Science.gov

Sample records for carbonaceous aerosol components

  1. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  2. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China.

    PubMed

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Zhang, Yan-Lin

    2016-12-01

    To better characterize the chemical compositions and sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions as well as stable carbon isotopic composition (δ(13)C) were measured in this study. Intensively open biomass burning episodes are identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass-burning episode, concentrations of PM2.5, OC, EC, and WSOC are increased by a factor of 4-12 compared to those during the non-biomass-burning period. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, demonstrating an important contribution from biomass-burning emissions. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, suggesting that biomass-burning aerosols in Sanjiang Plain are mostly fresh and less aged. In addition, the WSOC-to-OC ratio is lower than that reported in biomass-burning aerosols in tropical regions, further supporting that biomass-burning aerosols in Sanjiang Plain are mostly primary and secondary organic aerosols may be not significant. A lower average δ(13)C value (-26.2‰) is observed during the biomass-burning period, indicating a dominant contribution from combustion of C3 plants in the studied region.

  3. Multi-wavelength characterization of carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Massabò, Dario; Caponi, Lorenzo; Chiara Bove, Maria; Piazzalunga, Andrea; Valli, Gianluigi; Vecchi, Roberta; Prati, Paolo

    2014-05-01

    Carbonaceous aerosol is a major component of the urban PM. It mainly consists of organic carbon (OC) and elemental carbon (EC) although a minor fraction of carbonate carbon could be also present. Elemental carbon is mainly found in the finer PM fractions (PM2.5 and PM1) and it is strongly light absorbing. When determined by optical methods, it is usually called black carbon (BC). The two quantities, EC and BC, even if both related to the refractory components of carbonaceous aerosols, do not exactly define the same PM component (Bond and Bergstrom, 2006; and references therein). Moreover, another fraction of light-absorbing carbon exists which is not black and it is generally called brown carbon (Andreae and Gelencsér, 2006). We introduce a simple, fully automatic, multi-wavelength and non-destructive optical system, actually a Multi-Wavelength Absorbance Analyzer, MWAA, to measure off-line the light absorption in Particulate Matter (PM) collected on filters and hence to derive the black and brown carbon content in the PM This gives the opportunity to measure in the same sample the concentration of total PM by gravimetric analysis, black and brown carbon, metals by, for instance, X Ray Fluorescence, and finally ions by Ion Chromatography. Up to 16 samples can be analyzed in sequence and in an automatic and controlled way within a few hours. The filter absorbance measured by MWAA was successfully validated both against a MAAP, Multi Angle Absorption Photometer (Petzold and Schönlinner, 2004), and the polar photometer of the University of Milan. The measurement of sample absorbance at three wavelengths gives the possibility to apportion different sources of carbonaceous PM, for instance fossil fuels and wood combustion. This can be done following the so called "aethalometer method" (Sandradewi et al., 2008;) but with some significant upgrades that will be discussed together the results of field campaigns in rural and urban sites. Andreae, M.O, and Gelencsér, A

  4. Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Son, Se-Chang

    2017-03-01

    To examine the relationship between the chemical composition of light-absorbing organic aerosols and the absorption properties of the aerosols, daily PM2.5 samples were collected during winter at an urban site of Gwangju, Korea, and analyzed for organic carbon and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water-soluble inorganic substances. The real-time black carbon (BC) concentration in PM2.5 was also measured using a dual-spot aethalometer. During the study period, average WSOC/OC and HULIS-C/WSOC ratios were 0.53 and 0.52, respectively. K+/EC and K+/OC ratios indicate that biomass burning (BB) emissions are a possible source of the observed carbonaceous aerosols and K+. Moderate-to-strong correlations of HULIS with NO3-, oxalate, SO42 -, K+, CO, and ΔBC (= BC@370 nm - BC@880 nm) suggest that in addition to the primary BB emissions, secondary processing is another important contributor to the formation of HULIS in winter at the site. The average absorption Ångstrӧm exponent (α) of fine aerosols for the wavelengths of 370-950 nm and 590-950 nm was 1.29 and 1.18, respectively, but the aerosol α value was higher in the near UV wavelength range (370-520 nm), with an average of 1.51 (0.76-2.36), indicating that aerosol absorption characteristics during winter were influenced by BB aerosol sources, as well as by traffic emissions. Over the study period, the α370-520 nm value during the highest EC, highest OC, and Asian dust events was 1.42 ± 0.10 (1.26-1.59), 1.44 ± 0.15 (1.16-1.68), and 1.90 ± 0.28 (1.54-2.36), respectively. Higher α370-520 nm values during the Asian dust event were attributed to the influence of dust particles. In addition, the light absorption coefficients of aerosols at 370 nm were strongly correlated with OC (R2 = 0.76), water-insoluble OC (R2 = 0.70), and water-soluble HULIS (R2 = 0.64). These tight correlations suggest that water-insoluble fractions of OC, as well as the

  5. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  6. Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study

    SciTech Connect

    Andreae, M.O.; Crutzen, P.J.; Cofer, W.R. III; Hollande, J.M.

    1995-06-01

    In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

  7. Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Preunkert, S.; Schock, M.; Cerqueira, M.; Kasper-Giebl, A.; Afonso, J.; Pio, C.; GelencséR, A.; Dombrowski-Etchevers, I.

    2007-12-01

    An extended array of carbonaceous species including elemental carbon (EC), water insoluble organic carbon (WinOC) as well as dissolved organic carbon (DOC), humic-like substances (HULIS), and single organic compounds like carboxylic acids, levoglucosan, and cellulose was investigated for the first time in Alpine snow deposits. These investigations were done on selected discrete ice cores sections extracted from Mount Rosa and Mount Blanc glaciers covering the 20th century and extending back to previous centuries. Here we focus on major changes in summer ice layers. Among carbonaceous components, EC reveals an outstanding increase with a sharp summer increase after World War II. This result is discussed against available past EC emission inventories in Europe which are thought to be mainly driven by emissions from road transport and residential sector. The long-term trend of organic carbon (OC) aerosol preserved in ice, WinOC as well as water soluble organic carbon (WSOC), was successfully reconstructed using the suitable array of organic compounds we investigated in this study. It is shown that the level of OC preserved in ice has increased by a factor of 2 after 1950 likely as a result of the enhancement of the oxidative capacity of the atmosphere over the last decades producing more secondary organic atmospheric aerosol from biogenic gaseous precursors.

  8. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  9. Regional variation of carbonaceous aerosols from space and simulations

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal

  10. On the morphology and optics of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan Kumar

    Understanding of the complex morphology and optical properties of combustion-generated carbonaceous aerosols has been a challenging research topic. Calculation of aerosol radiative forcing and satellite aerosol retrievals depends critically on the knowledge of aerosol optical properties, which are a function of particle morphology, size, and refractive index. In addition, aerosol morphology is an important control parameter in industrial aerosol generation and use. Ensembles of aerosols often include a variety of complex morphologies, but these morphologies currently cannot be separated and very little is known about their influence on other aerosol parameters. In this dissertation, a novel charge-based technique for classifying fractal-like aerosol agglomerates based on their morphology is demonstrated. Using this technique, the formation mechanism and optical properties of fractal-like carbonaceous aerosols from a high-temperature combustion system (premixed flame) are investigated. Contrary to previous observations of a universal mass fractal dimension of ≈1.8 for fractal-like aerosol aggregates formed in the dilute-limit of a premixed flame via 3-dimensional diffusion-limited cluster aggregation (DLCA) processes, minority populations (≈3%) of aggregates yielding low mass fractal dimensions between 1.2 and 1.51 were observed. Two hypotheses are presented to explain this observation. To improve our understanding of the validity of optical theories for fractal-like chain aggregates, real-time optical measurements of fractal-like aggregates were compared with the prediction by three optical theories, namely Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). The RDG approximation agreed within 10% with the experimental results and the exact electromagnetic calculations of the IEFS theory, while volume-equivalent Mie theory overpredicted the experimental scattering coefficient by a

  11. Impact of aging mechanism on model simulated carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wu, S.; Dubey, M. K.; French, N. H. F.

    2013-07-01

    Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further

  12. The contribution of carbonaceous aerosols to climate change

    SciTech Connect

    Penner, J.E. |; Chuang, C.C.; Liousse, C.

    1996-04-01

    Contribution of aerosols to climate change results from two effects: clear-sky and cloudy-sky forcing. The clear-sky climate forcing by carbonaceous aerosols from biomass burning and fossil fuel burning depends on the relative contribution of scattering and absorption by the aerosols which in turn depends on the fraction of aerosol mass associated with black carbon and its size distribution. This paper reviews estimates for the emission of carbonaceous aerosols, placing these estimates in the context of estimates for the emissions of anthropogenic and natural sulfate aerosols and natural sources of organic particulate matter. The cloudy-sky forcing from carbonaceous aerosols is difficult to estimate because, among other factors, it depends on the amount of absorption by the aerosols in the cloud. It is also highly sensitive to the assumed pre-existing, natural aerosol abundance. An upper limit for this cloudy-sky forcing is -4.4 W/m{sup 2}, but may range as low as -2.4 W/m{sup 2}, depending on background aerosol concentrations. These estimates do not yet account for absorption of radiation by black carbon associated with cloud or the presence of pre-existing dust particles.

  13. Effect of Carbonaceous Aerosols on Clouds and Precipitation in Asia

    NASA Astrophysics Data System (ADS)

    v, V.; Wang, H.; Ganguly, D.; Minghuai, W.; Rasch, P. J.

    2010-12-01

    Carbonaceous aerosols enhance scattering and absorption of solar radiation (i.e., direct radiative effect) in the atmosphere and also affect clouds and precipitation through indirect effects, thus heating the atmosphere but reducing the amount of solar radiation that reaches the earth’s surface. These effects through dynamic feedbacks can also have remote impact over regions far away from their emission sources and hence demand special scientific attention. Previous modeling studies have revealed that large amount of anthropogenic carbonaceous aerosols over the Asian region can alter monsoon circulation and precipitation patterns and thereby influence its strength by varying degrees spatially. Most of the studies focused on the direct radiative effect of aerosols and their subsequent effect on monsoon precipitation. We evaluate the changes in clouds and precipitation in Asia due to carbonaceous aerosols using the community atmospheric model (CAM5) which accounts for not only aerosol direct effects, but also aerosol indirect effects on warm, mixed-phase and cirrus clouds. This study focuses on the precipitation efficiency with emphasis on aerosol indirect effects. In addition to carbonaceous aerosol emissions over Asia, the effect of emissions from other regions like North America, North Africa and Europe are also investigated for their influence on precipitation in the Asian region. In addition to the focus on the aerosol effect on monsoon, we also study the seasonality in aerosol induced changes to precipitation efficiency. We present the quantitative estimates of changes in precipitation efficiency related to changes in aerosol loading and compare them with those estimated from satellite observations, and further explore the potential role of aerosol indirect effects to changes in precipitation efficiency.

  14. Impact of aging mechanism on model simulated carbonaceous aerosols

    PubMed Central

    Huang, Y.; Wu, S.; Dubey, M.K.; French, N. H. F.

    2013-01-01

    Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further

  15. Regional Impacts of Carbonaceous Aerosols, 1850-2100

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Bausch, A.; Nazarenko, L. S.; Tsigaridis, K.; McConnell, J. R.

    2012-12-01

    Measurements of carbonaceous aerosols in ice cores allow us to study historical atmospheric compositions. These datasets in combination with climate models are of great value when examining the role of anthropogenic emissions of carbonaceous aerosols and their role in past and future climates. In this presentation we analyze four transient climate simulations performed with the GISS-modelE climate model. Simulations differ in ocean couplings and aerosol schemes. One aerosol scheme, MATRIX, resolves aerosol microphysics and tracks mass-, number concentrations and aerosol mixing state information. The second scheme is a mass based scheme, but includes a secondary organic aerosol model. The two oceans are ocean A, which uses prescribed sea surface temperatures, and ocean C, a fully coupled dynamical ocean model. Regional analysis for past and future (1850-2100) simulations will focus on Greenland, the Himalayas and the Antarctic. Each region has its specific characteristic; Greenland's historic atmospheric chemistry is strongly influenced by pre-industrial land clearing, whereas its future seems to be dominated by cloud feedbacks; the Antarctic is a good indicator for remote background conditions here differences in aging and removal between the different schemes can be detected; the Himalayas show the most complicated feedbacks, due to its complex terrain, several distinctive different air-mass types influence the region as well as dynamical systems. The two different ocean schemes show a shift in the ITCZ, impacting the distribution of carbonaceous aerosols. In the end, future climate projections of the focus regions along CMIP5s four Representative Concentration Pathways (RCPs) will be presented.

  16. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  17. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  18. Measurements of Carbonaceous Aerosols using Semi-Continuous Thermal-Optical Method

    SciTech Connect

    Yu, Xiao-Ying

    2011-08-01

    Carbonaceous aerosols are major components in air pollution as a result of energy consumption, thus measurement of them is important to waste management. Increasing interest has been drawn to the identification, measurement, analysis, and modeling of carbon aerosols in the past decade. This book chapter will provide a review of current state-of-art techniques to determine carbonaceous aerosols in relation to air pollution and waste management. The chapter will be composed of four parts. The introduction will discuss why carbon aerosols including elemental carbon (EC), organic carbon (OC), and total carbon (TC=EC+OC) are important to energy consumption, air pollution, waste management, and global climate change. Key definitions will be introduced. Relevant terminologies will be provided. The second part will be a review of the current state-of the art measurement techniques that are used to determine carbon aerosols. Both on-line and off-line methods will be described. Comparisons of different techniques that provide the same physical quantity will be provided based on recent literature findings. Differences among the physical parameters determined by various techniques will be discussed. The third part will focus on data analysis and products obtained from carbon aerosol measurements. In addition to EC, OC, and TC, primary organic carbon (POC) and secondary organic carbon (SOC) are of interest to researchers to understand the source and sink of carbonaceous aerosols. Techniques used to determine POC and SOC, such as the EC tracer method and positive matrix factorization, will be described and their differences discussed. Examples will be provided showing field data comparison between the Sunset organic carbon and elemental carbon field analyzer and the Aerodyne aerosol mass spectrometer, both of which are widely used for on-line aerosol measurements. The last part will report new trends and summarize future research needs in carbon aerosol measurement. Emerging

  19. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels?

    SciTech Connect

    Novakov, T.; Andreae, M.O.; Gabriel, R.; Kirchstetter, T.; Mayol-Bracero, O.L.; Ramanathan, V.

    2000-08-26

    We present an analysis of the carbon, potassium and sulfate content of the extensive aerosol haze layer observed over the tropical Indian Ocean during the Indian Ocean Experiment (INDOEX). The black carbon (BC) content of the haze is as high as 17% of the total fine particle mass (the sum of carbonaceous and soluble ionic aerosol components) which results in significant solar absorption. The ratio of black carbon to organic carbon (OC) (over the Arabian Sea and equatorial Indian Ocean) was a factor of 5 to 10 times larger than expected for biomass burning. This ratio was closer to values measured downwind of industrialized regions in Japan and Western Europe. These results indicate that fossil fuel combustion is the major source of carbonaceous aerosols, including black carbon during the events considered. If the data set analyzed here is representative of the entire INDOEX study then fossil fuel emissions from South Asia must have similarly contributed to aerosols over the whole study region. The INDOEX ratios are substantially different from those reported f or some source regions of South Asia, thus raising the possibility that changes in composition of carbonaceous aerosol may occur during transport.

  20. Uncertainties in Carbonaceous Aerosol Emissions, Scavenging Parameterizations, and Optical Properties

    NASA Astrophysics Data System (ADS)

    Koch, D.; Bond, T.; Kinne, S.; Klimont, Z.; Sun, H.; van Aardenne, J.; van der Werf, G.

    2006-12-01

    Estimates of human influence on climate are especially hindered by poor constraint on the amount of anthropogenic carbonaceous aerosol absorption in the atmosphere. Coordination of observation and model analyses attempt to constrain particle absorption amount, however these are limited by uncertainties in aerosol emission estimates, model scavenging parameterization, aerosol size assumption, contributions from organic aerosol absorption, air concentration observational techniques and by sparsity of data coverage. We perform multiple simulations using GISS modelE and six present-day emission estimates for black carbon (BC) and organic carbon (OC) (Bond et al 2004 middle and upper estimates, IIASA, EDGAR, GFED v1 and v2); for one of these emissions we apply 4 different BC/OC scavenging parameterizations. The resulting concentrations will be compared with a new compilation of observed BC/OC concentrations. We then use these model concentrations, together with effective radius assumptions and estimates of OC absorption to calculate a range of carbonaceous aerosol absorption. We constrain the wavelength-dependent model τ- absorption with AERONET sun-photometer observations. We will discuss regions, seasons and emission sectors with greatest uncertainty, including those where observational constraint is lacking. We calculate the range of model radiative forcing from our simulations and discuss the degree to which it is constrained by observations.

  1. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  2. Source apportionment of carbonaceous aerosol in southern Sweden

    NASA Astrophysics Data System (ADS)

    Genberg, J.; Hyder, M.; Stenström, K.; Bergström, R.; Simpson, D.; Fors, E.; Jönsson, J. Å.; Swietlicki, E.

    2011-05-01

    A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (82 %), which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (38 %) and fossil fuel combustion (33 %) were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 8.2 compared to the measurements.

  3. Source apportionment of carbonaceous aerosol in southern Sweden

    NASA Astrophysics Data System (ADS)

    Genberg, J.; Hyder, M.; Stenström, K.; Bergström, R.; Simpson, D.; Fors, E. O.; Jönsson, J. Å.; Swietlicki, E.

    2011-11-01

    A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (80%), which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (32%) and fossil fuel combustion (28%) were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP MSC-W chemical transport model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 2.2 compared to the measurements.

  4. Divergent Evolution of Carbonaceous Aerosols during Dispersal of East Asian Haze.

    PubMed

    Fang, Wenzheng; Andersson, August; Zheng, Mei; Lee, Meehye; Holmstrand, Henry; Kim, Sang-Woo; Du, Ke; Gustafsson, Örjan

    2017-09-05

    Wintertime East Asia is plagued by severe haze episodes, characterized by large contributions of carbonaceous aerosols. However, the sources and atmospheric transformations of these major components are poorly constrained, hindering development of efficient mitigation strategies and detailed modelling of effects. Here we present dual carbon isotope (δ(13)C and Δ(14)C) signatures for black carbon (BC), organic carbon (OC) and water-soluble organic carbon (WSOC) aerosols collected in urban (Beijing and BC for Shanghai) and regional receptors (e.g., Korea Climate Observatory at Gosan) during January 2014. Fossil sources (>50%) dominate BC at all sites with most stemming from coal combustion, except for Shanghai, where liquid fossil source is largest. During source-to-receptor transport, the δ(13)C fingerprint becomes enriched for WSOC but depleted for water-insoluble OC (WIOC). This reveals that the atmospheric processing of these two major pools are fundamentally different. The photochemical aging (e.g., photodissociation, photooxidation) during formation and transport can release CO2/CO or short-chain VOCs with lighter carbon, whereas the remaining WSOC becomes increasingly enriched in δ(13)C. On the other hand, several processes, e.g., secondary formation, rearrangement reaction in the particle phase, and photooxidation can influence WIOC. Taken together, this study highlights high fossil contributions for all carbonaceous aerosol sub-compartments in East Asia, and suggests different transformation pathways for different classes of carbonaceous aerosols.

  5. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2012-07-01

    An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China) was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable C isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  6. Encapsulation effects on carbonaceous aerosol light absorption

    SciTech Connect

    Sedlacek, A.J.; Onasch, T.; Davidovits, P.; Cross, E.; Mazzoleni, C.

    2010-03-15

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds (plumes containing soot byproducts from automobiles, biomass burning, wood-burning kitchen stoves, and coal-fired power plants) will increase black carbon (BC) radiative forcing from the Intergovernmental Panel on Climate Change best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve insights into the interdependence of BC optical properties on particle mixing state and aggregate morphology, measurements of both the optical and physical properties of flame-generated soot under nascent, coated, and denuded conditions were conducted. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry (Sedlacek and Lee 2007). In addition to examining nascent BC—to provide a baseline measurement—encapsulation with varying thicknesses of either dioctyl sebacate (DOS) or sulfuric acid was conducted to glean insights into the interplay between particle mixing state and optical properties. Additionally, some experiments were carried out where BC was coated and then denuded. In the case of DOS-coated soot, a

  7. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  8. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  9. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  10. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  11. Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere

    NASA Astrophysics Data System (ADS)

    Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.

    2010-05-01

    Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µmaerosol sampling campaign was also performed inside an open and a closed tunnel on four size fractions (PM0.49, PM0.49-0.95, PM0.95-2.5 and PM2.5-10). Road dust was also collected in each sampling site. Samples were analysed for elemental carbon (EC) and organic carbon (OC) concentrations by a thermal-optical method. The urban site presented the highest aerosol PM concentrations for the two size ranges, with PM10 average values of about 48 µg.m-3 and 27 µg.m-3 respectively for the roadside and urban background sites in the summer period, and about 44 µg.m-3 and 27 µg.m-3 in the winter season. In general, the concentrations of TC were higher

  12. Source contributions to carbonaceous aerosol concentrations in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Jaein I.; Park, Rokjin J.; Woo, Jung-Hun; Han, Young-Ji; Yi, Seung-Muk

    2011-02-01

    We estimated the source contributions to carbonaceous aerosol concentration in Korea on the basis of Intercontinental Chemical Transport Experiment Phase B (INTEX-B) anthropogenic emissions and satellite-derived biomass burning emissions by using a nested version of GEOS-Chem with a spatial resolution of 0.5° × 0.667° for the period March 2006-February 2007. First, we evaluated the model by comparing the simulated and observed aerosol concentrations at East Asia Network (EANET) sites and at a site in Korea. The results indicate that the model reproduces the variability and magnitudes of the observed SO 42-, NO 3-, and NH 4+ concentrations in Korea and those of the observed PM 10 concentrations in East Asia. However, the organic carbon (OC) and black carbon (BC) aerosol concentrations estimated by the model are lower than those observed in Korea by a factor of 2, especially in winter. This underestimation is likely due to extremely low domestic anthropogenic emissions and lack in seasonal variation. Source adjustments using a simple fitting and the Emission Database for Global Atmospheric Research (EDGAR) monthly allocation factors for seasonal variation yield significantly improved model results ( R2 increased from 0.58 to 0.84), which can then be used to estimate the source contributions to the OC and BC concentrations in Korea. We found that domestic anthropogenic emissions are the most important factors, contributing 74% (9% from fossil fuels and 65% from biofuels) and 78% (42% from fossil fuels and 36% from biofuels) to the OC and BC concentrations, respectively, on an annual mean basis in Korea. The trans-boundary transport of Chinese sources is another important factor, contributing 13% and 20% to the OC and BC concentrations, respectively. The contributions of wildfires and biogenic sources to the annual mean carbonaceous aerosol concentration in Korea are relatively small (4% and 6%, respectively).

  13. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  14. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  15. Observation of carbonaceous aerosols during 2006-2009 in Nyainqêntanglha Mountains and the implications for glaciers.

    PubMed

    Zhao, Shuyu; Ming, Jing; Sun, Junying; Xiao, Cunde

    2013-08-01

    Atmospheric carbonaceous aerosols were sampled discontinuously from July 2006 to December 2009 at Nam Co Comprehensive Observation and Research Station (NCOS) in the central Tibetan Plateau (TP). The mean daily concentration of carbonaceous aerosols increased from 268 to 330 ng m(-3), and pollution episodes could significantly increase the mean level of carbonaceous aerosols in the total mass concentration. Organic carbon was the main component of carbonaceous aerosols at NCOS, and black carbon (BC) accounted for 5.8 %. Seven-day air masses backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory model and the aerosol optical depth distribution in the TP and South Asia both suggested that atmospheric pollutants emitted from Northern India and South Asia could penetrate into central TP by southwest winds. Due to the seasonal variations of emission sources and regional atmospheric conditions, calculated BC deposition flux in the nonmonsoon season was higher than that in the monsoon season. Increased BC concentration in snowpack in winter from 2007 to 2009 indicated that the atmospheric environment in central TP became more polluted and the influences from human activities have strengthened. Pollution episodes could significantly increase BC concentrations in the snowpack on a seasonal scale, which would furthermore affect the surface albedo.

  16. Source apportionment of carbonaceous aerosols over South and East Asia using dual carbon isotopes

    NASA Astrophysics Data System (ADS)

    Gustafsson, O.; Kirillova, E. N.; Andersson, A.-; Kruså, M.; Sheesley, R. J.; Tiwari, S.-; Lee, M.; Chen, B.; Du, K.

    2012-12-01

    Emissions of black carbon (BC) and other components of carbonaceous aerosols affect both climate and health in South and East Asia, yet substantial uncertainties exist regarding their sources. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain both to direct mitigation and as their different properties make their effects on climate forcing and respiratory health different. This study approached the sourcing challenge by applying microscale radiocarbon measurements to aerosol particles collected in both source regions and at regional receptor observatories of both S Asia (New Delhi and the Maldives Climate Observatory) and of E Asia (Beijing, Shanghai, South China Coastal Observatory and the Korea Climate Observatory - Gosan, KCO-G, Jeju Island). The radiocarbon approach is ideally suited to this task as fossil sources are void of 14C whereas biomass combustion products hold a contemporary 14C signal. For S Asia, the 14C-based observations suggest that biomass combustion contributes half to two-thirds of the BC loading. In contrast, for E Asia, fossil fuel combustion account for four-fifths of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all fifteen BC emission inventory models. There are also poor constraints on the sources of water-soluble organic carbon (WSOC), a large hydrophilic component of carbonaceous aerosols that enhances the propensity of aerosols to form clouds. In a 15-mo continuous campaign in S Asia, radiocarbon-based source apportionment of WSOC shows the dominance of biogenic/biomass combustion sources but also a substantial anthropogenic fossil-fuel contribution (about 20%). WSOC in E Asia reaching KCO-G were 50% from fossil sources. Aerosols reaching the Maldives after long-range over-ocean transport were enriched by 3-4‰ in δ13C-WSOC. This is

  17. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  18. Differences in isotopic composition of carbonaceous components in enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Wright, I. P.; Carr, R. H.; Poths, J.; Pillinger, C. T.

    1988-02-01

    Carbon stable isotopic composition of the major carbonaceous component in enstatite chondrites varies with petrologic type. Investigation of a suite of HF/HCl-resistant residues has shown that this variation is due to an inherent difference in delta(C-13) of the carbon, and is not a result of the presence of small amounts of isotopically anomalous carbon-bearing components. These latter do occur in type EH3 and EH4 chondrites, in concentrations similar to those found in C1 and C2 carbonaceous chondrites. Combustion of the major carbon component (apparently elemental carbon, not necessarily graphite) occurs at relatively higher temperatures in enstatite chondrites of increasing petrologic type. This is considered to reflect an increase in crystallinity or ordering of the carbonaceous component, and is a measure of the degree of thermal processing to which the meteorites have been subjected during accretion and/or metamorphism.

  19. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  20. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  1. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A. ); Cass, G.R. . Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  2. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A.; Cass, G.R.

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  3. Impact of carbonaceous aerosol emissions on regional climate change

    NASA Astrophysics Data System (ADS)

    Roeckner, E.; Stier, P.; Feichter, J.; Kloster, S.; Esch, M.; Fischer-Bruns, I.

    2006-11-01

    The past and future evolution of atmospheric composition and climate has been simulated with a version of the Max Planck Institute Earth System Model (MPI-ESM). The system consists of the atmosphere, including a detailed representation of tropospheric aerosols, the land surface, and the ocean, including a model of the marine biogeochemistry which interacts with the atmosphere via the dust and sulfur cycles. In addition to the prescribed concentrations of carbon dioxide, ozone and other greenhouse gases, the model is driven by natural forcings (solar irradiance and volcanic aerosol), and by emissions of mineral dust, sea salt, sulfur, black carbon (BC) and particulate organic matter (POM). Transient climate simulations were performed for the twentieth century and extended into the twenty-first century, according to SRES scenario A1B, with two different assumptions on future emissions of carbonaceous aerosols (BC, POM). In the first experiment, BC and POM emissions decrease over Europe and China but increase at lower latitudes (central and South America, Africa, Middle East, India, Southeast Asia). In the second experiment, the BC and POM emissions are frozen at their levels of year 2000. According to these experiments the impact of projected changes in carbonaceaous aerosols on the global mean temperature is negligible, but significant changes are found at low latitudes. This includes a cooling of the surface, enhanced precipitation and runoff, and a wetter surface. These regional changes in surface climate are caused primarily by the atmospheric absorption of sunlight by increasing BC levels and, subsequently, by thermally driven circulations which favour the transport of moisture from the adjacent oceans. The vertical redistribution of solar energy is particularly large during the dry season in central Africa when the anomalous atmospheric heating of up to 60 W m-2 and a corresponding decrease in surface solar radiation leads to a marked surface cooling, reduced

  4. Carbonaceous materials as components of cometary dust

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Schwehm, G.; Bussoletti, E.; Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.

    Recent exploration of Comet Halley by space missions and ground-based observations have made it possible to acquire a large amount of new information on cometary materials. In particular, IR spectroscopy has evidenced two pronounced and structured emission features at around 3.28 and 3.37 microns. Different kinds of gaseous molecules and/or solid grains including CH-X bonds have been proposed as possible carriers of the bands. In the past years, laboratory experiments have made it possible to characterize the physical and optical properties of different classes of carbonaceous materials. The absorption properties measured for some of them are here used to fit the cometary features and to identify if possible the most probable carriers of these bands.

  5. Carbonaceous aerosol and its characteristics observed in Tokyo and south Kanto region

    NASA Astrophysics Data System (ADS)

    Minoura, Hiroaki; Morikawa, Tazuko; Mizohata, Akira; Sakamoto, Kazuhiko

    2012-12-01

    Due to enforcing vehicle emission reduction requirements in Japan, particulate matter (PM) concentration, especially elemental carbon (EC) concentration in roadside atmosphere, obviously decreased in the last decade. In spite of the previous vehicle emission reduction, EC concentration was not shown a clear decrease, recently. To achieve the PM2.5 environmental standard, measurements based on emission source contribution are desirable. However, source apportionment of carbonaceous aerosol was ambiguous because chemical components are complicated, and the components change through photochemical reaction. The goal of this study is to determine source apportionment for carbonaceous aerosols. Examination of PM2.5 was performed in south Kanto including Tokyo in the summer of 2008 and the winter of 2009. Emissions from the industrial area around Tokyo Bay and the agricultural northern area showed transportation and accumulation due to the seasonal prevailing wind. The emissions formed a geographical distribution due to photochemical reactions. The characteristics of carbonaceous aerosol were obtained using carbon profile analysis and carbon isotope analysis, including the source information such as fossil fuel emission origin, vegetation origin, and combustion product, photochemical reaction product, etc. Soot-EC was found as a substance with fossil fuel origin which did not contain biomass combustion matter, and since it is stable, there was no observed difference by site and a uniform concentration was observed in winter. It became apparent from the carbon isotope analysis using 14C that the carbon from the biomass origin involved 29% in total carbon in the summer, and 48% in winter even at Kudan of central Tokyo.

  6. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  7. Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Chen, L.-W. A.; Huang, R.-J.; Chow, J. C.; Watson, J. G.; Ni, H. Y.; Liu, S. X.; Fung, K. K.; Shen, Z. X.; Wei, C.; Wang, Q. Y.; Tian, J.; Zhao, Z. Z.; Prévôt, André S. H.; Cao, J. J.

    2016-05-01

    Carbonaceous aerosol is an important component that influences the environment, climate, and human health. Organic and elemental carbon (OC and EC) are the two main constituents of carbonaceous aerosols that have opposite, i.e., cooling versus warming, effects on the Earth's radiation balance. Knowledge on the variability of OC/EC splits measured by different thermal/optical protocols is useful for understanding the uncertainty in the climate models. This study shows good correlations within OC or EC (r2 > 0.83, P < 0.001) across the IMPROVE, IMPROVE_A, and EUSAAR_2 protocols for both ambient aerosol samples and biomass burning samples. However, EC concentrations differ by more than two folds, and OC/EC ratios differ up to a factor of 2.7. The discrepancies were attributed to the selection between the reflectance and transmittance corrections and the different peak inert-atmosphere temperature. The IMPROVE and IMPROVE_A protocols also quantified different char and soot concentrations, two subtypes of EC with distinct chemical and optical properties. Char, but not soot, was found to correlate with the humic-like substances (HULIS) content in the samples, suggesting that both char and HULIS originate mainly from biomass burning. A one-year (2012-2013) ambient aerosol monitoring in Xi'an, China, shows that OC, EC, and char displayed winter highs and summer lows, while soot had no seasonal trend. The char/soot ratios showed a "single peak" in winter, while OC/EC ratios exhibited "dual peak" feature due to the influence of secondary organic aerosol formation. In addition to commonly measured OC and EC, we recommend both char and soot from a common reference method to be considered in the chemical transport and climate models.

  8. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations.

    PubMed

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A P; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-09-28

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m(3)) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research.

  9. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  10. Chemical Characterization of Carbonaceous Aerosols in the Tropical Trade Winds During RICO

    NASA Astrophysics Data System (ADS)

    Repollet Pedrosa, M. H.; Mayor Bracero, O. L.; Morales Garcia, F.; Caro Gautier, H. A.; Decesari, S.; Emblico, L.

    2005-12-01

    Aerosol organic carbon (OC) and its water soluble fraction (WSOC) together with inorganic soluble species play an important role on Earth's radiative budget by modifying cloud condensation nuclei (CCN) concentrations. Although organic aerosols can be a major, and sometimes dominant, component of both anthropogenic and natural aerosol particles, relatively little is known about them in the marine environment. In addition, the exact role of OC and its WSOC in CCN activity and the specific species that make organic carbon CCN active are still unknown. To have a better understanding of the role of these aerosols in cloud processes, chemical characterization of the organic (carbonaceous) fraction is needed. As part of the Rain in Cumulus over the Ocean Experiment (RICO), size-resolved aerosol samples were collected in the islands of Antigua (Dian Point) and Puerto Rico (Cape San Juan, Fajardo) during December 2004 and January 2005. The samples were collected with two low-pressure impactors (13-stage DLPI and 8-stage MOUDI) and with filter-based samplers. Thermal-optical analysis (EC/OC analyzer) and total organic carbon analysis (TOC) were used to determine aerosol total carbon (TC), OC, elemental carbon (EC) y WSOC. Back trajectories calculated using the HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model from NOAA showed two possible sources for the air masses that influence our aerosols samples: air masses coming from North America and coming from the North Atlantic Ocean (trade winds). Results, including the concentrations of aerosol TC, OC, EC, and WSOC together with the fraction WSOC forms of the TC, will be presented.

  11. Estimating the Radiative Forcing of Carbonaceous Aerosols over California based on Satellite and Ground Observations

    SciTech Connect

    Xu, Yangyang; Bahadur, R.; Zhao, Chun; Leung, Lai-Yung R.

    2013-10-04

    Carbonaceous aerosols have the potential to impact climate both through directly absorbing incoming solar radiation, and by indirectly affecting the cloud layer. To quantify this impact recent modeling studies have made great efforts to simulate both the spatial and temporal distribution of carbonaceous aerosols and their associated radiative forcing. This study makes the first observationally constrained assessment of the direct radiative forcing of carbonaceous aerosols at a regional scale over California. By exploiting multiple observations (including ground sites and satellites), we constructed the distribution of aerosol optical depths and aerosol absorption optical depths over California for a ten-year period (2000-2010). The total solar absorption was then partitioned into contributions from elemental carbon (EC), organic carbon (OC) and dust aerosols using a newly developed scheme. Aerosol absorption optical depth due to carbonaceous aerosols (EC and OC) at 440 nm is 50%-200% larger than natural dust, with EC contributing the bulk (70%-90%). Observationally constrained EC absorption agrees reasonably well with estimates from regional transport models, but the model underestimates the OC AAOD by at least 50%. We estimate that the TOA warming from carbonaceous aerosols is 0.7 W/m2 and the TOA forcing due to OC is close to zero. The atmospheric heating of carbonaceous aerosols is 2.2-2.9 W/m2, of which EC contributed about 80-90%. The atmospheric heating due to OC is estimated to be 0.1 to 0.4 W/m2, larger than model simulations. The surface brightening due to EC reduction over the last two decades is estimated to be 1.5-3.5 W/m2.

  12. Characterisation of carbonaceous aerosols from the Azorean Island of Terceira

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Oliveira, Tiago; Pio, Casimiro; Silvestre, Armando J. D.; Fialho, Paulo; Barata, Filipe; Legrand, Michel

    Aerosol samples were collected from 2002 to 2003 in Terceira, one of the islands of the Azores archipelago in the north-eastern Atlantic. The atmospheric samples have been analysed for its carbonaceous content and for lipid class compounds. The major constituents that comprise plant wax are n-alkanes (C 23-C 33, with and odd-to-even carbon predominance and carbon maxima at 29 or 31), n-alkanols (C 22-C 30, even-to-odd) and n-alkanoic acids (C 22-C 30, even-to-odd), with minor amounts of n-alkanals and polycyclic biomarkers, such as phytosterols. Some alkanedioic acids and phthalates were also detected. The occurrence of short-chain homologues may indicate an additional marine source, probably introduced into the atmosphere via sea spray. Changes in the composition of the homologous series derived from terrestrial plants throughout the observation period may be related to alterations in the regional sources and transport pathways. These terrestrial lipids contributed up to 47% of the total compound mass, while the marine input was estimated to be inferior to 19%, both of them being more representative in summer. Biomass burning sources represented approximately 1% of the total inputs to the organic aerosol for the most part of the year, excepting during the spring, when it contributed to 10%. Petroleum products and plasticizers presented higher contributions (up to 19%) during the winter months. Secondary constituents resulting from oxidation during transport varied from 14% to 37% of the apportioned organic mass. The fraction derived from soil resuspension accounted for 2-16%.

  13. Factors influencing the outdoor concentration of carbonaceous aerosols at urban schools in Brisbane, Australia: Implications for children's exposure.

    PubMed

    Crilley, L R; Ayoko, G A; Mazaheri, M; Morawska, L

    2016-01-01

    This comprehensive study aimed to determine the sources and driving factors of organic carbon (OC) and elemental carbon (EC) concentrations in ambient PM2.5 in urban schools. Sampling was conducted outdoors at 25 schools in the Brisbane Metropolitan Area, Australia. Concentrations of primary and secondary OC were quantified using the EC tracer method, with secondary OC accounting for an average of 60%. Principal component analysis distinguished the contributing sources above the background and identified groups of schools with differing levels of primary and secondary carbonaceous aerosols. Overall, the results showed that vehicle emissions, local weather conditions and secondary organic aerosols (SOA) were the key factors influencing concentrations of carbonaceous component of PM2.5 at these schools. These results provide insights into children's exposure to vehicle emissions and SOA at such urban schools.

  14. A component of primitive nuclear composition in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.; Grossman, L.; Mayeda, T. K.

    1973-01-01

    Oxygen isotope analysis of anhydrous high-temperature phases from carbonaceous meteorite chondrites indicates a high degree of O(17) and O(18) isotope depletion. The isotope decay is believed to be a result of nuclear rather than chemical processes caused by the admixture of a component consisting of almost pure O(16). It is theorized that this component may predate the solar system and may represent interstellar dust with a separate history of nucleosynthesis.

  15. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  16. Volcanic influence on background sulfurous and carbonaceous aerosol in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Friberg, J.; Martinsson, B. G.; Andersson, S. M.; Brenninkmeijer, C. A. M.; Hermann, M.; van Velthoven, P. F. J.; Zahn, A.

    2012-04-01

    Previous measurements in the upper troposphere (UT) and the lowermost stratosphere (LS) have indicated the presence of a carbonaceous component in the aerosol (Murphy et al.,1998; Nguyen et al., 2008; Martinsson et al., 2009). Here the occurrence of carbonaceous and sulfurous particles around the tropopause is investigated. The data were taken from the CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container) platform, where instruments onboard a Lufthansa passenger aircraft on inter-continental flights are used for examination of the atmospheric composition in the UT/LS at 8-12 km altitude (Brenninkmeijer et al., 2007). CARIBIC undertakes aerosol sampling for chemical characterization, as well as measurements of particle number concentrations and mixing ratios of a large number of trace gases including O3, CO, NO/NOy, Hg, water (gaseous and condensed), greenhouse gases and halogenated hydrocarbons. The CARIBIC dataset also contains data on meteorological conditions. 500 aerosol samples were collected during 150 flights with a sampling time of 100 minutes by an impaction technique (Nguyen et al., 2006). Specimen are then analyzed by quantitative multi-elemental analysis by PIXE (Particle-Induced X-ray Emission) and PESA (Particle Elastic Scattering Analysis) to obtain elemental concentrations for sulfur, iron, titanium, potassium, hydrogen, carbon, nitrogen and oxygen among others (Nguyen and Martinsson, 2007). The present study is based on samples collected in the LS from May 2005- August 2008. Concentrations of particulate carbon and sulfur in the LS is shown to follow seasonal cycles, correlated with ozone concentrations, with increasing concentrations from the tropopause through the LS. This indicates downward transport from the so-called stratospheric over-world (SOV) as an important source for these species. Sulfuric acid particles are formed in the stratosphere from carbonyl sulfide (OCS) via photochemical

  17. Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Duan, Jingchun; Tan, Jihua; Cheng, Dingxi; Bi, Xinhui; Deng, Wenjing; Sheng, Guoying; Fu, Jiamo; Wong, M. H.

    PM 2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004-2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM 2.5 in urban Guangzhou (32-35%) than that in urban Hong Kong (43-57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM 2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation ( R2=0.76-0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8-5.9 and 10.2-12.8 μg m -3, respectively, accounting for 21-32% and 36-42% of OC in summer and winter in Guangzhou. The average values of 4.2-6.8% for SOA/ PM 2.5 indicate that SOA was minor component in PM 2.5 in Guangzhou.

  18. Characteristics of atmospheric depositions of ionic and carbonaceous components at remote sites in Japan

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inomata, Y.; Kajino, M.; Tang, N.; Hayakawa, K.; Hakamata, M.; Morisaki, H.

    2015-12-01

    Atmospheric deposition process is important to evaluate lifetimes and budget of atmospheric components. Deposition amounts of sulfur and nitrogen compounds have been evaluated not only in East Asian region but also worldwide. On the other hand, atmospheric deposition of carbonaceous components including organic carbon (OC), elementary carbon (EC) and Polycyclic Aromatic Hydrocarbons (PAHs) were monitored only at a few sites in Europe, North America and Africa, which will obscure removal process and atmospheric concentration distribution of those components. In this study, ionic and carbonaceous components in precipitation and aerosol are monitored at remote sites in Japan, and the characteristics of atmospheric deposition amounts were evaluated.Field observations have been implemented at the Noto station since November 2013 and the Sado station since May 2011. Wet deposition samples were collected by rain samplers, and dry deposition samples were collected by high volume or low volume aerosol samplers. Concentrations of Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, Ca2+ were measured by ion chromatography, EC and OC by the IMPROVE protocol, and PAHs by HPLC with a fluorescence detector. Wet deposition amounts were calculated as the products of aqueous concentration and precipitation amounts, and dry deposition amounts were as the products of aerosol concentrations and deposition velocity estimated by the Inferential Method.Total (wet and dry) annual deposition amounts of carbonaceous components of NO3-, SO42-, EC, water insoluble OC, Fluoranthene at Noto (Nov. 2013 to Oct. 2014) were 4353.81 mg/m2, 7020.50 mg/m2, 149.84 mg/m2, 1191.09 mg/m2, 28.6 μg/m2, respectively. These amounts are comparable total annual deposition amounts of OC and EC at Sado (May 2011 to Feb. 2012), which were 166.04 mg/m2 and 834.0 mg/m2. Higher deposition amounts of ionic and carbonaceous components were observed, which would be attributable to long range transportation of the East Asian

  19. Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California

    SciTech Connect

    Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

    2013-10-29

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements

  20. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; Rödel, T. C.; Kelly, S. T.; Yu, X. Y.; Carroll, G. T.; Fast, J.; Zaveri, R. A.; Laskin, A.; Gilles, M. K.

    2013-10-01

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27-29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter) increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3%) was larger than at the CARES urban site (13.4-15.7%), and the most aged samples from CARES contained fewer carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed

  1. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; Rödel, T. C.; Kelly, S. T.; Yu, X. Y.; Carroll, G. T.; Fast, J.; Zaveri, R. A.; Laskin, A.; Gilles, M. K.

    2013-04-01

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27-29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements

  2. Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisheng; Engling, Guenter; Zhang, Leiming; Kawamura, Kimitaka; Yang, Yihong; Tao, Jun; Zhang, Renjian; Chan, Chuen-yu; Li, Yide

    2015-03-01

    Fungal spores are ubiquitous in the Earth’s atmosphere, especially in the environment of tropical rainforests with intense biological activities. To assess the impact of fungi on chemical components of atmospheric aerosols at a Chinese tropical rainforest site, size-segregated fungal spore tracers (i.e. arabitol and mannitol) were measured along with major aerosol components, including carbonaceous species and water-soluble inorganic ions. The fungal spore tracers were found to be predominately associated with coarse particles, in which organic carbon (OC) and potassium (K+) were also present at significant levels. Enhanced amounts of fungal spore tracers were closely linked to rainfall events. Moreover, fungal spore tracers exhibited positive correlations with relative humidity and negative correlations with wind speed, temperature or radiation. The relationships between fungal spore tracers and meteorological factors are consistent with the emission features of actively discharged fungal spores, which are generally associated with sugar alcohols and by-products such as the inorganic ion K+. The excellent correlations between fungal spore tracers and OC or K+ in the coarse particles further suggested their common emission sources. Absolute principal factor analysis further identified fungi as the largest contributor to coarse OC and K+ (both at ∼66%) in this rainforest.

  3. Micro-physical properties of carbonaceous aerosol particles generated by laser ablation of a graphite target

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Utry, N.; Pintér, M.; Tápai, Cs.; Kecskeméti, G.; Smausz, T.; Hopp, B.; Bozóki, Z.; Szabó, G.

