENT, a time history of temperature and dilution are determined along streamlines. Alternative catalyst injection schemes are also evaluated.

  8. The oxidation of carbon monoxide using a tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Sampson, Christopher F.; Gudde, Nicholas J.

    1987-01-01

    This paper outlines some of the steps involved in the development by the United Kingdom Atomic Energy Authority (UKAEA) of a catalytic device for the recombination of carbon monoxide and oxygen in a CO2 laser system. It contrasts the differences between CO oxidation for air purification and for laser environmental control, but indicates that there are similarities between the physical specifications. The principal features of catalytic devices are outlined and some experimental work described. This includes measurements concerning the structure and mechanical properties of the artifact, the preparation of the catalyst coating and its interaction with the gaseous environment. The paper concludes with some speculation about the method by which the reaction actually occurs.

  9. Process for manufacturing a supported catalyst for the hydrotreatment of hydrocarbon oils

    SciTech Connect

    Toulhoat, H.; Jacquin, Y.; Mercier, M.; Plumail, J. C.

    1985-04-09

    Supported catalysts for use in hydrocarbons hydrotreatments are made by shaping catalyst carrier, with or without catalyst precursors, into balls, calcining the balls at 300/sup 0/-1000/sup 0/ C., and crushing the calcined balls to particles whose average size is 0.2-0.8 times the average diameter of the balls. When the precursors are not present during the manufacture, they are added thereafter.

  10. Role of the Three-Phase Boundary of the Platinum–Support Interface in Catalysis: A Model Catalyst Kinetic Study

    PubMed Central

    2016-01-01

    A series of microstructured, supported platinum (Pt) catalyst films (supported on single-crystal yttria-stabilized zirconia) and an appropriate Pt catalyst reference system (supported on single-crystal alumina) were fabricated using pulsed laser deposition and ion-beam etching. The thin films exhibit area-specific lengths of the three-phase boundary (length of three-phase boundary between the Pt, support, and gas phase divided by the superficial area of the sample) that vary over 4 orders of magnitude from 4.5 × 102 to 4.9 × 106 m m–2, equivalent to structural length scales of 0.2 μm to approximately 9000 μm. The catalyst films have been characterized using X-ray diffraction, atomic force microscopy, high-resolution scanning electron microscopy, and catalytic activity tests employing the carbon monoxide oxidation reaction. When Pt is supported on yttria-stabilized zirconia, the reaction rate clearly depends upon the area-specific length of the three-phase boundary, l(tpb). A similar relationship is not observed when Pt is supported on alumina. We suggest that the presence of the three-phase boundary provides an extra channel of oxygen supply to the Pt through diffusion in or on the yttria-stabilized zirconia support coupled with surface diffusion across the Pt. PMID:27668125

  11. Role of the Three-Phase Boundary of the Platinum–Support Interface in Catalysis: A Model Catalyst Kinetic Study

    PubMed Central

    2016-01-01

    A series of microstructured, supported platinum (Pt) catalyst films (supported on single-crystal yttria-stabilized zirconia) and an appropriate Pt catalyst reference system (supported on single-crystal alumina) were fabricated using pulsed laser deposition and ion-beam etching. The thin films exhibit area-specific lengths of the three-phase boundary (length of three-phase boundary between the Pt, support, and gas phase divided by the superficial area of the sample) that vary over 4 orders of magnitude from 4.5 × 102 to 4.9 × 106 m m–2, equivalent to structural length scales of 0.2 μm to approximately 9000 μm. The catalyst films have been characterized using X-ray diffraction, atomic force microscopy, high-resolution scanning electron microscopy, and catalytic activity tests employing the carbon monoxide oxidation reaction. When Pt is supported on yttria-stabilized zirconia, the reaction rate clearly depends upon the area-specific length of the three-phase boundary, l(tpb). A similar relationship is not observed when Pt is supported on alumina. We suggest that the presence of the three-phase boundary provides an extra channel of oxygen supply to the Pt through diffusion in or on the yttria-stabilized zirconia support coupled with surface diffusion across the Pt.

  12. Catalytic oxidation of carbon monoxide over supported palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Soni, Keshav Chand; Krishna, R.; Chandra Shekar, S.; Singh, Beer

    2016-01-01

    Catalytic oxidation of CO with ozone had been studied over Al2O3 and SiO2 supported Pd nanoparticles which was synthesized by two different methods. The polyol method mainly resulted in highly dispersed Pd particles on the support, while the impregnation method resulted in agglomeration Pd particles on the support. Supported Pd nanoparticles synthesized from PdCl2 in the presence of poly ( N-vinylpyrrolidone) (PVP) by chemical reduction. The catalysts were characterized by X-ray diffraction, N2 BET surface area, pore size distributions, CO chemisorption, TEM and H2-temperature programmed reduction. The physico-chemical properties were well correlated with activity data. Characterizations of XRD and TEM show that the surface Pd nanoparticles are highly dispersed over Al2O3 and SiO2. The catalytic activity was dependent upon ozone/CO ratio, contact times, and the reaction temperature. The extent of carbon monoxide oxidation was proportional to the catalytically ozone decomposition. The PVP synthesized Pd/A2O3 catalyst had been found to be highly active for complete CO removal at room temperature. The higher activity of the nanocatalyst was attributed to small particle size and higher dispersion of Pd over support.

  13. Potassium promotion of iron oxide dehydrogenation catalysts supported on magnesium oxide: 1. Preparation and characterization

    SciTech Connect

    Stobbe, D.E.; Buren, F.R. van ); Dillen, A.J. van; Geus, J.W. )

    1992-06-01

    Catalysts of iron oxide supported on magnesium oxide and promoted with potassium were prepared by incipient wetness impregnation of preshaped magnesium oxide support pellets with a solution of an iron complex, either ammonium iron (III) citrate or ammonium iron (III) EDTA and potassium carbonate. Iron and potassium were applied wither simultaneously or consecutively. As determined using X-ray diffraction, thermogravimetric analysis, and magnetic measurements, calcination above 923 K results in the formation of a mixed oxide of iron and potassium, viz., KFeO[sub 2]. After calcination at 973 K the average crystallite size of the KFeO[sub 2] phase is about 300 [angstrom]. The formation of KFeO[sub 2] appeared to have a strong retarding effect on the reduction of the iron oxide phase to metallic iron. It was found that the KFeO[sub 2] phase is unstable in atomspheric air due to reaction with carbon dioxide and moisture to form potassium (hydrogen) carbonate and (hydrated) iron oxide.

