Science.gov

Sample records for carbonaceous aerosol components

  1. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  2. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China.

    PubMed

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Zhang, Yan-Lin

    2016-12-01

    To better characterize the chemical compositions and sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions as well as stable carbon isotopic composition (δ(13)C) were measured in this study. Intensively open biomass burning episodes are identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass-burning episode, concentrations of PM2.5, OC, EC, and WSOC are increased by a factor of 4-12 compared to those during the non-biomass-burning period. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, demonstrating an important contribution from biomass-burning emissions. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, suggesting that biomass-burning aerosols in Sanjiang Plain are mostly fresh and less aged. In addition, the WSOC-to-OC ratio is lower than that reported in biomass-burning aerosols in tropical regions, further supporting that biomass-burning aerosols in Sanjiang Plain are mostly primary and secondary organic aerosols may be not significant. A lower average δ(13)C value (-26.2‰) is observed during the biomass-burning period, indicating a dominant contribution from combustion of C3 plants in the studied region.

  3. Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Son, Se-Chang

    2017-03-01

    To examine the relationship between the chemical composition of light-absorbing organic aerosols and the absorption properties of the aerosols, daily PM2.5 samples were collected during winter at an urban site of Gwangju, Korea, and analyzed for organic carbon and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water-soluble inorganic substances. The real-time black carbon (BC) concentration in PM2.5 was also measured using a dual-spot aethalometer. During the study period, average WSOC/OC and HULIS-C/WSOC ratios were 0.53 and 0.52, respectively. K+/EC and K+/OC ratios indicate that biomass burning (BB) emissions are a possible source of the observed carbonaceous aerosols and K+. Moderate-to-strong correlations of HULIS with NO3-, oxalate, SO42 -, K+, CO, and ΔBC (= BC@370 nm - BC@880 nm) suggest that in addition to the primary BB emissions, secondary processing is another important contributor to the formation of HULIS in winter at the site. The average absorption Ångstrӧm exponent (α) of fine aerosols for the wavelengths of 370-950 nm and 590-950 nm was 1.29 and 1.18, respectively, but the aerosol α value was higher in the near UV wavelength range (370-520 nm), with an average of 1.51 (0.76-2.36), indicating that aerosol absorption characteristics during winter were influenced by BB aerosol sources, as well as by traffic emissions. Over the study period, the α370-520 nm value during the highest EC, highest OC, and Asian dust events was 1.42 ± 0.10 (1.26-1.59), 1.44 ± 0.15 (1.16-1.68), and 1.90 ± 0.28 (1.54-2.36), respectively. Higher α370-520 nm values during the Asian dust event were attributed to the influence of dust particles. In addition, the light absorption coefficients of aerosols at 370 nm were strongly correlated with OC (R2 = 0.76), water-insoluble OC (R2 = 0.70), and water-soluble HULIS (R2 = 0.64). These tight correlations suggest that water-insoluble fractions of OC, as well as the

  4. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  5. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  6. Effect of Carbonaceous Aerosols on Clouds and Precipitation in Asia

    NASA Astrophysics Data System (ADS)

    v, V.; Wang, H.; Ganguly, D.; Minghuai, W.; Rasch, P. J.

    2010-12-01

    Carbonaceous aerosols enhance scattering and absorption of solar radiation (i.e., direct radiative effect) in the atmosphere and also affect clouds and precipitation through indirect effects, thus heating the atmosphere but reducing the amount of solar radiation that reaches the earth’s surface. These effects through dynamic feedbacks can also have remote impact over regions far away from their emission sources and hence demand special scientific attention. Previous modeling studies have revealed that large amount of anthropogenic carbonaceous aerosols over the Asian region can alter monsoon circulation and precipitation patterns and thereby influence its strength by varying degrees spatially. Most of the studies focused on the direct radiative effect of aerosols and their subsequent effect on monsoon precipitation. We evaluate the changes in clouds and precipitation in Asia due to carbonaceous aerosols using the community atmospheric model (CAM5) which accounts for not only aerosol direct effects, but also aerosol indirect effects on warm, mixed-phase and cirrus clouds. This study focuses on the precipitation efficiency with emphasis on aerosol indirect effects. In addition to carbonaceous aerosol emissions over Asia, the effect of emissions from other regions like North America, North Africa and Europe are also investigated for their influence on precipitation in the Asian region. In addition to the focus on the aerosol effect on monsoon, we also study the seasonality in aerosol induced changes to precipitation efficiency. We present the quantitative estimates of changes in precipitation efficiency related to changes in aerosol loading and compare them with those estimated from satellite observations, and further explore the potential role of aerosol indirect effects to changes in precipitation efficiency.

  7. Impact of aging mechanism on model simulated carbonaceous aerosols

    PubMed Central

    Huang, Y.; Wu, S.; Dubey, M.K.; French, N. H. F.

    2013-01-01

    Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further

  8. Regional Impacts of Carbonaceous Aerosols, 1850-2100

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Bausch, A.; Nazarenko, L. S.; Tsigaridis, K.; McConnell, J. R.

    2012-12-01

    Measurements of carbonaceous aerosols in ice cores allow us to study historical atmospheric compositions. These datasets in combination with climate models are of great value when examining the role of anthropogenic emissions of carbonaceous aerosols and their role in past and future climates. In this presentation we analyze four transient climate simulations performed with the GISS-modelE climate model. Simulations differ in ocean couplings and aerosol schemes. One aerosol scheme, MATRIX, resolves aerosol microphysics and tracks mass-, number concentrations and aerosol mixing state information. The second scheme is a mass based scheme, but includes a secondary organic aerosol model. The two oceans are ocean A, which uses prescribed sea surface temperatures, and ocean C, a fully coupled dynamical ocean model. Regional analysis for past and future (1850-2100) simulations will focus on Greenland, the Himalayas and the Antarctic. Each region has its specific characteristic; Greenland's historic atmospheric chemistry is strongly influenced by pre-industrial land clearing, whereas its future seems to be dominated by cloud feedbacks; the Antarctic is a good indicator for remote background conditions here differences in aging and removal between the different schemes can be detected; the Himalayas show the most complicated feedbacks, due to its complex terrain, several distinctive different air-mass types influence the region as well as dynamical systems. The two different ocean schemes show a shift in the ITCZ, impacting the distribution of carbonaceous aerosols. In the end, future climate projections of the focus regions along CMIP5s four Representative Concentration Pathways (RCPs) will be presented.

  9. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  10. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  11. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels?

    SciTech Connect

    Novakov, T.; Andreae, M.O.; Gabriel, R.; Kirchstetter, T.; Mayol-Bracero, O.L.; Ramanathan, V.

    2000-08-26

    We present an analysis of the carbon, potassium and sulfate content of the extensive aerosol haze layer observed over the tropical Indian Ocean during the Indian Ocean Experiment (INDOEX). The black carbon (BC) content of the haze is as high as 17% of the total fine particle mass (the sum of carbonaceous and soluble ionic aerosol components) which results in significant solar absorption. The ratio of black carbon to organic carbon (OC) (over the Arabian Sea and equatorial Indian Ocean) was a factor of 5 to 10 times larger than expected for biomass burning. This ratio was closer to values measured downwind of industrialized regions in Japan and Western Europe. These results indicate that fossil fuel combustion is the major source of carbonaceous aerosols, including black carbon during the events considered. If the data set analyzed here is representative of the entire INDOEX study then fossil fuel emissions from South Asia must have similarly contributed to aerosols over the whole study region. The INDOEX ratios are substantially different from those reported f or some source regions of South Asia, thus raising the possibility that changes in composition of carbonaceous aerosol may occur during transport.

  12. Uncertainties in Carbonaceous Aerosol Emissions, Scavenging Parameterizations, and Optical Properties

    NASA Astrophysics Data System (ADS)

    Koch, D.; Bond, T.; Kinne, S.; Klimont, Z.; Sun, H.; van Aardenne, J.; van der Werf, G.

    2006-12-01

    Estimates of human influence on climate are especially hindered by poor constraint on the amount of anthropogenic carbonaceous aerosol absorption in the atmosphere. Coordination of observation and model analyses attempt to constrain particle absorption amount, however these are limited by uncertainties in aerosol emission estimates, model scavenging parameterization, aerosol size assumption, contributions from organic aerosol absorption, air concentration observational techniques and by sparsity of data coverage. We perform multiple simulations using GISS modelE and six present-day emission estimates for black carbon (BC) and organic carbon (OC) (Bond et al 2004 middle and upper estimates, IIASA, EDGAR, GFED v1 and v2); for one of these emissions we apply 4 different BC/OC scavenging parameterizations. The resulting concentrations will be compared with a new compilation of observed BC/OC concentrations. We then use these model concentrations, together with effective radius assumptions and estimates of OC absorption to calculate a range of carbonaceous aerosol absorption. We constrain the wavelength-dependent model τ- absorption with AERONET sun-photometer observations. We will discuss regions, seasons and emission sectors with greatest uncertainty, including those where observational constraint is lacking. We calculate the range of model radiative forcing from our simulations and discuss the degree to which it is constrained by observations.

  13. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  14. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2012-07-01

    An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China) was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable C isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  15. Encapsulation effects on carbonaceous aerosol light absorption

    SciTech Connect

    Sedlacek, A.J.; Onasch, T.; Davidovits, P.; Cross, E.; Mazzoleni, C.

    2010-03-15

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds (plumes containing soot byproducts from automobiles, biomass burning, wood-burning kitchen stoves, and coal-fired power plants) will increase black carbon (BC) radiative forcing from the Intergovernmental Panel on Climate Change best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve insights into the interdependence of BC optical properties on particle mixing state and aggregate morphology, measurements of both the optical and physical properties of flame-generated soot under nascent, coated, and denuded conditions were conducted. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry (Sedlacek and Lee 2007). In addition to examining nascent BC—to provide a baseline measurement—encapsulation with varying thicknesses of either dioctyl sebacate (DOS) or sulfuric acid was conducted to glean insights into the interplay between particle mixing state and optical properties. Additionally, some experiments were carried out where BC was coated and then denuded. In the case of DOS-coated soot, a

  16. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  17. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  18. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  19. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  20. Source contributions to carbonaceous aerosol concentrations in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Jaein I.; Park, Rokjin J.; Woo, Jung-Hun; Han, Young-Ji; Yi, Seung-Muk

    2011-02-01

    We estimated the source contributions to carbonaceous aerosol concentration in Korea on the basis of Intercontinental Chemical Transport Experiment Phase B (INTEX-B) anthropogenic emissions and satellite-derived biomass burning emissions by using a nested version of GEOS-Chem with a spatial resolution of 0.5° × 0.667° for the period March 2006-February 2007. First, we evaluated the model by comparing the simulated and observed aerosol concentrations at East Asia Network (EANET) sites and at a site in Korea. The results indicate that the model reproduces the variability and magnitudes of the observed SO 42-, NO 3-, and NH 4+ concentrations in Korea and those of the observed PM 10 concentrations in East Asia. However, the organic carbon (OC) and black carbon (BC) aerosol concentrations estimated by the model are lower than those observed in Korea by a factor of 2, especially in winter. This underestimation is likely due to extremely low domestic anthropogenic emissions and lack in seasonal variation. Source adjustments using a simple fitting and the Emission Database for Global Atmospheric Research (EDGAR) monthly allocation factors for seasonal variation yield significantly improved model results ( R2 increased from 0.58 to 0.84), which can then be used to estimate the source contributions to the OC and BC concentrations in Korea. We found that domestic anthropogenic emissions are the most important factors, contributing 74% (9% from fossil fuels and 65% from biofuels) and 78% (42% from fossil fuels and 36% from biofuels) to the OC and BC concentrations, respectively, on an annual mean basis in Korea. The trans-boundary transport of Chinese sources is another important factor, contributing 13% and 20% to the OC and BC concentrations, respectively. The contributions of wildfires and biogenic sources to the annual mean carbonaceous aerosol concentration in Korea are relatively small (4% and 6%, respectively).

  1. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  2. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  3. Observation of carbonaceous aerosols during 2006-2009 in Nyainqêntanglha Mountains and the implications for glaciers.

    PubMed

    Zhao, Shuyu; Ming, Jing; Sun, Junying; Xiao, Cunde

    2013-08-01

    Atmospheric carbonaceous aerosols were sampled discontinuously from July 2006 to December 2009 at Nam Co Comprehensive Observation and Research Station (NCOS) in the central Tibetan Plateau (TP). The mean daily concentration of carbonaceous aerosols increased from 268 to 330 ng m(-3), and pollution episodes could significantly increase the mean level of carbonaceous aerosols in the total mass concentration. Organic carbon was the main component of carbonaceous aerosols at NCOS, and black carbon (BC) accounted for 5.8 %. Seven-day air masses backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory model and the aerosol optical depth distribution in the TP and South Asia both suggested that atmospheric pollutants emitted from Northern India and South Asia could penetrate into central TP by southwest winds. Due to the seasonal variations of emission sources and regional atmospheric conditions, calculated BC deposition flux in the nonmonsoon season was higher than that in the monsoon season. Increased BC concentration in snowpack in winter from 2007 to 2009 indicated that the atmospheric environment in central TP became more polluted and the influences from human activities have strengthened. Pollution episodes could significantly increase BC concentrations in the snowpack on a seasonal scale, which would furthermore affect the surface albedo.

  4. Source apportionment of carbonaceous aerosols over South and East Asia using dual carbon isotopes

    NASA Astrophysics Data System (ADS)

    Gustafsson, O.; Kirillova, E. N.; Andersson, A.-; Kruså, M.; Sheesley, R. J.; Tiwari, S.-; Lee, M.; Chen, B.; Du, K.

    2012-12-01

    Emissions of black carbon (BC) and other components of carbonaceous aerosols affect both climate and health in South and East Asia, yet substantial uncertainties exist regarding their sources. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain both to direct mitigation and as their different properties make their effects on climate forcing and respiratory health different. This study approached the sourcing challenge by applying microscale radiocarbon measurements to aerosol particles collected in both source regions and at regional receptor observatories of both S Asia (New Delhi and the Maldives Climate Observatory) and of E Asia (Beijing, Shanghai, South China Coastal Observatory and the Korea Climate Observatory - Gosan, KCO-G, Jeju Island). The radiocarbon approach is ideally suited to this task as fossil sources are void of 14C whereas biomass combustion products hold a contemporary 14C signal. For S Asia, the 14C-based observations suggest that biomass combustion contributes half to two-thirds of the BC loading. In contrast, for E Asia, fossil fuel combustion account for four-fifths of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all fifteen BC emission inventory models. There are also poor constraints on the sources of water-soluble organic carbon (WSOC), a large hydrophilic component of carbonaceous aerosols that enhances the propensity of aerosols to form clouds. In a 15-mo continuous campaign in S Asia, radiocarbon-based source apportionment of WSOC shows the dominance of biogenic/biomass combustion sources but also a substantial anthropogenic fossil-fuel contribution (about 20%). WSOC in E Asia reaching KCO-G were 50% from fossil sources. Aerosols reaching the Maldives after long-range over-ocean transport were enriched by 3-4‰ in δ13C-WSOC. This is

  5. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  6. Differences in isotopic composition of carbonaceous components in enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Wright, I. P.; Carr, R. H.; Poths, J.; Pillinger, C. T.

    1988-02-01

    Carbon stable isotopic composition of the major carbonaceous component in enstatite chondrites varies with petrologic type. Investigation of a suite of HF/HCl-resistant residues has shown that this variation is due to an inherent difference in delta(C-13) of the carbon, and is not a result of the presence of small amounts of isotopically anomalous carbon-bearing components. These latter do occur in type EH3 and EH4 chondrites, in concentrations similar to those found in C1 and C2 carbonaceous chondrites. Combustion of the major carbon component (apparently elemental carbon, not necessarily graphite) occurs at relatively higher temperatures in enstatite chondrites of increasing petrologic type. This is considered to reflect an increase in crystallinity or ordering of the carbonaceous component, and is a measure of the degree of thermal processing to which the meteorites have been subjected during accretion and/or metamorphism.

  7. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  8. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  9. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A. ); Cass, G.R. . Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  10. Carbonaceous aerosol and its characteristics observed in Tokyo and south Kanto region

    NASA Astrophysics Data System (ADS)

    Minoura, Hiroaki; Morikawa, Tazuko; Mizohata, Akira; Sakamoto, Kazuhiko

    2012-12-01

    Due to enforcing vehicle emission reduction requirements in Japan, particulate matter (PM) concentration, especially elemental carbon (EC) concentration in roadside atmosphere, obviously decreased in the last decade. In spite of the previous vehicle emission reduction, EC concentration was not shown a clear decrease, recently. To achieve the PM2.5 environmental standard, measurements based on emission source contribution are desirable. However, source apportionment of carbonaceous aerosol was ambiguous because chemical components are complicated, and the components change through photochemical reaction. The goal of this study is to determine source apportionment for carbonaceous aerosols. Examination of PM2.5 was performed in south Kanto including Tokyo in the summer of 2008 and the winter of 2009. Emissions from the industrial area around Tokyo Bay and the agricultural northern area showed transportation and accumulation due to the seasonal prevailing wind. The emissions formed a geographical distribution due to photochemical reactions. The characteristics of carbonaceous aerosol were obtained using carbon profile analysis and carbon isotope analysis, including the source information such as fossil fuel emission origin, vegetation origin, and combustion product, photochemical reaction product, etc. Soot-EC was found as a substance with fossil fuel origin which did not contain biomass combustion matter, and since it is stable, there was no observed difference by site and a uniform concentration was observed in winter. It became apparent from the carbon isotope analysis using 14C that the carbon from the biomass origin involved 29% in total carbon in the summer, and 48% in winter even at Kudan of central Tokyo.

  11. Carbonaceous materials as components of cometary dust

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Schwehm, G.; Bussoletti, E.; Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.

    Recent exploration of Comet Halley by space missions and ground-based observations have made it possible to acquire a large amount of new information on cometary materials. In particular, IR spectroscopy has evidenced two pronounced and structured emission features at around 3.28 and 3.37 microns. Different kinds of gaseous molecules and/or solid grains including CH-X bonds have been proposed as possible carriers of the bands. In the past years, laboratory experiments have made it possible to characterize the physical and optical properties of different classes of carbonaceous materials. The absorption properties measured for some of them are here used to fit the cometary features and to identify if possible the most probable carriers of these bands.

  12. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  13. Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Chen, L.-W. A.; Huang, R.-J.; Chow, J. C.; Watson, J. G.; Ni, H. Y.; Liu, S. X.; Fung, K. K.; Shen, Z. X.; Wei, C.; Wang, Q. Y.; Tian, J.; Zhao, Z. Z.; Prévôt, André S. H.; Cao, J. J.