    2014-09-01

    In this work the authors propose laser ablation as a highly versatile tool for carbonaceous aerosol generation. The generated carbonaceous particles can be used as a model aerosol for atmospheric black carbon. Various microphysical properties including mass concentration, size distribution and morphology of aerosol particles generated by laser ablation of a high purity graphite sample were investigated in detail. These measurements proved that the proposed method can be used to generate both primary particles and fractal aggregates with a high yield. As a further advantage of the method the size distribution of the generated aerosol can cover a wide range, and can be tuned accurately with laser fluence, the ambient composition or with the volumetric flow rate of the carrier gas.

  4. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources.

    PubMed

    Ram, Kirpa; Sarin, M M

    2015-01-15

    In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  6. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  7. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  8. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  9. Comparison of carbonaceous aerosols in Tokyo before and after implementation of diesel exhaust restrictions.

    PubMed

    Yamamoto, Naomichi; Muramoto, Atsushi; Yoshinaga, Jun; Shibata, Ken; Endo, Michio; Endo, Osamu; Hirabayashi, Motohiro; Tanabe, Kiyoshi; Goto, Sumio; Yoneda, Minoru; Shibata, Yasuyuki

    2007-09-15

    We compared the status of carbonaceous aerosols in Tokyo before and after the implementation of a diesel vehicle regulation intended to reduce the quantity of particulate carbon from diesel engines in one of the largest scale ever attempts at vehicle exhaust control. Radiocarbon (14C) in elemental carbon (EC) and total carbon (TC) were analyzed to identify fossil fuel carbonaceous particles emitted from diesel-powered vehicles. One-sided paired-month t-tests showed no distinct difference in the absolute concentrations of particles in terms of total mass (19.5 to 18.0 microg m(-3); p = 0.321), EC (3.6 to 3.3 microg m(-3); p = 0.272), and TC (6.3 to 6.2 microg m(-3); p = 0.418) for the finest particles (d(a) < 1.1 microm) after the implementation of the regulation. The ratios of the concentrations of the chemical constituents were, however, altered after the regulation. EC/TC was significantly decreased from 56.7% to 50.2% (p = 0.039). Although it was not statistically significant, the percentage of fossil carbon in EC also decreased (67.8% to 63.8%; p = 0.104). Since EC is predominantly of combustion origin, the observed decrease was likely due to the decrease in fossil EC emissions from diesel-powered vehicles. The decrease in EC/TC after the implementation of the regulation was also likely to have resulted from attachment to diesel vehicle exhaust systems of particulate filters as required as part of the regulation by the Tokyo Metropolitan Government. The EC/TC of fossil carbon of the finest particles decreased from 66.2% to 55.2% (p = 0.066), but EC/TC of biomass carbon did not decrease but rose slightly from 43.6% to 44.5% (p > 0.5). Thus, the relative ratios of components of carbonaceous aerosol particles, such as 14C, could provide a better understanding of the atmospheric pollution status, despite short-term fluctuations, than do measurements of absolute concentrations.

  10. Characteristics of Carbonaceous and Ionic Species and Direct Aerosol Forcing of the Aerosols over Gosan, Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Kim, N.; Kim, Y.; Kang, C.

    2010-12-01

    Carbonaceous aerosols, consisting of elemental carbon (EC) are emitted into the atmosphere through incomplete combustion of biomass and fossil fuel. It directly warms the air by absorbing solar radiation. Another major pollutant emitted by fossil fuel combustion is SO2, which result in the formation of particulate sulfate (SO42-) compounds, contribute substantially to cool the air by scattering solar radiation. Therefore, carbonaceous and sulfate aerosols play an important role in regulating the amount of solar radiation absorbed by the earth atmosphere. (Charlson et al. 1992; Jacobson, 2004; Khan et al., 2010) Carbonaceous and sulfate aerosols are both temporally and spatially variable. Northeast Asia is characterized by high energy consumption. China, Japan, and South Korea have consumed 16.8%, 4.7%, and 2.1% of the world total primary energy, respectively in 2007 (BP, 2008). Consequently, there are resultant huge emissions of anthropogenic air pollutants. Therefore, the effect on climate forcing by carbonaceous and sulfate aerosols are even more important in this region. In this study, PM2.5 intensive measurement data for 18 separate periods at Gosan, Jeju, Korea from 1994 to 2006 were analyzed. Gosan is one of the cleanest areas in Korea and an excellent location to study the ambient aerosols in Northeast Asia (Kim et al., 2009). The characteristics of carbonaceous aerosols and anthropogenic ions such as SO42-, NO3-, NH4+ were analyzed. Also, direct aerosol forcing due to EC and SO42- were calculated. The net aerosol forcing were about -0.5 W m-2 to -0.1 W m-2 at Gosan. References BP, www.bp.com/statisticalreview, 2008. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A.Jr., Hansen, J.E., and Hofmann, D.J. (1992) Climate Forcing by Anthropogenic Aerosols, Science, 255, 423-430. Jacobson, M.Z. (2004) Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, Journal of

  11. Source apportionment of the carbonaceous aerosol - Quantitative estimates based on 14C- and organic tracer analysis

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Svendby, T. M.; Simpson, D.; Puxbaum, H.; Stenström, K.

    2009-04-01

    The World Health Organization (WHO) points towards combustion derived primary particles when ascribing the negative health effects that ambient particles have on human health. These particles consist mainly of carbonaceous material. Further, great uncertainties are associated with the contribution from natural sources to the ambient carbonaceous aerosol concentration. Until recently there has been no way of separating such particles from particles from other sources in the ambient air. By the combined effort of thermal optical, 14C-, and organic tracer analysis this is now possible. When treating such data statistically using Latin Hypercube Sampling (LHS), we are able to apportion the ambient aerosol carbonaceous material to a total of seven different sources, i.e. Elemental carbon from combustion of biomass (ECbb) and fossil fuel (ECff), organic carbon from combustion of biomass (OCbb) and fossil fuel (OCff), primary biogenics (OCpb), and secondary organic aerosols from anthropogenic and (ASOA) and biogenic (BSOA) precursors. The current approach makes it possible to separate not only primary versus secondary aerosols, but also to separate between natural and anthropogenic sources, which is highly important in order to sort out abatement strategies for reducing man-made emissions of combustion derived primary particles. The carbonaceous aerosol originating from the above mentioned seven sources has been examined with respect to size fraction (PM10 and PM1), time of the day and season for one rural background site (Hurdal) and one urban background site (Oslo) in Norway. Briefly, the results show that combustion derived primary particles (ECbb, ECff, OCbb, OCff) accounted for 45% of the carbonaceous material in PM10 in Oslo in summer, whereas 46% of the carbonaceous material came from natural sources (OCpb, BSOA). For PM1, combustion derived primary particles accounted for 47% of the carbonaceous material, whereas 36% originated from natural sources. The major

  12. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  13. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    PubMed

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  14. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    NASA Technical Reports Server (NTRS)

    Mazurek, Monica A.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    During the boreal forest burn studied, the ambient concentrations for the particle carbon smoke aerosol are highest for the full-fire burn conditions and vary significantly throughout the burn. Collection strategies must accordingly define ranges in the smoke aerosol concentrations produced. While the highest elemental C concentrations are observed during full-fire conditions, the great majority of smoke aerosol particles are in the form of organic C particles irrespective of fire temperature. The formation of organic C light-scattering particles was a significant process in the burn studied.

  15. Direct Radiative Forcing Due to Carbonaceous Aerosols in Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Marks, M.; Heo, J.; Adams, P. J.; Donahue, N. M.; Robinson, A. L.

    2014-12-01

    Most climate forcing calculations treat black carbon (BC) as the only carbonaceous particulate light-absorber. Numerous studies have shown that some organic aerosols (OA), mainly associated with biomass burning emissions, contain significant amounts of light-absorbing brown carbon (BrC). However, the light absorption properties of biomass burning OA are poorly constrained, complicating its representation in climate models. During the Fire Laboratory at Missoula Experiment (FLAME 4), we conducted experiments to characterize the light absorption properties of OA in emissions of globally important biomass fuels. We showed that the effective absorptivity of OA depends largely on burn conditions, not fuel type, and derived a parameterization that links OA absorptivity to the BC-to-OA ratio of the emissions (Nature Geoscience, DOI:10.1038/ngeo2220). Here, we utilize this parameterization to estimate the direct radiative effect (DRE) of carbonaceous aerosols in biomass burning emissions using a global chemical transport model (GEOS-Chem) and a column radiative transfer model (libRadTran). The simulations were performed for the year 2005. Monthly-averaged global aerosol concentrations, including BC, OA, inorganic sulfates and nitrates, sea salt, and mineral dust, were obtained from GEOS-Chem simulations. Concentrations of BC and OA from biomass burning emissions were determined by running two GEOS-Chem simulations, one with and one without biomass burning emissions. We attributed the difference in BC and OA concentrations between the two simulations to biomass burning, and could thus calculate the BC-to-OA ratio for biomass burning emissions. libRadTran was used (offline) to calculated DRE due to biomass burning carbonaceous aerosols at each GEOS-Chem grid-cell. Our results show that the global average DRE due to carbonaceous biomass burning emissions increases significantly if light-absorption by OA is considered (using our parameterization for OA absorptivity), compared

  16. The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

    PubMed

    Chow, Judith C; Yu, Jian Zhen; Watson, John G; Ho, Steven Sai Hang; Bohannan, Theresa L; Hays, Michael D; Fung, Kochy K

    2007-09-01

    Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in particulate matter (PM) samples. The resulting mass spectra contain information that is consistent among, but different between, source emissions even in the absence of association with specific organic compounds. TD-GC/MS is a demonstrated alternative to solvent extraction for many organic compounds and can be applied to samples from existing networks. It is amenable to field-deployable instruments capable of measuring organic aerosol composition in near real-time. In this review, thermal stability of organic compounds is related to chemical structures, providing a basis for understanding thermochemical properties of carbonaceous aerosols. Recent advances in thermal methods applied to determine aerosol chemical compositions are summarized and their potential for uncovering aerosol chemistry are evaluated. Current limitations and future research needs of the thermal methods are included.

  17. The role of carbonaceous aerosols on short-term variations of precipitation over North Africa

    DOE PAGES

    Yoon, Jin -Ho; Rasch, Philip J.; Wang, Hailong; ...

    2016-06-16

    Northern Africa has been subject to extensive droughts in the late 20th century, which are frequently linked to changes in the Sea Surface Temperature (SST) in both the Atlantic and Indian Oceans. However, climate models forced by observed Sea Surface Temperatures have been unable to reproduce the magnitude of rainfall reduction over the last several decades. In this study, we propose that aerosol indirect effects (AIE) may be an important feedback mechanism to contribute this recent reduction. The climate model used here has a fully predictive aerosol life cycle. Results are presented for a set of sensitivity experiments designed tomore » distinguish the role of aerosol direct/semi-­direct and indirect effects on regional precipitation. Changes in cloud lifetime due to the presence of carbonaceous aerosols are proposed as a key mechanism to explain the reduced rainfall over the tropical and North Africa.« less

  18. The role of carbonaceous aerosols on short-term variations of precipitation over North Africa

    SciTech Connect

    Yoon, Jin -Ho; Rasch, Philip J.; Wang, Hailong; Vinoj, V.; Ganguly, Dilip

    2016-06-16

    Northern Africa has been subject to extensive droughts in the late 20th century, which are frequently linked to changes in the Sea Surface Temperature (SST) in both the Atlantic and Indian Oceans. However, climate models forced by observed Sea Surface Temperatures have been unable to reproduce the magnitude of rainfall reduction over the last several decades. In this study, we propose that aerosol indirect effects (AIE) may be an important feedback mechanism to contribute this recent reduction. The climate model used here has a fully predictive aerosol life cycle. Results are presented for a set of sensitivity experiments designed to distinguish the role of aerosol direct/semi-­direct and indirect effects on regional precipitation. Changes in cloud lifetime due to the presence of carbonaceous aerosols are proposed as a key mechanism to explain the reduced rainfall over the tropical and North Africa.

  19. Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq

    NASA Astrophysics Data System (ADS)

    Hamad, Samera Hussein; Schauer, James Jay; Heo, Jongbae; Kadhim, Ahmed K. H.

    2015-04-01

    Baghdad is the second largest city in the Middle East and suffers from severe air quality degradation due to the high levels of the atmospheric particulate matter (PM). Limited information exists regarding the sources of PM in Baghdad, and the lack of information on sources inhibits the development of control strategies to reduce air pollution. To better understand the nature of fine particulate matter (PM2.5) in Baghdad and the Middle East, a one year sampling campaign to collect PM2.5 was conducted from September 2012 through September 2013, missing August 2013 samples due to the security situation. 24-hour integrated samples collected on a 1-in-6 day schedule were analyzed for the major components, and monthly average samples were analyzed by gas chromatography mass spectrometry (GCMS) methods to measure particle-phase organic molecular markers. The results of organic molecular markers were used in a chemical mass balance (CMB) model to quantify the sources of PM2.5 organic carbon (OC) and PM2.5 mass. Primary sources accounted for 44% of the measured PM2.5, and secondary sources were estimated to make up 28% of the measured PM2.5. Picene, a tracer of coal combustion detected in Baghdad where there is no evidence for coal combustion, can be attributed to burning crude oil and other low quality fuels in Baghdad. Source apportionment results showed that the dominant sources of the carbonaceous aerosols in Baghdad are gasoline (37 ± 6%) and diesel engines (17 ± 3%) which can be attributed to the extensive use of gasoline and diesel powered generators in Baghdad. Wood burning and residual oil combustion contributed to 5 ± 0.4 and 1 ± 0.2% respectively of OC. The unresolved sources contributed to 42 ± 19% of the OC which represented the secondary organic aerosol (SOA) and the unidentified sources.

  20. Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport.

    PubMed

    Li, Peng-hui; Wang, Yan; Li, Tao; Sun, Lei; Yi, Xianliang; Guo, Li-qiong; Su, Rui-hong

    2015-09-01

    In order to understand the sources and potential formation processes of atmospheric carbonaceous aerosols in South China, fine particle samples were collected at a high-elevation mountain site--Mount Lu (29°35' N, 115°59' E, 1165 m A.S.L.) during August-September, 2011. Eight carbonaceous fractions from particles were resolved following the IMPROVE thermal/optical reflectance protocol. During the observation campaign, the daily concentrations of PM2.5 at Mount Lu ranged from 7.69 to 116.39 μg/m(3), with an average of 58.76 μg/m(3). The observed average organic carbon (OC) and elemental carbon (EC) concentrations in PM2.5 were 3.78 and 1.28 μg/m(3), respectively. Secondary organic carbon (SOC) concentration, estimated by EC-tracer method, was 2.07 μg/m(3) on average, accounting for 45.0% of the total OC. The enhancement of secondary organic aerosol (SOA) formation was observed during cloud/fog processing, and heterogeneous acid-catalyzed reactions may have contributed to SOA formation as well. Back trajectory analysis indicated that air masses were mainly sourced from southern China during observation period, and this air mass source was featured by highest values of OC and effective carbon ratio (ECR). Relation of carbonaceous species and principal component analysis indicated that multiple sources contributed to the carbonaceous aerosols at Mount Lu.

  1. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Simpson, D.; Nøjgaard, J. K.; Kristensen, K.; Genberg, J.; Stenström, K.; Swietlicki, E.; Hillamo, R.; Aurela, M.; Bauer, H.; Offenberg, J. H.; Jaoui, M.; Dye, C.; Eckhardt, S.; Burkhart, J. F.; Stohl, A.; Glasius, M.

    2011-06-01

    In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 collected at four Nordic rural background sites (Birkenes (Norway), Hyytiälä (Finland) Vavihill (Sweden), Lille Valby (Denmark)) during late summer (5 August-2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69-86 %), with biogenic secondary organic aerosol (BSOA) being the single most important source (48-57 %). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20-32 %). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10-24 %), whereas no more than 3-7 % was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, accounting for 4-12 % of TCp, whereas <1.5 % was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an organosulphate of isoprene and nitrooxy

  2. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Aslam, M. Y.; Upadhyay, M.; Rengarajan, R.; Bhushan, R.; Rathore, J. S.; Singh, S. K.; Kumar, S.

    2016-09-01

    Carbonaceous species (elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC)) and water-soluble inorganic species (Na+, NH4+, K+, Ca2 +, Mg2 +, Cl-, NO3-, SO42 -) in PM10 and PM2.5 from Ahmedabad and Jodhpur (urban and semi-urban locations, respectively) in western India were measured during May-September, 2011. Stable isotope composition of carbonaceous aerosol (δ13C of TC) in PM10 samples was also determined. Average EC concentration in PM10 at Ahmedabad was 1 μg m- 3 (range: 0.34 to 3.4 μg m- 3), almost 80% of which remained in PM2.5. Similarly, 70% of EC in PM10 (average: 0.9 μg m- 3) resided in PM2.5 at Jodhpur. Average OC concentration at Ahmedabad was 6.4 μg m- 3 and 52% of this was found in PM2.5. On the contrary, OC concentration at Jodhpur was 40 μg m- 3, 80% of which was found in coarse particles contributing substantially to aerosol mass. δ13C of TC (average: - 27.5‰, range: - 29.6 to - 25.8‰) along with WSOC/EC ratio shows an increasing trend at Jodhpur suggesting the possibility of aging of aerosol, since aging results in enrichment of heavier isotope. OC and WSOC show significant correlations with K+ and not with EC, indicating biogenic origin of OC. Different size distributions are also exhibited by WSOC at the two stations. On the other hand, δ13C exhibits an inverse trend with sea-salt constituents at Ahmedabad, indicating the influence of air masses transported from the western/south-western region on carbonaceous aerosol. These results suggest that a strong heterogeneity exists in the sources of carbonaceous aerosol over this region and potential sources of non-combustion emissions such as bio-aerosol that need further investigation.

  3. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    SciTech Connect

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  4. Carbonaceous and Inorganic Aerosols over a Sub-urban Site in Peninsular India: Temporal Variability and Source Characteristics

    NASA Astrophysics Data System (ADS)

    A R, A.; Hegde, P.; Nair, P. R.

    2016-12-01

    Carbon in the atmospheric aerosols existing in the form of organic and elemental carbon has potential impact on climate, visibility and health. The major component of carbonaceous matter is organic carbon (OC) contributing up to 90% and a relatively lower contribution of 5-10 % from elemental carbon (EC). Characterisation and quantification of carbonaceous component of boundary layer aerosols (PM10) along with the water soluble inorganic ions at a suburban location in Coimbatore (10°53'53″N 76°54'01″E) in India was carried out. The results were analysed to identify the possible sources, to understand their seasonal variations and influence of local meteorology. The samples collected in campaign mode for one year (2014-15) for three different seasons (summer, winter, monsoon) were analysed for organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-soluble total nitrogen (WSTN) and inorganic ions, Na+, NH4+, Ca2+, Mg2+, Cl-, NO3-, SO42- and HCO3-, using standard analytical techniques. The primary (POC) and secondary (SOC) fractions of organic carbon were elucidated using EC tracer method. Majority of the measured chemical constituents showed maximum concentration during winter and minimum during monsoon. SO42- was the most abundant species in winter and summer while OC maximises in monsoon. OC and EC showed different diurnal patterns with OC peaking during daytime and EC during night-time. Primary OC contributed to 58% of OC fraction and 42% by secondary OC. SOC showed significant diurnal variability with daytime high which may be attributed to the increased photochemical activity during daytime. Average OC/EC ratio was 5.4 which showed less seasonal variability and a substantial diurnal variability. K+ showed good correlation with OC, EC, POC, WSOC, SO42-, and NO3- suggesting the possibility of biomass burning and fossil fuel combustion as the major sources of aerosols over the study region.

  5. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Kaskaoutis, D. G.; Ram, Kirpa; Panicker, A. S.; Srivastava, M. K.; Tiwari, Shani; Attri, S. D.; Soni, V. K.; Pandey, A. K.

    2016-01-01

    This study investigates the chemical composition of PM10 aerosols at Varanasi, in the central Indo-Gangetic Plain (IGP) during April to July 2011, with emphasis on examining the contribution of elemental carbon (EC) to the estimates of direct aerosol radiative effect (DARE). PM10 samples are analysed for carbonaceous aerosols (Organic Carbon, OC and EC) and water-soluble ionic species (WSIS: Cl-, SO42-, NO3-, PO42- NH4+, Na+, K+, Mg2+ and Ca2+) and several diagnostic ratios (OC/EC, K+/EC, etc) have been also used for studying the aerosol sources at Varanasi. PM10 mass concentration varies between 53 and 310 μg m-3 (mean of 168 ± 73 μg m-3), which is much higher than the National and International air quality standards. The OC mass concentration varies from 6 μg m-3 to 24 μg m-3 (mean of 12 ± 5 μg m-3; 7% of PM10 mass), whereas EC ranges between 1.0 and 14.3 μg m-3 (4.4 ± 3.9 μg m-3; ˜3% of PM10 mass). The relative low OC/EC of 3.9 ± 2.0 and strong correlation (R2 = 0.82) between them suggest the dominance of primary carbonaceous aerosols. The contribution of WSIS to PM10 is found to be ˜12%, out of which ˜57% and 43% are anions and cations, respectively. The composite DARE estimates via SBDART model reveal significant radiative effect and atmospheric heating rates (0.9-2.3 K day-1). Although the EC contributes only ˜3% to the PM10 mass, its contribution to the surface and atmospheric forcing is significantly high (37-63% and 54-77%, respectively), thus playing a major role in climate implications over Varanasi.

  6. A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J. L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K. E.; Aas, W.; Putaud, J. P.

    2016-11-01

    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.

  7. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Technical Reports Server (NTRS)

    Zaveri, R. A.; Shaw, W. J.; Cahill, J. F.; Cairns, Brian; Cappa, C. D.; Ottaviani, Matteo; Cziczo, D. J.; Ferrare, Richard A.; Alexander, M. L.; Alexandrov, Mikhail Dmitrievic; hide

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  8. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X. -Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and “aged” urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and d) a roadmap of

  9. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

    2012-08-22

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data

  10. Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Hu, Zhaofu; Gao, Shaopeng; Qu, Bin; Sillanpää, Mika

    2016-10-01

    Light absorption characteristics of carbonaceous aerosols are key considerations in climate forcing research. However, in situ measurement data are limited, especially on the Tibetan Plateau (TP) - the Third Pole of the world. In this study, the mass absorption cross section (MAC) of elemental carbon (EC) and water soluble organic carbon (WSOC) of total suspended particles at two high-altitude stations (Lulang station and Everest station) in the Tibetan Plateau (TP) were investigated. The mean MACEC values at 632 nm were 6.85 ± 1.39 m2 g-1 and 6.49 ± 2.81 m2 g-1 at these two stations, both of which showed little seasonal variations and were slightly higher than those of EC of uncoated particles, indicating that the enhancement of MACEC by factors such as coating with organic aerosols was not significant. The mean MACWSOC values at 365 nm were 0.84 ± 0.40 m2 g-1 and 1.18 ± 0.64 m2 g-1 at the two stations. Obvious seasonal variations of high and low MACWSOC values appeared in winter and summer, respectively, mainly reflecting photobleaching of light absorption components of WSOC caused by fluctuations in sunlight intensity. Therefore, this phenomenon might also exists in other remote areas of the world. The relative contributions of radiative forcing of WSOC to EC were 6.03 ± 3.62% and 11.41 ± 7.08% at these two stations, with a higher ratio in winter. As a result, both the contribution of WSOC to radiative forcing of carbonaceous aerosols and its seasonal variation need to be considered in radiative forcing related study.

  11. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    NASA Astrophysics Data System (ADS)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  12. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg ·ρinorg-1 +forg ·ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  13. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    PubMed

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  14. Retrieval Desert Dust and Carbonaceous Aerosol Emissions over Africa from PARASOL/GRASP Observations

    NASA Astrophysics Data System (ADS)

    Chen, C.; Dubovik, O.; Lapyonok, T.; Henze, D. K.; Ducos, F.; Huang, X.

    2016-12-01

    Advancement of chemical transport models is highly important for improving the understanding of the role that atmospheric aerosols play in earth-atmosphere system and climate change. One of main limitations in modeling aerosol properties is associated with the uncertainties in our knowledge of the aerosol emission sources. A promising approache for reducing this uncertainty is improving the aerosol emission sources with inverse modeling using satellite observations. However, most of available satellite observations do not provide sufficient constraints for reliable retrieval of aerosol sources. In this study, we have used recent aerosol data retrieved from the POLDER/PARASOL polarimeter produced with the GRASP algorithm. This retrieval provides detailed properties of aerosol even over land, where the strongest aerosol sources are usually located. Specifically, we performed the retrieval of the distribution and strength of mineral dust and carbonaceous aerosol emissions in the Africa region using PARASOL/GRASP spectral Aerosol Optical Depth (AOD) and Aerosol Absorption Optical Depth (AAOD) at six wavelengths (443, 490, 565, 670, 865, and 1020nm). The retrieval used the adjoint routine developed for a community chemistry transport model (GEOS-Chem). The Black Carbon (BC), Organic Carbon (OC) and mineral dust (DU) emission sources were retrieved simultaneously, assuming that the dust emission is constant over a day, and BC and OC emissions are four days constant. The sensitivity tests conducted with synthetic PARASOL data showed that the designed approach allows for accurate retrieval of aerosol emissions with the relative error about 10% for OC, 2% for BC and 3% for DU emissions. The retrieval of emission sources from real data indicated a reduction of 15% for DU, while an increment of 196% for BC and 37% for OC in comparison to "prior model" emissions (the prior model DU emission is from online dust entrainment and mobilization module, the anthropogenic BC and OC

  15. Feasibility study for GCOM-C/SGLI: Retrieval algorithms for carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Yasumoto, Masayoshi; Fujito, Toshiyuki; Nakata, Makiko; Kokhanovsky, Alexander

    2016-04-01

    The Japan Aerospace Exploration Agency (JAXA) has been developing the new Earth observing system, GCOM (Global Change Observation Mission) project, which consists of two satellite series of GCOM-W1 and GCOM-C1. The 1st GCOM-C satellite will board the SGLI (second generation global imager) which also includes polarimetric sensor and be planed to launch in early of 2017. The SGLI has multi (19)-channels including near UV channel (380 nm) and two polarization channels at red and near-infrared wavelengths of 670 and 870 nm. EUMETSAT plans to collect polarization measurements with a POLDER follow on 3MI / EPS-SG in 2021. Then the efficient retrieval algorithms for aerosol and/or cloud based on the combination use of radiance and polarization are strongly expected. This work focuses on serious biomass burning episodes in East Asia. It is noted that the near UV measurements are available for detection of the carbonaceous aerosols. The biomass burning aerosols (BBA) generated by forest fire and/or agriculture biomass burning have influenced on the severe air pollutions. It is known that the forest fire increases due to global warming and a climate change, and has influences on them vice versa. It is well known that this negative cycle decreases the quality of global environment and human health. We intend to consider not only retrieval algorithms of remote sensing for severe air pollutions but also detection and/or distinction of aerosols and clouds, because mixture of aerosols and clouds are often occurred in the severe air pollutions. Then precise distinction of aerosols and clouds, namely aerosols in cloudy scenes and/or clouds in heavy aerosol episode, is desired. Aerosol retrieval in the hazy atmosphere has been achieved based on radiation simulation method of successive order of scattering 1,2. In this work, we use both radiance and polarization measurements observed by GLI and POLDER-2 on Japanese ADEOS-2 satellite in 2003 as a simulated data. As a result the

  16. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Simpson, D.; Nøjgaard, J. K.; Kristensen, K.; Genberg, J.; Stenström, K.; Swietlicki, E.; Hillamo, R.; Aurela, M.; Bauer, H.; Offenberg, J. H.; Jaoui, M.; Dye, C.; Eckhardt, S.; Burkhart, J. F.; Stohl, A.; Glasius, M.

    2011-12-01

    In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm) collected at four Nordic rural background sites [Birkenes (Norway), Hyytiälä (Finland), Vavihill (Sweden), Lille Valby, (Denmark)] during late summer (5 August-2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69-86%), with biogenic secondary organic aerosol (BSOA) being the single most important source (48-57%). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20-32%). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff) (10-24%), whereas no more than 3-7% was explained by combustion of biomass (OCbb and ECbb) in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4-12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an

  17. Carbonaceous aerosols and mineral dust in atmospheric outflow from the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sarin, M.; Srinivas, B.; Rengarajan, R.

    2012-12-01

    Atmospheric carbonaceous aerosols and mineral dust over south and south-east Asia has been a subject of major debate over the past two decades because of their potential impact on the regional air quality and climate forcing. A comprehensive study through ground-based measurements and data-base for aerosol chemical composition (involving both organic and inorganic constituents) is, thus, essential to constrain the large uncertainties associated with the climate impact. Our systematic study from a downwind site (Kharagpur: 22.02N, 87.11E) in the Indo-Gangetic Plain (IGP) suggests large temporal variability in the atmospheric mass concentrations of mineral dust, organic and elemental carbon (OC, EC), water-soluble organic carbon (WSOC) and inorganic species (WSIS). This is attributed to seasonally varying anthropogenic emissions, their source strength, boundary layer dynamics, secondary aerosol formation and long-range transport of mineral dust from desert regions. Based on diagnostic ratios [OC/EC ≈ 7.0 ± 2.2, WSOC/OC ≈ 0.6 and K+/EC ≈ 0.48 ± 0.17], we document biomass burning emissions (wood-fuel and post-harvest agricultural-waste burning) as a major source of carbonaceous aerosols. The characteristic ratios: nss-SO42-/EC (3.9 ± 2.1), nss-SO42-/OC (0.61 ± 0.46), high abundance of SO42- (6.9 - 25.3 μg m-3) and SO42-/ΣWSIS = 45 - 77 % in the outflow provide better assessment of aerosol optical properties. The subsequent downwind transport of pollutants from the IGP significantly influences the chemical composition of aerosols over the Bay of Bengal. The dominance of aerosol SO42- in the marine atmospheric boundary layer (MABL) is evident from the wide-spread depletion of chloride with respect to sea-salt composition. The Ca/Al and Fe/Al ratios in the IGP-outflow, used as a proxy for the long-range transport of mineral dust, are consistent with those in the MABL. The mass closure for PM2.5 composition suggests that contribution of mineral dust (20

  18. Spatial variability of carbonaceous aerosol concentrations in East and West Jerusalem.

    PubMed

    von Schneidemesser, Erika; Zhou, Iiabin; Stone, Elizabeth A; Schauer, James I; Shpund, Jacob; Brenner, Shmuel; Qasrawi, Radwan; Abdeen, Ziad; Sarnat, Jeremy A

    2010-03-15

    Carbonaceous aerosol concentrations and sources were compared during a year long study at two sites in East and West Jerusalem that were separated by a distance of approximately 4 km. One in six day 24-h PM(2.5) elemental and organic carbon concentrations were measured, along with monthly average concentrations of particle-phase organic compound tracers for primary and secondary organic aerosol sources.Tracer compounds were used in a chemical mass balance ICMB) model to determine primary and secondary source contributions to organic carbon. The East Jerusalem sampling site at Al Quds University experienced higher concentrations of organic carbon (OC) and elemental carbon (EC) compared to the West Jerusalem site at Hebrew University. The annual average concentrations of OC and EC at the East Jerusalem site were 5.20 and 2.19 μg m(-3), respectively, and at the West Jerusalem site were 4.03 and 1.14 μg m(-3), respectively. Concentrations and trends of secondary organic aerosol and vegetative detritus were similar at both sites, but large differences were observed in the concentrations of organic aerosol from fossil fuel combustion and biomass burning, which was the cause of the large differences in OC and EC concentrations observed at the two sites.

  19. Better constraints on sources of carbonaceous aerosols using a combined 14C - macro tracer analysis in a European rural background site

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Vignati, E.; Cavalli, F.; Putaud, J. P.; Larsen, B. R.; Karl, M.; Stenström, K.; Genberg, J.; Henne, S.; Dentener, F.

    2011-06-01

    The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January-December 2007. Carbonaceous aerosol was described as the sum of 8 source components: primary (1) and secondary (2) biomass burning organic carbon, biomass burning elemental carbon (3), primary (4) and secondary (5) fossil organic carbon, fossil fuel burning elemental carbon (6), primary (7) and secondary (8) biogenic organic carbon. The mass concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan), micro tracers (arabitol and mannitol), and 14C measurements. This was the first time that 14C measurements covered a full annual cycle with daily resolution. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the reference fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC) method accounting for the variability of OC and EC emission factors, the uncertainty of reference fractions of modern carbon, and the measurement uncertainty. During winter, biomass burning composed 64 % (±15 %) of the total carbon (TC) concentration, while in summer secondary biogenic OC accounted for 50 % (±16 %) of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil sources represented 27 % (±16 %) and 41 % (±26 %) of TC in winter and summer, respectively. The contribution of secondary organic aerosol (SOA) to the organic mass (OM) was significant during the entire year. SOA accounted for 30 % (±16 %) and 85 % (±12 %) of OM during winter and summer, respectively. While the summer SOA was dominated by biogenic sources, winter SOA was mainly due to biomass

  20. Better constraints on sources of carbonaceous aerosols using a combined 14C - macro tracer analysis in a European rural background site

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Vignati, E.; Cavalli, F.; Putaud, J. P.; Larsen, B. R.; Karl, M.; Stenström, K.; Genberg, J.; Henne, S.; Dentener, F.

    2011-01-01

    The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January-December 2007. Carbonaceous aerosol was described as the sum of eight source components: primary (1) and secondary (2) biomass burning organic carbon, biomass burning elemental carbon (3), primary (4) and secondary (5) fossil fuel burning organic carbon, fossil fuel burning elemental carbon (6), primary (7) and secondary (8) biogenic organic carbon. The concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan), micro tracers (arabitol and mannitol), and 14C measurements. This was the first time that 14C measurements were performed on a long time series of data able to represent the entire annual cycle. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC) method accounting for the variability of OC and EC emission factors, and the uncertainty of reference fractions of modern carbon. During winter biomass burning composed 50% of the total carbon (TC) concentration, while in summer secondary biogenic OC accounted for 45% of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil fuel burning represented 26% and 43% of TC in winter and summer, respectively. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential Source

  1. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74-78, 17-21, and 4-6 % of the total emissions of OC, respectively, and 49-55, 30-34, and 14-18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites

  2. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-03-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 76 ± 2, 19 ± 2 and 5 ± 1% of the total emissions of OC, respectively, and 52 ± 3, 32 ± 2 and 16 ± 2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at rural and

  3. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources

    NASA Astrophysics Data System (ADS)

    Cong, Z.; Kang, S.; Kawamura, K.; Liu, B.; Wan, X.; Wang, Z.; Gao, S.; Fu, P.

    2015-02-01

    To quantitatively evaluate the effect of carbonaceous aerosols on the south edge of the Tibetan Plateau, aerosol samples were collected weekly from August 2009 to July 2010 at Qomolangma (Mt. Everest) Station for Atmospheric and Environmental Observation and Research (QOMS, 28.36° N, 86.95° E, 4276 m a.s.l.). The average concentrations of organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon were 1.43, 0.25 and 0.77 μg m-3, respectively. The concentration levels of OC and EC at QOMS are comparable to those at high-elevation sites on the southern slopes of the Himalayas (Langtang and Nepal Climate Observatory at Pyramid, or NCO-P), but 3 to 6 times lower than those at Manora Peak, India, and Godavari, Nepal. Sulfate was the most abundant anion species followed by nitrate, accounting for 25 and 12% of total ionic mass, respectively. Ca2+ was the most abundant cation species (annual average of 0.88 μg m-3). The dust loading, represented by Ca2+ concentration, was relatively constant throughout the year. OC, EC and other ionic species (NH4+, K+, NO3- and SO42-) exhibited a pronounced peak in the pre-monsoon period and a minimum in the monsoon season, being similar to the seasonal trends of aerosol composition reported previously from the southern slope of the Himalayas, such as Langtang and NCO-P. The strong correlation of OC and EC in QOMS aerosols with K+ and levoglucosan indicates that they mainly originated from biomass burning. The fire spots observed by MODIS and backward air-mass trajectories further demonstrate that in pre-monsoon season, agricultural and forest fires in northern India and Nepal were most likely sources of carbonaceous aerosol at QOMS. Moreover, the CALIOP observations confirmed that air-pollution plumes crossed the Himalayas during this period. The highly coherent variation of daily aerosol optical depth (500 nm) between QOMS and NCO-P indicates that both slopes of the Himalayas share a common atmospheric environment

  4. Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel

  5. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources

    NASA Astrophysics Data System (ADS)

    Cong, Z.; Kang, S.; Kawamura, K.; Liu, B.; Wan, X.; Wang, Z.; Gao, S.; Fu, P.

    2014-10-01

    To quantitatively evaluate the effect of carbonaceous aerosols on the south edge of the Tibetan Plateau, aerosol samples were collected weekly from August 2009 to July 2010 at Mt. Everest (Qomolangma Station for Atmospheric and Environmental Observation and Research, briefly QOMS, 28.36° N, 86.95° E, 4276 m a.s.l.). The samples were analyzed for organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions. The average concentrations of OC, EC and WSOC were 1.43, 0.25 and 0.77 μg m-3, respectively. The concentration levels of OC and EC at QOMS are comparable to those at high elevation sites on the southern slopes of the Himalayas (Langtang and NCO-P), but three to six times lower than those at Manora Peak, India and Godavari, Nepal. Sulfate was the most abundant anion species followed by nitrate, accounting for 25 and 12% of total ionic mass, respectively. Ca2+ was the most abundant cation species (annual average of 0.88 μg m-3). The various aerosol compositions showed distinctive seasonality. The dust loading, represented by Ca2+ concentration, was relatively constant throughout the year. While OC, EC and other ionic species (NH4+, K+, NO3-, and SO42-) exhibited a pronounced peak in the pre-monsoon period and a minimum in the monsoon season. Similar seasonal trends of aerosol composition were also reported previously from the southern slope of the Himalayas, such as Langtang and NCO-P. This phenomenon indicates that both slopes of Himalayas share a common atmospheric environment regime. The strong correlation of OC and EC in QOMS aerosols with K+ and levoglucosan indicates that they were mainly originated from biomass burning. The active fire spots observed by MODIS and their backward trajectories further demonstrate that in pre-monsoon season, agricultural and forest fires in the northern India and Nepal were most likely sources of carbonaceous aerosol at QOMS. In addition to large-scale atmospheric circulation, the unique

  6. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.

    2009-12-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct and especially the indirect aerosol forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. Those aerosol characteristics determine their role in direct and indirect aerosol forcing, as their chemical composition and size distribution determine their optical properties and cloud activation potential. A new detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE climate model includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment and an uncertainty estimate of the impact of microphysical processes involving black carbon and its optical properties on aerosol cloud activation and radiative forcing. We calculate an anthropogenic net radiative forcing of -0.46 W/m2, relative to emission changes between 1750 and 2000. This study finds the direct and indirect aerosol effect to be very sensitivity towards the size distribution of the emitted black and organic particles. The total net radiative forcing can vary between -0.26 to -0.47 W/m2. The models radiation transfer scheme reacts even more sensitive to black carbon core shell structure assumptions. Assuming that sulfates, nitrates and secondary organics can lead to a coating shell around a black carbon core can turn the overall net radiative forcing from a negative to a positive number. In the light of these sensitivities, black carbon mitigation experiments can show no to up to very significant impact to slower global warming.

  7. [Characteristics of carbonaceous aerosol concentration in snow and ice of glaciers in Tianshan Mountains].

    PubMed

    Wang, Sheng-Jie; Zhang, Ming-Jun; Wang, Fei-Teng; Li, Zhong-Qin

    2012-03-01

    The snow and ice samples, collected at Glacier No. 1 at the headwaters of Urumqi River (UG1) and Glacier No. 51 at Haxilegen of Kuytun River (HG51) in 2002 and 2004, were analyzed for organic carbon (OC) and element carbon (EC) by thermal/ optical reflectance (TOR). The spatio-temporal characteristics and environmental significance of OC and EC concentration were discussed in details. The concentration order of total carbon (TC) was: snowpack of west branch on UG1 (1 943 ng x g(-1)) > snowpack of east branch on UG1 (989 ng x g(-1)) > snowpack of HG51 (150 ng x g(-1)) > glacier ice of east branch on UG1 (77 ng x g(-1)), and the concentration order of OC and EC lay similar as TC. The concentration of OC and EC in snowpack of Tianshan Mountains were 557 ng x g(-1) and 188 ng x g(-1), respectively. Concentration peak of carbonaceous aerosol usually appeared near the dust layer at the bottom section of snowpack, but the some sudden events could increase the concentration in the surface snow. Because of the seasonality of carbon emission (e. g. heating and agricultural activities) and transportation (e. g. atmospheric circulation), the concentration of carbonaceous aerosol increased from July to November with fluctuations. Difference on the order of magnitude might exist between the concentration in snow (firn) and glacier ice, which was influenced by the glacier surroundings, sampling situation and other factors. EC on the surface snow affected the albedo significantly, and an average albedo reduction of 0.22 in the wavelength of 300-700 nm was simulated by SNICAR (snow, ice, and aerosol radiative) model.

  8. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Cheung, Heidi H. Y.; Tan, Haobo; Xu, Hanbing; Li, Fei; Wu, Cheng; Yu, Jian Z.; Chan, Chak K.

    2016-07-01

    Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA) and an organic carbon/elemental carbon (OC / EC) analyzer. Low volatility (LV) particles, with a volatility shrink factor (VSF) at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11-15 % of the 80-300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4 < VSF < 0.9) and high volatility (HV, VSF < 0.4) particles. The MV and HV particles contributed 57-71 % of number concentration for the particles between 40 and 300 nm in size. The average EC and OC concentrations measured by the OC / EC analyzer were 3.4 ± 3.0 and 9.0 ± 6.0 µg m-3, respectively. Non-volatile OC evaporating at 475 °C or above, together with EC, contributed 67 % of the total carbon mass. In spite of the daily maximum and minimum, the diurnal variations in the volume fractions of the volatile material, HV, MV and LV residuals were less than 15 % for the 80-300 nm particles. Back trajectory analysis also suggests that over 90 % of the air masses influencing the sampling site were well aged as they were transported at low altitudes (below 1500 m) for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the sum of EC and non-volatile OC was conducted. It suggests that non-volatile OC, in addition to EC, was

  9. Radiative effects due to tropospheric ozone and carbonaceous aerosol enhancements caused by Asian wildfires during Spring, 2008

    NASA Astrophysics Data System (ADS)

    Natarajan, M.; Pierce, R.; Schaack, T.; Lenzen, A.; Al-Saadi, J. A.; Soja, A. J.; Charlock, T. P.; Rose, F. G.

    2010-12-01

    Long-range transport of ozone precursor species and carbonaceous aerosols emitted by wildfires may affect the atmospheric composition and regional climate far away from the location of the fires. Major outbreaks of fires occurred in 3 areas of Asia, Kazakhstan, Siberia, and Thailand, during the spring of 2008. Satellite and aircraft-based observations and trajectory studies have identified the transit of the plumes from these fires across the Pacific. We have conducted simulations of the effects of these fires on the atmospheric composition using the Real-time Air Quality Modeling System (RAQMS). RAQMS is a global scale meteorological and chemical modeling system with unified (stratosphere/troposphere) chemistry module. Model results, for example, indicate that increases of 10 ppbv in upper tropospheric ozone at 180W longitude and northern mid-latitudes in April, 2008 could be attributed to these fires. Large increases in aerosol optical depth due to carbonaceous aerosols are also seen nearer the fire location. Both tropospheric ozone and carbonaceous aerosols influence the atmospheric energy balance and climate. We use an off-line radiative transfer model along with the RAQMS chemical and aerosol analyses to calculate the direct radiative forcing during April, 2008, due to Asian wildfire emissions. Arctic indirect radiative forcing due to these emissions are evaluated using RAQMS aerosol extinction analyses in conjunction with MODIS retrievals of cloud liquid water and effective radius. We will discuss the radiative forcing results and the relative influences of the different fire events.

  10. The Paris MEGAPOLI campaign to better quantify carbonaceous aerosol formation in a tertiary type mid-latitude Megacity

    NASA Astrophysics Data System (ADS)

    Beekmann, M.; Baltensperger, U.; Pandis, S. N.; Prevot, A. S.; Sciare, J.; Gros, V.; Borbon, A.; Drewnick, F.; Wiedensohler, A.; Baklanov, A.; Lawrence, M. G.; Megapoli Campaign Team

    2011-12-01

    Within the EU MEGAPOLI project, two intensive field campaigns have been conducted in the Greater Paris region during July 2009 and January/February 2010. The major aim was to quantify sources of primary and secondary aerosol, and the interaction with gaseous precursors, within a large agglomeration, and in its plume. Greater Paris has been chosen for such a campaign because it is a major and dense pollution source (more than 10 million inhabitants), surrounded by rural areas and relatively flat terrain. A particular focus was put on carbonaceous aerosol, for which primary emissions and secondary formation are still not well quantified. Detailed aerosol and gaseous precursor measurements have been conducted at an urban and two sub-urban sites, from five mobile platforms and from the French ATR-42 research aircraft (for plume characterization). In this paper, the campaign set-up and objectives, and an overview over the major results obtained so far will be given. First, the regional/ local share of sources of fine aerosol component are analysed from a set of AMS and PILS measurements obtained at several urban and peri-urban sites (located up or downwind of the agglomeration as a function of wind direction), and from air quality modelling. Despite the fact that the campaign took place in a Megacity with nearly 12 millions of inhabitants, the regional impact through advection from other European sources turned out to be dominant for secondary organic and inorganic aerosol, which accounts for the major fraction of total PM1 and PM2.5. In addition, different source apportionnement methods (Positive matrix factorisation of AMS and PILS measurements, C14 analysis, specific chemical tracer methods ) concomitantly made evident a major wintertime local and probably continental source of residential woodburning for organic aerosol, which also affects black carbon. Lower boundary layer heights (typically about 500 meters), made evident by lidar measurements, are another factor

  11. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; He, Jiang; Zhao, Boyi; Zhang, Lijun; Fan, Qingyun; Lü, Changwei; Dudagula; Liu, Tao; Yuan, Yinghui

    2016-09-01

    Particulate matter (PM), including PM10 and PM2.5, is one of the major impacts on air quality, visibility, climate change, earth radiation balance, and public health. Organic carbon (OC) and elemental carbon (EC) are the major components of PM. 804 samples (PM10 and PM2.5) were simultaneously collected from six urban sites covering 3 districts in Baotou, in January, April, September, and November 2014. As to a long-term study on the effects of carbonaceous aerosol, data were collected annually at Environmental Protection Agency of Baotou (EPB). The concentrations of PM10 and PM2.5, the spatial distribution and content of OC and EC, the relationship between OC and EC, and the formation of secondary organic carbon (SOC) have been investigated. The findings indicated that the concentrations of these particle matter are higher than that in US or European standards. The average concentrations of OC in PM10 and PM2.5 follow the order: January > November > April > September; and for EC in PM10 and PM2.5 follow the order: January > November > September > April. Affected by metrological factors, it was indicated that high wind speed and low relative humidity were beneficial for removal of OC and EC in January and November. Pearson correlations and cluster analysis on OC and EC concentrations in PM10 and PM2.5 with gaseous pollutants (SO2, NO2, and CO) suggested that OC shared the same emission sources with SO2 and CO from combustion, while EC's sources mainly came from vehicles exhaust and combustion which contributed to NO2 as well. The OC concentration is mainly primary in warm months, while it appears secondary in cold months in Baotou. There is a common characteristic among the cities with higher SOC in winter, wherever the coal combustion can lead to the severe pollution. This work is important for the construction of the database of OC and EC concentrations in PM10 and PM2.5 at spatial and time intervals, and it can provide scientific suggestion for similar PM

  12. Characteristics of fine particle carbonaceous aerosol at two remote sites in Central Asia

    NASA Astrophysics Data System (ADS)

    Miller-Schulze, Justin P.; Shafer, Martin M.; Schauer, James J.; Solomon, Paul A.; Lantz, Jeffrey; Artamonova, Maria; Chen, Boris; Imashev, Sanjar; Sverdlik, Leonid; Carmichael, Greg R.; Deminter, Jeff T.