  14. Tip Growth Of Carbon Nanotubes Obtained By Pyrolyzation Of Camphor Oil With Zeolite Embedded With Fe/Ni/Mn Catalyst

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Highly efficient synthesis of carbon nanotubes (CNTs) have been synthesized by thermal decomposition of camphor oil, on a zeolite support impregnated with Fe/Ni/Mn (molar ratio of Fe:Ni:Mn = 1:1:1) catalyst in the temperature range from 550-950° C by the thermal CVD method. Besides the surface fluidization of the catalyst nanoparticles themselves, assistance of the metal oxides embedded in zeolite supports is supposed to be responsible for high activity and selectivity of the Fe/Ni/Mn catalyst over which carbon source (camphor oil) successfully decomposes. The CNT yield was higher at 850° C and can be considered as the optimum deposition temperature. This result demonstrates that zeolite impregnated with the catalyst Fe/Ni/Mn is a suitable support for effective formation of CNTs. The morphological studies support `tip growth mechanism' for the growth of the CNT's in our case. The as-grown CNTs were characterized by FESEM and FTIR spectroscopy.

  15. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  16. SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

    SciTech Connect

    Alan W. Weimer; Peter Czerpak; Patrick Hilbert

    2000-01-01

    A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is non-reactive with sodium, is inexpensive, has high density (i.e. inertia), and can be obtained in various particle sizes and porosities. Force balance modeling has been used to design a surrogate ambient temperature system that is hydrodynamically similar to the real system, thus allowing complementary investigation of the governing fluidization hydrodynamics. The primary objective of this research was to understand the origin of and to quantify the liquid capillary interparticle forces affecting the molten carbonate SLPC fluidized bed process. Substantial theoretical and experimental exploratory results indicate process

  17. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    PubMed

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-01

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER. PMID:26864503

  18. Sulphur poisoning of palladium catalysts used for methane combustion: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2008-05-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO(2) adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model -- considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium -- was used for modelling the deactivation behaviour. PMID:17935880

  19. Sulphur poisoning of palladium catalysts used for methane combustion: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2008-05-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO(2) adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model -- considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium -- was used for modelling the deactivation behaviour.

  20. Carbon-supported Pd-Pt cathode electrocatalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Yongfu; Zhang, Huamin; Zhong, Hexiang; Xu, Ting; Jin, Hong

    A series of carbon-supported Pd-Pt alloy (Pd-Pt/C) catalysts for oxygen reduction reaction (ORR) with low-platinum content are synthesized via a modified sodium borohydride reduction method. The structure of as-prepared catalysts is characterized by powder X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The prepared Pd-Pt/C catalysts with alloy form show face-centered-cubic (FCC) structure. The metal particles of Pd-Pt/C catalysts with mean size of around 4-5 nm are uniformly dispersed on the carbon support. The electrocatalytic activities for ORR of these catalysts are investigated by rotating disk electrode (RDE), cyclic voltammetry (CV), single cell measurements and electrochemical impedance spectra (EIS) measurements. The results suggest that the electrocatalytic activities of Pd-Pt/C catalysts with low platinum are comparable to that of the commercial Pt/C with the same metal loading. The maximum power density of MEA with a Pd-Pt/C catalyst, the Pd/Pt mass ratio of which is 7:3, is about 1040 mW cm -2.

  1. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia

    2014-11-01

    Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.

  2. Graphene oxide supported molybdenum cluster: first heterogenized homogeneous catalyst for the synthesis of dimethylcarbonate from CO2 and methanol.

    PubMed

    Kumar, Subodh; Khatri, Om P; Cordier, Stéphane; Boukherroub, Rabah; Jain, Suman L

    2015-02-16

    The octahedral molybdenum cluster-based compound, Cs2 Mo6 Br(i) 8 Br(a) 6 was immobilized on graphene oxide (GO) by using a facile approach. High resolution transmission electron microscopy results revealed that molybdenum clusters were uniformly distributed on the GO nanosheets. Cs2 Mo6 Br(i) 8 Br(a) 6 was attached to the GO support via chemical interaction between apical ligands of Mo6 Br(i) 8 Br(a) 6 cluster units and oxygen functionalities of GO, as revealed by XPS studies. The developed material was used for the synthesis of dimethyl carbonate by reduction of carbon dioxide. The synthesized catalyst, that is, GO-Cs2 Mo6 Br(i) 8 Br(a) x , exhibited higher catalytic efficiency than its homogeneous analogue without using dehydrating agent. The catalyst was found to be efficiently recyclable without significant loss of catalytic activity. PMID:25537229

  3. Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: The influence of the variation of support synthesis conditions

    NASA Astrophysics Data System (ADS)

    Asencios, Yvan J. O.; Elias, Kariny F. M.; Assaf, Elisabete M.

    2014-10-01

    In this study, nickel catalysts (20 wt%) supported on γ-Al2O3 were prepared by the impregnation method. The γ-Al2O3, was synthesized by precipitation of bayerite gel obtained from aluminum scrap. The synthetic conditions of the bayerite gel varied as follows: precipitation pH ranging from 6 to 7; ageing temperature ranging from 25 to 80 °C, the calcination temperature for all samples was 500 °C. The catalysts and the supports were analyzed by temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), physisorption of N2 (BET), X-ray absorption near-edge structure (XANES) and scanning electron microscopy (SEM). Isopropanol decomposition reactions over the catalysts were carried out to evaluate their acidity. SEM images of the spent catalysts showed that the morphology of the carbon formed during the reaction is of the filamentous type. The TPR analysis of the catalysts showed the presence of NiO species weakly interacted with the support as well as stoichiometric and non-stoichiometric nickel aluminate, the reduction of these species was also observed by XANES analysis. XRD analysis of the fresh catalyst showed peaks assigned to NiO, NiAl2O4 and γ-Al2O3. The best catalysts (samples NiAl7-25 and NiAl7-80) synthesized in this report showed high stability and high conversion values (CH4 (70%) and CO2 (78%)). These catalysts showed better performance than the catalyst supported on commercial γ-Al2O3, which showed a high coke formation which affected the course of the reaction. The γ-Al2O3 synthesized from bayerite obtained at neutral pH conditions was the best support for nickel catalysts in the oxidative-reforming of model biogas.

  4. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  5. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. PMID:24616203

  6. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  7. Fundamental studies of hydrogen chemisorption on supported monometallic and bimetallic catalysts using microcalorimetry

    SciTech Connect

    Narayan, R.L.