    2016-05-01

    Carbonaceous aerosol is an important component that influences the environment, climate, and human health. Organic and elemental carbon (OC and EC) are the two main constituents of carbonaceous aerosols that have opposite, i.e., cooling versus warming, effects on the Earth's radiation balance. Knowledge on the variability of OC/EC splits measured by different thermal/optical protocols is useful for understanding the uncertainty in the climate models. This study shows good correlations within OC or EC (r2 > 0.83, P < 0.001) across the IMPROVE, IMPROVE_A, and EUSAAR_2 protocols for both ambient aerosol samples and biomass burning samples. However, EC concentrations differ by more than two folds, and OC/EC ratios differ up to a factor of 2.7. The discrepancies were attributed to the selection between the reflectance and transmittance corrections and the different peak inert-atmosphere temperature. The IMPROVE and IMPROVE_A protocols also quantified different char and soot concentrations, two subtypes of EC with distinct chemical and optical properties. Char, but not soot, was found to correlate with the humic-like substances (HULIS) content in the samples, suggesting that both char and HULIS originate mainly from biomass burning. A one-year (2012-2013) ambient aerosol monitoring in Xi'an, China, shows that OC, EC, and char displayed winter highs and summer lows, while soot had no seasonal trend. The char/soot ratios showed a "single peak" in winter, while OC/EC ratios exhibited "dual peak" feature due to the influence of secondary organic aerosol formation. In addition to commonly measured OC and EC, we recommend both char and soot from a common reference method to be considered in the chemical transport and climate models.

  14. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations.

    PubMed

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A P; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-09-28

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m(3)) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research.

  15. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  16. Characterisation of carbonaceous aerosols from the Azorean Island of Terceira

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Oliveira, Tiago; Pio, Casimiro; Silvestre, Armando J. D.; Fialho, Paulo; Barata, Filipe; Legrand, Michel

    Aerosol samples were collected from 2002 to 2003 in Terceira, one of the islands of the Azores archipelago in the north-eastern Atlantic. The atmospheric samples have been analysed for its carbonaceous content and for lipid class compounds. The major constituents that comprise plant wax are n-alkanes (C 23-C 33, with and odd-to-even carbon predominance and carbon maxima at 29 or 31), n-alkanols (C 22-C 30, even-to-odd) and n-alkanoic acids (C 22-C 30, even-to-odd), with minor amounts of n-alkanals and polycyclic biomarkers, such as phytosterols. Some alkanedioic acids and phthalates were also detected. The occurrence of short-chain homologues may indicate an additional marine source, probably introduced into the atmosphere via sea spray. Changes in the composition of the homologous series derived from terrestrial plants throughout the observation period may be related to alterations in the regional sources and transport pathways. These terrestrial lipids contributed up to 47% of the total compound mass, while the marine input was estimated to be inferior to 19%, both of them being more representative in summer. Biomass burning sources represented approximately 1% of the total inputs to the organic aerosol for the most part of the year, excepting during the spring, when it contributed to 10%. Petroleum products and plasticizers presented higher contributions (up to 19%) during the winter months. Secondary constituents resulting from oxidation during transport varied from 14% to 37% of the apportioned organic mass. The fraction derived from soil resuspension accounted for 2-16%.

  17. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  18. Volcanic influence on background sulfurous and carbonaceous aerosol in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Friberg, J.; Martinsson, B. G.; Andersson, S. M.; Brenninkmeijer, C. A. M.; Hermann, M.; van Velthoven, P. F. J.; Zahn, A.

    2012-04-01

    Previous measurements in the upper troposphere (UT) and the lowermost stratosphere (LS) have indicated the presence of a carbonaceous component in the aerosol (Murphy et al.,1998; Nguyen et al., 2008; Martinsson et al., 2009). Here the occurrence of carbonaceous and sulfurous particles around the tropopause is investigated. The data were taken from the CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container) platform, where instruments onboard a Lufthansa passenger aircraft on inter-continental flights are used for examination of the atmospheric composition in the UT/LS at 8-12 km altitude (Brenninkmeijer et al., 2007). CARIBIC undertakes aerosol sampling for chemical characterization, as well as measurements of particle number concentrations and mixing ratios of a large number of trace gases including O3, CO, NO/NOy, Hg, water (gaseous and condensed), greenhouse gases and halogenated hydrocarbons. The CARIBIC dataset also contains data on meteorological conditions. 500 aerosol samples were collected during 150 flights with a sampling time of 100 minutes by an impaction technique (Nguyen et al., 2006). Specimen are then analyzed by quantitative multi-elemental analysis by PIXE (Particle-Induced X-ray Emission) and PESA (Particle Elastic Scattering Analysis) to obtain elemental concentrations for sulfur, iron, titanium, potassium, hydrogen, carbon, nitrogen and oxygen among others (Nguyen and Martinsson, 2007). The present study is based on samples collected in the LS from May 2005- August 2008. Concentrations of particulate carbon and sulfur in the LS is shown to follow seasonal cycles, correlated with ozone concentrations, with increasing concentrations from the tropopause through the LS. This indicates downward transport from the so-called stratospheric over-world (SOV) as an important source for these species. Sulfuric acid particles are formed in the stratosphere from carbonyl sulfide (OCS) via photochemical

  19. Characteristics of atmospheric depositions of ionic and carbonaceous components at remote sites in Japan

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inomata, Y.; Kajino, M.; Tang, N.; Hayakawa, K.; Hakamata, M.; Morisaki, H.

    2015-12-01

    Atmospheric deposition process is important to evaluate lifetimes and budget of atmospheric components. Deposition amounts of sulfur and nitrogen compounds have been evaluated not only in East Asian region but also worldwide. On the other hand, atmospheric deposition of carbonaceous components including organic carbon (OC), elementary carbon (EC) and Polycyclic Aromatic Hydrocarbons (PAHs) were monitored only at a few sites in Europe, North America and Africa, which will obscure removal process and atmospheric concentration distribution of those components. In this study, ionic and carbonaceous components in precipitation and aerosol are monitored at remote sites in Japan, and the characteristics of atmospheric deposition amounts were evaluated.Field observations have been implemented at the Noto station since November 2013 and the Sado station since May 2011. Wet deposition samples were collected by rain samplers, and dry deposition samples were collected by high volume or low volume aerosol samplers. Concentrations of Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, Ca2+ were measured by ion chromatography, EC and OC by the IMPROVE protocol, and PAHs by HPLC with a fluorescence detector. Wet deposition amounts were calculated as the products of aqueous concentration and precipitation amounts, and dry deposition amounts were as the products of aerosol concentrations and deposition velocity estimated by the Inferential Method.Total (wet and dry) annual deposition amounts of carbonaceous components of NO3-, SO42-, EC, water insoluble OC, Fluoranthene at Noto (Nov. 2013 to Oct. 2014) were 4353.81 mg/m2, 7020.50 mg/m2, 149.84 mg/m2, 1191.09 mg/m2, 28.6 μg/m2, respectively. These amounts are comparable total annual deposition amounts of OC and EC at Sado (May 2011 to Feb. 2012), which were 166.04 mg/m2 and 834.0 mg/m2. Higher deposition amounts of ionic and carbonaceous components were observed, which would be attributable to long range transportation of the East Asian

  20. Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California

    SciTech Connect

    Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

    2013-10-29

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements

  1. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; Rödel, T. C.; Kelly, S. T.; Yu, X. Y.; Carroll, G. T.; Fast, J.; Zaveri, R. A.; Laskin, A.; Gilles, M. K.

    2013-10-01

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27-29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter) increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3%) was larger than at the CARES urban site (13.4-15.7%), and the most aged samples from CARES contained fewer carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed

  2. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; Rödel, T. C.; Kelly, S. T.; Yu, X. Y.; Carroll, G. T.; Fast, J.; Zaveri, R. A.; Laskin, A.; Gilles, M. K.

    2013-04-01

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27-29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements

  3. Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisheng; Engling, Guenter; Zhang, Leiming; Kawamura, Kimitaka; Yang, Yihong; Tao, Jun; Zhang, Renjian; Chan, Chuen-yu; Li, Yide

    2015-03-01

    Fungal spores are ubiquitous in the Earth’s atmosphere, especially in the environment of tropical rainforests with intense biological activities. To assess the impact of fungi on chemical components of atmospheric aerosols at a Chinese tropical rainforest site, size-segregated fungal spore tracers (i.e. arabitol and mannitol) were measured along with major aerosol components, including carbonaceous species and water-soluble inorganic ions. The fungal spore tracers were found to be predominately associated with coarse particles, in which organic carbon (OC) and potassium (K+) were also present at significant levels. Enhanced amounts of fungal spore tracers were closely linked to rainfall events. Moreover, fungal spore tracers exhibited positive correlations with relative humidity and negative correlations with wind speed, temperature or radiation. The relationships between fungal spore tracers and meteorological factors are consistent with the emission features of actively discharged fungal spores, which are generally associated with sugar alcohols and by-products such as the inorganic ion K+. The excellent correlations between fungal spore tracers and OC or K+ in the coarse particles further suggested their common emission sources. Absolute principal factor analysis further identified fungi as the largest contributor to coarse OC and K+ (both at ∼66%) in this rainforest.

  4. Micro-physical properties of carbonaceous aerosol particles generated by laser ablation of a graphite target

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Utry, N.; Pintér, M.; Tápai, Cs.; Kecskeméti, G.; Smausz, T.; Hopp, B.; Bozóki, Z.; Szabó, G.

    2014-09-01

    In this work the authors propose laser ablation as a highly versatile tool for carbonaceous aerosol generation. The generated carbonaceous particles can be used as a model aerosol for atmospheric black carbon. Various microphysical properties including mass concentration, size distribution and morphology of aerosol particles generated by laser ablation of a high purity graphite sample were investigated in detail. These measurements proved that the proposed method can be used to generate both primary particles and fractal aggregates with a high yield. As a further advantage of the method the size distribution of the generated aerosol can cover a wide range, and can be tuned accurately with laser fluence, the ambient composition or with the volumetric flow rate of the carrier gas.

  5. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  6. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  7. Comparison of carbonaceous aerosols in Tokyo before and after implementation of diesel exhaust restrictions.

    PubMed

    Yamamoto, Naomichi; Muramoto, Atsushi; Yoshinaga, Jun; Shibata, Ken; Endo, Michio; Endo, Osamu; Hirabayashi, Motohiro; Tanabe, Kiyoshi; Goto, Sumio; Yoneda, Minoru; Shibata, Yasuyuki

    2007-09-15

    We compared the status of carbonaceous aerosols in Tokyo before and after the implementation of a diesel vehicle regulation intended to reduce the quantity of particulate carbon from diesel engines in one of the largest scale ever attempts at vehicle exhaust control. Radiocarbon (14C) in elemental carbon (EC) and total carbon (TC) were analyzed to identify fossil fuel carbonaceous particles emitted from diesel-powered vehicles. One-sided paired-month t-tests showed no distinct difference in the absolute concentrations of particles in terms of total mass (19.5 to 18.0 microg m(-3); p = 0.321), EC (3.6 to 3.3 microg m(-3); p = 0.272), and TC (6.3 to 6.2 microg m(-3); p = 0.418) for the finest particles (d(a) < 1.1 microm) after the implementation of the regulation. The ratios of the concentrations of the chemical constituents were, however, altered after the regulation. EC/TC was significantly decreased from 56.7% to 50.2% (p = 0.039). Although it was not statistically significant, the percentage of fossil carbon in EC also decreased (67.8% to 63.8%; p = 0.104). Since EC is predominantly of combustion origin, the observed decrease was likely due to the decrease in fossil EC emissions from diesel-powered vehicles. The decrease in EC/TC after the implementation of the regulation was also likely to have resulted from attachment to diesel vehicle exhaust systems of particulate filters as required as part of the regulation by the Tokyo Metropolitan Government. The EC/TC of fossil carbon of the finest particles decreased from 66.2% to 55.2% (p = 0.066), but EC/TC of biomass carbon did not decrease but rose slightly from 43.6% to 44.5% (p > 0.5). Thus, the relative ratios of components of carbonaceous aerosol particles, such as 14C, could provide a better understanding of the atmospheric pollution status, despite short-term fluctuations, than do measurements of absolute concentrations.

  8. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  9. Direct Radiative Forcing Due to Carbonaceous Aerosols in Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Marks, M.; Heo, J.; Adams, P. J.; Donahue, N. M.; Robinson, A. L.

    2014-12-01

    Most climate forcing calculations treat black carbon (BC) as the only carbonaceous particulate light-absorber. Numerous studies have shown that some organic aerosols (OA), mainly associated with biomass burning emissions, contain significant amounts of light-absorbing brown carbon (BrC). However, the light absorption properties of biomass burning OA are poorly constrained, complicating its representation in climate models. During the Fire Laboratory at Missoula Experiment (FLAME 4), we conducted experiments to characterize the light absorption properties of OA in emissions of globally important biomass fuels. We showed that the effective absorptivity of OA depends largely on burn conditions, not fuel type, and derived a parameterization that links OA absorptivity to the BC-to-OA ratio of the emissions (Nature Geoscience, DOI:10.1038/ngeo2220). Here, we utilize this parameterization to estimate the direct radiative effect (DRE) of carbonaceous aerosols in biomass burning emissions using a global chemical transport model (GEOS-Chem) and a column radiative transfer model (libRadTran). The simulations were performed for the year 2005. Monthly-averaged global aerosol concentrations, including BC, OA, inorganic sulfates and nitrates, sea salt, and mineral dust, were obtained from GEOS-Chem simulations. Concentrations of BC and OA from biomass burning emissions were determined by running two GEOS-Chem simulations, one with and one without biomass burning emissions. We attributed the difference in BC and OA concentrations between the two simulations to biomass burning, and could thus calculate the BC-to-OA ratio for biomass burning emissions. libRadTran was used (offline) to calculated DRE due to biomass burning carbonaceous aerosols at each GEOS-Chem grid-cell. Our results show that the global average DRE due to carbonaceous biomass burning emissions increases significantly if light-absorption by OA is considered (using our parameterization for OA absorptivity), compared

  10. The role of carbonaceous aerosols on short-term variations of precipitation over North Africa

    DOE PAGES

    Yoon, Jin -Ho; Rasch, Philip J.; Wang, Hailong; ...

    2016-06-16

    Northern Africa has been subject to extensive droughts in the late 20th century, which are frequently linked to changes in the Sea Surface Temperature (SST) in both the Atlantic and Indian Oceans. However, climate models forced by observed Sea Surface Temperatures have been unable to reproduce the magnitude of rainfall reduction over the last several decades. In this study, we propose that aerosol indirect effects (AIE) may be an important feedback mechanism to contribute this recent reduction. The climate model used here has a fully predictive aerosol life cycle. Results are presented for a set of sensitivity experiments designed tomore » distinguish the role of aerosol direct/semi-­direct and indirect effects on regional precipitation. Changes in cloud lifetime due to the presence of carbonaceous aerosols are proposed as a key mechanism to explain the reduced rainfall over the tropical and North Africa.« less

  11. The role of carbonaceous aerosols on short-term variations of precipitation over North Africa

    SciTech Connect

    Yoon, Jin -Ho; Rasch, Philip J.; Wang, Hailong; Vinoj, V.; Ganguly, Dilip

    2016-06-16

    Northern Africa has been subject to extensive droughts in the late 20th century, which are frequently linked to changes in the Sea Surface Temperature (SST) in both the Atlantic and Indian Oceans. However, climate models forced by observed Sea Surface Temperatures have been unable to reproduce the magnitude of rainfall reduction over the last several decades. In this study, we propose that aerosol indirect effects (AIE) may be an important feedback mechanism to contribute this recent reduction. The climate model used here has a fully predictive aerosol life cycle. Results are presented for a set of sensitivity experiments designed to distinguish the role of aerosol direct/semi-­direct and indirect effects on regional precipitation. Changes in cloud lifetime due to the presence of carbonaceous aerosols are proposed as a key mechanism to explain the reduced rainfall over the tropical and North Africa.

  12. The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

    PubMed

    Chow, Judith C; Yu, Jian Zhen; Watson, John G; Ho, Steven Sai Hang; Bohannan, Theresa L; Hays, Michael D; Fung, Kochy K

    2007-09-01

    Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in particulate matter (PM) samples. The resulting mass spectra contain information that is consistent among, but different between, source emissions even in the absence of association with specific organic compounds. TD-GC/MS is a demonstrated alternative to solvent extraction for many organic compounds and can be applied to samples from existing networks. It is amenable to field-deployable instruments capable of measuring organic aerosol composition in near real-time. In this review, thermal stability of organic compounds is related to chemical structures, providing a basis for understanding thermochemical properties of carbonaceous aerosols. Recent advances in thermal methods applied to determine aerosol chemical compositions are summarized and their potential for uncovering aerosol chemistry are evaluated. Current limitations and future research needs of the thermal methods are included.

  13. Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq

    NASA Astrophysics Data System (ADS)

    Hamad, Samera Hussein; Schauer, James Jay; Heo, Jongbae; Kadhim, Ahmed K. H.

    2015-04-01

    Baghdad is the second largest city in the Middle East and suffers from severe air quality degradation due to the high levels of the atmospheric particulate matter (PM). Limited information exists regarding the sources of PM in Baghdad, and the lack of information on sources inhibits the development of control strategies to reduce air pollution. To better understand the nature of fine particulate matter (PM2.5) in Baghdad and the Middle East, a one year sampling campaign to collect PM2.5 was conducted from September 2012 through September 2013, missing August 2013 samples due to the security situation. 24-hour integrated samples collected on a 1-in-6 day schedule were analyzed for the major components, and monthly average samples were analyzed by gas chromatography mass spectrometry (GCMS) methods to measure particle-phase organic molecular markers. The results of organic molecular markers were used in a chemical mass balance (CMB) model to quantify the sources of PM2.5 organic carbon (OC) and PM2.5 mass. Primary sources accounted for 44% of the measured PM2.5, and secondary sources were estimated to make up 28% of the measured PM2.5. Picene, a tracer of coal combustion detected in Baghdad where there is no evidence for coal combustion, can be attributed to burning crude oil and other low quality fuels in Baghdad. Source apportionment results showed that the dominant sources of the carbonaceous aerosols in Baghdad are gasoline (37 ± 6%) and diesel engines (17 ± 3%) which can be attributed to the extensive use of gasoline and diesel powered generators in Baghdad. Wood burning and residual oil combustion contributed to 5 ± 0.4 and 1 ± 0.2% respectively of OC. The unresolved sources contributed to 42 ± 19% of the OC which represented the secondary organic aerosol (SOA) and the unidentified sources.

  14. Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport.

