Science.gov

Sample records for carbon-carbon bond forming

  1. Rational approaches for engineering novel functionalities in carbon-carbon bond forming enzymes

    PubMed Central

    Baker, Perrin; Seah, Stephen Y. K.

    2012-01-01

    Enzymes that catalyze carbon-carbon bond formation can be exploited as biocatalyst for synthetic organic chemistry. However, natural enzymes frequently do not possess the required properties or specificities to catalyze industrially useful transformations. This mini-review describes recent work using knowledge-guided site-specific mutagenesis of key active site residues to alter substrate specificity, stereospecificity and reaction specificity of these enzymes. In addition, examples of de novo designed enzymes that catalyze C-C bond reactions not found in nature will be discussed. PMID:24688644

  2. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.

    PubMed

    Motokura, Ken; Tomita, Mitsuru; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-01-01

    Acid-base bifunctional heterogeneous catalysts were prepared by the reaction of an acidic silica-alumina (SA) surface with silane-coupling reagents possessing amino functional groups. The obtained SA-supported amines (SA-NR2) were characterized by solid-state 13C and 29Si NMR spectroscopy, FT-IR spectroscopy, and elemental analysis. The solid-state NMR spectra revealed that the amines were immobilized by acid-base interactions at the SA surface. The interactions between the surface acidic sites and the immobilized basic amines were weaker than the interactions between the SA and free amines. The catalytic performances of the SA-NR2 catalysts for various carbon-carbon bond-forming reactions, such as cyano-ethoxycarbonylation, the Michael reaction, and the nitro-aldol reaction, were investigated and compared with those of homogeneous and other heterogeneous catalysts. The SA-NR2 catalysts showed much higher catalytic activities for the carbon-carbon bond-forming reactions than heterogeneous amine catalysts using other supports, such as SiO2 and Al2O3. On the other hand, homogeneous amines hardly promoted these reactions under similar reaction conditions, and the catalytic behavior of SA-NR2 was also different from that of MgO, which was employed as a typical heterogeneous base. An acid-base dual-activation mechanism for the carbon-carbon bond-forming reactions is proposed.

  3. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  4. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  5. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  6. A DFT study on the reaction pathways for carbon-carbon bond-forming reactions between propargylic alcohols and alkenes or ketones catalyzed by thiolate-bridged diruthenium complexes.

    PubMed

    Sakata, Ken; Miyake, Yoshihiro; Nishibayashi, Yoshiaki

    2009-01-05

    The reaction pathways of two types of the carbon-carbon bond-forming reactions catalyzed by thiolate-bridged diruthenium complexes have been investigated by density-functional-theory calculations. It is clarified that both carbon-carbon bond-forming reactions proceed through a ruthenium-allenylidene complex as a common reactive intermediate. The attack of pi electrons on propene or the vinyl alcohol on the ruthenium-allenylidene complex is the first step of the reaction pathways. The reaction pathways are different after the attack of nucleophiles on the ruthenium-alkynyl complex. In the reaction with propene, the carbon-carbon bond-forming reaction proceeds through a stepwise process, whereas in the reaction with vinyl alcohol, it proceeds through a concerted process. The interactions between the ruthenium-allenylidene complex and propene or vinyl alcohol have been investigated by applying a simple way of looking at orbital interactions.

  7. Monomeric metal aqua complexes in the interlayer space of montmorillonites as strong Lewis acid catalysts for heterogeneous carbon-carbon bond-forming reactions.

    PubMed

    Kawabata, Tomonori; Kato, Masaki; Mizugaki, Tomoo; Ebitani, Kohki; Kaneda, Kiyotomi

    2004-12-17

    Montmorillonite-enwrapped copper and scandium catalysts (Cu(2+)- and Sc(3+)-monts) were easily prepared by treating Na(+)-mont with the aqueous solution of the copper nitrate and scandium triflate, respectively. The resulting Cu(2+)- and Sc(3+)-monts showed outstanding catalytic activities for a variety of carbon-carbon bond-forming reactions, such as the Michael reaction, the Sakurai-Hosomi allylation, and the Diels-Alder reaction, under solvent-free or aqueous conditions. The remarkable activity of the mont catalysts is attributable to the negatively charged silicate layers that are capable of stabilizing metal cations. Furthermore, these catalysts were reusable without any appreciable loss in activity and selectivity. The Cu(2+)-mont-catalyzed Michael reaction proceeds via a ternary complex in which both the 1,3-dicarbonyl compound and the enone are coordinated to a Lewis acid Cu(2+) center.

  8. A radical process towards the development of transition-metal-free aromatic carbon-carbon bond-forming reactions.

    PubMed

    Chan, Tek Long; Wu, Yinuo; Choy, Pui Ying; Kwong, Fuk Yee

    2013-11-18

    Transition-metal-free cross-coupling reactions have been a hot topic in recent years. With the aid of a radical initiator, a number of unactivated arene C-H bonds can be directly arylated/functionalized by using aryl halides through homolytic aromatic substitution. Commercially available or specially designed promoters (e.g. diamines, diols, and amino alcohols) have been used to make this synthetically attractive method viable. This protocol offers an inexpensive, yet efficient route to aromatic C-C bond formations since transition metal catalysts and impurities can be avoided by using this reaction system. In this article, we focus on the significance of the reaction conditions (e.g. bases and promoters), which allow this type of reaction to proceed smoothly. Substrate scope limitations and challenges, as well as mechanistic discussion are also included.

  9. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  10. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  11. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  12. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  13. Catalyzed hydrolytic cleavage reaction of carbon-carbon bond

    SciTech Connect

    Ioffe, I.I.; Rubinskaya, E.V.

    1986-12-01

    The authors split the carbon-carbon bond for a series of simple and complex organic compounds in neutral aqueous solutions on a heterogeneous metal-containing catalyst, palladium on carbon. The experimental results are given. In each case, the catalytic effect was controlled by a blank experiment, without a catalyst, where there was no decomposition of the substrate. The occurrence of the heterogeneous-catalytic cleavage reaction of the carbon-carbon bonds in the molecules is indicated not only by their extensive conversion, but also by the almost complete depletion of the content of organic carbon, confirmed by a similar decrease in the chemical consumption of oxygen coefficient in the system, which is possible only in the complete decomposition of the organic compounds to gaseous products or with the formation of inappreciable amounts of low-molecular-weight water-soluble compounds.

  14. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOEpatents

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  15. Catalytic asymmetric carbon-carbon bond formation via allylic alkylations with organolithium compounds.

    PubMed

    Pérez, Manuel; Fañanás-Mastral, Martín; Bos, Pieter H; Rudolph, Alena; Harutyunyan, Syuzanna R; Feringa, Ben L

    2011-05-01

    Carbon-carbon bond formation is the basis for the biogenesis of nature's essential molecules. Consequently, it lies at the heart of the chemical sciences. Chiral catalysts have been developed for asymmetric C-C bond formation to yield single enantiomers from several organometallic reagents. Remarkably, for extremely reactive organolithium compounds, which are among the most broadly used reagents in chemical synthesis, a general catalytic methodology for enantioselective C-C formation has proven elusive, until now. Here, we report a copper-based chiral catalytic system that allows carbon-carbon bond formation via allylic alkylation with alkyllithium reagents, with extremely high enantioselectivities and able to tolerate several functional groups. We have found that both the solvent used and the structure of the active chiral catalyst are the most critical factors in achieving successful asymmetric catalysis with alkyllithium reagents. The active form of the chiral catalyst has been identified through spectroscopic studies as a diphosphine copper monoalkyl species.

  16. Lessons from nature: biomimetic organocatalytic carbon-carbon bond formations.

    PubMed

    Enders, Dieter; Narine, Arun A

    2008-10-17

    Nature utilizes simple C2 and C3 building blocks, such as dihydroxyacetone phosphate (DHAP), phosphoenolpyruvate (PEP), and the "active aldehyde" in various enzyme-catalyzed carbon-carbon bond formations to efficiently build up complex organic molecules. In this Perspective, we describe the transition from using enantiopure chemical synthetic equivalents of these building blocks, employing our SAMP/RAMP hydrazone methodology and metalated chiral alpha-amino nitriles, to the asymmetric organocatalytic versions developed in our laboratory. Following this biomimetic strategy, the DHAP equivalent 2,2-dimethyl-1,3-dioxan-5-one (dioxanone) has been used in the proline-catalyzed synthesis of carbohydrates, aminosugars, carbasugars, polyoxamic acid, and various sphingosines. Proline-catalyzed aldol reactions involving a PEP-like equivalent have also allowed for the asymmetric synthesis of ulosonic acid precursors. By mimicking the "active aldehyde" nucleophilic acylations in Nature catalyzed by the thiamine-dependent enzyme, transketolase, enantioselective N-heterocyclic carbene-catalyzed benzoin and Stetter reactions have been developed. Finally, based on Nature's use of domino reactions to convert simple building blocks into complex and highly functionalized molecules, we report on our development of biomimetic asymmetric multicomponent domino reactions which couple enamine and iminium catalysis.

  17. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    NASA Astrophysics Data System (ADS)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.

  18. Micro-oxidation treatment to improve bonding strength of Sr and Na co-substituted hydroxyapatite coatings for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Yulei; Liu, Shoujie; Guo, Qian; Li, Shaoxian

    2016-08-01

    To improve the bonding strength of Sr and Na co-substituted hydroxyapatite (SNH) coatings for carbon/carbon composites, carbon/carbon composites are surface modified by micro-oxidation treatment. The micro-oxidation treatment could generate large number of pores containing oxygenic functional groups on the surface of carbon/carbon composites. SNH is nucleated on the inwall of the pores and form a flaky shape coating with 10-50 nm in thickness and 200-900 nm in width. The bonding strength between SNH coating and carbon/carbon composites increases from 4.27 ± 0.26 MPa to 10.57 ± 0.38 MPa after the micro-oxidation treatment. The promotion of bonding strength is mainly attributed to the pinning effect caused by the pores and chemical bonding generated by the oxygenic functional groups.

  19. Biosynthesis of pyranonaphthoquinone polyketides reveals diverse strategies for enzymatic carbon-carbon bond formation.

    PubMed

    Metsä-Ketelä, Mikko; Oja, Terhi; Taguchi, Takaaki; Okamoto, Susumu; Ichinose, Koji

    2013-08-01

    Pyranonaphthoquinones synthesized by Streptomyces bacteria via type II polyketide pathways are aromatic compounds build around a common three-ring structure, which is composed of pyran, quinone and benzene rings. Over the years, actinorhodin in particular has served as a model compound for studying the biosynthesis of aromatic polyketides, while some of the other metabolites such as granaticin, medermycin, frenolicin and alnumycin A have enabled comparative studies that complement our understanding how these complex biological systems function and have evolved. In addition, despite the similarity of the aglycone units, pyranonaphthoquinones in effect display remarkable diversity in tailoring reactions, which include numerous enzymatic carbon-carbon bond forming reactions. This review focuses on the current status of molecular genetic, biochemical and structural investigations on this intriguing family of natural products.

  20. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  1. Reduction of carbon-carbon double bonds using organocatalytically generated diimide.

    PubMed

    Smit, Christian; Fraaije, Marco W; Minnaard, Adriaan J

    2008-12-05

    An efficient method has been developed for the reduction of carbon-carbon double bonds with diimide, catalytically generated in situ from hydrazine hydrate. The employed catalyst is prepared in one step from riboflavin (vitamin B(2)). Reactions are carried out in air and are a valuable alternative when metal-catalyzed hydrogenations are problematic.

  2. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines.

    PubMed

    Saikia, Pallabi; Gogoi, Sanjib; Boruah, Romesh C

    2015-07-02

    A new carbon-carbon bond cleavage reaction was developed for the efficient synthesis of multisubstituted pyrazolo[1,5-a]pyrimidines. This base induced reaction of 1,3,5-trisubstituted pentane-1,5-diones and substituted pyrazoles afforded good yields of the pyrazolo[1,5-a]pyrimidines.

  3. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  4. Carbon-CArbon bond formation by Lewis superacid catalysis.

    PubMed

    Dunach, Elisabet

    2014-11-01

    Diverse intramolecular cyclizations involving the formation of CC bonds are described using catalytic methodologies based on Lewis superacids. Examples are presented on 1,6-diene cyclizations to gem-dimethylcyclohexane structures. Tandem cyclization of trienes are described to afford bicyclic structures in reactions involving rearrangements. Hydroarylation of olefins and of allenes is developed in catalytic FriedelCrafts-type coupling processes, which can give rise to tandem reactions. The olfactory evaluation of the series of prepared compounds is also presented.

  5. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  6. Is the 2,3-carbon-carbon bond of indole really inert to oxidative cleavage by Oxone?--synthesis of isatoic anhydrides from indoles.

    PubMed

    Nelson, Amber C; Kalinowski, Emily S; Czerniecki, Nikolas J; Jacobson, Taylor L; Grundt, Peter

    2013-11-21

    A recent report has indicated that the oxidizing agent Oxone does not possess the ability to cleave the 2,3-carbon-carbon bond of indole. Work in our laboratory shows that this is not the case. Indole and a variety of aryl ring substituted derivatives readily react to form synthetically important isatoic anhydrides.

  7. Rigid Single Carbon-Carbon Bond That Does Not Rotate in Water.

    PubMed

    Gadogbe, Manuel; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-10

    Carbon-carbon bond is one of the most ubiquitous molecular building blocks for natural and man-made materials. Rotational isomerization is fundamentally important for understanding the structure and reactivity of chemical and biological molecules. Reported herein is the first demonstration that a single C-C bond does not rotate in water. The two distal C-S bonds in both 1,2-ethanedithiolate ((-)S-CH2-CH2-S(-), 1,2-EDT(2-)) and 2,3-butanedithiolate (2,3-BuDT(2-)) are exclusively in the trans conformer with reference to their respective center single C-C bond. In contrast, both trans and gauche conformers are observed in neutral 1,2-ethanedithiol (1,2-EDT) and 2, 3-butanedithiol (2,3-BuDT). The insight from this work should be important for understanding the charge effect on the molecular conformation in aqueous solutions.

  8. Carbon-Carbon Bond Formation in a Weak Ligand Field: Leveraging Open Shell First Row Transition Metal Catalysts.

    PubMed

    Chirik, Paul James

    2017-01-12

    Unique features of Earth abundant transition metal catalysts are reviewed in the context of catalytic carbon-carbon bond forming reactions. Aryl-substituted bis(imino)pyridine iron and cobalt dihalide compounds, when activated with alkyl aluminum reagents, form highly active catalysts for the polymerization of ethylene. Open shell iron and cobalt alkyl complexes have been synthesized that serve as single component olefin polymerization catalysts. Reduced bis(imino)pyridine iron- and cobalt dinitrogen compounds have also been discovered that promote the unique [2+2] cycloaddition of unactivated terminal alkenes. Electronic structure studies support open shell intermediates, a deviation from traditional strong field organometallic compounds that promote catalytic C-C bond formation.

  9. Exceptionally Fast Carbon-Carbon Bond Reductive Elimination from Gold(III)

    PubMed Central

    Wolf, William J.; Winston, Matthew S.; Toste, F. Dean

    2014-01-01

    Reductive elimination of carbon-carbon (C-C) bonds occurs in numerous metal-catalyzed reactions. This process is well documented for a variety of transition metal complexes. However, C-C bond reductive elimination from a limited number of Au(III) complexes has been shown to be a slow and prohibitive process, generally requiring elevated temperature. Herein, we show that oxidation of a series of mono- and bimetallic Au(I) aryl complexes at low temperature generates observable Au(III) and Au(II) intermediates. We also show that aryl-aryl bond reductive elimination from these oxidized species is not only among the fastest observed for any transition metal, but is also mechanistically distinct from previously studied alkyl-alkyl and aryl-alkyl reductive eliminations from Au(III). PMID:24451593

  10. Carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride

    NASA Astrophysics Data System (ADS)

    Hu, Shaowei; Shima, Takanori; Hou, Zhaomin

    2014-08-01

    The cleavage of carbon-carbon (C-C) bonds by transition metals is of great interest, especially as this transformation can be used to produce fuels and other industrially important chemicals from natural resources such as petroleum and biomass. Carbon-carbon bonds are quite stable and are consequently unreactive under many reaction conditions. In the industrial naphtha hydrocracking process, the aromatic carbon skeleton of benzene can be transformed to methylcyclopentane and acyclic saturated hydrocarbons through C-C bond cleavage and rearrangement on the surfaces of solid catalysts. However, these chemical transformations usually require high temperatures and are fairly non-selective. Microorganisms can degrade aromatic compounds under ambient conditions, but the mechanistic details are not known and are difficult to mimic. Several transition metal complexes have been reported to cleave C-C bonds in a selective fashion in special circumstances, such as relief of ring strain, formation of an aromatic system, chelation-assisted cyclometallation and β-carbon elimination. However, the cleavage of benzene by a transition metal complex has not been reported. Here we report the C-C bond cleavage and rearrangement of benzene by a trinuclear titanium polyhydride complex. The benzene ring is transformed sequentially to a methylcyclopentenyl and a 2-methylpentenyl species through the cleavage of the aromatic carbon skeleton at the multi-titanium sites. Our results suggest that multinuclear titanium hydrides could serve as a unique platform for the activation of aromatic molecules, and may facilitate the design of new catalysts for the transformation of inactive aromatics.

  11. Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.

    PubMed

    Huang, Wenmao; Zhu, Zhenshu; Wen, Jing; Wang, Xin; Qin, Meng; Cao, Yi; Ma, Haibo; Wang, Wei

    2017-01-24

    Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10(9) times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.

  12. Stable Gold(III) Catalysts by Oxidative Addition of a Carbon-Carbon Bond

    PubMed Central

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch

    2014-01-01

    Whereas low-valent late transition metal catalysis has become indispensible for chemical synthesis, homogeneous high-valent transition metal catalysis is underdeveloped, mainly due to the reactivity of high-valent transition metal complexes and the challenges associated with synthesizing them. In this manuscript, we report a mild carbon-carbon bond cleavage reaction by a Au(I) complex that generates a stable Au(III) cationic complex. Complementary to the well-established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic Lewis acidity. This is exemplified by catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The concepts revealed in this study provide a strategy for accessing high-valent transition metal catalysis from readily available precursors. PMID:25612049

  13. Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch; Toste, F. Dean

    2015-01-01

    Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon-carbon bond cleavage at ambient conditions by a Au(I) complex that generates a stable Au(III) cationic complex. In contrast to the well-established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.

  14. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    NASA Astrophysics Data System (ADS)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  15. Synthesis, photophysical and thin-film self-assembly properties of novel fluorescent molecules with carbon-carbon triple bonds.

    PubMed

    Niu, Qingfen; Sun, Hongjian; Li, Xiaoyan

    2014-12-10

    Three novel fluorescent molecules with carbon-carbon triple bonds 2TBEA, 2TBDA and TEPEB are successfully designed and synthesized. Their thermal, photophysical, electrochemical, electronic and thin-film self-assembly properties were characterized. Three dyes showed typical photoluminescence (PL) emission behaviors, the PL intensities firstly increased and then decreased with gradually decreasing concentration. The appealing fluorescence properties indicated that three dyes could be used as good fluorescent materials. Additionally, the thin-film self-assembly behaviors of three dyes were also investigated. The microstructures of their optical microscopy (OM) images exhibited high flexibility. Furthermore, SEM and AFM surface morphology of these self-assembly nanostructures revealed that three well-defined long-range order of rod-like and tube-like self-assembly systems exhibited interesting morphology properties. Therefore, three compounds may be of great interest for the development of organic thin-film materials.

  16. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    PubMed

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  17. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  18. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis

    SciTech Connect

    Cicchillo, Robert M; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T; Li, Gongyong; Nair, Satish K; van derDonk, Wilfred A; Metcalf, William W

    2010-01-12

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp{sup 3})-C(sp{sup 3}) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.

  19. Three-Component Coupling of Triflyloxy-Substituted Benzocyclobutenones, Organolithium Reagents, and Arynophiles Promoted by Generation of Aryne via Carbon-Carbon Bond Cleavage.

    PubMed

    Uchida, Keisuke; Yoshida, Suguru; Hosoya, Takamitsu

    2017-02-23

    Treatment of benzocyclobutenones bearing a triflyloxy group adjacent to the four-membered ring with organolithium reagents in the presence of arynophiles efficiently affords three-component coupled α-arylketones. Mechanistic studies indicate that the reaction is promoted by generation of the aryne via carbon-carbon bond cleavage of a benzocyclobutenoxide intermediate, which led us to find a fluoride-mediated aryne generation method from triflyloxy-substituted benzocyclobutenone silyl acetal precursors.

  20. Elucidation of an Iterative Process of Carbon-Carbon Bond Formation of Prebiotic Significance

    NASA Astrophysics Data System (ADS)

    Loison, Aurélie; Dubant, Stéphane; Adam, Pierre; Albrecht, Pierre

    2010-12-01

    Laboratory experiments carried out under plausible prebiotic conditions (under conditions that might have occurred at primitive deep-sea hydrothermal vents) in water and involving constituents that occur in the vicinity of submarine hydrothermal vents (e.g., CO, H2S, NiS) have disclosed an iterative Ni-catalyzed pathway of C-C bond formation. This pathway leads from CO to various organic molecules that comprise, notably, thiols, alkylmono- and disulfides, carboxylic acids, and related thioesters containing up to four carbon atoms. Furthermore, similar experiments with organic compounds containing various functionalities, such as thiols, carboxylic acids, thioesters, and alcohols, gave clues to the mechanisms of this novel synthetic process in which reduced metal species, in particular Ni(0), appear to be the key catalysts. Moreover, the formation of aldehydes (and ketones) as labile intermediates via a hydroformylation-related process proved to be at the core of the chain elongation process. Since this process can potentially lead to organic compounds with any chain length, it could have played a significant role in the prebiotic formation of lipidic amphiphilic molecules such as fatty acids, potential precursors of membrane constituents.

  1. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  2. Cobryketone derived from vitamin B12 via palladium-catalyzed cleavage of the sp3-sp3 carbon-carbon bond.

    PubMed

    Kurcoń, Sylwester; Proinsias, Keith ó; Gryko, Dorota

    2013-04-19

    Heptamethyl cobyrinate was transformed into hexamethyl 8-nor-cobyrinate. The crucial step involved the synthesis of new, vitamin B12 derived cobryketone via palladium-catalyzed cleavage of the sp(3)-sp(3) carbon-carbon bond with the liberation of the ketone. The replacement of sp(3) carbon atom with sp(2) (C═O) at the 8-position produces a bathochromic shift of all absorption bands and makes α and β bands equal as a consequence of the expansion of the existing conjugated system of double bonds.

  3. Filament Winding Of Carbon/Carbon Structures

    NASA Technical Reports Server (NTRS)

    Jacoy, Paul J.; Schmitigal, Wesley P.; Phillips, Wayne M.

    1991-01-01

    Improved method of winding carbon filaments for carbon/carbon composite structures less costly and labor-intensive, also produces more consistent results. Involves use of roller squeegee to ensure filaments continuously wet with resin during winding. Also involves control of spacing and resin contents of plies to obtain strong bonds between carbon filaments and carbon matrices. Lends itself to full automation and involves use of filaments and matrix-precursor resins in their simplest forms, thereby reducing costs.

  4. Development of a dye molecule-biocatalyst hybrid system with visible-light induced carbon-carbon bond formation from CO2 as a feedstock.

    PubMed

    Amao, Yutaka; Ikeyama, Shusaku; Katagiri, Takayuki; Fujita, Kohei

    2017-03-09

    Recently, CO2 utilization technology, including artificial photosynthesis, has received much attention. In this field, CO2 is used as a feedstock for fuels, polymers and in other chemical processes. Of note are malic enzymes (MEs) which catalyze the reaction of malic acid to pyruvic acid and CO2 with the co-enzyme NADP(+), and catalyze the reverse reaction of pyruvic acid and CO2 to malic acid with the co-enzyme NADPH. Thus, MEs are also an attractive biocatalyst for carbon-carbon bond formation from CO2. Studies of the visible light-induced malic acid production from pyruvic acid and CO2 using an electron donor, a photosensitizer, an electron mediator, ferredoxin-NADP(+) reductase, NADP(+), and ME have been reported. However, modification of these systems is required, as they are very complicated. In this study, the visible light-induced carbon-carbon bond formation from pyruvic acid and CO2 with ME using the photoreduction of 1,1'-diphenyl-4,4'-bipyridinium salt derivatives as a novel electron mediator with water-soluble tetraphenylporphyrin tetrasulfonate (H2TPPS) in the presence of triethanolamine (TEOA) as an electron donor was developed. When a sample solution containing TEOA, H2TPPS, 1,1'-diphenyl-4,4'-bipyridinium salt derivative, pyruvic acid, and ME in CO2-saturated bis-tris buffer was irradiated, the major product was oxaloacetic acid. Thus, a visible light-induced photoredox system for carbon-carbon bond formation from CO2 with ME using 1,1'-diphenyl-4,4'-bipyridinium salt derivative as an electron mediator was developed.

  5. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  6. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  7. Investigations of Oxidation Protection Systems for Carbon-Carbon Composites Formed by Chemical Vapor Deposition and Plasma-Assisted Chemical Vapor Deposition Techniques

    DTIC Science & Technology

    1991-01-21

    the coating oxidizes to form a protective seal. ZrO2 may react with the SiO 2 film to form zirconium silicate, which offers reasonable oxidation...oxidation behavior of coated carbon-carbon (C-C) composites is studied. Silicon carbide and zirconium diboride ceramic coating are deposited on pack...cementation process were a weight percent mixture of silicon (Si), silicon carbide (SiC), zirconium carbide (ZrC), Boron (B), and Alumina (A1203). The

  8. Biomimetic oxidation with molecular oxygen. Selective carbon-carbon bond cleavage of 1,2-diols by molecular oxygen and dihydropyridine in the presence of iron-porphyrin catalysts

    SciTech Connect

    Okamoto, T.; Sasaki, K.; Oka, S.

    1988-02-17

    The selective carbon-carbon bond cleavage of 1,2-diols in the presence of an iron-porphyrin complex, molecular oxygen, and 1-benzyl-3-carbamoyl-1,4-dihydropyridine is reported. The C-C bonds of aryl-substituted ethane-1,2-diols were cleaved exclusively to aldehydes or ketones as the oxidation products at room temperature. The reaction rates were influenced by the steric hindrance of the substituents both in the catalysts and diols, but no differences in the reactivities were observed between the two stereo isomers (meso and dl) of diols. A kinetic analysis of this bond cleavage reaction is consistent with the reaction mechanism consisting of the initial binding of diol on the active catalyst forming an intermediate complex and its subsequent breakdown in the rate-determining step of the catalytic cycle. The initial binding step is favorable for electron-deficient diols and is influenced by steric hindrance, whereas the rate-determining bond cleavage step is accelerated by electron-rich diols and unaffected by the steric effect. The mechanism of this diol cleavage reaction is discussed on the basis of these observations.

  9. Strong bonding strength between HA and (NH4)2S2O8-treated carbon/carbon composite by hydrothermal treatment and induction heating.

    PubMed

    Xiong, Xin-bo; Zeng, Xie-rong; Zou, Chun-li; Zhou, Ji-Zhao

    2009-06-01

    Carbon/carbon composite with hydroxyapatite (HA) coating is an attractive material in the dental and orthopedic fields, but the reported bonding strength between them was very poor. In this study, a compact crystalline HA coating on (NH(4))(2)S(2)O(8)-treated C/C substrate about 10 microm in width was obtained by hydrothermal treatment and induction heating. The microstructure, composition and morphologies of the as-prepared coatings were identified by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. A strong shear strength averaging 74.2 MPa between C/C substrate and HA was achieved and adhesion failures were observed more frequently than cohesion failures. The coating adhesion measured using a scratch test was 23 N and the reasons for this are discussed.

  10. Reversible carbon-carbon bond formation induced by oxidation and reduction at a redox-active cobalt complex.

    PubMed

    Atienza, Crisita Carmen Hojilla; Milsmann, Carsten; Semproni, Scott P; Turner, Zoë R; Chirik, Paul J

    2013-05-06

    The electronic structure of the diamagnetic pyridine imine enamide cobalt dinitrogen complex, ((iPr)PIEA)CoN2 ((iPr)PIEA = 2-(2,6-(i)Pr2-C6H3N═CMe)-6-(2,6-(i)Pr2-C6H3NC═CH2)C5H3N), was determined and is best described as a low-spin cobalt(II) complex antiferromagnetically coupled to an imine radical anion. Addition of potential radical sources such as NO, PhSSPh, or Ph3Cl resulted in C-C coupling at the enamide positions to form bimetallic cobalt compounds. Treatment with the smaller halocarbon, PhCH2Cl, again induced C-C coupling to form a bimetallic bis(imino)pyridine cobalt chloride product but also yielded a monomeric cobalt chloride product where the benzyl group added to the enamide carbon. Similar cooperative metal-ligand addition was observed upon treatment of ((iPr)PIEA)CoN2 with CH2═CHCH2Br, which resulted in allylation of the enamide carbon. Reduction of Coupled-((iPr)PDI)CoCl (Coupled-((iPr)PDI)CoCl = [2-(2,6-(i)Pr2-C6H3N═CMe)-C5H3N-6-(2,6-(i)Pr2-C6H3N═CCH2-)CoCl]2) with NaBEt3H led to quantitative formation of ((iPr)PIEA)CoN2, demonstrating the reversibility of the C-C bond forming reactions. The electronic structures of each of the bimetallic cobalt products were also elucidated by a combination of experimental and computational methods.

  11. Joining Carbon-Carbon Composites and High-Temperature Materials with High Energy Electron Beams

    NASA Technical Reports Server (NTRS)

    Goodman, Daniel; Singler, Robert

    1998-01-01

    1. Program goals addressed during this period. Experimental work was directed at formation of a low-stress bond between carbon- carbon and aluminum, with the objective of minimizing the heating of the aluminum substrate, thereby minimizing stresses resulting from the coefficient of thermal expansion (CTE) difference between the aluminum and carbon-carbon. A second objective was to form a bond between carbon-carbon and aluminum with good thermal conductivity for electronic thermal management (SEM-E) application. 2. Substrates and joining materials selected during this period. Carbon-Carbon Composite (CCC) to Aluminum. CCC (Cu coated) to Aluminum. Soldering compounds based on Sn/Pb and Sn/Ag/Cu/Bi compositions. 3. Soldering experiments performed. Conventional techniques. High Energy Electron Beam (HEEB) process.

  12. Chain Walking as a Strategy for Carbon-Carbon Bond Formation at Unreactive Sites in Organic Synthesis: Catalytic Cycloisomerization of Various 1,n-Dienes.

    PubMed

    Hamasaki, Taro; Aoyama, Yuka; Kawasaki, Junichi; Kakiuchi, Fumitoshi; Kochi, Takuya

    2015-12-30

    Carbon-carbon bond formation at unreactive sp(3)-carbons in small organic molecules via chain walking was achieved for the palladium-catalyzed cycloisomerization of 1,n-dienes. Various 1,n-dienes (n = 7-14) such as those containing cyclic alkenes, acyclic internal alkenes, and a trisubstituted alkene can be used for the chain-walking cycloisomerization/hydrogenation process, and five-membered ring compounds including simple cyclopentane and pyrrolidine derivatives can easily be prepared. Chain walking over a tertiary carbon was also found to be possible in the cycloisomerization. It is not necessary for the linker portion of the diene to contain a quaternary center, and diene substrates with two alkene moieties linked by a tertiary carbon or a nitrogen atom can also be used as substrates. Column chromatography using silica gel containing silver nitrate was found to be effective for isolating some of the cycloisomerization products without hydrogenation. Deuterium-labeling experiments provided direct evidence to show that the reaction proceeds via a chain-walking mechanism.

  13. Mechanism and Stereoselectivity in an Asymmetric N-Heterocyclic Carbene-Catalyzed Carbon-Carbon Bond Activation Reaction.

    PubMed

    Pareek, Monika; Sunoj, Raghavan B

    2016-11-18

    The mechanism and origin of stereoinduction in a chiral N-heterocyclic carbene (NHC) catalyzed C-C bond activation of cyclobutenone has been established using B3LYP-D3 density functional theory computations. The activation of cyclobutenone as an NHC-bound vinyl enolate and subsequent reaction with the electrophilic sulfonyl imine leads to the lactam product. The most preferred stereocontrolling transition state exhibits a number of noncovalent interactions rendering additional stabilization. The computed enantio- and diastereoselectivities are in good agreement with the previous experimental observations.

  14. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  15. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  16. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    SciTech Connect

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.; Lin, Zekai; Abney, Carter W.; Lin, Wenbin

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

  17. Energetics of tert-butoxyl addition reaction to norbornadiene: a method for estimating the pi-bond strength of a carbon-carbon double bond.

    PubMed

    Nunes, Paulo M; Estácio, Sílvia G; Lopes, Gustavo T; Agapito, Filipe; Santos, Rui C; Costa Cabral, Benedito J; Borges dos Santos, Rui M; Martinho Simões, José A

    2009-06-11

    The energetics of tert-butoxyl radical addition reaction to norbornadiene was investigated by time-resolved photoacoustic calorimetry (TR-PAC). The result, together with the C-O bond dissociation enthalpy (BDE) in the addition product, allowed us to calculate the pi-bond dissociation enthalpy in norbornadiene. Quantum chemistry (QC) methods were also used to obtain several enthalpies of reaction of the addition of oxygen-centered radicals to alkenes. The pi-bond dissociation enthalpies in these molecules were calculated by a procedure similar to that used in the case of norbornadiene and were compared with the pi-BDE values obtained by the method proposed by Benson. These two different approaches yield similar values for the pi-BDEs in alkenes, indicating that the addition method proposed in the present study is a valid way to derive that quantity. The influence of strain in the pi-BDEs of cyclic alkenes was investigated and allowed us to justify the difference between the pi-BDE in norbornene and norbornadiene. Finally, the thermochemistry of the addition and abstraction reactions involving these two molecules and tert-butoxyl radical was analyzed.

  18. 45 CFR 1629.5 - Form of bonds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Form of bonds. 1629.5 Section 1629.5 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION BONDING OF RECIPIENTS § 1629.5 Form of bonds. Any form of bond which may be described as individual, schedule or...

  19. 45 CFR 1629.5 - Form of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Form of bonds. 1629.5 Section 1629.5 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION BONDING OF RECIPIENTS § 1629.5 Form of bonds. Any form of bond which may be described as individual, schedule or...

  20. Superplastically formed diffusion bonded metallic structure

    NASA Technical Reports Server (NTRS)

    Ko, W. L. (Inventor)

    1981-01-01

    A metallic sandwich structure particularly suited for use in aerospace industries comprising a base plate, a cover plate, and an orthogonally corrugated core is described. A pair of core plates formed of a superplastic alloy are interposed between the base plate and the cover plate and bonded. Each of the core plates is characterized by a plurality of protrusions comprising square-based, truncated pyramids uniformly aligned along orthogonally related axes perpendicularly bisecting the legs of the bases of the pyramids and alternately inverted along orthogonally related planes diagonally bisecting the pyramids, whereby an orthogonally corrugated core is provided.

  1. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by...

  2. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by...

  3. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  4. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  5. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  6. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  7. Interfaces in carbon-carbon composites

    SciTech Connect

    Peebles, L.H.; Meyer, R.A.; Jortner, J.

    1988-01-01

    Carbon-carbon composites, consisting of a carbon matrix reinforced with carbon fibers, have complex microstructures. Several types of interfaces, microcracks, and various degress of local anisotropy were observed. This paper provides examples of microstructures seen in carbon-carbon composites, with emphasis on the interfaces. Information relating to the degree of bonding at interfaces, and its effects on composite behavior, is reviewed. The causes and effects of the various observed microstructures are beginning to be understood, but there remain many questions deserving further study.

  8. 8 CFR 1280.6 - Bond to obtain clearance; form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Bond to obtain clearance; form. 1280.6... IMMIGRATION REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.6 Bond to obtain clearance; form. A bond to obtain clearance of a vessel or aircraft under section 231, 237, 239, 243, 251, 253, 254, 255, 256,...

  9. 8 CFR 280.6 - Bond to obtain clearance; form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Bond to obtain clearance; form. 280.6 Section 280.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMPOSITION AND COLLECTION OF FINES § 280.6 Bond to obtain clearance; form. A bond to obtain clearance of a...

  10. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from...

  11. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from...

  12. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from...

  13. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from...

  14. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from...

  15. Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds.

    PubMed

    Forouhar, Farhad; Hussain, Munif; Farid, Ramy; Benach, Jordi; Abashidze, Mariam; Edstrom, William C; Vorobiev, Sergey M; Xiao, Rong; Acton, Thomas B; Fu, Zhuji; Kim, Jung-Ja P; Miziorko, Henry M; Montelione, Gaetano T; Hunt, John F

    2006-03-17

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 A resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name "DRE-TIM metallolyases" for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis results and can

  16. Crystal Structures of Two Bacterial 3-Hydroxy-3-methylglutaryl-CoA Lyases Suggest a Common Catalytic Mechanism among a Family of TIM Barrel Metalloenzymes Cleaving Carbon-Carbon Bonds

    SciTech Connect

    Forouhar,F.; Hussain, M.; Farid, R.; Benach, J.; Abashidze, M.; Edstrom, W.; Vorobiev, S.; Montelione, G.; Hunt, J.; et al.