    2011-12-01

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of PM to Eastern Asia, the Pacific Ocean, and the Western United States. PM is of significant interest not only because of its adverse effect on public health but also due to its more recently realized role in climate change. To investigate the sources and characteristics of PM in the region, a series of PM 2.5 and PM 10 samples were collected on an every-other-day basis at two sites (termed "Bishkek" and "Teploklyuchenka") in the Central Asian nation of the Kyrgyz Republic (also known as Kyrgyzstan) for a full year from July 2008 to July 2009. These samples were analyzed using standard methods for mass, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-insoluble organic carbon by difference (OC minus WSOC) and a variety of molecular marker chemical species to be used in a chemical mass balance (CMB) model to apportion the sources of OC. These analyses indicate that approximately 19 ± 6.4% of the PM 2.5 mass at both sites throughout the year consists of OC. The carbonaceous component of PM 2.5 is dominated by OC, with OC/Total Carbon (TC) ratios being around 0.8 in the winter to almost 0.95 in the summer months. The CMB analysis indicated that mobile sources, i.e., gasoline and diesel engine exhaust, biomass combustion, and biogenic secondary organic aerosol (SOA) formation from isoprene and α-pinene precursors in the summer months were the dominant sources of OC. A strong positive correlation was observed between non-biomass burning WSOC and the un-apportioned OC from the CMB analysis, indicating that some of this un-apportioned OC is WSOC and likely the result of SOA-forming atmospheric processes that were not estimated by the CMB analysis performed. In

  13. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    NASA Astrophysics Data System (ADS)

    Cahill, J. F.; Suski, K.; Seinfeld, J. H.; Zaveri, R. A.; Prather, K. A.

    2012-11-01

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more

  14. The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010

    NASA Astrophysics Data System (ADS)

    Cahill, J. F.; Suski, K.; Seinfeld, J. H.; Zaveri, R. A.; Prather, K. A.

    2012-07-01

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in Southern and Northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in Southern California, and sulfate and organic carbon in Northern California. Furthermore, mixing state varied temporally in Northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more

  15. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    SciTech Connect

    Cahill, John F.; Suski, Kaitlyn; Seinfeld, John H.; Zaveri, Rahul A.; Prather, Kimberly A.

    2012-11-21

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influence their climate impacts through optical properties, hygroscopicity, and atmospheric lifetime. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that were internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles are internally mixed and are heavily influenced by secondary species that are most predominant in each region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the

  16. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  17. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  18. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  19. Elucidating carbonaceous aerosol sources by the stable carbon δ13CTC ratio in size-segregated particles

    NASA Astrophysics Data System (ADS)

    Masalaite, A.; Remeikis, V.; Garbaras, A.; Dudoitis, V.; Ulevicius, V.; Ceburnis, D.

    2015-05-01

    Carbonaceous aerosol sources were investigated by measuring the stable carbon isotope ratio (δ13CTC) in size-segregated aerosol particles. The samples were collected with a micro-orifice uniform deposit impactor (MOUDI) in 11 size intervals ranging from 0.056 μm to 18 μm. The aerosol particle size distribution obtained from combined measurements with a scanning mobility particle sizer (SMPS; TSI 3936) and an aerosol particle sizer (APS; TSI 3321) is presented for comparison with MOUDI data. The analysis of δ13CTC values revealed that the total carbonaceous matter in size-segregated aerosol particles significantly varied from - 23.4 ± 0.1‰ in a coarse mode to - 30.1 ± 0.5‰ in a fine mode. A wide range of the δ13CTC values of size-segregated aerosol particles suggested various sources of aerosol particles contributing to carbonaceous particulate matter. Therefore, the source mixing equation was applied to verify the idea of mixing of two sources: continental non-fossil and fossil fuel combustion. The obtained δ13CTC value of aerosol particles originating from fossil fuel combustion was - 28.0 to - 28.1‰, while the non-fossil source δ13CTC value was in the range of - 25.0 to - 25.5‰. The two source mixing model applied to the size-segregated samples revealed that the fossil fuel combustion source contributed from 100% to 60% to the carbonaceous particulate matter in the fine mode range (Dp < 1 μm). Meanwhile, the second source, continental non-fossil, was the main contributor in the coarse fraction (Dp > 2 μm). The particle range from 0.5 to 2.0 μm was identified as a transition region where two sources almost equally contributed to carbonaceous particulate matter. The proposed mixing model offers an alternative method for determining major carbonaceous matter sources where radiocarbon analysis may lack the sensitivity (as in size-segregated samples).

  20. Day-of-week trends in carbonaceous aerosol composition in the urban atmosphere

    NASA Astrophysics Data System (ADS)

    Lough, G. C.; Schauer, J. J.; Lawson, D. R.

    The chemical composition of atmospheric particulate matter was measured at two sites near Los Angeles, California, over 3 weeks in July 2001, as part of the Gasoline/Diesel PM Split Study. Samples were composited for organic speciation analysis by day of week at each site to investigate weekly trends in chemical composition of the carbonaceous fraction of particulate matter. Observed weekly trends in elemental carbon (EC), hopanes, steranes, and polynuclear aromatic hydrocarbons (PAHs) indicate increased impacts of motor vehicle traffic on carbonaceous particulate matter concentrations on weekdays relative to weekends. Ambient average EC was approximately 4 times higher in the Friday samples than in Sunday samples at each site. Levoglucosan, a tracer species for biomass burning, and cholesterol, monopalmitin, and monostearin, tracers for food cooking operations, were all highest on Friday and lowest on Sunday. Late-week increases in aliphatic and aromatic diacids present in the particulate phase were also observed. Diacids in particulate matter have been seen to be indicators of secondary organic aerosol formation, and the day-of-week trend observed may be due to weekday increases in volatile precursor species present in the atmosphere.

  1. Experimental validation of light scattering and absorption theories of fractal-like carbonaceous aerosol agglomerates

    NASA Astrophysics Data System (ADS)

    Chakrabarty, R.; Moosmuller, H.; Arnott, W. P.; Garro, M.; Slowik, J.; Cross, E.; Han, J.; Davidovits, P.; Onasch, T.; Worsnop, D.

    2007-12-01

    The optical coefficients of size-selected carbonaceous aerosol agglomerates measured at a wavelength of 870 nm are compared with those predicted by three theories, namely Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). Carbonaceous agglomerates, produced via flame synthesis, were size-selected using two differential mobility analyzers (DMAs) in series, and their scattering and absorption coefficients were measured with nephelometry and photoacoustic spectroscopy. Scanning electron microscopy, along with image processing techniques, were used for the parameterization of the structural properties of the fractal-like agglomerates. The agglomerate structural parameters were used to evaluate the predictions of the optical coefficients based on the three light scattering and absorption theories. The results indicate that the RDG approximation agrees within 10% of the experimental results and the exact electromagnetic calculations of the IEFS theory. The experimental scattering coefficient is over predicted by the volume-equivalent Mie theory by a factor of ~3.2. Also, the RDG approximation-predicted optical coefficients showed pronounced sensitivity to changes in monomer mean diameter, the count median diameter of the agglomerates, and the geometric standard deviation of the agglomerate number size distribution.

  2. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle

  3. Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city

    NASA Astrophysics Data System (ADS)

    Genga, A.; Ielpo, P.; Siciliano, T.; Siciliano, M.

    2017-01-01

    Mass concentrations of PM2.5, mineral dust, organic carbon (OC) and elemental carbon (EC), water-soluble organic carbon (WSOC), sea salts and anthropogenic metals have been studied in a city-port of south Italy (Brindisi). This city is characterized by different emission sources (ship, vehicular traffic, biomass burning and industrial emissions) and it is an important port and industrial site of the Adriatic sea. Based on diagnostic ratios of carbonaceous species we assess the presence of biomass burning emissions (BBE), fossil fuel emissions (FFE) and ship emission (SE). Our proposed conversion factors from OC to OM are higher than those reported in the literature for urban site: the reason of this could be due to the existence of aged combustion aerosols during the sampling campaign (WSOC/OC = 0.6 ± 0.3).

  4. Carbonaceous aerosols emitted from light-duty vehicles operating on gasoline and ethanol fuel blends.

    PubMed

    Hays, Michael D; Preston, William; George, Barbara J; Schmid, Judy; Baldauf, Richard; Snow, Richard; Robinson, James R; Long, Thomas; Faircloth, James

    2013-12-17

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the three-phase LA-92 unified driving cycle (UDC). Effects of LDV operating conditions and ambient temperature (-7 and 24 °C) on particle-phase semivolatile organic compounds (SVOCs) and organic and elemental carbon (OC and EC) emissions were investigated. SVOC concentrations and OC and EC fractions were determined with thermal extraction-gas chromatography-mass spectrometry (TE-GC-MS) and thermal-optical analysis (TOA), respectively. LDV aerosol emissions were predominantly carbonaceous, and EC/PM (w/w) decreased linearly with increasing fuel ethanol content. TE-GC-MS analysis accounted for up to 4% of the fine particle (PM2.5) mass, showing the UDC phase-integrated sum of identified SVOC emissions ranging from 0.703 μg km(-1) to 18.8 μg km(-1). Generally, higher SVOC emissions were associated with low temperature (-7 °C) and engine ignition; mixed regression models suggest these emissions rate differences are significant. Use of e85 significantly reduced the emissions of lower molecular weight PAH. However, a reduction in higher molecular weight PAH entities in PM was not observed. Individual SVOC emissions from the Tier 2 LDVs and fuel technologies tested are substantially lower and distributed differently than those values populating the United States emissions inventories currently. Hence, this study is likely to influence future apportionment, climate, and air quality model predictions that rely on source combustion measurements of SVOCs in PM.

  5. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    To better understand the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations in China, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal and spatial distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher OC/EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, smaller SOC/OC is found for cold seasons, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation in winter. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of

  6. An AeroCom initial assessment optical properties in aerosol component modules of global models

    NASA Astrophysics Data System (ADS)

    Kinne, S.; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S. E.; Berntsen, T.; Berglen, T. F.; Boucher, O.; Chin, M.; Collins, W.; Dentener, F.; Diehl, T.; Easter, R.; Feichter, J.; Fillmore, D.; Ghan, S.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Herzog, M.; Horowitz, L.; Isaksen, I.; Iversen, T.; Kirkevåg, A.; Kloster, S.; Koch, D.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Lesins, G.; Liu, X.; Lohmann, U.; Montanaro, V.; Myhre, G.; Penner, J.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2005-09-01

    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds).

  7. An AeroCom initial assessment - optical properties in aerosol component modules of global models

    NASA Astrophysics Data System (ADS)

    Kinne, S.; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S. E.; Berntsen, T.; Berglen, T. F.; Boucher, O.; Chin, M.; Collins, W.; Dentener, F.; Diehl, T.; Easter, R.; Feichter, J.; Fillmore, D.; Ghan, S.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Herzog, M.; Horowitz, L.; Isaksen, I.; Iversen, T.; Kirkevåg, A.; Kloster, S.; Koch, D.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Lesins, G.; Liu, X.; Lohmann, U.; Montanaro, V.; Myhre, G.; Penner, J.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-01

    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds).

  8. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    EPA Science Inventory

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  9. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    EPA Science Inventory

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  10. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.

    PubMed

    Choi, Hyeok; Al-Abed, Souhail R

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K(F) (Lkg(-1)) spanned several orders of magnitude, ranging from logK(F) of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  11. Long-term Observations of Carbonaceous Aerosols (including C isotope) at Alert: Inferring Emission Sources of Black Carbon Transported to the Arctic

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Sharma, Sangeeta; Zhang, Wendy; Brook, Jeff; Leaitch, Richard; He, Kebin; Duan, Fengkui; Yang, Fumo

    2015-04-01

    Black carbon is a major component of carbonaceous aerosols and formed by incomplete combustion of fossil fuels and biomass burning (including biofuels and open fires). It plays unique roles in Earth's climate system through both direct and indirect effects. Identifying and attributing its emission sources, tracking source changes with time and relating them to radiative forcing are important for understanding the impacts of BC on climate at the global and regional levels, as well as necessary for the strategies targeted to reduce BC emission. However, there are many challenges and uncertainties regarding those aspects, particularly for BC aerosols transported to the Arctic region. To address the concerns of BC in the Arctic, carbonaceous aerosol observations, including elemental carbon (EC) content as BC mass, C isotopes as a source tracer, and light absorption coefficient as BC's optical property, have been conducted at Alert, a WMO GAW station (82° 27'N, 62° 31'W) since the early 2000s. In this presentation, nearly a decade of measurements will be presented, with a focus on the isotope results in EC (corresponding data from Beijing will also be shown for the purpose of comparison). Seasonal and inter-annual variations in δ13C (EC) have been characterized, inferring emission sources and suggesting source changes over last 5-6 years. Based on the C isotope results, the possible emission sources of BC contributed to the Arctic will be also discussed.

  12. Urban impacts on regional carbonaceous aerosols: case study in central Texas.

    PubMed

    Barrett, Tate E; Sheesley, Rebecca J

    2014-08-01

    Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011-August 2012). BT analysis indicates consistent north-south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (< 2.5 microm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 microg m(-3) and OC = 3.0 microg m(-3)) and elevated EC during the winter (0.22 microg m(-3)). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g(-1) and BRC MAE365 = 0.15 m2 g(-1)). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States. Implications: Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to

  13. Composition and sources of carbonaceous aerosols at three contrasting sites in Hong Kong

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Hagler, Gayle S. W.; Ke, Lin; Bergin, Michael H.; Wang, Fu; Louie, Peter K. K.; Salmon, Lynn; Sin, Della W. M.; Yu, Jian Zhen; Schauer, James J.

    2006-10-01

    A significant fraction of the fine particulate matter in Hong Kong is made up of organic carbon. In order to quantitatively assess the contributions of various sources to carbonaceous aerosol in Hong Kong, a chemical mass balance (CMB) receptor model in combination with organic tracers was employed. Organic tracers including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), steranes, hopanes, resin acids, cholesterol, levoglucosan, and picene in PM2.5 collected from three air monitoring sites located at roadside, urban, and rural areas in Hong Kong are quantified using gas chromatography-mass spectrometry (GC/MS) in the present study. Analyses of some overlapping species from two separate laboratories will be compared for the first time. Spatial and seasonal source contributions to organic carbon (OC) in PM2.5 from up to nine air pollution sources are assessed, including diesel engine exhaust, gasoline engine exhaust, meat cooking, cigarette smoke, biomass burning, road dust, vegetative detritus, coal combustion, and natural gas combustion. Diesel engine exhaust dominated fine organic carbon in Hong Kong (57 ± 13% at urban sites and 25 ± 2% at the rural site). Other sources that play an important role are meat cooking and biomass burning, which can account for as much as 14% of fine organic carbon. The primary sources identified by this technique explained 49%, 79%, and 94% of the measured fine organic carbon mass concentration at the rural, the urban, and the roadside sites, respectively. The unexplained fine OC is likely due to secondary organic aerosol formation.

  14. Maritime Aerosol Network as a component of Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; Quinn, P. K.; Sciare, J.; Kinne, S.; Harvey, M.; Smyth, T. J.; Piketh, S.; Zielinski, T.; Proshutinsky, A.; Goes, J. I.; Nelson, N. B.; Larouche, P.; Radionov, V. F.; Goloub, P.; Krishna Moorthy, K.; Matarrese, R.; Robertson, E. J.; Jourdin, F.

    2009-03-01

    The paper presents the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). MAN deploys Microtops handheld Sun photometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. A short summary of the existing data, collected on board ships of opportunity during the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is presented. Globally averaged oceanic aerosol optical depth (derived from island-based AERONET measurements) at 500 nm is ˜0.11 and Angstrom parameter (computed within spectral range 440-870 nm) is calculated to be ˜0.6. First results from the cruises contributing to the Maritime Aerosol Network are shown. MAN ship-based aerosol optical depth compares well to simultaneous island and near-coastal AERONET site AOD.

  15. A general circulation model study of the global carbonaceous aerosol distribution

    NASA Astrophysics Data System (ADS)

    Cooke, W. F.; Ramaswamy, V.; Kasibhatla, P.

    2002-08-01

    Atmospheric distributions of carbonaceous aerosols are simulated using the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model (GCM) (latitude-longitude resolution of ~3° × 3.6°). A number of systematic analyses are conducted to investigate the seasonal and interannual variability of the concentrations at specific locations and to investigate the sensitivity of the distributions to various physical parameters. Comparisons are made with several observational data sets. At four specific sites (Mace Head, Mauna Loa, Sable Island, and Bondville) the monthly mean measurements of surface concentrations of black carbon made over several years reveal that the model simulation registers successes as well as failures. Comparisons are also made with averages of measurements made over varying time periods, segregated by geography and rural/remote locations. Generally, the mean measured remote surface concentrations exceed those simulated. Notwithstanding the large variability in measurements and model simulations, the simulations of both black and organic carbon tend to be within about a factor of 2 at a majority of the sites. There are major challenges in conducting comparisons with measurements due to inadequate sampling at some sites, the generally short length of the observational record, and different methods used for estimating the black and organic carbon amounts. The interannual variability in the model and in the few such measurements available points to the need for doing multiyear modeling and to the necessity of comparing with long-term measurements. There are very few altitude profile measurements; notwithstanding the large uncertainties, the present comparisons suggest an overestimation by the model in the free troposphere. The global column burdens of black and organic carbon in the present standard model integration are lower than in previous studies and thus could be regarded as approximately bracketing a lower end of the simulated

  16. Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements

    NASA Astrophysics Data System (ADS)

    Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike

    2016-04-01

    The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in

  17. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis

    NASA Astrophysics Data System (ADS)

    Deboudt, Karine; Flament, Pascal; ChoëL, Marie; Gloter, Alexandre; Sobanska, Sophie; Colliex, Christian

    2010-12-01

    The mixing state of aerosols collected at M'Bour, Senegal, during the Special Observing Period conducted in January-February 2006 (SOP-0) of the African Monsoon Multidisciplinary Analysis project (AMMA), was studied by individual particle analysis. The sampling location on the Atlantic coast is particularly adapted for studying the mixing state of tropospheric aerosols since it is (1) located on the path of Saharan dust plumes transported westward over the northern tropical Atlantic, (2) influenced by biomass burning events particularly frequent from December to March, and (3) strongly influenced by anthropogenic emissions from polluted African cities. Particle size, morphology, and chemical composition were determined for 12,672 particles using scanning electron microscopy (automated SEM-EDX). Complementary analyses were performed using transmission electron microscopy combined with electron energy loss spectrometry (TEM-EELS) and Raman microspectrometry. Mineral dust and carbonaceous and marine compounds were predominantly found externally mixed, i.e., not present together in the same particles. Binary internally mixed particles, i.e., dust/carbonaceous, carbonaceous/marine, and dust/marine mixtures, accounted for a significant fraction of analyzed particles (from 10.5% to 46.5%). Western Sahara was identified as the main source of mineral dust. Two major types of carbonaceous particles were identified: "tar balls" probably coming from biomass burning emissions and soot from anthropogenic emissions. Regarding binary internally mixed particles, marine and carbonaceous compounds generally formed a coating on mineral dust particles. The carbonaceous coating observed at the particle scale on African dust was evidenced by the combined use of elemental and molecular microanalysis techniques, with the identification of an amorphous rather than crystallized carbon structure.

  18. Source Apportionment of Carbonaceous Aerosols at Two Sites on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Moffett, C. E.; Barrett, T. E.; Gunsch, M.; Pratt, K.; Sheesley, R. J.

    2016-12-01

    Aerosols both directly and indirectly affect the Earth's albedo by scattering or absorbing solar radiation and acting as cloud and ice condensation nuclei. In order to better understand the variability of aerosol sources in the Alaskan Arctic, this study utilizes radiocarbon analysis for the apportionment of total organic carbon to fossil and contemporary carbon sources. Fossil sources include fossil fuel combustion and secondary organic aerosol (SOA) from fossil precursors while contemporary sources include biomass combustion, primary biogenic emissions, and SOA produced from biogenic and biomass combustion-derived precursors. Total suspended particulate (TSP) samples were collected in August/September 2015 at two Department of Energy Atmospheric Radiation Measurement climate research facilities. Barrow, AK, is located on the northern most point of the United States; the site is 7.4 km north of the village of Barrow (population 4,581). Research shows the site receives minimal aerosol contribution from the village with dominant contributions from long range transport. Oliktok Point, AK, is 300 km south east of Barrow in a region of intense petroleum development. It receives contributions from the petroleum industry surrounding it as well as from long range transport. The proximity of the two sites allows for a finer spatial analysis of Arctic carbonaceous aerosol source contributions. Samples were analyzed for organic carbon (OC), elemental carbon (EC), and radiocarbon (14C) abundance. Preliminary results show Barrow had OC concentrations from 0.05 to 0.16 µg/m3, while Oliktok had concentrations of OC from 0.11 to 0.27 µg/m3. EC concentrations ranged from 0.002 to 0.013 µg/m3 in Barrow, 0.002 to 0.088 µg/m3 in Oliktok. In Barrow, 14C abundance shows the contribution of fossil sources remained in the range of 21% to 28%. At Oliktok, analysis reveals an increase from 30% contribution from fossil sources in August to a 70% contribution at the end of September.

  19. Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley

  20. Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)

    SciTech Connect

    Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin

  1. Chemical characteristics of carbonaceous aerosols during dust storms over Xi'an in China

    NASA Astrophysics Data System (ADS)

    Li, Xuxiang; Cao, Junji; Chow, Judith; Han, Yongming; Lee, Shuncheng; Watson, John

    2008-09-01

    Characterization of carbonaceous aerosols including CC (carbonate carbon), OC (organic carbon), and EC (elemental carbon) were investigated at Xi’an, China, near Asian dust source regions in spring 2002. OC varied between 8.2 and 63.7 µg m-3, while EC ranged between 2.4 and 17.2 µ m-3 during the observation period. OC variations followed a similar pattern to EC and the correlation coefficient between OC and EC is 0.89 ( n=31). The average percentage of total carbon (TC, sum of CC, OC, and EC) in PM2.5 during dust storm (DS) events was 13.6%, which is lower than that during non-dust storm (NDS) periods (22.7%). CC, OC, and EC accounted for 12.9%, 70.7%, and 16.4% of TC during DS events, respectively. The average ratio of OC/EC was 5.0 in DS events and 3.3 in NDS periods. The OC-EC correlation ( R 2=0.76, n=6) was good in DS events, while it was stronger ( R 2=0.90, n=25) in NDS periods. The percentage of water-soluble OC (WSOC) in TC accounted for 15.7%, and varied between 13.3% and 22.3% during DS events. The distribution of eight carbon fractions indicated that local emissions such as motor vehicle exhaust were the dominant contributors to carbonaceous particles. During DS events, soil dust dominated the chemical composition, contributing 69% to the PM2.5 mass, followed by organic matter (12.8%), sulfate (4%), EC (2.2%), and chloride (1.6%). Consequently, CC was mainly entrained by Asian dust. However, even in the atmosphere near Asian dust source regions, OC and EC in atmospheric dust were controlled by local emission rather than the transport of Asian dust.

  2. Optimisation of analytical procedures for the quantification of ionic and carbonaceous fractions in the atmospheric aerosol and applications to ambient samples.

    PubMed

    Piazzalunga, Andrea; Bernardoni, Vera; Fermo, Paola; Vecchi, Roberta

    2013-01-01

    In the last decade, our research group set up and optimised analytical techniques for the characterisation of the major components of atmospheric aerosol (i.e. secondary inorganic ions and carbonaceous material) and source markers (e.g. levoglucosan, carbonates). In this study, we present a complete overview on the most problematic aspects that can be encountered during the quantification of the two main components of aerosol, i.e. the ionic and carbonaceous fractions. More in detail, different liquid chromatographic approaches were set up for main ions and anhydrosugars determination. Quality assurance procedures (i.e. tests on data reliability) were applied during the set-up phase and they are presented in this work. As regards the carbonaceous component characterisation, two evolved gas analysis techniques were set up and applied: the thermogravimetric technique coupled to the Fourier transformed infrared spectroscopy (TGA/FTIR) and the thermal-optical transmittance method (TOT). A suitable protocol for organic and elemental carbon separation was set up for the TGA/FTIR system and a comparison with the results obtained by the TOT method was carried out. Studies on the impact of filter load, field blanks, and sample composition on OC/EC quantification by the TOT method were performed. Moreover, approaches for carbonate carbon quantification on different kinds of filters were developed. It was demonstrated that this approach allows to reach the ionic balance in samples impacted by carbonate compounds. The optimised methods have been applied for the analysis of thousands of PM filters allowing the obtainment of reliable results.

  3. Characteristics of carbonaceous aerosols at a pair of suburban and downtown sites in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhang, J.; Zhao, Y.

    2014-12-01

    Carbonaceous species in PM2.5 were measured in three seasons (except winter) in downtown and around a year in suburban in Nanjing. In particular, the OC and EC concentrations were continuously measured with 1-h interval at both sites. The mean concentrations of PM2.5, OC, EC were 85.9 μg/m3, 10.4 μg/m3, 4.2 μg/m3 and 63.4 μg/m3, 8.1 μg/m3, 5.3μg/m3 for downtown and suburban respectively. At the suburban site, compared to the lowest average concentration in spring, the relatively higher concentration of carbonaceous aerosol in summer was caused by biomass-burning activities. Significant increasing peaks of OC (up to 122.9 ug/m3) and EC (up to 35.8 ug/m3) in suburban were recorded in the June 10th night, and it is indicated using back trajectory that the air mass came through nearby agriculture areas. On the other hand, the OC and EC concentrations during the 2nd AYG (Asian Youth Games, Aug 16th - 24th in 2013) compared to that in rest days in August reduced by 21% and 10%, respectively, attributing to the effective control measures on reduction of industrial point sources, temporary control of motor vehicle and fugitive dusts. Rations of OC/EC in suburban were much lower than that in downtown. This might be due to the fact that the sampling point in suburban is quite close (in 400 meters) to a main highway. Both OC and EC concentrations in suburban were higher in nighttime than daytime, except OC in summer, indicating the existence of strong SOC and supported by high OC/EC and O3 at noon. The annual average SOC estimated by EC-tracer methods occupied 34.5% and 36.7% of the total OC for the downtown and suburban areas, respectively. OC/EC correlations in suburban were much weaker than those from downtown areas, which shows suburban areas is much more affected by long-range transport of pollution and/or complex sources including domestic coal combustion, biomass burning, industrial and transportation, especially in three other seasons except winter, which is

  4. Assessment of carbonaceous aerosols in Shanghai, China - Part 1: long-term evolution, seasonal variations, and meteorological effects

    NASA Astrophysics Data System (ADS)

    Chang, Yunhua; Deng, Congrui; Cao, Fang; Cao, Chang; Zou, Zhong; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yanlin

    2017-08-01

    Carbonaceous aerosols are major chemical components of fine particulate matter (PM2. 5) with major impacts on air quality, climate change, and human health. Gateway to fast-rising China and home of over twenty million people, Shanghai throbs as the nation's largest mega city and the biggest industrial hub. From July 2010 to December 2014, hourly mass concentrations of ambient organic carbon (OC) and elemental carbon (EC) in the PM2. 5 fraction were quasi-continuously measured in Shanghai's urban center. The annual OC and EC concentrations (mean ±1σ) in 2013 (8.9 ± 6.2 and 2.6 ± 2.1 µg m-3, n = 5547) and 2014 (7.8 ± 4.6 and 2.1 ± 1.6 µg m-3, n = 6914) were higher than those of 2011 (6.3 ± 4.2 and 2.4 ± 1.8 µg m-3, n = 8039) and 2012 (5.7 ± 3.8 and 2.0 ± 1.6 µg m-3, n = 4459). We integrated the results from historical field measurements (1999-2012) and satellite observations (2003-2013), concluding that carbonaceous aerosol pollution in Shanghai has gradually reduced since 2006. In terms of monthly variations, average OC and EC concentrations ranged from 4.0 to 15.5 and from 1.4 to 4.7 µg m-3, accounting for 13.2-24.6 and 3.9-6.6 % of the seasonal PM2. 5 mass (38.8-94.1 µg m-3), respectively. The concentrations of EC (2.4, 2.0, 2.2, and 3.0 µg m-3 in spring, summer, fall, and winter, respectively) showed little seasonal variation (except in winter) and weekend-weekday dependence, indicating EC is a relatively stable constituent of PM2. 5 in the Shanghai urban atmosphere. In contrast to OC (7.3, 6.8, 6.7, and 8.1 µg m-3 in spring, summer, fall, and winter, respectively), EC showed marked diurnal cycles and correlated strongly with CO across all seasons, confirming vehicular emissions as the dominant source of EC at the targeted site. Our data also reveal that both OC and EC showed concentration gradients as a function of wind direction (WD) and wind speed (WS), generally with higher values associated with winds from the southwest, west, and northwest

  5. Amphiphilic components of the Murchison carbonaceous chondrite - Surface properties and membrane formation

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Pashley, R. M.

    1989-01-01

    The possibility that the amphiphilic compounds in carbonaceous meteorites whose physicochemical properties are presently studied may represent sources of lipidlike compounds which could have evolved as membrane components in primitive cells is investigated in samples of the Murchison CM2 chondrite. Surface properties and membrane formation are obtained for three fractions isolated by two-dimensional thin-layer chromatography. It is concluded that a small, undefined fraction of Murchison components exhibits amphiphilic properties which allow assembly into boundary membranes.

  6. Characteristics and sources of PM2.5-bound carbonaceous aerosols in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Hong, Youwei; Hong, Zhenyu; Chen, Jinsheng

    2016-04-01

    An investigation of atmospheric fine particle (PM2.5) from Shanghai, Nanjing and Ningbo in the Yangtze River Delta was conducted during Nov 2014 and Aug 2015. Organic species, including 16 polycyclic aromatic hydrocarbons (PAHs), 10 nitro-PAHs and C8 to C40 n-alkanes, and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate carbonaceous aerosols' spatiotemporal variations and identify their potential sources. The averaged concentrations of total PAHs and n-alkanes in Shanghai, Nanjing and Ningbo were 16.5 and 101.1 ng m-3, 21.1 and 128.2 ng m-3, 33.0 and 241.1 ng m-3, respectively, while the mean concentrations of 10 nitro-PAHs was 2.02, 2.37 and 2.70 ng m-3. Seasonal variations of organic compounds were listed in the following order: winter > autumn > spring > summer. N-alkanes detected in PM2.5 were characterized by odd carbon number preference, with a unimodal peak shape. The maximum carbon number (Cmax) was C29, followed by C27 and C31. According to diagnostic ratios and principle components analysis (PCA) methods, vehicle emissions and coal burning were the dominant sources of PAHs. The ratios of 2-nitrofluoranthene to 1-nitropyrene were larger than 5, indicating that atmospheric transformation from PAHs was a major source of nitro-PAHs. Meanwhile, primary emissions tracers i.e., 1-nitropyrene (the mean concentration of 0.024 ng m-3 in all cities) was observed, suggesting primary contribution of motor vehicle exhaust to the fine particulate organic aerosols. In addition, isotope abundances (δ13COC=-24.6±0.8‰ and δ13CEC = -23.9±1.4‰) and EC/TC ratio (0.2 < EC/TC < 0.5) in Shanghai demonstrated that fossil fuels (e.g. motor vehicles) were the most important source for carbonaceous PM2.5. We further focus on radiocarbon (14C) analysis and gas/particle partitioning of organic tracers on different size particles. Keywords: organic tracers; stable carbon isotopes; spatiotemporal variations; sources apportionment; Yangtze River Delta

  7. Size-Resolved Chemical Characterization of Tropical Marine Aerosol During RICO: Water- Soluble Ions and the Carbonaceous Fraction

    NASA Astrophysics Data System (ADS)

    Morales-García, F.; Mayol-Bracero, O. L.; Repollet-Pedrosa, M. H.; Kasper-Giebl, A.; Puxbaum, H.; Ramírez-Santa Cruz, C.; Metzger, S. M.

    2006-12-01

    Inorganic species such as sulfate together with aerosol organic carbon (OC) and its water-soluble fraction (WSOC) influence the earth's radiative budget directly by scattering solar radiation in the atmosphere and indirectly by modifying cloud condensation nuclei (CCN) concentrations and, therefore, cloud albedo. For tropical regions and marine environments information on the carbonaceous fraction of the aerosol is limited since most studies have focused on the aerosol water-soluble ions (mainly sulfate) and were performed in temperate regions. Therefore, to understand the impact of anthropogenic aerosols on indirect climate forcing it is necessary to improve knowledge of the chemical and physical properties of background aerosols (water- soluble ions and carbonaceous aerosols) in marine tropical environments. As part of the Rain in Cumulus over the Ocean Experiment (RICO), the chemical characterization of aerosol particles was determined for samples collected during December 2004 and January 2005 on the tropical islands of Antigua (Dian Point, DP) and Puerto Rico (Cape San Juan, CSJ). The sampling was conducted with stacked-filter units (SFUs), a 13-stage Dekati low-pressure impactor (DLPI), and a 10-stage micro-orifice uniform deposit impactor (MOUDI). Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO2-, NO3-, SO42-, acetate, formate, malonate, oxalate and methanesulfonate were determined with ion chromatography. Thermal-optical analysis was used to determine aerosol total carbon (TC), OC, and elemental carbon (EC). Preliminary results from the SFUs showed the following: aerosol mass concentrations (Dp < 1.7 μm) from the samples taken at the DP station were lower than those in the samples from CSJ (~ 1.2 μg m-3 DP vs 1.9 μg m-3 CSJ); Cl-, Na+, and SO42- were the predominant water-soluble ions at both locations, and the averaged concentrations of OC were significantly lower for DP (16 ng m-3) than for CSJ (110 ng m-3). Although the observed OC concentrations were higher at

  8. Carbon isotope-constrained seasonality of carbonaceous aerosol sources from an urban location (Kanpur) in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Andersson, August; Ram, Kirpa; Sarin, M. M.; Sheesley, Rebecca J.; Kirillova, Elena N.; Rengarajan, R.; Sudheer, A. K.; Gustafsson, Örjan

    2017-05-01

    The Indo-Gangetic Plain (IGP) in northern India, Pakistan, and Bangladesh is a major source of carbonaceous aerosols in South Asia. However, poorly constrained seasonality of their sources over the IGP leads to large uncertainty in climate and health effects. Here we present a first data set for year-round radiocarbon (Δ14C) and stable carbon (δ13C)-based source apportionment of total carbon (TC) in ambient PM10 (n = 17) collected from an urban site (Kanpur: 26.5°N, 80.3°E) in the IGP during January 2007 to January 2008. The year-round 14C-based fraction biomass (fbio-TC) estimate at Kanpur averages 77 ± 7% and emphasizes an impact of biomass burning emissions (BBEs). The highest fbio-TC (%) is observed in fall season (October-November, 85 ± 6%) followed by winter (December-February, 80 ± 4%) and spring (March-May, 75 ± 8%), while lowest values are found in summer (June-September, 69 ± 2%). Since biomass/coal combustion and vehicular emissions mostly contribute to carbonaceous aerosols over the IGP, we predict δ13CTC (δ13Cpred) over Kanpur using known δ13C source signatures and the measured Δ14C value of each sample. The seasonal variability of δ13Cobs - δ13Cpred versus Δ14CTC together with air mass back trajectories and Moderate Resolution Imaging Spectroradiometer fire count data reveal that carbonaceous aerosols in winter/fall are significantly influenced by atmospheric aging (downwind transport of crop residue burning/wood combustion emissions in the northern IGP), while local sources (wheat residue combustion/vehicular emissions) dominate in spring/summer. Given the large temporal and seasonal variability in sources and emission strength of TC over the IGP, 14C-based constraints are, thus, crucial for reducing their uncertainties in carbonaceous aerosol budgets in climate models.

  9. Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA

    EPA Science Inventory

    Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). Presented in this study are organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmon. EC exhibited signifi...

  10. Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA

    EPA Science Inventory

    Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). Presented in this study are organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmon. EC exhibited signifi...

  11. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Andersson, August; Sarin, M. M.; Sheesley, R. J.; Kirillova, E.; Rengarajan, R.; Sudheer, A. K.; Ram, K.; Gustafsson, Örjan

    2016-05-01

    Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (δ13C and Δ14C) to characterize CA sources at a semiurban site (Hisar: 29.2°N, 75.2°E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4°N, 79.5°E, 1950 m above sea level) in northern India during winter. The Δ14C of total aerosol organic carbon (TOC) varied from -178‰ to -63‰ at Hisar and from -198‰ to -1‰ at Manora Peak. The absence of significant differences in the 14C-based fraction biomass of TOC between Hisar (0.81 ± 0.03) and Manora Peak (0.82 ± 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with δ13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.

  12. Sampling atmospheric carbonaceous aerosols using an integrated organic gas and particle sampler.

    PubMed

    Fan, Xinghua; Brook, Jeffrey R; Mabury, Scott A

    2003-07-15

    Measurement of particle-bound organic carbon (OC) may be complicated by sampling artifacts such as adsorption of gas-phase species onto particles or filters or evaporation of semivolatile compounds off the particles. A denuder-based integrated organic gas and particle sampler (IOGAPS), specifically designed to minimize sampling artifacts, has been developed to sample atmospheric carbonaceous aerosols. IOGAPS is designed to first remove gas-phase chemicals via sorption to the XAD-coated denuder, and subsequently particles are trapped on a quartz filter. A backup sorbent system consisting of sorbent- (XAD-4 resin) impregnated filters (SIFs) was used to capture the semivolatile OC that evaporates from the particles accumulated on the upstream quartz filter. A traditional filter pack (FP) air sampler, which uses a single quartz filter to collect the particles, was employed for comparison in this study. Elemental and organic carbon were determined from filter punches by a thermal optical transmittance aerosol carbon analyzer. Field measurements show that there was no significant difference between the elemental carbon concentrations determined by the FP and IOGAPS, indicating that particle loss during the transit through the denuder tube was negligible. Compared with the OC determined by FP (3.9-12.6 microg of C/m3), the lower OC observed on the quartz filter in the IOGAPS (2.2-6.0 microg of C/m3) was expected because of the removal of gas-phase organics by the denuder. Higher semivolatile organic carbon (SVOC) on the backup SIFs during the night (1.24-8.43 microg of C/m3) suggests that more SVOC, emitted from primary sources or formed as secondary organic compounds, partitions onto the particles during the night because of the decreased ambient temperature. These data illustrate the utility of an IOGAPS system to more accurately determine the particle-bound OC in comparison to FP-based systems.

  13. Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Xie, Zhouqing; Blum, Joel D.; Utsunomiya, Satoshi; Ewing, R. C.; Wang, Xinming; Sun, Liguang

    2007-01-01

    The chemistry, morphology, and microscale to nanoscale structures of carbonaceous aerosols from the marine boundary layer of the Arctic Ocean were investigated by a variety of electron microscopy techniques, including scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The relative levels of particles of black carbon (BC) were determined by electron paramagnetic resonance (EPR). Polycyclic aromatic hydrocarbons (PAHs) absorbed onto BC particles were extracted by the soxhlet extraction method and analyzed by gas chromatography mass spectrometry (GC-MS). The results show that the dominant particles of BC are char particles with spherical shape, porous structure, and high sulfur content, which are typically derived from residual oil combustion on ships. The spatial distribution of BC from ship emissions was found to be concentrated around the periphery of the Arctic Ocean, suggesting relatively intensive contamination by ships in the Russian and Canadian Arctic. The abundance of PAHs on BC particles ranges from 142 to 2672 pg/m3 (mean = 702 pg/m3), which is significantly higher than values previously measured by land-based observation. Thus we find that ship emissions are a potentially important contributor to the PAH levels at some locations in the Arctic Ocean during the summer.

  14. The rural carbonaceous aerosols in coarse, fine, and ultrafine particles during haze pollution in northwestern China.

    PubMed

    Zhu, Chong-Shu; Cao, Jun-Ji; Tsai, Chuen-Jinn; Shen, Zhen-Xing; Liu, Sui-Xin; Huang, Ru-Jin; Zhang, Ning-ning; Wang, Ping

    2016-03-01

    The carbonaceous aerosol concentrations in coarse particle (PM10: Dp ≤ 10 μm, particulate matter with an aerodynamic diameter less than 10 μm), fine particle (PM2.5: Dp ≤ 2.5 μm), and ultrafine particle (PM0.133: Dp ≤ 0.133 μm) carbon fractions in a rural area were investigated during haze events in northwestern China. The results indicated that PM2.5 contributed a large fraction in PM10. OC (organic carbon) accounted for 33, 41, and 62 % of PM10, PM2.5, and PM0.133, and those were 2, 2.4, and 0.4 % for EC (elemental carbon) in a rural area, respectively. OC3 was more abundant than other organic carbon fractions in three PMs, and char dominated EC in PM10 and PM2.5 while soot dominated EC in PM0.133. The present study inferred that K(+), OP, and OC3 are good biomass burning tracers for rural PM10 and PM2.5, but not for PM0.133 during haze pollution. Our results suggest that biomass burning is likely to be an important contributor to rural PMs in northwestern China. It is necessary to establish biomass burning control policies for the mitigation of severe haze pollution in a rural area.

  15. Characteristics of PM2.5 Carbonaceous Aerosol in Urban New York State

    NASA Astrophysics Data System (ADS)

    Khwaja, H. A.; Dutkiewicz, V.; Briggs, R.; Siddique, A.; Regan, J.

    2008-12-01

    In order to investigate the characteristics of carbonaceous fine aerosols, PM2.5 and size-segregated particulate samples (< 2.5 um, 2.5 - 4.2 um, 4.2 - 10 um, and 10 um) were collected during the summer in two urban sites of New York State viz., Botanical Garden (BTG), New York City and Empire State Plaza (ESP), Albany. Gas phase organic compounds were sampled with polyurethane foam (PUF) plugs. Particulate samples were acquired on quartz fiber filters using a high-volume air sampler (Hi-Vol) attached with a slotted impactor. Filters were sonicated in dichloromethane:methanol (9:1); extracts concentrated. A suite of more than 200 individual organic compounds was identified in the PM2.5 samples. Molecular markers, homologous compound series, and non-polar and polar organic compounds were detected at ng/m3 ambient concentrations using gas chromatography/mass spectrometry (GC/MS). Measurements of the organic carbon (OC) and elemental carbon (EC) were also made. Organic compounds detected in the size-segregated samples were grouped into different classes including phthalates and adipates, n-alkanes, alkanoic acids, cyclic siloxanes, waxes, benzoates, polyethylene glycols, squalene, and 4-nitro-butylated phenol. Results indicated that these organic species were predominantly associated in the fine particle mode (< 2.5 um). Gaseous organic compounds trapped in the PUF appeared rich in phenol, 4-nitro-2,6-ditertbutylphenol, pentachlorophenol, benzoic acid, alkanoic acids (C6 - C16 ), PAHs (naphthalene to pyrene), and phthalates. The major part of the extractable and elutable organic carbon was found to correspond to a complex mixture of phthalates and adipates, benzoate esters, n-alkanes, methyl silicates, phosphate esters, aldehydes and ketones, alcohols, alkyl amines, nitrosamines, formamides, amides, morpholines, carboxylic acids, methyl and isopropyl esters, dicarboxylic acids, waxes, lactones, hopanes, ionol 2, and PAHs. The most abundant classes of compounds are

  16. Carbonaceous PM(2.5) and secondary organic aerosol across the Veneto region (NE Italy).

    PubMed

    Khan, Md Badiuzzaman; Masiol, Mauro; Formenton, Gianni; Di Gilio, Alessia; de Gennaro, Gianluigi; Agostinelli, Claudio; Pavoni, Bruno

    2016-01-15

    Organic and elemental carbon (OC-EC) were measured in 360 PM2.5 samples collected from April 2012 to February 2013 at six provinces in the Veneto region, to determine the factors affecting the carbonaceous aerosol variations. The 60 daily samples have been collected simultaneously in all sites during 10 consecutive days for 6 months (April, June, August, October, December and February). OC ranged from 0.98 to 22.34 μg/m(3), while the mean value was 5.5 μg/m(3), contributing 79% of total carbon. EC concentrations fluctuated from 0.19 to 11.90 μg/m(3) with an annual mean value of 1.31 μg/m(3) (19% of the total carbon). The monthly OC concentration gradually increased from April to December. The EC did not vary in accordance with OC. However the highest values for both parameters were recorded in the cold period. The mean OC/EC ratio is 4.54, which is higher than the values observed in most of the other European cities. The secondary organic carbon (SOC) contributed for 69% of the total OC and this was confirmed by both the approaches OC/EC minimum ratio and regression. The results show that OC, EC and SOC exhibited higher concentration during winter months in all measurement sites, suggesting that the stable atmosphere and lower mixing play important role for the accumulation of air pollutant and hasten the condensation or adsorption of volatile organic compounds over the Veneto region. Significant meteorological factors controlling OC and EC were investigated by fitting linear models and using a robust procedure based on weighted likelihood, suggesting that low wind speed and temperature favour accumulation of emissions from local sources. Conditional probability function and conditional bivariate probability function plots indicate that both biomass burning and vehicular traffic are probably the main local sources for carbonaceous particulate matter emissions in two selected cities. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Investigation of Carbonaceous Aerosol Optical Properties to Understand Impacts on Air Quality and Composition

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.