    PubMed

    Li, Peng-hui; Wang, Yan; Li, Tao; Sun, Lei; Yi, Xianliang; Guo, Li-qiong; Su, Rui-hong

    2015-09-01

    In order to understand the sources and potential formation processes of atmospheric carbonaceous aerosols in South China, fine particle samples were collected at a high-elevation mountain site--Mount Lu (29°35' N, 115°59' E, 1165 m A.S.L.) during August-September, 2011. Eight carbonaceous fractions from particles were resolved following the IMPROVE thermal/optical reflectance protocol. During the observation campaign, the daily concentrations of PM2.5 at Mount Lu ranged from 7.69 to 116.39 μg/m(3), with an average of 58.76 μg/m(3). The observed average organic carbon (OC) and elemental carbon (EC) concentrations in PM2.5 were 3.78 and 1.28 μg/m(3), respectively. Secondary organic carbon (SOC) concentration, estimated by EC-tracer method, was 2.07 μg/m(3) on average, accounting for 45.0% of the total OC. The enhancement of secondary organic aerosol (SOA) formation was observed during cloud/fog processing, and heterogeneous acid-catalyzed reactions may have contributed to SOA formation as well. Back trajectory analysis indicated that air masses were mainly sourced from southern China during observation period, and this air mass source was featured by highest values of OC and effective carbon ratio (ECR). Relation of carbonaceous species and principal component analysis indicated that multiple sources contributed to the carbonaceous aerosols at Mount Lu.

  15. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    SciTech Connect

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  16. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Aslam, M. Y.; Upadhyay, M.; Rengarajan, R.; Bhushan, R.; Rathore, J. S.; Singh, S. K.; Kumar, S.

    2016-09-01

    Carbonaceous species (elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC)) and water-soluble inorganic species (Na+, NH4+, K+, Ca2 +, Mg2 +, Cl-, NO3-, SO42 -) in PM10 and PM2.5 from Ahmedabad and Jodhpur (urban and semi-urban locations, respectively) in western India were measured during May-September, 2011. Stable isotope composition of carbonaceous aerosol (δ13C of TC) in PM10 samples was also determined. Average EC concentration in PM10 at Ahmedabad was 1 μg m- 3 (range: 0.34 to 3.4 μg m- 3), almost 80% of which remained in PM2.5. Similarly, 70% of EC in PM10 (average: 0.9 μg m- 3) resided in PM2.5 at Jodhpur. Average OC concentration at Ahmedabad was 6.4 μg m- 3 and 52% of this was found in PM2.5. On the contrary, OC concentration at Jodhpur was 40 μg m- 3, 80% of which was found in coarse particles contributing substantially to aerosol mass. δ13C of TC (average: - 27.5‰, range: - 29.6 to - 25.8‰) along with WSOC/EC ratio shows an increasing trend at Jodhpur suggesting the possibility of aging of aerosol, since aging results in enrichment of heavier isotope. OC and WSOC show significant correlations with K+ and not with EC, indicating biogenic origin of OC. Different size distributions are also exhibited by WSOC at the two stations. On the other hand, δ13C exhibits an inverse trend with sea-salt constituents at Ahmedabad, indicating the influence of air masses transported from the western/south-western region on carbonaceous aerosol. These results suggest that a strong heterogeneity exists in the sources of carbonaceous aerosol over this region and potential sources of non-combustion emissions such as bio-aerosol that need further investigation.

  17. A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J. L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K. E.; Aas, W.; Putaud, J. P.

    2016-11-01

    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.

  18. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Technical Reports Server (NTRS)

    Zaveri, R. A.; Shaw, W. J.; Cahill, J. F.; Cairns, Brian; Cappa, C. D.; Ottaviani, Matteo; Cziczo, D. J.; Ferrare, Richard A.; Alexander, M. L.; Alexandrov, Mikhail Dmitrievic; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Schmid, B.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Flowers, B. A.; Fortner, E.; Baidar, S.; Hair, J.; Hostetler, C.; Obland, M. D.; Rogers, R. R.; Floerchinger, C.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  19. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-08-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  20. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Langford, A. O.; Laskin, A.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  1. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X. -Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and “aged” urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and d) a roadmap of

  2. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

    2012-08-22

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data

  3. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    NASA Astrophysics Data System (ADS)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  4. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg ·ρinorg-1 +forg ·ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  5. Feasibility study for GCOM-C/SGLI: Retrieval algorithms for carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Yasumoto, Masayoshi; Fujito, Toshiyuki; Nakata, Makiko; Kokhanovsky, Alexander

    2016-04-01

    The Japan Aerospace Exploration Agency (JAXA) has been developing the new Earth observing system, GCOM (Global Change Observation Mission) project, which consists of two satellite series of GCOM-W1 and GCOM-C1. The 1st GCOM-C satellite will board the SGLI (second generation global imager) which also includes polarimetric sensor and be planed to launch in early of 2017. The SGLI has multi (19)-channels including near UV channel (380 nm) and two polarization channels at red and near-infrared wavelengths of 670 and 870 nm. EUMETSAT plans to collect polarization measurements with a POLDER follow on 3MI / EPS-SG in 2021. Then the efficient retrieval algorithms for aerosol and/or cloud based on the combination use of radiance and polarization are strongly expected. This work focuses on serious biomass burning episodes in East Asia. It is noted that the near UV measurements are available for detection of the carbonaceous aerosols. The biomass burning aerosols (BBA) generated by forest fire and/or agriculture biomass burning have influenced on the severe air pollutions. It is known that the forest fire increases due to global warming and a climate change, and has influences on them vice versa. It is well known that this negative cycle decreases the quality of global environment and human health. We intend to consider not only retrieval algorithms of remote sensing for severe air pollutions but also detection and/or distinction of aerosols and clouds, because mixture of aerosols and clouds are often occurred in the severe air pollutions. Then precise distinction of aerosols and clouds, namely aerosols in cloudy scenes and/or clouds in heavy aerosol episode, is desired. Aerosol retrieval in the hazy atmosphere has been achieved based on radiation simulation method of successive order of scattering 1,2. In this work, we use both radiance and polarization measurements observed by GLI and POLDER-2 on Japanese ADEOS-2 satellite in 2003 as a simulated data. As a result the

  6. Carbonaceous aerosols and mineral dust in atmospheric outflow from the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sarin, M.; Srinivas, B.; Rengarajan, R.

    2012-12-01

    Atmospheric carbonaceous aerosols and mineral dust over south and south-east Asia has been a subject of major debate over the past two decades because of their potential impact on the regional air quality and climate forcing. A comprehensive study through ground-based measurements and data-base for aerosol chemical composition (involving both organic and inorganic constituents) is, thus, essential to constrain the large uncertainties associated with the climate impact. Our systematic study from a downwind site (Kharagpur: 22.02N, 87.11E) in the Indo-Gangetic Plain (IGP) suggests large temporal variability in the atmospheric mass concentrations of mineral dust, organic and elemental carbon (OC, EC), water-soluble organic carbon (WSOC) and inorganic species (WSIS). This is attributed to seasonally varying anthropogenic emissions, their source strength, boundary layer dynamics, secondary aerosol formation and long-range transport of mineral dust from desert regions. Based on diagnostic ratios [OC/EC ≈ 7.0 ± 2.2, WSOC/OC ≈ 0.6 and K+/EC ≈ 0.48 ± 0.17], we document biomass burning emissions (wood-fuel and post-harvest agricultural-waste burning) as a major source of carbonaceous aerosols. The characteristic ratios: nss-SO42-/EC (3.9 ± 2.1), nss-SO42-/OC (0.61 ± 0.46), high abundance of SO42- (6.9 - 25.3 μg m-3) and SO42-/ΣWSIS = 45 - 77 % in the outflow provide better assessment of aerosol optical properties. The subsequent downwind transport of pollutants from the IGP significantly influences the chemical composition of aerosols over the Bay of Bengal. The dominance of aerosol SO42- in the marine atmospheric boundary layer (MABL) is evident from the wide-spread depletion of chloride with respect to sea-salt composition. The Ca/Al and Fe/Al ratios in the IGP-outflow, used as a proxy for the long-range transport of mineral dust, are consistent with those in the MABL. The mass closure for PM2.5 composition suggests that contribution of mineral dust (20

  7. Spatial variability of carbonaceous aerosol concentrations in East and West Jerusalem.

    PubMed

    von Schneidemesser, Erika; Zhou, Iiabin; Stone, Elizabeth A; Schauer, James I; Shpund, Jacob; Brenner, Shmuel; Qasrawi, Radwan; Abdeen, Ziad; Sarnat, Jeremy A

    2010-03-15

    Carbonaceous aerosol concentrations and sources were compared during a year long study at two sites in East and West Jerusalem that were separated by a distance of approximately 4 km. One in six day 24-h PM(2.5) elemental and organic carbon concentrations were measured, along with monthly average concentrations of particle-phase organic compound tracers for primary and secondary organic aerosol sources.Tracer compounds were used in a chemical mass balance ICMB) model to determine primary and secondary source contributions to organic carbon. The East Jerusalem sampling site at Al Quds University experienced higher concentrations of organic carbon (OC) and elemental carbon (EC) compared to the West Jerusalem site at Hebrew University. The annual average concentrations of OC and EC at the East Jerusalem site were 5.20 and 2.19 μg m(-3), respectively, and at the West Jerusalem site were 4.03 and 1.14 μg m(-3), respectively. Concentrations and trends of secondary organic aerosol and vegetative detritus were similar at both sites, but large differences were observed in the concentrations of organic aerosol from fossil fuel combustion and biomass burning, which was the cause of the large differences in OC and EC concentrations observed at the two sites.

  8. Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel

  9. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74-78, 17-21, and 4-6 % of the total emissions of OC, respectively, and 49-55, 30-34, and 14-18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites

  10. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-03-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 76 ± 2, 19 ± 2 and 5 ± 1% of the total emissions of OC, respectively, and 52 ± 3, 32 ± 2 and 16 ± 2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at rural and

  11. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.

    2009-12-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct and especially the indirect aerosol forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. Those aerosol characteristics determine their role in direct and indirect aerosol forcing, as their chemical composition and size distribution determine their optical properties and cloud activation potential. A new detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE climate model includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment and an uncertainty estimate of the impact of microphysical processes involving black carbon and its optical properties on aerosol cloud activation and radiative forcing. We calculate an anthropogenic net radiative forcing of -0.46 W/m2, relative to emission changes between 1750 and 2000. This study finds the direct and indirect aerosol effect to be very sensitivity towards the size distribution of the emitted black and organic particles. The total net radiative forcing can vary between -0.26 to -0.47 W/m2. The models radiation transfer scheme reacts even more sensitive to black carbon core shell structure assumptions. Assuming that sulfates, nitrates and secondary organics can lead to a coating shell around a black carbon core can turn the overall net radiative forcing from a negative to a positive number. In the light of these sensitivities, black carbon mitigation experiments can show no to up to very significant impact to slower global warming.

  12. [Characteristics of carbonaceous aerosol concentration in snow and ice of glaciers in Tianshan Mountains].

    PubMed

    Wang, Sheng-Jie; Zhang, Ming-Jun; Wang, Fei-Teng; Li, Zhong-Qin

    2012-03-01

    The snow and ice samples, collected at Glacier No. 1 at the headwaters of Urumqi River (UG1) and Glacier No. 51 at Haxilegen of Kuytun River (HG51) in 2002 and 2004, were analyzed for organic carbon (OC) and element carbon (EC) by thermal/ optical reflectance (TOR). The spatio-temporal characteristics and environmental significance of OC and EC concentration were discussed in details. The concentration order of total carbon (TC) was: snowpack of west branch on UG1 (1 943 ng x g(-1)) > snowpack of east branch on UG1 (989 ng x g(-1)) > snowpack of HG51 (150 ng x g(-1)) > glacier ice of east branch on UG1 (77 ng x g(-1)), and the concentration order of OC and EC lay similar as TC. The concentration of OC and EC in snowpack of Tianshan Mountains were 557 ng x g(-1) and 188 ng x g(-1), respectively. Concentration peak of carbonaceous aerosol usually appeared near the dust layer at the bottom section of snowpack, but the some sudden events could increase the concentration in the surface snow. Because of the seasonality of carbon emission (e. g. heating and agricultural activities) and transportation (e. g. atmospheric circulation), the concentration of carbonaceous aerosol increased from July to November with fluctuations. Difference on the order of magnitude might exist between the concentration in snow (firn) and glacier ice, which was influenced by the glacier surroundings, sampling situation and other factors. EC on the surface snow affected the albedo significantly, and an average albedo reduction of 0.22 in the wavelength of 300-700 nm was simulated by SNICAR (snow, ice, and aerosol radiative) model.

  13. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Cheung, Heidi H. Y.; Tan, Haobo; Xu, Hanbing; Li, Fei; Wu, Cheng; Yu, Jian Z.; Chan, Chak K.

    2016-07-01

    Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA) and an organic carbon/elemental carbon (OC / EC) analyzer. Low volatility (LV) particles, with a volatility shrink factor (VSF) at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11-15 % of the 80-300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4 < VSF < 0.9) and high volatility (HV, VSF < 0.4) particles. The MV and HV particles contributed 57-71 % of number concentration for the particles between 40 and 300 nm in size. The average EC and OC concentrations measured by the OC / EC analyzer were 3.4 ± 3.0 and 9.0 ± 6.0 µg m-3, respectively. Non-volatile OC evaporating at 475 °C or above, together with EC, contributed 67 % of the total carbon mass. In spite of the daily maximum and minimum, the diurnal variations in the volume fractions of the volatile material, HV, MV and LV residuals were less than 15 % for the 80-300 nm particles. Back trajectory analysis also suggests that over 90 % of the air masses influencing the sampling site were well aged as they were transported at low altitudes (below 1500 m) for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the sum of EC and non-volatile OC was conducted. It suggests that non-volatile OC, in addition to EC, was

  14. The Paris MEGAPOLI campaign to better quantify carbonaceous aerosol formation in a tertiary type mid-latitude Megacity

    NASA Astrophysics Data System (ADS)

    Beekmann, M.; Baltensperger, U.; Pandis, S. N.; Prevot, A. S.; Sciare, J.; Gros, V.; Borbon, A.; Drewnick, F.; Wiedensohler, A.; Baklanov, A.; Lawrence, M. G.; Megapoli Campaign Team

    2011-12-01

    Within the EU MEGAPOLI project, two intensive field campaigns have been conducted in the Greater Paris region during July 2009 and January/February 2010. The major aim was to quantify sources of primary and secondary aerosol, and the interaction with gaseous precursors, within a large agglomeration, and in its plume. Greater Paris has been chosen for such a campaign because it is a major and dense pollution source (more than 10 million inhabitants), surrounded by rural areas and relatively flat terrain. A particular focus was put on carbonaceous aerosol, for which primary emissions and secondary formation are still not well quantified. Detailed aerosol and gaseous precursor measurements have been conducted at an urban and two sub-urban sites, from five mobile platforms and from the French ATR-42 research aircraft (for plume characterization). In this paper, the campaign set-up and objectives, and an overview over the major results obtained so far will be given. First, the regional/ local share of sources of fine aerosol component are analysed from a set of AMS and PILS measurements obtained at several urban and peri-urban sites (located up or downwind of the agglomeration as a function of wind direction), and from air quality modelling. Despite the fact that the campaign took place in a Megacity with nearly 12 millions of inhabitants, the regional impact through advection from other European sources turned out to be dominant for secondary organic and inorganic aerosol, which accounts for the major fraction of total PM1 and PM2.5. In addition, different source apportionnement methods (Positive matrix factorisation of AMS and PILS measurements, C14 analysis, specific chemical tracer methods ) concomitantly made evident a major wintertime local and probably continental source of residential woodburning for organic aerosol, which also affects black carbon. Lower boundary layer heights (typically about 500 meters), made evident by lidar measurements, are another factor

  15. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  16. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; He, Jiang; Zhao, Boyi; Zhang, Lijun; Fan, Qingyun; Lü, Changwei; Dudagula; Liu, Tao; Yuan, Yinghui

    2016-09-01

    Particulate matter (PM), including PM10 and PM2.5, is one of the major impacts on air quality, visibility, climate change, earth radiation balance, and public health. Organic carbon (OC) and elemental carbon (EC) are the major components of PM. 804 samples (PM10 and PM2.5) were simultaneously collected from six urban sites covering 3 districts in Baotou, in January, April, September, and November 2014. As to a long-term study on the effects of carbonaceous aerosol, data were collected annually at Environmental Protection Agency of Baotou (EPB). The concentrations of PM10 and PM2.5, the spatial distribution and content of OC and EC, the relationship between OC and EC, and the formation of secondary organic carbon (SOC) have been investigated. The findings indicated that the concentrations of these particle matter are higher than that in US or European standards. The average concentrations of OC in PM10 and PM2.5 follow the order: January > November > April > September; and for EC in PM10 and PM2.5 follow the order: January > November > September > April. Affected by metrological factors, it was indicated that high wind speed and low relative humidity were beneficial for removal of OC and EC in January and November. Pearson correlations and cluster analysis on OC and EC concentrations in PM10 and PM2.5 with gaseous pollutants (SO2, NO2, and CO) suggested that OC shared the same emission sources with SO2 and CO from combustion, while EC's sources mainly came from vehicles exhaust and combustion which contributed to NO2 as well. The OC concentration is mainly primary in warm months, while it appears secondary in cold months in Baotou. There is a common characteristic among the cities with higher SOC in winter, wherever the coal combustion can lead to the severe pollution. This work is important for the construction of the database of OC and EC concentrations in PM10 and PM2.5 at spatial and time intervals, and it can provide scientific suggestion for similar PM

  17. Characteristics of fine particle carbonaceous aerosol at two remote sites in Central Asia

    NASA Astrophysics Data System (ADS)

    Miller-Schulze, Justin P.; Shafer, Martin M.; Schauer, James J.; Solomon, Paul A.; Lantz, Jeffrey; Artamonova, Maria; Chen, Boris; Imashev, Sanjar; Sverdlik, Leonid; Carmichael, Greg R.; Deminter, Jeff T.

    2011-12-01

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of PM to Eastern Asia, the Pacific Ocean, and the Western United States. PM is of significant interest not only because of its adverse effect on public health but also due to its more recently realized role in climate change. To investigate the sources and characteristics of PM in the region, a series of PM 2.5 and PM 10 samples were collected on an every-other-day basis at two sites (termed "Bishkek" and "Teploklyuchenka") in the Central Asian nation of the Kyrgyz Republic (also known as Kyrgyzstan) for a full year from July 2008 to July 2009. These samples were analyzed using standard methods for mass, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-insoluble organic carbon by difference (OC minus WSOC) and a variety of molecular marker chemical species to be used in a chemical mass balance (CMB) model to apportion the sources of OC. These analyses indicate that approximately 19 ± 6.4% of the PM 2.5 mass at both sites throughout the year consists of OC. The carbonaceous component of PM 2.5 is dominated by OC, with OC/Total Carbon (TC) ratios being around 0.8 in the winter to almost 0.95 in the summer months. The CMB analysis indicated that mobile sources, i.e., gasoline and diesel engine exhaust, biomass combustion, and biogenic secondary organic aerosol (SOA) formation from isoprene and α-pinene precursors in the summer months were the dominant sources of OC. A strong positive correlation was observed between non-biomass burning WSOC and the un-apportioned OC from the CMB analysis, indicating that some of this un-apportioned OC is WSOC and likely the result of SOA-forming atmospheric processes that were not estimated by the CMB analysis performed. In

  18. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    SciTech Connect

    Cahill, John F.; Suski, Kaitlyn; Seinfeld, John H.; Zaveri, Rahul A.; Prather, Kimberly A.