    2006-01-01

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 {angstrom} resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name 'DRE-TIM metallolyases' for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis results and

  17. Strength of an Explosively-Formed Bond

    DTIC Science & Technology

    2006-09-01

    Bushmaster gun tubes and swage autofrettaged 120-mm gun tube. ...............12 Figure A-1. Final test fixture configuration; all dimensions in inches...produced during the firing, resulting in liner movement (3). However, swaging a steel jacket over a Stellite rod can produce an acceptable bond in a...gun tube (explosion-bonded at TPL, Inc.) (5), and a 120-mm extended length gun tube ( swage -autofrettaged at Benet Laboratories) (6). The

  18. 27 CFR 28.64 - Bond, Form 2737.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... provided in § 28.51, a continuing bond on Form 2737 (5110.67). The bond shall be executed in a penal sum... wines which may remain unaccounted for at any one time: Provided, That the maximum penal sum of such bond shall not exceed $200,000, but in no case shall the penal sum be less than $1,000....

  19. Stereochemical Control of Enzymatic Carbon-Carbon Bond-Forming Michael-Type Additions by "Substrate Engineering".

    PubMed

    Miao, Yufeng; Tepper, Pieter G; Geertsema, Edzard M; Poelarends, Gerrit J

    2016-11-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes the Michael-type addition of acetaldehyde to β-nitrostyrene derivatives to yield chiral γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acids. In this study, we investigated the effect of different substituents at the aromatic ring of the Michael acceptor on the catalytic efficiency and stereoselectivity of the 4-OT-catalyzed acetaldehyde addition reactions. Highly enantioenriched (R)- and (S)-γ-nitroaldehydes and 4-substituted chroman-2-ol could be obtained in good to excellent yields by applying different substituents at appropriate positions of the aromatic substrate. Stereochemical control of these enzymatic Michael-type additions by "substrate engineering" allowed the enantioselective synthesis of valuable γ-aminobutyric acid precursors. In addition, the results suggest a novel enzymatic synthesis route towards precursors for chromans and derivatives, which are valuable scaffolds for preparing biologically active natural products.

  20. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    1999-01-01

    An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  1. Carbon-carbon cylinder block

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O. (Inventor)

    1998-01-01

    A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  2. 27 CFR 28.64 - Bond, Form 2737.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... provided in § 28.51, a continuing bond on Form 2737 (5110.67). The bond shall be executed in a penal sum sufficient to cover the tax at the rates prescribed by law on the maximum quantity of distilled spirits and wines which may remain unaccounted for at any one time: Provided, That the maximum penal sum of...

  3. 27 CFR 28.64 - Bond, Form 2737.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... provided in § 28.51, a continuing bond on Form 2737 (5110.67). The bond shall be executed in a penal sum sufficient to cover the tax at the rates prescribed by law on the maximum quantity of distilled spirits and wines which may remain unaccounted for at any one time: Provided, That the maximum penal sum of...

  4. 27 CFR 28.64 - Bond, Form 2737.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... provided in § 28.51, a continuing bond on Form 2737 (5110.67). The bond shall be executed in a penal sum sufficient to cover the tax at the rates prescribed by law on the maximum quantity of distilled spirits and wines which may remain unaccounted for at any one time: Provided, That the maximum penal sum of...

  5. 27 CFR 28.64 - Bond, Form 2737.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... provided in § 28.51, a continuing bond on Form 2737 (5110.67). The bond shall be executed in a penal sum sufficient to cover the tax at the rates prescribed by law on the maximum quantity of distilled spirits and wines which may remain unaccounted for at any one time: Provided, That the maximum penal sum of...

  6. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  7. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  8. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  9. Carbon K-shell electron energy loss spectra of 1- and 2-butenes, trans-1,3-butadiene, and perfluoro-2-butene. Carbon-carbon bond lengths from continuum shape resonances

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Beaulieu, S.; Steel, T.; Stöhr, J.; Sette, F.

    1984-05-01

    Electron energy loss spectra of 1-butene, cis-2-butene, trans-2-butene, trans-1,3-butadiene, and perfluoro-2-butene in the region of carbon K-shell (C 1s) excitation and ionization have been recorded under dipole-dominated inelastic electron scattering conditions. The features observed below the C 1s I.P. in the spectra of the butenes and butadiene are assigned to promotions of C 1s electrons to unoccupied valence (π*) and Rydberg orbitals while broad features observed above the edge are assigned to σ(C-C) and σ(C-C) shape resonances. These spectra, along with carbon K-shell spectra of other hydrocarbons, are used to demonstrate that there is a quantitative relationship between carbon-carbon bond lengths and the location of σ shape resonances relative to the C 1s ionization threshold (I.P.). The C 1s spectrum of perfluoro-2-butene demonstrates dramatic potential barrier effects, namely suppression of Rydberg transitions and strong enhancement of σ(C-C) and σ(C-F) shape resonances in the region of the C 1s ionization threshold.

  10. Response of carbon-carbon composites to challenging environments

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.; Ohlhorst, Craig W.; Barrett, David M.; Ransone, Philip O.; Sawyer, J. Wayne

    1988-01-01

    This paper presents results from material performance evaluations of oxidation-resistant carbon-carbon composites intended for multiuse aerospace applications, which cover the effects of the following environmental parameters: the oxidizing nature of the environments (including both high and low oxygen partial pressures), high temperatures, moisture, cyclic temperature service, and foreign-object impact. Results are presented for the carbon-carbon material currently in use as the thermal-protection-system material on Space Shuttle, as well as for newer and more advanced structural forms of carbon-carbon composites.

  11. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-04

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  12. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  13. Thermographic Inspection Of Superplastically Formed Diffusion Bonded Titanium Panels

    NASA Astrophysics Data System (ADS)

    Haavig, David L.; King, Daniel C.

    1988-01-01

    Infrared thermographic nondestructive inspection of superplastically formed diffusion bonded (SPF/DB) titanium structures is discussed. Nondestructive testing (NDT) of the structures produced by this recently developed method is vital for construction of modern fighter aircraft. Forming and bonding parameters can be optimized by proper interpretation of NDT results. Currently, ultrasonic inspection is used for NDT on these parts. In an effort to reduce cost and inspection time required by ultrasonic testing, a thermographic investigation of panel response to rapid heating was undertaken. Panels were uniformly illuminated for a duration of up to four seconds by high intensity lamps. Infrared images of temperature variation due to panel thickness were observed. Correlation of thermograms with ultrasonic and destructive investigations indicate that lack of bonding and panel formations can easily be observed. We have demonstrated that thermographic inspection provides an equally sensitive and lower cost alternative to ultrasonic inspection. Finally, thermographic inspection facilities for large scale inspection are suggested.

  14. Mullite/Mo interfaces formed by Intrusion bonding

    SciTech Connect

    Bartolome, Jose F.; Diaz, Marcos; Moya, Jose S.; Saiz, Eduardo; Tomsia, Antoni P.

    2003-04-30

    The microstructure and strength of Mo/mullite interfaces formed by diffusion bonding at 1650 C has been analyzed. Interfacial metal-ceramic interlocking contributes to flexural strength of approx. 140 MPa as measured by 3 point bending. Saturation of mullite with MoO2 does not affect the interfacial strength.

  15. Catalytic σ-Bond Metathesis

    NASA Astrophysics Data System (ADS)

    Reznichenko, Alexander L.; Hultzsch, Kai C.

    This account summarizes information on recently reported applications of organo-rare-earth metal complexes in various catalytic transformations of small molecules. The σ-bond metathesis at d0rare-earth metal centers plays a pivotal role in carbon-carbon and carbon-heteroatom bond forming processes. Relevant mechanistic details are discussed and the focus of the review lies in practical applications of organo-rare-earth metal complexes.

  16. Wafer bonded virtual substrate and method for forming the same

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M.; Morral, Anna Fontcuberta i

    2007-07-03

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  17. Wafer bonded virtual substrate and method for forming the same

    NASA Technical Reports Server (NTRS)

    Atwater, Jr., Harry A. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcuberta i (Inventor)

    2007-01-01

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  18. Liner protected carbon-carbon heat pipe concept

    NASA Astrophysics Data System (ADS)

    Rovang, Richard D.; Hunt, Maribeth E.

    1992-01-01

    A lightweight, high performance radiator concept using carbon-carbon heat pipes is being developed to support space nuclear power applications, specifically the SP-100 system. Carbon-carbon has been selected as an outer structural tube member because of its high temperature and strength characteristics; however, this material must be protected from the potassium heat pipe working fluid. A metallic liner approach is being taken to provide this fluid barrier. Feasibility issues associated with this approach include materials compatibility, fabricastion of the thin-walled liner, bonding the liner to the carbon-carbon tube, mismatch of coefficient of thermal expansion (CTE), carbon diffusion, and end cap closures. To resolve these issues, a series of test coupons have been fabricated and tested, assessing various liner materials, braze alloys, and substrate precursors. These tests will lead to a final heat pipe architecture, material selection, and component assembly.

  19. Metal fluorides form strong hydrogen bonds and halogen bonds: measuring interaction enthalpies and entropies in solution.

    PubMed

    Libri, Stefano; Jasim, Naseralla A; Perutz, Robin N; Brammer, Lee

    2008-06-25

    The organometallic compound trans-(tetrafluoropyrid-2-yl)bis(triethylphosphine)-fluoronickel(II) (NiF) is shown to serve as a strong hydrogen bond and halogen bond acceptor in solution via intermolecular interactions with the fluoride ligand. The nature of the interactions has been confirmed by multinuclear NMR spectroscopy. Experimental binding constants, enthalpies, and entropies of interaction with hydrogen-bond-donor indole and halogen-bond-donor iodopentafluorobenzene have been determined by 19F NMR titration. In toluene-d8 solution indole forms a 1:1 and 2:1 complex with NiF (K1 = 57.9(3), K2 = 0.58(4)). Interaction enthalpies and entropies are -23.4(2) kJ mol-1 and -44.5(8) J mol-1 K-1, respectively, for the 1:1 complex; -14.8(8) kJ mol-1 and -53(3) J mol-1 K-1, respectively, for the 2:1 complex. In toluene-d8 solution iodopentafluorobenzene forms only a 1:1 complex (K1 = 3.41(9)) with enthalpy and entropy of interaction of -16(1) kJ mol-1 and -42(4) J mol-1 K-1, respectively. A marked solvent effect was observed for the halogen bond interaction. NMR titrations in heptane solution indicated formation of both 1:1 and 2:1 complexes of iodopentafluorobenzene with NiF (K1 = 21.8(2), K2 = 0.22(4)). Interaction enthalpies and entropies are -26(1) kJ mol-1 and -63(4) J mol-1 K-1, respectively, for the 1:1 complex; -21(1) kJ mol-1 and -83(5) J mol-1 K-1, respectively, for the 2:1 complex. There is a paucity of such experimental energetic data particularly for halogen bonds despite substantial structural data. These measurements demonstrate that halogen bonds are competitive with hydrogen bonds as intermolecular interactions and provide a suitable benchmark for theoretical calculations and quantitative input into design efforts in supramolecular chemistry and crystal engineering.

  20. Leaching behavior of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.; Dorf, M.

    1996-04-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. We have developed a magnesium phosphate ceramic to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  1. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 9 2014-10-01 2014-10-01 false Ocean Transportation Intermediary (OTI) Bond Form A Appendix A to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN... Intermediaries Pt. 515, Subpart C, App. A Appendix A to Subpart C of Part 515—Ocean Transportation...

  2. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 9 2012-10-01 2012-10-01 false Ocean Transportation Intermediary (OTI) Bond Form A Appendix A to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR...

  3. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Ocean Transportation Intermediary (OTI) Bond Form A Appendix A to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR...

  4. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Ocean Transportation Intermediary (OTI) Bond Form A Appendix A to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR...

  5. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Ocean Transportation Intermediary (OTI) Bond Form A Appendix A to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR...

  6. 31 CFR 351.4 - In what form are Series EE savings bonds issued?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false In what form are Series EE savings... SAVINGS BONDS, SERIES EE General Information § 351.4 In what form are Series EE savings bonds issued? Series EE savings bonds are issued in book-entry form. Effective January 1, 2012, Treasury...

  7. 31 CFR 351.4 - In what form are Series EE savings bonds issued?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false In what form are Series EE savings... SAVINGS BONDS, SERIES EE General Information § 351.4 In what form are Series EE savings bonds issued? Series EE savings bonds are issued in either book-entry or definitive form....

  8. 31 CFR 351.4 - In what form are Series EE savings bonds issued?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false In what form are Series EE savings... SAVINGS BONDS, SERIES EE General Information § 351.4 In what form are Series EE savings bonds issued? Series EE savings bonds are issued in book-entry form. Effective January 1, 2012, Treasury...

  9. 31 CFR 351.4 - In what form are Series EE savings bonds issued?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false In what form are Series EE savings... SAVINGS BONDS, SERIES EE General Information § 351.4 In what form are Series EE savings bonds issued? Series EE savings bonds are issued in book-entry form. Effective January 1, 2012, Treasury...

  10. Lightweight Carbon-Carbon High-Temperature Space Radiator

    NASA Technical Reports Server (NTRS)

    Miller, W.O.; Shih, Wei

    2008-01-01

    A document summarizes the development of a carbon-carbon composite radiator for dissipating waste heat from a spacecraft nuclear reactor. The radiator is to be bonded to metal heat pipes and to operate in conjunction with them at a temperature approximately between 500 and 1,000 K. A goal of this development is to reduce the average areal mass density of a radiator to about 2 kg/m(exp 2) from the current value of approximately 10 kg/m(exp 2) characteristic of spacecraft radiators made largely of metals. Accomplishments thus far include: (1) bonding of metal tubes to carbon-carbon material by a carbonization process that includes heating to a temperature of 620 C; (2) verification of the thermal and mechanical integrity of the bonds through pressure-cycling, axial-shear, and bending tests; and (3) construction and testing of two prototype heat-pipe/carbon-carbon-radiator units having different radiator areas, numbers of heat pipes, and areal mass densities. On the basis of the results achieved thus far, it is estimated that optimization of design could yield an areal mass density of 2.2 kg/m (exp 2) close to the goal of 2 kg/m(exp 2).

  11. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subpart, on all beer so withdrawn. The bond shall be executed in a penal sum not less than the amount of unpaid tax which, at any one time, is chargeable against the bond: Provided, That the penal sum of such bond shall not exceed $500,000, but in no case shall the penal sum be less than $1,000. (Aug. 16,...

  12. 29 CFR 2580.412-10 - Individual or schedule or blanket form of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-10 Individual or schedule or blanket.... Bonding, to the extent required, of persons indirectly employed, or otherwise delegated, to...

  13. Highly efficient C-C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework.

    PubMed

    Hara, Takayoshi; Kanai, Satoko; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2006-09-15

    A calcium vanadate apatite (VAp), in which PO4(3-) of hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is completely substituted by VO4(3-) in the apatite framework, was synthesized. Physicochemical analysis of the VAp reveals the presence of isolated VO4 tetrahedron units with a pentavalent oxidation state. The VAp acts as a high-performance heterogeneous base catalyst for various carbon-carbon bond-forming reactions such as Michael and aldol reactions in aqueous media and the H-D exchange reactions using deuterium oxide. For example, a 200-mmol-scale Michael reaction under triphasic conditions proceeded rapidly, with an extremely high turnover number of up to 260 400 and an excellent turnover frequency of 48 s(-1). No vanadium leaching was detected during the above reactions, and the catalyst was readily recycled with no loss of activity.

  14. Basic character of rare earth metal alkoxides. Utilization in catalytic C-C bond-forming reactions and catalytic asymmetric nitroaldol reactions

    SciTech Connect

    Sasai, H.; Suzuki, T.; Arai, S.

    1992-05-20

    In a recent paper, the authors reported that Zr(O-t-Bu){sub 4} was an efficient and convenient basic reagent in organic synthesis. However, all reactions examined were performed with stoichiometric quantities of the reagent. The authors envisioned that rare earth metal alkoxides would be stronger bases than group 4 metal alkoxides due to the lower ionization potential (ca. 5.4-6.4 eV) and the lower electronegativity (1.1-1.3) of rare earth elements; thus, the catalytic use of rare earth metal alkoxides in organic synthesis was expected. Although a variety of rare earth metal alkoxides have been prepared for the last three decades, to the authors knowledge, there have been few reports concerning the basicity of rare earth metal alkoxides. Herein, the authors report several carbon-carbon bond-forming reactions catalyzed by rare earth metal alkoxides and their application to a catalytic asymmetric nitroaldol reaction.

  15. Carbon-carbon - An overview

    NASA Technical Reports Server (NTRS)

    Buckley, John D.

    1988-01-01

    In nonoxidizing high-temperature environments, carbon-carbon composites retain room temperature properties to more than 2225 C; in oxidizing environments, the variety of coatings thus far developed limits maximum operating temperatures to about 1600 C. The high thermal conductivity and low thermal expansion of these composites renders them ideal for applications encountering thermal shocks. In addition, the variety of fibers, weave patterns, and layup procedures that can be used for the composites allows mechanical properties to be carefully tailored over a wide range to fit the application in question.

  16. 48 CFR 28.106-1 - Bonds and bond related forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Agreement for a Miller Act Performance Bond (see 28.202(a)(4)). (i) SF 274, Reinsurance Agreement for a Miller Act Payment Bond (see 28.202(a)(4)). (j) SF 275, Reinsurance Agreement in Favor of the...

  17. 25 CFR 166.602 - What form of bonds will the BIA accept?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What form of bonds will the BIA accept? 166.602 Section 166.602 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Bonding and Insurance Requirements § 166.602 What form of bonds will the BIA accept? (a) We will...

  18. 31 CFR 359.4 - In what form are Series I savings bonds issued?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false In what form are Series I savings bonds issued? 359.4 Section 359.4 Money and Finance: Treasury Regulations Relating to Money and Finance... SAVINGS BONDS, SERIES I General Information § 359.4 In what form are Series I savings bonds issued?...

  19. 31 CFR 359.4 - In what form are Series I savings bonds issued?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false In what form are Series I savings... SAVINGS BONDS, SERIES I General Information § 359.4 In what form are Series I savings bonds issued? Series... issuance of definitive Series I savings bonds....

  20. 31 CFR 359.4 - In what form are Series I savings bonds issued?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false In what form are Series I savings bonds issued? 359.4 Section 359.4 Money and Finance: Treasury Regulations Relating to Money and Finance... SAVINGS BONDS, SERIES I General Information § 359.4 In what form are Series I savings bonds issued?...

  1. 31 CFR 359.4 - In what form are Series I savings bonds issued?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false In what form are Series I savings... SAVINGS BONDS, SERIES I General Information § 359.4 In what form are Series I savings bonds issued? Series... issuance of definitive Series I savings bonds....

  2. 31 CFR 359.4 - In what form are Series I savings bonds issued?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false In what form are Series I savings... SAVINGS BONDS, SERIES I General Information § 359.4 In what form are Series I savings bonds issued? Series... issuance of definitive Series I savings bonds....

  3. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  4. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  5. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  6. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  7. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  8. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  9. IC Engine Applications of Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Rivers, H. Kevin

    2000-01-01

    Many of the properties of carbon-carbon make it an ideal material for reciprocating materials of intermittent combustion (IC) engines. Recent diesel engine tests, shown herein, indicate that the thermal and mechanical properties of carbon-carbon are adequate for piston applications, However, reducing the manufacturing costs and providing long term oxidation protection are still issues that need to be addressed.

  10. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  11. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  12. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  13. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  14. HETERODIMERIZATION OF PROPYLENE AND VINYLARENES: FUNCTIONAL GROUP COMPATIBILITY IN A HIGHLY EFFICIENT NI-CATALYZED CARBON-CARBON BOND-FORMING REACTION. (R826120)

    EPA Science Inventory

    Abstract

    Unlike heterodimerization reactions of ethylene and vinylarenes, no such synthetically useful reactions using propylene are known. We find that propylene reacts with various vinylarenes in the presence of catalytic amounts of [(allyl)NiBr]2, triphen...

  15. Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization.

    PubMed

    Zhao, Chen; Crimmin, Mark R; Toste, F Dean; Bergman, Robert G

    2014-02-18

    Over the past few decades, researchers have made substantial progress in the development of transition metal complexes that activate and functionalize C-H bonds. For the most part, chemists have focused on aliphatic and aromatic C-H bonds and have put less effort into complexes that activate and functionalize vinylic C-H bonds. Our groups have recently developed a novel method to functionalize vinylic C-H bonds that takes advantage of the unique ligand-based reactivity of a rare class of metal dinitrosyl complexes. In this Account, we compare and discuss the chemistry of cobalt and ruthenium dinitrosyl complexes, emphasizing alkene binding, C-H functionalization, and catalysis. Initially discovered in the early 1970s by Brunner and studied more extensively in the 1980s by the Bergman group, the cyclopentadienylcobalt dinitrosyl complex CpCo(NO)2 reacts reversibly with alkenes to give, in many cases, stable and isolable cobalt dinitrosoalkane complexes. More recently, we found that treatment with strong bases, such as lithium hexamethyldisilazide, Verkade's base, and phosphazene bases, deprotonates these complexes and renders them nucleophilic at the carbon α to the nitroso group. This conjugate anion of metal dinitrosoalkanes can participate in conjugate addition to Michael acceptors to form new carbon-carbon bonds. These functionalized cobalt complexes can further react through alkene exchange to furnish the overall vinylic C-H functionalized organic product. This stepwise sequence of alkene binding, functionalization, and retrocycloaddition represents an overall vinylic C-H functionalization reaction of simple alkenes and does not require directing groups. We have also developed an asymmetric variant of this reaction sequence and have used this method to synthesize C1- and C2-symmetric diene ligands with high enantioinduction. Building upon these stepwise reactions, we eventually developed a simple one-pot procedure that uses stoichiometric amounts of a cobalt

  16. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... authorized surety appearing on the current approved list of companies acceptable as sureties on Federal bonds... thirty (30) days prior to the completion, in a continental United States port, of the then current voyage... rata. Fourth. After discovery and report to the Agent or the Director of any loss hereunder, the...

  17. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... authorized surety appearing on the current approved list of companies acceptable as sureties on Federal bonds... thirty (30) days prior to the completion, in a continental United States port, of the then current voyage... rata. Fourth. After discovery and report to the Agent or the Director of any loss hereunder, the...

  18. C-C bond-forming desulfurizations of sulfoximines.

    PubMed

    Reggelin, M; Slavik, S; Bühle, P

    2008-09-18

    Highly substituted, enantiomerically pure azaheterocyclic ring systems play an important role in medicinal chemistry as potential peptide mimetics. Metalated 2-alkenyl sulfoximines offer an efficient entry to this class of compounds. In this paper, we describe a new means to remove the sulfonimidoyl auxiliary with concomitant formation of a C-C double bond.

  19. 32 CFR Appendix E to Part 623 - Surety Bond (DA Form 4881-3-R)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Surety Bond (DA Form 4881-3-R) E Appendix E to Part 623 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY SUPPLIES AND EQUIPMENT LOAN OF ARMY MATERIEL Pt. 623, App. E Appendix E to Part 623—Surety Bond (DA Form...

  20. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Surety Bond B, Form MA-309. 308.529 Section 308.529 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309....

  1. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Surety Bond A, Form MA-308. 308.528 Section 308.528 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308....

  2. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  3. Metal hydrides form halogen bonds: measurement of energetics of binding.

    PubMed

    Smith, Dan A; Brammer, Lee; Hunter, Christopher A; Perutz, Robin N

    2014-01-29

    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η(5)-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η(5)-cyclopentadienyl) is demonstrated by (1)H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = -10.9 ± 0.4 and -11.8 ± 0.3 kJ/mol; ΔS° = -38 ± 2 and -34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = -7.3 ± 0.1 kJ/mol, ΔS° = -24 ± 1 J/(mol·K)). For the more reactive complexes 2-5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M(-1), respectively.

  4. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  5. Carbon-carbon composites: Emerging materials for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.

    1989-01-01

    An emerging class of high temperature materials called carbon-carbon composites are being developed to help make advanced aerospace flight become a reality. Because of the high temperature strength and low density of carbon-carbon composites, aerospace engineers would like to use these materials in even more advanced applications. One application of considerable interest is as the structure of the aerospace vehicle itself rather than simply as a protective heat shield as on Space Shuttle. But suitable forms of these materials have yet to be developed. If this development can be successfully accomplished, advanced aerospace vehicles such as the National Aero-Space Plane (NASP) and other hypersonic vehicles will be closer to becoming a reality. A brief definition is given of C-C composites. Fabrication problems and oxidation protection concepts are examined. Applications of C-C composites in the Space Shuttle and in advanced hypersonic vehicles as well as other applications are briefly discussed.

  6. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  7. Determining the Carbon-Carbon Distance in an Organic Molecule with a Ruler

    ERIC Educational Resources Information Center

    Simoni, Jose A.; Tubino, Matthieu; Ricchi, Reinaldo Alberto, Jr.

    2004-01-01

    The procedure to estimate the carbon-carbon bond distance in the naphthalene molecule is described. The procedure is easily performed and can be done either at home or in the classroom, with the restriction that the mass of the naphthalene must be determined using an analytical or a precise balance.

  8. Method of making carbon-carbon composites

    SciTech Connect

    Engle, G.B.

    1991-10-29

    A process is described for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500 to 3000 C to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000 to 1300 C at a reduced pressure for approximately one hundred and fifty (150) hours.

  9. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  10. Fracture morphology of 2-D carbon-carbon composition

    NASA Technical Reports Server (NTRS)

    Avery, W. B.; Herakovich, C. T.

    1985-01-01

    Out-of-plane tensile tests of a woven fabric carbon-carbon composite were performed in a scanning electron microscope equipped with a tensile stage and a videotape recording system. The composite was prepared from T-300 8-harness satin graphite fabric and a phenolic resin. The (0/90/0/90/0 sub 1/2) sub 2 laminate, with a Theta describing the orientation of the warp fibers of the fabric, was cured at 160 C and pyrolized at 871 C. This was followed by four cycles of resin impregnation, curing, and pyrolysis. A micrograph of the cross section of the composite is presented. Inspection of the specimen fracture surface revealed that the filaments had no residual matrix bonded to them. Further inspection revealed that the fracture was interlaminar in nature. Failure occurred where filaments of adjacent plies had the same orientation. Thus it is postulated that improvement in transverse tensile strength of 2-D carbon-carbon depends on the improvement of the filament-matrix bond strength.

  11. Proposal of a new hydrogen-bonding form to maintain curdlan triple helix.

    PubMed

    Miyoshi, Kentaro; Uezu, Kazuya; Sakurai, Kazuo; Shinkai, Seiji

    2004-06-01

    Curdlan and other beta-1,3-D-glucans form right-handed triple helices, and it has been believed that the intermolecular H-bond is present at the center of the helix to maintain the structure. In this H-bond model, three secondary OH groups form an inequilateral hexagonal shape perpendicular to the helix axis. This hexagonal form seems to be characteristic for beta-1,3-D-glucans and is widely accepted. We carried out MOPAC and ab initio calculations for the curdlan helix, and we propose a new intermolecular H-bonding model. In our model, the H-bonds are formed between the O2-atoms on different x-y planes along the curdlan helix, hence the H-bonds are not perpendicular to the helix axis. The new H-bonds are connected along the helix, traversing three curdlan chains to make a left-handed helix. Therefore, the H-bonding array leads to a reverse helix of the main chain. According to our MOPAC calculation, this model is more stable than the previous one. We believe that the continuous H-bonding array is stabilized by cooperative phenomena in the polymeric system.

  12. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    SciTech Connect

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  13. Method of making carbon-carbon composites

    SciTech Connect

    Engle, G.B.

    1993-06-08

    A method for fabricating a high-strength, high-modulus and high thermal and electrical conducting 2D laminate carbon-carbon composite is described comprising the steps of: (a) forming a green laminate composite comprising: (1) graphitizible carbon cloth plies, (2) fine graphitizible pitch powder; said cloth plies comprising mesophase derived pitch fiber tow with moduli in a range of 25 to 140 Msi, and (3) thermal conductivity enhancers; (b) heating the green laminate composite to a temperature high enough to cause the pitch powder to soften and pressing the composite to form a pressed green laminate composite comprised of graphitizible carbon cloth, pitch matrix and thermal conductivity enhancers; (c) heating the pressed green composite to at least 500 C. to: (1) carbonize the pitch, (2) form a carbon matrix and (3) shrink and crack the matrix carbon; (d) impregnating the composite with additional graphitizible pitch by covering the composite with the pitch and heating the covered composite to at least 200 C. to melt the pitch and permit it to flow into the composite and then increasing the pressure to at least 15 Psi; (e) heating the composites to at least 900 C.; (f) repeating steps d and e at least once; (g) heating the composite to between 2,400 to 3,100 C to graphitize the fibers and the pitch matrix carbon in the composites to produce a graphitized composite having cracks and pores; and (h) reimpregnating the graphitized composites by infiltrating the cracks and pores of the composites with a hydrocarbon gas at a temperature in the range 982 to 1,490 C. and depositing pyrolytic carbon in the pores and cracks.

  14. Fabrication of carbon-carbon heat pipes for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Rovang, Richard D.; Palamides, Thomas R.; Hunt, Maribeth E.

    1992-01-01

    Significant advancements have been made in the development of lightweight, high performance, carbon-carbon heat pipes for space nuclear power applications. The subject program has progressed through the concept definition and feasibility analysis stages to the current test article component fabrication and assembly phase. This concept utilizes a carbon-carbon tube with integrally woven fins as the primary structural element and radiative surface, Nb-1Zr liners to contain a potassium working fluid, and welded end caps and fill tubes. Various tests have been performed in the development of suitable liner bonding techniques and in the assessment of material stability.

  15. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  16. 31 CFR 351.83 - May Public Debt issue Series EE savings bonds only in book-entry form?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... savings bonds only in book-entry form? 351.83 Section 351.83 Money and Finance: Treasury Regulations... Debt issue Series EE savings bonds only in book-entry form? We reserve the right to issue bonds only in book-entry form....

  17. Recent advances in carbon-carbon materials systems

    SciTech Connect

    Rummler, D.R.

    1982-11-01

    Carbon-carbon materials and new oxidation resistant coating developments are discussed. Potential areas of application are highlighted. A short bibliography of selected references is included that describe carbon-carbon materials and related technology in detail.

  18. Hydrogen bonding. Part 20. Infrared study of the high temperature β-form of choline chloride

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Avci, Günsel F.

    1986-02-01

    Infrared spectral studies of β-choline chloride at 95°C clearly demonstrate the presence of OH … Cl hydrogen bonding. This observation contradicts an earlier conclusion, based on X-ray structural studies, that such hydrogen bonding could not occur in this high-temperature form of choline chloride. A moderate reinterpretation of the X-ray data may reconcile these contradictory conclusions. Unlike α-choline chloride, β-choline chloride does not show CH … Cl hydrogen bonding. It is possible that loss of CH … Cl hydrogen bonding is a factor in the marked difference in radiation sensitivity of the α- and β-forms.

  19. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD....

  20. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD....

  1. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD....

  2. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD....

  3. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  4. 31 CFR 359.68 - May Public Debt issue Series I savings bonds only in book-entry form?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false May Public Debt issue Series I savings bonds only in book-entry form? 359.68 Section 359.68 Money and Finance: Treasury Regulations Relating to... Series I savings bonds only in book-entry form? We reserve the right to issue bonds only in...

  5. Rigid dimers formed through strong interdigitated H-bonds yield compact 1D supramolecular helical polymers.

    PubMed

    Ciesielski, Artur; Stefankiewicz, Artur R; Hanke, Felix; Persson, Mats; Lehn, Jean-Marie; Samorì, Paolo

    2011-02-07

    Hierarchical self-assembly of small abiotic molecular modules interacting through noncovalent forces is increasingly being used to generate functional structures and materials for electronic, catalytic, and biomedical applications. The greatest control over the geometry in H-bond supramolecular architectures, especially in H-bonded supramolecular polymers, can be achieved by using conformationally rigid molecular modules undergoing self-assembly through strong H-bonds. Their binding strength depends on the multiplicity of the H-bonds, the nature of donor/acceptor pairs and their secondary attractive/repulsive interactions. Here a functionalized molecular module is described, which is capable of self-associating through self-complementary H-bonding patterns comprising four strong and two medium-strength H-bonds to form dimers. The self-association of these phenylpyrimidine-based dimers through directional H-bonding between two lateral pyridin-2(1H)-one units of neighboring molecules allows the formation of highly compact 1D supramolecular polymers by self-assembly on graphite. A concentration-dependent study by scanning tunneling microscopy at the solid-liquid interface, corroborated by dispersion-corrected density functional studies, reveals the controlled generation of either linear supramolecular 2D arrays, or long helical supramolecular polymers with a high shape persistence.

  6. Characterization of high cesium containing glass-bonded ceramic waste forms.

    SciTech Connect

    Lambregts, M. J.; Frank, S. M.

    2003-10-03

    High cesium containing glass-bonded ceramic waste form samples were prepared and characterized to identify possible cesium phases present in glass-bonded ceramic waste forms developed for the containment of fission product bearing salts. Major phases of the waste forms are sodalite and glass. A combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance spectroscopy (NMR) were used to study the multiphase nature of these waste forms. Cesium was found to be present in the higher loaded waste forms in a cesium aluminosilicate phase with an analcime structure and a 1:1 Si:Al ratio, a pollucite phase, and also in the glass phase. The glass phase contains the majority of the cesium at lower loadings, however some pollucite also remains. Cesium was not detected in the sodalite phase of any of the samples.

  7. Relating structural parameters to leachability in a glass-bonded ceramic waste form.

    SciTech Connect

    Frank, S. M.; Johnson, S. G.; Moschetti, T. L.

    1998-05-08

    Lattice parameters for a crystalline material can be obtained by several methods, notably by analyzing x-ray powder diffraction patterns. By utilizing a computer program to fit a pattern, one can follow the evolution or subtle changes in a structure of a crystalline species in different environments. This work involves such a study for an essential component of the ceramic waste form that is under development at Argonne National Laboratory. Zeolite 4A and zeolite 5A are used to produce two different types of waste forms: a glass-bonded sodalite and a glass-bonded zeolite, respectively. Changes in structure during production of the waste forms are discussed. Specific salt-loadings in the sodalite waste form are related to relative peak intensities of certain reflections in the XRD patterns. Structural parameters for the final waste forms will also be given and related to leachability under standard conditions.

  8. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  9. High Thermal Conductivity Carbon/Carbon Composites.

    DTIC Science & Technology

    1995-09-30

    The objective of this project was to develop a lowcost, high thermal conductivity carbon/carbon composite with a mesophase pitch -based matrix. A low...carbonization technique and heat treatment of the mesophase pitch was utilized to enhance composite properties by increasing the composite density...Three different fibers, T300 PAN-based, P55 pitch -based, and an experimental high thermal conductivity mesophase pitch -based, were incorporated as the

  10. Fracture Toughness of Carbon/Carbon Composites.

    DTIC Science & Technology

    1991-07-27

    during which tensile stresses develop in the matrix as a result of the thermal expansion coefficient differential between the matrix and yarns. In...thermal expansion differential . Figure 3.4 depicts the sample surface along the R-C plane. The circumferential yarns are horizontal and the radial yarns...Milieko), Elsevier, Amsterdam, (1981), pp. 109-175. 5 126 3 U 127 16). C.T. Robinson, "Damage Mechanisums and Failure of 3-D Carbon-Carbon Composites," SRI

  11. Mechanical behavior of carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Rozak, G. A.

    1984-01-01

    A general background, test plan, and some results of preliminary examinations of a carbon-carbon composite material are presented with emphasis on mechanical testing and inspection techniques. Experience with testing and evaluation was gained through tests of a low modulus carbon-carbon material, K-Karb C. The properties examined are the density - 1.55 g/cc; four point flexure strength in the warp - 137 MPa (19,800 psi) and the fill - 95.1 MPa (13,800 psi,) directions; and the warp interlaminar shear strength - 14.5 MPa (2100 psi). Radiographic evaluation revealed thickness variations and the thinner areas of the composite were scrapped. The ultrasonic C-scan showed attenuation variations, but these did not correspond to any of the physical and mechanical properties measured. Based on these initial tests and a survey of the literature, a plan has been devised to examine the effect of stress on the oxidation behavior, and the strength degradation of coated carbon-carbon composites. This plan will focus on static fatigue tests in the four point flexure mode in an elevated temperature, oxidizing environment.

  12. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  13. Investigation of thermochemistry associated with the carbon-carbon coupling reactions of furan and furfural using ab initio methods.

    PubMed

    Liu, Cong; Assary, Rajeev S; Curtiss, Larry A

    2014-06-26

    Upgrading furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan can be coupled with various C1 to C4 low molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (∼25 kcal/mol) are lower than the cellulose activation or decomposition reactions (∼50 kcal/mol). Cycloaddition of C5-C8 cyclo ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products, and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ∼20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons.

  14. 31 CFR 351.4 - In what form are Series EE savings bonds issued?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false In what form are Series EE savings bonds issued? 351.4 Section 351.4 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT OFFERING OF UNITED...

  15. 27 CFR 28.65 - Bond, Form 2738 (5110.68).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Form 2738 (5110.68) as provided in § 28.51. The penal sum of the bond shall be sufficient to cover the... maximum penal sum shall not exceed $200,000, but in no case shall the penal sum be less than...

  16. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Release of surety bond, Form MA-312. 308.532 Section 308.532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.532 Release of surety...

  17. Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Johnson, Mark L.; Williams, Desiree D.

    2003-01-01

    A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .

  18. 31 CFR 351.83 - May Public Debt issue Series EE savings bonds only in book-entry form?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false May Public Debt issue Series EE... DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES EE Miscellaneous Provisions § 351.83 May Public Debt issue Series EE savings bonds only in book-entry form? We reserve the right to issue bonds only...

  19. 31 CFR 359.68 - May Public Debt issue Series I savings bonds only in book-entry form?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false May Public Debt issue Series I... DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES I Miscellaneous Provisions § 359.68 May Public Debt issue Series I savings bonds only in book-entry form? We reserve the right to issue bonds only...