    1997-06-24

    Highly dispersed transition metal catalysts are used in numerous commercial processes such as hydrocarbon conversions. For example, the use of Pt supported on acidic alumina or silica-alumina for reforming of naphtha in the production of gasoline is well known. Another use of supported catalysts is in automobile emission control where supported Pt-Rh bimetallic catalysts are used. Supported Ru can be used in Fischer-Tropsch synthesis for the production of higher hydrocarbons from synthesis gas. While many of these catalyst systems have been in commercial operation for several decades there is still a lack of consensus regarding the exact role of the catalyst on a molecular level. In particular, little is known about the mechanisms operating on the catalyst surface at the high pressure and high temperature conditions typically used in commercial operations. This report contains the general introduction and conclusions and an appendix containing the operating instructions for a microcalorimeter. Three chapters have been processed separately. They are: the effect of K on the kinetics and thermodynamics of hydrogen adsorption on Ru/SiO{sub 2}; hydrogen adsorption states on silica supported Ru-Ag and Ru-Cu bimetallic catalysts investigated via microcalorimetry; a comparative study of hydrogen chemisorption on silica supported Ru, Rh, and Pt.

  8. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene.

    PubMed

    Bacik, Deborah B; Zhang, Man; Zhao, Dongye; Roberts, Christopher B; Seehra, Mohinar S; Singh, Vivek; Shah, Naresh

    2012-07-27

    Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al(2)O(3) support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE. PMID:22743584

  9. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Bacik, Deborah B.; Zhang, Man; Zhao, Dongye; Roberts, Christopher B.; Seehra, Mohinar S.; Singh, Vivek; Shah, Naresh

    2012-07-01

    Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al2O3 support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE.

  10. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.; Badlani, Ajay

    1991-01-01

    The objective was to explore ways of making a monolithic form of catalyst for CO2 lasers. The approach chosen was to pelletize the catalyst material, Au/MnO2 powder, and epoxy the pellets to stainless steel sheets as structural supports. The CO oxidation reaction over Au/MnO2 powder was found to be first overall, and the reaction rate constant at room temperature was 4.4 +/- 0.3 cc/(g x sec). The activation energy was 5.7 kcal/mol. The BET surface area of the pellets was found to vary from 125 to 140 sq m/g between different batches of catalyst. Pellets epoxied to stainless steel strips showed no sign of fracture or dusting when subjected to thermal tests. Pellets can be dropped onto hard surfaces with chipping of edges but no breakage of the pellets. Mechanical strength tests performed on the pellets showed that the crush strength is roughly one-fourth of the pelletizing force. The apparent activity and activation energy over the pellets were found to be less than over the powdered form of the catalyst. The lower apparent activity and activation energy of the pellets are due to the fact that the internal surface area of a pellet is not exposed to the reactant concentration present in the flowing gas as a result of intrapellet diffusion resistance. Effectiveness factors varied from 0.44, for pellets having thickness of 2 mm and attached with epoxy to a stainless steel strip. The epoxy and the stainless steel strip were found to simply block off one of the circular faces of the pellets. The epoxy did not penetrate the pellets and block the active sites. The values of the effective diffusivities were estimated to be between 2.3 x 10(exp -3) and 4.9 x 10(exp -3) sq cm/s. With measurements performed on one powder sample and one pellet configuration, reasonable accurate predictions can be made of conversions that would be obtained with other pellet thickness and configurations.

  11. Hydrogasification of carbon adsorbed on sulfur-poisoned dispersed metal catalysts. Final report

    SciTech Connect

    McCarty, J.G.; Wood, B.J.

    1993-12-01

    The temperature programmed reaction of 1- to 10-atom hydrogen (TPRH) with carbon deposited on alumina supported Ni, Ru, and Co and on fused Fe catalysts has been developed to examine the effect of sulfur poisoning on coking rates and the nature of the deposited carbon. A new procedure, passivation by carbon deposition on clean reduced metals and low temperature (20--50 C) exposure to recirculate dilute H{sub 2}S with moderate 0.1 atm partial pressure of CO{sub 2} was used to slow the rate of sulfur chemisorption. This method facilitated slow uniform sulfur chemisorption to fractional saturation coverages. Fractional sulfur poisoning generally blocked sites of active surface carbon (or hydrocarbon fragments) while suppressing rates of hydrogasification as shown by the increasing temperatures in the TPRH hydrogasification rate versus temperature spectra. Fractional sulfur poisoning (e.g., half saturation) appears to inhibit H{sub 2} gasification with surface carbon surprisingly without strongly affecting catalytic activity. Sulfur poisoning to saturation levels (defined here as {approximately}1 ppm H{sub 2}S in 1-atm H{sub 2} at 500 C) always results in complete loss of activity and is also marked by the growth of a very unreactive form of carbon.

  12. Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie

    2000-01-01

    Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.

  13. Low-temperature growth of nitrogen-doped carbon nanofibers by acetonitrile catalytic CVD using Ni-based catalysts

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tomohiro; Makino, Yuri; Fukukawa, Makoto; Nakamura, Hideya; Watano, Satoru

    2016-06-01

    To synthesize nitrogen-doped carbon nanofibers (N-CNFs) at high growth rates and low temperatures less than 673 K, nickel species (metallic nickel and nickel oxide) supported on alumina particles were used as the catalysts for an acetonitrile catalytic chemical vapor deposition (CVD) process. The nickel:alumina mass ratio in the catalysts was fixed at 0.05:1. The catalyst precursors were prepared from various nickel salts (nitrate, chloride, sulfate, acetate, and lactate) and then calcined at 1073 K for 1 h in oxidative (air), reductive (hydrogen-containing argon), or inert (pure argon) atmospheres to activate the nickel-based catalysts. The effects of precursors and calcination atmosphere on the catalyst activity at low temperatures were studied. We found that the catalysts derived from nickel nitrate had relatively small crystallite sizes of nickel species and provided N-CNFs at high growth rates of 57 ± 4 g-CNF/g-Ni/h at 673 K in the CVD process using 10 vol% hydrogen-containing argon as the carrier gas of acetonitrile vapor, which were approximately 4 times larger than that of a conventional CVD process. The obtained results reveal that nitrate ions in the catalyst precursor and hydrogen in the carrier gas can contribute effectively to the activation of catalysts in low-temperature CVD. The fiber diameter and nitrogen content of N-CNFs synthesized at high growth rates were several tens of nanometers and 3.5 ± 0.3 at.%, respectively. Our catalysts and CVD process may lead to cost reductions in the production of N-CNFs.