    2012-11-21

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influence their climate impacts through optical properties, hygroscopicity, and atmospheric lifetime. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that were internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles are internally mixed and are heavily influenced by secondary species that are most predominant in each region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the

  19. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    NASA Astrophysics Data System (ADS)

    Cahill, J. F.; Suski, K.; Seinfeld, J. H.; Zaveri, R. A.; Prather, K. A.

    2012-11-01

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more

  20. The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010

    NASA Astrophysics Data System (ADS)

    Cahill, J. F.; Suski, K.; Seinfeld, J. H.; Zaveri, R. A.; Prather, K. A.

    2012-07-01

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in Southern and Northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in Southern California, and sulfate and organic carbon in Northern California. Furthermore, mixing state varied temporally in Northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more

  1. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  2. Elucidating carbonaceous aerosol sources by the stable carbon δ13CTC ratio in size-segregated particles

    NASA Astrophysics Data System (ADS)

    Masalaite, A.; Remeikis, V.; Garbaras, A.; Dudoitis, V.; Ulevicius, V.; Ceburnis, D.

    2015-05-01

    Carbonaceous aerosol sources were investigated by measuring the stable carbon isotope ratio (δ13CTC) in size-segregated aerosol particles. The samples were collected with a micro-orifice uniform deposit impactor (MOUDI) in 11 size intervals ranging from 0.056 μm to 18 μm. The aerosol particle size distribution obtained from combined measurements with a scanning mobility particle sizer (SMPS; TSI 3936) and an aerosol particle sizer (APS; TSI 3321) is presented for comparison with MOUDI data. The analysis of δ13CTC values revealed that the total carbonaceous matter in size-segregated aerosol particles significantly varied from - 23.4 ± 0.1‰ in a coarse mode to - 30.1 ± 0.5‰ in a fine mode. A wide range of the δ13CTC values of size-segregated aerosol particles suggested various sources of aerosol particles contributing to carbonaceous particulate matter. Therefore, the source mixing equation was applied to verify the idea of mixing of two sources: continental non-fossil and fossil fuel combustion. The obtained δ13CTC value of aerosol particles originating from fossil fuel combustion was - 28.0 to - 28.1‰, while the non-fossil source δ13CTC value was in the range of - 25.0 to - 25.5‰. The two source mixing model applied to the size-segregated samples revealed that the fossil fuel combustion source contributed from 100% to 60% to the carbonaceous particulate matter in the fine mode range (Dp < 1 μm). Meanwhile, the second source, continental non-fossil, was the main contributor in the coarse fraction (Dp > 2 μm). The particle range from 0.5 to 2.0 μm was identified as a transition region where two sources almost equally contributed to carbonaceous particulate matter. The proposed mixing model offers an alternative method for determining major carbonaceous matter sources where radiocarbon analysis may lack the sensitivity (as in size-segregated samples).

  3. Day-of-week trends in carbonaceous aerosol composition in the urban atmosphere

    NASA Astrophysics Data System (ADS)

    Lough, G. C.; Schauer, J. J.; Lawson, D. R.

    The chemical composition of atmospheric particulate matter was measured at two sites near Los Angeles, California, over 3 weeks in July 2001, as part of the Gasoline/Diesel PM Split Study. Samples were composited for organic speciation analysis by day of week at each site to investigate weekly trends in chemical composition of the carbonaceous fraction of particulate matter. Observed weekly trends in elemental carbon (EC), hopanes, steranes, and polynuclear aromatic hydrocarbons (PAHs) indicate increased impacts of motor vehicle traffic on carbonaceous particulate matter concentrations on weekdays relative to weekends. Ambient average EC was approximately 4 times higher in the Friday samples than in Sunday samples at each site. Levoglucosan, a tracer species for biomass burning, and cholesterol, monopalmitin, and monostearin, tracers for food cooking operations, were all highest on Friday and lowest on Sunday. Late-week increases in aliphatic and aromatic diacids present in the particulate phase were also observed. Diacids in particulate matter have been seen to be indicators of secondary organic aerosol formation, and the day-of-week trend observed may be due to weekday increases in volatile precursor species present in the atmosphere.

  4. Experimental validation of light scattering and absorption theories of fractal-like carbonaceous aerosol agglomerates

    NASA Astrophysics Data System (ADS)

    Chakrabarty, R.; Moosmuller, H.; Arnott, W. P.; Garro, M.; Slowik, J.; Cross, E.; Han, J.; Davidovits, P.; Onasch, T.; Worsnop, D.

    2007-12-01

    The optical coefficients of size-selected carbonaceous aerosol agglomerates measured at a wavelength of 870 nm are compared with those predicted by three theories, namely Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). Carbonaceous agglomerates, produced via flame synthesis, were size-selected using two differential mobility analyzers (DMAs) in series, and their scattering and absorption coefficients were measured with nephelometry and photoacoustic spectroscopy. Scanning electron microscopy, along with image processing techniques, were used for the parameterization of the structural properties of the fractal-like agglomerates. The agglomerate structural parameters were used to evaluate the predictions of the optical coefficients based on the three light scattering and absorption theories. The results indicate that the RDG approximation agrees within 10% of the experimental results and the exact electromagnetic calculations of the IEFS theory. The experimental scattering coefficient is over predicted by the volume-equivalent Mie theory by a factor of ~3.2. Also, the RDG approximation-predicted optical coefficients showed pronounced sensitivity to changes in monomer mean diameter, the count median diameter of the agglomerates, and the geometric standard deviation of the agglomerate number size distribution.

  5. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle

  6. Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city

    NASA Astrophysics Data System (ADS)

    Genga, A.; Ielpo, P.; Siciliano, T.; Siciliano, M.

    2017-01-01

    Mass concentrations of PM2.5, mineral dust, organic carbon (OC) and elemental carbon (EC), water-soluble organic carbon (WSOC), sea salts and anthropogenic metals have been studied in a city-port of south Italy (Brindisi). This city is characterized by different emission sources (ship, vehicular traffic, biomass burning and industrial emissions) and it is an important port and industrial site of the Adriatic sea. Based on diagnostic ratios of carbonaceous species we assess the presence of biomass burning emissions (BBE), fossil fuel emissions (FFE) and ship emission (SE). Our proposed conversion factors from OC to OM are higher than those reported in the literature for urban site: the reason of this could be due to the existence of aged combustion aerosols during the sampling campaign (WSOC/OC = 0.6 ± 0.3).

  7. Carbonaceous aerosols emitted from light-duty vehicles operating on gasoline and ethanol fuel blends.

    PubMed

    Hays, Michael D; Preston, William; George, Barbara J; Schmid, Judy; Baldauf, Richard; Snow, Richard; Robinson, James R; Long, Thomas; Faircloth, James

    2013-12-17

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the three-phase LA-92 unified driving cycle (UDC). Effects of LDV operating conditions and ambient temperature (-7 and 24 °C) on particle-phase semivolatile organic compounds (SVOCs) and organic and elemental carbon (OC and EC) emissions were investigated. SVOC concentrations and OC and EC fractions were determined with thermal extraction-gas chromatography-mass spectrometry (TE-GC-MS) and thermal-optical analysis (TOA), respectively. LDV aerosol emissions were predominantly carbonaceous, and EC/PM (w/w) decreased linearly with increasing fuel ethanol content. TE-GC-MS analysis accounted for up to 4% of the fine particle (PM2.5) mass, showing the UDC phase-integrated sum of identified SVOC emissions ranging from 0.703 μg km(-1) to 18.8 μg km(-1). Generally, higher SVOC emissions were associated with low temperature (-7 °C) and engine ignition; mixed regression models suggest these emissions rate differences are significant. Use of e85 significantly reduced the emissions of lower molecular weight PAH. However, a reduction in higher molecular weight PAH entities in PM was not observed. Individual SVOC emissions from the Tier 2 LDVs and fuel technologies tested are substantially lower and distributed differently than those values populating the United States emissions inventories currently. Hence, this study is likely to influence future apportionment, climate, and air quality model predictions that rely on source combustion measurements of SVOCs in PM.

  8. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    To better understand the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations in China, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal and spatial distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher OC/EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, smaller SOC/OC is found for cold seasons, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation in winter. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of

  9. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    EPA Science Inventory

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  10. Maritime Aerosol Network as a component of Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; Quinn, P. K.; Sciare, J.; Kinne, S.; Harvey, M.; Smyth, T. J.; Piketh, S.; Zielinski, T.; Proshutinsky, A.; Goes, J. I.; Nelson, N. B.; Larouche, P.; Radionov, V. F.; Goloub, P.; Krishna Moorthy, K.; Matarrese, R.; Robertson, E. J.; Jourdin, F.

    2009-03-01

    The paper presents the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). MAN deploys Microtops handheld Sun photometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. A short summary of the existing data, collected on board ships of opportunity during the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is presented. Globally averaged oceanic aerosol optical depth (derived from island-based AERONET measurements) at 500 nm is ˜0.11 and Angstrom parameter (computed within spectral range 440-870 nm) is calculated to be ˜0.6. First results from the cruises contributing to the Maritime Aerosol Network are shown. MAN ship-based aerosol optical depth compares well to simultaneous island and near-coastal AERONET site AOD.

  11. Long-term Observations of Carbonaceous Aerosols (including C isotope) at Alert: Inferring Emission Sources of Black Carbon Transported to the Arctic

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Sharma, Sangeeta; Zhang, Wendy; Brook, Jeff; Leaitch, Richard; He, Kebin; Duan, Fengkui; Yang, Fumo

    2015-04-01

    Black carbon is a major component of carbonaceous aerosols and formed by incomplete combustion of fossil fuels and biomass burning (including biofuels and open fires). It plays unique roles in Earth's climate system through both direct and indirect effects. Identifying and attributing its emission sources, tracking source changes with time and relating them to radiative forcing are important for understanding the impacts of BC on climate at the global and regional levels, as well as necessary for the strategies targeted to reduce BC emission. However, there are many challenges and uncertainties regarding those aspects, particularly for BC aerosols transported to the Arctic region. To address the concerns of BC in the Arctic, carbonaceous aerosol observations, including elemental carbon (EC) content as BC mass, C isotopes as a source tracer, and light absorption coefficient as BC's optical property, have been conducted at Alert, a WMO GAW station (82° 27'N, 62° 31'W) since the early 2000s. In this presentation, nearly a decade of measurements will be presented, with a focus on the isotope results in EC (corresponding data from Beijing will also be shown for the purpose of comparison). Seasonal and inter-annual variations in δ13C (EC) have been characterized, inferring emission sources and suggesting source changes over last 5-6 years. Based on the C isotope results, the possible emission sources of BC contributed to the Arctic will be also discussed.

  12. Urban impacts on regional carbonaceous aerosols: case study in central Texas.

    PubMed

    Barrett, Tate E; Sheesley, Rebecca J

    2014-08-01

    Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011-August 2012). BT analysis indicates consistent north-south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (< 2.5 microm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 microg m(-3) and OC = 3.0 microg m(-3)) and elevated EC during the winter (0.22 microg m(-3)). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g(-1) and BRC MAE365 = 0.15 m2 g(-1)). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States. Implications: Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to

  13. Composition and sources of carbonaceous aerosols at three contrasting sites in Hong Kong

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Hagler, Gayle S. W.; Ke, Lin; Bergin, Michael H.; Wang, Fu; Louie, Peter K. K.; Salmon, Lynn; Sin, Della W. M.; Yu, Jian Zhen; Schauer, James J.

    2006-10-01

    A significant fraction of the fine particulate matter in Hong Kong is made up of organic carbon. In order to quantitatively assess the contributions of various sources to carbonaceous aerosol in Hong Kong, a chemical mass balance (CMB) receptor model in combination with organic tracers was employed. Organic tracers including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), steranes, hopanes, resin acids, cholesterol, levoglucosan, and picene in PM2.5 collected from three air monitoring sites located at roadside, urban, and rural areas in Hong Kong are quantified using gas chromatography-mass spectrometry (GC/MS) in the present study. Analyses of some overlapping species from two separate laboratories will be compared for the first time. Spatial and seasonal source contributions to organic carbon (OC) in PM2.5 from up to nine air pollution sources are assessed, including diesel engine exhaust, gasoline engine exhaust, meat cooking, cigarette smoke, biomass burning, road dust, vegetative detritus, coal combustion, and natural gas combustion. Diesel engine exhaust dominated fine organic carbon in Hong Kong (57 ± 13% at urban sites and 25 ± 2% at the rural site). Other sources that play an important role are meat cooking and biomass burning, which can account for as much as 14% of fine organic carbon. The primary sources identified by this technique explained 49%, 79%, and 94% of the measured fine organic carbon mass concentration at the rural, the urban, and the roadside sites, respectively. The unexplained fine OC is likely due to secondary organic aerosol formation.

  14. Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements

    NASA Astrophysics Data System (ADS)

    Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike

    2016-04-01

    The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in

  15. A general circulation model study of the global carbonaceous aerosol distribution

    NASA Astrophysics Data System (ADS)

    Cooke, W. F.; Ramaswamy, V.; Kasibhatla, P.

    2002-08-01

    Atmospheric distributions of carbonaceous aerosols are simulated using the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model (GCM) (latitude-longitude resolution of ~3° × 3.6°). A number of systematic analyses are conducted to investigate the seasonal and interannual variability of the concentrations at specific locations and to investigate the sensitivity of the distributions to various physical parameters. Comparisons are made with several observational data sets. At four specific sites (Mace Head, Mauna Loa, Sable Island, and Bondville) the monthly mean measurements of surface concentrations of black carbon made over several years reveal that the model simulation registers successes as well as failures. Comparisons are also made with averages of measurements made over varying time periods, segregated by geography and rural/remote locations. Generally, the mean measured remote surface concentrations exceed those simulated. Notwithstanding the large variability in measurements and model simulations, the simulations of both black and organic carbon tend to be within about a factor of 2 at a majority of the sites. There are major challenges in conducting comparisons with measurements due to inadequate sampling at some sites, the generally short length of the observational record, and different methods used for estimating the black and organic carbon amounts. The interannual variability in the model and in the few such measurements available points to the need for doing multiyear modeling and to the necessity of comparing with long-term measurements. There are very few altitude profile measurements; notwithstanding the large uncertainties, the present comparisons suggest an overestimation by the model in the free troposphere. The global column burdens of black and organic carbon in the present standard model integration are lower than in previous studies and thus could be regarded as approximately bracketing a lower end of the simulated

  16. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis

    NASA Astrophysics Data System (ADS)

    Deboudt, Karine; Flament, Pascal; ChoëL, Marie; Gloter, Alexandre; Sobanska, Sophie; Colliex, Christian

    2010-12-01

    The mixing state of aerosols collected at M'Bour, Senegal, during the Special Observing Period conducted in January-February 2006 (SOP-0) of the African Monsoon Multidisciplinary Analysis project (AMMA), was studied by individual particle analysis. The sampling location on the Atlantic coast is particularly adapted for studying the mixing state of tropospheric aerosols since it is (1) located on the path of Saharan dust plumes transported westward over the northern tropical Atlantic, (2) influenced by biomass burning events particularly frequent from December to March, and (3) strongly influenced by anthropogenic emissions from polluted African cities. Particle size, morphology, and chemical composition were determined for 12,672 particles using scanning electron microscopy (automated SEM-EDX). Complementary analyses were performed using transmission electron microscopy combined with electron energy loss spectrometry (TEM-EELS) and Raman microspectrometry. Mineral dust and carbonaceous and marine compounds were predominantly found externally mixed, i.e., not present together in the same particles. Binary internally mixed particles, i.e., dust/carbonaceous, carbonaceous/marine, and dust/marine mixtures, accounted for a significant fraction of analyzed particles (from 10.5% to 46.5%). Western Sahara was identified as the main source of mineral dust. Two major types of carbonaceous particles were identified: "tar balls" probably coming from biomass burning emissions and soot from anthropogenic emissions. Regarding binary internally mixed particles, marine and carbonaceous compounds generally formed a coating on mineral dust particles. The carbonaceous coating observed at the particle scale on African dust was evidenced by the combined use of elemental and molecular microanalysis techniques, with the identification of an amorphous rather than crystallized carbon structure.

  17. Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley

  18. Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)

    SciTech Connect

    Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin

  19. Chemical characteristics of carbonaceous aerosols during dust storms over Xi'an in China

    NASA Astrophysics Data System (ADS)

    Li, Xuxiang; Cao, Junji; Chow, Judith; Han, Yongming; Lee, Shuncheng; Watson, John

    2008-09-01

    Characterization of carbonaceous aerosols including CC (carbonate carbon), OC (organic carbon), and EC (elemental carbon) were investigated at Xi’an, China, near Asian dust source regions in spring 2002. OC varied between 8.2 and 63.7 µg m-3, while EC ranged between 2.4 and 17.2 µ m-3 during the observation period. OC variations followed a similar pattern to EC and the correlation coefficient between OC and EC is 0.89 ( n=31). The average percentage of total carbon (TC, sum of CC, OC, and EC) in PM2.5 during dust storm (DS) events was 13.6%, which is lower than that during non-dust storm (NDS) periods (22.7%). CC, OC, and EC accounted for 12.9%, 70.7%, and 16.4% of TC during DS events, respectively. The average ratio of OC/EC was 5.0 in DS events and 3.3 in NDS periods. The OC-EC correlation ( R 2=0.76, n=6) was good in DS events, while it was stronger ( R 2=0.90, n=25) in NDS periods. The percentage of water-soluble OC (WSOC) in TC accounted for 15.7%, and varied between 13.3% and 22.3% during DS events. The distribution of eight carbon fractions indicated that local emissions such as motor vehicle exhaust were the dominant contributors to carbonaceous particles. During DS events, soil dust dominated the chemical composition, contributing 69% to the PM2.5 mass, followed by organic matter (12.8%), sulfate (4%), EC (2.2%), and chloride (1.6%). Consequently, CC was mainly entrained by Asian dust. However, even in the atmosphere near Asian dust source regions, OC and EC in atmospheric dust were controlled by local emission rather than the transport of Asian dust.

  20. Characteristics of carbonaceous aerosols at a pair of suburban and downtown sites in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhang, J.; Zhao, Y.