  20. Efficient nickel mediated carbon-carbon bond cleavage of organonitriles.

    PubMed

    Schaub, Thomas; Döring, Christian; Radius, Udo

    2007-05-28

    The reactions of the nickel complex [Ni(2)(iPr(2)Im)4(COD)] 1 with organonitriles smoothly and irreversibly proceed via intermediates with eta(2)-coordinated organonitrile ligands such as [Ni(iPr(2)Im)2(eta(2)-(CN)-PhCN)] 2 and [Ni(iPr(2)Im)2(eta(2)-(CN)-pTolCN)] 4 to yield aryl cyanide complexes of the type trans-[Ni(iPr(2)Im)2(CN)(Ar)] (Ar = Ph 3, pTol 5, 4-CF(3)C(6)H(4) 6, 2,4-(OMe)2C(6)H(3) 7, 2-C(4)H(3)O 8, 2-C(5)H(4)N 9). The compounds 3, 7, 9 and have been structurally characterized. For the conversion of 2 to 3 a free activation enthalpy DeltaG++(328 K) of 103.47 +/- 0.79 kJ mol(-1) was calculated from time dependent NMR spectroscopy. The analogous reaction of arylnitriles with electron releasing substituents or heteroaromatic organonitriles is significantly faster compared to the reaction with benzonitrile or toluonitrile. The reactions of 1 with acetonitrile or trimethylsilyl cyanide afforded [Ni(iPr(2)Im)2(CN)(Me)] 10 and structurally characterized [Ni(iPr(2)Im)2(CN)(SiMe(3))] 11. The usage of an organonitrile with a longer alkyl chain, adiponitrile, yielded [Ni(iPr(2)Im)2(eta(2)-(CN)-NCC(4)H(8)CN)] 12 as well as the C-CN activation product [Ni(iPr(2)Im)2(CN)(C(4)H(8)CN)]13 in thermal and photochemical reactions, although this pathway seems to be significantly interfered with by decomposition pathways under the formation of the dicyanide complex [Ni(iPr(2)Im)(2)(CN)(2)] 14.

  1. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, Rawle I.; Jung, Seunho; Mindock, Carol A.

    1998-01-01

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures.

  2. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, R.I.; Jung, S.; Mindock, C.A.

    1998-12-22

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures. 8 figs.

  3. Method for Making a Carbon-Carbon Cylinder Block

    NASA Technical Reports Server (NTRS)

    Ransone, Phillip O. (Inventor)

    1997-01-01

    A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  4. Radiation damage of a glass-bonded zeolite waste form using ion irradiation.

    SciTech Connect

    Allen, T. R.; Storey, B. G.

    1997-12-05

    Glass-bonded zeolite is being considered as a candidate ceramic waste form for storing radioactive isotopes separated from spent nuclear fuel in the electrorefining process. To determine the stability of glass-bonded zeolite under irradiation, transmission electron microscope samples were irradiated using high energy helium, lead, and krypton. The major crystalline phase of the waste form, which retains alkaline and alkaline earth fission products, loses its long range order under both helium and krypton irradiation. The dose at which the long range crystalline structure is lost is about 0.4 dpa for helium and 0.1 dpa for krypton. Because the damage from lead is localized in such a small region of the sample, damage could not be recognized even at a peak damage of 50 dpa. Because the crystalline phase loses its long range structure due to irradiation, the effect on retention capacity needs to be further evaluated.

  5. Analysis techniques for the prediction of springback in formed and bonded composite components

    NASA Technical Reports Server (NTRS)

    Gasick, Michael F.; Renieri, Gary D.

    1992-01-01

    Two finite element analysis codes are used to model the effects of cooling on the dimensional stability of formed and bonded composite parts. The two analysis routines, one h-version and one p-version, are compared for modeling time, analysis execution time, and exactness of solution as compared to actual test results. A recommended procedure for predicting temperature effects on composite parts is presented, based on the results of this study.

  6. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE PAGES

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; ...

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in themore » glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  7. Strong Lewis acid air-stable cationic titanocene perfluoroalkyl(aryl)sulfonate complexes as highly efficient and recyclable catalysts for C-C bond forming reactions.

    PubMed

    Li, Ningbo; Wang, Jinying; Zhang, Xiaohong; Qiu, Renhua; Wang, Xie; Chen, Jinyang; Yin, Shuang-Feng; Xu, Xinhua

    2014-08-14

    A series of strong Lewis acid air-stable titanocene perfluoroalkyl(aryl)sulfonate complexes Cp2Ti(OH2)2(OSO2X)2·THF (X = C8F17, 1·THF; X = C4F9, 2·H2O·THF; X = C6F5, 3) were successfully synthesized by the treatment of Cp2TiCl2 with C8F17SO3Ag, C4F9SO3Ag and C6F5SO3Ag, respectively. In contrast to well-known titanocene bis(triflate), these complexes showed no change in open air over three months. TG-DSC analysis showed that 1·THF, 2·H2O·THF and 3 were thermally stable at 230 °C, 220 °C and 280 °C, respectively. Conductivity measurements showed that these complexes underwent ionic dissociation in CH3CN solution. X-ray analysis results confirmed that 2·H2O·THF and 3 were cationic. ESR spectra showed that the Lewis acidity of 1·THF (1.06 eV) was higher than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2·H2O·THF. Fluorescence spectra showed that the Lewis acidity of 2 (λ(em) = 477 nm) was higher than that of Sc(3+) (λ(em) = 474 nm). These complexes showed high catalytic ability in various carbon-carbon bond forming reactions. Moreover, they show good reusability. Compared with 1·THF, 2·H2O·THF and 3 exhibit higher solubility and better catalytic activity, and will find broad applications in organic synthesis.

  8. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin.

    PubMed

    Zakeri, Bijan; Fierer, Jacob O; Celik, Emrah; Chittock, Emily C; Schwarz-Linek, Ulrich; Moy, Vincent T; Howarth, Mark

    2012-03-20

    Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.

  9. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05). RESULTS The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength. PMID:25177469

  10. Direct evidence that two cysteines in the dopamine transporter form a disulfide bond.

    PubMed

    Chen, Rong; Wei, Hua; Hill, Erik R; Chen, Lucy; Jiang, Liying; Han, Dawn D; Gu, Howard H

    2007-04-01

    We have generated a fully functional dopamine transporter (DAT) mutant (dmDATx7) with all cysteines removed except the two cysteines in extracellular loop 2 (EL2). Random mutagenesis at either or both EL2 cysteines did not produce any functional transporter mutants, suggesting that the two cysteines cannot be replaced by any other amino acids. The cysteine-specific reagent MTSEA-biotin labeled dmDATx7 only after a DTT treatment which reduces disulfide bond. Since there are no other cysteines in dmDATx7, the MTSEA-biotin labeling must be on the EL2 cysteines made available by the DTT treatment. This result provides the first direct evidence that the EL2 cysteines form a disulfide bond. Interestingly, the DTT treatment had little effect on transport activity suggesting that the disulfide bond is not necessary for the uptake function of DAT. Our results and previous results are consistent with the notion that the disulfide bond between EL2 cysteines is required for DAT biosynthesis and/or its delivery to the cell surface.

  11. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

    PubMed

    Deraedt, Christophe; Astruc, Didier

    2014-02-18

    Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl

  12. Fracture toughness measurements on a glass bonded sodalite high-level waste form.

    SciTech Connect

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-05-19

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies.

  13. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    NASA Technical Reports Server (NTRS)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  14. Preliminary studies of the disposition of cerium in a glass-bonded sodalite waste form.

    SciTech Connect

    Lambregts, M. J.; Frank, S. M.

    2001-12-18

    Argonne National Laboratory has developed an electrometallurgical treatment for DOE spent metallic nuclear fuel. Fission products are immobilized in a durable glass bonded sodalite ceramic waste form (CWF) suitable for long term storage in a geological repository. Cesium is estimated to be in the waste form at approximately 0.1 wt.%. The exact disposition of cesium was uncertain and it was believed to be uniformly distributed throughout the waste form. A correlation of X-ray diffractometry (XRD), electron microscopy (EM), and nuclear magnetic resonance spectroscopy (NMR) performed on surrogate ceramic waste forms with high cesium loadings found a high cesium content in the glass phase and in several non-sodalite aluminosilicate phases. Cesium was not detected in the sodalite phase.

  15. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  16. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds

    PubMed Central

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H.; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V.; Zimic, Mirko

    2014-01-01

    Recombinant wild-pyrazinamidase from H37Rv M. tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. PMID:25199451

  17. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  18. Development of eclipsed and staggered forms in some hydrogen bonded complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Habibi, Mostafa; Hesabi, Nahid

    Intermolecular hydrogen bonding in X3CH···NH3 (X = H, F, Cl, and Br) complexes has been studied by B3LYP, B3PW91, MP2, MP3, MP4, and CCSD methods using 6-311++G(d,p) and AUG-cc-PVTZ basis sets. These complexes could exist in both eclipsed (EC) and staggered (ST) forms. The differences between binding energies of EC and ST forms are negligible and all EC and ST shapes correspond to minimum stationary states. The order of stabilities of them is in an agreement with the results of atoms in molecules (AIM) and natural bond orbital (NBO) analyses. On the basis of low differences between binding energies, ST forms are more stable than EC forms in all complexes with the exception of Br3CH···NH3, which behaves just opposite. Although the differences between binding energies are negligible, they are consistent with the results of AIM analysis.

  19. Process of making carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor); Kowbel, Witold (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor)

    2000-01-01

    A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.

  20. Randomly oriented carbon/carbon composite

    NASA Astrophysics Data System (ADS)

    Raunija, Thakur Sudesh Kumar; Babu, S.

    2013-06-01

    The main objective of this study is to develop an alternate, rapid and cost effective process for the fabrication of carbon/carbon (C/C) composite. Slurry moulding technique is adopted for the fabrication of C/C composite. Randomly oriented hybrid discrete carbon fiber (CF) reinforced and mesophase pitch (MP) derived matrix C/C composite is fabricated. Process parameters are optimized and repeatability is proved. The electrical conductivity of the composite fabricated through the developed process is found to be better than that fabricated through conventional processes. The other properties are also found to be competent. The randomly oriented C/C composite because of its mouldability is found suitable for various applications which require complex shapes.

  1. Hypervelocity technology carbon/carbon testing

    NASA Astrophysics Data System (ADS)

    Anselmo, John V.; Kretz, Lawrence O.

    The paper describes the procedures used at the Structures Test Laboratory of the Wright Laboratory's Flight Dynamics Directorate to test a carbon/carbon hot structure representing a typical hypersonic gliding body, and presents the results of tests. The forebody was heated to 1371 C over 13 test runs, using radiant quartz lamps; a vertical shear force of 5.34 kN was introduced to the nose at a stabilized temperature of 816 C. Test data were collected using prototype high-temperature strain gages, in-house-designed high-temperature extensometers, conventional strain gages, and thermocouples. Video footage was taken of all test runs. Test runs were successfully completed up to 1371 C with flight typical thermal gradients at heating rates up to 5.56 C/sec. Results showed that, overall, the termal test control systems performed as predicted and that test temperatures and thermal gradients were achieved to within about 5 percent in most cases.

  2. Transparent Films from CO2‐Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing

    PubMed Central

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter

    2016-01-01

    Abstract Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  3. Corrosion behavior of a glass-bonded sodalite ceramic waste form and its constituents.

    SciTech Connect

    Lewis, M. A.; Ebert, W. L.; Morss, L.

    1999-06-18

    A ceramic waste form (CWF) of glass bonded sodalite is being developed as a waste form for the long-term immobilization of fission products and transuranic elements from the U.S. Department of Energy's activities on spent nuclear fuel conditioning. A durable waste form was prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. During HIP the zeolite is converted to sodalite, and the resultant CWF is been completed for durations of up to 182 days. Four dissolution modes were identified: dissolution of free salt, dissolution of the aluminosilicate matrix of sodalite and the accompanying dissolution of occluded salt, dissolution of the boroaluminosilicate matrix of the glass, and ion exchange. Synergies inherent to the CWF were identified by comparing the results of the tests with pure glass and sodalite with those of the composite CWF.

  4. Superplastic Formed and Diffusion Bonded Titanium Landing Gear Component Feasibility Study.

    DTIC Science & Technology

    1980-07-01

    Gear Superplastic Forming Shock Strut SPF/DB Outer Cylinder Titanium Diffusion Bonding Cylindrical Sandwich Structure Z% ABSTRACT (Continue en ro,eree...lO0 Fighter Aircraft 6 5 F-lO0 Main Landing Gear 6 6 F-lO0 Landing Gear Strut Section Selected for this Program 7 7 SPF/DB Titanium Landing Gear... Assembly with a Diaphram Seal for DB Cycle. 18 15 MLG SPF/DB Titanium Outer Cylinder Segment DB Cycle Using a Diaphram Seal 19 16 Hot Sizing Tool 20 17

  5. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  6. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  7. All-carbon quaternary stereogenic centers in acyclic systems through the creation of several C-C bonds per chemical step.

    PubMed

    Marek, Ilan; Minko, Yury; Pasco, Morgane; Mejuch, Tom; Gilboa, Noga; Chechik, Helena; Das, Jaya P

    2014-02-19

    In the past few decades, it has become clear that asymmetric catalysis is one of the most powerful methods for the construction of carbon-carbon as well as carbon-heteroatom bonds in a stereoselective manner. However, when structural complexity increases (i.e., all-carbon quaternary stereogenic center), the difficulty in reaching the desired adducts through asymmetric catalytic reactions leads to a single carbon-carbon bond-forming event per chemical step between two components. Issues of efficiency and convergence should therefore be addressed to avoid extraneous chemical steps. In this Perspective, we present approaches that tackle the stimulating problem of efficiency while answering interesting synthetic challenges. Ideally, if one could create all-carbon quaternary stereogenic centers via the creation of several new carbon-carbon bonds in an acyclic system and in a single-pot operation from simple precursors, it would certainly open new horizons toward solving the synthetic problems. Even more important for any further design, the presence of polyreactive intermediates in synthesis (bismetalated, carbenoid, and oxenoids species) becomes now an indispensable tool, as it creates consecutively the same number of carbon-carbon bonds as in a multi-step process, but in a single-pot operation.

  8. Fatigue characterization of advanced carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, Hassan; Das, Partha S.; Jeelani, Shaik; Baker, Dean M.; Johnson, Sigured A.

    1992-01-01

    Response of quasi-isotropic laminates of SiC coated Carbon-Carbon (C/C) composites under flexural fatigue are investigated at room temperature. Virgin as well as mission cycled specimens are tested to study the effects of thermal and pressure cycling on the fatigue performance of C/C. Tests were conducted in three point bending with a stress ratio of 0.2 and frequency of 1 Hz. Fatigue strength of C/C has been found to be considerably high - approximately above 85 percent of the ultimate flexural strength. The fatigue strength appears to be decreasing with the increase in the number of mission cycling of the specimens. This lower strength with the mission cycled specimens is attributed to the loss of interfacial bond strength due to thermal and pressure cycling of the material. C/C is also found to be highly sensitive to the applied stress level during cyclic loading, and this sensitivity is observed to increase with the mission cycling. Weibull characterization on the fatigue data has been performed, and the wide scatter in the Weibull distribution is discussed. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented.

  9. Effects of single bond-ion and single bond-diradical form on the stretching vibration of Cdbnd N bridging bond in 4,4‧-disubstituted benzylidene anilines

    NASA Astrophysics Data System (ADS)

    Cao, Chao-Tun; Bi, Yakun; Cao, Chenzhong

    2016-06-01

    Fifty-seven samples of model compounds, 4,4‧-disubstituted benzylidene anilines, p-X-ArCH = NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νCdbnd N of the Cdbnd N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νCdbnd N, that is there are mainly three modes in the stretching vibration of Cdbnd N bond: (I) polar double bond form Cdbnd N, (II) single bond-ion form C+-N- and (III) single bond-diradical form Crad -Nrad . The contributions of the forms (I) and (II) to the change of νCdbnd N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II).

  10. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.

    1996-03-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  11. A general strategy for the evolution of bond-forming enzymes using yeast display

    PubMed Central

    Chen, Irwin; Dorr, Brent M.; Liu, David R.

    2011-01-01

    The ability to routinely generate efficient protein catalysts of bond-forming reactions chosen by researchers, rather than nature, is a long-standing goal of the molecular life sciences. Here, we describe a directed evolution strategy for enzymes that catalyze, in principle, any bond-forming reaction. The system integrates yeast display, enzyme-mediated bioconjugation, and fluorescence-activated cell sorting to isolate cells expressing proteins that catalyze the coupling of two substrates chosen by the researcher. We validated the system using model screens for Staphylococcus aureus sortase A–catalyzed transpeptidation activity, resulting in enrichment factors of 6,000-fold after a single round of screening. We applied the system to evolve sortase A for improved catalytic activity. After eight rounds of screening, we isolated variants of sortase A with up to a 140-fold increase in LPETG-coupling activity compared with the starting wild-type enzyme. An evolved sortase variant enabled much more efficient labeling of LPETG-tagged human CD154 expressed on the surface of HeLa cells compared with wild-type sortase. Because the method developed here does not rely on any particular screenable or selectable property of the substrates or product, it represents a powerful alternative to existing enzyme evolution methods. PMID:21697512

  12. 46 CFR Appendix D to Subpart C of... - Ocean Transportation Intermediary (OTI) Group Bond Form [FMC-69

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 9 2014-10-01 2014-10-01 false Ocean Transportation Intermediary (OTI) Group Bond Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against...

  13. 46 CFR Appendix D to Subpart C of... - Ocean Transportation Intermediary (OTI) Group Bond Form [FMC-69

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 9 2012-10-01 2012-10-01 false Ocean Transportation Intermediary (OTI) Group Bond Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against...

  14. 46 CFR Appendix D to Subpart C of... - Ocean Transportation Intermediary (OTI) Group Bond Form [FMC-69

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Ocean Transportation Intermediary (OTI) Group Bond Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against...

  15. 46 CFR Appendix D to Subpart C of... - Ocean Transportation Intermediary (OTI) Group Bond Form [FMC-69

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Ocean Transportation Intermediary (OTI) Group Bond Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against...

  16. 46 CFR Appendix D to Subpart C of... - Ocean Transportation Intermediary (OTI) Group Bond Form [FMC-69

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Ocean Transportation Intermediary (OTI) Group Bond Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against...

  17. Tensile Strength of Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Hatta, Hiroshi; Aoi, Tatsuji; Kawahara, Itaru; Kogo, Yasuo; Shiota, Ichiro

    In order to identify ruling mechanisms of tensile fracture of Carbon/Carbon composites (C/Cs), tensile tests were carried out for various C/Cs as functions of the density, heat treatment temperature, and interfacial strength between fiber and matrix. Three processing routes of preformed yarn, resin char, and HIP processes were adopted to densify C/Cs. These C/Cs were finally heat-treated at temperatures from 2273K to 3300K. The interfacial strength between fiber and matrix was varied by the selection of processing routes. As a result, two ruling failure mechanisms were identified. At density lower than 1.6g/cm3, the tensile fracture was controlled by stress transfer capability from the matrix to reinforcing fibers. However, at higher density than 1.6g/cm3, tensile strength was primarily governed by the interfacial strength between the matrix and fibers. Thus the latter mechanism is nearly same as ceramic matrix composites.

  18. Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms

    SciTech Connect

    O'Holleran, T. P.; DiSanto, T.; Johnson, S. G.; Goff, K. M.

    2000-05-09

    Argonne National Laboratory has developed a glass-bonded sodalite waste form to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The waste form consists of 75 vol.% crystalline sodalite and 25 vol.% glass. Microindentation fracture toughness measurements were performed on this material and borosilicate glass from the Defense Waste Processing Facility using a Vickers indenter. Palmqvist cracking was confined for the glass-bonded sodalite waste form, while median-radial cracking occurred in the borosilicate glass. The elastic modulus was measured by an acoustic technique. Fracture toughness, microhardness, and elastic modulus values are reported for both waste forms.

  19. Development of carbon-carbon composites from solvent extracted pitch

    SciTech Connect

    1996-06-24

    There are several methods used to fabricate carbon-carbon composites. One used extensively in the fabrication of aerospace components such as rocket nozzles and reentry vehicle nosetips, as well as commercial components for furnace fixturing and glass manufacturing, is the densification of a woven preform with molten pitch, and the subsequent conversion of the pitch to graphite through heat treatment. Two types of pitch are used in this process; coal tar pitch and petroleum pitch. The objective of this program was to determine if a pitch produced by the direct extraction of coal could be used as a substitute for these pitches in the fabrication of carbon-carbon composites. The program involved comparing solvent extracted pitch with currently accepted pitches and rigidizing a carbon-carbon preform with solvent extracted pitch for comparison with carbon-carbon fabricated with currently available pitch.

  20. Interstitially protected oxidation resistant carbon-carbon composite

    SciTech Connect

    Strangman, T.E.; Keiser, R.J.

    1984-02-01

    The carbon fiber bundles in a carbon-carbon composite are protected against oxidation by coating the fiber bundles with at least one protective layer consisting of an underlayer portion of boron carbide and an overlayer portion of silicon carbide.

  1. Palladium-catalyzed 1,4-difunctionalization of butadiene to form skipped polyenes.

    PubMed

    McCammant, Matthew S; Liao, Longyan; Sigman, Matthew S

    2013-03-20

    A palladium-catalyzed 1,4-addition across the commodity chemical 1,3-butadiene to afford skipped polyene products is reported. Through a palladium σ → π → σ allyl isomerization, two new carbon-carbon bonds are formed with high regioselectivity and trans stereoselectivity of the newly formed alkene. The utility of this method is highlighted by the successful synthesis of the ripostatin A skipped triene core.

  2. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  3. Urea destabilizes RNA by forming stacking interactions and multiple hydrogen bonds with nucleic acid bases.

    PubMed

    Priyakumar, U Deva; Hyeon, Changbong; Thirumalai, D; Mackerell, Alexander D

    2009-12-16

    Urea titration of RNA by urea is an effective approach to investigate the forces stabilizing this biologically important molecule. We used all atom molecular dynamics simulations using two urea force fields and two RNA constructs to elucidate in atomic detail the destabilization mechanism of folded RNA in aqueous urea solutions. Urea denatures RNA by forming multiple hydrogen bonds with the RNA bases and has little influence on the phosphodiester backbone. Most significantly we discovered that urea engages in stacking interactions with the bases. We also estimate, for the first time, the m-value for RNA, which is a measure of the strength of urea-RNA interactions. Our work provides a conceptual understanding of the mechanism by which urea enhances RNA folding rates.

  4. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    NASA Astrophysics Data System (ADS)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  5. 27 CFR 28.62 - Bond, Form 2735 (5100.30).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), as provided in § 28.51. (b) Penal sum of bond. The penal sum of the bond shall be sufficient to cover... one time. However, the maximum penal sum of the bond shall not exceed $200,000, but in no case shall the penal sum be less than $1,000. Distilled spirits and wine withdrawn for exportation, use...

  6. 27 CFR 26.66 - Bond, TTB Form 5110.50-Distilled spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this subpart, on all distilled spirits products shipped. The bond shall be executed in a penal sum not less than the amount of unpaid tax which, at any one time, is chargeable against the bond. The penal sum of such bond shall not exceed $1,000,000, but in no case shall the penal sum be less than...

  7. Effect of Test Specimen Shape and Size on Interlaminar Tensile Properties of Advanced Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.

    2015-01-01

    The interlaminar tensile strength of 1000-tow T-300 fiber ACC-6 carbon-carbon composites was measured using the method of bonding the coupons to adherends at room temperature. The size, 0.70 to 1.963 inches maximum width or radius, and shape, round or square, of the test coupons were varied to determine if the test method was sensitive to these variables. Sixteen total variations were investigated and the results modeled.

  8. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction.

  9. Direct Observation of a Cytosine Analogue that Forms Five Hydrogen Bonds to Guanosine: Guanyl G-Clamp

    SciTech Connect

    Wilds, C.J.; Maier, M.A.; Tereshko, V.; Manoharan, M.; Egli, M.

    2010-03-08

    A novel heterocyclic base modification, the guanidino G-clamp, is designed to allow two Hoogsteen-type hydrogen bonds to form between the amino and imino nitrogen atoms of a tethered guanidinium group to O6 and N7 of guanosine, which results in a total of five hydrogen bonds (broken lines, see picture). Details of a crystal structure at 1.0-{angstrom} resolution of a modified DNA decamer containing this guanidino G-clamp analogue demonstrate its mechanism of binding.

  10. Energetics and chemical bonding of the 1,3,5-tridehydrobenzene triradical and its protonated form

    NASA Astrophysics Data System (ADS)

    Nguyen, Hue Minh Thi; Höltzl, Tibor; Gopakumar, G.; Veszprémi, Tamás; Peeters, Jozef; Nguyen, Minh Tho

    2005-09-01

    Quantum chemical calculations were applied to investigate the electronic structure of the parent 1,3,5-tridehydrobenzene triradical (C 6H 3, TDB) and its anion (C6H3-), cation (C6H3+) and protonated form (C6H4+). Our results obtained using the state-averaged complete active space self-consistent-field (CASSCF) followed by second-order multi-state multi-configuration perturbation theory, MS-CASPT2, and MRMP2 in conjunction with the large ANO-L and 6-311++G(3df,2p) basis set, confirm and reveal the followings: (i) TDB has a doublet 2A 1 ground state with a 4B 2- 2A 1 energy gap of 29 kcal/mol, (ii) the ground state of the C6H3- anion in the triplet 3B 2 being 4 kcal/mol below the 1A 1 state. (iii) the electron affinity (EA), ionization energy (IE) and proton affinity (PA) are computed to be: EA = 1.6 eV, IE = 7.2 eV, PA = 227 kcal/mol using UB3LYP/6-311++G(3df,2p) + ZPE; standard heat of formation Δ Hf(298 K, 1 atm) (TDB) = 179 ± 2 kcal/mol was calculated with CBS-QB3 method. An atoms-in-molecules (AIM) analysis of the structure reveals that the topology of the electron density is similar in all compounds: hydrogens connect to a six-membered ring, except for the case of the 2A 2 state of C6H4+ (MBZ +) which is bicyclic with fused five- and three-membered rings. Properties of the chemical bonds were characterized with Electron Localization Function (ELF) analysis, as well as Wiberg indices, Laplacian and spin density maps. We found that the radicals form separate monosynaptic basins on the ELF space, however its pair character remains high. In the 2A 1 state of TDB, the radical center is mainly localized on the C1 atom, while in the 2B 2 state it is equally distributed between the C3 and C5 atoms and, due to the symmetry, in the 4B 2 state the C1, C2 and C3 atoms have the same radical character. There is no C3-C5 bond in the 2A 1 state of TDB, but the interaction between these atoms is strong. The ground state of cation C6H3+ (DHP), 1A 1, is not a diradical and has

  11. Stability of Criegee intermediates formed by ozonolysis of different double bonds.

    PubMed

    Kalinowski, Jaroslaw; Heinonen, Petri; Kilpeläinen, Ilkka; Räsänen, Markku; Gerber, R Benny

    2015-03-19

    The formation of Criegee intermediates by ozonolysis of different species containing C═N and C═P bonds is studied computationally. Electronic structure calculations are carried out for the energetics of ozonolysis, and the lifetime of the Criegee intermediate formed is computed by transition state theory. All calculations are carried out for formation of CH2OO, the simplest Criegee intermediate. Extremely large differences are found for the lifetime of CH2OO depending on the specific C═N, C═P, and C═C precursor, due to the great variations in the exoergicity of the ozonolysis. The largest lifetimes of CH2OO are found to be up to a millisecond range for a Schiff base precursor, being orders of magnitude greater than for C═C and C═P precursors at the same conditions. The results provide insights into the role of the precursor in determining the stability of the Criegee species formed and suggest an approach for preparing Criegee intermediates of relatively long lifetimes.

  12. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations.

    PubMed

    Li, Chao-Jun

    2009-02-17

    Synthetic chemists aspire both to develop novel chemical reactions and to improve reaction conditions to maximize resource efficiency, energy efficiency, product selectivity, operational simplicity, and environmental health and safety. Carbon-carbon bond formation is a central part of many chemical syntheses, and innovations in these types of reactions will profoundly improve overall synthetic efficiency. This Account describes our work over the past several years to form carbon-carbon bonds directly from two different C-H bonds under oxidative conditions, cross-dehydrogenative coupling (CDC). We have focused most of our efforts on carbon-carbon bonds formed via the functionalization of sp(3) C-H bonds with other C-H bonds. In the presence of simple and cheap catalysts such as copper and iron salts and oxidants such as hydrogen peroxide, dioxygen, tert-butylhydroperoxide, and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), we can directly functionalize various sp(3) C-H bonds by other C-H bonds without requiring preactivation. We demonstrate (1) reaction of alpha-C-H bonds of nitrogen in amines, (2) reaction of alpha-C-H bonds of oxygen in ethers, (3) reaction of allylic and benzylic C-H bonds, and (4) reaction of alkane C-H bonds. These CDC reactions can tolerate a variety of functional groups, and some can occur under aqueous conditions. Depending on the specific transformation, we propose the in situ generation of different intermediates. These methods provide an alternative to the separate steps of prefunctionalization and defunctionalization that have traditionally been part of synthetic design. As a result, these methods will increase synthetic efficiencies at the most fundamental level. On an intellectual level, the development of C-C bond formations based on the reaction of only C-H bonds (possibly in water) challenges us to rethink some of the most fundamental concepts and theories regarding chemical reactivities. A successful reaction requires the

  13. Oxidation Microstructure Studies of Reinforced Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Curry, Donald M.

    2006-01-01

    Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.

  14. Resistivity of Carbon-Carbon Composites Halved

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2004-01-01

    Carbon-carbon composites have become the material of choice for applications requiring strength and stiffness at very high temperatures (above 2000 C). These composites comprise carbon or graphite fibers embedded in a carbonized or graphitized matrix. In some applications, such as shielding sensitive electronics in very high temperature environments, the performance of these materials would be improved by lowering their electrical resistivity. One method to lower the resistivity of the composites is to lower the resistivity of the graphite fibers, and a proven method to accomplish that is intercalation. Intercalation is the insertion of guest atoms or molecules into a host lattice. In this study the host fibers were highly graphitic pitch-based graphite fibers, or vapor-grown carbon fibers (VGCF), and the intercalate was bromine. Intercalation compounds of graphite are generally thought of as being only metastable, but it has been shown that the residual bromine graphite fiber intercalation compound is remarkably stable, resisting decomposition even at temperatures at least as high as 1000 C. The focus of this work was to fabricate composite preforms, determine whether the fibers they were made from were still intercalated with bromine after processing, and determine the effect on composite resistivity. It was not expected that the resistivity would be lowered as dramatically as with graphite polymer composites because the matrix itself would be much more conductive, but it was hoped that the gains would be substantial enough to warrant its use in high-performance applications. In a collaborative effort supporting a Space Act Agreement between the NASA Glenn Research Center and Applied Sciences, Inc. (Cedarville, OH), laminar preforms were fabricated with pristine and bromine-intercalated pitch-based fibers (P100 and P100-Br) and VGCF (Pyro I and Pyro I-Br). The green preforms were carbonized at 1000 C and then heat treated to 3000 C. To determine whether the

  15. Dual hydrogen-bonding motifs in complexes formed between tropolone and formic acid

    NASA Astrophysics Data System (ADS)

    Nemchick, Deacon J.; Cohen, Michael K.; Vaccaro, Patrick H.

    2016-11-01

    The near-ultraviolet π*←π absorption system of weakly bound complexes formed between tropolone (TrOH) and formic acid (FA) under cryogenic free-jet expansion conditions has been interrogated by exploiting a variety of fluorescence-based laser-spectroscopic probes, with synergistic quantum-chemical calculations built upon diverse model chemistries being enlisted to unravel the structural and dynamical properties of the pertinent ground [X˜ 1A'] and excited [A˜ 1A'(" separators="π*π )] electronic states. For binary TrOH ṡ FA adducts, the presence of dual hydrogen-bond linkages gives rise to three low-lying isomers designated (in relative energy order) as INT, EXT1, and EXT2 depending on whether docking of the FA ligand to the TrOH substrate takes place internal or external to the five-membered reaction cleft of tropolone. While the symmetric double-minimum topography predicted for the INT potential surface mediates an intermolecular double proton-transfer event, the EXT1 and EXT2 structures are interconverted by an asymmetric single proton-transfer process that is TrOH-centric in nature. The A ˜ -X ˜ origin of TrOH ṡ FA at ν˜ 00=27 484 .45 cm-1 is displaced by δ ν˜ 00=+466 .76 cm-1 with respect to the analogous feature for bare tropolone and displays a hybrid type - a/b rotational contour that reflects the configuration of binding. A comprehensive analysis of vibrational landscapes supported by the optically connected X˜ 1A' and A˜ 1A'(" separators="π*π ) manifolds, including the characteristic isotopic shifts incurred by partial deuteration of the labile TrOH and FA protons, has been performed leading to the uniform assignment of numerous intermolecular (viz., modulating hydrogen-bond linkages) and intramolecular (viz., localized on monomer subunits) degrees of freedom. The holistic interpretation of all experimental and computational findings affords compelling evidence that an external-binding motif (attributed to EXT1), rather than the

  16. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  17. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  18. Alkali metal mediated C-C bond coupling reaction.

    PubMed

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2](-) was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  19. Oxidation of Carbon/Carbon through Coating Cracks

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Roth, d. J.; Rauser, R. W.; Cawley, J. D.; Curry, D. M.

    2008-01-01

    Reinforced carbon/carbon (RCC) is used to protect the wing leading edge and nose cap of the Space Shuttle Orbiter on re-entry. It is composed of a lay-up of carbon/carbon fabric protected by a SiC conversion coating. Due to the thermal expansion mismatch of the carbon/carbon and the SiC, the SiC cracks on cool-down from the processing temperature. The cracks act as pathways for oxidation of the carbon/carbon. A model for the diffusion controlled oxidation of carbon/carbon through machined slots and cracks is developed and compared to laboratory experiments. A symmetric cylindrical oxidation cavity develops under the slots, confirming diffusion control. Comparison of cross sectional dimensions as a function of oxidation time shows good agreement with the model. A second set of oxidation experiments was done with samples with only the natural craze cracks, using weight loss as an index of oxidation. The agreement of these rates with the model is quite reasonab

  20. [Study on implant material of carbon/carbon composites].

    PubMed

    Wang, Guohui; Yu, Shu; Zhu, Shaihong; Liu, Yong; Miu, Yunliang; Huang, Boyun

    2010-12-01

    This study was aimed to evaluate the biocompatibility and mechanical property of carbon/carbon composites. At first, carbon/carbon composites were prepared by chemical vapor deposition, and the mechanical property of carbon/carbon composites was tested. The biocompatibility of carbon/carbon composites was evaluated by cytotoxicity test, sensitization test, micronucleus test and implantation test. Mechanical property test showed such carbon/carbon composites are of good compression property and tension property. Cytotoxicity test showed that the leaching liquor of samples has no effect on the growth and proliferation of L-929 cells. The medullary micronucleus frequency of mouse was 2.3 per thousand +/- 0.7 per thousand in experiment group. The sensitization test showed that the skin of the subjects of experiment group had slight erythema and edema, which was 0.188 +/- 0.40 according to Magnusson and Kligman classification. Implantation test revealed that there was slight inflammation around the tissue after the implantation of sample. At 12 weeks, scanning electron microscopy and histopathological exam indicated that the samples of experiment group were of good histocompatibility; and in comparison with control group, there was no significant differences (P > 0.05). So these kinds of samples have good biocompatibility, mechanical property and prospects of clinical application.

  1. Coefficients of thermal expansion for a carbon-carbon composite

    SciTech Connect

    Feng, W.W.; Hoheisel, T.H.

    1989-11-17

    From the published data, carbon-carbon composites possess many unique properties at high temperature. They retain their room temperature strength in excess of 2200{degrees}C. The low coefficients of thermal expansion (CTE) and the property of non-wetting by molten metals make carbon-carbon composites excellent candidates for applications in the LIS program. Among these unique properties, CTE is the most important factor for the LIS program. In seeking to evaluate typical CTE's we obtained complementary samples of selected carbon-carbon specimens. These samples were laminates with (0{sub 2}){sub s}, (0{sub 2}90{sub 2}){sub s} and ({plus minus}45){sub s} orientations. These results indicated that the selected carbon-carbon composites are almost isotropic in thermal expansion. The CTE's are slightly negative at low temperature and become positive at high temperature. The exact values are shown in the figures. In order to determine the outgassing of carbon-carbon composites, two samples were tested in vacuum. The results have shown that the outgassing can not be neglected. 8 figs.

  2. Transition-metal-free C-C bond forming reactions of aryl, alkenyl and alkynylboronic acids and their derivatives.

    PubMed

    Roscales, S; Csákÿ, A G

    2014-12-21

    Investigation of new methods for the synthesis of C-C bonds is fundamental for the development of new organic drugs and materials. Aryl-, alkenyl- and alkynylboronic acids and their derivatives constitute attractive reagents towards this end, due to their stability, low toxicity and ease of handling. However, these compounds are only moderately nucleophilic. Consequently, the most popular C-C bond forming reactions of these boronic acids, such as the Suzuki-Miyaura, Heck, and Hayashi-Miyaura reactions, or additions to C=O and C=N bonds, require catalysis by transition metals. However, due to the toxicity and cost of transition metals, some new methods for C-C bond formation using aryl-, alkenyl- and alkynylboronic acids under transition-metal-free conditions are beginning to emerge. In this tutorial review, the recent synthetic advances in this field are highlighted and discussed.