    The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in

  18. Quantification of long-term primary and secondary source contributions to carbonaceous aerosols.

    PubMed

    Shi, Guoliang; Peng, Xing; Liu, Jiayuan; Tian, Yingze; Song, Danlin; Yu, Haofei; Feng, Yinchang; Russell, Armistead G

    2016-12-01

    Ambient fine particulate matter samples were collected during 2009-2013 in Chengdu, a megacity in western China, and the samples were speciated into organic carbon (OC), elemental carbon (EC), char-EC, soot-EC, eight carbon fractions, inorganic elements and water-soluble ions. Char-EC and soot-EC contribute to the better understanding of the sources and properties of EC. The highest levels of most carbon fractions were found in winter and May. The higher OC/EC ratio in winter suggests higher SOC fraction in winter, and higher char-EC/soot-EC ratio in May are the direct consequences of straw burning activities. Source contributions to PM2.5 and carbonaceous aerosols were quantified using the ME2 receptor model. Major contributors to OC in PM2.5 are vehicular exhaust (36.5%), coal combustion & straw burning (35.2%) and SOC (27.0%). The first two categories also contributed 51.4% and 49.3% of char-EC in PM2.5. Vehicular exhaust dominated soot-EC, contributing 63.0% to soot-EC in PM2.5. SOC contributed to high OC levels in winter due to the increase of precursor emissions and stable meteorological conditions. Coal combustion & straw burning show higher contributions to OC, char-EC and soot-EC in winter months and in May, which can be explained, in part, by increased coal consumption in winter and straw burning activities in May. Vehicular exhaust contributions are not strongly associated with monthly nor weekday-weekend patterns, resulting in that soot-EC vary insignificantly by month nor by weekday.

  19. Anthropogenic contributions to the carbonaceous content of aerosols over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Rau, John A.; Khalil, M. A. K.

    model cannot distinguish this source from emissions from heating and cooking with wood. Since anthropogenic emissions are mainly combustion emissions which usually contain a large carbon component, carbon data is essential to CMB modeling. The relatively good CMB results obtained in this study suggest that it might be useful to develop source profiles for major emission sources in those countries which contribute most directly to oceanic aerosols. Perhaps characteristic national or regional source profiles could be developed.

  20. Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City during may 2013

    NASA Astrophysics Data System (ADS)

    Tzompa Sosa, Z. A.; Sullivan, A.; Kreidenweis, S. M.

    2014-12-01

    The Mexico City Metropolitan Area (MCMA) is one of the largest megacities in the world with a population of 20 million people. Emissions transported from outside the basin, such as wildfires and agricultural burning, represent a potentially large contribution to air quality degradation. This study analyzed PM10 filter samples from six different stations located across the MCMA from May, 2013, which represented the month with the most reported fire counts in the region between 2002-2013. Two meteorological regimes were established considering the number of satellite derived fire counts, changes in predominant wind direction, ambient concentrations of CO, PM10 and PM2.5, and precipitation patterns inside MCMA. The filter samples were analyzed for biomass burning tracers including levoglucosan (LEV), water-soluble potassium (WSK+); and water-soluble organic carbon (WSOC). Results of these analyses show that LEV concentrations correlated positively with ambient concentrations of PM2.5 and PM10 (R2=0.61 and R2=0.46, respectively). Strong correlations were also found between WSOC and LEV (R2=0.94) and between WSK+ and LEV (R2=0.75). An average LEV/WSOC ratio of 0.0147 was estimated for Regime 1 and 0.0062 for Regime 2. Our LEV concentrations and LEV/WSOC ratios are consistent with results found during the MILAGRO campaign (March, 2006). To the best of our knowledge, only total potassium concentrations have been measured in aerosol samples from MCMA. Therefore, this is the first study in MCMA to measure ambient concentrations of WSK+. Analysis of gravimetric mass concentrations showed that PM2.5 accounted for 60% of the PM10 mass concentration with an estimated PM10/PM2.5 ratio of 1.68. Estimates from our laboratory filter sample characterization indicated that we measured 37% of the total PM10 mass concentration. The missing mass is most likely crustal material (soil or dust) and carbonaceous aerosols that were not segregated into WSOC fraction. Assuming that LEV is

  1. Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai

    NASA Astrophysics Data System (ADS)

    Ding, X. X.; Kong, L. D.; Du, C. T.; Zhanzakova, A.; Fu, H. B.; Tang, X. F.; Wang, L.; Yang, X.; Chen, J. M.; Cheng, T. T.

    2017-10-01

    Size-segregated aerosol particles were collected with a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) at an urban site in Shanghai, China for four non-consecutive months representing four seasons from 2015 to 2016. Chemical composition, including water-soluble ions as well as organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC) of size-resolved (0.056-18 μm) atmospheric aerosols in four seasons and in different polluted cases were studied. The size distributions of sulfate, nitrate and ammonium (SNA) and carbonaceous aerosol (OC, EC and SOC) were discussed and the potential sources of PM1.8-associated secondary species (SO42-, NO3-, SNA and SOC) in different seasons were identified by potential source contribution function (PSCF) model. Results showed that atmospheric ultrafine and fine particle pollution in Shanghai were very serious during the study period. Most of the water-soluble ions tended to be enriched in fine particles, especially being abundant in the droplet mode in polluted cases. Compared with sulfate, size distributions of nitrate and ammonium presented more significant seasonal variations and showed distinctive characteristics in polluted days. Abundant nitrate was concentrated in fine particles in cold seasons (spring and winter), whereas it was enriched in coarse mode during summer and autumn. The droplet mode sulfate with high concentration did not result in the aggravation of air pollution, while the nucleation mode sulfate may have made a great contribution to the air pollution in urban Shanghai. It was also found that the formation of air pollution in urban Shanghai had a significant link with nitrate and ammonium, especially with nitrate and ammonium in condensation mode and droplet mode, and the contribution of sulfate to the pollution formation in Shanghai would somehow be surpassed by the increasing nitrate and ammonium. OC and EC concentrations from spring to winter were found to be 11.10, 7.10, 12

  2. 14C-based Source Apportionment of Carbonaceous Aerosols in Switzerland for 2008 - 2012

    NASA Astrophysics Data System (ADS)

    Zotter, Peter; Ciobanu, Gabriela; Zhang, Yanlin; El-Haddad, Imad; Szidat, Sönke; Wacker, Lukas; Baltensperger, Urs; Prévôt, André

    2013-04-01

    Carbonaceous particles (total carbon, TC) are a major fraction of the fine aerosol and affect climate and human health. TC is classified into the sub-fractions elemental carbon (EC) and organic carbon (OC). EC originates only from fossil fuel combustion and biomass burning. OC can be emitted directly as primary organic aerosol from biogenic emissions, wood burning and fossil fuel combustion or can be formed in-situ in the atmosphere (secondary organic aerosol) (Szidat et al. 2006). Radiocarbon (14C) analysis is a direct and quantitative tool for distinguishing fossil and non-fossil sources, since 14C in fossil fuels is completely depleted whereas other sources have a contemporary 14C level. This study presents source apportionment results from the winter season over a time period of 5 years (2007/2008-2011/2012) using 14C measurements on aerosol filters collected simultaneously at 16 air quality monitoring stations across Switzerland. For every year 5 winter smog episode days were selected from which filters from all stations were analyzed. To resolve a good spatial variability 11 stations north and 5 stations south of the Alps were selected. This 14C data set is unique around the world concerning the number of analyzed filters and the duration. The filter sampling was conducted using high volume samplers with PM10 inlets and a time resolution of 24h. Separation of OC and EC was carried out using the THEODORE system (Szidat et al. 2004) and a Sunset EC/OC analyzer (Zhang et al. 2012), respectively. The resulting CO2 was cryo-trapped and sealed in glass ampoules for 14C measurements, performed with the Mini Carbon Dating System MICADAS (Ruff et al. 2007) at the Swiss Federal Institute of Technology (ETH) Zürich. The results for non-fossil (NF) OC (5 year average) are 81% ± 10% for north and 85% ± 8% for south of the Alps. ECNF values range from 31% to 53% north and from 36% to 66% south of the Alps. Both, the OCNF and ECNF show higher values south of the Alps

  3. Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Tai in the North China Plain during MTX2006

    NASA Astrophysics Data System (ADS)

    Boreddy, Suresh K. R.; Kawamura, Kimitaka; Okuzawa, Kazuhiro; Kanaya, Yugo; Wang, Zifa

    2017-04-01

    To better understand the impact of agricultural waste burning on the air quality of free troposphere over the North China Plain (NCP), we collected total suspended particles (TSP) at the summit of Mt. Tai, located in the NCP using a high volume air sampler during 29 May to 28 June 2006, when the field burning of agricultural residue was intense. Temporal variations of all measured species showed that their concentration increases from late May to mid June (major BB period), peaking during 12-14 June, and then significantly decreased towards late June (minor BB period). We noticed that a significant reduction in the concentrations of carbonaceous aerosols during the period of 8-11 June, when the wind direction shifted from southerly to northerly. We found that concentrations of carbonaceous aerosols and some major ions showed several times higher during major BB period than those of minor BB period. We also found that nighttime concentrations are higher than daytime during major BB period, suggesting that a long-range atmospheric transport of biomass burning plumes in the free troposphere, which arrived at the summit of Mt. Tai. In contrast, daytime concentrations are higher than nighttime during minor BB period. We found higher concentrations of secondary organic carbon (SOC) during major BB period, suggesting that formation of secondary organic aerosols through aqueous phase chemistry under high NOx conditions during a long-range atmospheric transport. nss-K+ showed about four times higher concentrations during major BB than those of minor BB. Concentrations of nss-Ca2+ are higher in nighttime during major BB period, implying that a significant long-range atmospheric transport of mineral dust over the sampling site. These results are further supported by the positive matrix factorization (PMF) analysis, which showed that biomass burning was a major source for the carbonaceous aerosols followed by mineral dust sources over the summit of Mt. Tai.

  4. Enhanced UV Absorption in Carbonaceous Aerosols during MILAGRO and Identification of Potential Organic Contributors.

    NASA Astrophysics Data System (ADS)

    Mangu, A.; Kelley, K. L.; Marchany-Rivera, A.; Kilaparty, S.; Gunawan, G.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) during the month of March, 2006 by using a 7- channel aethalometer (Thermo-Anderson). These measurements, obtained at 370, 470, 520, 590, 660, 880, and 950 nm at a 5 minute time resolution, showed an enhanced absorption in the UV over that expected from carbon soot alone. Samples of fine atmospheric aerosols (less than 0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. The samples were collected on quartz fiber filters with high volume impactor samplers. The samples have been characterized for total carbon content (stable isotope ratio mass spectroscopy) and natural radionuclide tracers (210Pb, 210Po, 210Bi, 7Be, 13C, 14C, 40K, 15N). Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV-visible spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples (1). The continuous spectra also show an enhanced UV absorption over that expected from carbon soot and the general profiles are quite similar to those observed for humic and fulvic acids found as colloidal materials in surface and groundwaters (2), indicating the presence of humic-like substances (HULIS) in the fine aerosols. The spectra also show evidence of narrow band absorbers below 400 nm typical of polycyclic aromatics (PAH) and nitrated aromatic compounds. Spectra were also obtained on NIST standard diesel soot (SRM 2975), NIST standard air particulate matter (SRM 8785

  5. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    NASA Astrophysics Data System (ADS)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; de la Campa Sánchez, A.; Fernández-Camacho, R.; Rodríguez, S.; Pío, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; Dos Santos García, S.; Patier Fernández, R.

    2013-03-01

    We interpret here the variability of levels of carbonaceous aerosols based on a 12-yr database from 78 monitoring stations across Spain especially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC), with very little elemental carbon (EC) 0.1 μg m-3; OC/EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC/EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning. Correlations between yearly averaged OC/EC and EC concentrations adjust very well to a potential equation (OC/EC = 3.37 EC-0.67 R2 = 0.94). A similar equation is obtained when including average concentrations obtained at other European sites (y = 3.61x-0.5, R2 = 0.78). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance to road, traffic volume and density, mixing layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend of NO2/OC+EC ratios, because these

  6. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    NASA Astrophysics Data System (ADS)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; Sánchez de la Campa, A.; Fernández-Camacho, R.; Rodríguez, S.; Pio, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández Patier, R.

    2013-07-01

    We interpret here the variability of levels of carbonaceous aerosols based on a 12 yr database from 78 monitoring stations across Spain specially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC) with very little elemental carbon (EC), around 0.1 μg m-3; OC / EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC / EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning and of biogenic emissions. Correlations between yearly averaged OC / EC and EC concentrations adjust very well to a potential equation (OC = 3.37 EC0.326, R2 = 0.8). A similar equation is obtained when including average concentrations obtained at other European sites (OC = 3.60EC0.491, R2 = 0.7). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance from road, traffic volume and density, mixing-layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend for

  7. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    NASA Astrophysics Data System (ADS)

    Worton, D. R.; Goldstein, A. H.; Farmer, D. K.; Docherty, K. S.; Jimenez, J. L.; Gilman, J. B.; Kuster, W. C.; de Gouw, J.; Williams, B. J.; Kreisberg, N. M.; Hering, S. V.; Bench, G.; McKay, M.; Kristensen, K.; Glasius, M.; Surratt, J. D.; Seinfeld, J. H.

    2011-10-01

    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August-10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August-12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September-10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The

  8. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  9. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.

    2011-07-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly fractions for major sectors and gridded emissions at a resolution of 0.1° × 0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual

  10. Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Elbert, W.; Maenhaut, W.; Haywood, J.; Osborne, S.; Andreae, M. O.

    2003-07-01

    We collected filter samples of the atmospheric aerosol during the Southern African Regional Science Initiative (SAFARI 2000) experiment onboard the UK Met Office C-130 aircraft. The main operational area was the Atlantic Ocean offshore of Namibia and Angola, where biomass-smoke haze at least 1-2 days old was widespread. The size-fractionated aerosol samples were analyzed for the major inorganic ions, carbonaceous material (elemental and organic carbon), and elements with atomic numbers between 11 (Na) and 82 (Pb). The regional haze aerosol was composed mostly of carbonaceous aerosols (on the average, 81% of the submicron mass), with secondary inorganic aerosols (sulfate, ammonium, and nitrate) accounting for another 14%. K+ and Cl-, typical pyrogenic species, constituted only 2% of the mass. The aerosol chemical data were used to estimate mass emission fluxes for various aerosol components. For African savanna/grassland burning, the estimated emission flux of carbonaceous particles (particulate organic matter plus elemental carbon) is 14 ± 1 Tg yr-1, and that of the nitrogen species (nitrate and ammonium) is 2 ± 2 Tg yr-1. For the flight segments in regional haze, the mean particle scattering coefficient at 550 nm was σs = 101 ± 56 Mm-1 and the mean particle absorption coefficient σa at 565 nm averaged 8 ± 5 Mm-1 (mean single scattering albedo of 0.93 ± 0.06 at 550 nm). The dry mass scattering efficiency αs, calculated from the linear regression of the mean scattering versus the estimated submicron mass, is estimated to be between 4.2 ± and 4.6 ± 0.6 m2 g-1, depending on the assumptions made in calculating the aerosol mass. The dependence of the scattering enhancement ratios Δσs/ΔCO on the distance from the burning regions suggests that the evolution of particle size with time influences the light scattering efficiency. Fresh smoke was sampled during a dedicated flight in the proximity and within the plume of an active biomass burning fire. Here the

  11. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  12. Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China

    NASA Astrophysics Data System (ADS)

    Yao, Huan; Song, Yu; Liu, Mingxu; Archer-Nicholls, Scott; Lowe, Douglas; McFiggans, Gordon; Xu, Tingting; Du, Pin; Li, Jianfeng; Wu, Yusheng; Hu, Min; Zhao, Chun; Zhu, Tong

    2017-04-01

    East China experiences extensive crop residue burnings in fields during harvest season. The direct radiative effect (DRE) of carbonaceous aerosols from crop residue burning in June 2013 in East China was investigated using the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). Absorption of organic aerosol (OA) in the presence of brown carbon was considered using the parameterization of Saleh et al. (2014), in which the imaginary part of the OA refractive index is a function of wavelength and the ratio of black carbon (BC) and OA. The carbonaceous emissions from crop fires were estimated using the Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) product with a localized crop-burning-sourced BC-to-organic carbon (OC) ratio emission ratio of 0.27. Evaluation of the model results with in situ measurements of particulate matter with aerodynamic diameter less than 2.5 µm (PM2. 5) chemical composition, MODIS aerosol optical depth (AOD) detections and meteorological observations showed that this model was able to reproduce the magnitude, spatial variation and optical characteristics of carbonaceous aerosol pollution. The observed BC and OC peak concentrations at the site in Suixi, Anhui province, during the 2013 wheat burning season reached 55.3 µg m-3 and 157.9 µg m-3. WRF-Chem simulations reproduced these trends with a correlation coefficient of 0.74, estimating that crop residue burning contributed 86 and 90 % of peak BC and OC, respectively. The simulated hourly DRE from crop residue burning at the top of atmosphere (TOA) reached a maximum of +22.66 W m-2 at the Suixi site. On average, the simulations showed that the crop residue burning introduced a net positive DRE of +0.14 W m-2 at TOA throughout East China, with BC from this source as the main heating contributor (+0.79 W m-2). The OA DRE from crop burning (-0.22 W m-2) was a combined effect of the positive DRE of absorption (+0.21 W m-2) and a stronger

  13. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, Christos; Megaritis, Athanasios G.; Skyllakou, Ksakousti; Charalampidis, Panagiotis E.; Denier van der Gon, Hugo A. C.; Crippa, Monica; Prévôt, André S. H.; Fachinger, Friederike; Wiedensohler, Alfred; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-03-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 × 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 µg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 µg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  14. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Megaritis, A. G.; Skyllakou, K.; Charalampidis, P. E.; Denier van der Gon, H. A. C.; Crippa, M.; Prévôt, A. S. H.; Freutel, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S. N.

    2015-09-01

    We use a three dimensional regional chemical transport model (PMCAMx) with high grid resolution and high resolution emissions (4 km × 4 km) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (Megacities: Emissions, urban, regional, and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 μg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 μg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 μg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  15. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  16. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  17. Emission sources and atmospheric processing of carbonaceous aerosols in India and China: Insights from dual carbon isotope techniques

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Kirillova, E. N.; Bosch, C.; Suresh, T.; Lee, M.; Du, K.; Sheesley, R. J.; Budhavant, K.; Gustafsson, O. M.

    2013-12-01

    The large emissions of carbonaceous aerosols, e.g., black carbon (BC), in India and China have detrimental effects on both human health and the regional climate. However, mitigation efforts as well as accurate modeling of these effects are currently hampered by large uncertainties regarding the contributions from different emission sources, including both primary and secondary processes. Here, we present dual carbon isotope constraints on emissions sources and atmospheric processing from multiple sites capturing the outflow from India and China. Radiocarbon (14C) studies of elemental carbon (EC) - a tracer for BC - show larger relative fossil contributions than expected from bottom-up emission inventories, for both India (49+-5) and China (80 +-6%). Similarly to EC, radiocarbon constraints of water soluble organic carbon (WSOC) shows substantially larger relative fossil contributions in Chinese outflow (30-50%) as compared with India, but also compared to Europe and USA (10-20%). In contrast to the radiocarbon data, stable carbon (d13C) analysis of WSOC shows substantial variability for different sites capturing the Indian outflow. Strong enrichment of heavy isotopes in WSOC is coupled to expected transport time from sources, indicating the influence of photochemical aging during transport. Such trends in the d13C signature are not observed for the EC fraction. Taken together this work show that carbon isotope techniques provide firm constraints on emission sources of different fractions of carbonaceous aerosols, and may also offer insights into atmospheric processing of these constituents during air mass transport.

  18. Development of a preparation system for the radiocarbon analysis of organic carbon in carbonaceous aerosols in China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Liu, D.; Shen, C. D.; Ding, P.; Zhang, G.

    2010-09-01

    Carbonaceous aerosols comprising a large fraction of elemental carbon (EC) and organic carbon (OC) are considered to affect both global climate and human health. Radiocarbon measurements have been proved to be a useful isotopic tracer for distinguishing contemporary and fossil emissions. An optimized system of a two-step thermal preparation system for radiocarbon ( 14C) measurement of OC/TC is firstly established in China. In this system, OC/TC are converted into carbon dioxide under a pure oxygen flow at 340 °C/650 °C and then reduced to graphite for AMS target using the method of zinc reduction. Afterwards, radiocarbon measurements of the targets performed by the NEC Compact AMS System at the Institute of Heavy Ion Physics, Peking University. The measured results for estimated reference martial including HOx I, HOx II and IAEA-C6 are consistent with internationally accepted values. The radiocarbon-based source appointment of carbonaceous aerosols in China would be much more convenient and faster with the preparation system developed in this work.

  19. Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution

    NASA Astrophysics Data System (ADS)

    Fu, T.-M.; Cao, J. J.; Zhang, X. Y.; Lee, S. C.; Zhang, Q.; Han, Y. M.; Qu, W. J.; Han, Z.; Zhang, R.; Wang, Y. X.; Chen, D.; Henze, D. K.

    2012-03-01

    We simulated elemental carbon (EC) and organic carbon (OC) aerosols in China and compared model results to surface measurements at Chinese rural and background sites, with the goal of deriving "top-down" emission estimates of EC and OC, as well as better quantifying the secondary sources of OC. We included in the model state-of-the-science Chinese "bottom-up" emission inventories for EC (1.92 TgC yr-1) and OC (3.95 TgC yr-1), as well as updated secondary OC formation pathways. The average simulated annual mean EC concentration at rural and background sites was 1.1 μgC m-3, 56% lower than the observed 2.5 μgC m-3. The average simulated annual mean OC concentration at rural and background sites was 3.4 μgC m-3, 76% lower than the observed 14 μgC m-3. Multiple regression to fit surface monthly mean EC observations at rural and background sites yielded the best estimate of Chinese EC source of 3.05 ± 0.78 TgC yr-1. Based on the top-down EC emission estimate and observed seasonal primary OC/EC ratios, we estimated Chinese OC emissions to be 6.67 ± 1.30 TgC yr-1. Using these top-down estimates, the simulated average annual mean EC concentration at rural and background sites was significantly improved to 1.9 μgC m-3. However, the model still significantly underestimated observed OC in all seasons (simulated average annual mean OC at rural and background sites was 5.4 μgC m-3), with little skill in capturing the spatiotemporal variability. Secondary formation accounts for 21% of Chinese annual mean surface OC in the model, with isoprene being the most important precursor. In summer, as high as 62% of the observed surface OC may be due to secondary formation in eastern China. Our analysis points to four shortcomings in the current bottom-up inventories of Chinese carbonaceous aerosols: (1) the anthropogenic source is underestimated on a national scale, particularly for OC; (2) the spatiotemporal distributions of emissions are misrepresented; (3) there is a missing

  20. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Perron, N.; Ciobanu, V. G.; Zotter, P.; Minguillón, M. C.; Wacker, L.; Prévôt, A. S. H.; Baltensperger, U.; Szidat, S.

    2012-07-01

    Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters, and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C, followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols like EUSAAR_2, compared to pure oxygen methods; and (4) S4 in O2 at 760 °C for recovery of the remaining EC. WINSOC was found to have a significantly higher fossil contribution than the water-soluble OC (WSOC). Moreover, the experimental results

  1. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Perron, N.; Ciobanu, V. G.; Zotter, P.; Minguillón, M. C.; Wacker, L.; Prévôt, A. S. H.; Baltensperger, U.; Szidat, S.

    2012-11-01

    Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. The optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions may differ in their origins. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon measurements; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols

  2. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Guazzotti, S. A.; Suess, D. T.; Coffee, K. R.; Quinn, P. K.; Bates, T. S.; Wisthaler, A.; Hansel, A.; Ball, W. P.; Dickerson, R. R.; Neusüß, C.; Crutzen, P. J.; Prather, K. A.

    2003-08-01

    A major objective of the Indian Ocean Experiment (INDOEX) involves the characterization of the extent and chemical composition of pollution outflow from the Indian Subcontinent during the winter monsoon. During this season, low-level flow from the continent transports pollutants over the Indian Ocean toward the Intertropical Convergence Zone (ITCZ). Traditional standardized aerosol particle chemical analysis, together with real-time single particle and fast-response gas-phase measurements provided characterization of the sampled aerosol chemical properties. The gas- and particle-phase chemical compositions of encountered air parcels changed according to their geographic origin, which was traced by back trajectory analysis. The temporal evolutions of acetonitrile, a long-lived specific tracer for biomass/biofuel burning, number concentration of submicrometer carbon-containing particles with potassium (indicative of combustion sources), and mass concentration of submicrometer non-sea-salt (nss) potassium are compared. High correlation coefficients (0.84 < r2 < 0.92) are determined for these comparisons indicating that most likely the majority of the species evolve from the same, related, or proximate sources. Aerosol and trace gas measurements provide evidence that emissions from fossil fuel and biomass/biofuel burning are subject to long-range transport, thereby contributing to anthropogenic pollution even in areas downwind of South Asia. Specifically, high concentrations of submicrometer nss potassium, carbon-containing particles with potassium, and acetonitrile are observed in air masses advected from the Indian subcontinent, indicating a strong impact of biomass/biofuel burning in India during the sampling periods (74 (±9)% biomass/biofuel contribution to submicrometer carbonaceous aerosol). In contrast, lower values for these same species were measured in air masses from the Arabian Peninsula, where dominance of fossil fuel combustion is suggested by results

  3. Near-Real Time Measurement of Carbonaceous Aerosol Using Microplasma Spectroscopy: Application to Measurement of Carbon Nanomaterials

    PubMed Central

    Zheng, Lina; Kulkarni, Pramod; Birch, M. Eileen; Deye, Gregory; Dionysiou, Dionysios D.

    2017-01-01

    A sensitive, field-portable microplasma spectroscopy method has been developed for real-time measurement of carbon nanomaterials. The method involves microconcentration of aerosol on a microelectrode tip for subsequent analysis for atomic carbon using laser-induced breakdown spectroscopy (LIBS) or spark emission spectroscopy (SES). The spark-induced microplasma was characterized by measuring the excitation temperature (15,000 – 35,000 K), electron density (1.0 × 1017 – 2.2 × 1017 cm−3), and spectral responses as functions of time and interelectrode distance. The system was calibrated and detection limits were determined for total atomic carbon (TAC) using a carbon emission line at 247.856 nm (C I) for various carbonaceous materials including sucrose, EDTA, caffeine, sodium carbonate, carbon black, and carbon nanotubes. The limit of detection for total atomic carbon was 1.61 ng, equivalent to 238 ng m−3 when sampling at 1.5 L min−1 for 5 min. To improve the selectivity for carbon nanomaterials, which consist of elemental carbon (EC), the cathode was heated to 300 °C to reduce the contribution of organic carbon to the total atomic carbon. Measurements of carbon nanotube aerosol at elevated electrode temperature showed improved selectivity to elemental carbon and compared well with the measurements from thermal optical method (NIOSH Method 5040). The study shows that the SES method to be an excellent candidate for development as a low-cost, hand-portable, real-time instrument for measurement of carbonaceous aerosols and nanomaterials. PMID:28638174

  4. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997

    NASA Astrophysics Data System (ADS)

    Junker, C.; Liousse, C.

    2008-03-01

    Country by country emission inventories for carbonaceous aerosol for the period 1860 to 1997 have been constructed on the basis of historic fuel production, use and trade data sets published by the United Nation's Statistical Division UNSTAT (1997), Etemad et al. (1991) and Mitchell (1992, 1993, 1995). The inventories use emission factors variable over time, which have been determined according to changes in technological development. The results indicate that the industrialisation period since 1860 was accompanied by a steady increase in black carbon (BC) and primary organic carbon (POC) emissions up to 1910. The calculations show a moderate decrease of carbonaceous aerosol emissions between 1920 and 1930, followed by an increase up to 1990, the year when emissions began to decrease again. Changes in BC and POC emissions prior to the year 1950 are essentially driven by the USA, Germany and the UK. The USSR, China and India become substantial contributors to carbonaceous aerosol emissions after 1950. Emission maps have been generated with a 1°×1° resolution based on the relative population density in each country. They will provide a helpful tool for assessing the effect of carbonaceous aerosol emissions on observed climate changes of the past.

  5. Aerosol photoemission for quantification of polycyclic aromatic hydrocarbons in simple mixtures adsorbed on carbonaceous and sodium chloride aerosols

    SciTech Connect

    Niessner, R.; Hemmerich, B.; Wilbring, P. )

    1990-10-01

    The photoelectric aerosol sensor was applied as a tool for the in situ and on-line detection of surface-enriched polycyclic aromatic hydrocarbons (PAHs). Carbon aerosol and sodium chloride aerosol were coated stepwise with up to four different PAHs or simultaneously with three different PAHs (internally mixed aerosol). The measured photoelectric signal of the internally mixed aerosol was compared with the expected signal, which was calculated from the previous calibration of the sensor. An additivity of the individual contributions of the adsorbed PAHs on the sum signal was found. Experiments with photoelectrically inactive paraffin adsorbed on photoelectrically active aerosol particles have demonstrated that only the surface composition contributes to the photoemission signal.

  6. Carbonaceous Aerosol Characteristics over a Pinus taeda plantation: Results from the CELTIC experiment

    EPA Science Inventory

    Carbonaceous particles smaller than 2.5 um aerodynamic diameter (PM2.5) were collected in July, 2003 over a Loblolly Pine plantation at Duke Forest, NC during the Chemical Emission, Loss, Transformation and Interactions within Canopies (CELTIC) field study. Organic (OC) and eleme...

  7. SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous...

  8. Carbonaceous Aerosol Characteristics over a Pinus taeda plantation: Results from the CELTIC experiment

    EPA Science Inventory

    Carbonaceous particles smaller than 2.5 um aerodynamic diameter (PM2.5) were collected in July, 2003 over a Loblolly Pine plantation at Duke Forest, NC during the Chemical Emission, Loss, Transformation and Interactions within Canopies (CELTIC) field study. Organic (OC) and eleme...

  9. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    EPA Science Inventory

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  10. SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous...

  11. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    EPA Science Inventory

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  12. Source apportionment of the carbonaceous aerosol in Norway - quantitative estimates based on 14C, thermal-optical and organic tracer analysis

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Simpson, D.; Stenström, K.; Puxbaum, H.; Svendby, T.

    2011-09-01

    In the present study, source apportionment of the ambient summer and winter time particulate carbonaceous matter (PCM) in aerosol particles (PM1 and PM10) has been conducted for the Norwegian urban and rural background environment. Statistical treatment of data from thermal-optical, 14C and organic tracer analysis using Latin Hypercube Sampling has allowed for quantitative estimates of seven different sources contributing to the ambient carbonaceous aerosol. These are: elemental carbon from combustion of biomass (ECbb) and fossil fuel (ECff), primary and secondary organic carbon arising from combustion of biomass (OCbb) and fossil fuel (OCff), primary biological aerosol particles (OCPBAP, which includes plant debris, OCpbc, and fungal spores, OCpbs), and secondary organic aerosol from biogenic precursors (OCBSOA). Our results show that emissions from natural sources were particularly abundant in summer, and with a more pronounced influence at the rural compared to the urban background site. 80% of total carbon (TCp, corrected for the positive artefact) in PM10 and ca. 70% of TCpin PM1 could be attributed to natural sources at the rural background site in summer. Natural sources account for about 50% of TCp in PM10 at the urban background site as well. The natural source contribution was always dominated by OCBSOA, regardless of season, site and size fraction. During winter anthropogenic sources totally dominated the carbonaceous aerosol (80-90%). Combustion of biomass contributed slightly more than fossil-fuel sources in winter, whereas emissions from fossil-fuel sources were more abundant in summer. Mass closure calculations show that PCM made significant contributions to the mass concentration of the ambient PM regardless of size fraction, season, and site. A larger fraction of PM1 (ca. 40-60%) was accounted for by carbonaceous matter compared to PM10 (ca. 40-50%), but only by a small margin. In general, there were no pronounced differences in the relative

  13. Source apportionment of the carbonaceous aerosol in Norway - quantitative estimates based on 14C, thermal-optical and organic tracer analysis

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Simpson, D.; Stenström, K.; Puxbaum, H.; Svendby, T.

    2011-03-01

    In the present study, source apportionment of the ambient summer and winter time particulate carbonaceous matter (PCM) in aerosol particles (PM1 and PM10) has been conducted for the Norwegian urban and rural background environment. Statistical treatment of data from thermal-optical, 14C and organic tracer analysis using Latin Hypercube Sampling has allowed for quantitative estimates of seven different sources contributing to the ambient carbonaceous aerosol. These are: elemental carbon from combustion of biomass (ECbb) and fossil fuel (ECff), organic carbon from combustion of biomass (OCbb), fossil fuel (OCff), primary biological aerosol particles (OCPBAP, which includes plant debris, OCpbc, and fungal spores, OCpbs), and secondary organic aerosol from biogenic precursors (OCBSOA). Our results show that emissions from natural sources were particularly abundant in summer, and with a more pronounced influence at the rural compared to the urban background site. 80% of total carbon (TCp, corrected for the positive artefact) in PM10 and 70% of TCp in PM1 could be attributed to natural sources at the rural background site in summer. Natural sources account for about 50% of TCp in PM10 at the urban background site as well. The natural source contribution was always dominated by OCBSOA, regardless of season, site and size fraction. During winter anthropogenic sources totally dominated the carbonaceous aerosol (83-90%). Combustion of biomass contributed slightly more than fossil-fuel sources in winter, whereas emissions from fossil-fuel sources were more abundant in summer. Mass closure calculations show that PCM likely dominated the mass concentration of the ambient PM regardless of size fraction, season, and site. A larger fraction of PM1 (64-69%) was accounted for by carbonaceous matter compared to PM10 (51-67%), but only by a small margin. In general, there were no pronounced differences in the relative contribution of carbonaceous matter to PM with respect to season or

  14. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July-August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-07-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T=550°C) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) concentrations were on average respectively 1.19±0.56 and 3.62±1.08 μgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 μgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope = 1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between

  15. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-10-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these

  16. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  17. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles

    NASA Astrophysics Data System (ADS)

    Pósfai, MiháLy; Simonics, RenáTa; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-07-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, "tar ball" particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (˜1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  18. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  19. Synthesizing Scientific Progress: Outcomes from US EPA’s Carbonaceous Aerosols and Source Apportionment STAR Grants

    EPA Science Inventory

    ABSTRACTA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isopre...

  20. Synthesizing Scientific Progress: Outcomes from US EPA’s Carbonaceous Aerosols and Source Apportionment STAR Grants

    EPA Science Inventory

    ABSTRACTA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isopre...

  1. Characterization of carbonaceous aerosols over the East China Sea: The impact of the East Asian continental outflow

    NASA Astrophysics Data System (ADS)

    Wang, Fengwen; Guo, Zhigang; Lin, Tian; Hu, Limin; Chen, Yingjun; Zhu, Yifang

    2015-06-01

    Seventy-five paired PM2.5 (aerodynamic diameter less than 2.5 μm) and TSP (total suspended particle) samples collected from a pristine island in the East China Sea (ECS) between October 2011 and August 2012 were analyzed for organic carbon (OC), elemental carbon (EC), and n-alkanes. The island lies in the pathway of continental outflow from Mainland China to the northwest Pacific Ocean driven by the East Asian Monsoon. The concentrations of OC, EC (in μg/m3), and n-alkanes (in ng/m3) were highest in winter (means: 4.7, 1.3, 140.1, respectively) and lowest in summer (means: 1.1, 0.3, 17.0, respectively). PM2.5 contained approximately 88% of the OC, 80% of the EC, and 61% of the n-alkanes in TSP. Petroleum residue was the dominant contributor to the n-alkanes. C12-C22n-alkanes with strong even-to-odd predominance observed in winter were attributed to the microbial contribution from sea spray aerosol (SSA) driven by the higher wind speed. There was a higher secondary organic carbon (SOC)/OC ratio in warm seasons (summer and fall) than that in cold seasons (spring and winter). The dominance of primary organic carbon (POC) and EC in cold seasons was possibly mainly due to the influence of the East Asian continental outflow. Three episodes of high concentrations of carbonaceous aerosols were observed, and we focused on the impact of these pollutants from East Asia on the air quality over the ECS. Carbonaceous pollutants were more concentrated in PM2.5 during the fall episode triggered by biomass burning in East China. The winter haze associated with intensive indoor heating in North China brought substantial carbonaceous pollutants, with a minor influence on their size distribution. The dust episode in spring was related to coarse particles (i.e., TSP-PM2.5), yielding a distinctly different size distribution.

  2. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  3. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Butler, T.; Lawrence, M. G.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Charalampidis, P.; Pilinis, C.; Pandis, S. N.

    2014-04-01

    We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet stoves. Simulations show a large decrease of fine organic aerosol (more than 60%) in urban and suburban areas during winter and decreases of 30-50% in elemental carbon levels in large parts of Europe. There is also a considerable decrease (around 40%) of oxidized OA, mostly in rural and remote regions. Total PM2.5 mass is predicted to decrease by 15-40% on average during the winter in continental Europe. Accurate representation of the intermediate volatility precursors of organic aerosol in the emission inventory is crucial in assessing the efficiency of such abatement strategies.

  4. Characteristics of carbonaceous aerosols: Impact of biomass burning and secondary formation in summertime in a rural area of the North China Plain.

    PubMed

    Yao, Lan; Yang, Lingxiao; Chen, Jianmin; Wang, Xinfeng; Xue, Likun; Li, Weijun; Sui, Xiao; Wen, Liang; Chi, Jianwei; Zhu, Yanhong; Zhang, Junmei; Xu, Caihong; Zhu, Tong; Wang, Wenxing

    2016-07-01

    To determine the characteristics of carbonaceous aerosols in rural areas of the North China Plain, field measurements were conducted at Yucheng (YC) in the summers of 2013 and 2014. The concentrations of carbonaceous aerosols at YC exhibited clear diurnal variation, with higher concentrations in the early morning and at night and lower concentrations during the afternoon hours. The mass-balance method designed for particulate matter smaller than 2.5μm (PM2.5) was used to calculate the organic matter (OM)/organic carbon (OC) ratio. The value obtained, 2.07±0.05, was suggested as a reference to estimate organics in PM2.5 in rural areas of the North China Plain. Biomass burning was identified to be a significant source of carbonaceous aerosols; approximately half of the samples obtained at YC were affected by biomass burning during summer 2013. Case studies revealed that biomass burning accounted for up to 52.6% of the OC and 51.1% of the elemental carbon in PM2.5 samples. The organic coatings observed on sulphur-rich and potassium-rich particles indicated the formation of secondary organic aerosols (SOA) from the oxidation of precursor volatile organic compounds (VOCs) during the aging of smoke released from biomass burning. Based on the evolution of the VOCs, the contribution of VOCs oxidation to SOA concentration was 3.21 and 1.07μgm(-3)ppm(-1) CO under conditions of low nitrogen oxide (NOx) and high NOx, respectively. Aromatics (e.g. benzene, toluene, xylene and ethylbenzene) made the greatest contribution to SOA concentration (88.4% in low-NOx conditions and 80.6% in high-NOx conditions). The results of the study offer novel insights into the effects of biomass burning on the carbonaceous aerosols and SOA formation in polluted rural areas.

  5. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    SciTech Connect

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other

  6. Observation of carbonaceous aerosols and carbon monoxide in Mid-Atlantic region: Seasonal and inter-annual variations

    NASA Astrophysics Data System (ADS)

    Chen, L. A.; Doddridge, B. G.; Doddridge, B. G.; Dickerson, R. R.; Dickerson, R. R.

    2001-05-01

    As part of Maryland Aerosol Research and Characterization (MARCH-Atlantic) study, a long-term monitoring of ambient elemental and organic carbon (EC and OC) aerosols has been made at Fort Meade, MD (39.16° N 76.51° W; elevation 46 m MSL), a suburban site within the Baltimore-Washington (B-W) corridor, since July 1999. 24-hr average EC and OC are measured every day during the season-representative months (July 1999, October 1999, January 2000, April 2000 and July 2000). Carbon monoxide (CO) was also measured nearly continuously over the period. Strong correlation between EC and CO (r = 0.7 ~ 0.9) in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope, however, varies in different seasons and is found to increase nonlinearly with the ambient temperature. EC source strength may peak in summer. OC shows strong correlation with EC (r ~ 0.95) only in winter, suggesting that OC is also of the same primary sources during wintertime. The Interagency Monitoring of Protected Visual Environments (IMPROVE) network has been measuring EC and OC around the United States since 1988. The FME data during July 1999 are also compared with simultaneous measurements at nearby IMPROVE sites, showing B-W corridor could be a major contributor to the carbonaceous aerosols in the Mid-Atlantic region. A decreasing trend of EC level is found in three IMPROVE sites in this region. This actually agrees with the decreasing trend of CO observed previously at Big Meadow, Shenandoah National Park if CO and EC are both influenced by traffic emissions.

  7. Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Cziczo, D. J.; Hudson, P. K.; Thomson, D. S.

    2007-02-01

    The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument has measured the composition of single particles in the lower stratosphere. The average fraction of carbonaceous material in the stratospheric particles decreased rapidly above the tropopause. The decrease in the average carbon content was mostly associated with a sharp increase in the bottom 2 km of the stratosphere in the frequency of fairly pure sulfate particles both with or without meteoric metals. The low potassium content of the fairly pure sulfate particles is used to show that they were formed in the stratosphere and were not tropospheric particles that had lost organics because of oxidation. Of the tropospheric carbonaceous-sulfate particles found in the stratosphere, the mass spectra had similar patterns from the upper troposphere to the maximum altitude sampled, about 19 km. A reduction in the carbon to sulfate ratio in tropospheric particles was only apparent above about 440 K potential temperature. This implies that carbon compounds can remain for months in particles larger than about 300 nm. Despite the slow rate, these data do not exclude rapid heterogeneous reactions of organics in the particles with OH or other radicals. There was no evidence of significant transfer of semivolatile organics between particles in the stratosphere. However, particles that originated in the stratosphere acquired small amounts of carbon when they were transported to the tropopause.

  8. Spatial Distribution of Carbonaceous Aerosol in the Southeastern Baltic Sea Region (Event of Grass Fires)

    NASA Astrophysics Data System (ADS)

    Dudoitis, Vadimas; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Bozzetti, Carlo; Fröhlich, Roman; Mordas, Genrik; Ulevičius, Vidmantas

    2016-06-01

    The aerosol chemical composition in air masses affected by large vegetation fires transported from the Kaliningrad region (Russia) and southeast regions (Belarus and Ukraine) during early spring (March 2014) was characterized at the remote background site of Preila, Lithuania. In this study, the chemical composition of the particulate matter was studied by high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalo-meter. Air masses were transported from twenty to several hundred kilometres, arriving at the measurement station after approximately half a day of transport. The concentration-weighted trajectory analysis suggests that organic aerosol particles are mainly transported over the Baltic Sea and the continent (southeast of Belarus). Results show that a significant fraction of the vegetation burning organic aerosol is transformed into oxidised forms in less than a half-day. Biomass burning aerosol (BBOA) was quantified from the ACSM data using a positive matrix factorization (PMF) analysis, while its spatial distribution was evaluated using air mass clustering approach.

  9. Highly Siderophile Elements and Osmium Isotope Systematics in Ureilites: Are the Carbonaceous Veins Primary Components?

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. D.; Humayun, M.

    2005-01-01

    Ureilites are an enigmatic group of primitive carbon-bearing achondrites of ultramafic composition. The majority of the 143 ureilite meteorites consist primarily of olivine and pyroxene (and occasionally chromite) [1]. They are coarse-grained, slowly cooled, and depleted in incompatible lithophile elements. Minor amounts of dark interstitial material consisting of carbon, metal, sulfides, and fine-grained silicates occur primarily along silicate grain boundaries, but also intrude the silicates along fractures and cleavage planes. Variable degrees of impact shock features have also been imparted on ureilites. The prevailing two origins proposed for these rocks are either as melting residues of carbonaceous chondritic material [2], [3], or alternatively, derivation as mineral cumulates from such melts [4], [5], [6]. It has recently been proposed that ureilites are the residues of a smelting event, i.e. residues of a partial melting event under highly reducing conditions, where a solid Fe-bearing phase reacts with a melt and carbon to form Fe metal and carbon monoxide [7]. Rapid, localized extraction and loss of the basaltic component into space resulting from high eruption velocities could preserve unequilibrated oxygen isotopes and produce the observed olivine-pyroxene residues via 25-30% partial melting of chondritic-like precursor material.

  10. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    SciTech Connect

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2016-07-12

    In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.

  11. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol.

    PubMed

    Brown, Margaret E; Mukhopadhyay, Aindrila; Keasling, Jay D

    2016-12-16

    We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. In the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.

  12. One-Year Observation of Water-Soluble Organic Aerosol Components in Fine and Coarse Aerosol Particle Samples

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Winterhalter, R.; Su, H.; Moortgat, G. K.; Pöschl, U.