    2014-12-01

    Carbonaceous species in PM2.5 were measured in three seasons (except winter) in downtown and around a year in suburban in Nanjing. In particular, the OC and EC concentrations were continuously measured with 1-h interval at both sites. The mean concentrations of PM2.5, OC, EC were 85.9 μg/m3, 10.4 μg/m3, 4.2 μg/m3 and 63.4 μg/m3, 8.1 μg/m3, 5.3μg/m3 for downtown and suburban respectively. At the suburban site, compared to the lowest average concentration in spring, the relatively higher concentration of carbonaceous aerosol in summer was caused by biomass-burning activities. Significant increasing peaks of OC (up to 122.9 ug/m3) and EC (up to 35.8 ug/m3) in suburban were recorded in the June 10th night, and it is indicated using back trajectory that the air mass came through nearby agriculture areas. On the other hand, the OC and EC concentrations during the 2nd AYG (Asian Youth Games, Aug 16th - 24th in 2013) compared to that in rest days in August reduced by 21% and 10%, respectively, attributing to the effective control measures on reduction of industrial point sources, temporary control of motor vehicle and fugitive dusts. Rations of OC/EC in suburban were much lower than that in downtown. This might be due to the fact that the sampling point in suburban is quite close (in 400 meters) to a main highway. Both OC and EC concentrations in suburban were higher in nighttime than daytime, except OC in summer, indicating the existence of strong SOC and supported by high OC/EC and O3 at noon. The annual average SOC estimated by EC-tracer methods occupied 34.5% and 36.7% of the total OC for the downtown and suburban areas, respectively. OC/EC correlations in suburban were much weaker than those from downtown areas, which shows suburban areas is much more affected by long-range transport of pollution and/or complex sources including domestic coal combustion, biomass burning, industrial and transportation, especially in three other seasons except winter, which is

  1. Characteristics and sources of PM2.5-bound carbonaceous aerosols in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Hong, Youwei; Hong, Zhenyu; Chen, Jinsheng

    2016-04-01

    An investigation of atmospheric fine particle (PM2.5) from Shanghai, Nanjing and Ningbo in the Yangtze River Delta was conducted during Nov 2014 and Aug 2015. Organic species, including 16 polycyclic aromatic hydrocarbons (PAHs), 10 nitro-PAHs and C8 to C40 n-alkanes, and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate carbonaceous aerosols' spatiotemporal variations and identify their potential sources. The averaged concentrations of total PAHs and n-alkanes in Shanghai, Nanjing and Ningbo were 16.5 and 101.1 ng m-3, 21.1 and 128.2 ng m-3, 33.0 and 241.1 ng m-3, respectively, while the mean concentrations of 10 nitro-PAHs was 2.02, 2.37 and 2.70 ng m-3. Seasonal variations of organic compounds were listed in the following order: winter > autumn > spring > summer. N-alkanes detected in PM2.5 were characterized by odd carbon number preference, with a unimodal peak shape. The maximum carbon number (Cmax) was C29, followed by C27 and C31. According to diagnostic ratios and principle components analysis (PCA) methods, vehicle emissions and coal burning were the dominant sources of PAHs. The ratios of 2-nitrofluoranthene to 1-nitropyrene were larger than 5, indicating that atmospheric transformation from PAHs was a major source of nitro-PAHs. Meanwhile, primary emissions tracers i.e., 1-nitropyrene (the mean concentration of 0.024 ng m-3 in all cities) was observed, suggesting primary contribution of motor vehicle exhaust to the fine particulate organic aerosols. In addition, isotope abundances (δ13COC=-24.6±0.8‰ and δ13CEC = -23.9±1.4‰) and EC/TC ratio (0.2 < EC/TC < 0.5) in Shanghai demonstrated that fossil fuels (e.g. motor vehicles) were the most important source for carbonaceous PM2.5. We further focus on radiocarbon (14C) analysis and gas/particle partitioning of organic tracers on different size particles. Keywords: organic tracers; stable carbon isotopes; spatiotemporal variations; sources apportionment; Yangtze River Delta

  2. Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA

    EPA Science Inventory

    Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). Presented in this study are organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmon. EC exhibited signifi...

  3. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Andersson, August; Sarin, M. M.; Sheesley, R. J.; Kirillova, E.; Rengarajan, R.; Sudheer, A. K.; Ram, K.; Gustafsson, Örjan

    2016-05-01

    Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (δ13C and Δ14C) to characterize CA sources at a semiurban site (Hisar: 29.2°N, 75.2°E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4°N, 79.5°E, 1950 m above sea level) in northern India during winter. The Δ14C of total aerosol organic carbon (TOC) varied from -178‰ to -63‰ at Hisar and from -198‰ to -1‰ at Manora Peak. The absence of significant differences in the 14C-based fraction biomass of TOC between Hisar (0.81 ± 0.03) and Manora Peak (0.82 ± 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with δ13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.

  4. Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Xie, Zhouqing; Blum, Joel D.; Utsunomiya, Satoshi; Ewing, R. C.; Wang, Xinming; Sun, Liguang

    2007-01-01

    The chemistry, morphology, and microscale to nanoscale structures of carbonaceous aerosols from the marine boundary layer of the Arctic Ocean were investigated by a variety of electron microscopy techniques, including scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The relative levels of particles of black carbon (BC) were determined by electron paramagnetic resonance (EPR). Polycyclic aromatic hydrocarbons (PAHs) absorbed onto BC particles were extracted by the soxhlet extraction method and analyzed by gas chromatography mass spectrometry (GC-MS). The results show that the dominant particles of BC are char particles with spherical shape, porous structure, and high sulfur content, which are typically derived from residual oil combustion on ships. The spatial distribution of BC from ship emissions was found to be concentrated around the periphery of the Arctic Ocean, suggesting relatively intensive contamination by ships in the Russian and Canadian Arctic. The abundance of PAHs on BC particles ranges from 142 to 2672 pg/m3 (mean = 702 pg/m3), which is significantly higher than values previously measured by land-based observation. Thus we find that ship emissions are a potentially important contributor to the PAH levels at some locations in the Arctic Ocean during the summer.

  5. The rural carbonaceous aerosols in coarse, fine, and ultrafine particles during haze pollution in northwestern China.

    PubMed

    Zhu, Chong-Shu; Cao, Jun-Ji; Tsai, Chuen-Jinn; Shen, Zhen-Xing; Liu, Sui-Xin; Huang, Ru-Jin; Zhang, Ning-ning; Wang, Ping

    2016-03-01

    The carbonaceous aerosol concentrations in coarse particle (PM10: Dp ≤ 10 μm, particulate matter with an aerodynamic diameter less than 10 μm), fine particle (PM2.5: Dp ≤ 2.5 μm), and ultrafine particle (PM0.133: Dp ≤ 0.133 μm) carbon fractions in a rural area were investigated during haze events in northwestern China. The results indicated that PM2.5 contributed a large fraction in PM10. OC (organic carbon) accounted for 33, 41, and 62 % of PM10, PM2.5, and PM0.133, and those were 2, 2.4, and 0.4 % for EC (elemental carbon) in a rural area, respectively. OC3 was more abundant than other organic carbon fractions in three PMs, and char dominated EC in PM10 and PM2.5 while soot dominated EC in PM0.133. The present study inferred that K(+), OP, and OC3 are good biomass burning tracers for rural PM10 and PM2.5, but not for PM0.133 during haze pollution. Our results suggest that biomass burning is likely to be an important contributor to rural PMs in northwestern China. It is necessary to establish biomass burning control policies for the mitigation of severe haze pollution in a rural area.

  6. Characteristics of PM2.5 Carbonaceous Aerosol in Urban New York State

    NASA Astrophysics Data System (ADS)

    Khwaja, H. A.; Dutkiewicz, V.; Briggs, R.; Siddique, A.; Regan, J.

    2008-12-01

    In order to investigate the characteristics of carbonaceous fine aerosols, PM2.5 and size-segregated particulate samples (< 2.5 um, 2.5 - 4.2 um, 4.2 - 10 um, and 10 um) were collected during the summer in two urban sites of New York State viz., Botanical Garden (BTG), New York City and Empire State Plaza (ESP), Albany. Gas phase organic compounds were sampled with polyurethane foam (PUF) plugs. Particulate samples were acquired on quartz fiber filters using a high-volume air sampler (Hi-Vol) attached with a slotted impactor. Filters were sonicated in dichloromethane:methanol (9:1); extracts concentrated. A suite of more than 200 individual organic compounds was identified in the PM2.5 samples. Molecular markers, homologous compound series, and non-polar and polar organic compounds were detected at ng/m3 ambient concentrations using gas chromatography/mass spectrometry (GC/MS). Measurements of the organic carbon (OC) and elemental carbon (EC) were also made. Organic compounds detected in the size-segregated samples were grouped into different classes including phthalates and adipates, n-alkanes, alkanoic acids, cyclic siloxanes, waxes, benzoates, polyethylene glycols, squalene, and 4-nitro-butylated phenol. Results indicated that these organic species were predominantly associated in the fine particle mode (< 2.5 um). Gaseous organic compounds trapped in the PUF appeared rich in phenol, 4-nitro-2,6-ditertbutylphenol, pentachlorophenol, benzoic acid, alkanoic acids (C6 - C16 ), PAHs (naphthalene to pyrene), and phthalates. The major part of the extractable and elutable organic carbon was found to correspond to a complex mixture of phthalates and adipates, benzoate esters, n-alkanes, methyl silicates, phosphate esters, aldehydes and ketones, alcohols, alkyl amines, nitrosamines, formamides, amides, morpholines, carboxylic acids, methyl and isopropyl esters, dicarboxylic acids, waxes, lactones, hopanes, ionol 2, and PAHs. The most abundant classes of compounds are

  7. Anthropogenic contributions to the carbonaceous content of aerosols over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Rau, John A.; Khalil, M. A. K.

    model cannot distinguish this source from emissions from heating and cooking with wood. Since anthropogenic emissions are mainly combustion emissions which usually contain a large carbon component, carbon data is essential to CMB modeling. The relatively good CMB results obtained in this study suggest that it might be useful to develop source profiles for major emission sources in those countries which contribute most directly to oceanic aerosols. Perhaps characteristic national or regional source profiles could be developed.

  8. Quantification of long-term primary and secondary source contributions to carbonaceous aerosols.

    PubMed

    Shi, Guoliang; Peng, Xing; Liu, Jiayuan; Tian, Yingze; Song, Danlin; Yu, Haofei; Feng, Yinchang; Russell, Armistead G

    2016-12-01

    Ambient fine particulate matter samples were collected during 2009-2013 in Chengdu, a megacity in western China, and the samples were speciated into organic carbon (OC), elemental carbon (EC), char-EC, soot-EC, eight carbon fractions, inorganic elements and water-soluble ions. Char-EC and soot-EC contribute to the better understanding of the sources and properties of EC. The highest levels of most carbon fractions were found in winter and May. The higher OC/EC ratio in winter suggests higher SOC fraction in winter, and higher char-EC/soot-EC ratio in May are the direct consequences of straw burning activities. Source contributions to PM2.5 and carbonaceous aerosols were quantified using the ME2 receptor model. Major contributors to OC in PM2.5 are vehicular exhaust (36.5%), coal combustion & straw burning (35.2%) and SOC (27.0%). The first two categories also contributed 51.4% and 49.3% of char-EC in PM2.5. Vehicular exhaust dominated soot-EC, contributing 63.0% to soot-EC in PM2.5. SOC contributed to high OC levels in winter due to the increase of precursor emissions and stable meteorological conditions. Coal combustion & straw burning show higher contributions to OC, char-EC and soot-EC in winter months and in May, which can be explained, in part, by increased coal consumption in winter and straw burning activities in May. Vehicular exhaust contributions are not strongly associated with monthly nor weekday-weekend patterns, resulting in that soot-EC vary insignificantly by month nor by weekday.

  9. Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City during may 2013

    NASA Astrophysics Data System (ADS)

    Tzompa Sosa, Z. A.; Sullivan, A.; Kreidenweis, S. M.

    2014-12-01

    The Mexico City Metropolitan Area (MCMA) is one of the largest megacities in the world with a population of 20 million people. Emissions transported from outside the basin, such as wildfires and agricultural burning, represent a potentially large contribution to air quality degradation. This study analyzed PM10 filter samples from six different stations located across the MCMA from May, 2013, which represented the month with the most reported fire counts in the region between 2002-2013. Two meteorological regimes were established considering the number of satellite derived fire counts, changes in predominant wind direction, ambient concentrations of CO, PM10 and PM2.5, and precipitation patterns inside MCMA. The filter samples were analyzed for biomass burning tracers including levoglucosan (LEV), water-soluble potassium (WSK+); and water-soluble organic carbon (WSOC). Results of these analyses show that LEV concentrations correlated positively with ambient concentrations of PM2.5 and PM10 (R2=0.61 and R2=0.46, respectively). Strong correlations were also found between WSOC and LEV (R2=0.94) and between WSK+ and LEV (R2=0.75). An average LEV/WSOC ratio of 0.0147 was estimated for Regime 1 and 0.0062 for Regime 2. Our LEV concentrations and LEV/WSOC ratios are consistent with results found during the MILAGRO campaign (March, 2006). To the best of our knowledge, only total potassium concentrations have been measured in aerosol samples from MCMA. Therefore, this is the first study in MCMA to measure ambient concentrations of WSK+. Analysis of gravimetric mass concentrations showed that PM2.5 accounted for 60% of the PM10 mass concentration with an estimated PM10/PM2.5 ratio of 1.68. Estimates from our laboratory filter sample characterization indicated that we measured 37% of the total PM10 mass concentration. The missing mass is most likely crustal material (soil or dust) and carbonaceous aerosols that were not segregated into WSOC fraction. Assuming that LEV is

  10. 14C-based Source Apportionment of Carbonaceous Aerosols in Switzerland for 2008 - 2012

    NASA Astrophysics Data System (ADS)

    Zotter, Peter; Ciobanu, Gabriela; Zhang, Yanlin; El-Haddad, Imad; Szidat, Sönke; Wacker, Lukas; Baltensperger, Urs; Prévôt, André

    2013-04-01

    Carbonaceous particles (total carbon, TC) are a major fraction of the fine aerosol and affect climate and human health. TC is classified into the sub-fractions elemental carbon (EC) and organic carbon (OC). EC originates only from fossil fuel combustion and biomass burning. OC can be emitted directly as primary organic aerosol from biogenic emissions, wood burning and fossil fuel combustion or can be formed in-situ in the atmosphere (secondary organic aerosol) (Szidat et al. 2006). Radiocarbon (14C) analysis is a direct and quantitative tool for distinguishing fossil and non-fossil sources, since 14C in fossil fuels is completely depleted whereas other sources have a contemporary 14C level. This study presents source apportionment results from the winter season over a time period of 5 years (2007/2008-2011/2012) using 14C measurements on aerosol filters collected simultaneously at 16 air quality monitoring stations across Switzerland. For every year 5 winter smog episode days were selected from which filters from all stations were analyzed. To resolve a good spatial variability 11 stations north and 5 stations south of the Alps were selected. This 14C data set is unique around the world concerning the number of analyzed filters and the duration. The filter sampling was conducted using high volume samplers with PM10 inlets and a time resolution of 24h. Separation of OC and EC was carried out using the THEODORE system (Szidat et al. 2004) and a Sunset EC/OC analyzer (Zhang et al. 2012), respectively. The resulting CO2 was cryo-trapped and sealed in glass ampoules for 14C measurements, performed with the Mini Carbon Dating System MICADAS (Ruff et al. 2007) at the Swiss Federal Institute of Technology (ETH) Zürich. The results for non-fossil (NF) OC (5 year average) are 81% ± 10% for north and 85% ± 8% for south of the Alps. ECNF values range from 31% to 53% north and from 36% to 66% south of the Alps. Both, the OCNF and ECNF show higher values south of the Alps

  11. Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Tai in the North China Plain during MTX2006

    NASA Astrophysics Data System (ADS)

    Boreddy, Suresh K. R.; Kawamura, Kimitaka; Okuzawa, Kazuhiro; Kanaya, Yugo; Wang, Zifa

    2017-04-01

    To better understand the impact of agricultural waste burning on the air quality of free troposphere over the North China Plain (NCP), we collected total suspended particles (TSP) at the summit of Mt. Tai, located in the NCP using a high volume air sampler during 29 May to 28 June 2006, when the field burning of agricultural residue was intense. Temporal variations of all measured species showed that their concentration increases from late May to mid June (major BB period), peaking during 12-14 June, and then significantly decreased towards late June (minor BB period). We noticed that a significant reduction in the concentrations of carbonaceous aerosols during the period of 8-11 June, when the wind direction shifted from southerly to northerly. We found that concentrations of carbonaceous aerosols and some major ions showed several times higher during major BB period than those of minor BB period. We also found that nighttime concentrations are higher than daytime during major BB period, suggesting that a long-range atmospheric transport of biomass burning plumes in the free troposphere, which arrived at the summit of Mt. Tai. In contrast, daytime concentrations are higher than nighttime during minor BB period. We found higher concentrations of secondary organic carbon (SOC) during major BB period, suggesting that formation of secondary organic aerosols through aqueous phase chemistry under high NOx conditions during a long-range atmospheric transport. nss-K+ showed about four times higher concentrations during major BB than those of minor BB. Concentrations of nss-Ca2+ are higher in nighttime during major BB period, implying that a significant long-range atmospheric transport of mineral dust over the sampling site. These results are further supported by the positive matrix factorization (PMF) analysis, which showed that biomass burning was a major source for the carbonaceous aerosols followed by mineral dust sources over the summit of Mt. Tai.

  12. Enhanced UV Absorption in Carbonaceous Aerosols during MILAGRO and Identification of Potential Organic Contributors.

    NASA Astrophysics Data System (ADS)

    Mangu, A.; Kelley, K. L.; Marchany-Rivera, A.; Kilaparty, S.; Gunawan, G.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) during the month of March, 2006 by using a 7- channel aethalometer (Thermo-Anderson). These measurements, obtained at 370, 470, 520, 590, 660, 880, and 950 nm at a 5 minute time resolution, showed an enhanced absorption in the UV over that expected from carbon soot alone. Samples of fine atmospheric aerosols (less than 0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. The samples were collected on quartz fiber filters with high volume impactor samplers. The samples have been characterized for total carbon content (stable isotope ratio mass spectroscopy) and natural radionuclide tracers (210Pb, 210Po, 210Bi, 7Be, 13C, 14C, 40K, 15N). Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV-visible spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples (1). The continuous spectra also show an enhanced UV absorption over that expected from carbon soot and the general profiles are quite similar to those observed for humic and fulvic acids found as colloidal materials in surface and groundwaters (2), indicating the presence of humic-like substances (HULIS) in the fine aerosols. The spectra also show evidence of narrow band absorbers below 400 nm typical of polycyclic aromatics (PAH) and nitrated aromatic compounds. Spectra were also obtained on NIST standard diesel soot (SRM 2975), NIST standard air particulate matter (SRM 8785

  13. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    NASA Astrophysics Data System (ADS)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; de la Campa Sánchez, A.; Fernández-Camacho, R.; Rodríguez, S.; Pío, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; Dos Santos García, S.; Patier Fernández, R.

    2013-03-01

    We interpret here the variability of levels of carbonaceous aerosols based on a 12-yr database from 78 monitoring stations across Spain especially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC), with very little elemental carbon (EC) 0.1 μg m-3; OC/EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC/EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning. Correlations between yearly averaged OC/EC and EC concentrations adjust very well to a potential equation (OC/EC = 3.37 EC-0.67 R2 = 0.94). A similar equation is obtained when including average concentrations obtained at other European sites (y = 3.61x-0.5, R2 = 0.78). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance to road, traffic volume and density, mixing layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend of NO2/OC+EC ratios, because these

  14. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    NASA Astrophysics Data System (ADS)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; Sánchez de la Campa, A.; Fernández-Camacho, R.; Rodríguez, S.; Pio, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández Patier, R.