  3. Properties of Plutonium-Containing Colloids Released from Glass-Bonded Sodalite Nuclear Waste Form

    SciTech Connect

    Morss, L.R.; Mertz, C.J.; Kropf, A.J.; Holly, J.L.

    2004-10-11

    In glass-bonded sodalite, which is the ceramic waste form (CWF) to immobilize radioactive electrorefiner salt from spent metallic reactor fuel, uranium and plutonium are found as 20-50 nm (U,Pu)O{sub 2} particles encapsulated in glass near glass-sodalite phase boundaries. In order to determine whether the (U,Pu)O{sub 2} affects the durability of the CWF, and to determine release behavior of uranium and plutonium during CWF corrosion, tests were conducted to measure the release of matrix and radioactive elements from crushed CWF samples into water and the properties of released plutonium. Released colloids have been characterized by sequential filtration of test solutions followed by elemental analysis, dynamic light scattering, transmission electron microscopy (TEM), and X-ray absorption spectroscopy. This paper reports the composition, size, and agglomeration of these colloids. Significant amounts of colloidal, amorphous aluminosilicates and smaller amounts of colloidal crystalline (U,Pu)O{sub 2} were identified in test solutions. The normalized releases of uranium and plutonium were significantly less than the normalized releases of matrix elements.

  4. Microsolvation of anions by molecules forming CH··X- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Nepal, Binod; Scheiner, Steve

    2015-12-01

    Various anions were surrounded by n molecules of CF3H, which was used as a prototype CH donor solvent, and the structures and energies studied by M06-2X calculations with a 6-31+G∗∗ basis set. Anions considered included the halides F-, Cl-, Br- and I-, as well as those with multiple proton acceptor sites: CN-, NO3-, HCOO-, CH3COO-, HSO4-, H2PO4-, and anions with higher charges SO42-, HPO42- and PO43-. Well structured cages were formed and the average H-bond energy decreases steadily as the number of surrounding solvent molecules rises, even when n exceeds 6 and the CF3H molecules begin to interact with one another rather than with the central anion. Total binding energies are very nearly proportional to the magnitude of the negative charge on the anion. The free energy of complexation becomes more negative for larger n initially, but then reaches a minimum and begins to rise for larger values of n.

  5. 26 CFR 301.7101-1 - Form of bond and security required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... otherwise encumber, any property offered as security while the bond continues in effect without first... thereafter so long as the bond continues in effect, an affidavit as to the adequacy of his security, executed... in subchapter E of this chapter (Alcohol, Tobacco, and Other Excise Taxes)....

  6. 27 CFR 28.63 - Bond, Form 2736 (5100.12).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... penal sum of such bond shall be not less than the tax prescribed by law on the quantity of distilled spirits or wines to be withdrawn: Provided, That the maximum penal sum of such bond shall not exceed $200,000, but in no case shall the penal sum be less than $1,000. (Sec. 201, Pub. L. 85-859, 72 Stat....

  7. 27 CFR 28.63 - Bond, Form 2736 (5100.12).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... penal sum of such bond shall be not less than the tax prescribed by law on the quantity of distilled spirits or wines to be withdrawn: Provided, That the maximum penal sum of such bond shall not exceed $200,000, but in no case shall the penal sum be less than $1,000. (Sec. 201, Pub. L. 85-859, 72 Stat....

  8. 27 CFR 28.63 - Bond, Form 2736 (5100.12).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... penal sum of such bond shall be not less than the tax prescribed by law on the quantity of distilled spirits or wines to be withdrawn: Provided, That the maximum penal sum of such bond shall not exceed $200,000, but in no case shall the penal sum be less than $1,000. (Sec. 201, Pub. L. 85-859, 72 Stat....

  9. 27 CFR 28.63 - Bond, Form 2736 (5100.12).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... penal sum of such bond shall be not less than the tax prescribed by law on the quantity of distilled spirits or wines to be withdrawn: Provided, That the maximum penal sum of such bond shall not exceed $200,000, but in no case shall the penal sum be less than $1,000. (Sec. 201, Pub. L. 85-859, 72 Stat....

  10. 27 CFR 28.63 - Bond, Form 2736 (5100.12).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... penal sum of such bond shall be not less than the tax prescribed by law on the quantity of distilled spirits or wines to be withdrawn: Provided, That the maximum penal sum of such bond shall not exceed $200,000, but in no case shall the penal sum be less than $1,000. (Sec. 201, Pub. L. 85-859, 72 Stat....

  11. (abstract) Unidirectional Carbon/Carbon for Ion Engine Optics

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1995-01-01

    Conventional ion engine optical grids are made from hydroformed molybdenum. Carbon/carbon has been utilized in place of molybdenum because of its lower sputter yield, which contributes a greatly increased engine life, and for its low cte, which allows more efficient engine operation. The requirements for this material are that it must have high stiffness, very tight dimensional tolerances, and can be optimized for an hexagonal hole pattern with a very high open area friction. The carbon/carbon for this application was fabricated from unidirectional tape prepreg, using pitch fiber, and was processed to a very high temperature. The use of unidirectional tape allowed for a sufficient number of plies to be used to generate a balanced three directional layup within the thickness constraints of the material, as well as providing strength and stiffness over that normally seen with fabric based carbon/carbons.

  12. Aromatic Cations from Oxidative Carbon–Hydrogen Bond Cleavage in Bimolecular Carbon–Carbon Bond Forming Reactions

    PubMed Central

    Clausen, Dane J.

    2012-01-01

    Chromenes and isochromenes react quickly with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to form persistent aromatic oxocarbenium ions through oxidative carbon–hydrogen cleavage. This process is tolerant of electron-donating and electron-withdrawing groups on the benzene ring and additional substitution on the pyran ring. A variety of nucleophiles can be added to these cations to generate a diverse set of structures. PMID:22780559

  13. Self-Protecting Bactericidal Titanium Alloy Surface Formed by Covalent Bonding of Daptomycin Bisphosphonates

    PubMed Central

    Chen, Chang-Po; Wickstrom, Eric

    2010-01-01

    Infections are a devastating complication of titanium alloy orthopedic implants. Current therapy includes antibiotic-impregnated bone cement, and antibiotic-containing coatings. We hypothesized that daptomycin, a Gram-positive peptide antibiotic, could prevent bacterial colonization on titanium alloy surfaces if covalently bonded via a flexible, hydrophilic spacer. We designed and synthesized a series of daptomycin conjugates for bonding to the surface of 1.0 cm2 Ti6Al4V foils through bisphosphonate groups, reaching a maximum yield of 180 pmol /cm2. Daptomycin-bonded foils killed 53±5% of a high challenge dose of 3×105 cfu Staphylococcus aureus ATCC 29213. PMID:20949909

  14. Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1998-01-01

    An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  15. Development of improved coating for advanced carbon-carbon components

    NASA Technical Reports Server (NTRS)

    Yamaki, Y. R.; Brown, J. J.

    1984-01-01

    Reaction sintered silicon nitride (RSSN) was studied as a substitute coating material on the carbon-carbon material (RCC) presently used as a heat shield on the space shuttle, and on advanced carbon-carbon (ACC), a later development. On RCC, RSSN showed potential in a 538 C (1000 F) screening test in which silicon carbide coated material exhibits its highest oxidation rate; RSSN afforded less protection to ACC because of a larger thermal expansion mismatch. Organosilicon densification and metallic silicon sealing methods were studied as means of further increasing the oxidation resistance of the coating, and some improvement was noted when these methods were employed.

  16. Evaluation of intermediate phases formed on the bonding interface of hot pressed Cu/Al clad materials

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Seok; Lee, Sangmok; Lee, Jong-Sup; Kim, Yong-Bae; Lee, Geun-An; Lee, Sang-Pill; Bae, Dong-Su

    2016-09-01

    The aim of the present study is to identify the properties of intermediate phases formed on the bonding interface of hot pressed Cu/Al clad materials by transmission electron microscopy and nano-indentation analyses. Cu/Al clad materials were fabricated by hot pressing under 200 MPa at 250 °C for 1 h and then heat treated at 400 °C for 1 h. Nano-indentation measurement was conducted to evaluate the nanohardness and modulus of the intermediate phases formed between the Cu/Al interfaces. A 3-tier diffusion layer was observed at the Cu/Al interfaces. Knoop microhardness values at the bonding interface were 7 to 11 times that of the Cu and Al matrix metals. The intermediate phases formed at the bonding interface were Al4Cu9, AlCu, and Al2Cu. A mapping analysis confirmed that the Al and Cu particles moved via mutual diffusion toward the intermediate phases formed at the bonding interface. The nanohardness values of η2-AlCu and γ1-Al4Cu9 were 4 to 7 times that of the Cu and Al matrix metals. Nanohardness and Knoop microhardness measurement curves exhibited similar tendencies. The rigidity values of the respective intermediate phases can be arranged in descending order as follows: γ1-Al4Cu9 > η2-AlCu > θ-Al2Cu.

  17. 46 CFR 308.531 - Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311. 308.531 Section 308.531 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk...

  18. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Letter requesting increase or decrease in amount of surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk...

  19. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  20. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  1. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.532 Release of surety bond... American War Risk Agency or MARAD....

  2. Dinuclear complexes formed by hydrogen bonds: synthesis, structure and magnetic and electrochemical properties.

    PubMed

    Williams, Alan Francis; Granelli, Matteo; Downward, Alan M; Huber, Robin; Guenée, Laure; Besnard, Céline; Krämer, Karl W; Decurtins, Silvio; Liu, Shi-Xia; Thompson, Laurence K

    2017-03-20

    The synthesis is reported of a series of homo- and hetero-dinuclear octahedral complexes of the ligand 1, 1,2-bis(1-methyl-benzimidazol-2-yl) ethanol, where the two metal centres are linked by hydrogen bonds between coordinated alcohols and coordinated alkoxides. Homonuclear divalent M(II)M(II), mixed valent M(II)M(III) and heteronuclear M(II)M'(III) species are prepared. The complexes have been characterised by X-ray crystallography and show unusually short O…O distances for the hydrogen bonds. Magnetic measurements show the hydrogen bond bridges can lead to ferromagnetic or antiferromagnetic coupling. The electrochemistry of the dinuclear species is significantly different from the mononuclear systems: the latter show irreversible waves in cyclic voltammograms as a result of the need to couple proton and electron transfer. The dinuclear species, in contrast, show reversible waves which are attributed to rapid intramolecular proton transfer facilitated by the hydrogen bonded structure.

  3. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.532 Release of surety bond... American War Risk Agency or MARAD....

  4. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.532 Release of surety bond... American War Risk Agency or MARAD....

  5. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.532 Release of surety bond... American War Risk Agency or MARAD....

  6. 27 CFR 28.61 - Bond, Form 2734 (5100.25).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... filed by the exporter, as provided in § 28.51. The penal sum of the bond shall not be less than the tax prescribed by law on the quantity of spirits or wine to be withdrawn. However, the maximum penal sum of the bond shall not exceed $200,000 but in no case shall the penal sum be less than $1,000. (Sec. 201,...

  7. 27 CFR 28.61 - Bond, Form 2734 (5100.25).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... filed by the exporter, as provided in § 28.51. The penal sum of the bond shall not be less than the tax prescribed by law on the quantity of spirits or wine to be withdrawn. However, the maximum penal sum of the bond shall not exceed $200,000 but in no case shall the penal sum be less than $1,000. (Sec. 201,...

  8. 27 CFR 28.61 - Bond, Form 2734 (5100.25).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... filed by the exporter, as provided in § 28.51. The penal sum of the bond shall not be less than the tax prescribed by law on the quantity of spirits or wine to be withdrawn. However, the maximum penal sum of the bond shall not exceed $200,000 but in no case shall the penal sum be less than $1,000. (Sec. 201,...

  9. 27 CFR 28.61 - Bond, Form 2734 (5100.25).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... filed by the exporter, as provided in § 28.51. The penal sum of the bond shall not be less than the tax prescribed by law on the quantity of spirits or wine to be withdrawn. However, the maximum penal sum of the bond shall not exceed $200,000 but in no case shall the penal sum be less than $1,000. (Sec. 201,...

  10. 27 CFR 28.61 - Bond, Form 2734 (5100.25).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... filed by the exporter, as provided in § 28.51. The penal sum of the bond shall not be less than the tax prescribed by law on the quantity of spirits or wine to be withdrawn. However, the maximum penal sum of the bond shall not exceed $200,000 but in no case shall the penal sum be less than $1,000. (Sec. 201,...

  11. Titanium metals form direct bonding to bone after alkali and heat treatments.

    PubMed

    Nishiguchi, S; Kato, H; Fujita, H; Oka, M; Kim, H M; Kokubo, T; Nakamura, T

    2001-09-01

    In this article we evaluated the bone-bonding strengths of titanium and titanium alloy implants with and without alkali and heat treatments using the conventional canine femur push-out model. Four kinds of smooth cylindrical implants, made of pure titanium or three titanium alloys, were prepared with and without alkali and heat treatments. The implants were inserted hemitranscortically into canine femora. The bone-bonding shear strengths of the implants were measured using push-out test. At 4 weeks all types of the alkali- and heat-treated implants showed significantly higher bonding strength (2.4-4.5 MPa) than their untreated counterparts (0.3-0.6 MPa). At 12 weeks the bonding strengths of the treated implants showed no further increase, while those of the untreated implants had increased to 0.6-1.2MPa. Histologically, alkali- and heat-treated implants showed direct bonding to bony tissue without intervening fibrous tissue. On the other hand, untreated implants usually had intervening fibrous tissue at the interface between bone and the implant. The early and strong bonding to bone of alkali- and heat-treated titanium and its alloys without intervening fibrous tissue may be useful in establishing cementless stable fixation of orthopedic implants.

  12. Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).

  13. Some Observations on Stress Graphitization in Carbon-Carbon Composites

    DTIC Science & Technology

    1992-09-15

    expansion ( CTE ) versus heat-treatment temperature for T-50/PAA carbon-carbon com posites...are derived from asphaltic precursors such as coal -tar and petroleum pitches. These materials are unique in passing through a liquid-crystalline...at a lower tem- perature and, for a given temperature, proceeded more extensively in the hard carbon than in a graphitizing polyvinylchloride coke

  14. Determination of carbonate carbon in geological materials by coulometric titration

    USGS Publications Warehouse

    Engleman, E.E.; Jackson, L.L.; Norton, D.R.

    1985-01-01

    A coulometric titration is used for the determination of carbonate carbon in geological materials. Carbon dioxide is evolved from the sample by the addition of 2 M perchloric acid, with heating, and is determined by automated coulometric titration. The coulometric titration showed improved speed and precision with comparable accuracy to gravimetric and gasometric techniques. ?? 1985.

  15. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  16. In-Space Repair of Reinforced Carbon-Carbon Thermal Protection System Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation system as well as for future Crew Exploration Vehicles (CEV). The damage to these components could be caused by impact during ground handling or due to falling of ice or other objects during launch. In addition, in-orbit damage includes micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during simulated entry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, integrated system for tile and leading edge repair (InSTALER) have been developed. In this presentation, critical in-space repair needs and technical challenges as well as various issues and complexities will be discussed along with the plasma performance and post test characterization of repaired RCC materials.

  17. A triclinic polymorph of benzanilide: disordered molecules form hydrogen-bonded chains.

    PubMed

    Bowes, Katharine F; Glidewell, Christopher; Low, John N; Skakle, Janet M S; Wardell, James L

    2003-01-01

    In the P-1 polymorph of benzanilide or N-phenylbenzamide, C(13)H(11)NO, the molecules are linked into simple C(4) chains by N-H...O hydrogen bonds. The molecules exhibit orientational disorder, but the donor and acceptor in a given hydrogen bond may occur, independently, in either the major or the minor orientation, such that all four possible N-H.O combinations have very similar geometries. The structure of this P-1 polymorph can be related to that of a previously reported C2/c polymorph.

  18. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOEpatents

    Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  19. Fluorous oxime palladacycle: a precatalyst for carbon-carbon coupling reactions in aqueous and organic medium.

    PubMed

    Susanto, Woen; Chu, Chi-Yuan; Ang, Wei Jie; Chou, Tzyy-Chao; Lo, Lee-Chiang; Lam, Yulin

    2012-03-16

    To facilitate precatalyst recovery and reuse, we have developed a fluorous, oxime-based palladacycle 1 and demonstrated that it is a very efficient and versatile precatalyst for a wide range of carbon-carbon bond formation reactions (Suzuki-Miyaura, Sonogashira, Stille, Heck, Glaser-type, and Kumada) in either aqueous or organic medium under microwave irradiation. Palladacycle 1 could be recovered through F-SPE in various coupling reactions with recovery ranging from 84 to 95% for the first cycle. Inductively coupled plasma optical emission spectrometry (ICP-OES) analyses of the Pd content in the crude product from each class of transformation indicated extremely low levels of leaching and the palladacycle could be reused four to five times without significant loss of activity.

  20. 25 CFR 162.436 - What is the release process for a performance bond or alternative form of security under a...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... What is the release process for a performance bond or alternative form of security under a business... 25 Indians 1 2013-04-01 2013-04-01 false What is the release process for a performance bond or alternative form of security under a business lease? 162.436 Section 162.436 Indians BUREAU OF INDIAN...

  1. 25 CFR 162.436 - What is the release process for a performance bond or alternative form of security under a...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... What is the release process for a performance bond or alternative form of security under a business... 25 Indians 1 2014-04-01 2014-04-01 false What is the release process for a performance bond or alternative form of security under a business lease? 162.436 Section 162.436 Indians BUREAU OF INDIAN...

  2. Disclinations in Carbon-Carbon Composites.

    DTIC Science & Technology

    1983-09-01

    matrices reinforced with high- strength, high-modulus graphite fibers from rayon, polyacrylonitrile or mesophase pitch . These composites exhibit some...matrix precursors such as * petroleum and coal-tar pitches to the carbonaceous mesophase . Discltnations can exist in this liquid crystal because as the...the molten pitch as a liquid crystal, the carbonaceous mesophase . Initially, this mesophase forms as small spherules of a simple structure, but, after

  3. The biologically active form of the sea urchin egg receptor for sperm is a disulfide-bonded homo-multimer

    PubMed Central

    1994-01-01

    Since many cell surface receptors exist in their active form as oligomeric complexes, we have investigated the subunit composition of the biologically active sperm receptor in egg plasma membranes from Strongylocentrotus purpuratus. Electrophoretic analysis of the receptor without prior reduction of disulfide bonds revealed that the surface receptor exists in the form of a disulfide-bonded multimer, estimated to be a tetramer. These findings are in excellent agreement with the fact that the NH2-terminus of the extracellular domain of the sperm receptor is rich in cysteine residues. Studies with cross-linking agents of various length and hydrophobicity suggest that no other major protein is tightly associated with the receptor. Given the multimeric structure of the receptor, we investigated the effect of disulfide bond reduction on its biological activity. Because in quantitative bioassays fertilization was found to be inhibited by treatment of eggs with 5 mM dithiothreitol, we undertook more direct studies of the effect of reduction on properties of the receptor. First, we studied the effect of addition of isolated, pure receptor on fertilization. Whereas the non-reduced, native receptor complex inhibited fertilization in a dose- dependent manner, the reduced and alkylated receptor was inactive. Second, we tested the ability of the isolated receptor to mediate binding of acrosome-reacted sperm to polystyrene beads. Whereas beads coated with native receptor bound sperm, those containing reduced and alkylated receptor did not. Thus, these results demonstrate that the biologically active form of the sea urchin sperm receptor consists only of 350 kD subunits and that these must be linked as a multimer via disulfide bonds to produce a complex that is functional in sperm recognition and binding. PMID:8188748

  4. Reactive Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah; Singh, M.; Morscher, Gregory; Asthana, Rajiv

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading.

  5. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  6. Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report

    SciTech Connect

    Lara-Curzio, Edgar

    2007-06-01

    The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

  7. Modification of the PTCDA-Ag bond by forming a heteromolecular bilayer film

    NASA Astrophysics Data System (ADS)

    Stadtmüller, Benjamin; Willenbockel, Martin; Schröder, Sonja; Kleimann, Christoph; Reinisch, Eva M.; Ules, Thomas; Soubatch, Sergey; Ramsey, Michael G.; Tautz, F. Stefan; Kumpf, Christian

    2015-04-01

    The understanding of the fundamental physical properties of metal-organic and organic-organic interfaces is crucial for improving the performance of organic electronic devices. This is particularly true for (multilayer) systems containing several molecular species due to their relevance for donor-acceptor systems. A prototypical heteromolecular bilayer system is copper-II-phthalocyanine (CuPc) on 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) on Ag(111). In an earlier work we have reported a commensurate registry between both organic layers and an enhanced charge transfer from the Ag substrate into the organic bilayer film [Phys. Rev. Lett. 108, 106103 (2012), 10.1103/PhysRevLett.108.106103], which both indicate an unexpectedly strong intermolecular interaction across the organic-organic interface. Here we present new details regarding electronic and geometric structure for the same system. In particular, we provide evidence that the enhanced charge transfer from the substrate into the organic bilayer does not involve CuPc electronic states, hence, there is no significant charge transfer into the second organic layer. Furthermore, we report vertical bonding distances revealing a shortening of the PTCDA-Ag(111) distance upon CuPc adsorption. Thus, electronic and geometric properties (charge transfer and bonding distance, respectively) both indicate a strengthening of the PTCDA-Ag(111) bond upon CuPc adsorption. We explain these findings—in particular the correlation between CuPc adsorption and increased charge transfer into PTCDA—in a model involving an intermolecular screening mechanism.

  8. Theory of relaxation dynamics in glass-forming hydrogen-bonded liquids

    NASA Astrophysics Data System (ADS)

    Hentschel, H. G. E.; Procaccia, Itamar

    2008-03-01

    We address the relaxation dynamics in hydrogen-bonded supercooled liquids near (but above) the glass transition, measured via broadband dielectric spectroscopy (BDS). We propose a theory based on decomposing the relaxation of the macroscopic dipole moment into contributions from hydrogen-bonded clusters of s molecules, with smin≤s≤smax . The existence of smax is translated into a sum rule on the concentrations of clusters of size s . We construct the statistical mechanics of the supercooled liquid subject to this sum rule as a constraint, to estimate the temperature-dependent density of clusters of size s . With a theoretical estimate of the relaxation time of each cluster, we provide predictions for the real and imaginary parts of the frequency-dependent dielectric response. The predicted spectra and their temperature dependence are in accord with measurements, explaining a host of phenomenological fits like the Vogel-Fulcher fit and the stretched exponential fit. Using glycerol as a particular example, we demonstrate quantitative correspondence between theory and experiments. The theory also demonstrates that the α peak and the “excess wing” stem from the same physics in this material. The theory also shows that in other hydrogen-bonded glass formers the excess wing can develop into a β peak, depending on the molecular material parameters (predominantly the surface energy of the clusters). We thus argue that α and β peaks can stem from the same physics. We address the BDS in constrained geometries (pores) and explain why recent experiments on glycerol did not show a deviation from bulk spectra. Finally, we discuss the dc part of the BDS spectrum and argue why it scales with the frequency of the α peak, providing an explanation for the remarkable data collapse observed in experiments.

  9. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  10. Four advances in carbon-carbon materials technology

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.; Vaughn, Wallace L.; Kowbel, Witold

    1994-01-01

    Carbon-carbon composites are a specialty class of materials having many unique properties making these composites attractive for a variety of demanding engineering applications. Chief among these properties are exceptional retention of mechanical properties at temperatures as high as 4000 F, excellent creep resistance, and low density (1.6 to 1.8 g/cu cm). Although carbon-carbon composites are currently in service in a variety of applications, much development work remains to be accomplished before these materials can be considered to be fully mature, realizing their full potential. Four recent technology advances holding particular promise for overcoming current barriers to the wide-spread commercialization of carbon-carbon composites are described. These advances are: markedly improved interlaminar strengths (more than doubled) of two dimensional composites achieved by whiskerization of the fabric reinforcing plies, simultaneously improved oxidation resistance and mechanical properties achieved by the incorporation of matrix-phase oxidation inhibitors based on carborane chemistry, improved oxidation resistance achieved by compositionally graded oxidation protective coatings, and markedly reduced processing times (hours as opposed to weeks or months) accomplished through a novel process of carbon infiltration and coatings deposition based on the use of liquid-phase precursor materials.

  11. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  12. Halogen-bonded network of trinuclear copper(II) 4-iodo­pyrazolate complexes formed by mutual breakdown of chloro­form and nanojars

    PubMed Central

    Surmann, Stuart A.; Mezei, Gellert

    2016-01-01

    Crystals of bis­(tetra­butyl­ammonium) di-μ3-chlorido-­tris­(μ2-4-iodo­pyrazolato-κ2 N:N′)tris­[chlorido­cuprate(II)] 1,4-dioxane hemisolvate, (C16H36N)2[Cu3(C3H2IN2)3Cl5]·0.5C4H8O or (Bu4N)2[CuII 3(μ 3-Cl)2(μ-4-I-pz)3Cl3]·0.5C4H8O, were obtained by evaporating a solution of (Bu4N)2[{CuII(μ-OH)(μ-4-I-pz)}nCO3] (n = 27–31) nanojars in chloro­form/1,4-dioxane. The decomposition of chloro­form in the presence of oxygen and moisture provides HCl, which leads to the breakdown of nanojars to the title trinuclear copper(II) pyrazolate complex, and possibly CuII ions and free 4-iodo­pyrazole. CuII ions, in turn, act as catalyst for the accelerated decomposition of chloro­form, ultimately leading to the complete breakdown of nanojars. The crystal structure presented here provides the first structural description of a trinuclear copper(II) pyrazolate complex with iodine-substituted pyrazoles. In contrast to related trinuclear complexes based on differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me), the [Cu3(μ-4-I-pz)3Cl3] core in the title complex is nearly planar. This difference is likely a result of the presence of the iodine substituent, which provides a unique, novel feature in copper pyrazolate chemistry. Thus, the iodine atoms form halogen bonds with the terminal chlorido ligands of the surrounding complexes [mean length of I⋯Cl contacts = 3.48 (1) Å], leading to an extended two-dimensional, halogen-bonded network along (-110). The cavities within this framework are filled by centrosymmetric 1,4-dioxane solvent mol­ecules, which create further bridges via C—H⋯Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex not involved in halogen bonding. PMID:27840698

  13. Bonding Lexan and sapphire to form high-pressure, flame-resistant window

    NASA Technical Reports Server (NTRS)

    Richardson, William R.; Walker, Ernie D.

    1987-01-01

    Flammable materials have been studied in normal gravity and microgravity for many years. Photography plays a major role in the study of the combustion process giving a permanent visual record that can be analyzed. When these studies are extended to manned spacecraft, safety becomes a primary concern. The need for a high-pressure, flame-resistant, shatter-resistant window permitting photographic recording of combustion experiments in manned spacecraft prompted the development of a method for bonding Lexan and sapphire. Materials that resist shattering (e.g., Lexan) are not compatible with combustion experiments; the material loses strength at combustion temperatures. Sapphire is compatible with combustion temperatures in oxygen-enriched atmospheres but is subject to shattering. Combining the two materials results in a shatter-resistant, flame-resistant window. Combustion in microgravity produces a low-visibility flame; however, flame propagation and flame characteristics are readily visible as long as there is no deterioration of the image. Since an air gap between the Lexan and the sapphire would reduce transmission, a method was developed for bonding these unlike materials to minimize light loss.

  14. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis

    PubMed Central

    2013-01-01

    Background Bacterial Disulfide bond forming (Dsb) proteins facilitate proper folding and disulfide bond formation of periplasmic and secreted proteins. Previously, we have shown that Mycobacterium tuberculosis Mt-DsbE and Mt-DsbF aid in vitro oxidative folding of proteins. The M. tuberculosis proteome contains another predicted membrane-tethered Dsb protein, Mt-DsbA, which is encoded by an essential gene. Results Herein, we present structural and biochemical analyses of Mt-DsbA. The X-ray crystal structure of Mt-DsbA reveals a two-domain structure, comprising a canonical thioredoxin domain with the conserved CXXC active site cysteines in their reduced form, and an inserted α-helical domain containing a structural disulfide bond. The overall fold of Mt-DsbA resembles that of other DsbA-like proteins and not Mt-DsbE or Mt-DsbF. Biochemical characterization demonstrates that, unlike Mt-DsbE and Mt-DsbF, Mt-DsbA is unable to oxidatively fold reduced, denatured hirudin. Moreover, on the substrates tested in this study, Mt-DsbA has disulfide bond isomerase activity contrary to Mt-DsbE and Mt-DsbF. Conclusion These results suggest that Mt-DsbA acts upon a distinct subset of substrates as compared to Mt-DsbE and Mt-DsbF. One could speculate that Mt-DsbE and Mt-DsbF are functionally redundant whereas Mt-DsbA is not, offering an explanation for the essentiality of Mt-DsbA in M. tuberculosis. PMID:24134223

  15. Water for Carbon, Carbon for Water

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Kroener, Eva; Ahmed, Mutez A. A.; Zarebanadkouki, Mohsen; Holz, Maire; Ghezzehei, Teamrat

    2015-04-01

    Plant roots exude approximately 10% of the carbon assimilated through photosynthesis into the soil, a process referred to as rhizodeposition. Although this may look like a waste of energy, it has been shown that the carbon exuded into the soil helps roots to take up nutrients and promote positive interactions with microorganisms. Here, we show that the mucilaginous fraction of the rhizodeposits, referred to as mucilage, plays also a crucial role on soil-plant water relations and triggers positive feedbacks between the water and carbon cycles. Mucilage is a gel that can absorb large volumes of water, altering the physical properties of the rhizosphere and maintaining the rhizosphere wet and conductive when the soil dries. Acting as a hydraulic bridge between roots and the soil, mucilage facilitates root water uptake and maintains transpiration and photosynthesis in dry soils. By employing a simplified model of root water uptake coupled with mucilage dynamics, we found that indeed the carbon exuded in form of mucilage maintains photosynthesis in dry soils resulting a in a net gain of carbon. In summary, by exuding mucilage, plants modify the physical soil environment, have a better access to water when water is scarce, and maintain photosynthesis for a prolonged time during drought. We propose that mucilage exudation is a plant trait conferring drought resistance. In other words: water for carbon, but also carbon for water.

  16. Orthogonal natural atomic orbitals form an appropriate one-electron basis for expanding CASSCF wave functions into localized bonding schemes and their weights.

    PubMed

    Bachler, Vinzenz

    2007-09-01

    Localized bonding schemes and their weights have been obtained for the pi-electron system of nitrone by expanding complete active space self-consistent field wave functions into a set of Slater determinants composed of orthogonal natural atomic orbitals (NAOs) of Weinhold and Landis (Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, 2005). Thus, the derived bonding schemes are close to orthogonal valence bond structures. The calculated sequence of bonding scheme weights accords with the sequence of genuine resonance structure weights derived previously by Ohanessian and Hiberty (Chem Phys Lett 1987, 137, 437), who employed nonorthogonal atomic orbitals. This accord supports the notion that NAOs form an appropriate orthogonal one-electron basis for expanding complete active space self-consistent field wave functions into meaningful bonding schemes and their weights.

  17. Carbon-Oxygen Bond Forming Mechanisms in Rhenium Oxo-Alkyl Complexes

    SciTech Connect

    Cheng, Mu-Jeng; Nielsen, Robert J.; Ahlquist, Marten; Goddard, William A.

    2010-04-07

    Three C-X bond formation mechanisms observed in the oxidation of (HBpz3)ReO(R)(OTf) [HBpz 3 = hydrotris(1-pyrazolyl)borate; R = Me, Et, and iPr; OTf = OSO2CF3] by dimethyl sulfoxide (DMSO) were investigated using quantum mechanics (M06//B3LYP DFT) combined with solvation (using the PBF Poisson-Boltzmann polarizable continuum solvent model). For R = Et we find the alkyl group is activated through α-hydrogen abstraction by external base OTf- with a free energy barrier of only 12.0 kcal/mol, leading to formation of acetaldehyde. Alternatively, ethyl migration across the M=O bond (leading to the formation of acetaldehyde and ethanol) poses a free energy barrier of 22.1 kcal/mol, and the previously proposed α-hydrogen transfer to oxo (a 2+2 forbidden reaction) poses a barrier of 44.9 kcal/mol. The rate-determining step to formation of the final product acetaldehyde is an oxygen atom transfer from DMSO to the ethylidene, with a free energy barrier of 15.3 kcal/mol. When R = iPr, the alkyl 1,2-migration pathway becomes the more favorable pathway (both kinetically and thermodynamically), with a free energy barrier (ΔG = 11.8 kcal/mol) lower than α-hydrogen abstraction by OTf- (ΔG = 13.5 kcal/mol). This suggests the feasibility of utilizing this type of migration to functionalize M-R to M-OR. We also considered the nucleophilic attack of water and ammonia on the Re-ethylidene α-carbon as a means of recovering two-electron-oxidized products from an alkane oxidation. Nucleophilic attack (with internal deprotonation of the nucleophile) is exothermic. However, the subsequent protonolysis of the Re-alkyl bond (to liberate an alcohol or amine) poses a barrier of 37.0 or 42.4 kcal/mol, respectively. Where comparisons are possible, calculated free energies agree very well with experimental measurements.

  18. Effect of Cementation Technique of Individually Formed Fiber-Reinforced Composite Post on Bond Strength and Microleakage

    PubMed Central

    Makarewicz, Dominika; Le Bell-Rönnlöf, Anna-Maria B; Lassila, Lippo V.J.; Vallittu, Pekka K.

    2013-01-01

    Objectives: The aim of this study was to evaluate the effect of two different cementation techniques of individually formed E-glass fiber-reinforced composite (FRC) post on bond strength and microleakage. Methods: The crowns of extracted third molars were removed and post preparation was carried out with parapost drills (diameter 1.5 mm). After application of bonding agents individually formed FRC posts (everStick POST, diameter 1.5 mm) were cemented into the post spaces with either ParaCem®Universal or self-adhesive RelyX™Unicem, using two different cementation techniques: 1) an “indirect (traditional) technique” where the post was prepolymerized prior application of luting cement and insertion into the post space or 2) a “direct technique” where the uncured post was inserted to the post space with luting cement and light-polymerized in situ at the same time. After water storage of 48 hours, the roots (n = 10/group) were cut into discs of thickness of 2 mm. A push-out force was applied until specimen fracture or loosening of the post. A microleakage test was carried out on roots which were not subjected to the loading test (n= 32) to evaluate the sealing capacity of the post-canal interface. The microleakage was measured using dye penetration depth under a stereomicroscope. Results: Higher bond strength values (p<0.05) and less microleakage (p<0.05) were obtained with the “direct technique” compared to the “indirect technique”. None of the FRC posts revealed any dye penetration between the post and the cement. Conclusions: The “direct technique” seems to be beneficial when cementing individually formed FRC posts. PMID:23986792

  19. Characterization of an alternative low energy fold for bovine α-lactalbumin formed by disulfide bond shuffling.

    PubMed

    Lewney, Sarah; Smith, Lorna J

    2012-03-01

    Bovine α-lactalbumin (αLA) forms a misfolded disulfide bond shuffled isomer, X-αLA. This X-αLA isomer contains two native disulfide bridges (Cys 6-Cys 120 and Cys 28-Cys 111) and two non-native disulfide bridges (Cys 61-Cys 73 and Cys 77-Cys 91). MD simulations have been used to characterize the X-αLA isomer and its formation via disulfide bond shuffling and to compare it with the native fold of αLA. In the simulations of the X-αLA isomer the structure of the α-domain of native αLA is largely retained in agreement with experimental data. However, there are significant rearrangements in the β-domain, including the loss of the native β-sheet and calcium binding site. Interestingly, the energies of X-αLA and native αLA in simulations in the absence of calcium are closely similar. Thus, the X-αLA isomer represents a different low energy fold for the protein. Calcium binding to native αLA is shown to help preserve the structure of the β-domain of the protein limiting possibilities for disulfide bond shuffling. Hence, binding calcium plays an important role in both maintaining the native structure of αLA and providing a mechanism for distinguishing between folded and misfolded species.

  20. The hydrogen bond stabilizing effect in enammonium salts of captodative aminoalkenes containing a carbonyl group

    NASA Astrophysics Data System (ADS)

    Fedorov, S. V.; Rulev, A. Yu; Chipanina, N. N.; Sherstyannikova, L. V.; Turchaninov, V. K.

    2004-03-01

    Enhanced stability of enammonium salts of captodative carbonyl-containing aminoalkenes as compared to the salts of simple enamines is discussed on the basis of 1H and 13C NMR, IR, UV spectroscopy and the results quantum chemical calculations. Stabilization of the N-protonated form of captodative aminoalkenes is due to either intramolecular (NH +⋯OC) or intermolecular (NH +⋯Solv or NH +⋯X -) hydrogen bonding, whereas the C-protonated form is destabilized due to umpolung of the carbon-carbon double bond. The formation of bifurcated (three-centered) hydrogen bond between the enammonium cation and the solvent is demonstrated. The three-centered solvate complex is characterized by nonclassical dependence of the chemical shift of the bridging hydrogen atom from the proton-acceptor power of the solvent.

  1. Topological description of the bond-breaking and bond-forming processes of the alkene protonation reaction in zeolite chemistry: an AIM study.

    PubMed

    Zalazar, María Fernanda; Peruchena, Nélida Maria

    2011-10-01

    Density functional theory and atoms in molecules theory were used to study bond breakage and bond formation in the trans-2-butene protonation reaction in an acidic zeolitic cluster. The progress of this reaction along the intrinsic reaction coordinate, in terms of several topological properties of relevant bond critical points and atomic properties of the key atoms involved in these concerted mechanisms, were analyzed in depth. At B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level, the results explained the electron density redistributions associated with the progressive bond breakage and bond formation of the reaction under study, as well as the profiles of the electronic flow between the different atomic basins involved in these electron reorganization processes. In addition, we found a useful set of topological indicators that are useful to show what is happening in each bond/atom involved in the reaction site as the reaction progresses.