    2009-04-01

    In this study, fine and coarse aerosol particle filter samples (3 µm cut-off diameter) were collected with a high-volume dichotomous sampler over a period of one year from May 2006 to May 2007 in Mainz, Germany. The water-soluble organic components have been extracted and analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS). The detected and quantified compounds comprise nitrophenols, aliphatic and aromatic dicarboxylic acids, and a C8-tricarboxylic acid (204 Da) which is likely to be formed upon oxidation of pinic acid and may be useful as a tracer of aerosol aging processes. Kubátová et al. (2000) found the C8-tricarboxylic acid as a major component of pinene SOA in tropical rainforest aerosol from the Amazon basin and summertime aerosol from Ghent, Belgium. Recently, Szmigielski et al. (2007) identified it as 3-methyl-1,2,3-butanetricarboxylic acid. The concentrations of the C8-tricarboxylic were closely correlated with the concentrations of pinic acid in the coarse particle samples, but not in the fine particle samples. Seasonal variations and the influence of solar radiation and atmospheric oxidizing capacity on the ratios of the C8-tricarboxylic acid to pinic acid and to other quantified compounds will be discussed. Acknowledgement: We thank M. Claeys for providing a reference sample of 3-methyl-1,2,3-butanetricarboxylic acid and T. Hoffmann for helpful discussions. References: A. Kubátová, R. Vermeylen, M. Claeys, J. Cafmeyer, W. Maenhaut, G. Roberts, and P. Artaxo (2000). Carbonaceous aerosol characterisation in the Amazon basin, Brazil: Novel dicarboxylic acids and related compounds, Atmos. Environ., 34, 5037-5051. R. Szmigielski, J.D. Surratt, Y. Gómez-González, P. Van der Veken, I. Kourtchev, R. Vermeylen, F. Blockhuys, M. Jaoui, T.E. Kleindienst, M. Lewandowski, J.H. Offenberg, E.O. Edney, J.H. Seinfeld, W. Maenhaut, M. Claeys (2007). 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for

  13. Revisiting AVHRR Tropospheric Aerosol Trends Using Principal Component Analysis

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    The advanced very high resolution radiometer (AVHRR) satellite instruments provide a nearly 25 year continuous record of global aerosol properties over the ocean. It offers valuable insights into the long-term change in global aerosol loading. However, the AVHRR data record is heavily influenced by two volcanic eruptions, El Chichon on March 1982 and Mount Pinatubo on June 1991. The gradual decay of volcanic aerosols may last years after the eruption, which potentially masks the estimation of aerosol trends in the lower troposphere, especially those of anthropogenic origin. In this study, we show that a principal component analysis approach effectively captures the bulk of the spatial and temporal variability of volcanic aerosols into a single mode. The spatial pattern and time series of this mode provide a good match to the global distribution and decay of volcanic aerosols. We further reconstruct the data set by removing the volcanic aerosol component and reestimate the global and regional aerosol trends. Globally, the reconstructed data set reveals an increase of aerosol optical depth from 1985 to 1990 and decreasing trend from 1994 to 2006. Regionally, in the 1980s, positive trends are observed over the North Atlantic and North Arabian Sea, while negative tendencies are present off the West African coast and North Pacific. During the 1994 to 2006 period, the Gulf of Mexico, North Atlantic close to Europe, and North Africa exhibit negative trends, while the coastal regions of East and South Asia, the Sahel region, and South America show positive trends.

  14. Revisiting AVHRR tropospheric aerosol trends using principal component analysis

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-03-01

    The advanced very high resolution radiometer (AVHRR) satellite instruments provide a nearly 25 year continuous record of global aerosol properties over the ocean. It offers valuable insights into the long-term change in global aerosol loading. However, the AVHRR data record is heavily influenced by two volcanic eruptions, El Chichon on March 1982 and Mount Pinatubo on June 1991. The gradual decay of volcanic aerosols may last years after the eruption, which potentially masks the estimation of aerosol trends in the lower troposphere, especially those of anthropogenic origin. In this study, we show that a principal component analysis approach effectively captures the bulk of the spatial and temporal variability of volcanic aerosols into a single mode. The spatial pattern and time series of this mode provide a good match to the global distribution and decay of volcanic aerosols. We further reconstruct the data set by removing the volcanic aerosol component and reestimate the global and regional aerosol trends. Globally, the reconstructed data set reveals an increase of aerosol optical depth from 1985 to 1990 and decreasing trend from 1994 to 2006. Regionally, in the 1980s, positive trends are observed over the North Atlantic and North Arabian Sea, while negative tendencies are present off the West African coast and North Pacific. During the 1994 to 2006 period, the Gulf of Mexico, North Atlantic close to Europe, and North Africa exhibit negative trends, while the coastal regions of East and South Asia, the Sahel region, and South America show positive trends.

  15. What is the "Clim-Likely" aerosol product?

    Atmospheric Science Data Center

    2014-12-08

    ... as one standard against which to compare MISR aerosol air mass type retrieval results. Six component aerosols included in the model were ... black carbon, and carbonaceous aerosols. Five aerosol air mass "Mixing Groups" and thirteen sub-groups were identified from a cluster ...

  16. Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds

    NASA Astrophysics Data System (ADS)

    Kubátová, Alena; Vermeylen, Reinhilde; Claeys, Magda; Cafmeyer, Jan; Maenhaut, Willy; Roberts, Greg; Artaxo, Paulo

    High-resolution capillary gas chromatography (GC) and GC/mass spectrometry (MS) were employed for the quantitative determination of dichloromethane-extractable organic compounds in total and size-fractionated aerosol samples which were collected in the Amazon basin, Brazil, during the wet season, as part of the LBA-CLAIRE-98 experiment. Special emphasis was placed on the characterization and identification of several novel unknown dicarboxylic acids and related oxidative degradation products. This class of acidic products was enriched in the fine size fraction, suggesting that they were secondary organic aerosol products formed by gas-to-particle conversion. Some of the unknowns contributed more to the class of dicarboxylic acids than the major known compound, nonadioic acid (azelaic acid). The same unknowns were also observed in urban aerosol samples collected on hot summer days in Gent, Belgium. For the characterization and structure elucidation of the unknowns, various types of derivatizations and fractionation by solid-phase extraction were employed in combination with GC/MS. Four unknowns were identified. The most abundant were two derivatives of glutaric acid, 3-isopropyl pentanedioic acid and 3-acetyl pentanedioic acid. The other two identified unknowns were another oxo homologue, 3-acetyl hexanedioic acid, and, interestingly, 3-carboxy heptanedioic acid. To our knowledge, the occurrence of these four compounds in atmospheric aerosols has not yet been reported. The biogenic precursors of the novel identified compounds could not be pinpointed, but most likely include monoterpenes and fatty acids.

  17. Variations of carbonaceous aerosols from open crop residue burning with transport and its implication to estimate their lifetimes

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Komazaki, Y.; Taketani, F.; Akimoto, H.; Pochanart, P.

    2013-08-01

    Studying the correlations of carbonaceous aerosols (element carbon, EC, and organic carbon, OC) from open biomass burning helps to reduce uncertainties in emission inventories and provides necessary constraints for model simulations. In the present study, we measured apparent elemental carbon (ECa) and OC concentrations at the summit of Mount Tai (Mt. Tai) during intensive open crop residue burning (OCRB) episodes using a Sunset OCEC analyzer. In the fine particle mode, OC and ECa showed strong correlations (r > 0.9) with carbon monoxide (CO). Footprint analysis using the FLEXPART_WRF model indicated that OCRB in Central East China had a significant influence on ambient carbonaceous aerosol loadings at the summit of Mt. Tai. During campaign, ΔECa/ΔCO ratios of OCRB plumes were found to be 14.3 ± 1.0 ng m-3 ppbv at Mt. Tai. This ratio was twice larger than those for urban pollution in CEC, demonstrating that significant emissions of soot particles emitted from OCRB. ΔOC/ΔCO ratio of OCRB plumes was found to be 41.9 ± 2.6 ng m-3 ppbv averagely. The transport time of smoke particles was estimated using the FLEXPART_WRF tracer model by releasing particles from the ground layer inside geographical regions where large numbers of hotspots were detected by the MODIS sensor. The relationship between transport time and observed ΔECa/ΔCO and ΔOC/ΔCO ratios was fitted by an e-folding exponential function. Results showed that the loss rate of OC (normalized by CO) with transport was much quicker than that of ECa mass, and the corresponding lifetime of OC mass was estimated to be 28.0-44.2 h (1.2-1.8 days), much shorter than that 98.4-136.9 h (4.1-5.7 days) of ECa. Lifetime of ECa estimated for the OCRB events in CEC in the study was comparably lower than the values normally calculated by the transport models. Short lifetime of OC highlighted its vulnerability to cloud scavenging in the presence of water-soluble organic species from biomass combustion.

  18. Estimation of lifetime of carbonaceous aerosol from open crop residue burning during Mount Tai Experiment 2006 (MTX2006)

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Komazaki, Y.; Taketani, F.; Akimoto, H.; Pochanart, P.; Liu, Y.

    2012-06-01

    Studying the emission ratios of carbonaceous aerosols (element carbon, EC, and organic carbon, OC) from open biomass burning helps to reduce uncertainties in emission inventories and provides necessary constraints for model simulations. We measured apparent elemental carbon (ECa) and OC concentrations at the summit of Mount Tai (Mt. Tai) during intensive open crop residue burning (OCRB) episodes using a Sunset OCEC analyzer. Equivalent black carbon (BCe) concentrations were determined using a Multiple Angle Absorption Photometer (MAAP). In the fine particle mode, OC and EC showed strong correlations (r > 0.9) with carbon monoxide (CO). Footprint analysis using the FLEXPART_WRF model indicated that OCRB in central east China (CEC) had a significant influence on ambient carbonaceous aerosol loadings at the summit of Mt. Tai. ΔECa/ΔCO ratios resulting from OCRB plumes were 14.3 ± 1.0 ng m-3 ppbv-1 at Mt. Tai. This ratio was more than three times those resulting from urban pollution in CEC, demonstrating that significant concentrations of soot particles were released from OCRB. ΔOC/ΔCO ratio from fresh OCRB plumes was found to be 41.9 ± 2.6 ng m-3 ppbv-1 in PM1. The transport time of smoke particles was estimated using the FLEXPART_WRF tracer model by releasing inert particles from the ground layer inside geographical regions where large numbers of hotspots were detected by a MODIS satellite sensor. Fitting regressions using the e-folding exponential function indicated that the removal efficiency of OC (normalized to CO) was much larger than that of ECa mass, with mean lifetimes of 27 h (1.1 days) for OC and 105 h (4.3 days) for ECa, respectively. The lifetime of black carbon estimated for the OCRB events in east China was comparably lower than the values normally adopted in the transport models. Short lifetime of organic carbon highlighted the vulnerability of OC to cloud scavenging in the presence of water-soluble organic species from biomass combustion.

  19. Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Huang, X. H. Hilda; Bian, Q. J.; Louie, P. K. K.; Yu, J. Z.

    2014-01-01

    Hourly measurements of elemental carbon (EC) and organic carbon (OC) were made at Mong Kok, a roadside air quality monitoring station in Hong Kong for a year from May 2011 to April 2012. The monthly average EC concentrations were 3.8-4.9 μgC m-3, accounting for 9.2-17.7% of the PM2.5 mass (21.5-49.7 μg m-3). The EC concentrations showed little seasonal variation and peaked twice daily in coincidence with the traffic rush hours of a day. Good correlations were found between EC and NOx concentrations, especially during the rush hours in the morning. In time periods when diesel-powered vehicles dominated the road traffic, the OC / EC ratio was approximately 0.5. The analysis by the minimum OC / EC ratio approach to determine OC / EC ratio representative of primary emissions also yields a value of 0.5, suggesting that it is a reasonable lower limit estimation of (OC / EC)vehicle in representing vehicular emissions. By applying the derived (OC / EC)vehicle ratio to the dataset, the monthly average vehicle-related OC was estimated to account for 16.6-64.0% of the measured OC throughout the year. Vehicle-related OC was also estimated using receptor modeling of a combined dataset of hourly NOx, OC, EC and select volatile organic compounds. The estimations by the two different approaches were in good agreement. When both EC and vehicle-derived organic matter (OM) (assuming an OM-to-OC ratio of 1.4) are considered, vehicular carbonaceous aerosols contributed ~ 7.3 μg m-3 to PM2.5, accounting for ~ 20% of PM2.5 mass (38.3 μg m-3) during winter when Hong Kong was largely influenced by regional transport of air pollutants and ~ 30% of PM2.5 mass (28.2 μg m-3) during summertime when local emission sources were dominant. A reduction of 3.82 μg m-3 in vehicular carbonaceous aerosols was observed during 07:00-11:00 LT (i.e. rush hours on weekdays) on Sundays and public holidays. This could mainly be attributed to less on-road public transportation (e.g. diesel-powered buses

  20. Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Huang, X. H. H.; Bian, Q. J.; Louie, P. K. K.; Yu, J. Z.

    2014-09-01

    Hourly measurements of elemental carbon (EC) and organic carbon (OC) were made at Mong Kok, a roadside air quality monitoring station in Hong Kong, for a year, from May 2011 to April 2012. The monthly average EC concentrations were 3.8-4.9 μg C m-3, accounting for 9.2-17.7% of the PM2.5 mass (21.5-49.7 μg m-3). The EC concentrations showed little seasonal variation and peaked twice daily, coinciding with the traffic rush hours of a day. Strong correlations were found between EC and NOx concentrations, especially during the rush hours in the morning, confirming vehicular emissions as the dominant source of EC at this site. The analysis by means of the minimum OC / EC ratio approach to determine the OC / EC ratio representative of primary vehicular emissions yields a value of 0.5 for (OC / EC)vehicle. By applying the derived (OC / EC)vehicle ratio to the data set, the monthly average vehicle-related OC was estimated to account for 17-64% of the measured OC throughout the year. Vehicle-related OC was also estimated using receptor modeling of a combined data set of hourly NOx, OC, EC and volatile organic compounds characteristic of different types of vehicular emissions. The OCvehicle estimations by the two different approaches were in good agreement. When both EC and vehicle-derived organic matter (OM) (assuming an OM-to-OC ratio of 1.4) are considered, vehicular carbonaceous aerosols contributed ~ 7.3 μg m-3 to PM2.5, accounting for ~ 20% of PM2.5 mass (38.3 μg m-3) during winter, when Hong Kong received significant influence of air pollutants transported from outside, and ~ 30% of PM2.5 mass (28.2 μg m-3) during summertime, when local emission sources were dominant. A reduction of 3.8 μg m-3 in vehicular carbonaceous aerosols was estimated during 07:00-11:00 (i.e., rush hours on weekdays) on Sundays and public holidays. This could mainly be attributed to less on-road public transportation (e.g., diesel-powered buses) in comparison with non-holidays. These

  1. Intra-urban spatial variability of PM2.5-bound carbonaceous components

    NASA Astrophysics Data System (ADS)

    Xie, Mingjie; Coons, Teresa L.; Dutton, Steven J.; Milford, Jana B.; Miller, Shelly L.; Peel, Jennifer L.; Vedal, Sverre; Hannigan, Michael P.

    2012-12-01

    The Denver Aerosol Sources and Health (DASH) study was designed to evaluate associations between PM2.5 species and sources and adverse human health effects. The DASH study generated a five-year (2003-2007) time series of daily speciated PM2.5 concentration measurements from a single, special-purpose monitoring site in Denver, CO. To evaluate the ability of this site to adequately represent the short term temporal variability of PM2.5 concentrations in the five county Denver metropolitan area, a one year supplemental set of PM2.5 samples was collected every sixth day at the original DASH monitoring site and concurrently at three additional sites. Two of the four sites, including the original DASH site, were located in residential areas at least 1.9 km from interstate highways. The other two sites were located within 0.3 km of interstate highways. Concentrations of elemental carbon (EC), organic carbon (OC), and 58 organic molecular markers were measured at each site. To assess spatial variability, site pairs were compared using the Pearson correlation coefficient (r) and coefficient of divergence (COD), a statistic that provides information on the degree of uniformity between monitoring sites. Bi-weekly co-located samples collected from July 2004 to September 2005 were also analyzed and used to estimate the uncertainty associated with sampling and analytical measurement for each species. In general, the two near-highway sites exhibited higher concentrations of EC, OC, polycyclic aromatic hydrocarbons (PAHs), and steranes than did the more residential sites. Lower spatial heterogeneity based on r and COD was inferred for all carbonaceous species after considering their divergence and lack of perfect correlations in co-located samples. Ratio-ratio plots combined with available gasoline- and diesel-powered motor vehicle emissions profiles for the region suggested a greater impact to high molecular weight (HMW) PAHs from diesel-powered vehicles at the near-highway sites

  2. Comparison of Bulk Carbon Concentrations and Optical Properties of Carbonaceous Aerosols in the North Slope Alaska from Summer 2012 and Summer 2015

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Barrett, T. E.; Moffett, C.; Gunsch, M.; Pratt, K.

    2015-12-01

    With recent drilling permits being issued for exploratory drilling in the Chukchi Sea, there is a need for characterization of carbonaceous aerosols in the Arctic both prior to and during the exploratory drilling phase. A month-long field sampling campaign will be conducted in Barrow, AK, at the confluence of the Chukchi and Beaufort seas, from August to September 2015. Total suspended particulate (TSP) aerosol samples will be collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Samples will be analyzed for organic carbon (OC), elemental carbon (EC) on a Sunset carbon analyzer utilizing the NIOSH 5040 method. Samples will also be analyzed for water soluble organic carbon (WSOC) using a water extraction method and subsequent analysis on a Shimadzu Total Carbon Analyzer. Optical properties of the aqueous extracts will also be measured using an Agilent ultraviolet-visible (UV-Vis) spectrometer. OC, EC and WSOC concentrations will then be compared to aerosol samples collected at the same location in summer 2012, prior to the onset of exploratory drilling in the Chukchi Sea. Back trajectory (BT) analysis will be performed for each sampling campaign to help assess the impact of source region on the carbonaceous aerosol budget and to identify any changes in source region between the two campaigns. A comparison of samples from the same location and season both prior to and post drilling will allow for a more accurate characterization and tracking of the potential impacts of new aerosol emission sources in the region.

  3. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  4. Observations of Light-Absorbing Carbonaceous Aerosols in East and South Asia

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Kim, S.; Choi, W.

    2013-05-01

    Light-absorbing aerosols, such as black carbon (BC), brown carbon and mineral dust, typically constitute a small fraction of ambient particle mass but can contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer. Besides the direct radiative effect, the heating can evaporate clouds and change the atmospheric dynamics. In this study, we investigate the optical and radiative properties of light-absorbing aerosols from ground-based and aircraft measurements in East and South Asia within the framework of UNEP Atmospheric Brown Cloud-Asia (ABC-Asia) project and Sustainable Atmosphere for the Kathmandu Valley (SusKat) campaign (December 2012 ~ February 2013). BC mass concentration, aerosol scattering and absorption coefficients measurements and radiative forcing calculations were performed at four sites: Gosan (Korea), Anmyeon (Korea), Hanimaadhoo (Maldives) and Pyramid (Nepal). No significant seasonal variations of aerosol properties, except for summer due to wet scavenging by rainfall, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at Hanimaadhoo during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (absorption coefficient/extinction coefficient) at 550 nm at Gosan and Anmyeon is higher than that in Hanimaadhoo due to large portions of BC emission from fossil fuel combustion. Interestingly, solar absorption efficiency at Pyramid is 0.14, which is two times great than that in Hanimaadhoo and is about 40% higher than that in East Asia, though BC mass concentration at Pyramid is the lowest among four sites. Throughout the unmanned aerial vehicle experiment in Jeju, Korea during August-September 2008, long-range transport of aerosols from

  5. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    SciTech Connect

    Wang, Mo; Xu, B.; Cao, J.; Tie, X.; Wang, Hailong; Zhang, Rudong; Qian, Yun; Rasch, Philip J.; Zhao, Shuyu; Wu, Guangjian; Zhao, Huabiao; Joswiak, Daniel R.; Li, Jiule; Xie, Ying

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia has the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.

  6. Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuang; Bi, Xiaohui; Feng, Yinchang; Dai, Qili; Xiao, Zhimei; Li, Liwei; Wu, Jianhui; Yuan, Jie; Zhang, YuFen

    2016-11-01

    The OC/EC online monitoring campaign was carried out in Tianjin of China from 8th February to 15th March 2015 during the Chinese Spring Festival period (CSFP). The concentrations of OC, EC, BC and other ambient pollutants (e.g. SO2, NO2 and PM2.5, etc.) in high time resolution were measured with related online-monitoring instruments. During the CSFP, according to the peaks of PM2.5 concentrations and number concentrations (NC) of aerosol particles with aerodynamic diameters between 0.3 and 2.5 μm, five pollution-events were generally identified and displayed. These pollution-events were closely associated with large-scale fireworks displaying, combustion activities such as heating for winter, and the stable meteorological conditions, etc. During the CSFP, EC and OC concentrations showed variations up to one order of magnitude. The uncertainty of instrument itself and the difference for measured methods, further caused the differences between thermal OC (measured OC by thermal method) and optical OC (measured OC by optical method) concentrations, as well as between thermal EC (measured EC by thermal method) and optical EC (measured EC by optical method) concentrations. The high-concentration carbonaceous aerosols could enlarge the uncertainty of measuring instrument, reducing the correlations between OC and EC, and enhance the differences among thermal EC, optical BC and optical EC. The OC/EC ratios and the percentages of SOC/OC would be declined, when the pollution-events formed during the CSFP. Due to the different sources for thermal POC and thermal SOC, the correlation of the two was relatively lower (R2 = 0.39). Thermal POC dominated over thermal OC during the CSFP.

  7. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    DOE PAGES

    Wang, Mo; Xu, B.; Cao, J.; ...

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia hasmore » the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.« less

  8. Airborne Measurements of Carbonaceous Aerosols in Southern Africa during the Dry Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2003-01-01

    Particulate matter collected aboard the University of Washington's (UW) Convair-580 research aircrafi over southem Afiica during the dry biomass burning season was analyzed for total carbon (TC), organic carbon (OC), and black carbon (BC) contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the TC collected. Consequently, conclusions derived from the data are greatly dependent on whether or not OC concentrations are corrected for this artifact. For example, the estimated aerosol coalbedo (1 - single scattering albedo (SSA)), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected OC concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The BC to (corrected) OC mass ratio (BC/OC) of smoke plume samples (0.18 plus or minus 0.06) is lower than that of samples collected in the regional haze (0.25 plus or minus 0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three quarters of the aerosol burden in the regional haze, while other souxes (e.g., fossil fuel burning) contribute the remainder.

  9. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    SciTech Connect

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  10. Determination of stable carbon isotopes of organic acids and carbonaceous aerosols in the atmosphere.

    PubMed

    Fisseha, R; Saurer, M; Jäggi, M; Szidat, S; Siegwolf, R T W; Baltensperger, U

    2006-01-01

    A wet oxidation method for the compound-specific determination of stable carbon isotopes (delta(13)C) of organic acids in the gas and aerosol phase, as well as of water-soluble organic carbon (WSOC), is presented. Sampling of the organic acids was done using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to an ion chromatography (IC) system. The method allows for compound-specific stable carbon isotope analysis by collecting different fractions of organic acids at the end of the IC system using a fraction collector. delta(13)C analyses of organic acids were conducted by oxidizing the organic acids with sodium persulfate at a temperature of 100 degrees C and determining the delta(13)C value of the resulting carbon dioxide (CO(2)) with an isotope ratio mass spectrometer. In addition, analysis of delta(13)C of the WSOC was performed for particulate carbon collected on aerosol filters. The WSOC was extracted from the filters using ultrapure water (MQ water), and the dissolved organic carbon was oxidized to CO(2) using the oxidation method. The wet oxidation method has an accuracy of 0.5 per thousand with a precision of +/-0.4 per thousand and provides a quantitative result for organic carbon with a detection limit of 150 ng of carbon.

  11. Radiocarbon and Organic Tracer-based Source Apportionment Study of Carbonaceous Aerosol Collected during Two Ozone Regimes in Houston, TX, USA

    NASA Astrophysics Data System (ADS)

    Yoon, Subin; Usenko, Sascha; Ortiz, Stephanie; Clark, Adelaide; Sheesley, Rebecca

    2017-04-01

    Houston is a prime study site for both primary and secondary carbonaceous organic aerosols due to the city's high anthropogenic activity combined with high potential for biogenic contributions from large forested regions that are proximate to the city. During NASA's DISCOVER-AQ sampling campaign in Houston, TX in September 2013, fine particulate matter (PM2.5) samples were collected and measured for fraction contemporary and fossil carbon utilizing radiocarbon analysis. Contemporary sources can include primary and secondary aerosol from biomass burning, biogenic sources, meat cooking, etc. Fossil sources of carbonaceous aerosol include fossil fuel combustion, non-combustion sources and secondary aerosol from fossil precursors. Fraction contemporary carbon of samples collected from September 8 to 15 ranged from 45-67% with an average of 55% while samples from September 21 to 28 ranged from 47-70% with an average of 61%, both sample sets varying significantly. There were two different air quality regimes during the September campaign: multi-day increases in organic carbon (OC) with low ozone, and multi-day increases in OC with high ozone. To differentiate emission source, meteorology and photochemistry factors in these air quality regimes, HYSPLIT back trajectory, ozone, OC, radiocarbon and organic tracer-based chemical mass balance modeling were used. During the last week of the campaign (September 21-28) high ozone concentration and peak carbonaceous aerosol concentrations were observed throughout the Houston metropolitan area. HYSPLIT back trajectory (BT) analysis also indicates a shift in air mass contributions which corresponded to changes in radiocarbon, ozone and OC concentrations. Daytime OC concentrations for the two different regimes are correlated with ozone daily max at a downtown Houston site (r2 = 0.57). Daytime fossil carbon concentrations have a higher correlation with ozone than contemporary carbon concentrations (r2 = 0.51 and 0.32, respectively

  12. Radiocarbon-based Study of Contemporary and Fossil Sources of Carbonaceous Aerosol Collected during Two Air Quality Regimes in Houston, TX

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Usenko, S.; Ortiz, S. M.; Clark, A. E.; Sheesley, R. J.

    2016-12-01

    Houston is a prime study site for both primary and secondary carbonaceous organic aerosols due to the city's high anthropogenic activity combined with high potential for biogenic contributions from large forested regions that are proximate to the city. During NASA's DISCOVER-AQ sampling campaign in Houston, TX in September 2013, fine particulate matter (PM2.5) samples were collected and measured for fraction contemporary and fossil carbon utilizing radiocarbon analysis. Contemporary sources can include primary and secondary aerosol from biomass burning, biogenic sources, meat cooking, etc. Fossil sources of carbonaceous aerosol include fossil fuel combustion, non-combustion sources and secondary aerosol from fossil precursors. Fraction contemporary carbon of samples collected from September 8 to 15 ranged from 45-67% while samples from September 21 to 28 ranged from 47-70%, both sample sets varying significantly. There were two different air quality regimes during the September campaign: multi-day increases in organic carbon (OC) with low ozone, and multi-day increases in OC with high ozone. To differentiate emission source, meteorology and photochemistry factors in these air quality regimes, HYSPLIT back trajectory, ozone, OC, radiocarbon and organic tracer measurements were used. During the last week of the campaign (September 21-28) high ozone concentration and peak carbonaceous aerosol concentrations were observed throughout the Houston metropolitan area. HYSPLIT back trajectory (BT) analysis also indicates a shift in air mass contributions which corresponded to changes in radiocarbon, ozone and OC concentrations. Daytime OC concentrations for two different regimes are correlated with ozone daily max at a downtown Houston site (r2 = 0.565). Daytime fossil carbon concentrations have a higher correlation with ozone than contemporary carbon concentrations (r2 = 0.510 and 0.316, respectively). However, contemporary carbon has a higher correlation to OC than does

  13. Mixing of anthropogenic dust and carbonaceous aerosols in seasonal snow on snow albedo reduction in 2014 China survey

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Huang, Jianping; Pu, Wei

    2016-04-01

    Anthropogenic dusts produced from the affected by human activities derived from the industrial areas and carbonaceous aerosols (black carbon and organic carbon) deposited into snow or ice core via wet and dry deposition play key roles to the regional and global climate. Recently, a China survey was performed to measure the concentrations of insoluble light-absorbing particles (ILAP) in seasonal snow across northern China in January and February of 2014. The results indicate that the higher concentration of NO3- and SO42- and heavy metals of Zn, Pb, Cd, Ni, and Cu are likely to be attributed to enhanced local industrial emissions due to human activities. The emissions from fossil fuel combustion and biomass burning are likely to be important for the chemical elements in the seasonal snow with long-range transport, while medium enrichment factors of Mg, Ca, and Al were predominantly associated with soil dust, which is the most important natural source. There are large ranges of the BC and AD in seasonal snow over northeast China because of the anthropogenic emissions, which are caused by human activities. In addition, although the values of the snow albedo by model simulations are little higher in the visible to near-infrared wavelength than that during the China survey, the surface snow albedo by field campaign measurements have good agreement with the model simulations in the visible wavelength.

  14. Decadal trend of black carbon and refractory carbonaceous aerosol in the western rim of the North Pacific Ocean: atmospheric concentration and the retrieved record of deposition flux

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Yamaguchi, Takashi; Noguchi, Izumi; Akiyama, Masayuki; Matsumoto, Kiyoshi

    2013-04-01

    The long-term trend of light absorbing carbonaceous aerosols (or black carbon: BC) or refractory carbonaceous aerosol (or elemental carbon: EC) concentration is reported at European background sites such as Mace Head, and that of aerosol absorption coefficient are monitored in many GAW sites. On the contrary, such long-term data are relatively scarce at around the western part of the North Pacific Ocean. Thus, to understand the long-term variation of in the area, BC in fine aerosol fraction has been measured at Chichi-jima Islands, Japan. Chichi-jima Island is located 1000 km south of the Japanese mainland, and 1800 km west of the coast line of the Asian continent. BC has been measured with an Aethalometer (Magee, AE-16 and AE-30) since December, 1998 with 1 hr time resolution. Mass flowmeter embedded inside the Aethalometer is calibrated with a rotational dry gas-meter once a year. Monthly averaged BC concentration shows an obvious seasonal variation, i.e. high concentration during late autumn-winter-spring period resulting from the transport from East Asia, with maximum daily concentration above 500 ng m-3. In summer, daily concentration was usually less than 20 ng m-3, due to the clean background airmass originating from the North Pacific Anticyclone. Decadal trend of the annual averaged BC concentration showed a increasing trend from 2000 to 2007 and started to decrease after 2008, which roughly coincides with the reported emission trend of SO2 in China (Lu et al., 2010). In addition, total (i.e., wet + dry) deposition record of refractory carbon at two sites in the northern Japan (Rishiri Island: a remote island site, and Sapporo City: an urban site) are retrieved. At these sites, the local government have been measuring the chemical components in precipitation water collected by deposition gauges. In the deposition gauge, a membrane filter made of cellulose-acetate is fixed at the bottom of the funnel to remove water-insoluble particles from the precipitated

  15. Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City

    SciTech Connect

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S.S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2009-09-16

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City Metropolitan Area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~;;29 km and ~;;65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  16. Characteristics of size-segregated carbonaceous aerosols in the Beijing-Tianjin-Hebei region.

    PubMed

    Guo, Yuhong

    2016-07-01

    Mass concentrations of organic carbon (OC) and elemental carbon (EC) in size-resolved aerosols were investigated at four sites (three cities and one country) in the Beijing-Tianjin-Hebei region from September 2009 to August 2011. The size distributions of OC and EC presented large evolutions among rural and urban sites, and among four seasons, with highest peaks of OC and EC in fine mode in urban areas during winter. Geometric mean diameters (GMDs) of OC and EC in fine particles at urban sites during winter were lower than those at rural site mainly due to effects of fine particle coagulation and organic compound repartitioning. Fossil fuel emissions were a dominant source of OC and EC in urban areas, while biomass burning was a major source of OC and EC at rural site. Trajectory clustering and CWT analysis showed that regional transport was an important contributor to OC and EC in Beijing.

  17. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  18. Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sönke; Wacker, Lukas; Holzinger, Rupert; Röckmann, Thomas

    2017-03-01

    We measured the radioactive carbon isotope 14C (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic carbon (WIOC), and elemental carbon (EC), we estimated the contribution of major sources to the carbonaceous aerosol. The main source categories were fossil fuel combustion, biomass burning, and other contemporary carbon, which is mainly biogenic secondary organic aerosol material (SOA). A clear seasonal variation is seen in EC from biomass burning (ECbb), with lowest values in summer and highest values in winter, but ECbb is a minor fraction of EC in all seasons. WIOC from contemporary sources is highly correlated with ECbb, indicating that biomass burning is a dominant source of contemporary WIOC. This suggests that most biogenic SOA is water soluble and that water-insoluble carbon stems mainly from primary sources. Seasonal variations in other carbon fractions are less clear and hardly distinguishable from variations related to air mass history. Air masses originating from the ocean sector presumably contain little carbonaceous aerosol from outside the Netherlands, and during these conditions measured carbon concentrations reflect regional sources. In these situations absolute TC concentrations are usually rather low, around 1.5 µg m-3, and ECbb is always very low ( ˜ 0.05 µg m-3), even in winter, indicating that biomass burning is not a strong source of carbonaceous aerosol in the Netherlands. In continental air masses, which usually arrive from the east or south and have spent several days over land, TC concentrations are on average by a factor of 3.5 higher. ECbb increases more strongly than TC to 0.2 µg m-3. Fossil EC and fossil WIOC, which are indicative of primary emissions, show a more moderate increase by a factor of 2.5 on average. An interesting case is

  19. Carbonaceous aerosol source apportionment using the Aethalometer model - evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden

    NASA Astrophysics Data System (ADS)

    Martinsson, Johan; Azeem, Hafiz Abdul; Sporre, Moa K.; Bergström, Robert; Ahlberg, Erik; Öström, Emilie; Kristensson, Adam; Swietlicki, Erik; Eriksson Stenström, Kristina

    2017-03-01

    With the present demand on fast and inexpensive aerosol source apportionment methods, the Aethalometer model was evaluated for a full seasonal cycle (June 2014-June 2015) at a rural atmospheric measurement station in southern Sweden by using radiocarbon and levoglucosan measurements. By utilizing differences in absorption of UV and IR, the Aethalometer model apportions carbon mass into wood burning (WB) and fossil fuel combustion (FF) aerosol. In this study, a small modification in the model in conjunction with carbon measurements from thermal-optical analysis allowed apportioned non-light-absorbing biogenic aerosol to vary in time. The absorption differences between WB and FF can be quantified by the absorption Ångström exponent (AAE). In this study AAEWB was set to 1.81 and AAEFF to 1.0. Our observations show that the AAE was elevated during winter (1.36 ± 0.07) compared to summer (1.12 ± 0.07). Quantified WB aerosol showed good agreement with levoglucosan concentrations, both in terms of correlation (R2 = 0. 70) and in comparison to reference emission inventories. WB aerosol showed strong seasonal variation with high concentrations during winter (0.65 µg m-3, 56 % of total carbon) and low concentrations during summer (0.07 µg m-3, 6 % of total carbon). FF aerosol showed less seasonal dependence; however, black carbon (BC) FF showed clear diurnal patterns corresponding to traffic rush hour peaks. The presumed non-light-absorbing biogenic carbonaceous aerosol concentration was high during summer (1.04 µg m-3, 72 % of total carbon) and low during winter (0.13 µg m-3, 8 % of total carbon). Aethalometer model results were further compared to radiocarbon and levoglucosan source apportionment results. The comparison showed good agreement for apportioned mass of WB and biogenic carbonaceous aerosol, but discrepancies were found for FF aerosol mass. The Aethalometer model overestimated FF aerosol mass by a factor of 1.3 compared to radiocarbon and levoglucosan

  20. Behaviors of volatile inorganic components in urban aerosols

    NASA Astrophysics Data System (ADS)

    Ueda, Hiromasa; Takemoto, Taroh; Kim, Young Pyo; Sha, Weiming

    A multicomponent gas-aerosol equilibrium model (Kim et al., 1993a,b; Kim and Seinfeld, 1995) was used to explain the behaviors of water content and other volatile species in the aerosols observed in polluted air mass in Central Japan. It was found that gas-aerosol equilibrium was attained after long-range transport of polluted air mass (e.g., 50 km) from emission source area, while it was not completed in large emission source areas. The present model predicted with high accuracy the gas-aerosol equilibrium of ammonium, nitrate and chloride at remote sites. The correlation coefficient was R=0.98 for ammonia and more than R=0.86 for gaseous nitric acid. It was R=0.94 for gaseous hydrochloric acid, which meant significant chlorine deficit under high-temperature and low humidity conditions was also predicted accurately. The predicted water content was consistent with that calculated by the semi-theoretical Winkler's formula (Aerosol Sceince, 13, 1973, 373-387). At RH=90% the water content attained almost the same weight as that of dry aerosol, while at about RH=60% it was less than 10%. In contrast, temperature dependency of the water content was weak except for very high air temperature conditions in summer. Finally, it emphasized the superiority of the multicomponent approach for gas-aerosol equilibrium, compared with the binary-component approach.

  1. Year-round radiocarbon-based source apportionment of carbonaceous aerosols at two background sites in South Asia

    NASA Astrophysics Data System (ADS)

    Sheesley, Rebecca J.; Kirillova, Elena; Andersson, August; Krusâ, Martin; Praveen, P. S.; Budhavant, Krishnakant; Safai, P. D.; Rao, P. S. P.; Gustafsson, Örjan

    2012-05-01

    Atmospheric Brown Clouds (ABC), regional-scale haze events, are a significant concern for both human cardiopulmonary health and regional climate impacts. In order to effectively mitigate this pollution-based phenomenon, it is imperative to understand the magnitude, scope and source of ABC in regions such as South Asia. Two sites in S. Asia were chosen for a 15-month field campaign focused on isotope-based source apportionment of carbonaceous aerosols in 2008-2009. Both the Maldives Climate Observatory in Hanimaadhoo (MCOH) and a mountaintop site in Sinhagad, India (SINH) act as regionally mixed receptor sites. Annual radiocarbon-based source apportionment for soot elemental carbon (SEC) at MCOH and SINH revealed 73 ± 6% and 59 ± 5% contribution from biomass combustion, respectively (remainder from fossil fuel). The contributions from biogenic/biomass combustion to total organic carbon were similar between MCOH and SINH (69 ± 5% and 64 ± 5, respectively). The biomass combustion contribution for SEC in the current study, especially the results from MCOH, shows good agreement with published black carbon emissions inventories for India. Geographic source assessment, including clustered back trajectory analysis and carbon contribution by source region, indicated that the highest SEC/TOC loads originated from the W. Indian coastal margin, including the coastal city of Mumbai, India. The winter dry season 14C-based source apportionment of the BC-tracing SEC fraction for 2006, 2008, 2009 were not statistically different (p = 0.7) and point to a near-constant two-thirds contribution from biomass combustion practices, including wood and other biofuels as well as burning of agricultural crop residues.

  2. Sources and components of organic aerosols in Central Europe

    NASA Astrophysics Data System (ADS)

    Lanz, V. A.; Prévôt, A. S. H.; Alfarra, M. R.; Hüglin, C.; Mohr, C.; Weimer, S.; Baltensperger, U.

    2009-04-01

    The quadrupole version of the Aerodyne Aerosol Mass Spectrometer (q-AMS) was deployed at several places in Switzerland, Austria, and Liechtenstein. The q-AMS provides real-time information on mass concentration and composition of the non-refractory species in particulate matter smaller than 1 µm (NR-PM1) with high time- and size-resolution at unit mass resolution. The combination of factor analysis and ambient AMS data represents a relatively new approach to identify organic aerosol (OA) sources/components (Zhang et al., 2005). In this study, such an approach (PMF - positive matrix factorization; Lanz et al., 2007, 2008) was applied to various OA data sets covering a wide range of pollution levels (mobile measurements on motorways, urban, rural, and even a high-alpine location) as well as all seasons of the year. Dominating aerosol components were representing oxygenated and secondary organic aerosol (OOA-I and OOA-II), primary particles from wood burning (P-BBOA; especially in residential areas in wintertime with abundances of ~50% OA and more) and primary traffic-related aerosols (usually ~10% of OA, but up to 60% on motorways). Close to sources, charbroiling and potentially food cooking aerosols could be distinguished as well. The OOAs' time series were compared to measurements of AMS inorganics (sulphate, nitrate, and ammonium) in order to facilitate their interpretation as secondary OA (SOA). Diurnal cycles of the estimated source strengths, ancillary gas-phase and meteorological data, estimated emission ratios etc. were also used to validate the interpretations of the factor analytical results. Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Prévôt, A. S. H.: Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra, Atmos. Chem. Phys., 7, 1503-1522, 2007, http://www.atmos-chem-phys.net/7/1503/2007/. Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B

  3. Improved measurement of carbonaceous aerosol in Beijing, China: intercomparison of sampling and thermal-optical analysis methods

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.

    2010-06-01

    The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and

  4. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Kang, Shichang; Shen, Chengde; Cong, Zhiyuan; Liu, Kexin; Wang, Wei; Liu, Lichao

    2010-06-01

    A total of 30 samples of total suspended particles were collected at an urban site in Lhasa, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. The fractions of contemporary carbon ( fc) in total carbon (TC) of ambient aerosols are presented using radiocarbon ( 14C) measurements. The value of fc represents the biogenic contribution to TC, as the biosphere releases organic compounds with the present 14C/ 12C level ( fc = 1), whereas 14C has become extinct in anthropogenic emissions of fossil carbon ( fc = 0). The fc values in Lhasa ranging from 0.357 to 0.702, are higher than Beijing and Tokyo, but clearly lower than the rural region of Launceston, which indicates a major biogenic influence in Lhasa. Seasonal variations of fc values corresponded well with variations of pollutants concentrations (e.g. NO 2). Higher fc values appeared in winter indicating carbonaceous aerosol is more dominated by wood burning and incineration of agricultural wastes within this season. The lower fc values in summer and autumn may be caused by increased diesel and petroleum emissions related to tourism in Lhasa. δ13C values ranged from - 26.40‰ to - 25.10‰, with relative higher values in spring and summer, reflecting the increment of fossil carbon emissions.

  5. Determination of sulphur-bearing components in C1 and C2 carbonaceous chondrites by stepped combustion

    SciTech Connect

    Burgess, R.; Wright, I.P.; Pillinger, C.T. Open University, Milton Keynes )

    1991-03-01

    Ten type 1 and 2 carbonaceous chondrites have been analyzed by stepped combustion to determine the nature of their sulphur-bearing components. All samples show complex release patterns which, when combined with published petrographic observations, can be interpreted in terms of sulphur derived from a mixture of at least seven components (elemental sulphur, organic sulphur, sulphide, FESON or tochilinite, and sulphates: gypsum, bloedite and epsomite). Estimated concentrations of individual components show that most of the sulphur in the meteorites exists in oxidized form. The concentrations of reduced and oxidized components can be used to derive approximate oxidized/reduced sulphur ratios for the meteorites. These ratios are indicators of the extent of aqueous alteration and increase in the order CM less than CI. Formation of the different alteration products by aqueous processes active on the meteorite parent body appears to be the most likely origin. 42 refs.

  6. Haze and other aerosol components in late winter Arctic Alaska, 1986

    NASA Astrophysics Data System (ADS)

    Li, Shao-Meng; Winchester, John W.

    1990-02-01

    Three coarse and five fine aerosol components of different elemental compositions were identified at Barrow, Alaska, from March 17 to April 21, 1986, resolved by absolute principal component analyses of element concentrations in 280 sequential coarse and fine size fraction time step samples. In the coarse (> 2.5 μm), two components C-1 and C-2 had abundant Si, S, Cl, K, and Ca, but no Al, and together contained 85% of coarse S. Their compositions resembled expected products of carbonaceous fuel combustion, with Si being volatilized by carbon reduction and other metals volatilized perhaps as chloride salts. C-1, with high trace metal contents, might be from nonferrous smelting, whereas C-2, with high Fe, might be associated with conventional coal combustion. Both appeared semi-aged with respect to acidic gas uptake because the S chemical equivalents were less than those of metals contributing to alkalinity. When combined with Cl, S was close to the metal equivalents, indicating complete acid-base titration. A strong concentration rise of C-1 and C-2 occurred from March 25 to April 2 during a haze event, although C-1 was also present at other times. Air trajectories showed that air masses arrived at Barrow during the haze event from eastern or northern Europe. The third component C-3 was a dust aerosol rich in Al that contained high S but low Cl, suggesting saturation with H2SO4 and therefore aged and regional aerosols perhaps typical of the late winter Arctic. No major change in its concentration was observed to correspond to synoptic events. In the fine (< 2.5 μm), five components represent a sea-salt aerosol, an S-rich aerosol with some Si, K, Ca, and Fe, a trace metal aerosol, an Al-rich dust, and a marine product with Br, S, and Cl. The sea-salt was found only in three plumes when synoptic meteorology and air trajectories suggested origins in the North Pacific. The S-rich aerosol, accounting for 73% of S and 40% of Si, was enhanced during the haze event by 75

  7. Day-night differences in the composition and sources of carbonaceous aerosol at a polluted regional background site in the Netherlands

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Broekema, Elise; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro

    2017-04-01

    The origin of carbonaceous aerosol differs during day- and night-time, because emissions from major sources such as traffic, biomass combustion, and secondary organic aerosol formation show a distinct diurnal pattern. Moreover, photochemical processing and evaporation of semi-volatile organic compounds are enhanced during day-time, due to the availability of sunlight and higher temperatures. Assessing day-night differences in sources and chemical composition can give an indication of the importance of local/regional carbon sources and processing, since day-night differences should be averaged out during long-range transport. If local sources dominate, one could expect a strong diurnal variation in the source profile, but if long-range transport dominates the diurnal variation would be much weaker. In this study we measure the isotopic (14C and 13C) and detailed chemical composition of the organic fraction of the aerosol on high volume PM2.5 filter samples that were collected separately during day and night time. Radiocarbon (14C) measurements are used to estimate three main aerosol sources of organic and elemental carbon (OC and EC): Fossil fuel combustion (ff), biomass combustion (bb), and biogenic sources (bio). The detailed chemical and stable isotopic composition are measured at different desorption temperatures from the filter, which separates the more and less refractory organic compounds. The composition of the organic aerosol is measured using an thermal-desporption Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) method (Holzinger et al, 2010) and the stable isotopic composition is measured using a thermal desorption IRMS method (Dusek et al., 2013). Source apportionment results using 14C show that the contribution of fossil fuel combustion to EC and OC is higher during day-time than during night-time. This is valid for all seasons. During night-time biomass combustion plays a bigger role as a source of carbonaceous aerosol. Even in

  8. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level

  9. Characteristics of carbonaceous aerosols in Emilia-Romagna (Northern Italy) based on two fall/winter field campaigns

    NASA Astrophysics Data System (ADS)

    Costa, V.; Bacco, D.; Castellazzi, S.; Ricciardelli, I.; Vecchietti, R.; Zigola, C.; Pietrogrande, M. C.