    2013-07-01

    We interpret here the variability of levels of carbonaceous aerosols based on a 12 yr database from 78 monitoring stations across Spain specially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC) with very little elemental carbon (EC), around 0.1 μg m-3; OC / EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC / EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning and of biogenic emissions. Correlations between yearly averaged OC / EC and EC concentrations adjust very well to a potential equation (OC = 3.37 EC0.326, R2 = 0.8). A similar equation is obtained when including average concentrations obtained at other European sites (OC = 3.60EC0.491, R2 = 0.7). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance from road, traffic volume and density, mixing-layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend for

  15. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    NASA Astrophysics Data System (ADS)

    Worton, D. R.; Goldstein, A. H.; Farmer, D. K.; Docherty, K. S.; Jimenez, J. L.; Gilman, J. B.; Kuster, W. C.; de Gouw, J.; Williams, B. J.; Kreisberg, N. M.; Hering, S. V.; Bench, G.; McKay, M.; Kristensen, K.; Glasius, M.; Surratt, J. D.; Seinfeld, J. H.

    2011-10-01

    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August-10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August-12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September-10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The

  16. Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Elbert, W.; Maenhaut, W.; Haywood, J.; Osborne, S.; Andreae, M. O.

    2003-07-01

    We collected filter samples of the atmospheric aerosol during the Southern African Regional Science Initiative (SAFARI 2000) experiment onboard the UK Met Office C-130 aircraft. The main operational area was the Atlantic Ocean offshore of Namibia and Angola, where biomass-smoke haze at least 1-2 days old was widespread. The size-fractionated aerosol samples were analyzed for the major inorganic ions, carbonaceous material (elemental and organic carbon), and elements with atomic numbers between 11 (Na) and 82 (Pb). The regional haze aerosol was composed mostly of carbonaceous aerosols (on the average, 81% of the submicron mass), with secondary inorganic aerosols (sulfate, ammonium, and nitrate) accounting for another 14%. K+ and Cl-, typical pyrogenic species, constituted only 2% of the mass. The aerosol chemical data were used to estimate mass emission fluxes for various aerosol components. For African savanna/grassland burning, the estimated emission flux of carbonaceous particles (particulate organic matter plus elemental carbon) is 14 ± 1 Tg yr-1, and that of the nitrogen species (nitrate and ammonium) is 2 ± 2 Tg yr-1. For the flight segments in regional haze, the mean particle scattering coefficient at 550 nm was σs = 101 ± 56 Mm-1 and the mean particle absorption coefficient σa at 565 nm averaged 8 ± 5 Mm-1 (mean single scattering albedo of 0.93 ± 0.06 at 550 nm). The dry mass scattering efficiency αs, calculated from the linear regression of the mean scattering versus the estimated submicron mass, is estimated to be between 4.2 ± and 4.6 ± 0.6 m2 g-1, depending on the assumptions made in calculating the aerosol mass. The dependence of the scattering enhancement ratios Δσs/ΔCO on the distance from the burning regions suggests that the evolution of particle size with time influences the light scattering efficiency. Fresh smoke was sampled during a dedicated flight in the proximity and within the plume of an active biomass burning fire. Here the

  17. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  18. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.

    2011-07-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly fractions for major sectors and gridded emissions at a resolution of 0.1° × 0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual

  19. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  20. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, Christos; Megaritis, Athanasios G.; Skyllakou, Ksakousti; Charalampidis, Panagiotis E.; Denier van der Gon, Hugo A. C.; Crippa, Monica; Prévôt, André S. H.; Fachinger, Friederike; Wiedensohler, Alfred; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-03-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 × 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 µg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 µg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  1. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Megaritis, A. G.; Skyllakou, K.; Charalampidis, P. E.; Denier van der Gon, H. A. C.; Crippa, M.; Prévôt, A. S. H.; Freutel, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S. N.

    2015-09-01

    We use a three dimensional regional chemical transport model (PMCAMx) with high grid resolution and high resolution emissions (4 km × 4 km) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (Megacities: Emissions, urban, regional, and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 μg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 μg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 μg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  2. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  3. Emission sources and atmospheric processing of carbonaceous aerosols in India and China: Insights from dual carbon isotope techniques

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Kirillova, E. N.; Bosch, C.; Suresh, T.; Lee, M.; Du, K.; Sheesley, R. J.; Budhavant, K.; Gustafsson, O. M.

    2013-12-01

    The large emissions of carbonaceous aerosols, e.g., black carbon (BC), in India and China have detrimental effects on both human health and the regional climate. However, mitigation efforts as well as accurate modeling of these effects are currently hampered by large uncertainties regarding the contributions from different emission sources, including both primary and secondary processes. Here, we present dual carbon isotope constraints on emissions sources and atmospheric processing from multiple sites capturing the outflow from India and China. Radiocarbon (14C) studies of elemental carbon (EC) - a tracer for BC - show larger relative fossil contributions than expected from bottom-up emission inventories, for both India (49+-5) and China (80 +-6%). Similarly to EC, radiocarbon constraints of water soluble organic carbon (WSOC) shows substantially larger relative fossil contributions in Chinese outflow (30-50%) as compared with India, but also compared to Europe and USA (10-20%). In contrast to the radiocarbon data, stable carbon (d13C) analysis of WSOC shows substantial variability for different sites capturing the Indian outflow. Strong enrichment of heavy isotopes in WSOC is coupled to expected transport time from sources, indicating the influence of photochemical aging during transport. Such trends in the d13C signature are not observed for the EC fraction. Taken together this work show that carbon isotope techniques provide firm constraints on emission sources of different fractions of carbonaceous aerosols, and may also offer insights into atmospheric processing of these constituents during air mass transport.

  4. Development of a preparation system for the radiocarbon analysis of organic carbon in carbonaceous aerosols in China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Liu, D.; Shen, C. D.; Ding, P.; Zhang, G.

    2010-09-01

    Carbonaceous aerosols comprising a large fraction of elemental carbon (EC) and organic carbon (OC) are considered to affect both global climate and human health. Radiocarbon measurements have been proved to be a useful isotopic tracer for distinguishing contemporary and fossil emissions. An optimized system of a two-step thermal preparation system for radiocarbon ( 14C) measurement of OC/TC is firstly established in China. In this system, OC/TC are converted into carbon dioxide under a pure oxygen flow at 340 °C/650 °C and then reduced to graphite for AMS target using the method of zinc reduction. Afterwards, radiocarbon measurements of the targets performed by the NEC Compact AMS System at the Institute of Heavy Ion Physics, Peking University. The measured results for estimated reference martial including HOx I, HOx II and IAEA-C6 are consistent with internationally accepted values. The radiocarbon-based source appointment of carbonaceous aerosols in China would be much more convenient and faster with the preparation system developed in this work.

  5. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Perron, N.; Ciobanu, V. G.; Zotter, P.; Minguillón, M. C.; Wacker, L.; Prévôt, A. S. H.; Baltensperger, U.; Szidat, S.

    2012-07-01

    Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters, and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C, followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols like EUSAAR_2, compared to pure oxygen methods; and (4) S4 in O2 at 760 °C for recovery of the remaining EC. WINSOC was found to have a significantly higher fossil contribution than the water-soluble OC (WSOC). Moreover, the experimental results

  6. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Perron, N.; Ciobanu, V. G.; Zotter, P.; Minguillón, M. C.; Wacker, L.; Prévôt, A. S. H.; Baltensperger, U.; Szidat, S.

    2012-11-01

    Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. The optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions may differ in their origins. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon measurements; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols

  7. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Guazzotti, S. A.; Suess, D. T.; Coffee, K. R.; Quinn, P. K.; Bates, T. S.; Wisthaler, A.; Hansel, A.; Ball, W. P.; Dickerson, R. R.; Neusüß, C.; Crutzen, P. J.; Prather, K. A.

    2003-08-01

    A major objective of the Indian Ocean Experiment (INDOEX) involves the characterization of the extent and chemical composition of pollution outflow from the Indian Subcontinent during the winter monsoon. During this season, low-level flow from the continent transports pollutants over the Indian Ocean toward the Intertropical Convergence Zone (ITCZ). Traditional standardized aerosol particle chemical analysis, together with real-time single particle and fast-response gas-phase measurements provided characterization of the sampled aerosol chemical properties. The gas- and particle-phase chemical compositions of encountered air parcels changed according to their geographic origin, which was traced by back trajectory analysis. The temporal evolutions of acetonitrile, a long-lived specific tracer for biomass/biofuel burning, number concentration of submicrometer carbon-containing particles with potassium (indicative of combustion sources), and mass concentration of submicrometer non-sea-salt (nss) potassium are compared. High correlation coefficients (0.84 < r2 < 0.92) are determined for these comparisons indicating that most likely the majority of the species evolve from the same, related, or proximate sources. Aerosol and trace gas measurements provide evidence that emissions from fossil fuel and biomass/biofuel burning are subject to long-range transport, thereby contributing to anthropogenic pollution even in areas downwind of South Asia. Specifically, high concentrations of submicrometer nss potassium, carbon-containing particles with potassium, and acetonitrile are observed in air masses advected from the Indian subcontinent, indicating a strong impact of biomass/biofuel burning in India during the sampling periods (74 (±9)% biomass/biofuel contribution to submicrometer carbonaceous aerosol). In contrast, lower values for these same species were measured in air masses from the Arabian Peninsula, where dominance of fossil fuel combustion is suggested by results

  8. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997

    NASA Astrophysics Data System (ADS)

    Junker, C.; Liousse, C.

    2008-03-01

    Country by country emission inventories for carbonaceous aerosol for the period 1860 to 1997 have been constructed on the basis of historic fuel production, use and trade data sets published by the United Nation's Statistical Division UNSTAT (1997), Etemad et al. (1991) and Mitchell (1992, 1993, 1995). The inventories use emission factors variable over time, which have been determined according to changes in technological development. The results indicate that the industrialisation period since 1860 was accompanied by a steady increase in black carbon (BC) and primary organic carbon (POC) emissions up to 1910. The calculations show a moderate decrease of carbonaceous aerosol emissions between 1920 and 1930, followed by an increase up to 1990, the year when emissions began to decrease again. Changes in BC and POC emissions prior to the year 1950 are essentially driven by the USA, Germany and the UK. The USSR, China and India become substantial contributors to carbonaceous aerosol emissions after 1950. Emission maps have been generated with a 1°×1° resolution based on the relative population density in each country. They will provide a helpful tool for assessing the effect of carbonaceous aerosol emissions on observed climate changes of the past.

  9. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    EPA Science Inventory

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  10. Carbonaceous Aerosol Characteristics over a Pinus taeda plantation: Results from the CELTIC experiment

    EPA Science Inventory

    Carbonaceous particles smaller than 2.5 um aerodynamic diameter (PM2.5) were collected in July, 2003 over a Loblolly Pine plantation at Duke Forest, NC during the Chemical Emission, Loss, Transformation and Interactions within Canopies (CELTIC) field study. Organic (OC) and eleme...

  11. SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous...

  12. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July-August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-07-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T=550°C) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) concentrations were on average respectively 1.19±0.56 and 3.62±1.08 μgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 μgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope = 1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between

  13. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July August 2001: a multi-analytical approach

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.

    2003-10-01

    During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these

  14. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  15. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles

    NASA Astrophysics Data System (ADS)

    Pósfai, MiháLy; Simonics, RenáTa; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-07-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, "tar ball" particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (˜1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  16. Synthesizing Scientific Progress: Outcomes from US EPA’s Carbonaceous Aerosols and Source Apportionment STAR Grants

    EPA Science Inventory

    ABSTRACTA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isopre...

  17. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  18. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Butler, T.; Lawrence, M. G.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Charalampidis, P.; Pilinis, C.; Pandis, S. N.

    2014-04-01

    We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet stoves. Simulations show a large decrease of fine organic aerosol (more than 60%) in urban and suburban areas during winter and decreases of 30-50% in elemental carbon levels in large parts of Europe. There is also a considerable decrease (around 40%) of oxidized OA, mostly in rural and remote regions. Total PM2.5 mass is predicted to decrease by 15-40% on average during the winter in continental Europe. Accurate representation of the intermediate volatility precursors of organic aerosol in the emission inventory is crucial in assessing the efficiency of such abatement strategies.

  19. Characteristics of carbonaceous aerosols: Impact of biomass burning and secondary formation in summertime in a rural area of the North China Plain.

    PubMed

    Yao, Lan; Yang, Lingxiao; Chen, Jianmin; Wang, Xinfeng; Xue, Likun; Li, Weijun; Sui, Xiao; Wen, Liang; Chi, Jianwei; Zhu, Yanhong; Zhang, Junmei; Xu, Caihong; Zhu, Tong; Wang, Wenxing

    2016-07-01

    To determine the characteristics of carbonaceous aerosols in rural areas of the North China Plain, field measurements were conducted at Yucheng (YC) in the summers of 2013 and 2014. The concentrations of carbonaceous aerosols at YC exhibited clear diurnal variation, with higher concentrations in the early morning and at night and lower concentrations during the afternoon hours. The mass-balance method designed for particulate matter smaller than 2.5μm (PM2.5) was used to calculate the organic matter (OM)/organic carbon (OC) ratio. The value obtained, 2.07±0.05, was suggested as a reference to estimate organics in PM2.5 in rural areas of the North China Plain. Biomass burning was identified to be a significant source of carbonaceous aerosols; approximately half of the samples obtained at YC were affected by biomass burning during summer 2013. Case studies revealed that biomass burning accounted for up to 52.6% of the OC and 51.1% of the elemental carbon in PM2.5 samples. The organic coatings observed on sulphur-rich and potassium-rich particles indicated the formation of secondary organic aerosols (SOA) from the oxidation of precursor volatile organic compounds (VOCs) during the aging of smoke released from biomass burning. Based on the evolution of the VOCs, the contribution of VOCs oxidation to SOA concentration was 3.21 and 1.07μgm(-3)ppm(-1) CO under conditions of low nitrogen oxide (NOx) and high NOx, respectively. Aromatics (e.g. benzene, toluene, xylene and ethylbenzene) made the greatest contribution to SOA concentration (88.4% in low-NOx conditions and 80.6% in high-NOx conditions). The results of the study offer novel insights into the effects of biomass burning on the carbonaceous aerosols and SOA formation in polluted rural areas.

  20. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    SciTech Connect

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other

  1. Revisiting AVHRR tropospheric aerosol trends using principal component analysis

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-03-01

    The advanced very high resolution radiometer (AVHRR) satellite instruments provide a nearly 25 year continuous record of global aerosol properties over the ocean. It offers valuable insights into the long-term change in global aerosol loading. However, the AVHRR data record is heavily influenced by two volcanic eruptions, El Chichon on March 1982 and Mount Pinatubo on June 1991. The gradual decay of volcanic aerosols may last years after the eruption, which potentially masks the estimation of aerosol trends in the lower troposphere, especially those of anthropogenic origin. In this study, we show that a principal component analysis approach effectively captures the bulk of the spatial and temporal variability of volcanic aerosols into a single mode. The spatial pattern and time series of this mode provide a good match to the global distribution and decay of volcanic aerosols. We further reconstruct the data set by removing the volcanic aerosol component and reestimate the global and regional aerosol trends. Globally, the reconstructed data set reveals an increase of aerosol optical depth from 1985 to 1990 and decreasing trend from 1994 to 2006. Regionally, in the 1980s, positive trends are observed over the North Atlantic and North Arabian Sea, while negative tendencies are present off the West African coast and North Pacific. During the 1994 to 2006 period, the Gulf of Mexico, North Atlantic close to Europe, and North Africa exhibit negative trends, while the coastal regions of East and South Asia, the Sahel region, and South America show positive trends.

  2. Revisiting AVHRR Tropospheric Aerosol Trends Using Principal Component Analysis

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    The advanced very high resolution radiometer (AVHRR) satellite instruments provide a nearly 25 year continuous record of global aerosol properties over the ocean. It offers valuable insights into the long-term change in global aerosol loading. However, the AVHRR data record is heavily influenced by two volcanic eruptions, El Chichon on March 1982 and Mount Pinatubo on June 1991. The gradual decay of volcanic aerosols may last years after the eruption, which potentially masks the estimation of aerosol trends in the lower troposphere, especially those of anthropogenic origin. In this study, we show that a principal component analysis approach effectively captures the bulk of the spatial and temporal variability of volcanic aerosols into a single mode. The spatial pattern and time series of this mode provide a good match to the global distribution and decay of volcanic aerosols. We further reconstruct the data set by removing the volcanic aerosol component and reestimate the global and regional aerosol trends. Globally, the reconstructed data set reveals an increase of aerosol optical depth from 1985 to 1990 and decreasing trend from 1994 to 2006. Regionally, in the 1980s, positive trends are observed over the North Atlantic and North Arabian Sea, while negative tendencies are present off the West African coast and North Pacific. During the 1994 to 2006 period, the Gulf of Mexico, North Atlantic close to Europe, and North Africa exhibit negative trends, while the coastal regions of East and South Asia, the Sahel region, and South America show positive trends.

  3. Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Cziczo, D. J.; Hudson, P. K.; Thomson, D. S.

    2007-02-01

    The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument has measured the composition of single particles in the lower stratosphere. The average fraction of carbonaceous material in the stratospheric particles decreased rapidly above the tropopause. The decrease in the average carbon content was mostly associated with a sharp increase in the bottom 2 km of the stratosphere in the frequency of fairly pure sulfate particles both with or without meteoric metals. The low potassium content of the fairly pure sulfate particles is used to show that they were formed in the stratosphere and were not tropospheric particles that had lost organics because of oxidation. Of the tropospheric carbonaceous-sulfate particles found in the stratosphere, the mass spectra had similar patterns from the upper troposphere to the maximum altitude sampled, about 19 km. A reduction in the carbon to sulfate ratio in tropospheric particles was only apparent above about 440 K potential temperature. This implies that carbon compounds can remain for months in particles larger than about 300 nm. Despite the slow rate, these data do not exclude rapid heterogeneous reactions of organics in the particles with OH or other radicals. There was no evidence of significant transfer of semivolatile organics between particles in the stratosphere. However, particles that originated in the stratosphere acquired small amounts of carbon when they were transported to the tropopause.

  4. Spatial Distribution of Carbonaceous Aerosol in the Southeastern Baltic Sea Region (Event of Grass Fires)

    NASA Astrophysics Data System (ADS)

    Dudoitis, Vadimas; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Bozzetti, Carlo; Fröhlich, Roman; Mordas, Genrik; Ulevičius, Vidmantas

    2016-06-01

    The aerosol chemical composition in air masses affected by large vegetation fires transported from the Kaliningrad region (Russia) and southeast regions (Belarus and Ukraine) during early spring (March 2014) was characterized at the remote background site of Preila, Lithuania. In this study, the chemical composition of the particulate matter was studied by high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalo-meter. Air masses were transported from twenty to several hundred kilometres, arriving at the measurement station after approximately half a day of transport. The concentration-weighted trajectory analysis suggests that organic aerosol particles are mainly transported over the Baltic Sea and the continent (southeast of Belarus). Results show that a significant fraction of the vegetation burning organic aerosol is transformed into oxidised forms in less than a half-day. Biomass burning aerosol (BBOA) was quantified from the ACSM data using a positive matrix factorization (PMF) analysis, while its spatial distribution was evaluated using air mass clustering approach.