  2. Method and apparatus for forming a carbon-silicon bond in a silane

    DOEpatents

    Schattenmann, Florian Johannes

    2002-01-01

    A method for forming at least one product silane, comprising reacting a transition metal hydride with a starting silane in a presence of a catalyst and at a temperature that exceeds a threshold temperature associated with said reacting.

  3. Carbon-Carbon Composite Radiator Development for the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace; Shinn, Elizabeth; Rawal, Suraj; Wright, Joe

    2004-01-01

    The Carbon-Carbon Space Radiator Partnership (CSRP), an informal partnership of Government and industrial personnel, was formed to promote the use of Carbon-carbon composites (C-C) as engineering materials for spacecraft thermal management applications . As a part of this effort the partnership has built a structural radiator for the Earth Orbiter - 1 (EO-1) spacecraft. This radiator, using C-C face-sheets with an aluminum honeycomb core, will demonstrate both the thermal and structural properties of C-C under actual service conditions as well as provide performance data from space flight. This paper will present results from the design of the radiator, the thermal/mechanical tests of the facesheet materials, and sub-component test results on the C-C/Al honeycomb sandwich material. The 29- by 28-inch radiator was designed to support two electronics boxes with a combined heat output of 60 watts maximum and a weight of 58 lbs. The analysis of the radiator design shows that the radiator constructed with 20-mil-thick facesheets of a P30-fiber-reinforced C-C from BFGoodrich is able to meet or exceed all the required thermal and mechanical requirements.

  4. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  5. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes.

    PubMed

    Gondry, Muriel; Sauguet, Ludovic; Belin, Pascal; Thai, Robert; Amouroux, Rachel; Tellier, Carine; Tuphile, Karine; Jacquet, Mickaël; Braud, Sandrine; Courçon, Marie; Masson, Cédric; Dubois, Steven; Lautru, Sylvie; Lecoq, Alain; Hashimoto, Shin-ichi; Genet, Roger; Pernodet, Jean-Luc

    2009-06-01

    Cyclodipeptides and their derivatives belong to the diketopiperazine (DKP) family, which is comprised of a broad array of natural products that exhibit useful biological properties. In the few known DKP biosynthetic pathways, nonribosomal peptide synthetases (NRPSs) are involved in the synthesis of cyclodipeptides that constitute the DKP scaffold, except in the albonoursin (1) pathway. Albonoursin, or cyclo(alpha,beta-dehydroPhe-alpha,beta-dehydroLeu), is an antibacterial DKP produced by Streptomyces noursei. In this pathway, the formation of the cyclo(Phe-Leu) (2) intermediate is catalyzed by AlbC, a small protein unrelated to NRPSs. We demonstrated that AlbC uses aminoacyl-tRNAs as substrates to catalyze the formation of the DKP peptide bonds. Moreover, several other bacterial proteins, presenting moderate similarity to AlbC, also use aminoacyl-tRNAs to synthesize various cyclodipeptides. Therefore, AlbC and these related proteins belong to a newly defined family of enzymes that we have named cyclodipeptide synthases (CDPSs).

  6. Enhancement of gene delivery using novel homodimeric tat peptide formed by disulfide bond.

    PubMed

    Lee, Soo-Jin; Yoon, Sung-Hwa; Doh, Kyung-Oh

    2011-08-01

    Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.

  7. Metallomacrocycles as anion receptors: combining hydrogen bonding and ion pair based hosts formed from Ag(I) salts and flexible bis- and tris-pyrimidine ligands.

    PubMed

    Tasada, Andres; Albertí, Francisca M; Bauzá, Antonio; Barceló-Oliver, Miquel; García-Raso, Angel; Fiol, Juan J; Molins, Elies; Caubet, Amparo; Frontera, Antonio

    2013-05-28

    Two self-assembled hosts are formed from Ag(I) salts and bis-pyrimidyl ligands and X-ray characterized. Both are able to incorporate two anions into the structure combining hydrogen bonding and electrostatic interactions.

  8. Hydroburst test of a carbon-carbon involute exit cone

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1986-01-01

    A hydroburst test of the aft portion of the PAM-D exit cone and the test procedure are described in detail. The hydrostatic pressure required to buckle the cone was 9.75 psi. Meanwhile, the PAM-D exit cone was modeled using the finite element method and a theoretical bucking pressure (8.76 psi) was predicted using the SPAR finite element code. The modeling technique employed is discussed. By comparing the theoretical to predicted critical pressures, this report verifies the modeling technique and calculates a material knockdown factor for the carbon-carbon exit cone.

  9. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Results of arc-jet tests conducted at the NASA Johnson Space Center (JSC) on Reinforced Carbon-Carbon (RCC) samples subjected to hypervelocity impact are presented. The RCC test specimens are representative of RCC component used on the Space Shuttle Orbiter. The objective of the arc jet testing was to establish the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris (MOD), impact the RCC material. In addition, analytical modeling of the increased material oxidation in the impacted area, using measured hole growth data, to develop correlations for use in trajectory simulations is also discussed.

  10. Failure mechanisms in laminated carbon/carbon composites under biaxial compression

    SciTech Connect

    Grape, J.A.; Gupta, V.

    1995-07-01

    The failure mechanisms of 2D carbon/carbon (C/C) woven laminates have been determined under inplane biaxial compression loads, and the associated failure envelopes that account for the effect of matrix-type and loading directions were also obtained. The failure was in the form of micro-kinking of fiber bundles, interspersed with localized interply delaminations to form an overall shear fault. The shear fault was aligned with the major axis of loading except at above 75% of balanced biaxial compressive stress where failure occurred along both axes. Although the biaxial strength varied significantly with the ratio of in-plane principal stresses, R, there was no variation in the local failure mechanisms. Accordingly, it was found that the samples fail upon achieving a critical strain along the primary axis of loading.

  11. The use of carboranes as oxidation inhibitors for carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Petty, John T.

    1991-01-01

    Carbon-carbon composites have many beneficial properties for use in aerospace applications, including their high specific strength and modulus at elevated temperatures. However, they share with all carbon based substances a strong tendency to burn when heated in air. In order to exploit their good qualities, it is necessary to slow or prevent their oxidation during use. Molecular inhibiters offer protection with the advantage of being able to form a homogeneous solution with the resin. Since boron oxides are known to provide the desired kind of protection, molecular compounds based on boron seem reasonable candidates to test as inhibitors. Performance tests indicated that carboranes are excellent materials for obtaining high uniform loadings of boron inhibitors in glassy carbon materials and thus reducing their rates of oxidation. Further, there is evidence that the use of substituted derivatives could provide more complete and thorough forms of protection.

  12. Inhibition of catalytic oxidation of carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Wu, Xianxian

    An investigation coupling experimental efforts with computational chemistry analysis was conducted to study the inhibition effects of phosphorous or boron on the oxidation of carbon/carbon composite materials catalyzed by potassium or calcium acetate (KAC or CaAC). Commercial aircraft brakes were used, which are exposed during use to K- or Ca-containing runway deicing agents. The reactivity of inhibitor-doped carbon materials was determined by temperature programmed oxidation (TPO) and isothermal oxidation in 1 atm O2. The structure and surface chemistry of inhibitor-doped samples were characterized, and the inhibition mechanisms were explored with the help of ab initio molecular orbital calculations. The catalytic effects of KAC or CaAC were found to be dependent on catalyst loading, pretreatment procedure, temperature and O2 partial pressure. Experimental observations showed that K is a more effective catalyst for carbon composite oxidation than Ca as expected from prior studies of catalyzed carbon gasification. This was attributed to its ability to form and maintain good interfacial contact with carbon, as well as to its insensitivity to carbon structure because of its excellent wetting ability and mobility. The experimental results suggested that the interfacial catalyst/carbon contact is the critical factor determining the catalytic effectiveness. Thermally deposited phosphorus, upon heat treatment of P-containing compounds such as CH3OP(OH)2 and POCl3 at around 600°C in the presence of inert gas, exhibited a good inhibition effect in the oxidation of C/C composites used in aircraft brake systems. These P compounds were also effective inhibitors for Ca- or K-catalyzed oxidation. The P loading up to a certain amount (ca. 4.0 wt%) was found to suppress Ca-catalyzed oxidation completely. It also improved the resistance of carbon to K-catalyzed oxidation, but the effect was much less significant than in the case of Ca-catalyzed reaction. The characterization of P

  13. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of

  14. Nitric oxide in star-forming regions - Further evidence for interstellar N-O bonds

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Mcgonagle, D.; Minh, Y.; Irvine, W. M.

    1991-01-01

    Nitric oxide has been newly detected toward several star-forming clouds, including Orion-KL, Sgr B2(N), W33A, W51M, and DR21(OH) via its J = 3/2-1/2 transitions near 150 GHz, using the FCRAO 14 m telescope. Both lambda-doubling components of NO were observed toward all sources. Column densities derived for nitric oxide in these clouds are 10 to the 15th-10 to the 16th/sq cm, corresponding to fractional abundances of 0.5-1.0 x 10 to the -8th, relative to H2. Toward Orion-KL, the NO line profile suggests that the species arises primarily from hot, dense gas. Nitric oxide may arise from warm material toward the other clouds as well. Nitric oxide in star-forming regions could be synthesized by high-temperature reactions, although the observed abundances do not disagree with values predicted from low-temperature, ion-molecule chemistry by more than one order of magnitude.

  15. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  16. Orbiter Reinforced Carbon-Carbon Advanced Sealant Systems: Screening Tests

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronad K.; Norman, Ignacio; Chao, Dennis; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.

  17. Effect of surface roughening of aluminum plates on the strength of bonds formed between aluminum and polyphenylene sulfide by thermosonic bonding

    NASA Astrophysics Data System (ADS)

    Yasuda, Kiyokazu; Saito, Ryo

    2014-08-01

    Thermosonic bonding of aluminum on polyphenylene sulfide was carried out in order to examine the effect of surface roughening of aluminum on the joint strength. Repeated chemical treatment of aluminum by immersion in aqueous sodium hydroxide and hydrochloric acid solutions increased its surface roughness (Ra ~25 μm) and surface area (~445% increase). Consequently, the bonding strength (~1.8N in average) was enhanced through anchoring effects.

  18. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges.

    PubMed

    Bush, Jeffrey; Makhatadze, George I

    2011-07-01

    It is well known that nonpolar residues are largely buried in the interior of proteins, whereas polar and ionizable residues tend to be more localized on the protein surface where they are solvent exposed. Such a distribution of residues between surface and interior is well understood from a thermodynamic point: nonpolar side chains are excluded from the contact with the solvent water, whereas polar and ionizable groups have favorable interactions with the water and thus are preferred at the protein surface. However, there is an increasing amount of information suggesting that polar and ionizable residues do occur in the protein core, including at positions that have no known functional importance. This is inconsistent with the observations that dehydration of polar and in particular ionizable groups is very energetically unfavorable. To resolve this, we performed a detailed analysis of the distribution of fractional burial of polar and ionizable residues using a large set of ˜2600 nonhomologous protein structures. We show that when ionizable residues are fully buried, the vast majority of them form hydrogen bonds and/or salt bridges with other polar/ionizable groups. This observation resolves an apparent contradiction: the energetic penalty of dehydration of polar/ionizable groups is paid off by favorable energy of hydrogen bonding and/or salt bridge formation in the protein interior. Our conclusion agrees well with the previous findings based on the continuum models for electrostatic interactions in proteins.

  19. Mass-analyzed threshold ionization spectroscopy of lanthanum-hydrocarbon radicals formed by C—H bond activation of propene

    NASA Astrophysics Data System (ADS)

    Kumari, Sudesh; Cao, Wenjin; Hewage, Dilrukshi; Silva, Ruchira; Yang, Dong-Sheng

    2017-02-01

    La(C3H4) and La(C3H6) are observed from the reaction of laser-vaporized La atoms with propene by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. Two isomers of La(C3H4) are identified as methyl-lanthanacyclopropene [La(CHCCH3)] (Cs) and lanthanacyclobutene [La(CHCHCH2)] (C1); La(C3H6) is determined to be H—La(η3-allyl) (Cs), a C—H bond inserted species. All three metal-hydrocarbon radicals prefer a doublet ground state with a La 6s-based electron configuration. Ionization of the neutral doublet state of each of these radicals produces a singlet ion state by removing the La-based 6s electron. The threshold ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. The formation of the three radicals is investigated by density functional theory computations. The inserted species is formed by La inserting into an allylic C—H bond and lanthanacyclopropene by concerted vinylic H2 elimination, whereas lanthanacyclobutene involves both allylic and vinylic dehydrogenations. The inserted species is identified as an intermediate for the formation of lanthanacyclobutene.

  20. Molecular bond selective x-ray scattering for nanoscale analysisof soft matter

    SciTech Connect

    Mitchell, G.E.; Koprinarov, I.; Landes, B.G.; Lyons, J.; Kern,B.J.; Devon, M.J.; Gullikson, E.M.; Kortright, J.B.

    2005-05-26

    We introduce a new technique using resonant soft x-ray scattering for characterizing heterogeneous chemical structure at nanometer length scales in polymers, biological material, and other soft matter. Resonant enhancements bring new contrast mechanisms and increased sensitivity to bridge a gap between bond-specific contrast in chemical sensitive imaging and the higher spatial resolution of traditional small-angle scattering techniques. We illustrate sensitivity to chemical bonding with the resonant scattering near the carbon K edge from latex spheres of differing chemistry and sizes. By tuning to x-ray absorption resonances associated with particular carbon-carbon or carbon-oxygen bonds we can isolate the scattering from different phases in a 2-phase mixture. We then illustrate this increased scattering contrast with a study of the templating process to form nanometer scale pores in 100 nm thick polymer films.

  1. Superstrong nature of covalently bonded glass-forming liquids at select compositions

    NASA Astrophysics Data System (ADS)

    Gunasekera, K.; Bhosle, S.; Boolchand, P.; Micoulaut, M.

    2013-10-01

    Variation of fragility (m) of specially homogenized GexSe100-x melts is established from complex specific heat measurements and shows that m(x) has a global minimum at an extremely low value (m = 14.8(0.5)) in the 21.5% < x < 23% range of Ge. Outside of that compositional range, m(x) then increases first rapidly and then slowly to about m = 25-30. By directly mapping melt stoichiometry as a function of reaction time at a fixed temperature T > Tg, we observe a slowdown of melt-homogenization by the super-strong melt compositions, 21.5% < x < 23%. This range furthermore appears to be correlated to the one observed between the flexible and stressed rigid phase in network glasses. These spectacular features underscore the crucial role played by topology and rigidity in the properties of network-forming liquids and glasses which are highlighted when fragility is represented as a function of variables tracking the effect of rigidity. Finally, we investigate the fragility-glass transition temperature relationship, and find that reported scaling laws do not apply in the flexible phase, while being valid for intermediate and stressed rigid compositions.

  2. Evaluation of superplastic forming and co-diffusion bonding of Ti-6Al-4V titanium alloy expanded sandwich structures

    NASA Technical Reports Server (NTRS)

    Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.

    1981-01-01

    The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).

  3. Peptide bond-forming reagents HOAt and HATU are not mutagenic in the bacterial reverse mutation test.

    PubMed

    Nicolette, John; Neft, Robin E; Vanosdol, Jessica; Murray, Joel

    2016-04-01

    The peptide bond-forming reagents 1-hydroxy-7-azabenzotriazole (HOAt, CAS 39968-33-7) and O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, CAS 148893-10-1) either have structural alerts, unclassified features or are considered out of domain when evaluated for potential mutagenicity with in silico programs DEREK and CaseUltra. Since they are commonly used reagents in pharmaceutical drug syntheses, they may become drug substance or drug product impurities and would need to be either controlled to appropriately safe levels or tested for mutagenicity. Both reagents were tested in the bacterial reverse mutation (Ames) test at Covance, under GLP conditions, following the OECD test guideline and ICH S2(R1) recommendations and found to be negative. Our data show that HOAt and HATU-common pharmaceutical synthesis reagents-are not mutagenic, and can be treated as ordinary drug impurities.

  4. Brazing of Carbon Carbon Composites to Cu-clad Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.; Shpargel, T> P.

    2007-01-01

    Advanced carbon carbon composites were joined to copper-clad molybdenum (Cu/Mo) using four active metal brazes containing Ti (Cu ABA, Cusin-1 ABA, Ticuni, and Ticusil) for potential use in thermal management applications. The brazed joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Knoop microhardness measurements across the joint region. Metallurgically sound C-C/Cu/Mo joints, devoid of interfacial cracks formed in all cases. The joint interfaces were preferentially enriched in Ti, with Cu ABA joints exhibiting the largest interfacial Ti concentrations. The microhardness measurements revealed hardness gradients across the joint region, with a peak hardness of 300-350 KHN in Cusin-1 ABA and Ticusil joints and 200-250 KHN in Cu ABA and Ticuni joints, respectively.

  5. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  6. Stress rupture behavior of silicon carbide coated, low modulus carbon/carbon composites

    SciTech Connect

    Rozak, G.A.; Wallace, J.F.

    1988-01-01

    The disadvantages of carbon-carbon composites, in addition to the oxidation problem, are low thermal expansion, expensive fabrication procedures, and poor off axis properties. The background of carbon-carbon composites, their fabrication, oxidation, oxidation protection and mechanical testing in flexure are discussed.

  7. Carbon-Carbon Heat Pipe Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rovang, Richard D.

    1994-01-01

    This report discusses development and proof-of-concept testing of a new lightweight carbon-carbon (C-C) space radiator heat pipe developed under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program. The heat pipe was filled with potassium working fluid and tested for 11 hours including startup from ambient temperature with the working fluid initially in the frozen state to near 700 K condenser temperature. Steady-state heat pipe input power during testing was facility limited to about 300 watts, representing about 50 percent of the design input power. Post test inspection showed the heat pipe to be in excellent condition after eight thermal cycles from ambient to steady-state operating temperature. Potential applications, ranging from small spacecraft heat rejection to aircraft and terrestrial uses, are discussed.

  8. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.

    2000-01-01

    This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.

  9. Mathematical models of carbon-carbon composite deformation

    NASA Astrophysics Data System (ADS)

    Golovin, N. N.; Kuvyrkin, G. N.

    2016-09-01

    Mathematical models of carbon-carbon composites (CCC) intended for describing the processes of deformation of structures produced by using CCC under high-temperature loading are considered. A phenomenological theory of CCC inelastic deformation is proposed, where such materials are considered as homogeneous ones with effective characteristics and where their high anisotropy of mechanical characteristics and different ways of resistance to extension and compression are taken into account. Micromechanical models are proposed for spatially reinforced CCC, where the difference between mechanical characteristics of components and the reinforcement scheme are taken into account. Themodel parameters are determined from the results of experiments of composite macrospecimens in the directions typical of the material. A version of endochronictype theory with several internal times "launched" for each composite component and related to some damage accumulation mechanisms is proposed for describing the inelastic deformation. Some practical examples are considered.

  10. Prospects for using carbon-carbon composites for EMI shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.

  11. Emittance measurements of Space Shuttle orbiter reinforced carbon-carbon

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Bouslog, Stanley A.; Cunnington, George R., Jr.

    1992-01-01

    The spectral and total normal emittance of the Reinforced Carbon-Carbon (RCC) used on Space Shuttle nose cap and wing leading edges has been measured at room temperature and at surface temperatures of 1200 to 2100 K. These measurements were made on virgin and two flown RCC samples. Room temperature directional emittance data were also obtained and were used to determine the total hemispherical emittance of RCC as a function of temperature. Results of the total normal emittance for the virgin samples showed good agreement with the current RCC emittance design curve; however, the data from the flown samples showed an increase in the emittance at high temperature possibly due to exposure from flight environments.

  12. Analysis of Carbon/Carbon Fragments From the Columbia Tragedy

    NASA Technical Reports Server (NTRS)

    Tallant, David R.; Simpson, Regina L.; Jacobson, Nathan S.

    2005-01-01

    The extensive investigation following the Space Shuttle Orbiter Columbia accident of February 1, 2003 determined that hot gases entered the wing through a breach in the protective reinforced carbon/carbon (RCC) leading edge. In the current study, the exposed edges of the recovered RCC from the vicinity of the breach are examined with scanning electron microscopy and Raman spectroscopy. Electron microscopy of the exposed edges revealed regions of pointed carbon fibers, characteristic of exposure to high temperature oxidizing gases. The Raman technique relates the observed 1350 and 1580 to 1600 cm(-1) bands to graphitic dom ains and their corresponding temperatures of formation. Some of the regions showed evidence of exposure temperatures beyond 2700 ?C during the accident.

  13. [Hydroxyapatite bioactive coating on carbon/carbon composites].

    PubMed

    Sui, Jinling; Li, Musen; Lü, Yupeng; Bai, Yunqiang

    2005-04-01

    A simple plasma spraying method was employed in coating hydroxyapaptite (HA) on to carbon/carbon composites (C/C composites). The morphology of the coating was examined under scanning electron microscope (SEM). The phase constitutions of the HA coating were determined by X-ray diffractometer (XRD). The shear strength of the HA coating-C/C composite substrates was detected. A hydroxyapatite coating with rough surface was observed. A considerable amount of amorphous phase appeared as a result from the coating process, which could be transformed into the morphous phase crystalline HA after subsequent heat treatment. The shear strength between the HA coating and C/C composite substrates was 7.15 MPa.

  14. Structural investigation of carbon/carbon composites by neutron scattering

    NASA Astrophysics Data System (ADS)

    Prem, Manfred; Krexner, Gerhard; Peterlik, Herwig

    2006-11-01

    Carbon/carbon (C/C) composite material was investigated by means of small-angle as well as wide-angle elastic neutron scattering. The C/C-composites were built up from bi-directionally woven fabrics from PAN-based carbon fibers. Pre-impregnation with phenolic resin was followed by pressure curing and carbonization at 1000 °C and a final heat treatment at either 1800 or 2400 °C. Measurements of the samples were performed in orientations arranging the carbon fibers, respectively, parallel and perpendicular to the incoming beam. Structural features of the fibers as well as the inherently existing pores are presented and the influence of the heat treatment is discussed. The results are compared to earlier X-ray investigations of carbon fibers and C/C-composites.

  15. The oxidation behavior of carbon-carbon composites and their coatings

    SciTech Connect

    Schaeffer, J.C.

    1989-01-01

    The oxidation of carbon-carbon composites and coatings in oxygen at temperatures between 300 and 1400 C was investigated. State-of-the-art systems were characterized prior to the oxidation studies using optical and scanning electron microscopy. It was determined that uncoated carbon-carbon composites cannot be used at temperatures above about 400 C for extended periods of time because of oxidation. Oxidation does occur at temperatures below 400 C but at very low rates. Boron was found to be an ineffective inhibitor for carbon-carbon oxidation. Coatings were useful in protecting carbon-carbon composites from oxidation under isothermal test conditions but these coatings failed under cyclic conditions. The factors leading to the failure of coatings on carbon-carbon composites are described.

  16. Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.

    1993-01-01

    The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.

  17. Directed evolution of rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme.

    PubMed

    Mueller-Cajar, Oliver; Morell, Matthew; Whitney, Spencer M

    2007-12-11

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) occupies a critical position in photosynthetic CO2-fixation and consequently has been the focus of intense study. Crystal-structure-guided site-directed mutagenesis studies have met with limited success in engineering kinetic improvements to Rubisco, highlighting our inadequate understanding of structural constraints at the atomic level that dictate the enzyme's catalytic chemistry. Bioselection provides an alternative random mutagenic approach that is useful for identifying and elucidating imperceptible structure-function relationships. Using the dimeric Form II Rubisco from Rhodospirillum rubrum, its gene (rbcM) was randomly mutated and introduced under positive selection into Escherichia coli cells metabolically engineered to be dependent on Rubisco to detoxify its substrate ribulose 1,5-bisphosphate. Thirteen colonies displaying improved fitness were isolated, and all were found to harbor mutations in rbcM at one of two codons, histidine-44 or aspartate-117, that are structurally adjacent amino acids located about 10 A from the active site. Biochemical characterization of the mutant enzymes showed the mutations reduced their CO2/O2 specificity by 40% and decreased their carboxylation turnover rate by 20-40%. Structural analyses showed histidine-44 and aspartate-117 form a hydrogen bond in R. rubrum Rubisco and that the residues are conserved among other Form II Rubiscos. This study demonstrated the utility of directed evolution in E. coli for identifying catalytically relevant residues (in particular nonobvious residues disconnected from active site residues) and their potential molecular interactions that influence Rubisco's catalytic chemistry.

  18. STUDY ON ELASTO-PLASTIC BEHAVIOR OF DIFFERENT CARBON TYPES IN CARBON/CARBON COMPOSITES

    SciTech Connect

    Ozcan, Soydan; Tezcan, Jale; Howe, Jane Y; Filip, Peter

    2008-01-01

    Indentation tests combined with the knowledge of corresponding microstructure of carbonaceous materials offer valuable information that cannot be extracted from the conventional indentation tests alone. Since mechanical properties of carbon are sensitive to the crystal orientation, inelastic mechanisms can be detected by studying the stress-strain behavior of carbon/carbon composites. The aim of this paper is to investigate the elasto-plastic behavior and related microstructure of pan-fiber reinforced carbon matrix composites heat-treated at 2100 C. The microstructure was characterized using polarized light microscopy and high-resolution electron microscopy. Elastic modulus of each constituent of the composites was measured. Nanoindentation tests were carried out to obtain loading-unloading cycles at different indentation depths using a berkovich-type diamond indenter tip. The residual displacement at complete unloading was correlated with the microstructure data to reveal the extent of the deformation mechanisms of crystallites and graphene sheets. The pitch fiber and rough laminar pyrocarbon exhibited plastic behavior, which can be attributed to the low shear resistance due to weak bonding between the well-organized graphene sheets. On the other hand, the PAN fiber, charred resin and isotropic pyrocarbon, exhibited almost full elasticity within applied displacement limits.

  19. Processing and thermal properties of filament wound carbon-carbon composites for impact shell application

    NASA Astrophysics Data System (ADS)

    Zee, Ralph; Romanoski, Glenn; Gale, H. Shyam; Wang, Hsin

    2001-02-01

    The performance and safety of the radioisotope power source depend in part on the thermal and impact properties of the materials used in the general purpose heat source (GPHS) through the use of an impact shell, thermal insulation and an aeroshell. Results from an earlier study indicate the importance of circumferential fibers to the mechanical properties of cylindrical filament wound carbon-carbon composites for the impact shell application. Based on this study, an investigation was initiated to determine the processing characteristics and the mechanical and thermal response of three filament wound configurations with different percentages of circumferential fibers: 50%, 66% and 80%. The performs were fabricated using a 3-D filament winding machine followed by five cycles of resin impregnation and carbonization. In this paper, the processing sequence and the resulting microstructures of the composites will be described. The thermal conductivity values of the composites as a function of fiber configuration and density will be discussed. These results will be compared with the fine-weave pierced-fabric (FWPF) material and carbon-bonded carbon-fiber insulation. Finally, the relevance of the new configurations for applications in the general purpose heat source (GPHS) will also be inferred. .

  20. Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zheng, Y. P.; Kang, F.; Shen, W. C.

    2006-05-01

    Exfoliated graphite-based carbon/carbon composites were prepared using sequence processes of phenolic resin alcohol solution impregnation, carbonization and carbon dioxide (or steam) activation. The textural/structural characteristics of the composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption and mercury porosimetry. The results indicated that the composites were composed of graphite and amorphous carbon. On the surface, the worm-like particles were covered by pyrolytic carbon, which also penetrated into parts of the interior pores of the particles. Macropores still remained in the composite, whereas micropores which were formed by the activation of pyrolytic carbon contributed to most of the pore volume.

  1. Bonding energetics in clusters formed by cesium salts: a study by collision-induced dissociation and density functional theory.

    PubMed

    Maria, Pierre-Charles; Massi, Lionel; Box, Natzaret Sindreu; Gal, Jean-François; Burk, Peeter; Tammiku-Taul, Jaana; Kutsar, Martin

    2006-01-01

    In relation to the interaction between (137)Cs and soil organic matter, electrospray mass spectrometry experiments and density functional theory (DFT) calculations were carried out on the dissociation of positively charged adducts formed by cesium nitrate and cesium organic salts attached to a cesium cation [Cs(CsNO(3))(CsA)](+) (A = benzoate, salicylate, hydrogen phthalate, hydrogen maleate, hydrogen fumarate, hydrogen oxalate, and hydrogen malonate ion). These mixed clusters were generated by electrospray from methanol solutions containing cesium nitrate and an organic acid. Collision-induced dissociation of [Cs(CsNO(3))(CsA)](+) in a quadrupole ion trap gave [Cs(CsNO(3))](+) and [Cs(CsA)](+) as major product ions. Loss of HNO(3) was observed, and also CO(2) loss in the case of A = hydrogen malonate. Branching ratios for the dissociation into [Cs(CsNO(3))](+) and [Cs(CsA)](+) were treated by the Cooks' kinetic method to obtain a quantitative order of bonding energetics (enthalpies and Gibbs free energies) between Cs(+) and the molecular salt (ion pair) CsA, and were correlated with the corresponding values calculated using DFT. The kinetic method leads to relative scales of Cs(+) affinities and basicities that are consistent with the DFT-calculated values. This study brings new data on the strong interaction between the cesium cation and molecular salts CsA.

  2. A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly

    SciTech Connect

    Kang, Hae Joo; Paterson, Neil G.; Kim, Chae Un; Middleditch, Martin; Chang, Chungyu; Ton-That, Hung; Baker, Edward N.

    2014-05-01

    Two crystal structures of the major pilin SpaD from C. diphtheriae have been determined at 1.87 and 2.5 Å resolution. The N-terminal domain is found to contain an isopeptide bond that forms slowly over time in the recombinant protein. Given its structural context, this provides insight into the relationship between internal isopeptide-bond formation and pilus assembly. The Gram-positive organism Corynebacterium diphtheriae, the cause of diphtheria in humans, expresses pili on its surface which it uses for adhesion and colonization of its host. These pili are covalent protein polymers composed of three types of pilin subunit that are assembled by specific sortase enzymes. A structural analysis of the major pilin SpaD, which forms the polymeric backbone of one of the three types of pilus expressed by C. diphtheriae, is reported. Mass-spectral and crystallographic analysis shows that SpaD contains three internal Lys–Asn isopeptide bonds. One of these, shown by mass spectrometry to be located in the N-terminal D1 domain of the protein, only forms slowly, implying an energy barrier to bond formation. Two crystal structures, of the full-length three-domain protein at 2.5 Å resolution and of a two-domain (D2-D3) construct at 1.87 Å resolution, show that each of the three Ig-like domains contains a single Lys–Asn isopeptide-bond cross-link, assumed to give mechanical stability as in other such pili. Additional stabilizing features include a disulfide bond in the D3 domain and a calcium-binding loop in D2. The N-terminal D1 domain is more flexible than the others and, by analogy with other major pilins of this type, the slow formation of its isopeptide bond can be attributed to its location adjacent to the lysine used in sortase-mediated polymerization during pilus assembly.

  3. The bond-forming reactions of atomic dications with neutral molecules: formation of ArNH+ and ArN+ from collisions of Ar2+ with NH3.

    PubMed

    Lambert, Natalie; Kearney, Dominic; Kaltsoyannis, Nikolas; Price, Stephen D

    2004-03-24

    An experimental and computational study has been performed to investigate the bond-forming reactivity between Ar(2+) and NH(3). Experimentally, we detect two previously unobserved bond-forming reactions between Ar(2+) and NH(3) forming ArN(+) and ArNH(+). This is the first experimental observation of a triatomic product ion (ArNH(+)) following a chemical reaction of a rare gas dication with a neutral. The intensity of ArNH(+) was found to decrease with increasing collision energy, with a corresponding increase in the intensity of ArN(+), indicating that ArN(+) is formed by the dissociation of ArNH(+). Key features on the potential energy surface for the reaction were calculated quantum chemically using CASSCF and MRCI methods. The calculated reaction mechanism, which takes place on a singlet surface, involves the initial formation of an Ar-N bond to give Ar-NH(3)(2+). This complexation is followed by proton loss via a transition state, and then loss of the two remaining hydrogen atoms in two subsequent activationless steps to give the products (3)ArN(+) + H(+) + 2H. This calculated pathway supports the sequential formation of ArN(+) from ArNH(+), as suggested by the experimental data. The calculations also indicate that no bond-forming pathway exists on the ground triplet surface for this system.

  4. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  5. Novel apparatus for joining of carbon-carbon composites

    NASA Astrophysics Data System (ADS)

    White, Jeremiah D. E.; Mukasyan, Alexander S.; La Forest, Mark L.; Simpson, Allen H.

    2007-01-01

    A novel apparatus for joining carbon-carbon (C-C) composites is presented. This device was designed and built based on the concept of self-sustained oxygen-free high-temperature reactions. A layer of reactive mixture is contained between two disks of C-C composite that are to be joined. The stack is held in place between two electrodes, which are connected to a dc power supply. dc current is used to uniformly initiate the reaction in the reactive layer. The electrodes are also part of the pneumatic system, which applies a load to the stack. The designed hydraulic system is effective, lending to low cost and simplified, rapid, accurate operation. It provides a very short response time (˜10ms), which is important for the considered applications. All operational parameters such as initial and final loads, applied current, delay time between ignition and final load application, duration of Joule heating, and safety interlocks are controlled by a programable logic controller system. These features make it an efficient, user-friendly and safe machine to join refractory materials. The entire joining process takes place on the order of seconds, rather than hours as required for solid-state joining methods. The mechanical properties of the obtained joints are higher than those for the C-C composites.

  6. A statistical model of carbon/carbon composite failure

    NASA Technical Reports Server (NTRS)

    Slattery, Kerry T.

    1991-01-01

    A failure model which considers the stochastic nature of the damage accumulation process is essential to assess reliability and to accurately scale the results from standard test specimens to composite structures. A superior filamentary composite for high temperature applications is composed of carbon fibers in a carbon matrix. Carbon-carbon composites are the strongest known material at very high temperatures. Since there appears to be a significant randomness in C-C material strength which cannot be controlled or detected with current technology, a better model of the material failure based upon statistical principles should be used. Simple applications of the model based upon the limited data provide encouraging results that indicate that better design of test specimens would provide a substantially higher prediction for the design strength of C-C composites. An A-basis strength for the C-C tensile rings from a first stage D-5 billets was estimated. A statistical failure model was developed for these rings which indicates that this strength may be very conservative for larger C-C parts. The analysis may be improved by use of a heterogeneous/noncontinuum finite element approach on the minimechanical level.

  7. Novel low Wigner energy amorphous carbon-carbon composite

    NASA Astrophysics Data System (ADS)

    Dasgupta, Kinshuk; Prakash, Jyoti; Tripathi, B. M.

    2014-02-01

    A novel amorphous carbon-carbon composite has been developed using carbon black dispersed in carbonized phenolic resin matrix in order to avoid Wigner energy problem associated with graphite. The as prepared sample showed a density of 1320 kg m-3. This has been further densified by resin impregnation and chemical vapour infiltration. The effect of processing parameters on final density (1517 kg m-3) has been investigated. This composite possesses the compressive strength of 65 Mpa, coefficient of thermal expansion of 3 × 10-6 K-1 and the specific heat of 1.2 J g-1 K-1. This novel composite was subjected to 145 MeV Ne+6 heavy ion irradiation at different doses. The highest dose was kept at 3 × 10-4 dpa. The stored energy in the composite was found to be 212 J g-1 at the highest dose of irradiation, which is much below than that of graphite. The composite remained amorphous after irradiation as confirmed by X-ray diffraction.

  8. Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions.

    PubMed

    Rueping, Magnus; Zoller, Jochen; Fabry, David C; Poscharny, Konstantin; Koenigs, René M; Weirich, Thomas E; Mayer, Joachim

    2012-03-19

    Let there be light: A heterogeneous photocatalytic system based on easily recyclable TiO(2) or ZnO allows cross dehydrogenative coupling reactions of tertiary amines. The newly developed protocols have successfully been applied to various C-C and C-P bond-forming reactions to provide nitro amines as well as amino ketones, nitriles and phosphonates.

  9. 25 CFR 162.561 - What is the release process for a performance bond or alternative form of security under a WSR...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What is the release process for a performance bond or alternative form of security under a WSR lease? 162.561 Section 162.561 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Lease...

  10. 25 CFR 162.561 - What is the release process for a performance bond or alternative form of security under a WSR...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What is the release process for a performance bond or alternative form of security under a WSR lease? 162.561 Section 162.561 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Lease...

  11. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites

    PubMed Central

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-01-01

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. We report the direct acylation of methylfuran with acetic acid in the presence of water, all of which can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implying that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected. We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C–C bond–forming reactions for the production of higher-value products from biomass. PMID:27652345

  12. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOEpatents

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H; Peterson, Tracy C; Shul, Randy J; Ahlers, Catalina; Plut, Thomas A; Patrizi, Gary A

    2013-12-03

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  13. Minuteman 3/Mark 12A reentry vehicle carbon-carbon nosetip production program

    NASA Astrophysics Data System (ADS)

    1980-05-01

    The purpose of this document is to provide SAMSO with Avco's current plan for critical item control and subsequent monitoring of the manufacturing processes in production of the Mark 12A Carbon/Carbon nosetip.

  14. Nitrososynthase triggered oxidative carbon-carbon bond cleavage in baumycin biosynthesis

    PubMed Central

    Al-Mestarihi, Ahmad; Romo, Anthony; Liu, Hung-wen; Bachmann, Brian O.