  14. Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts

    PubMed Central

    2015-01-01

    Supported metal nanoparticle catalysts are commonly obtained through deposition of metal precursors onto the support using incipient wetness impregnation. Typically, empirical relations between metal nanoparticle structure and catalytic performance are inferred from ensemble averaged data in combination with high-resolution electron microscopy. This approach clearly underestimates the importance of heterogeneities present in a supported metal catalyst batch. Here we show for the first time how incipient wetness impregnation leads to 10-fold variations in silver loading between individual submillimeter-sized silica support granules. This heterogeneity has a profound impact on the catalytic performance, with 100-fold variations in hydrogenation performance at the same level. In a straightforward fashion, optical microscopy interlinks single support particle level catalytic measurements to structural and compositional information. These detailed correlations reveal the optimal silver loading. A thorough consideration of catalyst heterogeneity and the impact thereof on the catalytic performance is indispensable in the development of catalysts. PMID:26618052

  15. Alumina supported molybdenum catalyst for lignin valorization: Effect of reduction temperature.

    PubMed

    Ma, Xiaolei; Cui, Kai; Hao, Wenyue; Ma, Rui; Tian, Ye; Li, Yongdan

    2015-09-01

    Alumina supported molybdenum catalysts were prepared with an impregnation method. The activity of the catalyst in the ethanolysis of Kraft lignin to C6-C11 molecules, i.e. alcohols, esters, monophenols, benzyl alcohols and arenes, was tested in a batch reactor at 280 °C with initial 0 MPa nitrogen. The complete conversion of lignin to small molecular chemicals was achieved without the formation of tar or char. The reduction temperature during the catalyst preparation was proved to have a profound effect on the activity of the catalyst. The overall product yield firstly increases and then decreases with the increase of the reduction temperature in a range of 500-800 °C. The maximum yield up to 1390 mg/g lignin was obtained with the catalyst reduced at 750 °C. Furthermore, the catalyst showed an excellent recyclability, where no significant loss of the catalytic activity was exhibited after 5 runs. PMID:26004558

  16. Alumina supported molybdenum catalyst for lignin valorization: Effect of reduction temperature.

    PubMed

    Ma, Xiaolei; Cui, Kai; Hao, Wenyue; Ma, Rui; Tian, Ye; Li, Yongdan

    2015-09-01

    Alumina supported molybdenum catalysts were prepared with an impregnation method. The activity of the catalyst in the ethanolysis of Kraft lignin to C6-C11 molecules, i.e. alcohols, esters, monophenols, benzyl alcohols and arenes, was tested in a batch reactor at 280 °C with initial 0 MPa nitrogen. The complete conversion of lignin to small molecular chemicals was achieved without the formation of tar or char. The reduction temperature during the catalyst preparation was proved to have a profound effect on the activity of the catalyst. The overall product yield firstly increases and then decreases with the increase of the reduction temperature in a range of 500-800 °C. The maximum yield up to 1390 mg/g lignin was obtained with the catalyst reduced at 750 °C. Furthermore, the catalyst showed an excellent recyclability, where no significant loss of the catalytic activity was exhibited after 5 runs.

  17. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  18. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Kootenaei, A. H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-04-01

    Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V2O5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  19. Alkali-support interactions on rubidium base catalysts determined by XANES, EXAFS, CO{sub 2} adsorption, and IR spectroscopy

    SciTech Connect

    Doskocil, E.J.; Bordawekar, S.V.; Davis, R.J.

    1997-07-01

    Rubidium was supported on a variety of catalyst supports, including magnesia, titania, alumina, carbon, and silica. Except for Rb/MgO, none of the oxide-based samples contained surface carbonates as detected by IR spectroscopy after pretreatment at 773 K. The XANES and EXAFS associated with the Rb K edge indicated that the local structure around Rb was highly dependent on the support composition. Results from CO{sub 2} stepwise TPD showed that Rb/MgO possessed strongly basic sites that were not present on pure MgO. The basic sites formed by Rb addition to the other supports were weaker than those on Rb/MgO. Decomposition of 2-propanol at 593 K was used to relate catalytic activity to surface basicity. 40 refs., 16 figs., 4 tabs.

  20. Crystal structures of Ziegler-Natta catalyst supports.

    PubMed

    Malizia, Federica; Fait, Anna; Cruciani, Giuseppe

    2011-12-01

    The crystal structures of three MgCl(2)·nEtOH complexes with n=1.5, 2.8, and 3.3 have been fully determined. Such complexes are the fundamental precursors for Ziegler-Natta polymerization catalysts used to produce polyolefins on a multimillion-ton scale worldwide. The ab initio structure solution showed that the structure of MgCl(2)·nEtOH complexes with n=1.5 and 2.8 are based on ribbons of metal-centered octahedra, whereas for n=3.3 this chainlike arrangement breaks into a threadlike structure of isolated octahedra linked by hydrogen bonds. A clear correlation between catalyst performance and the crystal structure of precursors has been found, and reveals the fundamental role of the latter in determining catalyst properties. The direct knowledge of building blocks in the precursor structures will help to develop more accurate models for activated catalysts. These models will not require the arbitrary and oversimplified assumption of locating the catalyst active sites on selected cut surfaces of the α-MgCl(2) crystal lattice. PMID:22052708

  1. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    PubMed

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect. PMID:17513043

  2. Hydrodenitrogenation of quinoline over carbon-supported transition metal sulfides

    SciTech Connect

    Eijsbouts, S.; De Beer, V.H.J.; Prins, R. )

    1991-02-01

    Transition metal sulfide (TMS) catalysts were prepared by impregnation of an activated carbon support with aqueous solutions of first-, second-, and third-row (group V-VIII) transition metal salts, drying and in situ sulfidation. The catalysts were tested in the hydrodenitrogenation of quinoline (653 K, 5.5 MPa) in microautoclaves and microflow reactors. The first-row transition metal sulfides had low quinoline conversions to hydrocarbons, and their periodic trend formed a U-shaped curve with a minimum at Mn/C and Fe/C and maxima at V/C and Ni/C. The quinoline conversions to hydrocarbons of the second- and third-row TMS formed volcano curves with maxima at Rh/C and Ir/C and with Mo/C and W/C having the lowest conversions. The transition metal sulfide catalysts with a low quinoline hydrogenation (first-row transition metal sulfides, Mo/C and W/C) also had a low quinoline conversion to hydrocarbons. The transition metal sulfides with the highest quinoline conversions to hydrocarbons (Rh/C, Pd/C, Os/C, Ir/C and Pt/C) had a very highquinoline hydrogenation and a high selectivity for propylcyclohexane. Ru/C and especially Re/C had a good quinoline conversion to hydrocarbons, but also an exceptionally high selectivity for propylbenzene.

  3. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect

    Jernigan, G G

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  4. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.