  5. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  6. Highly Siderophile Elements and Osmium Isotope Systematics in Ureilites: Are the Carbonaceous Veins Primary Components?

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. D.; Humayun, M.

    2005-01-01

    Ureilites are an enigmatic group of primitive carbon-bearing achondrites of ultramafic composition. The majority of the 143 ureilite meteorites consist primarily of olivine and pyroxene (and occasionally chromite) [1]. They are coarse-grained, slowly cooled, and depleted in incompatible lithophile elements. Minor amounts of dark interstitial material consisting of carbon, metal, sulfides, and fine-grained silicates occur primarily along silicate grain boundaries, but also intrude the silicates along fractures and cleavage planes. Variable degrees of impact shock features have also been imparted on ureilites. The prevailing two origins proposed for these rocks are either as melting residues of carbonaceous chondritic material [2], [3], or alternatively, derivation as mineral cumulates from such melts [4], [5], [6]. It has recently been proposed that ureilites are the residues of a smelting event, i.e. residues of a partial melting event under highly reducing conditions, where a solid Fe-bearing phase reacts with a melt and carbon to form Fe metal and carbon monoxide [7]. Rapid, localized extraction and loss of the basaltic component into space resulting from high eruption velocities could preserve unequilibrated oxygen isotopes and produce the observed olivine-pyroxene residues via 25-30% partial melting of chondritic-like precursor material.

  7. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol.

    PubMed

    Brown, Margaret E; Mukhopadhyay, Aindrila; Keasling, Jay D

    2016-12-16

    We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. In the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.

  8. Estimation of lifetime of carbonaceous aerosol from open crop residue burning during Mount Tai Experiment 2006 (MTX2006)

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Komazaki, Y.; Taketani, F.; Akimoto, H.; Pochanart, P.; Liu, Y.

    2012-06-01

    Studying the emission ratios of carbonaceous aerosols (element carbon, EC, and organic carbon, OC) from open biomass burning helps to reduce uncertainties in emission inventories and provides necessary constraints for model simulations. We measured apparent elemental carbon (ECa) and OC concentrations at the summit of Mount Tai (Mt. Tai) during intensive open crop residue burning (OCRB) episodes using a Sunset OCEC analyzer. Equivalent black carbon (BCe) concentrations were determined using a Multiple Angle Absorption Photometer (MAAP). In the fine particle mode, OC and EC showed strong correlations (r > 0.9) with carbon monoxide (CO). Footprint analysis using the FLEXPART_WRF model indicated that OCRB in central east China (CEC) had a significant influence on ambient carbonaceous aerosol loadings at the summit of Mt. Tai. ΔECa/ΔCO ratios resulting from OCRB plumes were 14.3 ± 1.0 ng m-3 ppbv-1 at Mt. Tai. This ratio was more than three times those resulting from urban pollution in CEC, demonstrating that significant concentrations of soot particles were released from OCRB. ΔOC/ΔCO ratio from fresh OCRB plumes was found to be 41.9 ± 2.6 ng m-3 ppbv-1 in PM1. The transport time of smoke particles was estimated using the FLEXPART_WRF tracer model by releasing inert particles from the ground layer inside geographical regions where large numbers of hotspots were detected by a MODIS satellite sensor. Fitting regressions using the e-folding exponential function indicated that the removal efficiency of OC (normalized to CO) was much larger than that of ECa mass, with mean lifetimes of 27 h (1.1 days) for OC and 105 h (4.3 days) for ECa, respectively. The lifetime of black carbon estimated for the OCRB events in east China was comparably lower than the values normally adopted in the transport models. Short lifetime of organic carbon highlighted the vulnerability of OC to cloud scavenging in the presence of water-soluble organic species from biomass combustion.

  9. Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Huang, X. H. Hilda; Bian, Q. J.; Louie, P. K. K.; Yu, J. Z.

    2014-01-01

    Hourly measurements of elemental carbon (EC) and organic carbon (OC) were made at Mong Kok, a roadside air quality monitoring station in Hong Kong for a year from May 2011 to April 2012. The monthly average EC concentrations were 3.8-4.9 μgC m-3, accounting for 9.2-17.7% of the PM2.5 mass (21.5-49.7 μg m-3). The EC concentrations showed little seasonal variation and peaked twice daily in coincidence with the traffic rush hours of a day. Good correlations were found between EC and NOx concentrations, especially during the rush hours in the morning. In time periods when diesel-powered vehicles dominated the road traffic, the OC / EC ratio was approximately 0.5. The analysis by the minimum OC / EC ratio approach to determine OC / EC ratio representative of primary emissions also yields a value of 0.5, suggesting that it is a reasonable lower limit estimation of (OC / EC)vehicle in representing vehicular emissions. By applying the derived (OC / EC)vehicle ratio to the dataset, the monthly average vehicle-related OC was estimated to account for 16.6-64.0% of the measured OC throughout the year. Vehicle-related OC was also estimated using receptor modeling of a combined dataset of hourly NOx, OC, EC and select volatile organic compounds. The estimations by the two different approaches were in good agreement. When both EC and vehicle-derived organic matter (OM) (assuming an OM-to-OC ratio of 1.4) are considered, vehicular carbonaceous aerosols contributed ~ 7.3 μg m-3 to PM2.5, accounting for ~ 20% of PM2.5 mass (38.3 μg m-3) during winter when Hong Kong was largely influenced by regional transport of air pollutants and ~ 30% of PM2.5 mass (28.2 μg m-3) during summertime when local emission sources were dominant. A reduction of 3.82 μg m-3 in vehicular carbonaceous aerosols was observed during 07:00-11:00 LT (i.e. rush hours on weekdays) on Sundays and public holidays. This could mainly be attributed to less on-road public transportation (e.g. diesel-powered buses

  10. Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Huang, X. H. H.; Bian, Q. J.; Louie, P. K. K.; Yu, J. Z.

    2014-09-01

    Hourly measurements of elemental carbon (EC) and organic carbon (OC) were made at Mong Kok, a roadside air quality monitoring station in Hong Kong, for a year, from May 2011 to April 2012. The monthly average EC concentrations were 3.8-4.9 μg C m-3, accounting for 9.2-17.7% of the PM2.5 mass (21.5-49.7 μg m-3). The EC concentrations showed little seasonal variation and peaked twice daily, coinciding with the traffic rush hours of a day. Strong correlations were found between EC and NOx concentrations, especially during the rush hours in the morning, confirming vehicular emissions as the dominant source of EC at this site. The analysis by means of the minimum OC / EC ratio approach to determine the OC / EC ratio representative of primary vehicular emissions yields a value of 0.5 for (OC / EC)vehicle. By applying the derived (OC / EC)vehicle ratio to the data set, the monthly average vehicle-related OC was estimated to account for 17-64% of the measured OC throughout the year. Vehicle-related OC was also estimated using receptor modeling of a combined data set of hourly NOx, OC, EC and volatile organic compounds characteristic of different types of vehicular emissions. The OCvehicle estimations by the two different approaches were in good agreement. When both EC and vehicle-derived organic matter (OM) (assuming an OM-to-OC ratio of 1.4) are considered, vehicular carbonaceous aerosols contributed ~ 7.3 μg m-3 to PM2.5, accounting for ~ 20% of PM2.5 mass (38.3 μg m-3) during winter, when Hong Kong received significant influence of air pollutants transported from outside, and ~ 30% of PM2.5 mass (28.2 μg m-3) during summertime, when local emission sources were dominant. A reduction of 3.8 μg m-3 in vehicular carbonaceous aerosols was estimated during 07:00-11:00 (i.e., rush hours on weekdays) on Sundays and public holidays. This could mainly be attributed to less on-road public transportation (e.g., diesel-powered buses) in comparison with non-holidays. These

  11. Variations of carbonaceous aerosols from open crop residue burning with transport and its implication to estimate their lifetimes

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Komazaki, Y.; Taketani, F.; Akimoto, H.; Pochanart, P.

    2013-08-01

    Studying the correlations of carbonaceous aerosols (element carbon, EC, and organic carbon, OC) from open biomass burning helps to reduce uncertainties in emission inventories and provides necessary constraints for model simulations. In the present study, we measured apparent elemental carbon (ECa) and OC concentrations at the summit of Mount Tai (Mt. Tai) during intensive open crop residue burning (OCRB) episodes using a Sunset OCEC analyzer. In the fine particle mode, OC and ECa showed strong correlations (r > 0.9) with carbon monoxide (CO). Footprint analysis using the FLEXPART_WRF model indicated that OCRB in Central East China had a significant influence on ambient carbonaceous aerosol loadings at the summit of Mt. Tai. During campaign, ΔECa/ΔCO ratios of OCRB plumes were found to be 14.3 ± 1.0 ng m-3 ppbv at Mt. Tai. This ratio was twice larger than those for urban pollution in CEC, demonstrating that significant emissions of soot particles emitted from OCRB. ΔOC/ΔCO ratio of OCRB plumes was found to be 41.9 ± 2.6 ng m-3 ppbv averagely. The transport time of smoke particles was estimated using the FLEXPART_WRF tracer model by releasing particles from the ground layer inside geographical regions where large numbers of hotspots were detected by the MODIS sensor. The relationship between transport time and observed ΔECa/ΔCO and ΔOC/ΔCO ratios was fitted by an e-folding exponential function. Results showed that the loss rate of OC (normalized by CO) with transport was much quicker than that of ECa mass, and the corresponding lifetime of OC mass was estimated to be 28.0-44.2 h (1.2-1.8 days), much shorter than that 98.4-136.9 h (4.1-5.7 days) of ECa. Lifetime of ECa estimated for the OCRB events in CEC in the study was comparably lower than the values normally calculated by the transport models. Short lifetime of OC highlighted its vulnerability to cloud scavenging in the presence of water-soluble organic species from biomass combustion.

  12. Comparison of Bulk Carbon Concentrations and Optical Properties of Carbonaceous Aerosols in the North Slope Alaska from Summer 2012 and Summer 2015

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Barrett, T. E.; Moffett, C.; Gunsch, M.; Pratt, K.

    2015-12-01

    With recent drilling permits being issued for exploratory drilling in the Chukchi Sea, there is a need for characterization of carbonaceous aerosols in the Arctic both prior to and during the exploratory drilling phase. A month-long field sampling campaign will be conducted in Barrow, AK, at the confluence of the Chukchi and Beaufort seas, from August to September 2015. Total suspended particulate (TSP) aerosol samples will be collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Samples will be analyzed for organic carbon (OC), elemental carbon (EC) on a Sunset carbon analyzer utilizing the NIOSH 5040 method. Samples will also be analyzed for water soluble organic carbon (WSOC) using a water extraction method and subsequent analysis on a Shimadzu Total Carbon Analyzer. Optical properties of the aqueous extracts will also be measured using an Agilent ultraviolet-visible (UV-Vis) spectrometer. OC, EC and WSOC concentrations will then be compared to aerosol samples collected at the same location in summer 2012, prior to the onset of exploratory drilling in the Chukchi Sea. Back trajectory (BT) analysis will be performed for each sampling campaign to help assess the impact of source region on the carbonaceous aerosol budget and to identify any changes in source region between the two campaigns. A comparison of samples from the same location and season both prior to and post drilling will allow for a more accurate characterization and tracking of the potential impacts of new aerosol emission sources in the region.

  13. Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuang; Bi, Xiaohui; Feng, Yinchang; Dai, Qili; Xiao, Zhimei; Li, Liwei; Wu, Jianhui; Yuan, Jie; Zhang, YuFen

    2016-11-01

    The OC/EC online monitoring campaign was carried out in Tianjin of China from 8th February to 15th March 2015 during the Chinese Spring Festival period (CSFP). The concentrations of OC, EC, BC and other ambient pollutants (e.g. SO2, NO2 and PM2.5, etc.) in high time resolution were measured with related online-monitoring instruments. During the CSFP, according to the peaks of PM2.5 concentrations and number concentrations (NC) of aerosol particles with aerodynamic diameters between 0.3 and 2.5 μm, five pollution-events were generally identified and displayed. These pollution-events were closely associated with large-scale fireworks displaying, combustion activities such as heating for winter, and the stable meteorological conditions, etc. During the CSFP, EC and OC concentrations showed variations up to one order of magnitude. The uncertainty of instrument itself and the difference for measured methods, further caused the differences between thermal OC (measured OC by thermal method) and optical OC (measured OC by optical method) concentrations, as well as between thermal EC (measured EC by thermal method) and optical EC (measured EC by optical method) concentrations. The high-concentration carbonaceous aerosols could enlarge the uncertainty of measuring instrument, reducing the correlations between OC and EC, and enhance the differences among thermal EC, optical BC and optical EC. The OC/EC ratios and the percentages of SOC/OC would be declined, when the pollution-events formed during the CSFP. Due to the different sources for thermal POC and thermal SOC, the correlation of the two was relatively lower (R2 = 0.39). Thermal POC dominated over thermal OC during the CSFP.

  14. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    DOE PAGES

    Wang, Mo; Xu, B.; Cao, J.; ...

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia hasmore » the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.« less

  15. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    SciTech Connect

    Wang, Mo; Xu, B.; Cao, J.; Tie, X.; Wang, Hailong; Zhang, Rudong; Qian, Yun; Rasch, Philip J.; Zhao, Shuyu; Wu, Guangjian; Zhao, Huabiao; Joswiak, Daniel R.; Li, Jiule; Xie, Ying

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia has the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.

  16. Determination of stable carbon isotopes of organic acids and carbonaceous aerosols in the atmosphere.

    PubMed

    Fisseha, R; Saurer, M; Jäggi, M; Szidat, S; Siegwolf, R T W; Baltensperger, U

    2006-01-01

    A wet oxidation method for the compound-specific determination of stable carbon isotopes (delta(13)C) of organic acids in the gas and aerosol phase, as well as of water-soluble organic carbon (WSOC), is presented. Sampling of the organic acids was done using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to an ion chromatography (IC) system. The method allows for compound-specific stable carbon isotope analysis by collecting different fractions of organic acids at the end of the IC system using a fraction collector. delta(13)C analyses of organic acids were conducted by oxidizing the organic acids with sodium persulfate at a temperature of 100 degrees C and determining the delta(13)C value of the resulting carbon dioxide (CO(2)) with an isotope ratio mass spectrometer. In addition, analysis of delta(13)C of the WSOC was performed for particulate carbon collected on aerosol filters. The WSOC was extracted from the filters using ultrapure water (MQ water), and the dissolved organic carbon was oxidized to CO(2) using the oxidation method. The wet oxidation method has an accuracy of 0.5 per thousand with a precision of +/-0.4 per thousand and provides a quantitative result for organic carbon with a detection limit of 150 ng of carbon.

  17. Airborne Measurements of Carbonaceous Aerosols in Southern Africa during the Dry Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2003-01-01

    Particulate matter collected aboard the University of Washington's (UW) Convair-580 research aircrafi over southem Afiica during the dry biomass burning season was analyzed for total carbon (TC), organic carbon (OC), and black carbon (BC) contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the TC collected. Consequently, conclusions derived from the data are greatly dependent on whether or not OC concentrations are corrected for this artifact. For example, the estimated aerosol coalbedo (1 - single scattering albedo (SSA)), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected OC concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The BC to (corrected) OC mass ratio (BC/OC) of smoke plume samples (0.18 plus or minus 0.06) is lower than that of samples collected in the regional haze (0.25 plus or minus 0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three quarters of the aerosol burden in the regional haze, while other souxes (e.g., fossil fuel burning) contribute the remainder.

  18. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    SciTech Connect

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  19. Decadal trend of black carbon and refractory carbonaceous aerosol in the western rim of the North Pacific Ocean: atmospheric concentration and the retrieved record of deposition flux

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Yamaguchi, Takashi; Noguchi, Izumi; Akiyama, Masayuki; Matsumoto, Kiyoshi

    2013-04-01

    The long-term trend of light absorbing carbonaceous aerosols (or black carbon: BC) or refractory carbonaceous aerosol (or elemental carbon: EC) concentration is reported at European background sites such as Mace Head, and that of aerosol absorption coefficient are monitored in many GAW sites. On the contrary, such long-term data are relatively scarce at around the western part of the North Pacific Ocean. Thus, to understand the long-term variation of in the area, BC in fine aerosol fraction has been measured at Chichi-jima Islands, Japan. Chichi-jima Island is located 1000 km south of the Japanese mainland, and 1800 km west of the coast line of the Asian continent. BC has been measured with an Aethalometer (Magee, AE-16 and AE-30) since December, 1998 with 1 hr time resolution. Mass flowmeter embedded inside the Aethalometer is calibrated with a rotational dry gas-meter once a year. Monthly averaged BC concentration shows an obvious seasonal variation, i.e. high concentration during late autumn-winter-spring period resulting from the transport from East Asia, with maximum daily concentration above 500 ng m-3. In summer, daily concentration was usually less than 20 ng m-3, due to the clean background airmass originating from the North Pacific Anticyclone. Decadal trend of the annual averaged BC concentration showed a increasing trend from 2000 to 2007 and started to decrease after 2008, which roughly coincides with the reported emission trend of SO2 in China (Lu et al., 2010). In addition, total (i.e., wet + dry) deposition record of refractory carbon at two sites in the northern Japan (Rishiri Island: a remote island site, and Sapporo City: an urban site) are retrieved. At these sites, the local government have been measuring the chemical components in precipitation water collected by deposition gauges. In the deposition gauge, a membrane filter made of cellulose-acetate is fixed at the bottom of the funnel to remove water-insoluble particles from the precipitated

  20. Mixing of anthropogenic dust and carbonaceous aerosols in seasonal snow on snow albedo reduction in 2014 China survey

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Huang, Jianping; Pu, Wei

    2016-04-01

    Anthropogenic dusts produced from the affected by human activities derived from the industrial areas and carbonaceous aerosols (black carbon and organic carbon) deposited into snow or ice core via wet and dry deposition play key roles to the regional and global climate. Recently, a China survey was performed to measure the concentrations of insoluble light-absorbing particles (ILAP) in seasonal snow across northern China in January and February of 2014. The results indicate that the higher concentration of NO3- and SO42- and heavy metals of Zn, Pb, Cd, Ni, and Cu are likely to be attributed to enhanced local industrial emissions due to human activities. The emissions from fossil fuel combustion and biomass burning are likely to be important for the chemical elements in the seasonal snow with long-range transport, while medium enrichment factors of Mg, Ca, and Al were predominantly associated with soil dust, which is the most important natural source. There are large ranges of the BC and AD in seasonal snow over northeast China because of the anthropogenic emissions, which are caused by human activities. In addition, although the values of the snow albedo by model simulations are little higher in the visible to near-infrared wavelength than that during the China survey, the surface snow albedo by field campaign measurements have good agreement with the model simulations in the visible wavelength.