    2013-01-01

    Baumycins are coproduced with clinically important anticancer secondary metabolites daunorubicin and doxorubicin, which are glycosylated anthracyclines isolated from Streptomyces peucetius. The distinguishing feature of baumycins is the presence of an unusual acetal moiety appended to daunosamine, which is hydrolyzed during acidic extraction of daunorubicin from fermentation broth. The structure of the baumycin acetal suggests that it is likely derived from an unknown C-3” methyl deoxysugar cleaved between the C-3” and C-4” positions. This is supported by analysis of the baumycin/daunorubicin biosynthetic gene cluster (dox), which also encodes putative proteins consistent with production of an anthracycline dissacharide containing a branched sugar. Notably, the dnmZ gene in the dox gene cluster possesses high translated sequence similarity to nitrososynthases, which are flavin-dependent amine monooxygenases involved in the four electron oxidation of aminosugars to nitrososugars. Herein we demonstrate that DnmZ is an amino sugar nitrososynthase initiating the conversion of thymidine-5’-diphosphate-l-epi-vancosamine to a ring opened product via a previously uncharacterized retro oxime-aldol reaction. PMID:23885759

  15. Toward efficient asymmetric carbon-carbon bond formation: continuous flow with chiral heterogeneous catalysts.

    PubMed

    Tsubogo, Tetsu; Yamashita, Yasuhiro; Kobayashi, Shū

    2012-10-22

    A chiral Ca catalyst based on CaCl(2) with a chiral ligand was developed and applied to the asymmetric 1,4-addition of 1,3-dicarbonyl compounds to nitroalkenes as a model system. To address product inhibition issues, the Ca catalyst was applied to continuous flow with a chiral heterogeneous catalyst. The continuous flow system using a newly synthesized, polymer-supported Pybox was successfully employed, and the TON was improved 25-fold compared with those of the previous Ca(OR)(2) catalysts.

  16. Radiation damage in carbon-carbon composites: Structure and property effects

    SciTech Connect

    Burchell, T.D.

    1995-12-31

    Carbon-carbon composites are an attractive choice for fusion reactor plasma facing components because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation tokamak reactors such as the International Thermonuclear Experimental Reactor (ITER), will require high thermal conductivity carbon-carbon composites and other materials, such as beryllium, to protect their plasma facing components from the anticipated high heat fluxes. Moreover, ignition machines such as ITER will produce a large neutron flux. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from two irradiation experiments are reported and discussed here. Carbon-carbon composite materials were irradiated in target capsules in the High Flux Isotope Reactor (HAIR) at Oak Ridge National Laboratory (ORAL). A peak damage dose of 4.7 displacements per atom (da) at an irradiation temperature of {approximately}600{degrees}C was attained. The carbon materials irradiated here included unidirectional, two- directional, and three-directional carbon-carbon composites. Irradiation induced dimensional changes are reported for the materials and related to single crystal dimensional changes through fiber and composite structural models. Moreover, carbon-carbon composite material dimensional changes are discussed in terms of their architecture, fiber type, and graphitization temperature. Neutron irradiation induced reductions in the thermal conductivity of two, three-directional carbon-carbon composites are reported, and the recovery of thermal conductivity due to thermal annealing is demonstrated. Irradiation induced strength changes are reported for several carbon-carbon composite materials and are explained in terms of in-crystal and composite structural effects.

  17. Recent advances in carbon-carbon substrate technology at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O.; Yamaki, Y. Robert; Maahs, Howard G.

    1992-01-01

    A comparison of specific strengths of candidate high-temperature materials as a function of temperature is shown. From this comparison, it is apparent why there is an interest in carbon-carbon composites for applications as a strong, light-weight thermal protection system (TPS), or as hot structure, for applications above 2500 F. The lower bound of the carbon-carbon band is representative of the tensile strength of cross-ply Advanced Carbon-Carbon (ACC). The upper bound represents capabilities of various experimental carbon-carbon composites. Thin carbon-carbon composites, such as would be used as TPS panels or hot aero-structure, are usually constructed of layups of 2-D fabrics of carbon-fiber yarns (tows). Although the in-plane strengths of these composites can be very attractive, a major problem area is low interlaminar strength. The low interlaminar strength is the result of a relatively weak carbon matrix and poor interaction between the fibers and matrix. The purpose of this paper is to discuss strategies being employed to improve the interlaminar strengths of the materials at the upper bound of the carbon-carbon band, and to present some recent encouraging results. The emphasis of these strategies is to improve interlaminar shear and tensile strengths while maintaining, or even improving, the inplane properties.

  18. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    PubMed

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer.

  19. Development of a Simple Adjustable Zinc Acid/Base Hybrid Catalyst for C-C and C-O Bond-Forming and C-C Bond-Cleavage Reactions.

    PubMed

    Yamashita, Yasuhiro; Minami, Kodai; Saito, Yuki; Kobayashi, Shū

    2016-09-06

    A newly designed zinc Lewis acid/base hybrid catalyst was developed. By adjusting the Lewis acidity of the zinc center, aldol-type additions of 2-picolylamine Schiff base to aldehydes proceeded smoothly to afford syn-aldol adduct equivalents, trans-N,O-acetal adducts, in high yields with high selectivities. NMR experiments, including microchanneled cell for synthesis monitoring (MICCS) NMR analysis, revealed that anti-aldol adducts were formed at the initial stage of the reactions under kinetic control, but the final products were the trans-(syn)-N,O-acetal adducts that were produced through a retro-aldol process under thermodynamic control. In the whole reaction process, the zinc catalyst played three important roles: i) promotion of the aldol process (C-C bond formation), ii) cyclization process to the N,O-acetal product (C-O bond formation), and iii) retro-aldol process from the anti-aldol adduct to the syn-aldol adduct (C-C bond cleavage and C-C bond formation).

  20. Emotional stocks and bonds: a metaphorical model for conceptualizing and treating codependency and other forms of emotional overinvesting.

    PubMed

    Daire, Andrew P; Jacobson, Lamerial; Carlson, Ryan G

    2012-01-01

    Codependent behaviors are associated with an unhealthy reliance on others for meeting emotional needs. This over-reliance on others often leads to dysfunctional interpersonal relationships. This article presents emotional stocks and bonds (ESB), a metaphorical model for use with clients who display codependent behaviors. Emotional stocks and bonds incorporates theoretical tenets from Bowen family systems and attachment theory and aids clients in understanding and changing unhealthy relationship behavior patterns. In addition to an overview of the model's key concepts and its use in clinical practice, we provide a case illustration and a discussion of practice implications and limitations.

  1. Superplastic forming and diffusion bonding of rapidly solidified, dispersion strengthened aluminum alloys for elevated temperature structural applications

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Kennedy, J. R.

    1989-01-01

    Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.

  2. Thermal and Mechanical Performance of a Carbon/Carbon Composite Spacecraft Radiator

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan; Benner, Steve; Butler, Dan; Silk, Eric

    1999-01-01

    Carbon-carbon composite materials offer greater thermal efficiency, stiffness to weight ratio, tailorability, and dimensional stability than aluminum. These lightweight thermal materials could significantly reduce the overall costs associated with satellite thermal control and weight. However, the high cost and long lead-time for carbon-carbon manufacture have limited their widespread usage. Consequently, an informal partnership between government and industrial personnel called the Carbon-Carbon Spacecraft Radiator Partnership (CSRP) was created to foster carbon-carbon composite use for thermally and structurally demanding space radiator applications. The first CSRP flight opportunity is on the New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, scheduled for launch in late 1999. For EO-1, the CSRP designed and fabricated a Carbon-Carbon Radiator (CCR) with carbon-carbon facesheets and aluminum honeycomb core, which will also serve as a structural shear panel. While carbon-carbon is an ideal thermal candidate for spacecraft radiators, in practice there are technical challenges that may compromise performance. In this work, the thermal and mechanical performance of the EO-1 CCR is assessed by analysis and testing. Both then-nal and mechanical analyses were conducted to predict the radiator response to anticipated launch and on-orbit loads. The thermal model developed was based on thermal balance test conditions. The thermal analysis was performed using SINDA version 4.0. Structural finite element modeling and analysis were performed using SDRC/1-DEAS and UAI/NASTRAN, respectively. In addition, the CCR was subjected to flight qualification thermal/vacuum and vibration tests. The panel meets or exceeds the requirements for space flight and demonstrates promise for future satellite missions.

  3. A carbon-carbon composite materials development program for fusion energy applications

    SciTech Connect

    Burchell, T.D.; Eatherly, W.P. ); Engle, G.B. ); Hollenberg, G.W. )

    1992-10-01

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible.

  4. Thermochemical Degradation Mechanisms for the Reinforced Carbon/Carbon Panels on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Rapp, Robert A.

    1995-01-01

    The wing leading edge and nose cone of the Space Shuttle are fabricated from a reinforced carbon/carbon material (RCC). The material attains its oxidation resistance from a diffusion coating of SiC and a glass sealant. During re-entry, the RCC material is subjected to an oxidizing high temperature environment, which leads to degradation via several mechanisms. These mechanisms include oxidation to form a silica scale, reaction of the SiO2 with the SiC to evolve gaseous products, viscous flow of the glass, and vaporization of the glass. Each of these is discussed in detail. Following extended service and many missions, the leading-edge wing surfaces have exhibited small pinholes. A chloridation/oxidation mechanism is proposed to arise from the NaCl deposited on the wings from the sea-salt laden air in Florida. This involves a local chloridation reaction of the SiC and subsequent re-oxidation at the external surface. Thermodynamic calculations indicate the feasibility of these reactions at active pits. Kinetic calculations predict pore depths close to those observed.

  5. Meaning and consequence of the coexistence of competitive hydrogen bond/salt forms on the dissociation orientation of non-covalent complexes.

    PubMed

    Darii, Ekaterina; Alves, Sandra; Gimbert, Yves; Perret, Alain; Tabet, Jean-Claude

    2017-03-15

    Non-covalent complexes (NCC) between hexose monophosphates (HexP) and arginine (R) were analyzed using ESI MS and MS/MS in negative mode under different (hard, HC and soft, SC) desolvation conditions. High resolution mass spectrometry (HRMS) revealed the presence of different ionic species, namely, homo- and heteromultimers of R and HexP. Deprotonated heterodimers and corresponding sodiated species were enhanced under HC likely due to a decrease in available charge number associated with the reduction of H(+)/Na(+) exchange. The quantum calculations showed that the formation of covalent systems is very little exothermic, therefore, such systems are disfavored. Desolvation dependent CID spectra of deprotonated [(HexP+R)‒H](-) complexes demonstrated that they can exist within the hydrogen bond (HB) and salt bridge (SB) forms, yielding either NCC separation or covalent bond cleavages, respectively. Although HB forms are the main species, they cannot survive under HC; therefore, the minor SB forms became detectable. Energy-resolved mass spectrometry (ERMS) experiments revealed diagnostic fragment ions from both SB and HB forms, providing evidence that these isomeric forms are inconvertible. SB formation should result from the ionic interactions of highly acidic group of HexP with strongly basic guanidine group of arginine and thus requires an arginine zwitterion (ZW) form. This was confirmed by quantum calculations. Ion-ion interactions are significantly affected by the presence of sodium cation as demonstrated by the fragmentation patterns of sodiated complex species. Regarding CID data, only SB between protonated amino group of R and deprotonated phosphate group of HexP could be suggested, but the primary amine is not enough basic then, the SB must be fleeting. Nevertheless, the observation of the covalent bond cleavages suggests the presence of structures with a free negative charge able to induce fragmentations. Indeed, according to quantum calculations, solvated

  6. Emission intensity in the visible and IR spectral ranges from Si-based structures formed by direct bonding with simultaneous doping with erbium (Er) and europium (Eu)

    SciTech Connect

    Mezdrogina, M. M. Kostina, L. S.; Beliakova, E. I.; Kuzmin, R. V.

    2013-09-15

    The photo- and electroluminescence spectra of silicon-based structures formed by direct bonding with simultaneous doping with rare-earth metals are studied. It is shown that emission in the visible and IR spectral ranges can be obtained from n-Si:Er/p-Si and n-Si:Eu/p-Si structures fabricated by the method suggested in the study. The results obtained make this method promising for the fabrication of optoelectronic devices.

  7. A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly.

    PubMed

    Kang, Hae Joo; Paterson, Neil G; Kim, Chae Un; Middleditch, Martin; Chang, Chungyu; Ton-That, Hung; Baker, Edward N

    2014-05-01

    The Gram-positive organism Corynebacterium diphtheriae, the cause of diphtheria in humans, expresses pili on its surface which it uses for adhesion and colonization of its host. These pili are covalent protein polymers composed of three types of pilin subunit that are assembled by specific sortase enzymes. A structural analysis of the major pilin SpaD, which forms the polymeric backbone of one of the three types of pilus expressed by C. diphtheriae, is reported. Mass-spectral and crystallographic analysis shows that SpaD contains three internal Lys-Asn isopeptide bonds. One of these, shown by mass spectrometry to be located in the N-terminal D1 domain of the protein, only forms slowly, implying an energy barrier to bond formation. Two crystal structures, of the full-length three-domain protein at 2.5 Å resolution and of a two-domain (D2-D3) construct at 1.87 Å resolution, show that each of the three Ig-like domains contains a single Lys-Asn isopeptide-bond cross-link, assumed to give mechanical stability as in other such pili. Additional stabilizing features include a disulfide bond in the D3 domain and a calcium-binding loop in D2. The N-terminal D1 domain is more flexible than the others and, by analogy with other major pilins of this type, the slow formation of its isopeptide bond can be attributed to its location adjacent to the lysine used in sortase-mediated polymerization during pilus assembly.

  8. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    NASA Astrophysics Data System (ADS)

    Burchell, T. D.; Eatherly, W. P.; Robbins, J. M.; Strizak, J. P.

    1992-09-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the international thermonuclear experimental reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER wilt produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.58 dpa (displacements per atom) at 600°C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-carbon composite dimensional changes are interpreted in terms of simple microstructural models.

  9. HCSE method for detection of small carbon-carbon couplings and their signs, comparison with SLAP pulse sequence.

    PubMed

    Blechta, Vratislav; Schraml, Jan

    2013-11-01

    Performance of homonuclear coupling sign edited (HCSE) experiment applied to detection of signed carbon-carbon couplings is discussed using a set of already measured samples of nine monosubstituted benzenes. It is shown that coupling sign detection is insensitive to the settings of carbon-carbon polarization transfer delays. The HCSE spectra of ten from the total of 43 measured carbon-carbon couplings were considerably influenced by relaxations and proton-proton strong couplings. These effects are quantitatively discussed. The results of HCSE and SLAP experiments are compared. It is shown that the two methods may complement each other in detection of signed carbon-carbon couplings.

  10. Presence of interchain disulfide bonds between two gene products that compose the secreted form of an antigen-specific suppressor factor

    PubMed Central

    1981-01-01

    The secreted form of the suppressor T cell factor specific for keyhole limpet hemocyanin derived from the hybridoma 34S-704 was found to consist of the two distinct polypeptide chains, i.e., the antigen- binding and the I-J-encoded chains. They were linked in covalent association with disulfide bonds. The two chains were cleaved by the reduction with dithiothreitol and were easy to reconstitute the active form of TsF. The association of the two distinct chains was suggested to be essential for the expression of the TsF activity. PMID:6166720

  11. Plasma-sprayed hydroxyapatite coating on carbon/carbon composite scaffolds for bone tissue engineering and related tests in vivo.

    PubMed

    Cao, Ning; Dong, Jianwen; Wang, Qiangxiu; Ma, Quansheng; Wang, Feng; Chen, Huaying; Xue, Chengqian; Li, Musen

    2010-03-01

    The bioactive hydroxyapatite (HA) coatings were successfully prepared on carbon/carbon composites (C/C) by means of sand-blasting pretreatment and plasma-spraying technology. X-ray diffraction was employed to analyze the phase constitute of the coatings. Meanwhile, the bond strength between the HA coatings and C/C substrates was determined via shear test. Experimental results show that the coatings constitute HA, CaO, and other amorphous phosphates. The post heat treatment could effectively increase crystallization and purity of the coatings. Through observation and analysis by electron microprobe and scanning electron microscopy, it is concluded that the bond strength of the plasma-sprayed HA coatings on C/C is mainly determined by the interface structure and can be further improved by the post heat treatment. Meanwhile, the implantation in vivo was carried out in hybrid goats. The histological observation revealed that the osteoplaque gradually grew on the surface of the HA coatings and the pure C/C surface was covered by the fibrous tissues. No inflammation symptoms were found in the bone tissue around the implants.

  12. Influence of Laser Activated Irrigation with two Erbium Lasers on Bond Strength of Inidividually Formed Fiber Reinforced Composite Posts to Root Canal Dentin

    PubMed Central

    Parčina, Ivana; Miletić, Ivana; Ionescu, Andrei C.; Brambilla, Eugenio; Gabrić, Dragana; Baraba, Anja

    2016-01-01

    Objective The aim of this in vitro study was to investigate the effect of laser activated irrigation (LAI) using two erbium lasers on bond strength of individually formed fiber-reinforced composite (FRC) posts to root canal dentin. Materials and methods Twenty-seven single-rooted human teeth were endodontically treated and after post space preparation divided into three groups (n=9 per group), according to the pre-treatment of post space preparation: 1) Conventional syringe irrigation (CSI) and saline; 2) Er.YAG photon-induced photoacoustic streaming (PIPS) technique and saline; 3) Er,Cr:YSGG activated irrigation with RFT2 tip. Two specimens from each group were used for SEM analysis. The remaining specimens (n=7 per group) received individually formed FRC post, everStick POST, luted with self-adhesive cement, G-CEM LinkAce. After cementation, the roots were perpendicularly sectioned into 1 mm thin sections and a push-out test was carried out (0.5 mm/min). The data were calculated as megapascals and were log transformed and statistically analysed using one-way ANOVA at the level of significance set at 5%. Results In the control group, the smear layer was still present. In the Er:YAG group, the smear layer was removed. In the Er,Cr:YSGG group, the smear layer was partially removed. The Er,Cr:YSGG group achieved the highest bond strength values, followed by the control group and then the Er:YAG group, but no statistically significant difference was found in bond strength values in the tested group of post space pretreatment (p=0.564). Conclusions LAI using two erbium lasers, with PIPS or RFT2 tip, did not affect the bond strength of individually formed FRC posts to root canal dentin. PMID:28275279

  13. Concerted O atom–proton transfer in the O—O bond forming step in water oxidation

    PubMed Central

    Chen, Zuofeng; Concepcion, Javier J.; Hu, Xiangqian; Yang, Weitao; Hoertz, Paul G.; Meyer, Thomas J.

    2010-01-01

    As the terminal step in photosystem II, and a potential half-reaction for artificial photosynthesis, water oxidation (2H2O → O2 + 4e- + 4H+) is key, but it imposes a significant mechanistic challenge with requirements for both 4e-/4H+ loss and O—O bond formation. Significant progress in water oxidation catalysis has been achieved recently by use of single-site Ru metal complex catalysts such as [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2′-bipyridine]. When oxidized from to RuV = O3+, these complexes undergo O—O bond formation by O-atom attack on a H2O molecule, which is often the rate-limiting step. Microscopic details of O—O bond formation have been explored by quantum mechanical/molecular mechanical (QM/MM) simulations the results of which provide detailed insight into mechanism and a strategy for enhancing catalytic rates. It utilizes added bases as proton acceptors and concerted atom–proton transfer (APT) with O-atom transfer to the O atom of a water molecule in concert with proton transfer to the base (B). Base catalyzed APT reactivity in water oxidation is observed both in solution and on the surfaces of oxide electrodes derivatized by attached phosphonated metal complex catalysts. These results have important implications for catalytic, electrocatalytic, and photoelectrocatalytic water oxidation. PMID:20360565

  14. Concerted O atom-proton transfer in the O—O bond forming step in water oxidation

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier C.; Hu, Xiangqian; Yang, Weitao; Hoertz, Paul G.; Meyer, Thomas J

    2010-04-20

    As the terminal step in photosystem II, and a potential half-reaction for artificial photosynthesis, water oxidation (2H2O → O2 + 4e- + 4H+) is key, but it imposes a significant mechanistic challenge with requirements for both 4e-/4H- loss and O—O bond formation. Significant progress in water oxidation catalysis has been achieved recently by use of single-site Ru metal complex catalysts such as [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine]. When oxidized from RuII-OH22+ to RuV = O3+, these complexes undergo O—O bond formation by O-atom attack on a H2O molecule, which is often the rate-limiting step. Microscopic details of O—O bond formation have been explored by quantum mechanical/molecular mechanical (QM/MM) simulations the results of which provide detailed insight into mechanism and a strategy for enhancing catalytic rates. It utilizes added bases as proton acceptors and concerted atom–proton transfer (APT) with O-atom transfer to the O atom of a water molecule in concert with proton transfer to the base (B). Base catalyzed APT reactivity in water oxidation is observed both in solution and on the surfaces of oxide electrodes derivatized by attached phosphonated metal complex catalysts. These results have important implications for catalytic, electrocatalytic, and photoelectrocatalytic water oxidation.

  15. Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  16. Oxidation Through Coating Cracks of SiC-Protected Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Roth, Don J.; Rauser, Richard W.; Curry, Donald M.

    2007-01-01

    The oxidation of SiC-protected carbon/carbon through machined slots and naturally occurring craze cracks in the SiC was studied. The slot and crack geometries were characterized, and the subsurface oxidation of the carbon/carbon substrate at temperatures of 1000 to 1300 C in air was assessed using weight change, x-ray computed tomography, and optical microscopy of sections. Rate constants were derived from these measurements and compared with a two-step diffusion control model of carbon oxidation. Oxidation kinetic measurements on both the specimens with machined slots and with naturally occurring craze cracks showed good agreement with the model.

  17. Oxidation Through Coating Cracks of SiC-Protected Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Roth, Don J.; Rauser, Richard W.; Cawley, James D.; Curry, Donald M.

    2008-01-01

    The oxidation of SiC-protected carbon/carbon through machined slots and naturally occurring craze cracks in the SiC was studied. The slot and crack geometries were characterized, and the subsurface oxidation of the carbon/carbon substrate at temperatures of 1000 to 1300 C in air was assessed using weight change, x-ray computed tomography, and optical microscopy of sections. Rate constants were derived from these measurements and compared with a two-step diffusion control model of carbon oxidation. Oxidation kinetic measurements on both the specimens with machined slots and with naturally occurring craze cracks showed good agreement with the model.

  18. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  19. Hydrogen-bonded clusters of 1, 1'-ferrocenedicarboxylic acid on Au(111) are initially formed in solution.

    PubMed

    Quardokus, Rebecca C; Wasio, Natalie A; Brown, Ryan D; Christie, John A; Henderson, Kenneth W; Forrest, Ryan P; Lent, Craig S; Corcelli, Steven A; Kandel, S Alex

    2015-03-14

    Low-temperature scanning tunneling microscopy is used to observe self-assembled structures of ferrocenedicarboxylic acid (Fc(COOH)2) on the Au(111) surface. The surface is prepared by pulse-deposition of Fc(COOH)2 dissolved in methanol, and the solvent is evaporated before imaging. While the rows of hydrogen-bonded dimers that are common for carboxylic acid species are observed, the majority of adsorbed Fc(COOH)2 is instead found in six-molecule clusters with a well-defined and chiral geometry. The coverage and distribution of these clusters are consistent with a random sequential adsorption model, showing that solution-phase species are determinative of adsorbate distribution for this system under these reaction conditions.

  20. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain.

    PubMed

    Kavitha, L; Priya, R; Ayyappan, N; Gopi, D; Jayanthi, S

    2016-01-01

    The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes.

  1. Preparation of Ag-Ni-Cu Composite Material by Ultrasonic Arc Spray Forming and Accumulative Roll Bonding and the Evolution of Its Microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Qin, Guo-Yi; Xu, Si-Yong; Guo, Jin-Xin; Ma, Guang

    2015-02-01

    We prepared a layered composite material by subjecting a deposition billet of AgNiCu15-5 formed by ultrasonic arc spray forming (UASF) to extrusion at 773 K (500 °C), rolling at 673 K (400 °C), and accumulative roll bonding (ARB). The evolution of the microstructure of the formed AgNiCu15-5 strips was analyzed through X-ray diffraction analysis, scanning electron microscopy, and energy-dispersive spectrometry. The deposition billet had a rapid solidification microstructure consisting of β-Ni particles dispersed in α-Ag matrix. ARB significantly refined the microstructure of the AgNiCu15-5 samples. There was no further decrease in the grain size after the 9th ARB cycle. Thus, UASF combined with extrusion and ARB is suitable for producing high-performance AgNiCu15-5-based electrical contact materials efficiently and economically.

  2. Stress Rupture Behavior of Silicon Carbide Coated, Low Modulus Carbon/Carbon Composites. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rozak, Gary A.; Wallace, John F.

    1988-01-01

    The disadvantages of carbon-carbon composites, in addition to the oxidation problem, are low thermal expansion, expensive fabrication procedures, and poor off axis properties. The background of carbon-carbon composites, their fabrication, oxidation, oxidation protection and mechanical testing in flexure are discussed.

  3. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  4. Effects of precursor thermal aging and fiber arrangement on the properties of carbon/carbon (C/C) composites

    SciTech Connect

    Ma, C.C.M.; Chang, W.C.; Tai, N.H.

    1993-12-31

    Carbon/carbon composites fabricated by the pyrolysis of high strength carbon fiber fabrics reinforced phenolic resin were investigated. A liquid impregnation process has been used to fabricate composite precursor for 2-D carbon/carbon composite and an unique pultrusion process also used to fabricate the 1-D carbon/carbon composite precursor. Effects of thermal aging of the precursor on flexural strength of the resulted carbon/carbon composites are studied. Results shows that suitable thermal aging improves the flexural properties of carbon/carbon composites in this study. And based on the SEM examination and flexural tests, they show that the 2-D plain woven fiber arrangement results the significant degradation of the carbon fiber and the decreasing of composites flexural properties.

  5. Halogen- and Hydrogen-Bonded Salts and Co-crystals Formed from 4-Halo-2,3,5,6-tetrafluorophenol and Cyclic Secondary and Tertiary Amines: Orthogonal and Non-orthogonal Halogen and Hydrogen Bonding, and Synthetic Analogues of Halogen-Bonded Biological Systems

    PubMed Central

    Takemura, Akihiro; McAllister, Linda J; Hart, Sam; Pridmore, Natalie E; Karadakov, Peter B; Whitwood, Adrian C; Bruce, Duncan W

    2014-01-01

    Co-crystallisation of, in particular, 4-iodotetrafluorophenol with a series of secondary and tertiary cyclic amines results in deprotonation of the phenol and formation of the corresponding ammonium phenate. Careful examination of the X-ray single-crystal structures shows that the phenate anion develops a C=O double bond and that the C–C bond lengths in the ring suggest a Meissenheimer-like delocalisation. This delocalisation is supported by the geometry of the phenate anion optimised at the MP2(Full) level of theory within the aug-cc-pVDZ basis (aug-cc-pVDZ-PP on I) and by natural bond orbital (NBO) analyses. With sp2 hybridisation at the phenate oxygen atom, there is strong preference for the formation of two non-covalent interactions with the oxygen sp2 lone pairs and, in the case of secondary amines, this occurs through hydrogen bonding to the ammonium hydrogen atoms. However, where tertiary amines are concerned, there are insufficient hydrogen atoms available and so an electrophilic iodine atom from a neighbouring 4-iodotetrafluorophenate group forms an I⋅⋅⋅O halogen bond to give the second interaction. However, in some co-crystals with secondary amines, it is also found that in addition to the two hydrogen bonds forming with the phenate oxygen sp2 lone pairs, there is an additional intermolecular I⋅⋅⋅O halogen bond in which the electrophilic iodine atom interacts with the C=O π-system. All attempts to reproduce this behaviour with 4-bromotetrafluorophenol were unsuccessful. These structural motifs are significant as they reproduce extremely well, in low-molar-mass synthetic systems, motifs found by Ho and co-workers when examining halogen-bonding interactions in biological systems. The analogy is cemented through the structures of co-crystals of 1,4-diiodotetrafluorobenzene with acetamide and with N-methylbenzamide, which, as designed models, demonstrate the orthogonality of hydrogen and halogen bonding proposed in Ho’s biological study. PMID

  6. Exploration of Multilayer Concepts for Oxidation Protection of Carbon- Carbon Composites

    DTIC Science & Technology

    1993-02-01

    Microstructural Evaluations 14 Compliant Layer Properties 18 Oxidation Results 19 CONCLUSIONS 21I SUMMARY AND RECOMMENDATIONS 23 REFERENCES 25 I APPENDIX \\ 26...ABSTRACT The development of multilayer coating concepts for oxidation protection of carbon-carbon composites is the subject of this work. Property ...components. Since elevated temperature properties were lacking for many components, the study was relegated to fabrication and assessment rather than

  7. Thermal Conductivity Database of Various Structural Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Vaughn, Wallace L.; Ransone, Philip O.; Tsou, Hwa-Tsu

    1997-01-01

    Advanced thermal protection materials envisioned for use on future hypersonic vehicles will likely be subjected to temperatures in excess of 1811 K (2800 F) and, therefore, will require the rapid conduction of heat away from the stagnation regions of wing leading edges, the nose cap area, and from engine inlet and exhaust areas. Carbon-carbon composite materials are candidates for use in advanced thermal protection systems. For design purposes, high temperature thermophysical property data are required, but a search of the literature found little thermal conductivity data for carbon-carbon materials above 1255 K (1800 F). Because a need was recognized for in-plane and through-the-thickness thermal conductivity data for carbon-carbon composite materials over a wide temperature range, Langley Research Center (LaRC) embarked on an effort to compile a consistent set of thermal conductivity values from room temperature to 1922 K (3000 F) for carbon-carbon composite materials on hand at LaRC for which the precursor materials and thermal processing history were known. This report documents the thermal conductivity data generated for these materials. In-plane thermal conductivity values range from 10 to 233 W/m-K, whereas through-the-thickness values range from 2 to 21 W/m-K.

  8. Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.

  9. Theoretical estimates of photoproduction cross sections for neutral subthreshold pions in carbon-carbon collisions.

    PubMed

    Norbury, J W; Townsend, L W

    1986-01-01

    Using the Weizsacher-Williams method of virtual quanta, total cross section estimates for the photoproduction of neutral subthreshold pions in carbon-carbon collisions at incident energies below 300 MeV/nucleon are made. Comparisons with recent experimental data indicate that the photoproduction mechanism makes an insignificant contribution to these measured cross sections.

  10. Micromechanics of crenulated fibers in carbon/carbon composites. M.S. Thesis Interim Report, 1 Jan. 1990 - 31 Dec. 1992

    NASA Technical Reports Server (NTRS)

    Carapella, E. E.; Hyer, M. W.; Griffin, O. H., Jr.; Maahs, H. G.

    1993-01-01

    The influence of crenulated noncircular fibers on the micromechanical stress states due to a transverse strain and to a temperature change in carbon/carbon composites is examined using the finite element method. Stresses at the interface of both fully bonded and fully disbonded fibers having two crenulation amplitudes and with two fiber volume fractions are presented. In each case, these interface stresses are compared to stresses at the interface of circular fibers which have the same degree of disbond and fiber volume fraction and are under the same loading conditions. For the disbonded cases, deformed meshes showing locations of fiber/matrix contact are also included. In addition to the interface stress states, selected composite properties are also computed and compared in each case examined. Interest in studying noncircular fibers stems from a desire to increase the transverse properties of carbon/carbon by introducing a mechanical interlocking between the fiber and the matrix. Results presented here indicate that this interlocking does in fact occur. Evidence from the interface stress data suggests, however, that any possible advantage of this interlocking may be outweighed by the disadvantage of stress concentrations which arise at the interface due to the crenulated geometry of the fibers.

  11. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  12. Observation of covalent and electrostatic bonds in nitrogen-containing polycyclic ions formed by gas phase reactions of the benzene radical cation with pyrimidine.

    PubMed

    Attah, Isaac Kwame; Soliman, Abdel-Rahman; Platt, Sean P; Meot-Ner Mautner, Michael; Aziz, Saaudallah G; Samy El-Shall, M

    2017-03-01

    Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocyclics (PANHs) are present in ionizing environments, including interstellar clouds and solar nebulae, where their ions can interact with neutral PAH and PANH molecules leading to the formation of a variety of complex organics including large N-containing ions. Herein, we report on the formation of a covalently-bonded (benzene·pyrimidine) radical cation dimer by the gas phase reaction of pyrimidine with the benzene radical cation at room temperature using the mass-selected ion mobility technique. No ligand exchange reactions with benzene and pyrimidine are observed indicating that the binding energy of the (benzene·pyrimidine)˙(+) adduct is significantly higher than both the benzene dimer cation and the proton-bound pyrimidine dimer. The (benzene·pyrimidine)˙(+) adduct shows thermal stability up to 541 K. Thermal dissociation of the (C6D6·C4H4N2)˙(+) adduct at temperatures higher than 500 K produces C4H4N2D(+) (m/z 82) suggesting the transfer of a D atom from the C6D6 moiety to the C4H4N2 moiety before the dissociation of the adduct. Mass-selected ion mobility of the (benzene·pyrimidine)˙(+) dimer reveals the presence of two families of isomers formed by electron impact ionization of the neutral (benzene·pyrimidine) dimer. The slower mobility peak corresponds to a non-covalent family of isomers with larger collision cross sections (76.0 ± 1.8 Å(2)) and the faster peak is consistent with a family of covalent isomers with more compact structures and smaller collision cross sections (67.7 ± 2.2 Å(2)). The mobility measurements at 509 K show only one peak corresponding to the family of stable covalently bonded isomers characterized by smaller collision cross sections (66.9 ± 1.9 Å(2) at 509 K). DFT calculations at the M06-2X/6-311++G** level show that the most stable (benzene·pyrimidine)˙(+) isomer forms a covalent C-N bond with a binding energy of 49.7 kcal mol(-1) and a

  13. The dark side of crystal engineering: creating glasses from small symmetric molecules that form multiple hydrogen bonds.

    PubMed

    Lebel, Olivier; Maris, Thierry; Perron, Marie-Eve; Demers, Eric; Wuest, James D

    2006-08-16

    Glasses made from compounds of low molecular weight are useful materials with many attractive features, including well-defined compositions. At present, there are no reliable ways to identify molecules that will form long-lived glasses, and efforts to design them have tended to rely on crude principles, such as avoiding small, symmetric, and relatively inflexible molecules that engage in strong intermolecular association. We have found that it is possible to make glasses from such molecules by turning to the dark side of crystal engineering and by making small but carefully selected structural modifications specifically designed to thwart established patterns of crystallization.

  14. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase

    PubMed Central

    Simmons, Thomas J.

    2017-01-01

    Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood — details that would promote understanding of MXE's role in vivo and enable its full technological exploitation. We investigated HTG's site of attack on one of its donor substrates, mixed-linkage (1→3),(1→4)-β-d-glucan (MLG), with radioactive oligosaccharides of xyloglucan as the acceptor substrate. Comparing three different MLG preparations, we showed that the enzyme favours those with a high content of cellotetraose blocks. The reaction products were analysed by enzymic digestion, thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and gel-permeation chromatography (GPC). Equisetum HTG consistently cleaved the MLG at the third consecutive β-(1→4)-bond following (towards the reducing terminus) a β-(1→3)-bond. It then formed a β-(1→4)-bond between the MLG and the non-reducing terminal glucose residue of the xyloglucan oligosaccharide, consistent with its xyloglucan endotransglucosylase/hydrolase subfamily membership. Using size-homogeneous barley MLG as the donor substrate, we showed that HTG does not favour any particular region of the MLG chain relative to the polysaccharide's reducing and non-reducing termini; rather, it selects its target cellotetraosyl unit stochastically along the MLG molecule. This work improves our understanding of how enzymes can exhibit promiscuous substrate specificities and provides the foundations to explore strategies for engineering novel substrate specificities into transglycanases. PMID:28108640

  15. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase.

    PubMed

    Simmons, Thomas J; Fry, Stephen C

    2017-03-08

    Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitation. We investigated HTG's site of attack on one of its donor substrates, mixed-linkage (1→3),(1→4)-β-d-glucan (MLG), with radioactive oligosaccharides of xyloglucan as the acceptor substrate. Comparing three different MLG preparations, we showed that the enzyme favours those with a high content of cellotetraose blocks. The reaction products were analysed by enzymic digestion, thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and gel-permeation chromatography (GPC). Equisetum HTG consistently cleaved the MLG at the third consecutive β-(1→4)-bond following (towards the reducing terminus) a β-(1→3)-bond. It then formed a β-(1→4)-bond between the MLG and the non-reducing terminal glucose residue of the xyloglucan oligosaccharide, consistent with its xyloglucan endotransglucosylase/hydrolase subfamily membership. Using size-homogeneous barley MLG as the donor substrate, we showed that HTG does not favour any particular region of the MLG chain relative to the polysaccharide's reducing and non-reducing termini; rather, it selects its target cellotetraosyl unit stochastically along the MLG molecule. This work improves our understanding of how enzymes can exhibit promiscuous substrate specificities and provides the foundations to explore strategies for engineering novel substrate specificities into transglycanases.