    PubMed

    Sanchez-Sanchez, Maria Cruz; Navarro Yerga, Rufino M; Kondarides, Dimitris I; Verykios, Xenophon E; Fierro, Jose Luis G

    2010-03-25

    Mechanistic aspects of ethanol steam reforming on Pt, Ni, and PtNi catalysts supported on gamma-Al(2)O(3) are investigated from the analysis of adsorbed species and gas phase products formed on catalysts during temperature-programmed desorption of ethanol and during ethanol steam reforming reaction. DRIFTS-MS analyses of ethanol decomposition and ethanol steam reforming reactions show that PtNi and Ni catalysts are more stable than the Pt monometallic counterpart. Ethanol TPD results on Ni, Pt, and NiPt catalysts point to ethanol dehydrogenation and acetaldehyde decomposition as the first reaction pathways of ethanol steam reforming over the studied catalysts. The active sites responsible for the acetaldehyde decomposition are easily deactivated in the first minutes on-stream by carbon deposits. For Ni and PtNi catalysts, a second reaction pathway, consisting in the decomposition of acetate intermediates formed over the surface of alumina support, becomes the main reaction pathway operating in steam reforming of ethanol once the acetaldehyde decomposition pathway is deactivated. Taking into account the differences observed in the mechanism of ethanol decomposition, the better stability observed for PtNi catalyst is proposed to be related with a cooperative effect between Pt and Ni activities together with the enhanced ability of Ni to gasify the methyl groups formed by decomposition of acetate species. On the contrary, monometallic catalysts are believed to dehydrogenate these methyl groups forming coke that leads to deactivation of metal particles. PMID:19824680

  5. The structure of nano-palladium deposited on carbon-based supports

    SciTech Connect

    Pikna, Ľubomír; Milkovič, Ondrej; Saksl, Karel; Heželová, Mária; Smrčová, Miroslava; Puliš, Pavel; Michalik, Štefan; Gamcová, Jana

    2014-04-01

    Nano-palladium catalysts, prepared using the same procedure with the same metal content (3 wt%) and two different supports, activated carbon (Pd/C) and activated carbon—multiwalled carbon nanotubes (Pd/C/CNT), are discussed. The simple technique of deposition reduction was applied in the preparation of these two types of Pd catalysts. TEM, XRD analysis, EXAFS signal analysis, and XANES were used for sample characterization. In both samples, transmission electron microscopy identified nanosized Pd particles with nearly spherical morphology but different sizes. The mean diameters of the particles on Pd/C and Pd/C/CNT were estimated to be 5.4 nm and 7.8 nm, respectively. The EXAFS signal analysis showed that Pd atoms on the particle surfaces were coordinated by 4 oxygens to form a PdO monolayer covering a metallic core. The XANES signal analysis indicated a smaller particle size for Pd/C (∅ 5 nm) than for Pd/C/CNT (∅ 10 nm), in good agreement with the TEM observations. - Graphical abstract: Visualization of metallic core (left), oxide monolayer (middle) and nanoparticle of diameter 5 nm (right). - Highlights: • Pd catalysts were prepared on two types of supports: carbon and carbon nanotubes. • BET, TEM, XRD characterization of prepared catalysts. • XAFS: Concentration of Pd in samples Pd/C and Pd/C/CNT. • EXAFS and XANES signal analysis of catalysts. • Visualisation of atoms arrangement at the Pd nanoparticle surface.

  6. Zeolite supported iron-cobalt catalysts for the Fischer-Tropsch synthesis

    SciTech Connect

    Lin, T.

    1984-01-01

    A series of Fe, Co, FeCo catalysts on Y and ZSM-5 supports, prepared by impregnation and ion exchange, has been investigated. Characterization methods utilized were x-ray diffraction, H{sub 2}/CO chemisorption, Moessbauer spectroscopy, and atomic absorption. A differential reactor and as chromatographs were also employed to analyze the reaction activity and product selectivity. (i) Y supported catalysts: The oxidation, reduction, and carburization behavior of the iron-containing catalysts were observed via Moessbauer spectra. The reversibility of FeY (ion exchange) in oxidation-reduction cycles was confirmed in this experiment. Furthermore, ion exchange catalysts (FeY, FeCoY) do not show any iron metal, alloy or carbide phase after reduction or carburization. In contrast to silica supported catalysts, FeCo/HY (impregnated) reveals a Moessbauer spectra similar to Fe/HY. A 1/1 (CO/H{sub 2}) feed was used to investigate the Fischer-Tropsch reaction at 1 atm, 250{degree}C. (ii) ZSM-5 supported catalysts: Moessbauer results indicate similar patterns for impregnated and ion-exchanged catalysts, and reaction studies reveal similar catalytic behavior for the two preparation methods. This is in contrast to the rather widely different properties of these metals resulting from impregnation or ion exchange on Y zeolite. In generation, the ZSM-5 supported metals produce higher activity and selectivity for high molecular weight materials, and are particularly identified with significant aromatic content in the production distribution.

  7. Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wu, Siyu; Chen, Xu; Pan, Mu; Mu, Shichun

    2014-12-01

    Currently, the development of nitrogen (N) doped carbon based non-precious metal ORR catalysts has become one of the most attractive topics in low temperature fuel cells. Here, we demonstrate a green synthesis route of N-self-doped carbon materials by using eggs as N sources combining with iron sources and multi-walled carbon nanotubes (CE-Fe-MWNT). After carbonized, such hybrid materials possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in alkaline media, and both superior stability and fuel (methanol and CO) tolerance than the commercial Pt/C catalyst, which provide a promising alternative to noble metal catalysts by using abundant natural biological resources.

  8. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    PubMed Central

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia

    2015-01-01

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A⋅cm−3 at 0.9 V or 450 A⋅cm−3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed. PMID:26261338

  9. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    SciTech Connect

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A∙cm-3 at 0.9 V or 450 A∙cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.

  10. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    DOE PAGESBeta

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report heremore » a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A∙cm-3 at 0.9 V or 450 A∙cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.« less

  11. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    SciTech Connect

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  12. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  13. Microstructure-stability relations studies of porous chitosan microspheres supported palladium catalysts.

    PubMed

    Zeng, Minfeng; Zhang, Xin; Qi, Chenze; Zhang, Xian-Man

    2012-12-01

    In this study, polyethylene glycol (PEG) with different molecular weight, polyvinyl pyrrolidone (PVP), and polyvinyl alcohol (PVA), are chosen as porogens for preparing chitosan base porous microsphere supported palladium catalyst for coupling reactions. The pore structure of the microspheres was controlled by the compatibility of chitosan and counterpart polymers. The prepared porous chitosan microspheres supported palladium heterogeneous catalysts have been evaluated using the well-established Ullmann reductive homocoupling and the Heck cross-coupling reactions. The activities, stabilities and recyclability of the porous chitosan microspheres supported palladium catalysts are not only highly dependent upon the surface areas of the solid supports, but also upon the chemical properties of the water-soluble polymers. The degradation of the prepared heterogeneous palladium catalysts is mainly caused by a combination of the palladium leaching and the morphological transformation of the palladium species from the amorphous into the crystals.