    2016-01-01

    The carbonaceous aerosol in Emilia-Romagna region (Northern Italy) was characterized in two fall/winter monitoring campaigns conducted through the years 2011-2012 and 2012-2013. Nearly 650 PM2.5 samples were collected at three monitoring stations describing urban background (main city Bologna, MS, Parma and Rimini) and one rural background site (San Pietro, SP). OC and EC values were measured by the thermal-optical transmittance method (TOT). Low flow-rate sampling strategy (24 m3 air volume per day) was used to reduce loading of light absorbing material on the filter surface in order to ensure the correct OC/EC discrimination. The TC values measured in winter 2011-2012 ranged from 9.8 μgC m- 3 at San Pietro to 12.0 μgC m- 3 at Parma, consisting of OC from 8.6 μgC m- 3 at SP to 9.9 μgC m- 3 at MS and EC from 1.3 μgC m- 3 at SP to 2.5 μgC m- 3 at Rimini. In winter 2012-2013, lower values were in general found with TC values ranging from 7.8 to 9.1 μgC m- 3 consisting of OC from 5.1 to 7.0 μgC m- 3 and EC from 1.5 to 2.2 μgC m- 3. Such differences can be likely explained by higher pollutant emissions related to domestic heating in colder fall/winter 2011/2012 (mean temperature ≈ 2 °C in comparison with ≈ 7 °C in winter 2012/2013). This hypothesis is supported by high levels of levoglucosan, as unambiguous tracer for biomass burning emission, and of polycyclic aromatic hydrocarbons related to combustion (levoglucosan ≃ 1000 ng m- 3 and burning PAHs ≃ 4 ng m- 3 at MS and SP sites).

  10. Source apportionment of carbonaceous aerosols in a megacity of northwest China: insights from radiocarbon measurement

    NASA Astrophysics Data System (ADS)

    Ni, Haiyan; Huang, Rujin; Dusek, Ulrike

    2017-04-01

    Fine particulate matter (PM2.5) samples were collected from 5 July 2008 to 27 June 2009 at Xi'an, a very polluted megacity in Northwest China. The 24 h averaged PM2.5concentrations (ranged from 32 μg m-3 to 339 μg m-3) were 1-14 times higher than the WHO guideline for 24 h PM2.5(25 μg m-3). In this work, we unambiguously quantify fossil (e.g., vehicle emissions, coal burning etc.) and non-fossil (e.g., biomass burning, cooking, biogenic emissions etc.) contributions to organic carbon (OC) and elemental carbon (EC) of PM2.5using radiocarbon (14C) measurement. In addition, we measured PM2.5 major components and source markers, including OC and EC, ions, trace elements, polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (o-PAHs), anhydrous sugars and hopanes. The preliminary results of radiocarbon measurements in OC and EC show that the annual mean contributions from fossil-fuel combustion to EC was 76 ± 8% (6 ± 2 μg m-3). The remaining 24 ± 8% (2 ± 1 μg m-3) was attributed to biomass burning, with higher contribution in the cold period (˜33%) compared to the warm period (˜21%), due to enhanced emissions from local biomass burning activities in winter. In contrast with EC, OC was dominated by non-fossil sources, with an annual average of 54 ± 8 % (13 ± 10 μg m-3). Clear seasonal variations were seen in OC concentrations both from fossil fuel (OCff), and from non-fossil sources (OCnf), with maxima in the cold period and minima in the warm period, because of enhanced fossil and non-fossil activities in winter, mainly biomass burning and domestic coal burning. Further source apportionment of OC, including primary/secondary fossil OC, primary/secondary non-fossil OC, will be conducted by combining 14C results with positive matrix factorization (PMF) analysis of organic matter (OM).

  11. Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines.

    PubMed

    Zhang, Yi-Nan; Zhang, Zhi-Sheng; Chan, Chuen-Yu; Engling, Guenter; Sang, Xue-Fang; Shi, Si; Wang, Xue-Mei

    2012-01-01

    Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China were measured at Jianfengling (JFL), a background mountain site in a National Reserve Park on Hainan Island, and at Hok Tsui (HT), a rural site on the southern coast of Hong Kong from April to May of 2004 during an intensive field study. We integrated the information from field study, satellite and backward trajectory model to examine the long-range transport of biomass burning smoke from the Philippines and assess its impact on background aerosol in coastal southeast China. The average levoglucosan concentrations were 42 and 30 ng m(-3) at JFL and HT, respectively, while the organic and elemental carbon concentrations were 3.1 and 0.4 μg C m(-3) respectively at JFL, and 4.1 and 1.3 μg C m(-3) respectively at HT. Elevated levoglucosan concentrations of 85-106 ng m(-3) (250-340% extra loadings) at JFL and 57 ng m(-3) (170% extra loading) at HT were observed during transport events in which air masses originated from the Philippines. Fire hot spot counts and aerosol index derived from satellite data showed that the spread of biomass burning smoke from the Philippines resulted in large-scale dense aerosol clouds in the adjacent South China Sea and the western Pacific Ocean. The observed high ratio of two biomass-burning tracers (levoglucosan to mannosan) at JFL (7-36) and HT (27) indicated that the biomass smoke originating from the Philippines had significant contributions from open-field burning of agricultural residues, such as rice straw. The pollution plumes were transported to southeast China resulting in elevated concentrations of carbonaceous aerosol and levoglucosan in particular. Using a simplified receptor-based approach, biomass smoke aerosol was estimated to account for 16-28% of OC in the background atmosphere of Hainan and 4.9% of OC at the rural site of Hong Kong during these episode cases, indicating that biomass burning smoke generated in the Philippines

  12. On the mixing and evaporation of secondary organic aerosol components.

    PubMed

    Loza, Christine L; Coggon, Matthew M; Nguyen, Tran B; Zuend, Andreas; Flagan, Richard C; Seinfeld, John H

    2013-06-18

    The physical state and chemical composition of an organic aerosol affect its degree of mixing and its interactions with condensing species. We present here a laboratory chamber procedure for studying the effect of the mixing of organic aerosol components on particle evaporation. The procedure is applied to the formation of secondary organic aerosol (SOA) from α-pinene and toluene photooxidation. SOA evaporation is induced by heating the chamber aerosol from room temperature (25 °C) to 42 °C over 7 h and detected by a shift in the peak diameter of the SOA size distribution. With this protocol, α-pinene SOA is found to be more volatile than toluene SOA. When SOA is formed from the two precursors sequentially, the evaporation behavior of the SOA most closely resembles that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA resembles a core of SOA from the initial precursor coated by a layer of SOA from the second precursor. Such a core-and-shell configuration of the organic aerosol phases implies limited mixing of the SOA from the two precursors on the time scale of the experiments, consistent with a high viscosity of at least one of the phases.

  13. Calibration method for a photoacoustic system for real time source apportionment of light absorbing carbonaceous aerosol based on size distribution measurements

    NASA Astrophysics Data System (ADS)

    Utry, Noemi; Ajtai, Tibor; Pinter, Mate; Orvos, Peter I.; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    In this study, we introduce a calibration method with which sources of light absorbing carbonaceous particulate matter (LAC) can be apportioned in real time based on multi wavelength optical absorption measurements with a photoacoustic system. The method is primary applicable in wintry urban conditions when LAC is dominated by traffic and biomass burning. The proposed method was successfully tested in a field campaign in the city center of Szeged, Hungary during winter time where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. With the help of the proposed calibration method a relationship between the measured Aerosol Angström Exponent (AAE) and the number size distribution can be deduced. Once the calibration curve is determined, the relative strength of the two pollution sources can be deduced in real time as long as the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed in the presented measurement campaign by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The proposed method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data.

  14. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Saarnio, K.; Frey, A.; Saarikoski, S.; Teinilä, K.; Kulmala, M.; Hillamo, R.

    2011-10-01

    Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006-2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC), organic and elemental carbon (OC and EC) by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC), and PM2.5 mass with a tapered element oscillating microbalance (TEOM). Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM), EC) represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass) and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  15. The Role of Global Emission Inventory of Carbonaceous Emissions

    NASA Astrophysics Data System (ADS)

    Fatima, H.; Sharma, O. P.; Updhyaya, H.

    2010-12-01

    Aerosols - liquid or solid particles suspended in the air - are important constituents of the global atmosphere. They have a direct effect on climate by scattering and/or absorbing solar radiation modifying the radiative balance of the atmosphere and indirect effect by acting as condensation nuclei, their increase in number concentration may give rise to increased number of cloud condensation nuclei, which might increase the droplet concentration with relatively smaller size droplets for fixed liquid water content, making clouds more reflective (Twomey, 1977). Recent measurements show that atmospheric black carbon (BC) and organic carbon (OC) aerosol particles frequently contribute significantly to the total aerosol mass (Novakov et al. 1997). BC is emitted as primary particles from incomplete combustion process, such as fossil fuel and biomass burning, and therefore much atmospheric BC is of anthropogenic origin. OC is emitted as both primary particles and by secondary production from gaseous compounds via condensation or gas phase oxidation of hydrocarbons. Primary organic aerosols come from both anthropogenic sources (fossil fuel and biomass burning) and from natural sources (such as debris, pollen, spores, and algae). Carbonaceous aerosols make up a large but highly variable fraction of the atmospheric aerosol. Black carbon aerosols absorb the solar radiation and induce positive forcing whereas organic matter aerosols reflect solar radiation and produce negative forcing. Various emission inventories have been developed for carbonaceous aerosols. Detailed emission inventories for both BC and OC have been developed (e.g., Penner et al., 1993; Cooke and Wilson, 1996; Liousse et al., 1996; Cooke et al., 1999, Bond et al. 2004) that consider both fossil fuel and biomass components. The inventories of biomass- burning BC and OC particles are more difficult to constrain than fossil fuel emissions, owing to the paucity of data. In the present study we have compared the

  16. A two-year study of carbonaceous aerosols in ambient PM2.5 at a regional background site for western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Cui, Hongfei; Zhao, Yu; Yin, Lina; Lu, Yan; Wang, Qingeng

    2017-01-01

    To analyze the characteristics of regional background carbonaceous aerosols in western Yangtze River Delta (YRD), hourly organic carbon (OC) and elemental carbon (EC) in fine particular matter (PM2.5) were measured with a semi-continuous carbon analyzer at a suburban site in upwind Nanjing from June 2013 to May 2015. Relatively low OC, EC and OC/EC were observed compared to other studies conducted in Nanjing. The reasons include the limited primary emissions around the observation site, the improved emission controls in recent years, and the use of denuder to reduce positive artifact in OC measurement. Resulting from the stable atmosphere conditions and emission variations, the highest concentrations of carbonaceous aerosols were found in both winters, with average OC and EC observed at 11.8 ± 10.0 and 5.9 ± 3.4 μg/m3 for the first one, and 8.1 ± 5 and 4.5 ± 2.4 μg/m3 for the second one, respectively. Compared to 2013, reduced OC and EC were found in summer and autumn 2014, demonstrating the benefits of emission control polices implemented for the Nanjing Youth Olympic, while elevated OC observed in spring 2015 was attributed probably to the increased biomass burning. For the hazy event in winter 2013, the back trajectories of air masses suggested that heavy pollution were from eastern Jiangsu, northern Anhui and Jiangsu, downtown Nanjing, and Shanghai. Secondary aerosol formation played an important role indicated by the larger mass fraction of OC and increased OC/EC in PM2.5 during the heavy pollution period. In the harvest season, biomass burning was estimated to contribute 51% and 16% of OC and EC concentrations, respectively.

  17. Interannual Variability of Carbonaceous Particles from Boreal Wildland Fires and their Contributions to Aerosol Loading and Deposition in the Arctic (Invited)

    NASA Astrophysics Data System (ADS)

    Lavoue, D.; Zhao, T. L.; Gong, S. L.; Huang, P.; Sharma, S.; Stocks, B. J.

    2009-12-01

    We performed two modeling studies to assess over several consecutive years the emissions of carbonaceous particles from boreal wildland fires and to investigate the synoptic transport of boreal smoke to the Arctic. Firstly, a wildfire emission model based on the Canadian Forest Fire Behavior Prediction (FBP) System was applied to forest fires in Canada from 2000 to 2004. Fire datasets, including final sizes and locations, were compiled from records of provincial, territorial, and federal management agencies. Fuel consumption, rate of spread, and injection heights were calculated hourly for individual fires from forest fuel patterns and meteorological conditions obtained with the Canadian weather forecast model GEM. Wildfire emissions were compared to anthropogenic fossil fuel combustion sources at provincial, territorial, and national levels. Moreover, transport pathways of Canadian smoke plumes to the Arctic were investigated using the Lagrangian dispersion model HYSPLIT. Secondly, 10 years of carbonaceous aerosol atmospheric transport were simulated with the Canadian multi-scale air quality modeling system GEM-AQ/EC from 1995 to 2004. The horizontal grid was configured with a global uniform resolution of 1 deg. Monthly emission inventories from boreal wildland fires were built from a combination of fire agencies' reports and satellite products. For Canada, we used the 1995-1999 large fire database (> 200 ha) to complete the previous emission dataset. With respect to Alaska, Russia, and Mongolia, burn scars were used to determine annual areas burned and monthly variability was obtained from MODIS and ATSR fire pixels. GEM-AQ/EC was run with constant anthropogenic emissions representative of the end of the 1990’s. Simulation outputs were compared to satellite observations and ground measurements at four sites (Alert, Barrow, Ny-Alesund, and Summit) across the Arctic. Boreal smoke contributions to aerosol surface concentrations, aerosol optical depths, and

  18. An Unique On-line Method to Infer Black Carbonaceous contributions to Water-Insoluble Aerosol Compositions

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A. A.; Short, D.

    2013-12-01

    Particle number, size, and composition information is important for constraining aerosol effects on air quality, climate, and health. The composition of particles, especially from vehicular sources, may contain insoluble material that may modify particle nucleating properties. Changes in fuel properties are known to modify criteria pollutants and particulate matter mass, size, and number. In this work we summarize findings as they pertain to the water-soluble and insoluble composition of particles. In field measuremnts and controlled laboratory studies, a water-based condensation particle counter (CPC) and a butanol-based CPC measure particle number concentration. Both instruments were coupled with a Scanning Mobility Particle Sizer (SMPS) and particle number and size data were recorded. Real time particle insoluble mass fractions are estimated with the SMPS data sets; theoretical soluble fractions are calculated from ideal hygroscopicty single parameter values. This is the first time that this experimental method has been employed and used to infer online insoluble fractions. The results show that near-roadway emissions contain water insoluble and black carbon components. We will discuss the contributions of the organic component to the water-insoluble nature. Time permitting, the emissions of different ethanol and butanol gasoline blends are also explored for light-duty vehicles on a light-duty dynaometer chassis. Laboratory results indicate that soluble vehicular components are strongly correlated with vehicle driving conditions.

  19. A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Sarin, M. M.; Tripathi, S. N.

    2010-12-01

    This study presents a comprehensive 1 year (January 2007-March 2008) data set on the chemical composition of ambient aerosols collected from an urban location (Kanpur) in the Indo-Gangetic Plain (IGP) and suggests that the varying strength of the regional emission sources, boundary layer dynamics, and formation of secondary aerosols all contribute significantly to the temporal variability in the mass concentrations of elemental carbon (EC), organic carbon (OC), and water-soluble OC (WSOC). On average, carbonaceous aerosols contribute nearly one third of the PM10 mass during winter, whereas their fractional mass is only ˜10% during summer. A three- to four-fold increase in the OC and K+ concentrations during winter and a significant linear relation between them suggest biomass burning (wood fuel and agricultural waste) emission as a dominant source. The relatively high OC/EC ratio (average: 7.4 ± 3.5 for n = 66) also supports that emissions from biomass burning are overwhelming for the particulate OC in the IGP. The WSOC/OC ratios vary from 0.21 to 0.70 over the annual seasonal cycle with relatively high ratios in the summer, suggesting the significance of secondary organic aerosols. The long-range transport of mineral aerosols from Iran, Afghanistan, and the Thar Desert (western India) is pronounced during summer months. The temporal variability in the concentrations of selected inorganic constituents and neutralization of acidic species (SO42- and NO3-) by NH4+ (dominant during winter) and Ca2+ (in summer) reflect conspicuous changes in the source strength of anthropogenic emissions.

  20. Real-time measurement of aerosol black carbon during the Carbonaceous Species Methods Comparison Study, Citrus College, Glendora, California, August 12-21, 1986: Final report

    SciTech Connect

    Hansen, A.D.A.; Novakov, T.

    1987-11-01

    During the period August 12-21, 1986, the Atmospheric Aerosol Research Group of Lawrence Berkeley Laboratory participated in the Carbonaceous Species Method Comparison Study (CSMCS) conducted at Citrus College, Glendora, California. The equipment that we used was the aethalometer, an instrument developed at LBL that measures the concentration of aerosol black carbon in real time. In this report we present our results from that study in the form of 1-minute, 1-hour, and multi-hour average concentrations. We found concentrations generally ranging from 2 to 5 ..mu..g (BC)m/sup 3/, usually with increases in the morning traffic hours. We also observed short-duration (2-15 min) peaks in the black carbon concentration that could be directly attributed to the activity of vehicles in a delivery area less than 50 m from the study site. We conclude that mobile sources were the major contributor to the short- and medium-term variability of aerosol black carbon measured at this site. 5 refs., 5 figs., 1 tab

  1. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    PubMed

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles.

  2. Effects of particle shape, hematite content and semi-external mixing with carbonaceous components on the optical properties of accumulation mode mineral dust

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Tripathi, S. N.; Aggarwal, S. G.; Arola, A.

    2010-12-01

    The radiative forcing estimation of the polluted mineral dust is limited due to lack of morphological analysis, mixing state with the carbonaceous components and the hematite content in the pure dust. The accumulation mode mineral dust has been found to mix with anthropogenically produced black carbon, organic carbon and brown carbon during long range transport. The above features of the polluted dust are not well accounted in the optical models and lead the uncertainty in the numerical estimation of their radiative impact. The Semi-external mixing being a prominent mixing of dust and carbonaceous components has not been studied in details so for compared to core-shell, internal and external mixing studies. In present study, we consider the pure mineral dust composed of non-metallic components (such as Quartz, Feldspar, Mica and Calcite) and metalic component like hematite (Fe2O3). The hematite percentage in the pure mineral dust governs its absorbance. Based on this hematite variation, the hematite fraction in pure mineral dust has been constrained between 0-8%. The morphological and mineralogical characterization of the polluted dust led to consider the three sphere, two sphere and two spheroid model shapes for polluted dust particle system. The pollution gives rise to various light absorbing aerosol components like black carbon, brown carbon and organic carbon (comprising of HUmic-Like Substances, HULIS) in the atmosphere. The entire above discussed model shapes have been considered for the mineral dust getting polluted with (1) organic carbon (especially HULIS component) (2) Brown carbon and (3) black carbon by making a semi-external mixture with pure mineral dust. The optical properties (like Single Scattering Albedo, SSA; Asymmetry parameter, g and Extinction efficiency, Qext) of above model shapes for the polluted dust have been computed using Discrete Dipole Approximation, DDA code. For above model shapes, the SSA was found to vary depending on hematite

  3. Indication of aerosol chemical components based on aerosol optical properties at different AERONET sites

    NASA Astrophysics Data System (ADS)

    Cappucci, M.; Aryal, R. P.; Thapa, M. K.; Kafle, R. C.; Tripathi, S. N.

    2016-12-01

    Long term Aerosol Absorption Angstrom Exponent (AAAE) and single scattering albedo (SSA) of full aerosol vertical column at three different AERONET sites, Pokhara, Kanpur and Gandhi College at Nepal and India have been analyzed and divided into pre Monsoon, Monsoon and post Monsoon seasons. The AAAE values, between January 2010 and December 2015 are consistently vary for three different sites. Maximum AAAE values could be observed during the pre-monsoon period, while minimum values were observed during the monsoon period. SSA values also consistently changed across the 3 seasons for each year, with the minimum values being observed during the pre-monsoon period. There is a strong correlation between the AAAE values of the three different sites, indicating similar air mass sources. These varying magnitudes of AAAE examined in this paper will be analyzed by comparing the different chemical components observed with previous results. Results show values near 1 during the pre-monsoon period, indicating strong urban industrial aerosols. In post-monsoon period the observed AAAE values are larger in Kanpur and Gandhi, than in Pokhara, indicating biomass burning and dust aerosols loading into the atmosphere.

  4. Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies

    NASA Astrophysics Data System (ADS)

    Mogili, Praveen K.; Yang, K. H.; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    Mineral dust aerosol plays an important role in determining the physical and chemical equilibrium of the atmosphere. To better understand the impact that mineral dust aerosol may have on climate forcing and on remote sensing, we have initiated a study of the optical properties of important components of mineral dust aerosol including silicate clays (illite, kaolinite, and montmorillonite), quartz, anhydrite, and calcite. The extinction spectra are measured in an environmental simulation chamber over a broad wavelength range, which includes both the IR (650-5000 cm -1) and UV-vis (12,500-40,000 cm -1) spectral regions. In this paper, we focus on the IR region from 800 to 1500 cm -1, where many of these mineral dust constituents have characteristic vibrational resonance features. Experimental spectra are compared with Mie theory simulations based on published mineral optical constants. We find that Mie theory generally does a poor job in fitting the IR resonance peak positions and band profiles for nonspherical aerosols in the accumulation mode size range ( D˜0.1-2.5 μm). We explore particle shape effects on the IR resonance line profiles by considering analytic models for extinction of particles with characteristic shapes (i.e. disks, needles, and ellipsoids). Interestingly, Mie theory often appears to give more accurate results for the absorption line profiles of larger particles that fall in the coarse mode size range.

  5. Identification and Characterization of Biogenic SOA Component in Ambient Aerosols Based on Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Allan, J. D.; Kiendler-Scharr, A.; Tian, J.; Canagaratna, M. R.; Williams, B.; Worsnop, D. R.; Coe, H.; Goldstein, A.; Mentel, T. F.

    2008-12-01

    Recently studies have shown that multivariate factor analysis of the highly time-resolved mass spectral data obtained with an Aerodyne Aerosol Mass Spectrometer (AMS) may allow the classification and simplification of complex organic aerosol (OA) mixtures into components that are chemically meaningful and can be related to different sources and transformation processes. Two factor analysis techniques, including the Multiple Component Analysis (MCA) method (Zhang et al., 2007) and the Positive Matrix Factorization (PMF) method (Paatero and Tapper, 1994), were applied to a Quadrupole-AMS dataset acquired from Chebogue Pt., Nova Scotia in summer 2004. Multiple OA components were determined, including a hydrocarbon-like OA (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations and two oxygenated OA (OA) components that show different fragmentation patterns and oxygen-to-carbon ratios in their mass spectra. The HOA component correlates with inert primary emission tracers (e.g., EC and CO) and likely represents diluted POA transported from urban locations. The highly oxygenated component (OOA-I) correlates well with sulfate and shows a mass spectrum resembling that of fulvic acid - a model compound representative for highly processed/oxidized organics in the environment. The less oxygenated OA component (OOA-II) reveals a mass spectral pattern that compares well with those of the biogenic SOA produced from the mixture of VOCs emitted by spruce, pine and birch trees during exposure to ozone and UV-photolysis in the Jülich plant chamber. In addition, the time series of OOA-II correlates with biogenic SOA tracer compounds determined by the thermal desorption aerosol GC/MS-FID (TAG) instrument. Furthermore, the time-resolved size distributions of OOA components, their correlations with parallel gas and aerosol measurements, and backtrajectory analysis of air masses all support the association of OOA-II to biogenic sources. Finally

  6. Characteristics of carbonaceous components in precipitation and atmospheric particle at Japanese sites

    NASA Astrophysics Data System (ADS)

    Huo, M. Q.; Sato, K.; Ohizumi, T.; Akimoto, H.; Takahashi, K.

    2016-12-01

    A methodology for the collection and analysis of organic carbon (OC) and elemental carbon (EC) in precipitation was established and the monitoring of OC and EC in precipitation and aerosol was implemented at the Niigata (rural), Sado (remote), and Tokyo (urban) sites in Japan. The OC in precipitation was measured for water-insoluble OC (WIOC) and water-soluble OC (WSOC) separately. The concentrations of EC and WIOC in precipitation were 78.9 μg/l and 657 μg/l at the Tokyo site, 26.0 μg/l and 274 μg/l at the Sado site, 24.6 μg/l and 274 at the Niigata site. The ratio of EC to OC in the precipitation and aerosol samples were the highest at Tokyo site. The scavenging ratio of OC was higher than EC, implying that OC was more easily removed from the atmosphere compared to EC. The high concentrations of EC in precipitation in winter and spring at the Sado site were mainly due to the long-range transport from the Northeast Asian Continent, whereas at the Tokyo site the high level of EC concentration was mainly from domestic emissions. The seasonal variation of EC and OC in precipitation in East Asia was obtained for the first time. The major source for the high EC concentrations in precipitation at the Sado site in winter was ascribed to the fuel combustion, but in spring, it may be the result of biomass burning in the Northeast of the continent.

  7. Polycyclic Aromatic Aerosol Components: Chemical Analysis and Reactivity

    NASA Astrophysics Data System (ADS)

    Schauer, C.; Niessner, R.; Pöschl, U.

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants in the atmosphere and originate primarily from incomplete combustion of organic matter and fossil fuels. Their main sources are anthropogenic (e.g. vehicle emissions, domes- tic heating or tobacco smoke), and PAHs consisting of more than four fused aromatic rings reside mostly on combustion aerosol particles, where they can react with atmo- spheric trace gases like O3, NOx or OH radicals leading to a wide variety of partially oxidized and nitrated derivatives. Such chemical transformations can strongly affect the activity of the aerosol particles as condensation nuclei, their atmospheric residence times, and consequently their direct and indirect climatic effects. Moreover some poly- cyclic aromatic compounds (PACs = PAHs + derivatives) are known to have a high carcinogenic, mutagenic and allergenic potential, and are thus of major importance in air pollution control. Furthermore PACs can be used as well defined soot model sub- stances, since the basic structure of soot can be regarded as an agglomerate of highly polymerized PAC-layers. For the chemical analysis of polycyclic aromatic aerosol components a new analyti- cal method based on LC-APCI-MS has been developed, and a data base comprising PAHs, Oxy-PAHs and Nitro-PAHs has been established. Together with a GC-HRMS method it will be applied to identify and quantify PAHs and Nitro-PAHs in atmo- spheric aerosol samples, diesel exhaust particle samples and model soot samples from laboratory reaction kinetics and product studies. As reported before, the adsorption and surface reaction rate of ozone on soot and PAH-like particle surfaces is reduced by competitive adsorption of water vapor at low relative humidity (< 25 %). Recent results at higher relative humidities (ca. 50 %), however, indicate re-enhanced gas phase ozone loss, which may be due to absorbtion of ozone into an aqueous surface layer. The interaction of ozone and nitrogen

  8. Long-term trends of carbonaceous aerosol at Cape Hedo, Okinawa, Japan: based on changes in source emissions in Asian Continent

    NASA Astrophysics Data System (ADS)

    Shimada, K.; Hatakeyama, S.; Takami, A.; Shuichi, H.; Kajii, Y. J.; Kato, S.; Fushimi, A.

    2011-12-01

    Since 2004, carbonaceous aerosol were measured at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan, which was certified a super site by UNEP, focusing on investigating trans-boundary air pollutions or the long-term effects of aerosols on climate impact at CHAAMS using RP5400. Measurements were carried out with a time resolution of 3 hours and the observation as a whole was on a long-term basis. We found a general downward trend in the measured OC concentration at CHAAMS, with a reduction of -0.13±0.04 μgm-3 yr-1. On the other hand, EC concentration showed an increase of 16±8 ngm-3 yr-1 since 2004. The increase of EC concentration at CHAAMS is, however, not statistically significant. Firstly, to elucidate the influence of different emission source origin on downward trend of OC, we tried using OC/EC ratio. The OC/EC ratio showed a downward trend, suggesting that the reduction of biomass burning caused a downward trend in OC/EC ratio. On the other hand, the influence of emission source origin on upward trend of EC was shown to be the increasing tendency of sulphate. (year 2003~). It is suggested that increasing emission of coal combustion in the Asian continent affects upward trend on EC at CHAAMS. But, during winter and spring seasons, EC did not show an upward trend. We hypothesized that a combination of increasing fossil fuel combustion and decreasing biomass burning affects this trend. To further understand the effects of fossil fuel and biomass burning respectively, detailed data analysis will be done. Also, the ratio of EC and/or OC concentrations with CO concentrations which has been showing interesting features, will also be discussed.

  9. Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam Co Station, 4730 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Wan, Xin; Kang, Shichang; Wang, Yuesi; Xin, Jinyuan; Liu, Bin; Guo, Yuhong; Wen, Tianxue; Zhang, Guoshuai; Cong, Zhiyuan

    2015-02-01

    The chemical composition and size distribution characteristics of atmospheric aerosols have important effects on the environment, human health and climate change. In this paper, we study the size distribution of carbonaceous aerosols at the remote and pristine site, Nam Co Monitoring and Research Station for Multisphere Interactions, in the inland Tibetan Plateau (TP) based on collected size-segregated aerosols during 2012. The samples were quantified using the thermal/optical (TOR) method. The overall average concentrations of OC and EC in TSP, PM9.0, PM2.1, and PM1.0 were 4.61 μg m- 3 and 0.19 μg m- 3, 4.52 μg m- 3 and 0.18 μg m- 3, 2.72 μg m- 3 and 0.11 μg m- 3, and 2.11 μg m- 3 and 0.09 μg m- 3, respectively. Generally, the highest concentration of OC and EC in different aerosol size occurred during winter. The low level of EC indicated that direct anthropogenic disturbances in the interior of the TP still remain insignificant. The size distributions of OC and EC concentrations presented bimodal variations. In winter, pre-monsoon, monsoon, and post-monsoon seasons, the peaks for OC were in droplet mode (0.43-0.65 μm) and coarse mode (4.7-5.8 μm); while in the monsoon period, the coarse mode shifted to a smaller size bin (3.3-4.7 μm). The coarse mode may be due to dust particles while the droplet mode may be due to the growth process of particles. For EC, the peaks variations in coarse mode were as same as OC, while the other peaks were complicated: the peaks during winter, pre-monsoon, and monsoon seasons exhibited in droplet mode (1.1-2.1 μm, 0.65-1.1 μm, and 0.43-0.65 μm, respectively), and in post-monsoon period, the peak located in condensation mode. The highest peak concentrations for OC and EC occurred in winter and the pre-monsoon period, while the lowest peak values in the monsoon and post-monsoon periods, respectively. The size distribution variations may be caused by deposition, gas/particles exchange, hygroscopic growth, external mixing

  10. Interstellar organics and possible connections with the carbonaceous components of meteorites and IDPs

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1991-01-01

    Studying the chemical and isotopic composition of interstellar ice and dust provides insight into the composition and chemical history of the solid bodies in the solar nebula and the nature of the materials subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to probe the composition of these microscopic interstellar particles. High quality IR spectra of many different astronomical sources (some associated with dark molecular clouds, and others in the diffuse interstellar medium) are now available. Comparisons of these spectra with laboratory spectra and complex organic components of these materials are discussed.

  11. The evolution of chemical components of aerosols at five monitoring sites of China during dust storms

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhuang, Guoshun; Tang, Aohan; Zhang, Wenjie; Sun, Yele; Wang, Zifa; An, Zhisheng

    Daily PM 2.5 and TSP and their chemical composition with two dust events (DS1: 9-10 March and DS2: 27-30 March) were simultaneously observed for the period of 9 March-23 April 2004 from a monitoring network over China. Five monitoring sites were performed along the transport pathway of Asian dust storm, located in Northwest, North, East, and Southeast regions of China. The dust and non-dust days exhibited different characteristics with respect to the composition and the meteorological conditions. In non-dust days, particulate pollution was found to be associated with the city economy, and it primarily consisted of the crustal, the secondary, and the carbonaceous material. In the dust episodes, significant increase in the particle concentration with a large part of the secondary components diluted by the crustal components was observed at all the sites. Particles were getting more and more acidic as the episodic dust progressed eastward. Dust particles were suggested to react with SO 2/NO X/sulfate/nitrate based on the variations of SO 42-/Ca 2+ and NO 3-/Ca 2+ along the transport pathway, and the formation mechanism of sulfate and nitrate was proved to be different. Positive matrix factorization analysis showed that the sources from the upstream and the transport pathways could account for 49%, 82%, and 28% of PM mass, crust, and secondary aerosol, respectively, and the contribution decreased, as the dust made its way from source area to the coastal regions. Enrichment factors of the species presented significant correlations among different sites in the dust episodes, suggesting the significant impact of those dust emissions on the local environment.

  12. Radiocarbon-insights into temporal variations in the sources and concentrations of carbonaceous aerosols in the Los Angeles and Salt Lake City Metropolitan Areas

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson

    2014-05-01

    Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire

  13. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley of Chamonix: a dual approach based on radiocarbon and levoglucosan

    NASA Astrophysics Data System (ADS)

    Bonvalot, Lise; Tuna, Thibaut; Fagault, Yoann; Jaffrezo, Jean-Luc; Jacob, Véronique; Chevrier, Florie; Bard, Edouard

    2016-11-01

    Atmospheric particulate matter (PM) affects the climate in various ways and has a negative impact on human health. In populated mountain valleys in Alpine regions, emissions from road traffic contribute to carbonaceous aerosols, but residential wood burning can be another source of PM during winter. We determine the contribution of fossil and non-fossil carbon sources by measuring radiocarbon in aerosols using the recently installed AixMICADAS facility. The accelerator mass spectrometer is coupled to an elemental analyzer (EA) by means of a gas interface system directly connected to the gas ion source. This system provides rapid and accurate radiocarbon measurements for small samples (10-100 µgC) with minimal preparation from the aerosol filters. We show how the contamination induced by the EA protocol can be quantified and corrected for. Several standards and synthetic samples are then used to demonstrate the precision and accuracy of aerosol measurements over the full range of expected 14C / 12C ratios, ranging from modern carbon to fossil carbon depleted in 14C. Aerosols sampled in Chamonix and Passy (Arve River valley, French Alps) from November 2013 to August 2014 are analyzed for both radiocarbon (124 analyses in total) and levoglucosan, which is commonly used as a specific tracer for biomass burning. NOx concentration, which is expected to be associated with traffic emissions, is also monitored. Based on 14C measurements, we can show that the relative fraction of non-fossil carbon is significantly higher in winter than in summer. In winter, non-fossil carbon represents about 85 % of total carbon, while in summer this proportion is still 75 % considering all samples. The largest total carbon and levoglucosan concentrations are observed for winter aerosols with values up to 50 and 8 µg m-3, respectively. These levels are higher than those observed in many European cities, but are close to those for other polluted Alpine valleys. The non-fossil carbon

  14. Determining Oxidation Rates in Multi-component Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Sage, A. M.; Weitkamp, E. A.; Huff Hartz, K. E.; Robinson, A. L.; Donahue, N. M.

    2006-12-01

    Aerosol composition influences the kinetics of condensed-phase organic species, making extrapolation of rate constants from single-component systems to atmospherically-relevant mixtures difficult. Using a mixed-phase relative rate constants approach, we have overcome this difficulty, obtaining heterogeneous oxidation rate constants for each species in several multi-component organic mixtures. We have also derived a compound- specific uptake coefficient that relates these rate constants to previous uptake measurements. In the ozonolysis of model meat-cooking mixtures, we observe significant decay of saturated and unsaturated acids and sterols. By relating the observed decomposition of condensed-phase species to that of gas-phase standards, we track the evolution of effective rate constants for oleic acid and palmitoleic acid oxidation as the aerosol is chemically processed. Each decreases by nearly a factor of ten over the course of an experiment. Rate constants also depend strongly on aerosol composition, changing by more than an order of magnitude with increasing mixture complexity. To compare these results with previous results, we have derived a compound-specific uptake coefficient (γi' for condensed-phase species i), which describes the kinetics of reactive uptake in mixtures and can be meaningfully related to the traditional uptake coefficient. We express uptake in terms of the concentrations of condensed-phase species, and to do so accurately, we use alkanoic acids to correct the decay of reactive alkenoic acids for secondary chemistry. This correction is incorporated into the definition of γi', and in terms of γi', the standard uptake coefficient can be written as: γ=∑χiγi', where χi is the mass fraction of species i and the summation is over all oxidized species. By using condensed-phase decay to calculate the uptake, we have apportioned reactive uptake among responsible species. This provides information not only about the potential of a particle

  15. The importance of non-fossil sources in carbonaceous aerosols in a megacity of central China during the 2013 winter haze episode: A source apportionment constrained by radiocarbon and organic tracers

    NASA Astrophysics Data System (ADS)

    Liu, Junwen; Li, Jun; Vonwiller, Matthias; Liu, Di; Cheng, Hairong; Shen, Kaijun; Salazar, Gary; Agrios, Konstantinos; Zhang, Yanlin; He, Quanfu; Ding, Xiang; Zhong, Guangcai; Wang, Xinming; Szidat, Sönke; Zhang, Gan

    2016-11-01

    To determine the causes of a severe haze episode in January 2013 in China, a source apportionment of different carbonaceous aerosols (CAs) was conducted in a megacity in central China (Wuhan, Hubei Province) by using the measurements of radiocarbon and molecular organic tracers. Non-fossil sources (e.g., domestic biofuel combustion and biogenic emissions) were found to be responsible for 62% ± 5% and 26% ± 8% of organic carbon (OC) and elemental carbon (EC) components by mass, respectively. Non-fossil sources contributed 57% ± 4% to total CAs in this large-scale haze event, whereas fossil-fuel sources were less dominant (43% ± 4%). The CAs were composed of secondary organic carbon (SOC; 46% ± 10%), primary fossil-fuel carbon (29% ± 4%) and primary biomass-burning carbon (25% ± 10%). Although SOC was formed mainly from non-fossil sources (70% ± 4%), the role of fossil precursors was substantial (30% ± 4%), much higher than at the global scale. Combined measurement of organic tracers and radiocarbon showed that most non-fossil SOC was probably derived from biomass burning during this long-lasting haze episode in central China.

  16. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  17. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; Masalaite, A.; Blees, J.; Fröhlich, R.; Dällenbach, K. R.; Canonaco, F.; Slowik, J. G.; Dommen, J.; Zimmermann, R.; Schnelle-Kreis, J.; Salazar, G. A.; Agrios, K.; Szidat, S.; El Haddad, I.; Prévôt, A. S. H.

    2015-09-01

    In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 μg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the TC, respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 % and 7-12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  18. Monte Carlo simulation of two-component aerosol processes

    NASA Astrophysics Data System (ADS)

    Huertas, Jose Ignacio

    Aerosol processes have been extensively used for production of nanophase materials. However when temperatures and number densities are high, particle agglomeration is a serious drawback for these techniques. This problem can be addressed by encapsulating the particles with a second material before they agglomerate. These particles will agglomerate but the primary particles within them will not. When the encapsulation is later removed, the resulting powder will contain only weakly agglomerated particles. To demonstrate the applicability of the particle encapsulation method for the production of high purity unagglomerated nanosize materials, tungsten (W) and tungsten titanium alloy (W-Ti) particles were synthesized in a sodium/halide flame. The particles were characterized by XRD, SEM, TEM and EDAX. The particles appeared unagglomerated, cubic and hexagonal in shape, and had a size of 30-50 nm. No contamination was detected even after extended exposure to atmospheric conditions. The nanosized W and W-Ti particles were consolidated into pellets of 6 mm diameter and 6-8 mm long. Hardness measurements indicate values 4 times that of conventional tungsten. 100% densification was achieved by hipping the samples. To study the particle encapsulation method, a code to simulate particle formation in two component aerosols was developed. The simulation was carried out using a Monte Carlo technique. This approach allowed for the treatment of both probabilistic and deterministic events. Thus, the coagulation term of the general dynamic equation (GDE) was Monte Carlo simulated, and the condensation term was solved analytically and incorporated into the model. The model includes condensation, coagulation, sources, and sinks for two-component aerosol processes. The Kelvin effect has been included in the model as well. The code is general and does not suffer from problems associated with mass conservation, high rates of condensation and approximations on particle composition. It has

  19. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    NASA Astrophysics Data System (ADS)

    Liu, Junwen; Li, Jun; Liu, Di; Ding, Ping; Shen, Chengde; Mo, Yangzhi; Wang, Xinming; Luo, Chunling; Cheng, Zhineng; Szidat, Sönke; Zhang, Yanlin; Chen, Yingjun; Zhang, Gan

    2016-03-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  20. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, J.; Liu, D.; Ding, P.; Shen, C.; Mo, Y.; Wang, X.; Luo, C.; Cheng, Z.; Szidat, S.; Zhang, Y.; Chen, Y.; Zhang, G.

    2015-12-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities of China, yet seldom study simultaneously focuses on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), respectively, using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 % in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 % in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  1. Maritime Aerosol Network (MAN) as a Component of AERONET

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; hide

    2008-01-01

    The World Ocean produces a large amount of natural aerosols that have all impact on the Earth's albedo and climate. Sea-salt is the major contributor to aerosol optical depth over the oceans. [Mahowald et al. 2006; Chin et al. 2002; Satheesh et al. 1999; Winter and Chylek, 1997] and therefore affects the radiative balance over the ocean through the direct [Haywood et al. 1999] and indirect aerosol effect [O'Dowd et al. 1999]. Aerosols over the oceans (produced marine and advected from land sources) are important for various atmospheric processes [Lewis and Schwartz, 2004] and remote sensing studies [Gordon, 1997].

  2. A new comprehensive approach to characterizing carbonaceous aerosol with an application to wintertime Fresno, California PM2.5

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fine particulate matter (PM2.5) samples were collected during a three week winter period in Fresno (CA). A composite sample was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the aerosol samples was recovered and characterized. Only 35% of the organic matter was water soluble with another third soluble in dichloromethane and the remainder insoluble. Within the isolated water soluble material, hydrophobic acid and hydrophilic acids plus neutrals fractions contained the largest amounts of carbon. The hydrophobic acids fraction appears to contain significant amounts of lignin type structures, spectra of the hydrophilic acids plus neutrals fraction are indicative of carbohydrates and secondary organic material. The dichloromethane soluble fraction contains a variety of organic compound families typical of many previous studies of organic aerosol speciation, including alkanes, alkanols, alkanals and alkanoic acids. Finally the water and solvent insoluble fraction exhibits a strong aromaticity as one would expect from black or elemental carbon like material; however, these spectra also show a substantial amount of aliphaticity consistent with linear side chains on the aromatic structures.

  3. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds

    NASA Astrophysics Data System (ADS)

    Fujii, Yusuke; Kawamoto, Haruo; Tohno, Susumu; Oda, Masafumi; Iriana, Windy; Lestari, Puji

    2015-06-01

    Smoke emitted from Indonesian peatland fires has caused dense haze and serious air pollution in Southeast Asia such as visibility impairment and adverse health impacts. To mitigate the Indonesian peatland fire aerosol impacts, an effective strategy and international framework based on the latest scientific knowledge needs to be established. Although several attempts have been made, limited data exist regarding the chemical characteristics of peatland fire smoke for the source apportionment. In order to identify the key organic compounds of peatland fire aerosols, we conducted intensive field studies based on ground-based and source-dominated sampling of PM2.5 in Riau Province, Sumatra, Indonesia, during the peatland fire seasons in 2012. Levoglucosan was the most abundant compound among the quantified organic compounds at 8.98 ± 2.28% of the PM2.5 mass, followed by palmitic acid at 0.782 ± 0.163% and mannosan at 0.607 ± 0.0861%. Potassium ion was not appropriate for an indicator of Indonesian peatland fires due to extremely low concentrations associated with smoldering fire at low temperatures. The vanillic/syringic acids ratio was 1.06 ± 0.155 in this study and this may be a useful signature profile for peatland fire emissions. Particulate n-alkanes also have potential for markers to identify impact of Indonesian peatland fire source at a receptor site.

  4. An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models

    SciTech Connect

    Kinne, Stefan; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, Olivier; Chin, M.; Collins, W.; Dentener, F.; Diehl, T.; Easter, Richard C.; Feichter, H.; Fillmore, D.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Herzog, M.; Horrowitz, L.; Isaksen, I.; Iversen, T.; Kirkevag, A.; Kloster, S.; Koch, D.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Lesins, G.; Liu, Xiaohong; Lohmann, U.; Montanaro, V.; Myhre, G.; Penner, Joyce E.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-29

    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment global fields for mass and for mid-visible aerosol optical thickness (aot) were compared among aerosol component modules of 21 different global models. There is general agreement among models for the annual global mean of component combined aot. At 0.12 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca 0.14) and space (MODIS-MISR composite ca 0.16). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture have remained. Of particular concern is the large model diversity for contributions by dust and carbon, because it leads to significant uncertainty in aerosol absorption (aab). Since not only aot but also aab influence the aerosol impact on the radiative energy-balance, aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) and space (e.g. correlations between retrieved aerosol and cloud properties).

  5. CCN Activation Properties of Multiple-Component, Smog Chamber Generated, and Ambient Aerosols

    NASA Astrophysics Data System (ADS)

    Raymond, T. M.; Pandis, S. N.