  16. The HC fragment of tetanus toxin forms stable, concentration-dependent dimers via an intermolecular disulphide bond.

    PubMed

    Qazi, Omar; Bolgiano, Barbara; Crane, Dennis; Svergun, Dmitri I; Konarev, Petr V; Yao, Zhong-Ping; Robinson, Carol V; Brown, Katherine A; Fairweather, Neil

    2007-01-05

    Protein oligomerisation is a prerequisite for the toxicity of a number of bacterial toxins. Examples include the pore-forming cytotoxin streptolysin O, which oligomerises to form large pores in the membrane and the protective antigen of anthrax toxin, where a heptameric complex is essential for the delivery of lethal factor and edema factor to the cell cytosol. Binding of the clostridial neurotoxins to receptors on neuronal cells is well characterised, but little is known regarding the quaternary structure of these toxins and the role of oligomerisation in the intoxication process. We have investigated the oligomerisation of the receptor binding domain (H(C)) of tetanus toxin, which retains the binding and trafficking properties of the full-length toxin. Electrophoresis, size exclusion chromatography and mass spectrometry were used to demonstrate that H(C) undergoes concentration-dependent oligomerisation in solution. Reducing agents were found to affect H(C) oligomerisation and, using mutagenesis, Cys869 was shown to be essential for this process. Furthermore, the oligomeric state and quaternary structure of H(C) in solution was assessed using synchrotron small-angle X-ray scattering. Ab initio shape analysis and rigid body modelling coupled with mutagenesis data allowed the construction of an unequivocal model of dimeric H(C) in solution. We propose a possible mechanism for H(C) oligomerisation and discuss how this may relate to toxicity.

  17. 4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra

    NASA Astrophysics Data System (ADS)

    Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M.

    2016-10-01

    A prolapse-free basis set for Eka-Actinium (E121, Z = 121), numerical atomic calculations on E121, spectroscopic constants and accurate analytical form for the potential energy curve of diatomic E121F obtained at 4-component all-electron CCSD(T) level including Gaunt interaction are presented. The results show a strong and polarized bond (≈181 kcal/mol in strength) between E121 and F, the outermost frontier molecular orbitals from E121F should be fairly similar to the ones from AcF and there is no evidence of break of periodic trends. Moreover, the Gaunt interaction, although small, is expected to influence considerably the overall rovibrational spectra.

  18. Residues of the human nuclear vitamin D receptor that form hydrogen bonding interactions with the three hydroxyl groups of 1alpha,25-dihydroxyvitamin D3.

    PubMed

    Reddy, Madhuri D; Stoynova, Ludmilla; Acevedo, Alejandra; Collins, Elaine D

    2007-03-01

    Most of the biological effects of 1,25-dihydroxyvitamin D(3) (hormone D) are mediated through the nuclear vitamin D receptor (VDR). Hormone binding induces conformational changes in VDR that enable the receptor to activate gene transcription. It is known that residues S237 and R274 form hydrogen bonds with the 1-hydroxyl group of hormone D, while residues Y143 and S278, and residues H305 and H397 form hydrogen bonds with the 3-hydroxyl and the 25-hydroxyl groups of the hormone. A series of VDR mutations were constructed (S237A, R274A, R274Q, Y143F, Y143A, S278A, H305A, and H397F; double mutants: S237A/R274A, Y143F/S278A, Y143A/S278A, and H305A/H397F). The relative binding affinities of the wild-type and variant VDRs were assessed. All of the mutants except H397F resulted in lower binding affinity compared to wild-type VDR. Binding to hormone was barely detectable in Y143F, H305A, and H305A/H397F mutants, and undetectable in mutants R274A, R274Q, Y143A, S237A/R274A, and Y143A/S278A, indicating the importance of these residues. Ability to activate gene transcription was also assessed. All of the VDR mutants, except the single mutant S278A, required higher doses of hormone D for half-maximal response. Defining the role of hormone D-VDR binding will lead to a better understanding of the vitamin D signal transduction pathway.

  19. Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases

    SciTech Connect

    Eun Jin Kim; Jian Feng; Matthew R. Bramlett; Paul A. Lindahl

    2004-05-18

    OAK-B135 Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur active-site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semi-conserved histidine residues were individually mutated to alanine. His116 and His122 were essential to catalysis, while His113 and His119 attenuated catalysis but were not essential. Significant activity was ''rescued'' by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. Activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or 123. Activity was also ''rescued'' by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway. The Ser mutant of the persulfide-forming Cys316 was essentially inactive and displayed no EPR signals originating from the C-cluster. Electronic absorption and metal analysis suggests that the C-cluster is absent in this mutant. The persulfide bond appears to be essential for either the assembly or stability of the C-cluster, and/or for eliciting the redox chemistry of the C-cluster required for catalytic activity.

  20. 21 CFR 1005.23 - Bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... IMPORTATION OF ELECTRONIC PRODUCTS Bonding and Compliance Procedures § 1005.23 Bonds. The bond required under section 360(b) of the Act shall be executed by the owner or consignee on the appropriate form of a customs single-entry bond, customs Form 7551 or term bond, customs Form 7553 or 7595, containing a condition...

  1. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    SciTech Connect

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  2. Study of the mechanical behavior of a 2-D carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Avery, W. B.; Herakovich, C. T.

    1987-01-01

    The out-of-plane fracture of a 2-D carbon-carbon composite was observed and characterized to gain an understanding of the factors influencing the stress distribution in such a laminate. Finite element analyses of a two-ply carbon-carbon composite under in-plane, out-of-plane, and thermal loading were performed. Under in-plane loading all components of stress were strong functions of geometry. Additionally, large thermal stresses were predicted. Out-of-plane tensile tests revealed that failure was interlaminar, and that cracks propagated along the fiber-matrix interface. An elasticity solution was utilized to analyze an orthotropic fiber in an isotropic matrix under uniform thermal load. The analysis reveals that the stress distributions in a transversely orthotropic fiber are radically different than those predicted assuming the fiber to be transversely isotropic.

  3. Carbon-carbon composites for orthopedic prosthesis and implants. CRADA final report

    SciTech Connect

    Burchell, T D; Klett, J W; Strizak, J P; Baker, C

    1998-01-21

    The prosthetic implant market is extensive. For example, because of arthritic degeneration of hip and knee cartilage and osteoporotic fractures of the hip, over 200,000 total joint replacements (TJRs) are performed in the United States each year. Current TJR devices are typically metallic (stainless steel, cobalt, or titanium alloy) and are fixed in the bone with polymethylacrylate (PMMA) cement. Carbon-carbon composite materials offer several distinct advantages over metals for TJR prosthesis. Their mechanical properties can be tailored to match more closely the mechanical properties of human bone, and the composite may have up to 25% porosity, the size and distribution of which may be controlled through processing. The porous nature of carbon-carbon composites will allow for the ingrowth of bone, achieving biological fixation, and eliminating the need for PMMA cement fixation.

  4. Single-walled carbon nanotube buckypaper and mesophase pitch carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Park, Jin Gyu; Yun, Nam Gyun; Park, Young Bin; Liang, Richard; Lumata, Lloyd; Brooks, James; Zhang, Chuck; Wang, Ben; High-Performance Materials Institute, Fsu Collaboration; National High Magnetic Field Laboratory, Fsu Collaboration

    2011-03-01

    Carbon/carbon composites consisting of single-walled carbon nanotube (SWCNT) buckypaper (BP) and mesophase pitch resin have been produced through impregnation of BP with pitch using toluene as a solvent. Drying, stabilization and carbonization processes were performed sequentially, and repeated to increase the pitch content. Voids in the carbon/carbon composite samples decreased with increasing impregnation process cycles. Electrical conductivity and density of the composites increased with carbonization by two to three times that of pristine BP. These results indicate that discontinuity and intertube contact barriers of SWCNTs in the BP are partially overcome by the carbonization process of pitch. The temperature dependence of the Raman shift shows that mechanical strain is increased since carbonized pitch matrix surrounds the nanotubes. High-Performance Materials Institute, NSF DMR-0602859, NSF DMR-0654118.

  5. A comparative study of deformation in carbon/carbon and carbon/polyimide laminates under bi-axial compression

    SciTech Connect

    Gupta, V.; Grape, J.A.

    1994-12-31

    The failure mechanisms of laminated 2-D carbon/carbon (C/C) and carbon/polyimide (C/P) composites have been determined under inplane biaxial compression loads, and the associated failure envelopes that account for the effect of matrix-type and loading directions, are also obtained. For the C/C laminates, the failure was in the form of micro-kinking of fiber-bundles, interspersed by localized interply delaminations to form the overall shear-fault. The shear fault was aligned with the major use of loading, except at above 75% of balanced biaxial stress, where failure occurred alone both axes. For the C/P laminates, however, the overall failure was primarily in the form of axial interply delaminations aligned with the principal axis of loading, with only secondary events of kinking in few bundles. Although the biaxial strength for both C/C and C/P samples varied significantly with the ratio of in-plane principal stresses, R, there was no variation in the local failure mechanisms. Accordingly, it was found that both materials fail upon achieving a maximum strain along the primary axis of loading.

  6. Closeup view of the Reinforced CarbonCarbon nose cap on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Reinforced Carbon-Carbon nose cap on the front fuselage of the Orbiter Discovery. Note the 76-wheeled orbiter transfer system attached to the orbiter at the forward attach point, the same attach point used to mount the orbiter onto the External Tank. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Simulation of the Thermographic Response of Near Surface Flaws in Reinforced Carbon-Carbon Panels

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Burke, Eric R.

    2009-01-01

    Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.

  8. SIMULATIONS OF THE THERMOGRAPHIC RESPONSE OF NEAR SURFACE FLAWS IN REINFORCED CARBON-CARBON PANELS

    SciTech Connect

    Winfree, William P.; Howell, Patricia A.; Burke, Eric R.

    2010-02-22

    Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.

  9. Two distinct mechanisms of alkyne insertion into the metal-sulfur bond: combined experimental and theoretical study and application in catalysis.

    PubMed

    Ananikov, Valentine P; Gayduk, Konstantin A; Orlov, Nikolay V; Beletskaya, Irina P; Khrustalev, Victor N; Antipin, Mikhail Yu

    2010-02-15

    The present study reports the evidence for the multiple carbon-carbon bond insertion into the metal-heteroatom bond via a five-coordinate metal complex. Detailed analysis of the model catalytic reaction of the carbon-sulfur (C-S) bond formation unveiled the mechanism of metal-mediated alkyne insertion: a new pathway of C-S bond formation without preliminary ligand dissociation was revealed based on experimental and theoretical investigations. According to this pathway alkyne insertion into the metal-sulfur bond led to the formation of intermediate metal complex capable of direct C-S reductive elimination. In contrast, an intermediate metal complex formed through alkyne insertion through the traditional pathway involving preliminary ligand dissociation suffered from "improper" geometry configuration, which may block the whole catalytic cycle. A new catalytic system was developed to solve the problem of stereoselective S-S bond addition to internal alkynes and a cost-efficient Ni-catalyzed synthetic procedure is reported to furnish formation of target vinyl sulfides with high yields (up to 99%) and excellent Z/E selectivity (>99:1).

  10. [Study on the preparation and application of individual artificial bone with carbon/carbon composites].

    PubMed

    Ni, Xinye; Qian, Nong; Zhou, Dong; Miao, Yunliang; Xiong, Xinbo; Lin, Tao; Chen, Da; Zhao, Gongyin; Zhong, Ping

    2013-12-01

    The present paper is aimed to study the preparation and application of individual artificial bone of carbon/carbon composites. Using computer tomography images (CT), we acquired a three-dimensional image. Firstly, we described bone contour line outlined with manual and automatic method by the binary volume data. Secondly, we created 3D object surface information by marching cubes. Finally, we converted this information to non-uniform rational B-spine (NURBS) by using geomagic software. Individual artificial bone with carbon/carbon composite was prepared through the CNC Machining Center. We replaced the humeral head of the tested rabbit, and then observed the effects of implantation in neuroimaging and pathological section. Using this method, we found that the bone shape processed and bone shape replaced was consistent. After implantation, the implant and the surrounding bone tissue bound closely, and bone tissue grew well on the surface of the implant. It has laid a sound foundation of the preparation using this method for individual artificial bone of carbon/carbon composite material.

  11. Electron Beam Exposure of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon and carbon-polyimide composites are being considered for use as radiator face sheets or fins for space radiator applications. Several traditional white thermal control paints are being considered for the surface of the composite face sheets or fins. One threat to radiator performance is high energy electrons. The durability of the thermal control paints applied to the carbon-carbon and carbon-polyimide composites was evaluated after extended exposure to 4.5 MeV electrons. Electron exposure was conducted under argon utilizing a Mylar(TradeMark) bag enclosure. Solar absorptance and infrared emittance was evaluated before and after exposure to identify optical properties degradation. Adhesion of the paints to the carbon-carbon and carbon-polyimide composite substrates was also of interest. Adhesion was evaluated on pristine and electron beam exposed coupons using a variation of the ASTM D-3359 tape test. Results of the optical properties evaluation and the adhesion tape tests are summarized.

  12. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    NASA Technical Reports Server (NTRS)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  13. Impact of heat treatment and oxidation of Carbon-carbon composites on microstructure and physical properties

    NASA Astrophysics Data System (ADS)

    Iqbal, Sardar Sarwat

    Carbon-carbon (C/C) composites are notable among engineering materials in aerospace and defense industries possessing excellent specific mechanical, thermal, frictional and wear properties. C/C maintain their properties at temperatures where most of the high end alloys give in, and maintain their dimensional stability at temperatures above 2000 °C. C/C is frequently used in aircraft and automotive industries as brake materials. However, frictional performance is dependent on various parameters: microstructure, fiber type, fiber orientation distribution, fiber/matrix interfacial bond, heat treatment, and oxidation. The present study in dissertation provides an insight into the impact of heat treatment, and oxidation on microstructure, mechanical and thermal properties. The heat treatment (performed at 1800, 2100, 2400 °C in argon) of two-directional (2-D) pitch-fiber with charred resin carbon matrix, and three-directional (3-D) PAN-fiber with CVI carbon matrix influenced microstructure, mechanical and thermal properties. Microstructure characterized by polarized light microscopy (PLM), XRD, and Raman spectroscopy changed with increasing heat treatment temperature. The RL microstructure of 3-D C/C progressively highly organized, whereas ISO microstructure of 2-D C/C's charred resin hardly organized into an ordered structure as evident from Raman spectroscopy and Raman profiling of polished samples. Pitch-fiber organized more than the ISO microstructure of charred resin matrix. On the other, PAN-fiber became more ordered, but was organization was lower than pitch-fiber. Thermal conductivity increased for both (2-D, 3-D C/C) materials in comparison to non-heat treated (NHT) C/Cs. Thermal conductivity of oxidized samples decreased significantly than non-oxidized samples. In-plane thermal conductivity of 3-D C/C was much higher than that of 2-D C/C, and was attributed to the rough laminar (RL) microstructure of carbon matrix and continuous PAN-fiber when compared to

  14. Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms

    NASA Astrophysics Data System (ADS)

    Güngör, Özlem; Gürkan, Perihan

    2014-09-01

    Schiff bases derived from 5-nitro-salicylaldehyde and 4-aminobutyric acid, 5-aminopentanoic acid and 6-aminohexanoic acid were synthesized both as monosodium salts (1a-3a) and neutral forms (1b-3b). The monosodium-Schiff bases were characterized by elemental analysis, 1H/13C NMR, IR, powder XRD, UV-vis spectra and conductivity measurements. The neutral-Schiff bases were characterized by elemental analysis, 1H/13C NMR, 2D NMR (HMQC), mass, IR, powder XRD, UV-vis spectra and conductivity measurements. The intramolecular hydrogen bonding and related tautomeric equilibria in all the Schiff bases were studied by UV-vis and 1H NMR spectra in solution. Additionally, the neutral-Schiff bases were screened against Staphylococcus aureus-EB18, S. aureus-ATCC 25923, Escherichia coli-ATCC 11230, Candida albicans-M3 and C. albicans-ATCC 16231.

  15. Hydrogen-bonding in 2-aminobenzoyl-alpha-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies.

    PubMed

    Goodall, Jonathan J; Booth, Victoria K; Ashcroft, Alison E; Wharton, Christopher W

    2002-01-04

    The acyl-enzyme formed upon acylation of alpha-chymotrypsin with isatoic anhydride has been characterised by infrared spectroscopy. Acylation at pH 7 to yield the 2-aminobenzoyl-enzyme is rapid (k = 5.57x 10(-2)s(-1)), while deacylation is much slower (k =3.7 x 10(-5)10(-2) (s-). The [1C=O]-labelled form of isatoic anhydride has been synthesised, to allow construction of [72C=O]- minus [13C=O]difference spectra; these highlight the carbonyl absorbance of the ligand and eliminate spectral effects that arise from protein perturbation. The ester carbonyl band of the acyl-enzyme absorbs at a wavenumber of 1695cm(-1) and has been shown by deconvolution analysis to represent a single, well-defined conformation. Model studies of ethyl 2-aminobenzoate in a range of solvents show that its carbonyl group is in a hexane-like environment (that is, very nonpolar). It is proposed that the low wavenumber of the carbonyl absorbance arises from the presence of an internal hydrogen bond between the 2-amino group and the ester carbonyl oxygen; this leads to polarisation of the carbonyl group both in the enzyme and in nonpolar solvents. However, in view of the slow deacylation, it is clear that the acyl group is in a nonproductive conformation, with no interaction with the oxyanion hole, and that deacylation occurs from this form or from a minor, invisible form. The infrared data have been supported by kinetic electrospray mass spectroscopic measurements, which demonstrate that the acyl-enzyme is that previously anticipated, and by molecular modelling of 2-aminobenzoyl-alpha-chymotrypsin. It is concluded from pH-dependence measurements that general base catalysis by the 2-amino group is not involved in deacylation.

  16. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris*

    PubMed Central

    Reardon-Robinson, Melissa E.; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-01-01

    Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. PMID:26170452

  17. Development of test acceptance standards for qualification of the glass-bonded zeolite waste form. Interim annual report, October 1995--September 1996

    SciTech Connect

    Simpson, L.J.; Wronkiewicz, D.J.; Fortner, J.A.

    1997-09-01

    Glass-bonded zeolite is being developed at Argonne National Laboratory in the Electrometallurgical Treatment Program as a potential ceramic waste form for the disposition of radionuclides associated with the US Department of Energy`s (DOE`s) spent nuclear fuel conditioning activities. The utility of standard durability tests [e.g. Materials Characterization Center Test No. 1 (MCC-1), Product Consistency Test (PCT), and Vapor Hydration Test (VHT)] are being evaluated as an initial step in developing test methods that can be used in the process of qualifying this material for acceptance into the Civilian Radioactive Waste Management System. A broad range of potential repository conditions are being evaluated to determine the bounding parameters appropriate for the corrosion testing of the ceramic waste form, and its behavior under accelerated testing conditions. In this report we provide specific characterization information and discuss how the durability test results are affected by changes in pH, leachant composition, and sample surface area to leachant volume ratios. We investigate the release mechanisms and other physical and chemical parameters that are important for establishing acceptance parameters, including the development of appropriate test methodologies required to measure product consistency.

  18. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  19. Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions.

    PubMed

    Dibble, T S

    2001-05-09

    The atmospheric degradation pathways of the atmospherically important terpenes alpha-pinene and beta-pinene are studied using density functional theory. We employ the correlation functional of Lee, Yang, and Parr and the three-parameter HF exchange functional of Becke (B3LYP) together with the 6-31G(d) basis set. The C-C bond scission reactions of the beta-hydroxyalkoxy radicals that are formed after OH addition to alpha-pinene and beta-pinene are investigated. Both of the alkoxy radicals formed from the alpha-pinene-OH adduct possess a single favored C-C scission pathway with an extremely low barrier (approximately 3 kcal/mol) leading to the formation of pinonaldehyde. Neither of these pathways produces formaldehyde, and preliminary computational results offer some support for suggestions that 1,5 or 1,6 H-shift (isomerization) reactions of alkoxy radicals contribute to formaldehyde production. In the case of the alkoxy radical formed following OH addition to the methylene group of beta-pinene, there exists two C-C scission reactions with nearly identical barrier heights (approximately 7.5 kcal/mol); one leads to known products (nopinone and formaldehyde) but the ultimate products of the competing reaction are unknown. The single C-C scission pathway of the other alkoxy radical from beta-pinene possesses a very low (approximately 4 kcal/mol) barrier. The kinetically favored C-C scission reactions of all four alkoxy radicals appear to be far faster than expected rates of reaction with O2. The rearrangement of the alpha-pinene-OH adduct, a key step in the proposed mechanism of formation of acetone from alpha-pinene, is determined to possess a barrier of 11.6 kcal/mol. This value is consistent with another computational result and is broadly consistent with the modest acetone yields observed in product yield studies.

  20. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products.

    PubMed

    Schmidt, Nina G; Eger, Elisabeth; Kroutil, Wolfgang

    2016-07-01

    Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.

  1. Friction and wear of PAN/pitch-, PAN/CVI- and pitch/resin/CVI-based carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Chen, J. D.; Ju, C. P.

    1994-05-01

    We compared the tribological behavior under a high speed condition (1.7 MPa, 2000 rev/min) of six different carbon/carbon composites including three two-dimensional PAN/pitch composites (TH, TM, and TL), one two-dimensional PAN/CVI composite (E), one two-dimensional pitch/resin/CVI composite (A), and one three-dimensional PAN/pitch composite (T3D). Results indicated that, among the five two-dimensional composites, TM and E performed significantly better than the other three composites under the present condition. Both TM and E exhibited a reasonably low friction coefficient (both about 0.4) and a wear rate that was an order of magnitude lower than those of the other three. A transition in friction occurred for A, TH, and TM, but not for E or TL. The pretransitional friction coefficients of the three composites were 0.1-0.2, similar to those measured under the low speed condition. During transition, the initially formed thin, smooth lubricative film was suddenly disrupted and turned into a thick powdery debris layer that caused the friction coefficient to rise abruptly to 0.5-0.9. The powdery debris on TM and E was easily 'ironed' into a smooth and tight lubricative film to cause both friction and wear to decline. The three-dimensional composite T3D was not suitable for high speed applications owing to extensive structural damage.

  2. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues

    PubMed Central

    Horner, Andreas; Zocher, Florian; Preiner, Johannes; Ollinger, Nicole; Siligan, Christine; Akimov, Sergey A.; Pohl, Peter

    2015-01-01

    Channel geometry governs the unitary osmotic water channel permeability, pf, according to classical hydrodynamics. Yet, pf varies by several orders of magnitude for membrane channels with a constriction zone that is one water molecule in width and four to eight molecules in length. We show that both the pf of those channels and the diffusion coefficient of the single-file waters within them are determined by the number NH of residues in the channel wall that may form a hydrogen bond with the single-file waters. The logarithmic dependence of water diffusivity on NH is in line with the multiplicity of binding options at higher NH densities. We obtained high-precision pf values by (i) having measured the abundance of the reconstituted aquaporins in the vesicular membrane via fluorescence correlation spectroscopy and via high-speed atomic force microscopy, and (ii) having acquired the vesicular water efflux from scattered light intensities via our new adaptation of the Rayleigh-Gans-Debye equation. PMID:26167541

  3. An iron-catalysed C-C bond-forming spirocyclization cascade providing sustainable access to new 3D heterocyclic frameworks

    NASA Astrophysics Data System (ADS)

    Adams, Kirsty; Ball, Anthony K.; Birkett, James; Brown, Lee; Chappell, Ben; Gill, Duncan M.; Lo, P. K. Tony; Patmore, Nathan J.; Rice, Craig. R.; Ryan, James; Raubo, Piotr; Sweeney, Joseph B.

    2016-12-01

    Heterocyclic architectures offer powerful creative possibilities to a range of chemistry end-users. This is particularly true of heterocycles containing a high proportion of sp3-carbon atoms, which confer precise spatial definition upon chemical probes, drug substances, chiral monomers and the like. Nonetheless, simple catalytic routes to new heterocyclic cores are infrequently reported, and methods making use of biomass-accessible starting materials are also rare. Here, we demonstrate a new method allowing rapid entry to spirocyclic bis-heterocycles, in which inexpensive iron(III) catalysts mediate a highly stereoselective C-C bond-forming cyclization cascade reaction using (2-halo)aryl ethers and amines constructed using feedstock chemicals readily available from plant sources. Fe(acac)3 mediates the deiodinative cyclization of (2-halo)aryloxy furfuranyl ethers, followed by capture of the intermediate metal species by Grignard reagents, to deliver spirocycles containing two asymmetric centres. The reactions offer potential entry to key structural motifs present in bioactive natural products.

  4. Metallic Concepts for Repair of Reinforced Carbon-Carbon Space Shuttle Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nesbitt, James

    2007-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for wing leading edges in the event that potentially catastrophic damage is incurred during Space Shuttle Orbiter flight. The leading edge of the space shuttle wings consists of a series of eleven panels on each side of the orbiter. These panels are fabricated from reinforced carbon-carbon (RCC) which is a light weight composite with attractive strength at very high temperatures. The damage that was responsible for the loss of the Colombia space shuttle was deemed due to formation of a large hole in one these RCC leading edge panels produced by the impact of a large piece of foam. However, even small cracks in the RCC are considered as potentially catastrophic because of the high temperature re-entry environment. After the Columbia accident, NASA has explored various means to perform on-orbit repairs in the event that damage is sustained in future shuttle flights. Although large areas of damage, such as that which doomed Columbia, are not anticipated to re-occur due to various improvements to the shuttle, especially the foam attachment, NASA has also explored various options for both small and large area repair. This paper reports one large area repair concept referred to as the "metallic over-wrap." Environmental conditions during re-entry of the orbiter impose extreme requirements on the RCC leading edges as well as on any repair concepts. These requirements include temperatures up to 3000 F (1650 C) for up to 15 minutes in the presence of an extremely oxidizing plasma environment. Figure 1 shows the temperature profile across one panel (#9) which is subject to the highest temperatures during re-entry. Although the RCC possesses adequate mechanical strength at these temperatures, it lacks oxidation resistance. Oxidation protection is afforded by converting the outer layers of the RCC to SiC by chemical vapor deposition (CVD). At high temperatures in an oxidizing

  5. X-ray structure of the metcyano form of dehaloperoxidase from Amphitrite ornata: evidence for photoreductive dissociation of the iron-cyanide bond

    SciTech Connect

    de Serrano, V.S.; Davis, M.F.; Gaff, J.F.; Zhang, Q.; Chen, Z.; D'Antonio, E.L.; Bowden, E.F.; Rose, R.; Franzen, S.

    2010-11-09

    X-ray crystal structures of the metcyano form of dehaloperoxidase-hemoglobin (DHP A) from Amphitrite ornata (DHPCN) and the C73S mutant of DHP A (C73SCN) were determined using synchrotron radiation in order to further investigate the geometry of diatomic ligands coordinated to the heme iron. The DHPCN structure was also determined using a rotating-anode source. The structures show evidence of photoreduction of the iron accompanied by dissociation of bound cyanide ion (CN{sup -}) that depend on the intensity of the X-ray radiation and the exposure time. The electron density is consistent with diatomic molecules located in two sites in the distal pocket of DHPCN. However, the identities of the diatomic ligands at these two sites are not uniquely determined by the electron-density map. Consequently, density functional theory calculations were conducted in order to determine whether the bond lengths, angles and dissociation energies are consistent with bound CN{sup -} or O{sub 2} in the iron-bound site. In addition, molecular-dynamics simulations were carried out in order to determine whether the dynamics are consistent with trapped CN{sup -} or O{sub 2} in the second site of the distal pocket. Based on these calculations and comparison with a previously determined X-ray crystal structure of the C73S-O{sub 2} form of DHP [de Serrano et al. (2007), Acta Cryst. D63, 1094-1101], it is concluded that CN{sup -} is gradually replaced by O{sub 2} as crystalline DHP is photoreduced at 100 K. The ease of photoreduction of DHP A is consistent with the reduction potential, but suggests an alternative activation mechanism for DHP A compared with other peroxidases, which typically have reduction potentials that are 0.5 V more negative. The lability of CN{sup -} at 100 K suggests that the distal pocket of DHP A has greater flexibility than most other hemoglobins.

  6. Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

    SciTech Connect

    Ebert, W. E.

    2006-01-31

    The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass

  7. The Structure and Bonding State for Fullerene-Like Carbon Nitride Films with High Hardness Formed by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru

    2012-12-01

    We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.

  8. Analysis of the Shuttle Orbiter reinforced carbon-carbon oxidation protection system

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.; Chao, Dennis; Pham, Vuong T.

    1994-01-01

    Reusable, oxidation-protected reinforced carbon-carbon (RCC) has been successfully flown on all Shuttle Orbiter flights. Thermal testing of the silicon carbide-coated RCC to determine its oxidation characteristics has been performed in convective (plasma Arc-Jet) heating facilities. Surface sealant mass loss was characterized as a function of temperature and pressure. High-temperature testing was performed to develop coating recession correlations for predicting performance at the over-temperature flight conditions associated with abort trajectories. Methods for using these test data to establish multi-mission re-use (i.e., mission life) and single mission limits are presented.

  9. Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Chan, Kwai S.; Lee, Yi-Der; Hudak, Stephen J., Jr.

    2009-01-01

    A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a three-dimensional (3D) composite architecture and a silicon carbide (SiC) surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This report contains information on the application of procedures and outcomes.

  10. Prediction of oxidation performance of reinforced carbon-carbon material for Space Shuttle leading edges

    NASA Technical Reports Server (NTRS)

    Medford, J. E.

    1975-01-01

    A method was developed for predicting oxidation performance, in an earth atmospheric entry environment, of reinforced carbon-carbon material, coated for oxidation resistance. A model was developed which describes oxidation control mechanisms, and the equations defining these mechanisms were derived. These relations were used to correlate oxidation test data, and to infer pertinent rate constants. Predictions were made of material oxidation performance in a representative entry environment, and the predictions were compared with ground test data. Results indicate that the method can be successfully used for predicting material oxidation performance.

  11. Kinetic viscoelasticity modeling applied to degradation during carbon-carbon composite processing

    NASA Astrophysics Data System (ADS)

    Drakonakis, Vassilis M.; Seferis, James C.; Wardle, Brian L.; Nam, Jae-Do; Papanicolaou, George C.; Doumanidis, Charalambos C.

    2010-04-01

    Kinetic viscoelasticity modeling has been successfully utilized to describe phenomena during cure of thermoset based carbon fiber reinforced matrices. The basic difference from classic viscoelasticity is that the fundamental material descriptors change as a result of reaction kinetics. Accordingly, we can apply the same concept for different kinetic phenomena with simultaneous curing and degradation. The application of this concept can easily be utilized in processing and manufacturing of carbon-carbon composites, where phenolic resin matrices are cured degraded and reinfused in a carbon fiber bed. This work provides a major step towards understanding complex viscoelastic phenomena that go beyond simple thermomechanical descriptors.

  12. Assessment of Fracture Toughness of a Discretely-Reinforced Carbon-Carbon Composite Material

    NASA Astrophysics Data System (ADS)

    Stepashkin, A. A.; Ozherelkov, D. Yu.; Sazonov, Yu. B.; Komissarov, A. A.; Mozolev, V. V.

    2015-07-01

    The stress-strain state at the tip of a crack in a discretely reinforced quasi-isotropic carbon-carbon composite material (CCCM) is studied. The stress intensity factor J 1 c and the J-integral are evaluated in accordance with domestic methods and international standards. The distribution of the fields of displacements and strains on the surface of the specimens is determined by the method of numerical correlation of digital images using a VIC-D system. The applicability of different criteria to evaluation of the fracture toughness of CCCM of type TERMAR is determined.

  13. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  14. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  15. New insights about the hydrogen bonds formed between acetylene and hydrogen fluoride: π ⋯ H, C ⋯ H and F ⋯ H

    NASA Astrophysics Data System (ADS)

    Silva, Denize S.; Oliveira, Boaz G.

    2017-02-01

    A theoretical study of hydrogen bond strength and bond properties in the C2H2 ⋯(HF)-T, C2H2 ⋯ 2(HF)-T, C2H2 ⋯ 2(HF), C2H2 ⋯ 3(HF) and C2H2 ⋯ 4(HF) complexes was carried out at the B3LYP/6-311 ++G(d,p) theory level. In these systems, a strength competition between the π ⋯ H and C ⋯ H interactions was examined. Specifically the F ⋯ H hydrogen bond, its properties were studied through a comparison between the hydrogen fluoride and the higher-order complexes (trimer, tetramer and pentamer). Regarding the electronic properties, the hydrogen bond strength could not be determined by the supermolecule approach. Thus, the hydrogen bond energies were computed via NBO calculations. Additionally to NBO, the ChelpG charge calculations were used to interpret the intermolecular charge transfer. The QTAIM integrations were useful to predict the covalent character of the π ⋯ H, C ⋯ H and F ⋯ H hydrogen bonds. Moreover, values of hybrid orbitals (s and p) and atomic radii were also determined in order to justify the red shifts in the stretch frequencies of the Hsbnd F bonds.

  16. Hydrogen multicentre bonds.

    PubMed

    Janotti, Anderson; Van de Walle, Chris G

    2007-01-01

    The concept of a chemical bond stands out as a major development in the process of understanding how atoms are held together in molecules and solids. Lewis' classical picture of chemical bonds as shared-electron pairs evolved to the quantum-mechanical valence-bond and molecular-orbital theories, and the classification of molecules and solids in terms of their bonding type: covalent, ionic, van der Waals and metallic. Along with the more complex hydrogen bonds and three-centre bonds, they form a paradigm within which the structure of almost all molecules and solids can be understood. Here, we present evidence for hydrogen multicentre bonds-a generalization of three-centre bonds-in which a hydrogen atom equally bonds to four or more other atoms. When substituting for oxygen in metal oxides, hydrogen bonds equally to all the surrounding metal atoms, becoming fourfold coordinated in ZnO, and sixfold coordinated in MgO. These multicentre bonds are remarkably strong despite their large hydrogen-metal distances. The calculated local vibration mode frequency in MgO agrees with infrared spectroscopy measurements. Multicoordinated hydrogen also explains the dependence of electrical conductivity on oxygen partial pressure, resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity of ZnO (refs 8-10).

  17. Selective bond scission in forming NO/sub 2/ from NO/sub 3//sup -/ in. gamma. -irradiated crystals of urea nitrate, diglycine nitrate, and monoglycine nitrate as studied by electron spin resonance

    SciTech Connect

    Eda, B.; Iwasaki, M.

    1982-05-27

    The controlling factors of selective bond breakage in forming NO/sub 2/ from NO/sub 3//sup -/ in irradiated crystals of the title compounds have been studied by using a single-crystal ESR technique. The results indicate that the NO/sub 2/ radical with one particular orientation is formed in any of these crystals as a result of scission of a particular N-O bond of NO/sub 3//sup -/. From a comparison of the hyperfine coupling and g tensors with the crystallographic data, it was clarified that the oxygen atom participating in the strongest hydrogen bond is preferentially detached to form NO/sub 2/. Such a selective formation of NO/sub 2/ is interpreted in terms of the reaction scheme in which NO/sub 2/ is formed by protonation of the primary anion radical NO/sub 3//sup 2 -/ followed by dissociation of OH/sup -/, where the proton transfer across the strongest hydrogen-bonding path triggers the selective reaction.

  18. Application of Eddy Current Techniques for Orbiter Reinforced Carbon-Carbon Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John

    2005-01-01

    The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.

  19. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  20. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  1. Elucidation of the Microstructure of Carbon-Carbon Composites by Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Mamedov, Sergey; Adar, Fran; Lee, Eunah; Whitley, Andrew

    2010-03-01

    Carbon-carbon composites are used in aerospace materials as well as some automotive, high-end sports and helmet applications. Their advantages include stiffness, strength, and light weight. Because of the importance of their applications, especially in aerospace, any technique that can characterize them is of interest. Images of a composite created on Raman microscope has been used to characterize a carbon-carbon composite. It is shown the information is encoded in both details of the spectral features and polarization behavior. Polarized Raman maps were collected using the 633nm laser and the 300g/mm grating. At each point in the map there is a spectrum that includes the G mode, the D mode (when present) and the overtone and combination bands between 2400 and 3300 cm-1. Using multivariate techniques to extract information from the hyperspectral cube, it was possible to create Raman images where the fibers and the matrix carbon are differentiated, even though the spectral differences are quite subtle. Correlations between the polarized Raman images and standard polarized light microscopy enables determination of the orientation of the graphite planes in the matrix which can effect the physical properties of the composite.

  2. Improvement of capacitive performances of symmetric carbon/carbon supercapacitors by addition of nanostructured polypyrrole powder

    NASA Astrophysics Data System (ADS)

    Benhaddad, L.; Gamby, J.; Makhloufi, L.; Pailleret, A.; Pillier, F.; Takenouti, H.

    2016-03-01

    A nanostructured polypyrrole powder was synthesized in a previous work from the oxidation of pyrrole by a nanostructured MnO2 powder used simultaneously as an oxidizing agent and a sacrificial template in a redox heterogeneous mechanism. In this study, this original PPy powder was used as an active additive material with different ratio in carbon/carbon symmetrical supercapacitors whose performances were studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) using a Swagelok-type cell. From the EIS spectra, the complex capacitance was extracted using a model involving two Cole-Cole type complex capacitances linked in series. The specific capacitance values evaluated by EIS and cyclic voltammetry are in a good agreement between them. The results show that the addition of nanostructured polypyrrole powder improves significantly the specific capacitance of the carbon electrode and consequently the performances of carbon/carbon supercapacitors. The original and versatile synthesis method used to produce this polypyrrole powder appears to be attractive for large scale production of promising additives for electrode materials of supercapacitors.

  3. Hyperspectral analysis of soil nitrogen, carbon, carbonate, and organic matter using regression trees.

    PubMed

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R(2) 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R(2) 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R(2) 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R(2) 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method.

  4. CARBON-CARBON BOND FORMATIONS VIA PALLADIUM CATALYZED REDUCTIVE COUPLING OF ARYL HALIDES IN AIR AND WATER. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Reconstructed hydrotalcite as a highly active heterogeneous base catalyst for carbon-carbon bond formations in the presence of water.