  14. Self-supported Pd(x)Bi catalysts for the electrooxidation of glycerol in alkaline media.

    PubMed

    Zalineeva, Anna; Serov, Alexey; Padilla, Monica; Martinez, Ulises; Artyushkova, Kateryna; Baranton, Stève; Coutanceau, Christophe; Atanassov, Plamen B

    2014-03-12

    Highly active self-supported PdxBi catalysts are synthesized by the sacrificial support method. Self-supported PdxBi catalysts have a porous nanostructured morphology with high surface areas (in the range from 75 to 100 m(2) g(-1)), making PdxBi a state-of-the-art catalyst. Pd4Bi displays the highest activity toward glycerol oxidation. In situ Fourier transform infrared spectroscopy highlights the unique catalytic behavior of self-supported PdxBi materials due to their particular structure and morphology. The confinement of reactants and intermediates in pores acting as nanoreactors is responsible for the high selectivity as a function of the electrode potential: aldehyde and ketone at low potentials, hydroxypyruvate at moderate potentials, and CO2 at high potentials. Moreover, the selectivity depends on the electrode history: it is different for the positive potential scan direction than for the reverse direction, where the catalyst becomes selective toward the production of carboxylates.

  15. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer.

    PubMed

    Seo, Jae Keun; Choi, Won Seok; Kim, Hee Dong; Lee, Jae-Hyeoung; Choi, Eun Chang; Kim, Hyung Jin; Hong, Byungyou

    2011-12-01

    We have investigated the direct growth of metal-free carbon nanotubes (CNTs) on glass substrates with microwave-plasma enhanced chemical vapor deposition (MPECVD). Amorphous carbon (a-C) films were used as a catalyst layer to grow metal-free CNTs. The a-C films were deposited on Corning glass substrates using RF magnetron sputtering with the use of a carbon target (99.99%) at room temperature. They were pretreated with hydrogen plasma using a microwave PECVD at 600 degrees C. Then, CNTs were prepared using microwave PECVD with a mixture of methane (CH4) and hydrogen (H2) gases. The CNTs were grown at different substrate temperatures (400 degrees C, 500 degrees C, and 600 degrees C) for 30 minutes. Other conditions were fixed. The growth trends of CNTs against substrate temperature were observed by field emission scanning electron microscopy (FE-SEM). The structure of a-C catalyst layer and grown CNTs were measured by Raman spectroscopy. High-resolution transmission electron microscopy (HR-TEM) images showed that the CNTs had bamboo-like multi-walled structures. Energy dispersive spectroscopy (EDS) measurements confirmed that the CNTs consisted of only carbon. PMID:22409050

  16. Synthesis and Characterization of Carbon Nanofibers on Transition Metal Catalysts by Chemical Vapor Deposition.

    PubMed

    Hyun, Yura; Park, Eun-Sil; Mees, Karina; Park, Ho-Seon; Willert-Porada, Monika; Lee, Chang-Seop

    2015-09-01

    Carbon nanofibers were synthesized on transition metal (Fe, Co, Cu) catalysts by Chemical Vapor Deposition (CVD). The variations of thickness and surface of the fibers were investigated according to the concentration of the transition metal. In order to prepare the metal catalysts for synthesis, transition metal nitrate and copper nitrate at a weight ratio were dissolved in distilled water. The obtained catalyst precipitates were filtered and then dried for more than 24 hours at 110 degrees C. Carbon nanofibers were synthesized by using ethylene gas of carbon source by CVD after pulverization of the fully-dried catalyst precipitates. They were characterized by SEM, EDS, Raman, XRD, XPS and TG/DTA, and their specific surface area was measured by BET. The characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of the metal catalysts. Especially, uniform carbon nanofibers grew when the concentration ratio of Fe and Cu was 7:3, and that of Co and Cu was 6:4. Carbon nanofibers synthesized under such concentration conditions had the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts of different concentration ratios, and revealed high amorphicity as well as high specific surface area. PMID:26716326

  17. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  18. Characterization of Al2O3 Supported Nickel Catalysts Derived from RFNon-thermal Plasma Technology

    SciTech Connect

    Jang, Ben W; Helleson, Michael J; Shi, Chunkai; Rondinone, Adam Justin; Schwartz, Viviane; Liang, Chengdu; Overbury, Steven {Steve} H

    2008-01-01

    Catalysts derived from non-thermal plasma techniques have previously shown unusual and highly advantageous catalytic properties including room temperature reduction, unusual metal particle structure and metal-support interactions, and enhanced selectivity and stability. This study focuses on the characterization of Al2O3 supported Ni catalysts derived from the RF non-thermal plasma technique with in-situ XRD, TPR-MS and STEM and on relating the results to the enhanced activity and stability of benzene hydrogenation. The results suggest that catalysts with plasma treatments before impregnation are relatively easier to be reduced and result in better activities under mild reduction conditions. These plasma treatments stabilize the nickel particle sizes of air(B) and H2(B) catalysts at 600 C by slowing down the sintering process. Plasma treatments after the impregnation of precursors, on the other hand, tend to delay the growth of nickel particles below 600 C, forming smaller Ni particles, but with a sudden increase in particle size near 600 C. It suggests that the structure of Ni nitrate and the metal-support interaction have been altered by the plasma treatments. The reduction patterns of plasma 1 treated catalysts are, therefore, changed. The catalyst with a combination plasma treatment demonstrates that the effect of a combination plasma treatment is larger than either the plasma treatment before or after the impregnation alone. Both plasma treatments before and after the impregnation of metal precursor play important roles in modifying supported metal catalysts.

  19. Towards stable catalysts by controlling collective properties of supported metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Prieto, Gonzalo; Zečević, Jovana; Friedrich, Heiner; de Jong, Krijn P.; de Jongh, Petra E.

    2013-01-01

    Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al2O3 catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.

  20. Towards stable catalysts by controlling collective properties of supported metal nanoparticles.

    PubMed

    Prieto, Gonzalo; Zečević, Jovana; Friedrich, Heiner; de Jong, Krijn P; de Jongh, Petra E

    2013-01-01

    Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al(2)O(3) catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production. PMID:23142841

  1. Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation

    SciTech Connect

    Singh, Joseph A; Dudney, Nancy J; Li, Meijun; Overbury, Steven {Steve} H; Veith, Gabriel M

    2012-01-01

    This paper reports the synthesis of 2.5 nm gold clusters on the oxygen free and chemically labile support carbon nitride (C3N4). Despite having small particle sizes and high enough water partial pressure these Au/C3N4 catalysts are inactive for the gas phase and liquid phase oxidation of carbon monoxide. The reason for the lack of activity is attributed to the lack of surface OH groups on the C3N4. These OH groups are argued to be responsible for the activation of CO in the oxidation of CO. The importance of basic OH groups explains the well document dependence of support isoelectric point versus catalytic activity.