    2002-12-01

    Ambient aerosols are a complex mixture of inorganic and hundreds of organic compounds varying in structure and physical properties. Despite the considerable fraction of organic matter in atmospheric aerosol, relatively little is known about the ability of complex, mixed particles to act as cloud condensation nuclei (CCN). Previous work has focused on pure-component and dual-component aerosols and theoretical modeling of their activation. This work expands the investigation by studying the CCN-forming ability of multiple-component organic-inorganic mixed aerosol compounds produced in a smog chamber, and ambient aerosols. The CCN properties of aerosols produced in an indoor five cubic meter Teflon smog chamber and ambient aerosol are investigated experimentally combining a Tandem Differential Mobility Analyzer (TDMA) with a static diffusion CCN counter (M1 Model, DH Associates). Data was obtained for ozone oxidation products of alpha-pinene, beta-pinene, limonene, gasoline, and diesel fuel. Multiple-component aerosols were produced from atomizing a mixed solution of chemical components and studying the particles with the TDMA-CCNC system. Mixtures included ammonium sulfate, sodium chloride, pinonic acid, pinic acid, norpinic acid, glutamic acid, and leucine. Studies were performed at supersaturations of 0.3% and 1.0% with dry particle diameters ranging from 0.02 to 0.2 micrometers. The results were analyzed to gain insights into CCN properties of atmospheric aerosols composed of known mixtures of inorganic and organic species, mixed oxidation products of primary organic species, and actual ambient aerosols. The results are compared to the behavior of pure organic aerosols and theory.

  6. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  7. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  8. Emission ratio of carbonaceous aerosols observed near crop residual burning sources in a rural area of the Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Taketani, F.; Tanimoto, H.; Irie, H.; Takashima, H.; Inomata, S.

    2012-11-01

    Intensive open crop residue burning (OCRB) has a great impact on regional air quality and climate. A field observation campaign in a rural area of the Yangtze River Delta Region (YRDR) was performed during the harvest season, and Elemental carbon (ECa), organic carbon (OC), black carbon (BCe), carbon monoxide (CO), carbon dioxide (CO2) and PM2.5mass were concurrently measured. During the observation period, urban pollution and OCRB-impact episodes were classified. The emission ratio of ECa mass (defined as the ΔECa/ΔCO ratio) from OCRB was estimated to be 18.2 ± 4.6 ng/m3/ppbv, much higher than that (3.0 ± 0.3 ng/m3/ppbv) of urban pollution from the YRDR. A significant amount of OC was emitted from OCRB with ΔOC/ΔCO ratio of 101.3 ± 41.6 ng/m3/ppbv. The value found in the present study was near the upper limit of OC emission ratios in the literature, implying great impacts from combustion conditions, types of biomass burned and subsequent evolution. Regarding urban pollution episodes, the ΔOC/ΔCO ratio was found to be 23.7 ± 2.4 ng/m3/ppbv, and secondary organics accounted for the major fraction of OC mass. Combustions phases of OCRB were classified according to a modified combustion efficiency (MCE, defined as ΔCO2/(ΔCO + ΔCO2)). Our results support the view that ECa tend to be produced in flaming combustions (MCE > 0.95) than in smoldering combustions (MCE < 0.95), whereas OC is emitted preferentially from smoldering combustions. Based on our observed carbonaceous aerosol correlations, we estimate that the ECa and OC emissions from OCRB in East Asia might be underestimated by at least 50%.

  9. Assessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport.

    PubMed

    Friedman, C L; Pierce, J R; Selin, N E

    2014-03-18

    We use the chemical transport model GEOS-Chem to evaluate the hypothesis that atmospheric polycyclic aromatic hydrocarbons (PAHs) are trapped in secondary organic aerosol (SOA) as it forms. We test the ability of three different partitioning configurations within the model to reproduce observed total concentrations in the midlatitudes and the Arctic as well as midlatitude gas-particle phase distributions. The configurations tested are (1) the GEOS-Chem default configuration, which uses instantaneous equilibrium partitioning to divide PAHs among the gas phase, a primary organic matter (OM) phase (absorptive), and a black carbon (BC) phase (adsorptive), (2) an SOA configuration in which PAHs are trapped in SOA when emitted and slowly evaporate from SOA thereafter, and (3) a configuration in which PAHs are trapped in primary OM/BC upon emission and subsequently slowly evaporate. We also test the influence of changing the fraction of PAHs available for particle-phase oxidation. Trapping PAHs in SOA particles upon formation and protecting against particle-phase oxidation (2) better simulates observed remote concentrations compared to our default configuration (1). However, simulating adsorptive partitioning to BC is required to reproduce the magnitude and seasonal pattern of gas-particle phase distributions. Thus, the last configuration (3) results in the best agreement between observed and simulated concentration/phase distribution data. The importance of BC rather than SOA to PAH transport is consistent with strong observational evidence that PAHs and BC are coemitted.

  10. Size distribution characteristics of carbonaceous aerosol in Xishuangbanna, southwest China: a sign for biomass burning in Asia.

    PubMed

    Guo, Yuhong

    2016-03-01

    In 2012, size-segregated aerosol samples were collected in Xishuangbanna, a forest station in southwest China. The concentrations of organic and elemental carbon (OC and EC for short) were quantified with thermal/optical carbon analyzer in the filter samples. OC and EC exhibited similar seasonal patterns, with the highest concentrations in spring, possibly due to the influence of biomass burning in south and southeast Asia. The mass size distributions of OC and EC were bimodal in all the sampling seasons, each with a dominant peak in the fine mode of 0.4-0.7 μm and a coarse peak in the size range of 2.1-4.7 μm. In fine mode, OC and EC showed smaller geometric mean diameters (GMDs) during winter. OC and EC were prone to be more concentrated in fine particles in spring and winter than in summer and autumn. Furthermore, EC was more abundant in fine particles than OC. Good correlations (R(2) = 0.75-0.82) between OC and EC indicated that they had common dominant sources of combustion such as biomass burning and fossil fuel combustion emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, more elevated OC/EC ratios being found in the winter.

  11. Online coupling of pure O2 thermo-optical methods - 14C AMS for source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-10-01

    This paper reports on novel separation methods developed for the direct determination of 14C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of 14C aerosol source apportionment.

  12. Improved measurement of carbonaceous aerosol: evaluation of the sampling artifacts and inter-comparison of the thermal-optical analysis methods

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.

    2010-09-01

    The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and

  13. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Chen, Pengfei; Kang, Shichang; Yan, Fangping; Hu, Zhaofu; Qu, Bin; Sillanpää, Mika

    2016-02-01

    Light absorption properties of carbonaceous aerosol strongly influence the Earth's radiative balance, yet the related knowledge is limited for the Tibetan Plateau (TP), the highest and largest plateau in the world. In this study, organic carbon (OC), elemental carbon (EC) and water soluble organic carbon (WSOC) of PM2.5 and PM10 of Lhasa collected from May 2013 to March 2014 were studied. It showed that daily-average concentrations of OC, EC and WSOC of PM2.5 and PM10 were lower than those of other megacities. Lhasa PM2.5 was characterized by low OC/EC ratio (1.46 ± 0.55), which was similar to that of Lhasa roadside PM2.5 (1.25 ± 0.45), reflecting mainly direct influence of primary emissions and less secondary formation. Hence, although Lhasa atmosphere is relatively clean, it is intensively influenced by local vehicle emissions. Mass absorption cross-section of EC (MACEC) for both PM2.5 and PM10 at 632 nm were 7.19 ± 1.19 m2 g-1 and 7.98 ± 2.32 m2 g-1, respectively, both of which had similar variation patterns to OC/EC and secondary OC (SOC)/OC, indicating that the increase of MACEC might be caused by coating with organic aerosol. Additionally, the loading of EC for both PM2.5 and PM10 showed logarithmic relationships with those of optical attenuation (ATN) of EC, implying that the shadowing effect enhanced logarithmic with increased EC concentration. MAC of WSOC at 365 nm for PM2.5 (0.74 ± 0.22 m2 g-1) and PM10 (0.78 ± 0.21 m2 g-1) were also close to reported values of other cities mainly influenced by fossil combustion. Additionally, attenuation at 365 nm of WSOC of both PM2.5 and PM10 showed the same relationship with their WSOC concentrations, implying no difference for light absorption properties of WSOC for these two grain sizes.

  14. Organic Aerosol Component (OACOMP) Value-Added Product

    SciTech Connect

    Fast, J; Zhang, Q; tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10–90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties accurately. This deficiency represents a large source of uncertainty in quantification of aerosol effects and prediction of future climate change. Evaluation and development of aerosol models require data products generated from field observations. Real-time, quantitative data acquired with aerosol mass spectrometers (AMS) (Canagaratna et al. 2007) are critical to this need. The AMS determines size-resolved concentrations of non-refractory (NR) species in submicrometer particles (PM1) with fast time resolution suitable for both ground-based and aircraft deployments. The high-resolution AMS (HR-AMS), which is equipped with a high mass resolution time-of-flight mass spectrometer, can be used to determine the elemental composition and oxidation degrees of OA (DeCarlo et al. 2006).

  15. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century

    PubMed Central

    Yue, Xu; Mickley, Loretta J.; Logan, Jennifer A.; Kaplan, Jed O.

    2013-01-01

    We estimate future wildfire activity over the western United States during the mid-21st century (2046–2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25–0.60 of the variance in observed annual area burned during 1980–2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ~0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at mid-century. We calculate increases of 24–124% in area burned using regressions and 63–169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p<0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at mid-century. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46–70% and black carbon by 20–27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by ~90% and BC by ~50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1

  16. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century

    NASA Astrophysics Data System (ADS)

    Yue, Xu; Mickley, Loretta J.; Logan, Jennifer A.; Kaplan, Jed O.

    2013-10-01

    We estimate future wildfire activity over the western United States during the mid-21st century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the variance in observed annual area burned during 1980-2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ˜0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at midcentury. We calculate increases of 24-124% in area burned using regressions and 63-169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p < 0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at midcentury. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46-70% and black carbon by 20-27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by ˜90% and BC by ˜50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in

  17. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested.

  18. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  19. Production-based emissions, consumption-based emissions and consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Nansai, Keisuke; Tohno, Susumu; Nishizawa, Masato; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-11-01

    This study determined the production-based emissions, the consumption-based emissions, and the consumption-based health impact of primary carbonaceous aerosols (black carbon: BC, organic carbon: OC) in nine countries and regions in Asia (Indonesia, Malaysia, the Philippines, Singapore, Thailand, China, Taiwan, South Korea, and Japan) in 2008. For the production-based emissions, sectoral emissions inventory of BC and OC for the year of 2008 based on the Asian international input-output tables (AIIOT) was compiled including direct emissions from households. Then, a multiregional environmental input-output analysis with the 2008 AIIOT which was originally developed by updating the table of 2000 was applied for calculating the consumption-based emissions for each country and region. For the production-based emissions, China had the highest BC and OC emissions of 4520 Gg-C in total, which accounted for 75% of the total emissions in the nine countries and regions. For consumption-based emissions, China was estimated to have had a total of 4849 Gg-C of BC and OC emissions, which accounted for 77% of the total emissions in the Asia studied. We also quantified how much countries and regions induced emissions in other countries and regions. Furthermore, taking account of the source-receptor relationships of BC and OC among the countries and regions, we converted their consumption-based emissions into the consumption-based health impact of each country and region. China showed the highest consumption-based health impact of BC and OC totaling 111 × 103 premature deaths, followed by Indonesia, Japan, Thailand and South Korea. China accounted for 87% of the sum total of the consumption-based health impacts of the countries/regions, indicating that China's contribution to consumption-based health impact in Asia was greater than its consumption-based emissions. By elucidating the health impacts that each country and region had on other countries and from which country the impacts

  20. Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Li, Guanghui; Yang, Weiqiang; Huang, Zhonghui; Zhang, Zhou; Huang, Xinyu; Deng, Wei; Liu, Tengyu; Huang, Zuzhao; Zhang, Zhanyi

    2015-12-01

    Motor vehicles contribute primarily and secondarily to air quality problems due to fine particle (PM2.5) and ozone (O3) pollution in China's megacities. Characterizing vehicle emission with the rapid change of vehicle numbers and fleet compositions is vital for both bottom-up emission survey and top-down source apportioning. To obtain emission factors (EFs) of PM2.5, carbonaceous aerosols and trace gases for road vehicles, in urban Guangzhou we conducted a field campaign in 2014 in the Zhujiang Tunnel, a heavily burdened tunnel with about 40,000 motor vehicles passing through each of its two separated bores per day. PM2.5 and volatile organic compounds (VOCs) were sampled for offline analysis while trace gases including SO2, NOx and CO were measured online and in situ. An eddy covariance system with an integrated 3-D sonic anemometer was also adopted to measure CO2 and winds inside the tunnel. We recorded an average fleet composition of 61% light-duty gasoline vehicles (LDVs) + 12% heavy-duty diesel vehicles (HDVs) + 27% liquefied petroleum gas vehicles (LPGVs), and EFs of 82.7 ± 28.3, 19.3 ± 4.7 and 13.3 ± 3.3 mg veh-1 km-1, respectively, for PM2.5, organic carbon (OC) and elemental carbon (EC). These EFs were respectively 23.4%, 18.3% and 72.3% lower when compared to that measured in the same tunnel in 2004. EFs of PM2.5, OC and EC were higher at night time (148 ± 126, 29 ± 24 and 21 ± 18 mg veh-1 km-1, respectively) due to significantly elevated fractions of HDVs in the traffic fleets. An average ratio of OC to EC 1.45 from this tunnel study was much higher than that of ∼0.5 in previous tunnel studies. The EFs of SO2, NOx, CO, CO2 and NMHCs for road traffic were also obtained from our tunnel tests, and they were 20.7 ± 2.9, (1.29 ± 0.2)E+03, (3.10 ± 0.68)E+03, (3.90 ± 0.49)E+05, and 448 ± 39 mg veh-1 km-1, respectively.

  1. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M.

    2015-11-01

    Since there have been individual reports of persistent haze-fog events in January 2013 in central-eastern China, questions on factors causing the drastic differences in changes in 2013 from changes in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributing to such changes is yet to be determined. The study intends to present the changes in daily based major water-soluble constituents, carbonaceous species, and mineral aerosol in PM10 at 13 stations within different haze regions in China from 2006 to 2013, which are associated with specific meteorological conditions that are highly related to aerosol pollution (parameterized as an index called Parameter Linking Aerosol Pollution and Meteorological Elements - PLAM). No obvious changes were found in annual mean concentrations of these various chemical components and PM10 in 2013, relative to 2012. By contrast, wintertime mass of these components was quite different. In Hua Bei Plain (HBP), sulfate, organic carbon (OC), nitrate, ammonium, element carbon (EC), and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21, and 130 μg m-3, respectively; these masses were approximately 2 to 4 times higher than those in background mass, which also exhibited a decline during 2006 to 2010 and then a rise till 2013. The mass of these concentrations and PM10, except minerals, respectively, increased by approximately 28 to 117 % and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze-fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In the Yangtze River Delta (YRD) area, winter masses of these components, unlike HBP, have not significantly increase since 2010; PLAM were also maintained at a similar level without

  2. Trapped Xe components in etched samples of the Murray (C2) and Murchison (C2) carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Jones, C. M.; Lumpkin, G. R.; Reynolds, J. H.

    1985-01-01

    Xe isotopic measurements are described. The samples analyzed were bulk chips of the Murray (C2) and Murchison (C2) carbonaceous chondrites that had been freeze-thaw disaggregated, etched with H2O2, and then split into colloidal and noncolloidal fractions using methanol. The etching removed a substantial portion of the trapped Xe and increased variations in measured isotopic ratios compared with bulk sample analyses. The Murray samples appeared to contain a binary mixture of U-Xe and H+L-Xe. The Murchison data concur with the Murray data for the heavy isotopes, but the structure at the light isotopes is obscured by spallation Xe. There is no evidence in these data for the separability of H-Xe and L-Xe. The fact that H2O2 etching removes Xe without prior demineralization supports the view that the carrier of a substantial portion of trapped Xe may reside on grain surfaces.

  3. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  4. Maritime Aerosol Network (MAN) as a component of AERONET - first results

    NASA Astrophysics Data System (ADS)

    Smirnov, A.

    2009-04-01

    The paper presents a concept and the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). The proposed activity includes deployment of hand-held sunphotometers at sea and measurements from various ships of opportunity. Overall MAN will complement island-based AERONET measurements and will expand AERONET program to acquire additional data over the oceans. Scientific objectives of this kind of activity are primarily climate change studies (direct and indirect forcing); satellite retrievals validation; validation of global aerosol transport model simulations; and atmospheric correction in ocean color studies. MAN deploys Microtops hand-held sunphotometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site (http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html) dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. Accomplished cruises included transects from Northern to Southern Atlantic, from Northern to Southern Pacific, from New Zealand to Japan, measurements in Southern Indian Ocean, in the Tropical Atlantic, along the western coast of South America, near the coast of Antarctica, in the Mediterranean, Arabian, Beafort, Bering, Barents, Greenland Seas and in the Bay of Bengal. First results are presented. MAN ship-based aerosol optical depth compare well to simultaneous island and near-coastal AERONET site AOD. We believe that the Maritime Aerosol Network will provide the scientific community with valuable information on aerosol optical properties over the oceans. Employing simple, standard and commercially available instrumentation, traceable calibration, a scientifically sound processing scheme and easily accessible web-based public data archive, the network has strong growth potential. Expanded spatial coverage will contribute

  5. The Magnetization of Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Herndon, James Herndon

    1974-01-01

    Alternating field demagnetization experiments have been conducted on representative samples of the carbonaceous meteorites (carbonaceous chondrites and ureilites). The results indicate that many, if not all, of these meteorites possess an intense and stable magnetic moment of extraterrestrial origin. Thermomagnetic analyses have been conducted on samples of all known carbonaceous meteorites. In addition to yielding quantitative magnetite estimates, these studies indicate the presence of a thermally unstable component, troilite, which reacts with gaseous oxygen to form magnetite. It is proposed that the magnetite found in some carbonaceous chondrites resulted from the oxidation of troilite during the early history of the solar system. The formation of pyrrhotite is expected as a natural consequence of magnetite formation via this reaction. Consideration is given to the implications of magnetite formation on paleointensity studies.

  6. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M.

    2015-07-01

    Since individuals experienced persistent haze-fog events in January 2013 in central-eastern China, questions on factors causing differences in drastic changes in 2013 from those in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributed to such changes is yet to be determined. The study intends to present the changes in daily-based major water-soluble constituents, carbonaceous species and mineral aerosol in PM10 at 13 stations within different haze regions in China from 2006 to 2013, associated with specific meteorological conditions that are highly related with aerosol pollution (parameterized as an index called "PLAM"). No obvious changes were found in annual mean concentrations of these various chemical components and PM10 in 2013, relative to 2012. By contrast, wintertime mass of these components were quite different, in Hua Bei Plain (HBP), sulfate, OC, nitrate, ammonium, EC, and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21 and 130 μg m-3, respectively; these masses were approximately two to four times higher than those in background mass, also exhibiting a decline during 2006 to 2010, and then a rise till 2013. The mass of these concentrations and PM10, except mineral, respectively increased by approximately 28 to 117 and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze-fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In Yangtzi River Delta (YRD) area, winter masses of these components, unlike HBP, did not significantly increase since 2010; PLAM was also maintained at a similar level without significant changes. In the Pearl River Delta (PRD) area, the regional background concentrations of the major chemical components were similar

  7. A New Approach to Speciation of the Organic Component of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Longin, T.; Doezema, L.; Cody, W.; Perraud, V. M.; Ezell, M. J.; Dawson, M. L.; Greaves, J.; Finlayson-Pitts, B. J.

    2011-12-01

    Real-time in situ analysis of the organic component of atmospheric aerosols has been hampered by the lack of analytical techniques that allow molecular speciation. We report here the application of a relatively new ambient ionization method, extractive electrospray ionization mass spectrometry (EESI-MS), to probe aerosols from various sources, including secondary organic aerosols (SOA) formed by the reaction of α-pinene with ozone. The mass spectra are compared to those of the same samples that were first collected on a filter, dissolved in the solvent and then analyzed by conventional ESI-MS. Although EESI-MS has been used to explore other systems such as aerosolized drugs, to the best of our knowledge this is the first instance of applying the technique to atmospherically relevant aerosols. This technique has the advantages of providing mass spectra that are characteristic of individual organic compounds, yet is carried out at ambient pressures and temperatures and does not require prior collection and/or extraction of particles. Results from different aerosol samples will be presented and potential applications to ambient aerosols discussed.

  8. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2016-02-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  9. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  10. Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite

    PubMed Central

    Davidson, Jemma; Schrader, Devin L; Alexander, Conel M O'D; Lauretta, Dante S; Busemann, Henner; Franchi, Ian A; Greenwood, Richard C; Connolly, Harold C; Domanik, Kenneth J; Verchovsky, Alexander

    2014-01-01

    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable. PMID:26640360

  11. Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite.

    PubMed

    Davidson, Jemma; Schrader, Devin L; Alexander, Conel M O'D; Lauretta, Dante S; Busemann, Henner; Franchi, Ian A; Greenwood, Richard C; Connolly, Harold C; Domanik, Kenneth J; Verchovsky, Alexander

    2014-12-01

    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.

  12. Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Davidson, Jemma; Schrader, Devin L.; Alexander, Conel M. O'd.; Lauretta, Dante S.; Busemann, Henner; Franchi, Ian A.; Greenwood, Richard C.; Connolly, Harold C.; Domanik, Kenneth J.; Verchovsky, Alexander

    2014-12-01

    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.

  13. Constraining Carbonaceous Aerosol Sources in a Receptor Model Using Combined 14C, Redox Species, Organic Tracers, and Elementary/Organic Carbon Measurements

    EPA Science Inventory

    Sources of carbonaceous PM2.5 were quantified in downtown Cleveland, OH and Chippewa Lake, OH located ~40 miles southwest of Cleveland during the Cleveland Multiple Air Pollutant Study (CMAPS). PM2.5 filter samples were collected daily during July-August 200...

  14. Constraining Carbonaceous Aerosol Sources in a Receptor Model Using Combined 14C, Redox Species, Organic Tracers, and Elementary/Organic Carbon Measurements

    EPA Science Inventory

    Sources of carbonaceous PM2.5 were quantified in downtown Cleveland, OH and Chippewa Lake, OH located ~40 miles southwest of Cleveland during the Cleveland Multiple Air Pollutant Study (CMAPS). PM2.5 filter samples were collected daily during July-August 200...

  15. Assessment of the aerosol optics component of the coupled WRF-CMAQ model using CARES field campaign data and a single column model

    NASA Astrophysics Data System (ADS)

    Gan, Chuen Meei; Binkowski, Francis; Pleim, Jonathan; Xing, Jia; Wong, David; Mathur, Rohit; Gilliam, Robert

    2015-08-01

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) - Community Multiscale Air Quality (CMAQ) model. This campaign included comprehensive measurements of aerosol composition and optical properties at two ground sites and aloft from instrumentation on-board two aircraft. A single column model (SCM) was developed to evaluate the accuracy and consistency of the coupled model using both observation and model information. Two cases (June 14 and 24, 2010) are examined in this study. The results show that though the coupled WRF-CMAQ estimates of aerosol extinction were underestimated relative to these measurements, when measured concentrations and characteristics of ambient aerosols were used as input to constrain the SCM calculations, the estimated extinction profiles agreed well with aircraft observations. One of the possible causes of the WRF-CMAQ extinction errors is that the simulated sea-salt (SS) in the accumulation mode in WRF-CMAQ is very low in both cases while the observations indicate a considerable amount of SS. Also, a significant amount of organic carbon (OC) is present in the measurement. However, in the current WRF-CMAQ model all OC is considered to be insoluble whereas most secondary organic aerosol is water soluble. In addition, the model does not consider external mixing and hygroscopic effects of water soluble OC which can impact the extinction calculations. In conclusion, the constrained SCM results indicate that the scattering portion of the aerosol optics calculations is working well, although the absorption calculation could not be effectively evaluated. However, a few factors such as greatly underestimated accumulation mode SS, misrepresentation of water soluble OC, and incomplete mixing state representation in the full coupled model

  16. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  17. Modelling multi-component aerosol transport problems by the efficient splitting characteristic method

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Fu, Kai; Wang, Wenqia

    2016-11-01

    In this paper, a splitting characteristic method is developed for solving general multi-component aerosol transports in atmosphere, which can efficiently compute the aerosol transports by using large time step sizes. The proposed characteristic finite difference method (C-FDM) can solve the multi-component aerosol distributions in high dimensional domains over large ranges of concentrations and for different aerosol types. The C-FDM is first tested to compute the moving of a Gaussian concentration hump. Comparing with the Runge-Kutta method (RKM), our C-FDM can use very large time step sizes. Using Δt = 0.1, the accuracy of our C-FDM is 10-4, but the RKM only gets the accuracy of 10-2 using a small Δt = 0.01 and the accuracy of 10-3 even using a much smaller Δt = 0.002. A simulation of sulfate transport in a varying wind field is then carried out by the splitting C-FDM, where the sulfate pollution is numerically showed expanding along the wind direction and the effects of the different time step sizes and different wind speeds are analyzed. Further, a realistic multi-component aerosol transport over an area in northeastern United States is studied. Concentrations of PM2.5 sulfate, ammonium, nitrate are high in the urban area, and low in the marine area, while sea salts of sodium and chloride mainly exist in the marine area. The normalized mean bias and the normalized mean error of the predicted PM2.5 concentrations are -6.5% and 24.1% compared to the observed data measured at monitor stations. The time series of numerical aerosol concentration distribution show that the strong winds can move the aerosol concentration peaks horizontally for a long distance, such as from the urban area to the rural area and from the marine area to the urban and rural area. Moreover, we also show the numerical time duration patterns of the aerosol concentration distributions due to the affections of the turbulence and the deposition removal. The developed splitting C-FDM algorithm

  18. Improving aerosol drug delivery during invasive mechanical ventilation with redesigned components.

    PubMed

    Longest, P Worth; Azimi, Mandana; Golshahi, Laleh; Hindle, Michael

    2014-05-01

    Patients receiving invasive mechanical ventilation with an endotracheal tube (ETT) can often benefit from pharmaceutical aerosols; however, drug delivery through the ventilator circuit is known to be very inefficient. The objective of this study was to improve the delivery of aerosol through an invasive mechanical ventilation system by redesigning circuit components using a streamlining approach. Redesigned components were the T-connector interface between the nebulizer and ventilator line and the Y-connector leading to the ETT. The streamlining approach seeks to minimize aerosol deposition and loss by eliminating sharp changes in flow direction and tubing diameter that lead to flow disruption. Both in vitro experiments and computational fluid dynamic (CFD) simulations were applied to analyze deposition and emitted dose of drug for multiple droplet size distributions, flows, and ETT sizes used in adults. The experimental results demonstrated that the streamlined components improved delivery through the circuit by factors ranging from 1.3 to 1.5 compared with a commercial system for adult ETT sizes of 8 and 9 mm. The overall delivery efficiency was based on the bimodal aspect of the aerosol distributions and could not be predicted by median diameter alone. CFD results indicated a 20-fold decrease in turbulence in the junction region for the streamlined Y resulting in a maximum 9-fold decrease in droplet deposition. The relative effectiveness of the streamlined designs was found to increase with increasing particle size and increasing flow, with a maximum improvement in emitted dose of 1.9-fold. Streamlined components can significantly improve the delivery of pharmaceutical aerosols during mechanical ventilation based on an analysis of multiple aerosol generation devices, ETT sizes, and flows.

  19. REDOX AND ELECTROPHILIC PROPERTIES OF VAPOR- AND PARTICLE-PHASE COMPONENTS OF AMBIENT AEROSOLS

    PubMed Central

    Eiguren-Fernandez, Arantzazu; Shinyashiki, Masaru; Schmitz, Debra A.; DiStefano, Emma; Hinds, William; Kumagai, Yoshito; Cho, Arthur K.; Froines, John R.

    2010-01-01

    Particulate matter (PM) has been the primary focus of studies aiming to understand the relationship between the chemical properties of ambient aerosols and adverse health effects. Size and chemical composition of PM have been linked to their oxidative capacity which has been postulated to promote or exacerbate pulmonary and cardiovascular diseases. But in the last few years, new studies have suggested that volatile and semivolatile components may also contribute to many adverse health effects. The objectives of this study were: i) assess for the first time the redox and electrophilic potential of vapor-phase components of ambient aerosols, and ii) evaluate the relative contributions of particle- and vapor-fractions to the hazard of a given aerosol. To achieve these objectives vapor- and particle-phase samples collected in Riverside (CA) were subjected to three chemical assays to determine their redox and electrophilic capacities. The results indicate that redox active components are mainly associated with the particle-phase, while electrophilic compounds are found primarily in the vapor-phase. Vapor-phase organic extracts were also capable of inducing the stress responding protein, heme-oxygenase-1 (HO-1), in RAW264.7 murine macrophages. These results demonstrate the importance of volatile components in the overall oxidative and electrophilic capacity of aerosols, and point out the need for inclusion of vapors in future health and risk assessment studies. PMID:20152964

  20. Effects of mineral dust on the semivolatile inorganic aerosol components in a polluted Megacity

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Fountoukis, C.; Nenes, A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2009-04-01

    Aerosols play a significant role in the atmosphere having adverse impacts on human health and directly affecting air quality, visibility and climate change. One of the most challenging tasks for models is the prediction of the partitioning of the semivolatile inorganic aerosol components (ammonia, nitric acid, hydrochloric acid, etc) between the gas and particulate phases. Moreover, the effects of mineral aerosols in the atmosphere remain largely uncertain. As a result, most current models have serious difficulties in reproducing the observed particulate nitrate and chloride concentrations. The improved aerosol thermodynamic model ISORROPIA II (Fountoukis and Nenes, 2007) simulating explicitly the chemistry of Ca, Mg, and K salts has been linked to the regional chemical transport model PMCAMx (Gaydos et al., 2007). PMCAMx also includes the CMU inorganic aerosol growth module (Gaydos et al., 2003; Koo et al., 2003a) and the VSRM aqueous-phase chemistry module (Fahey and Pandis, 2001). The hybrid approach (Koo et al., 2003b) for modeling aerosol dynamics is applied in order to accurately simulate the inorganic components in the coarse mode. This approach assumes that the smallest particles are in equilibrium, while the condensation/evaporation equation is solved for the larger ones. PMCAMx is applied to the Mexico City Metropolitan Area (MCMA). The emission inventory has been improved and now includes more accurate dust and NaCl emissions. The April 2003 (MCMA Campaign) and the March 2006 (MILAGRO campaign) datasets are used to evaluate the inorganic aerosol module of PMCAMx in order to test our understanding of inorganic aerosol. The results from the new modeling framework are also compared with the results from the previous version of PMCAMx in order to investigate the influence of each of the added features to the formation of the semivolatile inorganic components. References Fountoukis, C. and Nenes, A., (2007). ISORROPIA II: a computationally efficient

  1. Investigation of the aerosol component of the optical density of the atmosphere under high mountain conditions

    NASA Astrophysics Data System (ADS)

    Nikol'Skii, G. A.; Krauklis, V. L.; Ryzhikov, G. A.; Shul'Ts, E. O.

    The data acquisition and processing system of the LGU atmospheric observation station on Mt. Shatdzhatmas near Mt. Elbrus is described. Particular attention is given to the study of a problem of atmospheric optics at this station: the variability of the aerosol component of the total spectral optical density of the atmosphere. A method for separating the residual optical density of the atmosphere in the absorption band into components is presented.

  2. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    PubMed

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NOX). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  3. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-06-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. This is the first 3-d modeling study that focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3-, POA and SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has

  4. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-11-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. The present 3-D modeling study focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has increased

  5. Impact of wet scavenging of natural and anthropogenic aerosol components on the columnar aerosol optical depth over a tropical rural atmosphere

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Jayaraman, Achuthan

    A typical feature of Indian monsoon is that, several dry days are observed even between the rain events. Atmospheric aerosol shows significant variations in their concentration between "before" and "after" the rain because of their efficient scavenging during the rain. The below cloud scavenging of several aerosol components during the rain has a direct impact on the columnar aerosol optical depth (AOD) between "before" and "after" the rain. In order to investigate the impact of the scavenging of several natural and anthropogenic aerosol components on spectral properties of aerosol, simultaneous studies on the characterization of aerosol, rainwater and AOD were done during July-December 2009 over a tropical rural atmosphere at Gadanki (13.5 0N, 79.2 0E) in southern peninsular India. Aerosols were collected and analyzed before, during and after the rain along with the collection and analysis of rainwater in several rain events during the entire study period. AOD data (at wavelengths of 400, 500, 675, 870, 1020 nm) was retrieved by processing the data obtained from an automatic sunphotomer (PREDE, PM 01) using the standard SKYRAD pack. Aerosols and rainwater samples were analyzed for water soluble ionic species using an Ion Chromatograph (Metrohm, 861). We observed that aerosols were highly loaded in the atmosphere just before the rain, efficiently scavenged during the rain and built-up slowly after the rain. Interestingly, the loading of sulphate aerosol after the rain was remarkably high whereas that of calcium and magnesium were remarkably low. The poor resuspension of soil dust from the wet soils after the rain could not allow calcium and magnesium to be loaded in the atmosphere whereas the high relative humidity favored the gas-to-particle conversion of SO2 to SO42-which allowed the high loading of sulphate aerosol in the atmosphere. Significant reductions in AOD both at lower (400 nm) and higher wavelength (1020 nm) were observed after the rain events. Two

  6. Physicochemical and Toxicological Characteristics of Semi-volatile Components of Atmospheric Aerosols in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Verma, V.; Pakbin, P.; Cheung, K. L.; Cho, A. K.; Schauer, J. J.; Shafer, M. M.; Kleinman, M. T.; Sioutas, C.

    2010-12-01

    Recent toxicological studies have confirmed the oxidative properties of atmospheric aerosols and their capability to generate reactive oxygen species (ROS) in biological systems (Chen and Lippmann, 2009). While the links between aerosol toxicity and refractory transition metals present in ambient particulate matter (PM) have been documented, there are limited studies investigating the oxidative characteristics of semi-volatile species. The goal of present study is to examine the contribution of semi-volatile compounds in the oxidative potential of atmospheric aerosols. Concentrated ambient and thermodenuded quasi-ultrafine particles (<180 nm) were collected using the versatile aerosol concentration enrichment system (VACES) at an urban site near downtown Los Angeles. A thermodenuder (TD) was used to selectively remove the semi-volatile components of these aerosols over the temperature range of 50-200 oC. The oxidative potential of PM was measured by means of the DTT (dithiothreitol) assay. Detailed chemical analyses of PM samples, including organic and elemental carbon, water soluble elements, inorganic ions and polycyclic aromatic hydrocarbons (PAHs), were conducted to quantify the volatility profiles of different PM species, and also to investigate their effect on the measured oxidative potential. Refractory constituents, such as metals and elemental carbon, were marginally affected by heating, while labile species such as organic carbon and PAHs showed progressive loss in concentration with increase in TD temperature. The DTT-measured oxidative potential of PM was significantly decreased as the aerosols were heated and their semi-volatile components were progressively removed (42 %, 47 % and 66 % decrease in DTT activity at 50, 100 and 200 oC, respectively). Regression analysis performed between chemical constituents and DTT activity showed that the oxidative potential was strongly correlated with organic carbon and PAHs (R≥0.80; p≤0.05). Thus, semi

  7. Estimation of gas-particle partitioning coefficients (Kp) of carcinogenic polycyclic aromatic hydrocarbons in carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand.

    PubMed

    Pongpiachan, Siwatt; Ho, Kin Fai; Cao, Junji

    2013-01-01

    To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days at three different atmospheric layers at the heart of Chiang-Mai, Bangkok and Hat-Yai from December 2006 to February 2007. A DRI Model 2001 Thermal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon (OC) and elemental carbon (EC) contents in PM10. Diurnal and vertical variability was also carefully investigated. In general, OC and EC mass concentration showed the highest values at the monitoring period of 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis at nighttime. Morning peaks of carbonaceous compounds were observed during the sampling period of 06:00-09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime particulate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifetime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approximately ten times higher than those air samples collected at Prince of Songkla University Hat-Yai campus corpse incinerator and fish-can manufacturing factory but only slightly higher than those of rice straw burning in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in PM10, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas

  8. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  9. Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (

    PubMed

    Perera, Inoka Eranda; Litton, Charles D

    2015-03-01

    A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines-Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood-using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects.

  10. Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (

    PubMed Central

    Perera, Inoka Eranda; Litton, Charles D.

    2016-01-01

    A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines—Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood—using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects. PMID:27546898

  11. Carbonaceous Matter in Growing Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  12. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J.; Webb, P.; Lewis, A.; Hopkins, J.; Smith, S.; Davy, P.

    2004-03-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-OF/MS). Over 10 000 individual organic components were isolated from around 10 μg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated relatively early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  13. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P.

    2004-08-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-TOF/MS). Over 10000 individual organic components were isolated from around 10µg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  14. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  15. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the

  16. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    NASA Technical Reports Server (NTRS)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  17. Characterisation of solid particles emitted from diesel and petrol engines as a contribution to the determination of the origin of carbonaceous particles in urban aerosol

    NASA Astrophysics Data System (ADS)

    Michalik, M.; Brzeżański, M.; Wilczyńska-Michalik, W.; Fisior, K.; Klimas, B.; Samek, L.; Pietras, B.

    2016-09-01

    Solid particles emitted from diesel and petrol engines were studied using a scanning electron microscope fitted with an energy dispersive spectrometer. The soot emitted from different engines under different operating conditions differed in particle size, and the form and size of aggregates. Identification of the soot particles emitted from diesel or petrol engines in urban aerosol based on their size and morphology was found to be impossible.

  18. Effect of agriculture and vegetation on carbonaceous aerosol concentrations (PM2.5 and PM10) in Puszcza Borecka National Nature Reserve (Poland).

    PubMed

    Witkowska, Agnieszka; Lewandowska, Anita U; Saniewska, Dominika; Falkowska, Lucyna M

    2016-01-01

    Elemental carbon (EC) and organic carbon (OC) concentrations were measured in PM2.5 and PM10 samples collected at Diabla Gora (Puszcza Borecka National Nature Reserve, Poland) between 1 January and 31 December 2009, to investigate the seasonal and daily concentration variations and source regions. Strict sampling and measurement procedure, together with analysis of air mass backward trajectories and pollutant markers, indicated that the most important sources of carbon in the aerosols over Diabla Gora were vegetation, agricultural activity, and biomass burning. The highest contribution of secondary organic carbon (SOC) in aerosol mass (70 %) was detected during summer as a result of increased vegetation. In spring and autumn, raised concentrations of primary OC, calcium, and potassium and the presence of ammonium nitrate were observed in aerosols due to emission from surrounding fields and forests, as well as from fires in Lithuania. Anthropogenic influence on the increase in concentration of all carbon species was observed only in winter, when air masses drifted in from habitations situated within a radius of 50 km from the Diabla Gora station. Transport was of sporadic significance to the measured concentrations, and only in PM2.5 when wind speed was close to 1 m s(-1). In this case, the concentration of EC rose several fold. Such a tendency was particularly noticeable with the influx of air masses from nearby cities and the Polish-Russian border, which is located 29 km away from the station.

  19. The use of levoglucosan and radiocarbon for source apportionment of PM(2.5) carbonaceous aerosols at a background site in East China.

    PubMed

    Liu, Di; Li, Jun; Zhang, Yanlin; Xu, Yue; Liu, Xiang; Ding, Ping; Shen, Chengde; Chen, Yingjun; Tian, Chongguo; Zhang, Gan

    2013-09-17

    Samples of fine particulate matter (PM2.5) were collected during July 2009 to March 2010 at a regional background site in East China. The mass concentrations of organic carbon (OC) and elemental carbon (EC) were characterized by the highest levels in winter (December to February) and the lowest abundances in summer (June to August). Conversely, the concentrations of levoglucosan were higher in summer than in winter. The observations were associated to the anthropogenic air pollutions (predominantly fossil-fuel combustions) transport from the center and north China with the northwest winds in winter and large contribution of the open biomass burning activities in South China and East China in summer, which was evident by air-mass trajectories and MODIS satellite fire counts. To assign fossil and nonfossil contributions of carbonaceous matters, the radiocarbon contents in water-insoluble OC (WINSOC) and EC in 4 combined samples representing four seasons were analyzed using the isolation system established in China. The results indicated that biomass burning and biogenic sources (59%) were the major contribution to the WINSOC, whereas fossil fuel (78%) was the dominant contributor to the refractory EC at this site. The source variation obtained by radiocarbon was consistent with other indicators, such as the OC/EC ratios and the levoglucosan concentration. Biomass burning and biogenic emissions were found to predominate in the summer and autumn, whereas fossil fuel emissions predominate in winter and spring.

  20. Characteristics and major sources of carbonaceous aerosols in PM2.5 in Emilia Romagna Region (Northern Italy) from four-year observations.

    PubMed

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Ferrari, Silvia; Ricciardelli, Isabella; Scotto, Fabiana; Trentini, Arianna; Visentin, Marco

    2016-05-15

    The concentrations of organic and elemental carbon in PM2.5 aerosol samples were measured in two sites of Emilia Romagna (Po Valley, Northern Italy) in eight campaigns during different seasons from 2011 to 2014. Strong seasonality was observed with the highest OC concentrations during the cold periods (≈ 5.5 μg m(-3)) and the lowest in the warm months (≈ 2.7 μg m(-3)) as well as with higher EC levels in fall/winter (≈ 1.4 μg m(-3)) in comparison with spring/summer (≈ 0.6 μg m(-3)). Concerning spatial variability, there were no statistically significant difference (p<0.05) between OC concentrations at the two sampling sites in each campaign, while the EC values were nearly twofold higher levels at the urban site than those at the rural one. Specific molecular markers were investigated to attempt the basic apportionment of OC by discriminating between the main emission sources of primary OC, such as fossil fuels burning - including traffic vehicle emission - residential wood burning, and bio-aerosol released from plants and microorganisms, and the atmospheric photo-oxidation processes generating OCsec. The investigated markers were low-molecular-weight carboxylic acids - to describe the contribution of secondary organic aerosol - anhydrosugars - to quantify primary emissions from biomass burning - bio-sugars - to qualitatively estimate biogenic sources - and Polycyclic Aromatic Hydrocarbons - to differentiate among different combustion emissions. Using the levoglucosan tracer method, contribution of wood smoke to atmospheric OC concentration was computed. Wood burning accounts for 33% of OC in fall/winter and for 3% in spring/summer. A clear seasonal trend is also observed for the impact of secondary processes with higher contribution in the warm seasons (≈ 63%) in comparison with that in colder months (≈ 33%), that is consistent with enhanced solar radiation in spring/summer. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Climatology of the Aerosol Optical Depth by Components from the Multi-Angle Imaging Spectroradiometer (MISR) and Chemistry Transport Models

    NASA Technical Reports Server (NTRS)

    Lee, Huikyo; Kalashnikova, Olga V.; Suzuki, Kentaroh; Braverman, Amy; Garay, Michael J.; Kahn, Ralph A.

    2016-01-01

    The Multi-angle Imaging Spectroradiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skew-nesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  2. Use of the integrated organic gas and particle sampler to improve the characterization of carbonaceous aerosol in the near-road environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dabek-Zlotorzynska, Ewa; Liggio, John; Stroud, Craig A.; Charland, Jean-Pierre; Brook, Jeffrey R.

    2016-02-01

    Particle phase organic carbon (OC), elemental carbon (EC) and particle phase semi-volatile organic carbon were measured simultaneously at two distances downwind of a highway using an integrated organic gas and particle sampler. This method reduces sampling artifacts associated with OC measurement. On average, artifact-corrected OC (referred to as OCT) was 2.4 μg/m3 and the positive and negative artifacts were significant at 0.8 and 1.0 μg/m3 respectively. Close to the highway negative artifacts are potentially dominant over positive artifacts indicating that traditional integrated filter-based sampling for OC and fine particles (PM2.5) may be biased low. Decreases in OCT between the near and far site ranged from 25 to 44% while the decreases observed for EC, which reflects the impact of dispersion, were larger at 42-84%. The nature of the OCT changed between sites becoming less volatile and having a greater content of pyrolized organic carbon. Collectively, these results suggest that secondary organic aerosol (SOA) formed downwind of the highway from vehicle-related emissions and was detectable within the 15 min transit time between the highway and the far site. These results highlight the need for improvements in understanding the processes influencing organic aerosols in locations directly impacted by motor vehicle emissions in order to realistically predict PM2.5 using air quality models.

  3. Densified Carbonaceous bodies

    SciTech Connect

    Hucke, E.E.

    1990-01-16

    This patent describes a densified carbonaceous body. It comprises: a permeable carbonaceous body, the pores of the body being filled with the pyrolyzation product of a resin obtained by polymerizing a liquid impregnant containing furfural, furfural alcohol or a mixture thereof, an acid catalyst, and a glycol of mixture of glycols.

  4. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Aller, Josephine Y.; Radway, JoAnn C.; Kilthau, Wendy P.; Bothe, Dylan W.; Wilson, Theodore W.; Vaillancourt, Robert D.; Quinn, Patricia K.; Coffman, Derek J.; Murray, Benjamin J.; Knopf, Daniel A.

    2017-04-01

    Dissolved organic polymers released by phytoplankton and bacteria abiologically self-assemble in surface ocean waters into nano-to micro-sized gels containing polysaccharides, proteins, lipids and other components. These gels concentrate in the sea surface microlayer (SML), where they can potentially contribute to sea spray aerosol (SSA). Sea spray is a major source of atmospheric aerosol mass over much of the earth's surface, and knowledge of its properties (including the amount and nature of the organic content), size distributions and fluxes are fundamental for determining its role in atmospheric chemistry and climate. Using a cascade impactor, we collected size-fractionated aerosol particles from ambient air and from freshly generated Sea Sweep SSA in the western North Atlantic Ocean together with biological and chemical characterization of subsurface and SML waters. Spectrophotometric methods were applied to quantify the polysaccharide-containing transparent exopolymer (TEP) and protein-containing Coomassie stainable material (CSM) in these particles and waters. This study demonstrates that both TEP and CSM in surface ocean waters are aerosolized with sea spray with the greatest total TEP associated with particles <180 nm in diameter and >5 000 nm. The higher concentrations of TEP and CSM in particles >5 000 nm most likely reflects collection of microorganism cells and/or fragments. The greater concentration of CSM in larger size particles may also reflect greater stability of proteinaceous gels compared to polysaccharide-rich gels in surface waters and the SML. Both TEP and CSM were measured in the ambient marine air sample with concentrations of 2.1 ± 0.16 μg xanthan gum equivalents (XG eq.) m-3 and 14 ± 1.0 μg bovine serum albumin equivalents (BSA eq.) m-3. TEP in Sea Sweep SSA averaged 4.7 ± 3.1 μg XG eq. m-3 and CSM 8.6 ± 7.3 μg BSA eq. m-3. This work shows the transport of marine biogenic material across the air-sea interface through primary

  5. Ultraviolet Polarimeter for Studying the Aerosol Component in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Nevodovskyi, P. V.; Morozhenko, A. V.; Vidmachenko, A. P.; Geraimchuk, M.; Zbrutskyi, A.; Kureniov, Yu.; Sergunin, V.; Hirniak, Yu.; Ivakhiv, O.