    PubMed

    Ebitani, Kohki; Motokura, Ken; Mori, Kohsuke; Mizugaki, Tomoo; Kaneda, Kiyotomi

    2006-07-21

    The aldol reaction of carbonyl compounds is efficiently catalyzed by reconstructed hydrotalcites, obtained by treating the Mg-Al mixed oxide with water, as solid base catalysts in the presence of water. The catalysis of the reconstructed hydrotalcites is attributable to the surface base sites, created during the organization of the layered structure, with uniformly distributed strength. Furthermore, the reconstructed hydrotalcites provide a unique acid-base bifunctional surface capable of promoting the Knoevenagel and Michael reactions of nitriles with carbonyl compounds.

  6. Super high-energy density single-bonded trigonal nitrogen allotrope-a chemical twin of the cubic gauche form of nitrogen.

    PubMed

    Bondarchuk, Sergey V; Minaev, Boris F

    2017-02-17

    A new ambient-pressure metastable single-bonded 3D nitrogen allotrope (TrigN) of trigonal symmetry (space group R3[combining macron]) was calculated using density functional theory (DFT). A comprehensive characterization of this material, comprising thermodynamic, elastic, and spectral (vibrational, UV-vis absorption, and nuclear magnetic resonance) properties, was performed. Using high-throughput band structure calculation, the TrigN phase was characterized as an insulator with an indirect band gap of 2.977 eV. Phonon dispersion calculations justified that this structure is vibrationally stable at ambient pressure. The calculated Raman activities at the Γ-point demonstrated a rich pattern, whereas no relatively intense transitions were observed in its IR absorption spectrum. The TrigN material is almost transparent to visible light as well as to ultraviolet A and B. The main absorption peaks appeared within the range of 50-200 nm. The electron arrangement of the nitrogen nuclei in the studied nitrogen allotrope is much denser compared to that of the molecular nitrogen, which is in agreement with the calculated magnetic shielding tensor values. Robust mechanical stability is revealed from the elastic constants calculation. Due to strong anisotropy, the values of the Young's moduli vary from 281 to 786 GPa. A huge amount of internal energy is enclosed in the TrigN material. Upon decomposition to molecular nitrogen, the energy release is expected to be 11.01 kJ g(-1) compared to the value of 10.22 kJ g(-1) for the cubic gauche form of nitrogen. The TrigN allotrope possesses unique detonation characteristics with a detonation pressure of 146.06 GPa and velocity of 15.86 km s(-1).

  7. a Simple Method of Applying Carbon Foam Coating for Carbon/carbon Composites to Modulate Cell Compatibility

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Lu, Jinhua; Wang, Bin; Zhao, Xueni; Cao, Sheng; He, Zibo; Zeng, Xierong

    2013-01-01

    A simple slurry method was used to prepare carbon foam coatings on biomedical carbon/carbon composites to modulate the cell compatibility. The surface morphology and microstructure of the coatings were characterized and the effect of applying carbon foam coatings on cell morphology and cell proliferation was investigated. The results showed that the carbon foam coatings, consisting of carbon microspheres, resin carbon matrices and pores, covered the carbon/carbon composites entirely and uniformly with amorphous structures. There were large numbers of pores with a size ranging from submicron to tens of micrometers being found for the coatings. The cell culture experiments exhibited that both the cell spreading and the cell proliferation were improved after the preparation of the carbon foam coatings. It could be demonstrated that applying carbon foam coatings by a simple slurry method was an effective way to improve the cell compatibility of carbon/carbon composites.

  8. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    NASA Astrophysics Data System (ADS)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  9. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  10. 1,1'-Diethyl-4,4'-bipyridine-1,1'-diium bis(1,1,3,3-tetracyano-2-ethoxypropenide): multiple C-H...N hydrogen bonds form a complex sheet structure.

    PubMed

    Setifi, Zouaoui; Lehchili, Fouzia; Setifi, Fatima; Beghidja, Adel; Ng, Seik Weng; Glidewell, Christopher

    2014-03-01

    In the title salt, C14H18N2(2+) · 2C9H5N4O(-), the 1,1'-diethyl-4,4'-bipyridine-1,1'-diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3-tetracyano-2-ethoxypropenide anion, the two independent -C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0(2) and 23.0(2)°. The ionic components are linked by C-H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.

  11. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  12. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-01

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor (~ 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  13. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-06

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor ({approx} 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  14. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  15. Weak hydrogen bonds formed by thiol groups in N-acetyl-(L)-cysteine and their response to the crystal structure distortion on increasing pressure.

    PubMed

    Minkov, Vasily S; Boldyreva, Elena V

    2013-11-21

    The effect of hydrostatic pressure on single crystals of N-acetyl-l-cysteine was followed at multiple pressure points from 10(-4) to 6.2 GPa with a pressure step of 0.2-0.3 GPa by Raman spectroscopy and X-ray diffraction. Since in the crystals of N-acetyl-l-cysteine the thiol group is involved in intermolecular hydrogen bonds not as a donor only (bonds S-H···O) but also as an acceptor (bonds N-H···S), increasing the pressure does not result in phase transitions. This makes a contrast with the polymorphs of l- and dl-cysteine, in which multiple phase transitions are observed already at relatively low hydrostatic pressures and are related to the changes in the conformation of the thiol side chains only weakly bound to the neighboring molecules in the structure and thus easily switching over the weak S-H···O and S-H···S hydrogen bonds. No phase transitions occur in N-acetyl-l-cysteine with increasing pressure, and changes in cell parameters and volume vs pressure do not reveal any peculiar features. Nevertheless, a more detailed analysis of the changes in intermolecular distances, in particular, of the geometric parameters of the hydrogen bonds based on X-ray single crystal diffraction analysis, complemented by an equally detailed study of the positions of all the significant bands in Raman spectra, allowed us to study the fine details of subtle changes in the hydrogen bond network. Thus, as pressure increases, a continuous shift of the hydrogen atom of the thiol group from one acceptor (a carboxyl group) to another acceptor (a carbonyl group) is observed. Precise single-crystal X-ray diffraction and polarized Raman spectroscopy structural data reveal the formation of a bifurcated S-H···O hydrogen bond with increasing pressure starting with ∼1.5 GPa. The analysis of the vibrational bands in Raman spectra has shown that different donor and acceptor groups start "feeling" the formation of the bifurcated S-H···O hydrogen bond in different pressure

  16. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.; Naples, Andrew G.

    2006-01-01

    The feasibility of using carbon-carbon (C-C) recuperators in conceptual closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance expectations were forecast based on notional thermodynamic cycle state values for potential planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 30 to 60 percent were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25 to 1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, 60 percent savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  17. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2006-01-01

    The use of carbon-carbon (C-C) recuperators in closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance was forecast based on notional thermodynamic cycle state values for planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 40-55% were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25-1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, at least 50% savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  18. Bioinspired synthesis of fluorescent calcium carbonate/carbon dot hybrid composites.

    PubMed

    Guo, Shanshan; Yang, Miao; Chen, Min; Zhang, Juan; Liu, Kang; Ye, Ling; Gu, Wei

    2015-05-07

    Herein, we report a novel method to synthesise fluorescent calcium carbonate/carbon dots (CaCO3/CDs) by simply mixing CaCl2 and Na2CO3 solutions in the presence of CDs. There are two roles of CDs in this easy and cost-effective biomimetic strategy, that is as the template to direct the formation and assembly of calcite nanocrystals into hierarchical spheres with diameters in the range of 200-300 nm and simultaneously as the phosphor to enable the CaCO3 to emit blue fluorescence under UV (365 nm) irradiation with a quantum yield of 56.2%. The CaCO3/CD hybrid composites possessing unique fluorescence properties are potentially useful in various applications.

  19. Simulation of Hypervelocity Impact Effects on Reinforced Carbon-Carbon. Chapter 6

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    Spacecraft operating in low earth orbit face a significant orbital debris impact hazard. Of particular concern, in the case of the Space Shuttle, are impacts on critical components of the thermal protection system. Recent research has formulated a new material model of reinforced carbon-carbon, for use in the analysis of hypervelocity impact effects on the Space Shuttle wing leading edge. The material model has been validated in simulations of published impact experiments and applied to model orbital debris impacts at velocities beyond the range of current experimental methods. The results suggest that momentum scaling may be used to extrapolate the available experimental data base, in order to predict the size of wing leading edge perforations at impact velocities as high as 13 km/s.

  20. High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2008-01-01

    Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.

  1. A method for determining structural properties of RCC thermal protection material. [Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.; Fowler, K. R.

    1978-01-01

    A method was developed for evaluation and prediction of effects of oxidation of the graphitic substrate on structural properties of Reinforced Carbon-Carbon (RCC) thermal protection material. Test specimens of RCC material were exposed to successive periods of convective heating in a plasma-jet facility to simulate the chemical reactions of Shuttle atmospheric entry. After each period of testing, the test specimen mass loss and performance in a nondestructive flexure test were determined. A computational model of the RCC specimen was developed for the NASA Structural Analysis (NASTRAN) program and validated by comparison of calculated and experimental results of flexure tests. The elastic moduli and ultimate loads in tension and compression were then computed for various levels of substrate oxidation.

  2. Behavior of Plasma-Sprayed Hydroxyapatite Coatings onto Carbon/carbon Composites in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Sui, Jin-Ling; Bo, Wu; Hai, Zhou; Cao, Ning; Li, Mu-Sen

    Two types of hydroxyapatite (HA) coatings onto carbon/carbon composite (C/C composites) substrates, deposited by plasma spraying technique, were immersed in a simulated body fluid (SBF) in order to determine their behavior in conditions similar to the human blood plasma. Calcium ion concentration, pH value, microstructure, and phase compositions were analyzed. Results demonstrated that both the crystal Ca-P phases or the amorphous HA do dissolve slightly, and the dissolution of CaO phases in SBF was evident after 1 day of soaking. The calcium-ion concentration was decreased and the pH value of SBF was increased with the increasing of the immersing time. The precipitation was mainly composed of HA, which was verified by X-ray diffraction (XRD) and electron-probe microanalyzer.

  3. Characterization and Damage Evaluation of Coal Tar Pitch Carbon Matrix Used in Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Bhagat, Atul Ramesh; Mahajan, Puneet

    2016-09-01

    Flexure, compressive, and shear properties of the carbon matrix in carbon/carbon (C/C) composites made via a pitch impregnation method have been determined. The pitch carbon matrix was made using the same densification cycle used in making the C/C composite. Cyclic compression tests were performed on the matrix specimens. While unloading, a reduction in modulus was observed and residual strains were observed on complete unloading. These features were attributed to the presence of damage and plasticity in the densified matrix. A J 2 plasticity model with damage was used to simulate this behavior numerically. The parameters required for plasticity and damage model were evaluated iteratively by comparing the results in experiments with simulation.

  4. Hypervelocity impact tests on Space Shuttle Orbiter RCC thermal protection material. [Reinforced Carbon-Carbon laminate

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1978-01-01

    It is noted that the Shuttle Orbiter will be more subject to meteoroid impact than previous spacecraft, due to its greater surface area and longer cumulative time in space. The Orbiter structural material, RCC, a reinforced carbon-carbon laminate with a diffused silicon carbide coating, is evaluated in terms of its resistance to hypervelocity impact. It was found that the specimens (disks with a mass of 34 g and a thickness of 5.0 mm) were cratered only on the front surface when the impact energy was 3 J or less. At 3 J, a trace of the black carbon interior was exposed. The specimens were completely penetrated when the energy was 34 J or greater.

  5. 43 CFR 3474.1 - Bonding requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Bonding requirements. 3474.1 Section 3474....1 Bonding requirements. (a) Before a lease may be issued, one of the following forms of lease bond... a form approved by the Director. (c) The bonding obligation for a new lease may be met by...

  6. 7 CFR 1726.27 - Contractor's bonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Contractor's bonds. 1726.27 Section 1726.27... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.27 Contractor's bonds. (a) RUS Form 168b, Contractor's Bond, shall be used when a contractor's bond is required by RUS Forms 200,...

  7. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp(3) C-H bonds.

    PubMed

    Chu, John C K; Rovis, Tomislav

    2016-11-10

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp(3) C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  8. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Chu, John C. K.; Rovis, Tomislav

    2016-11-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  9. Neutron irradiation studies on low density pan fiber based carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Sathiyamoorthy, D.; Acharya, R.; Tyagi, A. K.

    2010-09-01

    Carbon has been extensively used in nuclear reactors and there has been growing interest to develop carbon-based materials for high-temperature nuclear and fusion reactors. Carbon-carbon composite materials as against conventional graphite material are now being looked into as the promising materials for the high temperature reactor due their ability to have high thermal conductivity and high thermal resistance. Research on the development of such materials and their irradiation stability studies are scant. In the present investigations carbon-carbon composite has been developed using polyacrylonitrile (PAN) fiber. Two samples denoted as Sample-1 and Sample-2 have been prepared by impregnation using phenolic resin at pressure of 30 bar for time duration 10 h and 20 h respectively, and they have been irradiated by neutrons. The samples were irradiated in a flux of 10 12 n/cm 2/s at temperature of 40 °C. The fluence was 2.52 × 10 16 n/cm 2. These samples have been characterized by XRD and Raman spectroscopy before and after neutron irradiation. DSC studies have also been carried out to quantify the stored energy release behavior due to irradiation. The XRD analysis of the irradiated and unirradiated samples indicates that the irradiated samples show the tendency to get ordered structure, which was inferred from the Raman spectroscopy. The stored energy with respect to the fluence level was obtained from the DSC. The stored energy from these carbon composites is very less compared to irradiated graphite under ambient conditions.

  10. Supra­molecular hydrogen-bonding patterns in the N(9)—H protonated and N(7)—H tautomeric form of an N6-benzoyl­adenine salt: N 6-benzoyl­adeninium nitrate

    PubMed Central

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-01-01

    In the title molecular salt, C12H10N5O+·NO3 −, the adenine unit has an N 9-protonated N(7)—H tautomeric form with non-protonated N1 and N3 atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra­molecular N7—H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl­adeninium cations also form base pairs through N—H⋯O and C—H⋯N hydrogen bonds involving the Watson–Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra­molecular ribbon with R 2 2(9) rings. Benzoyl­adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N—H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π–π stacking inter­actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol­ecules generate a three-dimensional supra­molecular architecture. PMID:26958373

  11. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  12. Low Energy Sputter Yields for Diamond, Carbon-Carbon Composite, and Molybdenum Subject to Xenon Ion Nombardment

    NASA Technical Reports Server (NTRS)

    Blandino, J.; Goodwin, D.; Garner, C.

    1999-01-01

    Sputter yields have been measured for polycrystalline diamond, single crystal diamond, a carbon-carbon composite, and molybdenum subject to bombardment with xenon. The tests were performed using a 3 cm Kaufman ion source to produce incident ions with energy in the range of 150 - 750 eV and profilometry based technique to measure the amount of sputtered material.

  13. Synthesis of 1,5-Dioxocanes via the Two-Fold C-O Bond Forming Nucleophilic 4+4-Cyclodimerization of Cycloprop-2-en-1-ylmethanols

    PubMed Central

    Edwards, Andrew; Bennin, Trevor; Rubina, Marina; Rubin, Michael

    2015-01-01

    An efficient [4+4] cyclodimerization of cyclopropenemethanols operating via a two-fold strain release-driven addition of alkoxides across the double bond of cyclopropenes was investigated. This chemo- and diastereoselective transformation provided previously unknown 2,7-dioxatricyclo[7.1.0.04,6]decane scaffolds. PMID:26594355

  14. Hard three-dimensional sp 2 carbon-bonded phase formed by ion beam irradiation of fullerene, a-C and polymeric a-C:H films

    NASA Astrophysics Data System (ADS)

    Baptista, D. L.; Foerster, C. E.; Lepienski, C. M.; Zawislak, F. C.

    2004-06-01

    The formation of new carbon amorphous phase through the ion irradiation of fullerene, a-C and polymeric a-C:H films is presented. The carbon films were subjected to N irradiation at 400 keV in the fluence range from 10 13 to 3 × 10 16 N cm -2. Modifications in the carbon structure, as function of the irradiation fluence, were investigated using the Rutherford backscattering spectrometry, nuclear reaction analysis, Fourier transform infrared, Raman spectroscopy, UV-VIS-NearIR spectrophotometry and nanoindentation techniques. After high fluence, the three carbon samples were transformed into very similar hard (≈14 GPa) and non-hydrogenated amorphous carbon layers with very low optical gaps (≈0.2 eV) and an unusual sp 2 rich-bonded atomic network. The mechanical properties of the irradiated films correlated with the bonding topologies of this new sp 2 carbon phase are analyzed in terms of the constraint-counting model. The results show that the unusual rigidity was achieved by the distortion of the sp 2 carbon bond angles, giving origin to a constrained three-dimensional sp 2 carbon bonded network.

  15. Cofactor Activity in Factor VIIIa of the Blood Clotting Pathway Is Stabilized by an Interdomain Bond between His281 and Ser524 Formed in Factor VIII*

    PubMed Central

    Wakabayashi, Hironao; Monaghan, Morgan; Fay, Philip J.

    2014-01-01

    The factor VIII (FVIII) crystal structure suggests a possible bonding interaction of His281 (A1 domain) with Ser524 (A2 domain), although the resolution of the structure (∼4 Å) does not firmly establish this bonding. To establish that side chains of these residues participate in an interdomain bond, we prepared and examined the functional properties of a residue swap variant (H281S/S524H) where His281 and Ser524 residues were exchanged with one another and a disulfide-bridged variant (H281C/S524C) where the two residues were replaced with Cys. The latter variant showed efficient disulfide bonding of the A1 and A2 domains. The swap variant showed WT-like FVIII and FVIIIa stability, which were markedly reduced for H281A and S524A variants in an earlier study. The disulfide-bridged variant showed ∼20% increased FVIII stability, and FVIIIa did not decay during the time course measured. This variant also yielded 35% increased thrombin peak values compared with WT in a plasma-based thrombin generation assay. Binding analyses of H281S-A1/A3C1C2 dimer with S524H-A2 subunit yielded a near WT-like affinity value, whereas combining the variant dimer or A2 subunit with the WT complement yielded ∼5- and ∼10-fold reductions, respectively, in affinity. Other functional properties including thrombin generation potential, FIXa binding affinity, Km for FX of FXase complexes, thrombin activation efficiency, and down-regulation by activated protein C showed similar results for the two variants compared with WT FVIII. These results indicate that the side chains of His281 and Ser524 are in close proximity and contribute to a bonding interaction in FVIII that is retained in FVIIIa. PMID:24692542

  16. Tetrel Bonding Interactions.

    PubMed

    Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio

    2016-02-01

    Tetrel (Tr) bonding is first placed into perspective as a σ-hole bonding interaction with atoms of the Tr family. An sp(3) R4Tr unit has four σ-holes with which a Lewis base can form a complex. We then highlight some inspiring crystal structures where Tr bonding is obvious, followed by an account of our own work. We have shown that Tr bonding is ubiquitous in the solid state and we have highlighted that Tr bonding with carbon is possible when C is placed in the appropriate chemical context. We hope that this account serves as an initial guide and source of inspiration for others wishing to exploit this vastly underexplored interaction.

  17. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond.

    PubMed

    Yu, Feng; Cao, Xiaodong; Du, Jie; Wang, Gang; Chen, Xiaofeng

    2015-11-04

    Hydrogel, as a good cartilage tissue-engineered scaffold, not only has to possess robust mechanical property but also has to have an intrinsic self-healing property to integrate itself or the surrounding host cartilage. In this work a double cross-linked network (DN) was designed and prepared by combining Diels-Alder click reaction and acylhydrazone bond. The DA reaction maintained the hydrogel's structural integrity and mechanical strength in physiological environment, while the dynamic covalent acylhydrazone bond resulted in hydrogel's self-healing property and controlled the on-off switch of network cross-link density. At the same time, the aldehyde groups contained in hydrogel further promote good integration of the hydrogel to surrounding tissue based on aldehyde-amine Schiff-base reaction. This kind of hydrogel has good structural integrity, autonomous self-healing, and tissue-adhesive property and simultaneously will have a good application in tissue engineering and tissue repair field.

  18. Transition-metal-free oxidative carboazidation of acrylamides via cascade C-N and C-C bond-forming reactions.

    PubMed

    Qiu, Jun; Zhang, Ronghua

    2014-07-07

    A novel transition-metal-free oxidative carboazidation of acrylamides using inexpensive NaN3 and K2S2O8 was achieved, which not only provided an efficient method to prepare various N3-substituted oxindoles, but also represented a novel strategy for C-N and C-C bond formation via a free-radical cascade process. This transformation exhibits excellent functional group tolerance, affording the desired oxindoles in good to excellent yields.

  19. Brønsted-Evans-Polanyi relationships for C–C bond forming and C–C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory

    SciTech Connect

    Assary, Rajeev Surendran; Broadbelt, Linda J.; Curtiss, Larry A.

    2011-04-27

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Brønsted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C–C bond formation and C–C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  20. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  1. Brønsted-Evans-Polanyi relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    PubMed

    Assary, Rajeev Surendran; Broadbelt, Linda J; Curtiss, Larry A

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Brønsted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  2. Hydrogen bonded NHO chains formed by chloranilic acid (CLA) with 4,4‧-di-t-butyl-2,2‧-bipyridyl (dtBBP) in the solid state

    NASA Astrophysics Data System (ADS)

    Bator, G.; Sawka-Dobrowolska, W.; Sobczyk, L.; Owczarek, M.; Pawlukojć, A.; Grech, E.; Nowicka-Scheibe, J.

    2012-01-01

    In crystalline state 2,5-dichloro-3,6-dihydroxy-p-benzoquinone (chloranilic acid, CLA) forms with 4,4'-di-t-butyl-2,2'-bipyridyl (dtBBP) the hydrogen bonded chains along the b-axis. From one side of the CLA molecule the proton transfer takes place and the hydrogen bond length is very short (2.615 Å). A continuous infrared absorption is observed for dtBBP·CLA in the wavenumber range between 3100 and 800 cm -1 also indicating the strong hydrogen bonds. The DSC measurements show a weak, close to continuous, phase transition at 414 K. The complex dielectric permittivity for a single crystal sample was measured in the temperature range 100-440 K and at frequencies between 200 Hz and 2 MHz. The dielectric response is a combination of semiconducting properties and a relaxation process most probably connected with the proton dynamics in the hydrogen bonds. The mechanism of the structural phase transition is discussed.

  3. The friction and wear of carbon-carbon composites for aircraft brakes

    NASA Astrophysics Data System (ADS)

    Hutton, Toby

    Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy

  4. Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C-H Bonds.

    PubMed

    Kodera, Masahito; Ishiga, Shin; Tsuji, Tomokazu; Sakurai, Katsutoshi; Hitomi, Yutaka; Shiota, Yoshihito; Sajith, P K; Yoshizawa, Kazunari; Mieda, Kaoru; Ogura, Takashi

    2016-04-18

    Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is tolueneformed by syn-to-anti transformation of the syn-dioxo form and reacts with substrates as the oxidant. The anti-dioxo form is 620 times more reactive in the C-H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 .

  5. Unprecedented π···π interaction between an aromatic ring and a pseudo-aromatic ring formed through intramolecular H-bonding in a bidentate Schiff base ligand: crystal structure and DFT calculations.

    PubMed

    Dutta, Arpan; Jana, Atish Dipankar; Gangopadhyay, Sumana; Das, Kalyan Kumar; Marek, Jaromir; Marek, Radek; Brus, Jiri; Ali, Mahammad

    2011-09-21

    A combination of a single crystal X-ray diffraction study and density functional theory calculations has been applied to a bidentate Schiff base compound to elucidate different cooperative non-covalent interactions involved in the stabilization of the keto form over the enol one in the solid state. The single crystal X-ray structure reveals a remarkable supramolecular assembly of the keto form through a cyclic hydrogen bonded dimeric motif. The most interesting feature in the supramolecular assembly is the formation of a 'dimer of dimer' motif by π···π, CH···π and N···O/O···O interactions in which the π···π interaction involving the aromatic phenyl ring and the intramolecularly hydrogen bonded pseudo-aromatic ring of the keto form lying just above or below the phenyl ring of the other dimer seems to be unprecedented. The optimized geometry of the hydrogen bonded dimeric motif of the keto form of the organic molecule has been obtained by DFT calculations and agrees very well with that found within the crystalline state. The X-ray crystallographic geometry of the 'dimer of dimer' has also been computed, which shows that in the HOMO, the π electrons are localized in the phenyl rings away from each other, while in the LUMO, there is a strong π-π interaction between the phenyl ring of one dimer with the pseudo-aromatic ring of another dimer with an energy estimated to be 7.95 kJ mol(-1). Therefore, on HOMO → LUMO excitation there is localization of π electrons in the central part of the complex moiety which plays a stabilizing role of the dimer of dimer motif in the solid state.

  6. Method to improve commercial bonded SOI material

    DOEpatents

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  7. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.

    PubMed

    Beste, Ariana; Buchanan, A C

    2009-04-03

    Lignin is an abundant natural resource that is a potential source of valuable chemicals. Improved understanding of the pyrolysis of lignin occurs through the study of model compounds for which phenethyl phenyl ether (PhCH(2)CH(2)OPh, PPE) is the simplest example representing the dominant beta-O-4 ether linkage. The initial step in the thermal decomposition of PPE is the homolytic cleavage of the oxygen-carbon bond. The rate of this key step will depend on the bond dissociation enthalpy, which in turn will depend on the nature and location of relevant substituents. We used modern density functional methods to calculate the oxygen-carbon bond dissociation enthalpies for PPE and several oxygen-substituted derivatives. Since carbon-carbon bond cleavage in PPE could be a competitive initial reaction under high-temperature pyrolysis conditions, we also calculated substituent effects on these bond dissociation enthalpies. We found that the oxygen-carbon bond dissociation enthalpy is substantially lowered by oxygen substituents situated at the phenyl ring adjacent to the ether oxygen. On the other hand, the carbon-carbon bond dissociation enthalpy shows little variation with different substitution patterns on either phenyl ring.

  8. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    PubMed

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang

    2017-02-13

    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%.

  9. Infrared On-Orbit Inspection of Shuttle Orbiter Reinforced Carbon-Carbon Using Solar Heating

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, W. P.; Cramer, K. Elliott

    2005-01-01

    Thermographic nondestructive inspection techniques have been shown to provide quantitative, large area damage detection capabilities for the ground inspection of the reinforced carbon-carbon (RCC) used for the wing leading edge of the Shuttle orbiter. The method is non-contacting and able to inspect large areas in a relatively short inspection time. Thermal nondestructive evaluation (NDE) inspections have been shown to be applicable for several applications to the Shuttle in preparation for return to flight, including for inspection of RCC panels during impact testing, and for between-flight orbiter inspections. The focus of this work is to expand the capabilities of the thermal NDE methodology to enable inspection by an astronaut during orbital conditions. The significant limitations of available resources, such as weight and power, and the impact of these limitations on the inspection technique are discussed, as well as the resultant impact on data analysis and processing algorithms. Of particular interest is the impact to the inspection technique resulting from the use of solar energy as a heat source, the effect on the measurements due to working in the vacuum of space, and the effect of changes in boundary conditions, such as radiation losses seen by the material, on the response of the RCC. The resultant effects on detectability limits are discussed. Keywords: Nondestructive Evaluation, Shuttle, on-orbit inspection, thermography, infrared

  10. Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Steven Snyder, John; Brophy, John R.

    2004-01-01

    Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.

  11. Performance of CVD and CVR coated carbon-carbon in high temperature hydrogen

    NASA Astrophysics Data System (ADS)

    Adams, J. W.; Barletta, R. E.; Svandrlik, J.; Vanier, P. E.

    As a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings which will be time and temperature stable at extremely high temperatures in flowing hydrogen. These coatings must protect the underlying carbon structure from attack by the hydrogen coolant. Degradation which causes small changes in the reactor component, e.g. hole diameter in the hot frit, can have a profound effect on operation. The ability of a component to withstand repeated temperature cycles is also a coating development issue. Coatings which crack or spall under these conditions would be unacceptable. While refractory carbides appear to be the coating material of choice for carbon substrates being used in PBR components, the method of applying these coatings can have a large effect on their performance. Two deposition processes for these refractory carbides, chemical vapor deposition (CVD) and chemical vapor reaction (CVR), have been evaluated. Screening tests for these coatings consisted of testing of coated 2-D and 3-D weave carbon-carbon in flowing hot hydrogen at one atmosphere. Carbon loss from these samples was measured as a function of time. Exposure temperatures up to 3,000 K were used, and samples were exposed in a cyclical fashion cooling to room temperature between exposures. The results of these measurements are presented along with an evaluation of the relative merits of CVR and CVD coatings for this application.

  12. Polybenzimidazole (PBI) as a matrix resin precursor for carbon/carbon composites

    SciTech Connect

    Sandor, R.B. )

    1991-04-01

    Polybenzimidazole (PBI) is used to make continuous fiber prepregs with excellent room temperature drape and tack. Composite panels, tubes and complex shapes are fabricated using either autoclave processing, Thermoclave {reg sign} technique, compression molding or filament winding. The as-cured composites have excellent mechanical properties and the unique ability (among organic polymeric composites) to retain properties at temperatures approaching 1,800F. The PBI/carbon composites can then be used as precursors for carbon/carbon composites. PBI has a high carbonization yield ({approximately} 78%), and emits virtually no offgases to 550C which permits rapid processing. In addition, PBI laminates exhibit 40% less volumetric shrinkage than phenolic laminates. This paper presents a comprehensive study which compares the pyrolysis behavior of laminates made with phenolic and PBI resins on T-300 8HS. With this combination of high performance properties Celazole parts are currently being used for the chemical process and oil recovery industries where the key demands are thermal stability and chemical resistance. In general industrial applications, Celazole is well suited for bearings, sleeves, rollers and other parts where hardness, low friction high compressive strength and thermal and dimensional stability are required.

  13. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.

  14. A new technology for production of high thickness carbon/carbon composites for launchers application

    NASA Astrophysics Data System (ADS)

    Albano, Marta; Delfini, Andrea; Pastore, Roberto; Micheli, Davide; Marchetti, Mario

    2016-11-01

    Carbon-Carbon (C/C) composites are known for their extraordinary stability and excellent mechanical properties, almost unchanged at high temperatures. Among the several advanced applications, C/C based materials can be used in engines as nozzle throat section for launchers. In particular, the main feature for such employment is the material high resistance in extreme thermal environment. On the other hand, large-size items are required for this kind of purposes, thus introducing criticalities in terms of material uniformity and final overall properties. Up to now, there no standard for the production of high thickness C/C structures. In this paper a novel manufacturing method is analyzed, following each phase of the process, from the carbon fiber preform design and preparation to the carbon densification by chemical vapor infiltration method. Five preforms of large dimensions with different characteristics have been manufactured and infiltrated. The realized prototypes have been then analyzed by means of mechanical, physical and morphological tests. Aim of the results of this preliminary work is to establish a set of guidelines for a well-defined high thickness C/C production method.

  15. Biological properties of carbon/carbon implant composites with unique manufacturing processes.

    PubMed

    Wang, Guo-Hui; Yu, Shu; Zhu, Shai-Hong; Gao, Chang-Qing; Liu, Yong; Miu, Yun-Liang; Huang, Bo-Yun

    2009-12-01

    The goal was to manufacture carbon/carbon (C/C) composites through a unique procedure with improved biocompatibility and reduced debris release. C/C composites were prepared by chemical vapor deposition, and their biological properties were analyzed. With regard to mechanical properties, compressive strength/modulus was 219.1 MPa/9.72 GPa, flexural strength/modulus was 121.63 MPa/21.9 GPa, and interlaminar sheer was 15.13 GPa. Biocompatibility testing revealed: (1) the extract liquid from the C/C composites had no effect on cell proliferation; (2) the extract had no impact on micronucleus frequency as compared with the control groups (P > 0.05); (3) in vivo, there was mild tissue inflammation after implantation within the first 2 weeks, but there was no significant difference compared with the control group (P > 0.05); (4) the implants were well integrated into the host tissue, and debris was limited. The tested samples have excellent biocompatibilities and reduced release of debris. The demonstrated changes in manufacturing procedures are promising.

  16. An imaging technique using rotational polarization microscopy for the microstructure analysis of carbon/carbon composites.

    PubMed

    Miaoling, Li; Lehua, Qi; Hejun, Li

    2012-01-01

    A novel image analysis technique was proposed for microstructure investigation of carbon/carbon (C/C) composites. The rotational polarization microscopy was developed to meet the special imaging requirements. The samples of C/C composites were observed in reflection polarized light microscope, where the analyzer was rotated instead of the stage, and the polarizer was taken out. The bireflectance of like-graphite negative uniaxial crystal was analyzed. It was the theoretic foundation of image collection and data processing. The analyzer was rotated through 36 × 10° intervals without any movement of the specimen. The polished cross-section of C/C composites took micrographs at each analyzer orientation. All image data collected from the same field of view were processed by image registration and image fusion. The synthesized images were obtained by calculating the maximum and minimum gray values and their differences at each point of the million pixels at 18 orientations of the analyzer. They are unique and quite reliable to be applied to analyze the microstructure of C/C composites. Subsequently, image segmentation was performed, and the feature parameters of each component were calculated. Good agreement was found between the results from image analysis and experimental data.

  17. Effect of heat treatment on microstructure and thermal conductivity of carbon/carbon-copper composites

    NASA Astrophysics Data System (ADS)

    Yang, Peng'ao; Yin, Jian; Zhang, Hongbo; Xiong, Xiang

    2016-03-01

    Using 2.5-dimensional carbon fiber fabrics as the reinforcement, porous carbon/carbon(C/C) substrates were firstly fabricated by impregnation/carbonization (I/C) technique with furan resin and then treated at 2000, 2300 and 3000 °C, respectively. Finally, carbon fiber reinforced carbon and copper(C/C-Cu) composites were prepared by infiltrating melt copper alloy into C/C substrates under pressure. The effects of treating temperatures on microstructures and thermal conductivities of the composites were investigated. The results show that heat treatment plays an important role in the microstructure and thermal conductivity of C/C-Cu composites. It is conducive not only to rearrange the carbon crystallite of resin-based carbon in oriented layer structure, but also to improve the content and connectivity of copper alloy. The thermal conductivity increases with the increase in heat treatment temperature in both parallel and perpendicular direction; the thermal conductivity in parallel direction is evidently superior to that in perpendicular direction.

  18. Development of CNT based carbon-carbon composites for thermal management system (TMS)

    NASA Astrophysics Data System (ADS)

    Paul, Jhon; Krishnakumar, G.; Rajarajan, A.; Rakesh, S.

    2013-06-01

    Carbon-Fibre-Carbon matrix composites having high thermal conductivity per unit density is a competitive material for thermal management for aerospace applications. Due to anisotropic nature of Carbon-Carbon(C-C) composites, the thermal conductivity in the thickness direction which is dominated by the matrix carbon is comparatively low. In the present study, work is carried to increase the thermal conductivity in the thickness direction of 2D-CC composites. Multi-Walled Carbon Nanotubes (MWNT) were functionalised and dispersed in Phenolic Resin. C-C composites were densified with MWNT dispersed Phenolic Resin through impregnation, curing & carbonisation cycle. CNT-CC composites were densified through Chemical Vapor Infiltration process and further graphitised. The effects of MWNT in amorphous carbon for thermal conductivity were investigated. The result shows that Multi Walled Carbon Nanotubes (MWNT) can induce the ordered arrangement of micro-crystallites in amorphous carbon leading to increase in thermal conductivity of the bulk composites. There exists an optimum MWNT concentration in resin to enhance the thermal conductivity of C-C composites in the perpendicular direction. However, excess MWNT in resin is disadvantageous to enhance the thermal conductivity due to problems like agglomeration, resulting in reduced thermal conductivity. This can be attributed to the interfacial contact resistance due to improper heat transmission channels arising due to agglomeration. Investigation has been carried out to study the effect of agglomeration for the thermal conductivity of the bulk composites.

  19. Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.

    1993-01-01

    This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.

  20. Synthesis and Integration of Nanostructured Carbon: Carbon Nanotube-Polymer Nanocomposites and Graphene

    NASA Astrophysics Data System (ADS)

    Gulotty, Richard Stephen

    Nanostructured carbon, in the form of tubes or sheets, exhibits exceptional thermal and electrical properties. Graphene, a single atomic sheet of hexagonal sp2 bonded carbon, posesses a thermal conductivity higher than diamond, with an extremely high electron mobility. Carbon nanotubes (CNT), which are tubes composed of one or more graphene sheets, also posess high thermal conductivity and electron mobility. One of the major problems facing the application of nanomaterials is integration into already existing material systems. A second challenge is controlled synthesis of nanomaterials. In this dissertation research novel methods were investigated for coupling carbon nanotubes to polymer matrices, as well as new approaches for controlling the synthesis of graphene and reduced graphene oxide like carbon (R-GOC) on copper (Cu) foils via chemical vapor deposition. It was determined that carboxylic functionalization of carbon nanotubes was effective in improving the coupling of CNTs to polymer matrices, affecting the thermal transport of the resulting CNT-polymer nanocomposites. From the CVD studies it was established that the cooling phase gases flowed after deposition influence the growth mechanics of graphene on Cu foil. Further CVD studies showed that methane may be decomposed directly onto quartz to form reduced graphene oxide like carbon thin films. The obtained thermal characterization results are important for development of CNTs as fillers for composite pastes with high thermal conductivity, and the results of the CVD studies are important for developing further understanding of growth mechanics of bilayer graphene and other nanostructured carbon. In addition to the fundamental study of CVD synthesis of graphene and R-GOC, this dissertation work includes engineering of graphene and R-GOC to various applications, including the development of the thinnest flexible transistor with active materials made from all-2D materials, as well as large-scale electron