  2. Supported nickel bromide catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate.

    PubMed

    Duquesne, E; Degée, Ph; Habimana, J; Dubois, Ph

    2004-03-21

    A new supported catalytic system, i.e. nickel bromide catalyst ligated by triphenylphosphine (TPP) ligands immobilized onto crosslinked polystyrene resins (PS-TPP) is reported. Per se, this catalyst does not allow any control over the polymerization of methyl methacrylate (MMA) initiated by ethyl 2-bromoisobutyrate but, in the presence of a given amount of purposely added free TPP, it promotes controlled ATRP of MMA. Indeed colorless PMMA chains of low polydispersity indices are readily recovered, the molecular weight of which linearly increases with monomer conversion and agrees with the expected values. Recycling of the supported catalyst is evidenced and does not prevent the polymerization from being controlled. PMID:15010758

  3. Carbon deposition in the Bosch process with ruthenium and ruthenium-iron alloy catalysts. M.S. Thesis. Final Report, Jan. 1981 - Jul. 1982

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.; Sophonpanich, C.

    1982-01-01

    The effectiveness of ruthenium and the alloys 50Ru50Fe and 33Ru67Fe as alternatives to iron, nickel, and cobalt catalysts in recovering oxygen from metabolic carbon dioxide was investigated. Carbon deposition boundaries over the unsupported alloys are reported. Experiments were also carried out over 50Ru50Fe and 97Ru3Fe3 catalysts supported on gamma-alumina to determine their performance in the synthesis of low molecular weight olefins. High production of ethylene and propylene would be beneficial for an improvement of an overall Bosch process, as a gas phase containing high olefin content would enhance carbon deposition in a Bosch reactor.

  4. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    PubMed

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance. PMID:26726511

  5. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    PubMed

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance.

  6. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed. PMID:23765005

  7. Investigation of low temperature carbon monoxide oxidation catalysts. [for Spacelab atmosphere control

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.; Katan, T.; Ray, C. D.; Lamparter, R. A.

    1977-01-01

    Carbon monoxide generation rates related to the use of commerical equipment in Spacelab, added to the normal metabolic and subsystem loads, will produce carbon monoxide levels in excess of the maximum allowable concentration. In connection with the sensitivity of carbon monoxide oxidation catalysts to poisoning at room temperature, catalysts for an oxidation of carbon monoxide at low temperatures have been investigated. It was found that platinum and palladium are the only effective room temperature catalysts which are effective at 333 K. Hopcalite was ineffective at ambient temperatures, but converted CO with 100 percent efficiency at 333 K. Poisoning tests showed the noble metal catalysts to be very sensitive, and Hopcalite to be very resistant to poisoning.

  8. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed.

  9. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.

    PubMed

    Chen, Chun-Liang; Wang, Ching-Huei; Weng, Hung-Shan

    2004-08-01

    This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction. PMID:15212907

  10. LDRD final report on new homogeneous and supported oligomerization catalysts (LDRD 42461).

    SciTech Connect

    Hascall, Anthony G.; Kemp, Richard Alan

    2004-11-01

    The overall purpose of this LDRD is multifold. First, we are interested in preparing new homogeneous catalysts that can be used in the oligomerization of ethylene and in understanding commercially important systems better. Second, we are interested in attempting to support these new homogeneous catalysts in the pores of nano- or mesoporous materials in order to force new and unusual distributions of a-olefins to be formed during the oligomerization. Thus the overall purpose is to try to prepare new catalytic species and to possibly control the active site architecture in order to yield certain desired products during a catalytic reaction, much like nature does with enzymes. In order to rationally synthesize catalysts it is imperative to comprehend the function of the various components of the catalyst. In heterogeneous systems, it is of utmost importance to know how a support interacts with the active site of the catalyst. In fact, in the catalysis world this lack of fundamental understanding of the relationship between active site and support is the single largest reason catalysis is considered an 'empirical' or 'black box' science rather than a well-understood one. In this work we will be preparing novel ethylene oligomerization catalysts, which are normally P-O chelated homogeneous complexes, with new ligands that replace P with a stable carbene. We will also examine a commercially catalyst system and investigate the active site in it via X-ray crystallography. We will also attempt to support these materials inside the pores of nano- and mesoporous materials. Essentially, we will be tailoring the size and scale of the catalyst active site and its surrounding environment to match the size of the molecular product(s) we wish to make. The overall purpose of the study will be to prepare new homogeneous catalysts, and if successful in supporting them to examine the effects that steric constraints and pore structures can have on growing oligomer chains.

  11. Kinetics of oxygen-enhanced water gas shift on bimetallic catalysts and the roles of metals and support

    NASA Astrophysics Data System (ADS)

    Kugai, Junichiro

    The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However, the conventional process consists of three steps, i.e. two steps of water gas shift (WGS) and preferential oxidation (PROX) of CO, and it is not suitable for mobile applications due to the large volume of water gas shift (WGS) catalysts and conditioning and/or regeneration necessary for these catalysts. Aiming at replacing those three steps by a simple one-step process, small amount of oxygen was added to WGS (the reaction called oxygen-enhanced water gas shift or OWGS) to promote the reaction kinetics and low pyrophoric ceria-supported bimetallic catalysts were employed for stable performance in this reaction. Not only CO conversion, but also H2 yield was found to increase by the O2 addition on CeO2-supported catalysts. The characteristics of OWGS, high H2 production rate at 200 to 300°C at short contact time where unreacted O2 exists, evidenced the impact of O2 addition on surface species on the catalyst. Around 1.5 of reaction order in CO for various CeO2-supported metal catalysts for OWGS compared to reaction orders in CO ranging from -0.1 to 0.6 depending on metal species for WGS shows O2 addition decreases CO coverage to free up the active sites for co-reactant (H2O) adsorption and activation. Among the monometallic and bimetallic catalysts, Pt-Cu and Pd-Cu bimetallic catalysts were superior to monometallic catalysts in OWGS. These bimetallic components were found to form alloys where noble metal is surrounded mainly by Cu to have strong interaction between noble metal and copper resulting in high OWGS activity and low pyrophoric property. The metal loadings were optimized for CeO2-supported Pd-Cu bimetallic system and 2 wt% Pd with 5 -- 10 wt% Cu were found to be the optimum for the present OWGS condition. In the kinetic study, Pd in Pd-Cu was shown to increase the active sites for H2O

  12. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.