    2013-06-01

    The changes of the weather and climate on the Earth depend on the temperature balance of the planet, i.e., on the flow of radiation coming from the Sun and emitted by the Earth into cosmic space. The changes of transparency coefficients (i.e., optical thickness of the atmosphere) and reflection coefficients (i.e., Earth surface) turn out to be decisive factors disrupting this balance. Variations of the gaseous and aerosol components of the atmosphere make an essential contribution into the changeability of the existing balance. The stratosphere and the ozone layer which protects the Earth from a severe ultraviolet radiation are of special importance in the atmosphere. Stratospheric aerosol plays an important role in the formation of a heat regime and in providing a powerful ozone layer (at the altitude of over 30 km). Spectrophotometer investigations made it possible to obtain certain data on the thickness of aerosols on these altitudes. However, its nature (i.e., a real part of the refraction index) and size distribution functions have not be studied so far. Polarization measurements enable one to most correctly determine these characteristics. The leading astronomical observatory of the National Academy of Sciences of Ukraine in collaboration with the National Technical University of Ukraine "Kyiv Polytechnic Institute" have been carrying out research since 2005 till nowadays on the development of on-board polarimeters for the purpose of studying the stratospheric aerosol from the orbit of Earth satellites [1, 2]. Based on this research, an experimental small sized polarimeter for investigation of a stratospheric aerosol from the orbit of the satellite was created. It is a dot one-channel ultraviolet polarimeter with a rotated polarization element. Glen prism is used as a polarization element which is initiated into motion by a miniature piezoelectric motor. "Sun-blind" low-sized photomultiplier R 1893 made by "Hamamatsu" Co. serves as a radiation receiver that

  6. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2012-09-01

    Simultaneous Fourier transform infrared (FTIR) extinction spectra and aerosol size distributions have been measured for some components of mineral dust aerosol including feldspars (albite, oligoclase) and diatomaceous earth, as well as more complex authentic dust samples that include Iowa loess and Saharan sand. Spectral simulations for single-component samples, derived from Rayleigh-theory models for characteristic particle shapes, better reproduce the experimental spectra including the peak position and band shape compared to Mie theory. The mineralogy of the authentic dust samples was inferred using analysis of FTIR spectra. This approach allows for analysis of the mineralogy of complex multicomponent dust samples. Extinction spectra for the authentic dust samples were simulated from the derived sample mineralogy using published optical constant data for the individual mineral constituents and assuming an external mixture. Nonspherical particle shape effects were also included in the simulations and were shown to have a significant effect on the results. The results show that the position of the peak and the shape of the band of the IR characteristic features in the 800 to 1400 cm-1 spectral range are not well simulated by Mie theory. The resonance peaks are consistently shifted by more than +40 cm-1 relative to the experimental spectrum in the Mie simulation. Rayleigh model solutions for different particle shapes better predict the peak position and band shape of experimental spectra, even though the Rayleigh condition may not be strictly obeyed in these experiments.

  7. Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components

    PubMed Central

    Cappa, Christopher D.; Lovejoy, Edward R.; Ravishankara, A. R.

    2008-01-01

    The condensation, evaporation, and repartitioning of semivolatile organic compounds (SVOCs) in the atmosphere depends both on the phase of condensed material and the effective condensed phase vapor pressures of the SVOCs. Although direct measurements of vapor pressures of individual SVOCs exist, there are limited measurements of how the properties of a given compound changes in mixtures of multiple components that exist in the atmosphere. Here, the evaporation behavior of mixtures of dicarboxylic acids, which are common atmospheric aerosol constituents, is investigated. These measurements demonstrate that complex mixtures of the individually solid organic compounds take on liquid-like properties. Additionally, the vapor pressures of individual components show strong, identity-dependent deviations from ideality (i.e., Raoult's Law), with the vapor pressures of the smaller, more volatile compounds decreased significantly in the mixtures. The addition of an inorganic compound (NaNO3) further influences the nonideal behavior, again in a compound-specific manner. These results suggest that nonideal behavior of particle-phase compounds influences the abundances of organic aerosol observed in the atmosphere and in the laboratory. PMID:19020087

  8. Comprehensive characterization of PM2.5 aerosols in Singapore

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.; Qian, W.-B.; Decesari, S.; Facchini, M. C.; Fuzzi, S.

    2003-08-01

    A comprehensive characterization of PM2.5 aerosols collected in Singapore from January through December 2000 is presented. The annual average mass concentration of PM2.5 was 27.2 μg/m3. The atmospheric loading of PM2.5 was elevated sporadically from March through May, mainly due to advection of biomass burning (deliberate fires to clear plantation areas) impacted air masses from Sumatra, Indonesia. Satellite images of the area, trajectory calculations, and surface wind direction data are in support of the transport of pyrogenic products from Sumatra toward Singapore. Aerosol samples collected during the dry season were analyzed for water-soluble ions, water-soluble organic compounds (WSOC), elemental carbon (EC), organic carbon, and trace elements using a number of analytical techniques. The major components were sulfate, EC, water-soluble carbonaceous materials, and water-insoluble carbonaceous materials. Aerosol WSOC were characterized based on a combination of chromatographic separations by ion exchange chromatography, functional group investigation by proton nuclear magnetic resonance, and total organic carbon determination. The comprehensive chemical characterization of PM2.5 particles revealed that both non-sea-salt sufate (nss-SO42-) and carbonaceous aerosols mainly contributed to the increase in the mass concentration of aerosols during the smoke haze period. Using a mass closure test (a mass balance), we determined whether the physical measurement of gravimetric fine PM concentration of a sample is equal to the summed concentrations of the individually identified chemical constituents (measured or inferred) in the sample. The sum of the determined groups of aerosol components and the gravimetrically determined mass agreed reasonably well. Principal component analysis was performed from the combined data set, and five factors were observed: a soil dust component, a metallurgical industry factor, a factor representing emissions from biomass burning and

  9. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  10. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  11. The Implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for Global Dust Forecasting at NOAA NCEP

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Hsuan; Da Silva, Arlindo M.; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; hide

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  12. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2016-05-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1° × 1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  13. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Remer, L. A.; Kahn, R. A.; Kleidman, R. G.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  14. Organic components of aerosols in a forested area of central Greece

    NASA Astrophysics Data System (ADS)

    Pio, Casimiro; Alves, Célia; Duarte, Armando

    Total suspended particulate matter was collected in a Abies boressi forest in central Greece during the period of 20 July-12 August 1997. Filters were extracted with solvents and the soluble content was separated into functional group fractions for analyses by gas chromatography/mass spectrometry. A total of 1050 different compounds could be identified in the various extracts. The lipid material consisted primarily of n-alkanes, n-alkan-2-ones, n-alkanols and n-fatty acids, with a higher concentration of molecular weights >C 20, derived from vascular plant waxes. Biomarkers for vegetation sources such as phytosterols and triterpenic compounds were also detected. Microbial components (aerosol extracts. Photochemical products deriving from volatile organic compounds emitted by vegetation or from anthropogenic precursors were also detected. These secondary organics include alkane derivatives, di- and carboxylic acids, nitroaromatics and many terpene photo-oxidation products.

  15. Air pollution in relation to U.S. cancer mortality rates: an ecological study; likely role of carbonaceous aerosols and polycyclic aromatic hydrocarbons.

    PubMed

    Grant, William B

    2009-09-01

    There are large geographical variations of cancer mortality rates in the United States. In a series of ecological studies in the U.S., a number of risk-modifying factors including alcohol, diet, ethnic background, poverty, smoking, solar ultraviolet-B (UVB), and urban/rural residence have been linked to many types of cancer. Air pollution also plays a role in cancer risk. Cancer mortality rates averaged by state for two periods, 1950-1969 and 1970-1994, were used in multiple-linear regression analyses with respect to many of the risk-modifying factors mentioned with the addition of an air pollution index in the form of a map of acid deposition in 1985. This index is correlated with emissions from coal-fired power plants. In addition, lung cancer mortality rates for five-year periods from 1970-74 to 1990-94 were used in multiple linear regression analyses including air pollution and cigarette smoking. The air pollution index correlated with respiratory, digestive tract, urogenital, female, blood and skin cancer. Air pollution was estimated to account for 5% of male cancer deaths and 3% of female cancer deaths between 1970-1994. Solar UVB was inversely correlated with all these types of cancer except the respiratory, skin and cervical cancer. Cigarette smoking was directly linked to lung cancer but not to other types of cancer in this study. Combustion of coal, diesel fuel and wood is the likely source of air pollution that affects cancer risk on a large scale, through production of black carbon aerosols with adsorbed polycyclic aromatic hydrocarbons.

  16. A critical assessment of direct radiative effects of different aerosol types on surface global radiation and its components

    NASA Astrophysics Data System (ADS)

    Xia, Xiangao

    2014-12-01

    A critical assessment of direct radiative effects of different aerosol types on surface global, direct and diffuse radiation is presented. The analysis is based on measurements of aerosol optical properties and surface solar radiation (SSR) of cloud-free days at the Baseline Surface Radiation Network (BSRN) and Aerosol Robotic Network station (AERONET) of Xianghe over the North China Plain between October 2004 and May 2012. Six aerosol types are classified based on aerosol size and absorption from the AERONET retrieval products, including two coarse-mode dominated aerosol types: dust (DU: fine mode fraction (FMF)<0.4) and polluted dust (PD: FMF within 0.4-0.7) and four fine-mode dominated aerosol types (FMF>0.7) but with different single scattering albedo (SSA): highly absorbing (HA: SSA<0.85), moderately absorbing (MA: SSA within 0.85-0.90), slightly absorbing (SA: SSA within 0.90-0.95) and very weakly absorbing (WA: SSA>0.95). Dramatic differences in aerosol direct radiative effect (ADRE) on global SSR and its components between the six aerosol types have been revealed. ADRE efficiency on global SSR for solar zenight angle (SZA) between 55° and 65° ranges from -106 W m-2 for WA to -181 W m-2 for HA. The minimum ADRE efficiency on diffuse SSR is derived for HA aerosols, being 113 W m-2 that is about half of that by DU, the maximum value of six aerosol types. ADRE efficiency on global SSR by DU and PD (-141 to -150 W m-2 for SZA between 55° and 65°) is comparable to that by MA, although 100 W m-2 more direct SSR is extincted by DU and PD than by MA. DU and PD induce more diffuse SSR than MA that offsets larger reduction of direct SSR by DU and PD. Implications of the results to related researches are detailed discussed. The results are derived from aerosol and radiation data in the North China Plain, however the method can be used to any other stations with similar measurements.

  17. Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility

    NASA Astrophysics Data System (ADS)

    Zappoli, S.; Andracchio, A.; Fuzzi, S.; Facchini, M. C.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Molnár, Á.; Mészáros, E.; Hansson, H.-C.; Rosman, K.; Zebühr, Y.

    A chemical mass balance of fine aerosol (<1.5 μm AED) collected at three European sites was performed with reference to the water solubility of the different aerosol classes of components. The sampling sites are characterised by different pollution conditions and aerosol loading in the air. Aspvreten is a background site in central Sweden, K-puszta is a rural site in the Great Hungarian Plain and San Pietro Capofiume is located in the polluted Po Valley, northern Italy. The average fine aerosol mass concentration was 5.9 μg m -3 at the background site Aspvreten, 24 μg m -3 at the rural K-puszta and 38 μg m -3 at the polluted site San Pietro Capofiume. However, a similarly high soluble fraction of the aerosol (65-75%) was measured at the three sites, while the percentage of water soluble organic species with respect to the total soluble mass was much higher at the background site (ca. 50%) than at the other two sites (ca. 25%). A very high fraction (over 70%) of organic compounds in the aerosol consisted of polar species. The presence of water soluble macromolecular compounds was revealed in the samples from K-puszta and San Pietro Capofiume. At both sites these species accounted for between ca. 20-50% of the water soluble organic fraction. The origin of the compounds was tentatively attributed to biomass combustion.

  18. New Tendencies in Development of Carbonaceous Additives for Welding Fluxes

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Kryukov, R. E.; Kozyreva, O. A.

    2015-09-01

    The paper provides results of comparative analysis of the effect of carbonaceous components introduced into welding fluxes on molten metal - slag interaction. Thermodynamical calculations of dehydrogenization are presented for submerged arc welding. A positive influence of carbonaceous additives on gas content and mechanical properties of welds is demonstrated. Carbon and fluorine containing additives are emphasized to be promising for automatic submerged arc welding.

  19. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-05-01

    A new aerosol microphysical module MATRIX, the Multiconfiguation Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) is described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol mode, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble modes. A detailed model description and results of box-model simulations of various mode configurations are presented. The number concentration of aerosol particles activated to cloud drops depends on the mode configuration. Simulations on the global scale with the GISS climate model are evaluated against aircraft and station measurements of aerosol mass and number concentration and particle size. The model accurately captures the observed size distributions in the aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment.

  20. Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: an environmental aerosol reaction chamber study.

    PubMed

    Mogili, Praveen K; Kleiber, Paul D; Young, Mark A; Grassian, Vicki H

    2006-12-28

    We have undertaken a kinetic study of heterogeneous ozone decomposition on alpha-Fe2O3 (hematite) and alpha-Al2O3 (corundum) aerosols under ambient conditions of temperature, pressure, and relative humidity in order to better understand the role of mineral dust aerosol in ozone loss mechanisms in the atmosphere. The kinetic measurements are made in an environmental aerosol reaction chamber by use of infrared and ultraviolet spectroscopic probes. The apparent heterogeneous uptake coefficient, gamma, for ozone reaction with alpha-Fe2O3 and alpha-Al2O3 surfaces is determined as a function of relative humidity (RH). The uptake of ozone by the iron oxide surface is approximately an order of magnitude larger than that by the aluminum oxide sample, under dry conditions. At the pressures used, alpha-Fe2O3 shows clear evidence for catalytic decomposition of ozone while alpha-Al2O3 appears to saturate at a finite ozone coverage. The measured uptake for both minerals decreases markedly as the RH is increased. Comparison with other literature reports and the atmospheric implications of these results are discussed.

  1. Ship-borne rotating shadowband radiometer observations for determination of components of spectral irradiance and aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Walther, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2015-04-01

    The Maritime Aerosol Network (MAN) has been established as a sub-project of AERONET and a long-term program to collect ship-borne aerosol optical depth measurements over ocean. Its purpose is to serve as reliable reference database for the evaluation of models and satellite products. Data are currently collected by handheld Microtops II photometers, as the automated acquisition of data from sun photometers on stabilized platforms is so far too expensive for wide-spread use. A promising alternative to the sun photometer is the rotating shadowband radiometer, whose principle of operation allows the determination of the direct-beam component of solar radiation without stabilizing the instrument, if the orientation of the detector horizontal is known. OCEANET, a project to investigate the exchange fluxes of energy and matter between the atmosphere and ocean, has contributed aerosol observations to MAN on several of its cruises on RV Polarstern during the transit between the hemispheres. On the recent cruise (PS 83) from Cape Town to Bremerhaven, TROPOS has operated for the first time a 19 channel rotating shadowband radiometer (GUVis-3511) built by the company Biospherical, as a possible means to provide automated irradiance and aerosol optical depth measurements. Calibration and processing of the raw data will be described, and an initial evaluation of the instrumental performance will be given. Aerosol optical depths derived from Microtops II measurements and the rotating shadowband radiometer will be compared. We show that the standard deviation of Aerosol optical depths observed with Microtops II and the shadowband radiometer is about 0.02 for matching channels, and an aerosol type classification based on Angstrom exponent shows good agreement. Also the influence of ship smoke and ocean swell is studied. The suitability of the instrument to automate MAN observations is discussed, and an outlook to the use of the instrument to also derive cloud optical properties is

  2. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud

  3. Carbonaceous materials water mixtures

    SciTech Connect

    Papalos, J.G.; Sinka, J.V.

    1985-04-30

    Particulate carbonaceous materials water mixtures are prepared by adding a condensate which is a condensation product of an aldehyde having from about 1 to about 7 carbon atoms, a benzene derivative such as benzene sulfonic acid, an alkyl benzene sulfonic acid having at least one alkyl group of from about 1 to about 20 carbon atoms and mixtures thereof, and optionally, and a naphthalene derivative such as naphthalene sulfonic acid, an alkyl naphthalene sulfonic acid having at least one alkyl group of from about 1 to about 12 carbon atoms and mixtures thereof. The condensate is added in an amount sufficient to reduce viscosity of the water mixture of carbonaceous materials, to stabilize carbonaceous materials in the water network and to improve pumpability. An acid form of the condensate or a salt may be added.

  4. Xenon in carbonaceous chondrites.

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Hennecke, E. W.; Sabu, D. D.

    1972-01-01

    A table showing the relative amounts of xenon isotopes in carbonaceous chondrites is presented. It is found that the enrichment of heavy xenon isotopes released from carbonaceous chondrites in the approximate temperature range from 600 to 1000 C is accompanied by an enrichment of the light xenon isotopes. The high degree of correlation between these two isotopic anomalies suggests that both result from a common source. There is no known nuclear or physical process which could produce both anomalies in situ. It is, therefore, suggested that the anomalies are the result of the release of isotopically anomalous xenon which was trapped in the meteorites.

  5. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    SciTech Connect

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  6. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance

    NASA Astrophysics Data System (ADS)

    Liu, Qifan; Jing, Bo; Peng, Chao; Tong, Shengrui; Wang, Weigang; Ge, Maofa

    2016-01-01

    The hygroscopic properties of two water-soluble organic compounds (WSOCs) relevant to urban haze pollution (phthalic acid and levoglucosan) and their internally mixtures with inorganic salts (ammonium sulfate and ammonium nitrate) are investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA) system. The multi-component particles uptake water gradually in the range 5-90% relative humidity (RH). The experimental results are compared with the thermodynamic model predictions. For most mixtures, Extended Aerosol Inorganic Model (E-AIM) predictions agree well with the measured growth factors. The hygroscopic growth of mixed particles can be well described by the Zdanovskii-Stokes-Robinson (ZSR) relation as long as the mixed particles are completely liquid. ZSR calculations underestimate the water uptake of mixed particles at moderate RH due to the partial dissolution of ammonium sulfate in the organic and ammonium nitrate solution in this RH region. The phase of ammonium nitrate in the initial dry particles changes dramatically with the composition of mixtures. The presence of organics in the mixed particles can inhibit the crystallization of ammonium nitrate during the drying process and results in water uptake at low RH (RH < 60%). These results demonstrate that certain representative WSOCs can substantially influence the hygroscopicity of inorganic salts and overall water uptake of particles.

  7. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition

    NASA Astrophysics Data System (ADS)

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya

    2015-12-01

    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL-11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2 θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as CaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.

  8. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Jiang, Nan; Yin, Shasha; Li, Xiao; Yu, Fei; Guo, Yue; Zhang, Ruiqin

    2017-07-01

    PM2.5 and PM10 samples were simultaneously collected in an urban site in Zhengzhou, China from October 2014 to July 2015 representing the four seasons. Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs) were quantified. The characteristics of their concentrations, seasonal variations, and sources of n-alkanes and PAHs were investigated. Diagnostic ratios and positive matrix factorization (PMF) were used to characterize carbonaceous species, identify their possible sources, and apportion the contributions from each possible source. The concentrations of the components exhibited distinct seasonal variation, that is, the concentrations are high in winter and low in summer. This finding could be associated with increase in air pollutant emissions during heating season and stable weather condition. The estimated total carbonaceous aerosol accounts for 32% of PM2.5 and 30% of PM10. Hence, carbonaceous compounds were the major components of particulate matter in the study area. Moreover, OC, EC, PAHs, and n-alkanes preferentially accumulated into fine particles. The carbonaceous components exhibited high correlation in PM2.5 and PM10, thereby indicating that their sources were similar. The PMF results revealed that the main sources of PAHs were coal combustion (40%) and motor vehicles (29%); n-alkanes were mainly from burning of fossil fuel (48%). These sources were consistent with the diagnostic ratios obtained. This study provides guidance for improving air quality and reducing human exposure to toxic air pollutants.

  9. Understanding dust emission in the Bodélé region by extracting locally mobilized dust aerosols from satellite Aerosol Optical Depth data using principal component analysis

    NASA Astrophysics Data System (ADS)

    Parajuli, Sagar Prasad; Yang, Zong-Liang

    2017-02-01

    Despite the increasing availability of satellite and ground-based Aerosol Optical Depth (AOD) data, their application in dust modeling is limited because these data do not differentiate locally mobilized dust from remotely advected dust and other aerosols. In this work, we extract the locally mobilized Dust Optical Depth (DOD) in the Bodélé region from historical AOD data through a principal component analysis of wind speed and AOD time series (2003-2012). Principal component analysis effectively identifies the correlated signature between wind speed and AOD making it possible to separate the dust component from AOD data. Using the reconstructed DOD, we then study the effect of key environmental variables, namely wind speed, soil moisture, soil temperature, vegetation, and boundary layer height on dust emission. Results show that all of these environmental variables are significantly correlated with the reconstructed DOD indicating their association with the dust emission process. The extraction technique described in this study can be extended to regional and global scales to identify the dust sources which are not adequately represented in regional and global dust models.

  10. The distribution of trace elements in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Knab, H.-J.

    1981-09-01

    Twelve carbonaceous chondrites, among them representatives of nearly all known petrologic types, were analyzed for twenty trace elements by spark source mass spectrography combined with the isotope dilution method. Data on different element groups (refractory, moderately volatile and volatile) show that the distribution of the trace elements in the carbonaceous chondrites, with the exception of Renazzo, can be well explained by Anders' two-component model. This is also valid for the highly metamorphosed CV5 chondrite Karoonda. Furthermore, it is observed that the Zr/Hf-ratios in the carbonaceous chondrites increase with increasing petrologic type, which is interpreted as the result of mixing two components with different Zr/Hf-ratios.

  11. Study of the CCN formation as a function of aerosol components

    NASA Astrophysics Data System (ADS)

    Fanourgakis, George S.; Myriokefalitakis, Stelios; Kanakidou, Maria

    2016-04-01

    Understanding the role of aerosols in Earth's climate through direct and indirect effects has attracted a lot of attention over the last years. Due to the chemical complexity of aerosols along with the variety of the primary emissions sources and the conversions from gas to particle in atmosphere, accurate predictions for the aerosols impact on a regional and global scale still remains a challenging problem. In this study, we examine the relative contribution of directly emitted particles in the atmosphere (primary particles) and particles formed from gas-to-particle conversion (secondary particles) to the global aerosols and to the cloud condensation nuclei (CCN) formation. The Chemistry Transport Model v4.0 (TM4-ECPL) coupled with an extended version of the aerosol micro-physics model M7, which describes microphysical processes (nucleation, coagulation, condensation of gas-phase species) for sulfate, black carbon, organic carbon sea salt, dust and various secondary organic aerosols, is here used. A systematic analysis on the CCN production as a function of the aerosol chemical composition is performed. The sensitivity of the results to physical parameters that affect the CCN formation and cannot be accurately determined, such as hygroscopicity, is investigated based on a detailed sensitivity analysis. This work has been supported by the European FP7 collaborative project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding).

  12. A Cautionary Tale About Volatile-Rich Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Beltran, E.

    2015-07-01

    The organic component of volatile-rich carbonaceous chondrite meteorites are primarily in the form of polycyclic aromatic hydrocarbons (PAHs). While PAHs are common in the environment, many species of PAHs are either toxic or carcinogenic or both.

  13. Nature and origin of the resistant carbonaceous polymorphs involved the fossilization of biogenic soil-aggregates

    NASA Astrophysics Data System (ADS)

    Courty, M.-A.

    2012-04-01

    which are all finely imbricated with phosphides, phosphates, sulphides, sulphates and native metals (Fe-Cr-Ni and Fe-Cr alloys, Ni, Al, Cu, Zn, Pb, As, Sn, Ag, Au, Bi). The 3D observations show that the carbonaceous filaments play a major role in the cohesion of the fine fraction. The carbonaceous components only start to decompose under HF attack and from 400°C heating. They do not display evidence of microbial degradation. The biogenic aggregates with high amount of carbonaceous polymorphs appear to have resisted to cryoturbation and to hard setting under water saturation. Biogenic micro-aggregates from present-day top soils only contain rare exotic components. In contrast to the ones of the soil archives, they display highly variable structural stability depending upon local edaphic conditions. The exotic assemblage of the stable biogenic micro-aggregates from the soil archives is shown to be similar to the range of terrestrial aerosols that are associated to meteor explosion (Courty et al., this volume). This suggests that the fossilized organic-rich surface horizons in soil archives would trace singular situations possibly marked by recurrent meteor explosion with high stratospheric aerosol production. Mechanisms explaining how the dual stratospheric/cosmic processes formed resistant carbon species from fossil combustible precursors yet remain to be investigated. Courty, Benoît and Vaillant (2012). Possible interaction of meteor explosion with stratospheric aerosols on cloud nucleation based on 2011 observations. Geophysical Research Abstracts Vol. 14, EGU2012.

  14. Progress and Understanding Spatial and Temporal Variability of PM2.5 and its Components in the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...

  15. Progress and Understanding Spatial and Temporal Variability of PM2.5 and its Components in the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...

  16. A high-resolution study of surfactant partitioning and kinetic limitations for two-component internally mixed aerosols

    NASA Astrophysics Data System (ADS)

    Suda, S. R.; Petters, M. D.

    2013-12-01

    Atmospheric aerosols serve as cloud condensation nuclei (CCN), altering cloud properties and ultimately affecting climate through their effect on the radiative balance. Aerosol CCN activity depends in part on aerosol composition and surfactant compounds are of particular interest because surfactants are enriched at the water/air interface, resulting in a radial concentration gradient within the aqueous droplet. Accurate treatment of the surfactant concentration gradient complicates the otherwise straightforward predictions of CCN activity for aerosols of known composition. To accurately evaluate predictions made by theory, laboratory studies investigating the relationship between critical supersaturation and dry diameter of particles that include surfactants require significant reduction in measurement uncertainty for both water-uptake and CCN measurements. Furthermore, uncertainties remain regarding kinetic limitations to surfactant partitioning that could result in deviation from predictions based on equilibrium thermodynamics. This study attempts to address some of these issues through high-resolution analysis of CCN activity of two-component mixed surfactant/non-surfactant aerosols at different internal mixing ratios performed with and without a water-uptake time delay to ascertain whether or not the observed effects are kinetically limited. We present new data for the aerosols consisting of 1) the ionic surfactant sodium dodecyl sulfate (SDS) with ammonium sulfate, 2) SDS with sodium chloride and 3) the strong non-ionic fluorosurfactant Zonyl with an organic proxy glucose. As a point of reference we also evaluated the mixture of ammonium sulfate with glucose. Aerosol activation diameters were determined using CCN analysis in conjunction with scanning mobility size classification and high sheath-to-aerosol flow ratios. This resulted in CCN-derived kappa values that could be determined within +/-5% relative error. To test whether dynamic surfactant partitioning

  17. Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components.

    PubMed

    Wang, MingYi; Yao, Lei; Zheng, Jun; Wang, XinKe; Chen, JianMin; Yang, Xin; Worsnop, Douglas R; Donahue, Neil M; Wang, Lin

    2016-06-07

    Aging of organic aerosol particles is one of the most poorly understood topics in atmospheric aerosol research. Here, we used an aerosol flow tube together with an iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-HRToF-CIMS) to investigate heterogeneous ozonolysis of oleic acid (OL), developing a comprehensive oxidation mechanism with observed products. In addition to the well-known first-generation C9 products including nonanal, nonanoic acid, azelaic acid, and 9-oxononanoic acid, the iodide-adduct chemical ionization permitted unambiguous determination of a large number of high-molecular-weight particulate products up to 670 Da with minimum amounts of fragmentation. These high-molecular-weight products are characterized by a fairly uniform carbon oxidation state but stepwise addition of a carbon backbone moiety, and hence continuous decrease in the volatility. Our results demonstrate that heterogeneous oxidation of organic aerosols has a significant effect on the physiochemical properties of organic aerosols and that reactions of particulate SCIs from ozonolysis of an unsaturated particulate species represent a previously underappreciated mechanism that lead to formation of high-molecular-weight particulate products that are stable under typical atmospheric conditions.

  18. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  19. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D. L.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-10-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to

  20. Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements

    SciTech Connect

    Chuang, C; Penner, J E; Kawamoto, K

    2002-03-08

    Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

  1. Raman-shifted eye-safe aerosol lidar (REAL) in 2010: instrument status and two-component wind measurements

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.

    2010-10-01

    This paper and corresponding seminar given on 20 September 2010 at the 16th International School for Quantum Electronics in Nesebar, Bulgaria, will describe the key hardware aspects of the Raman-shifted Eye-safe Aerosol Lidar (REAL) and recent advances in extracting two-component wind vector fields from the images it produces. The REAL is an eye-safe, ground-based, scanning, elastic aerosol backscatter lidar operating at 1.54 microns wavelength. Operation at this wavelength offers several advantages compared to other laser wavelengths including: (1) maximum eye-safety, (2) invisible beam, (3) superior performance photodetectors compared with those used at longer wavelengths, (4) low atmospheric molecular scattering when compared with operation at shorter wavelengths, (5) good aerosol backscattering, (6) atmospheric transparency, and (7) availability of optical and photonic components used in the modern telecommunations industry. A key issue for creating a high-performance direct-detection lidar at 1.5 microns is the use of InGaAs avalanche photodetectors that have active areas of at most 200 microns in diameter. The small active area imposes a maximum limitation on the field-of-view of the receiver (about 0.54 mrad full-angle for REAL). As a result, a key requirement is a transmitter that can produce a pulsed (>10 Hz) beam with low divergence (<0.25 mrad full-angle), high pulse-energy (>150 mJ), and short pulse-duration (<10 ns). The REAL achieves this by use of a commercially-available flashlamp-pumped Nd:YAG laser and a custom high-pressure methane gas cell for wavelength shifting via stimulated Raman scattering. The atmospheric aerosol features in the images that REAL produces can be tracked to infer horizontal wind vectors. The method of tracking macroscopic aerosol features has an advantage over Doppler lidars in that two components of motion can be sensed. (Doppler lidars can sense only the radial component of flow.) Two-component velocity estimation is done

  2. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant.

  3. First Quantification of Imidazoles in Ambient Aerosol Particles: Potential Photosensitizers, Brown Carbon Constituents, and Hazardous Components.

    PubMed

    Teich, Monique; van Pinxteren, Dominik; Kecorius, Simonas; Wang, Zhibin; Herrmann, Hartmut

    2016-02-02

    Imidazoles are widely discussed in recent literature. They have been studied as a secondary product of the reaction of dicarbonyls with nitrogen containing compounds in a number of laboratory studies, potentially acting as photosensitizers triggering secondary organic aerosol growth and are forming constituents of light absorbing brown carbon. Despite the knowledge from laboratory studies, no quantitative information about imidazoles in ambient aerosol particles is available. Within the present study, five imidazoles (1-butylimidazole, 1-ethylimidazole, 2-ethylimidazole, imidazol-2-carboxaldehyde, and 4(5)-methylimidazole) were successfully identified and quantified for the first time in ambient aerosol samples from different environments in Europe and China. Their concentrations range between 0.2 and 14 ng/m(3). 4(5)-Methylimidazole was found to be the most abundant imidazole. The occurrence of imidazoles seems to be favored at sites with strong biomass burning influence or connected to more polluted air masses. No connection was found between aerosol particle pH and imidazole concentration. Our work corroborates the laboratory studies by showing that imidazoles are present in ambient aerosol samples in measurable amounts. Moreover, it further motivates to explore the potential photosensitizing properties of small alkyl-substituted imidazoles.

  4. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    PubMed Central

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2014-01-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March–May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls. PMID:24707452

  5. On the classification and sub-classification of aerosol key types over south central peninsular India: MODIS-OMI algorithm.

    PubMed

    Sreekanth, V

    2014-01-15

    Long-term (8 years), simultaneous data on aerosol optical properties from MODIS and OMI satellite sensors are analyzed to study their temporal characteristics and to infer on the major aerosol types present over the study location, Bangalore situated in south central peninsular India. Investigations are carried out on Aerosol Optical Depths (AODs), Angstrom exponent (α) and Aerosol Index (AI) for the purpose. Aerosol parameters exhibited significant seasonal variations: AODs peaking during monsoon, α during post-monsoon and AI during summer. Seasonal air mass back trajectories are computed to infer on the transport component over the study region. By assigning proper thresholds (depending on the nature of the location and transport pathways) on AOD and α values, aerosols are discriminated into their major types viz., marine influenced, desert dust, urban/industrialized and mixed types. Further sub-categorization of the aerosols has been done on an annual scale taking into account of their absorptance information in terms of the OMI-AI values. Mixed type aerosols contributed the most during all the seasons. Next to mixed type aerosols, marine influenced aerosols dominated during winter, desert dust during monsoon and summer, urban/industrialized aerosols during post-monsoon. Considering the urban nature of the study location, urban/industrialized/carbonaceous type aerosols have been significantly underestimated in these methodologies. Finally, discussion has been made on the consistency of the results obtained from the methodologies (i) based on AODs and α; (ii) based on AODs, α and AI. © 2013.

  6. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    SciTech Connect

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  7. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION

    EPA Science Inventory

    Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...

  8. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION

    EPA Science Inventory

    Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...

  9. Cellular component of lavage fluid from broilers with normal versus aerosol-primed airways

    USDA-ARS?s Scientific Manuscript database

    Previously we reported that intratracheal administration of lipopolysaccharide (LPS) elicits pulmonary hypertension (PH) in broilers reared under commercial conditions, in broilers reared in environmental chambers and pre-treated with aerosolized red food colorant # 3 and propylene glycol (Red#3+PG)...

  10. Extremely large anthropogenic aerosol component over the Bay of Bengal during winter season

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kharol, S. Kumar; Sinha, P. R.; Singh, R. P.; Kambezidis, H. D.; Rani Sharma, A.; Badarinath, K. V. S.

    2011-03-01

    Ship-borne observations of spectral aerosol optical depth (AOD) have been carried out over the entire Bay of Bengal (BoB) as part of the W-ICARB cruise campaign during the period 27 December 2008-30 January 2009. The results reveal a pronounced temporal and spatial variability in the optical characteristics of aerosols mainly due to anthropogenic emissions and their dispersion controlled by local meteorology. The highest aerosol amount, with mean AOD500 over 0.4, being even above 1.0 on specific days, is found close to the coastal regions in the western and northern parts of BoB. In these regions the Ångström exponent is also found to be high (~ 1.2-1.25) indicating transport of strong anthropogenic emissions from continental regions. A very high AOD500 (0.39 ± 0.07) and α380—870 values (1.27 ± 0.09) are found for the first time over the Eastern BoB, which was unexplored in the earlier ICARB-06 campaign. Except from the large α380—870 values, an indication of strong fine-mode dominance is also observed from the AOD curvature, which is negative in the vast majority of the cases, suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand, clean maritime conditions are rather rare over the region, while the aerosol types are further examined through a classification scheme using the relationship between α and dα. It was found that even for the same α values the fine-mode dominance is larger for higher AODs showing the strong continental influence over the marine environment of BoB. Furthermore, there is also an evidence of aerosol size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The results obtained using OPAC model show significant fraction of soot aerosols (~ 6-8%) over the Eastern and Northwestern BoB, while coarse-mode sea salt particles are found to dominate in the southern parts of BoB.

  11. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Watson, Richard M; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-03-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment.

  12. Environmental Health Hazards of e-Cigarettes and their Components: Oxidants and Copper in e-cigarette aerosols

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Watson, Richard M.; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J.; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2014-01-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. PMID:25577651

  13. Recent updates in the aerosol component of the C-IFS model run by ECMWF

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Boucher, Olivier; Hauglustaine, Didier; Kipling, Zak; Flemming, Johannes

    2017-04-01

    The Composition-Integrated Forecast System (C-IFS) is a global atmospheric composition forecasting tool, run by ECMWF within the framework of the Copernicus Atmospheric Monitoring Service (CAMS). The aerosol model of C-IFS is a simple bulk scheme that forecasts 5 species: dust, sea-salt, black carbon, organic matter and sulfate. Three bins represent the dust and sea-salt, for the super-coarse, coarse and fine mode of these species (Morcrette et al., 2009). This talk will present recent updates of the aerosol model, and also introduce forthcoming developments. It will also present the impact of these changes as measured scores against AERONET Aerosol Optical Depth (AOD) and Airbase PM10 observations. The next cycle of C-IFS will include a mass fixer, because the semi-Lagrangian advection scheme used in C-IFS is not mass-conservative. C-IFS now offers the possibility to emit biomass-burning aerosols at an injection height that is provided by a new version of the Global Fire Assimilation System (GFAS). Secondary Organic Aerosols (SOA) production will be scaled on non-biomass burning CO fluxes. This approach allows to represent the anthropogenic contribution to SOA production; it brought a notable improvement in the skill of the model, especially over Europe. Lastly, the emissions of SO2 are now provided by the MACCity inventory instead of and older version of the EDGAR dataset. The seasonal and yearly variability of SO2 emissions are better captured by the MACCity dataset. Upcoming developments of the aerosol model of C-IFS consist mainly in the implementation of a nitrate and ammonium module, with 2 bins (fine and coarse) for nitrate. Nitrate and ammonium sulfate particle formation from gaseous precursors is represented following Hauglustaine et al. (2014); formation of coarse nitrate over pre-existing sea-salt or dust particles is also represented. This extension of the forward model improved scores over heavily populated areas such as Europe, China and Eastern

  14. Study on polarization features of carbonaceous particles in atmosphere pollutants

    NASA Astrophysics Data System (ADS)

    Li, Da; Zeng, Nan; Wang, Yunfei; Chen, Dongsheng; Chen, Yuerong; Ma, Hui

    2016-09-01

    The carbonaceous particles are the main source of the light absorption in atmospheric aerosol. Different from the case in tissue-like turbid media, the light absorption in atmospheric environments can be described as an inherent attribute on scatterers rather than an interstitial propagation effect. In this paper, we simulated the optical absorption due to carbonaceous scatterers and analyzed the influence of various parameters on their polarization properties, such as the imaginary part refractive index, the size and shape. Also we compare these results with our previous research work on absorption effect in ambient medium. For the single scattering, the polarization scattering angular distribution implies the potential of distinguishing different carbonaceous particles with different structural and absorption parameters. In the other hand, for the week scattering case of suspension system, using the backward Mueller matrix polar decomposition method, we can find out that the additional absorption effect on carbonaceous particles can enhance their depolarization and moreover produce more diattenuation and linear retardance for those anisotropic particles. The subsequent experiments of standard samples show a good agreement with simulation results. The paper further studies the phase function of single scattering and the distribution of scattering numbers, which can explain these unique polarization scattering phenomena. We hope these fundamental results can help to investigate how to identify the carbonaceous particles and characterize their optical features from the atmospheric hybrid suspension system.

  15. Charicteristics of Aerosol indices distribution followed by Aerosol types

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, J.; Lee, J.; Kim, M.; Lee, S.; Song, C.

    2010-12-01

    Transboundary transport of aerosol has been a hot issue in East Asia and with various aerosol types from different source region. To detect signals from aerosols, OMI provides aerosol indices. Aerosol Indices (AI) represent the change of spectral contrast between two wavelengths and these indices are derived in UV and Visible regions. These indices also can get not only in ocean but also in land region so that AI is good to observe the source region and transport of aerosols. In UV region, AI (UV-AI) can classify the absorbing and non-absorbing aerosols (Torres et al., 1998) so that this value is frequently used for dust detection. Additionally, visible AI (VIS-AI) uses to differentiate the absorbing and non-absorbing aerosol types. If we combine two types of indices at the coordinate system of two types of AI, distribution of indices contains different signals if aerosol types change theoretically. In this study, we want to find out classification results based by the observation data to see the theoretical distribution in two AI values. For the observation data, aerosol types are obtained from the results of MODIS-OMI algorithm and 4-channel algorithm classify four types of aerosols, i.e. dust, carbonaceous, sea-salt and Non-Absorbing (NA). These algorithms classify aerosol by using the characteristics of aerosol optical properties in visible and near IR regions. MODIS-OMI algorithm uses the MODIS AOD and UV-AI in OMI values. For UV-AI case, dust and carbonaceous types have larger UV-AI values than non-absorbing aerosols because of absorbing characteristics. However, dust and carbonaceous types cannot classify if UV-AI values use only. For VIS-AI case, dust has larger proportion, but carbonaceous aerosol has smaller proportion in high AI value. However, VIS-AI cannot clearly classify between dust and carbonaceous types except for the case of extremely high AI cases. In NA type, VIS-AI has almost positive values, but the distribution has smaller than the absorbing

  16. Carbonaceous film coating

    DOEpatents

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  17. Carbonaceous film coating

    DOEpatents

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  18. Effects of day-of-week trends and vehicle types on PM2.5-bounded carbonaceous compositions.

    PubMed

    Pongpiachan, Siwatt; Kositanont, Charnwit; Palakun, Jittree; Liu, Suixin; Ho, Kin Fai; Cao, Junji

    2015-11-01

    Carbonaceous compositions of PM2.5 were measured in the heart of Bangkok from 17th November 2010 to 19th January 2012, and a data set of 94 samples was constructed. Effects of day-of-week trends and vehicle types on PM2.5-bound TC, OC, and EC were carefully investigated. In this study, OC was the most important contributor to the total PM2.5 mass concentration. The average PM2.5-bound OC content measured at CHAOS (18.8 ± 9.18 μg m(-3)) was approximately 11 times higher than at Chaumont, Switzerland (1.7 μg m(-3)), but approximately five times lower than at Xi'an, China (93.0 μg m(-3)). The application of diagnostic binary ratios of OC/EC and estimations of secondary organic carbon (SOC) coupled with autocorrelation plots (Box and Jenkins) highlight the enhanced impacts of traffic emissions, especially from diesel vehicles, on PM2.5-bound carbonaceous compositions on weekdays relative to weekends. Hierarchical cluster analysis (HCA) coupled with principal component analysis (PCA) underline the importance of diesel emissions as the primary contributors of carbonaceous aerosols, particularly during weekdays. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  20. Simulating Inorganic Aerosol Components Using ISORROPIA II in a Chemical Transport Model (PMCAMx) - Evaluation for the MILAGRO Campaign 2006 in Mexico City

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Nenes, A.; Pandis, S. N.; Zavala, M.; Lei, W.; Molina, L. T.

    2007-12-01

    Aerosols have a significant role in the atmosphere having adverse impacts on human health and directly affecting air quality, visibility and climate change. One of the most challenging tasks for the available models is the prediction of the partitioning of the semivolatile inorganic aerosol components (ammonia, nitric acid, hydrochloric acid, etc) between the gas and aerosol phases. Moreover, the effects of mineral aerosols in the atmosphere remain largely unquantified. As a result, most current models have serious difficulties in reproducing the observed particulate nitrate and chloride concentrations. The aerosol thermodynamic model ISORROPIA has been improved as it now simulates explicitly the chemistry of Ca, Mg, and K salts and is linked to PMCAMx (Gaydos et al., 2007). PMCAMx also includes the inorganic aerosol growth module (Gaydos et al., 2003; Koo et al., 2003a) and the aqueous-phase chemistry module (Fahey and Pandis, 2001). The hybrid approach (Koo et al., 2003b) for modeling aerosol dynamics is applied in order to accurately simulate the inorganic components in coarse mode. This approach assumes that the smallest particles are in equilibrium while the condensation/evaporation equation is solved for the larger ones. PMCAMx is applied in Mexico City Metropolitan Area (MCMA) covering a 180x180x6 km region. The emission inventory used has as a starting point the MCMA 2004 official emissions inventory (CAM, 2006) and includes more accurate dust and NaCl emissions. The March 2006 dataset (MILAGRO Campaign) is used to evaluate the inorganic aerosol module of PMCAMx in order to test our understanding of aerosol thermodynamics and the equilibrium assumption. Gaydos, T., Pinder, R., Koo, B., Fahey, Κ., Yarwood, G., and Pandis, S. N., (2007). Development and application of a three-dimensional Chemical Transport Model, PMCAMx. Atmospheric Environment, 41, 2594- 2611. Gaydos, T., Koo, B., and Pandis, S. N., (2003). Development and application of an efficient moving

  1. Characteristics of the water-soluble components of aerosol particles in Hefei, China.

    PubMed

    Deng, Xue-Liang; Shi, Chun-E; Wu, Bi-Wen; Yang, Yuan-Jian; Jin, Qi; Wang, Hong-Lei; Zhu, Song; Yu, Caixia

    2016-04-01

    Size-classified daily aerosol mass concentrations and concentrations of water-soluble inorganic ions were measured in Hefei, China, in four representative months between September 2012 and August 2013. An annual average mass concentration of 169.09 μg/m(3) for total suspended particulate (TSP) was measured using an Andersen Mark-II cascade impactor. The seasonal average mass concentration was highest in winter (234.73 μg/m(3)) and lowest in summer (91.71 μg/m(3)). Water-soluble ions accounted for 59.49%, 32.90%, 48.62% and 37.08% of the aerosol mass concentration in winter, spring, summer, and fall, respectively, which indicated that ionic species were the primary constituents of the atmospheric aerosols. The four most abundant ions were NO3(-), SO4(2-), Ca(2+) and NH4(+). With the exception of Ca(2+), the mass concentrations of water-soluble ions were in an intermediate range compared with the levels for other Chinese cities. Sulfate, nitrate, and ammonium were the dominant fine-particle species, which were bimodally distributed in spring, summer and fall; however, the size distribution became unimodal in winter, with a peak at 1.1-2.1 μm. The Ca(2+) peak occurred at approximately 4.7-5.8 μm in all seasons. The cation to anion ratio was close to 1.4, which suggested that the aerosol particles were alkalescent in Hefei. The average NO3(-)/SO4(2-) mass ratio was 1.10 in Hefei, which indicated that mobile sourc