  13. New nickel catalysts for the formation of filamentous carbon in the reaction of methane decomposition

    SciTech Connect

    Ermakova, M.A.; Ermakov, D.Y.; Kuvshinov, G.G.; Plyasova, L.M.

    1999-10-01

    A method for intentional synthesis of metal catalysts, specifically nickel catalysts for methane decomposition, was developed. The method was based on impregnation of a porous metal oxide with the precursor of a textural promoter followed by reduction of the latter. The desired texture of NiO was provided by precalcining it at a certain temperature within the range 300 to 900 C. A family of nickel-based catalytic systems with various concentrations of the active component, metal particle sizes, and stability to deactivation in the course of synthesis of filamentous carbon was prepared. The yield of carbon and mechanical strength of carbon particles growing on the catalyst during methane decomposition were found to increase with the concentration of nickel in the catalyst, to reach their maxima at 90--96% nickel. The highest yield of carbon (375--384 g carbon per g nickel) was observed for the catalyst with particles of 10--40 nm average diameter. The effect of textural promoters (SiO{sub 2}, Al{sub 2}O{sub 3}, MgO, TiO{sub 2}, and ZrO{sub 2}) on the catalyst performance was studied; the highest carbon yield was obtained with SiO{sub 2}.

  14. Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation

    PubMed Central

    Zhang, Jianghao; Li, Yaobin; Zhang, Yan; Chen, Min; Wang, Lian; Zhang, Changbin; He, Hong

    2015-01-01

    Ag-based catalysts with different supports (TiO2, Al2O3 and CeO2) were prepared by impregnation method and subsequently tested for the catalytic oxidation of formaldehyde (HCHO) at low temperature. The Ag/TiO2 catalyst showed the distinctive catalytic performance, achieving the complete HCHO conversion at around 95 °C. In contrast, the Ag/Al2O3 and Ag/CeO2 catalysts displayed much lower activity and the 100% conversion was reached at 110 °C and higher than 125 °C, respectively. The Ag-based catalysts were next characterized by several methods. The characterization results revealed that supports have the dramatic influence on the Ag particle sizes and dispersion. Kinetic tests showed that the Ag based catalyst on the TiO2, Al2O3 or CeO2 supports have the similar apparent activation energy of 65 kJ mol−1, indicating that the catalytic mechanism keep immutability over these three catalysts. Therefore, Ag particle size and dispersion was confirmed to be the main factor affecting the catalytic performance for HCHO oxidation. The Ag/TiO2 catalyst has the highest Ag dispersion and the smallest Ag particle size, accordingly presenting the best catalytic performance for HCHO oxidation. PMID:26263506

  15. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    EPA Science Inventory

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  16. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    NASA Astrophysics Data System (ADS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    High surface area TiO2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid - Ni3/2PW12O40 was applied as oxide precursor of the active components. The catalyst was characterized by SBET, XRD, UV-vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  17. MCM-41-supported cobalt-molybdenum catalysts for deep hydrodesulfurization of diesel and jet fuel feedstocks

    NASA Astrophysics Data System (ADS)

    Turaga, Uday Tsrpr

    Regulatory issues require new catalysts for the deep hydrodesulfurization (HDS) of refractory polyaromatic sulfur compounds such as 4,6-dimethyldibenzothiophene (4,6-DMDBT) present in diesel and jet fuel. Molybdenum sulfide (MoS2 ) supported on mesoporous molecular sieve MCM-41 and promoted by cobalt was hypothesized to have superior activity for deep HDS because of MCM-41's (1) high surface area and uniform mesopores and (2) superior acidity as compared to conventional supports such as gamma-alumina (gamma-Al 2O3). This study examines the role of MCM-41 as a support for new cobalt (Co)-molybdenum (Mo) HDS catalysts. At CoO-MoO3 loadings typical of commercially available HDS catalysts, MCM-41-supported catalysts were only slightly better. At higher loadings---27.0% (by weight) MoO3 and 5.8% CoO---MCM-41-supported catalysts were twice more active than the commercial catalyst. This difference in activities is related to the degree of MoS2 stacking. Remarkable increase in the conversion of 4,6-DMDBT was observed over MCM-41-supported catalysts with decreasing SiO2/Al2O 3 ratio. More significantly, the SiO2/Al2O 3 ratio of MCM-41 has a profound effect on product distribution and catalyst selectivity. Irrespective of CoO-MoO3 loading, catalysts using MCM-41 with a SiO2/Al2O3 ratio of 50 convert more of 4,6-DMDBT through the highly desirable hydrogenolysis pathway. The acidity of these catalysts was measured and correlated to their selectivities for hydrogenolysis and hydrocracking. Co-Mo/MCM-41 continued to demonstrate activities twice that of the commercial catalyst for the HDS of 4,6-DMDBT in petroleum-derived feedstocks such as light cycle oil. However, for a blend of coal- and petroleum-derived feedstocks, nitrogen from the coal-derived liquid inhibited both catalysts for the HDS of 4,6-DMDBT. Basic nitrogen, e.g., quinoline, significantly retards the HDS of 4,6-DMDBT over both catalysts. Non-basic carbazole, on the other hand, inhibited the MCM-41-supported

  18. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  19. Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR.

    PubMed

    Hu, Chuangang; Dai, Liming

    2016-09-19

    Besides their use in fuel cells for energy conversion through the oxygen reduction reaction (ORR), carbon-based metal-free catalysts have also been demonstrated to be promising alternatives to noble-metal/metal oxide catalysts for the oxygen evolution reaction (OER) in metal-air batteries for energy storage and for the splitting of water to produce hydrogen fuels through the hydrogen evolution reaction (HER). This Review focuses on recent progress in the development of carbon-based metal-free catalysts for the OER and HER, along with challenges and perspectives in the emerging field of metal-free electrocatalysis. PMID:27460826

  20. Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR.

    PubMed

    Hu, Chuangang; Dai, Liming

    2016-09-19

    Besides their use in fuel cells for energy conversion through the oxygen reduction reaction (ORR), carbon-based metal-free catalysts have also been demonstrated to be promising alternatives to noble-metal/metal oxide catalysts for the oxygen evolution reaction (OER) in metal-air batteries for energy storage and for the splitting of water to produce hydrogen fuels through the hydrogen evolution reaction (HER). This Review focuses on recent progress in the development of carbon-based metal-free catalysts for the OER and HER, along with challenges and perspectives in the emerging field of metal-free electrocatalysis.