  1. Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City

    SciTech Connect

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S.S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2009-09-16

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City Metropolitan Area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~;;29 km and ~;;65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  2. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  3. Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sönke; Wacker, Lukas; Holzinger, Rupert; Röckmann, Thomas

    2017-03-01

    We measured the radioactive carbon isotope 14C (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic carbon (WIOC), and elemental carbon (EC), we estimated the contribution of major sources to the carbonaceous aerosol. The main source categories were fossil fuel combustion, biomass burning, and other contemporary carbon, which is mainly biogenic secondary organic aerosol material (SOA). A clear seasonal variation is seen in EC from biomass burning (ECbb), with lowest values in summer and highest values in winter, but ECbb is a minor fraction of EC in all seasons. WIOC from contemporary sources is highly correlated with ECbb, indicating that biomass burning is a dominant source of contemporary WIOC. This suggests that most biogenic SOA is water soluble and that water-insoluble carbon stems mainly from primary sources. Seasonal variations in other carbon fractions are less clear and hardly distinguishable from variations related to air mass history. Air masses originating from the ocean sector presumably contain little carbonaceous aerosol from outside the Netherlands, and during these conditions measured carbon concentrations reflect regional sources. In these situations absolute TC concentrations are usually rather low, around 1.5 µg m-3, and ECbb is always very low ( ˜ 0.05 µg m-3), even in winter, indicating that biomass burning is not a strong source of carbonaceous aerosol in the Netherlands. In continental air masses, which usually arrive from the east or south and have spent several days over land, TC concentrations are on average by a factor of 3.5 higher. ECbb increases more strongly than TC to 0.2 µg m-3. Fossil EC and fossil WIOC, which are indicative of primary emissions, show a more moderate increase by a factor of 2.5 on average. An interesting case is

  4. Improved measurement of carbonaceous aerosol in Beijing, China: intercomparison of sampling and thermal-optical analysis methods

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.

    2010-06-01

    The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and

  5. Haze and other aerosol components in late winter Arctic Alaska, 1986

    NASA Astrophysics Data System (ADS)

    Li, Shao-Meng; Winchester, John W.

    1990-02-01

    Three coarse and five fine aerosol components of different elemental compositions were identified at Barrow, Alaska, from March 17 to April 21, 1986, resolved by absolute principal component analyses of element concentrations in 280 sequential coarse and fine size fraction time step samples. In the coarse (> 2.5 μm), two components C-1 and C-2 had abundant Si, S, Cl, K, and Ca, but no Al, and together contained 85% of coarse S. Their compositions resembled expected products of carbonaceous fuel combustion, with Si being volatilized by carbon reduction and other metals volatilized perhaps as chloride salts. C-1, with high trace metal contents, might be from nonferrous smelting, whereas C-2, with high Fe, might be associated with conventional coal combustion. Both appeared semi-aged with respect to acidic gas uptake because the S chemical equivalents were less than those of metals contributing to alkalinity. When combined with Cl, S was close to the metal equivalents, indicating complete acid-base titration. A strong concentration rise of C-1 and C-2 occurred from March 25 to April 2 during a haze event, although C-1 was also present at other times. Air trajectories showed that air masses arrived at Barrow during the haze event from eastern or northern Europe. The third component C-3 was a dust aerosol rich in Al that contained high S but low Cl, suggesting saturation with H2SO4 and therefore aged and regional aerosols perhaps typical of the late winter Arctic. No major change in its concentration was observed to correspond to synoptic events. In the fine (< 2.5 μm), five components represent a sea-salt aerosol, an S-rich aerosol with some Si, K, Ca, and Fe, a trace metal aerosol, an Al-rich dust, and a marine product with Br, S, and Cl. The sea-salt was found only in three plumes when synoptic meteorology and air trajectories suggested origins in the North Pacific. The S-rich aerosol, accounting for 73% of S and 40% of Si, was enhanced during the haze event by 75

  6. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Kang, Shichang; Shen, Chengde; Cong, Zhiyuan; Liu, Kexin; Wang, Wei; Liu, Lichao

    2010-06-01

    A total of 30 samples of total suspended particles were collected at an urban site in Lhasa, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. The fractions of contemporary carbon ( fc) in total carbon (TC) of ambient aerosols are presented using radiocarbon ( 14C) measurements. The value of fc represents the biogenic contribution to TC, as the biosphere releases organic compounds with the present 14C/ 12C level ( fc = 1), whereas 14C has become extinct in anthropogenic emissions of fossil carbon ( fc = 0). The fc values in Lhasa ranging from 0.357 to 0.702, are higher than Beijing and Tokyo, but clearly lower than the rural region of Launceston, which indicates a major biogenic influence in Lhasa. Seasonal variations of fc values corresponded well with variations of pollutants concentrations (e.g. NO 2). Higher fc values appeared in winter indicating carbonaceous aerosol is more dominated by wood burning and incineration of agricultural wastes within this season. The lower fc values in summer and autumn may be caused by increased diesel and petroleum emissions related to tourism in Lhasa. δ13C values ranged from - 26.40‰ to - 25.10‰, with relative higher values in spring and summer, reflecting the increment of fossil carbon emissions.

  7. On the mixing and evaporation of secondary organic aerosol components.

    PubMed

    Loza, Christine L; Coggon, Matthew M; Nguyen, Tran B; Zuend, Andreas; Flagan, Richard C; Seinfeld, John H

    2013-06-18

    The physical state and chemical composition of an organic aerosol affect its degree of mixing and its interactions with condensing species. We present here a laboratory chamber procedure for studying the effect of the mixing of organic aerosol components on particle evaporation. The procedure is applied to the formation of secondary organic aerosol (SOA) from α-pinene and toluene photooxidation. SOA evaporation is induced by heating the chamber aerosol from room temperature (25 °C) to 42 °C over 7 h and detected by a shift in the peak diameter of the SOA size distribution. With this protocol, α-pinene SOA is found to be more volatile than toluene SOA. When SOA is formed from the two precursors sequentially, the evaporation behavior of the SOA most closely resembles that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA resembles a core of SOA from the initial precursor coated by a layer of SOA from the second precursor. Such a core-and-shell configuration of the organic aerosol phases implies limited mixing of the SOA from the two precursors on the time scale of the experiments, consistent with a high viscosity of at least one of the phases.

  8. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level

  9. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Saarnio, K.; Frey, A.; Saarikoski, S.; Teinilä, K.; Kulmala, M.; Hillamo, R.

    2011-10-01

    Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006-2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC), organic and elemental carbon (OC and EC) by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC), and PM2.5 mass with a tapered element oscillating microbalance (TEOM). Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM), EC) represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass) and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  10. Calibration method for a photoacoustic system for real time source apportionment of light absorbing carbonaceous aerosol based on size distribution measurements

    NASA Astrophysics Data System (ADS)

    Utry, Noemi; Ajtai, Tibor; Pinter, Mate; Orvos, Peter I.; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    In this study, we introduce a calibration method with which sources of light absorbing carbonaceous particulate matter (LAC) can be apportioned in real time based on multi wavelength optical absorption measurements with a photoacoustic system. The method is primary applicable in wintry urban conditions when LAC is dominated by traffic and biomass burning. The proposed method was successfully tested in a field campaign in the city center of Szeged, Hungary during winter time where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. With the help of the proposed calibration method a relationship between the measured Aerosol Angström Exponent (AAE) and the number size distribution can be deduced. Once the calibration curve is determined, the relative strength of the two pollution sources can be deduced in real time as long as the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed in the presented measurement campaign by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The proposed method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data.

  11. The Role of Global Emission Inventory of Carbonaceous Emissions

    NASA Astrophysics Data System (ADS)

    Fatima, H.; Sharma, O. P.; Updhyaya, H.

    2010-12-01

    Aerosols - liquid or solid particles suspended in the air - are important constituents of the global atmosphere. They have a direct effect on climate by scattering and/or absorbing solar radiation modifying the radiative balance of the atmosphere and indirect effect by acting as condensation nuclei, their increase in number concentration may give rise to increased number of cloud condensation nuclei, which might increase the droplet concentration with relatively smaller size droplets for fixed liquid water content, making clouds more reflective (Twomey, 1977). Recent measurements show that atmospheric black carbon (BC) and organic carbon (OC) aerosol particles frequently contribute significantly to the total aerosol mass (Novakov et al. 1997). BC is emitted as primary particles from incomplete combustion process, such as fossil fuel and biomass burning, and therefore much atmospheric BC is of anthropogenic origin. OC is emitted as both primary particles and by secondary production from gaseous compounds via condensation or gas phase oxidation of hydrocarbons. Primary organic aerosols come from both anthropogenic sources (fossil fuel and biomass burning) and from natural sources (such as debris, pollen, spores, and algae). Carbonaceous aerosols make up a large but highly variable fraction of the atmospheric aerosol. Black carbon aerosols absorb the solar radiation and induce positive forcing whereas organic matter aerosols reflect solar radiation and produce negative forcing. Various emission inventories have been developed for carbonaceous aerosols. Detailed emission inventories for both BC and OC have been developed (e.g., Penner et al., 1993; Cooke and Wilson, 1996; Liousse et al., 1996; Cooke et al., 1999, Bond et al. 2004) that consider both fossil fuel and biomass components. The inventories of biomass- burning BC and OC particles are more difficult to constrain than fossil fuel emissions, owing to the paucity of data. In the present study we have compared the

  12. A two-year study of carbonaceous aerosols in ambient PM2.5 at a regional background site for western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Cui, Hongfei; Zhao, Yu; Yin, Lina; Lu, Yan; Wang, Qingeng

    2017-01-01

    To analyze the characteristics of regional background carbonaceous aerosols in western Yangtze River Delta (YRD), hourly organic carbon (OC) and elemental carbon (EC) in fine particular matter (PM2.5) were measured with a semi-continuous carbon analyzer at a suburban site in upwind Nanjing from June 2013 to May 2015. Relatively low OC, EC and OC/EC were observed compared to other studies conducted in Nanjing. The reasons include the limited primary emissions around the observation site, the improved emission controls in recent years, and the use of denuder to reduce positive artifact in OC measurement. Resulting from the stable atmosphere conditions and emission variations, the highest concentrations of carbonaceous aerosols were found in both winters, with average OC and EC observed at 11.8 ± 10.0 and 5.9 ± 3.4 μg/m3 for the first one, and 8.1 ± 5 and 4.5 ± 2.4 μg/m3 for the second one, respectively. Compared to 2013, reduced OC and EC were found in summer and autumn 2014, demonstrating the benefits of emission control polices implemented for the Nanjing Youth Olympic, while elevated OC observed in spring 2015 was attributed probably to the increased biomass burning. For the hazy event in winter 2013, the back trajectories of air masses suggested that heavy pollution were from eastern Jiangsu, northern Anhui and Jiangsu, downtown Nanjing, and Shanghai. Secondary aerosol formation played an important role indicated by the larger mass fraction of OC and increased OC/EC in PM2.5 during the heavy pollution period. In the harvest season, biomass burning was estimated to contribute 51% and 16% of OC and EC concentrations, respectively.

  13. A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Sarin, M. M.; Tripathi, S. N.

    2010-12-01

    This study presents a comprehensive 1 year (January 2007-March 2008) data set on the chemical composition of ambient aerosols collected from an urban location (Kanpur) in the Indo-Gangetic Plain (IGP) and suggests that the varying strength of the regional emission sources, boundary layer dynamics, and formation of secondary aerosols all contribute significantly to the temporal variability in the mass concentrations of elemental carbon (EC), organic carbon (OC), and water-soluble OC (WSOC). On average, carbonaceous aerosols contribute nearly one third of the PM10 mass during winter, whereas their fractional mass is only ˜10% during summer. A three- to four-fold increase in the OC and K+ concentrations during winter and a significant linear relation between them suggest biomass burning (wood fuel and agricultural waste) emission as a dominant source. The relatively high OC/EC ratio (average: 7.4 ± 3.5 for n = 66) also supports that emissions from biomass burning are overwhelming for the particulate OC in the IGP. The WSOC/OC ratios vary from 0.21 to 0.70 over the annual seasonal cycle with relatively high ratios in the summer, suggesting the significance of secondary organic aerosols. The long-range transport of mineral aerosols from Iran, Afghanistan, and the Thar Desert (western India) is pronounced during summer months. The temporal variability in the concentrations of selected inorganic constituents and neutralization of acidic species (SO42- and NO3-) by NH4+ (dominant during winter) and Ca2+ (in summer) reflect conspicuous changes in the source strength of anthropogenic emissions.

  14. Real-time measurement of aerosol black carbon during the Carbonaceous Species Methods Comparison Study, Citrus College, Glendora, California, August 12-21, 1986: Final report

    SciTech Connect

    Hansen, A.D.A.; Novakov, T.

    1987-11-01

    During the period August 12-21, 1986, the Atmospheric Aerosol Research Group of Lawrence Berkeley Laboratory participated in the Carbonaceous Species Method Comparison Study (CSMCS) conducted at Citrus College, Glendora, California. The equipment that we used was the aethalometer, an instrument developed at LBL that measures the concentration of aerosol black carbon in real time. In this report we present our results from that study in the form of 1-minute, 1-hour, and multi-hour average concentrations. We found concentrations generally ranging from 2 to 5 ..mu..g (BC)m/sup 3/, usually with increases in the morning traffic hours. We also observed short-duration (2-15 min) peaks in the black carbon concentration that could be directly attributed to the activity of vehicles in a delivery area less than 50 m from the study site. We conclude that mobile sources were the major contributor to the short- and medium-term variability of aerosol black carbon measured at this site. 5 refs., 5 figs., 1 tab

  15. Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies

    NASA Astrophysics Data System (ADS)

    Mogili, Praveen K.; Yang, K. H.; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    Mineral dust aerosol plays an important role in determining the physical and chemical equilibrium of the atmosphere. To better understand the impact that mineral dust aerosol may have on climate forcing and on remote sensing, we have initiated a study of the optical properties of important components of mineral dust aerosol including silicate clays (illite, kaolinite, and montmorillonite), quartz, anhydrite, and calcite. The extinction spectra are measured in an environmental simulation chamber over a broad wavelength range, which includes both the IR (650-5000 cm -1) and UV-vis (12,500-40,000 cm -1) spectral regions. In this paper, we focus on the IR region from 800 to 1500 cm -1, where many of these mineral dust constituents have characteristic vibrational resonance features. Experimental spectra are compared with Mie theory simulations based on published mineral optical constants. We find that Mie theory generally does a poor job in fitting the IR resonance peak positions and band profiles for nonspherical aerosols in the accumulation mode size range ( D˜0.1-2.5 μm). We explore particle shape effects on the IR resonance line profiles by considering analytic models for extinction of particles with characteristic shapes (i.e. disks, needles, and ellipsoids). Interestingly, Mie theory often appears to give more accurate results for the absorption line profiles of larger particles that fall in the coarse mode size range.

  16. Identification and Characterization of Biogenic SOA Component in Ambient Aerosols Based on Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Allan, J. D.; Kiendler-Scharr, A.; Tian, J.; Canagaratna, M. R.; Williams, B.; Worsnop, D. R.; Coe, H.; Goldstein, A.; Mentel, T. F.

    2008-12-01

    Recently studies have shown that multivariate factor analysis of the highly time-resolved mass spectral data obtained with an Aerodyne Aerosol Mass Spectrometer (AMS) may allow the classification and simplification of complex organic aerosol (OA) mixtures into components that are chemically meaningful and can be related to different sources and transformation processes. Two factor analysis techniques, including the Multiple Component Analysis (MCA) method (Zhang et al., 2007) and the Positive Matrix Factorization (PMF) method (Paatero and Tapper, 1994), were applied to a Quadrupole-AMS dataset acquired from Chebogue Pt., Nova Scotia in summer 2004. Multiple OA components were determined, including a hydrocarbon-like OA (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations and two oxygenated OA (OA) components that show different fragmentation patterns and oxygen-to-carbon ratios in their mass spectra. The HOA component correlates with inert primary emission tracers (e.g., EC and CO) and likely represents diluted POA transported from urban locations. The highly oxygenated component (OOA-I) correlates well with sulfate and shows a mass spectrum resembling that of fulvic acid - a model compound representative for highly processed/oxidized organics in the environment. The less oxygenated OA component (OOA-II) reveals a mass spectral pattern that compares well with those of the biogenic SOA produced from the mixture of VOCs emitted by spruce, pine and birch trees during exposure to ozone and UV-photolysis in the Jülich plant chamber. In addition, the time series of OOA-II correlates with biogenic SOA tracer compounds determined by the thermal desorption aerosol GC/MS-FID (TAG) instrument. Furthermore, the time-resolved size distributions of OOA components, their correlations with parallel gas and aerosol measurements, and backtrajectory analysis of air masses all support the association of OOA-II to biogenic sources. Finally

  17. Effects of particle shape, hematite content and semi-external mixing with carbonaceous components on the optical properties of accumulation mode mineral dust

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Tripathi, S. N.; Aggarwal, S. G.; Arola, A.

    2010-12-01

    The radiative forcing estimation of the polluted mineral dust is limited due to lack of morphological analysis, mixing state with the carbonaceous components and the hematite content in the pure dust. The accumulation mode mineral dust has been found to mix with anthropogenically produced black carbon, organic carbon and brown carbon during long range transport. The above features of the polluted dust are not well accounted in the optical models and lead the uncertainty in the numerical estimation of their radiative impact. The Semi-external mixing being a prominent mixing of dust and carbonaceous components has not been studied in details so for compared to core-shell, internal and external mixing studies. In present study, we consider the pure mineral dust composed of non-metallic components (such as Quartz, Feldspar, Mica and Calcite) and metalic component like hematite (Fe2O3). The hematite percentage in the pure mineral dust governs its absorbance. Based on this hematite variation, the hematite fraction in pure mineral dust has been constrained between 0-8%. The morphological and mineralogical characterization of the polluted dust led to consider the three sphere, two sphere and two spheroid model shapes for polluted dust particle system. The pollution gives rise to various light absorbing aerosol components like black carbon, brown carbon and organic carbon (comprising of HUmic-Like Substances, HULIS) in the atmosphere. The entire above discussed model shapes have been considered for the mineral dust getting polluted with (1) organic carbon (especially HULIS component) (2) Brown carbon and (3) black carbon by making a semi-external mixture with pure mineral dust. The optical properties (like Single Scattering Albedo, SSA; Asymmetry parameter, g and Extinction efficiency, Qext) of above model shapes for the polluted dust have been computed using Discrete Dipole Approximation, DDA code. For above model shapes, the SSA was found to vary depending on hematite

  18. Characteristics of carbonaceous components in precipitation and atmospheric particle at Japanese sites

    NASA Astrophysics Data System (ADS)

    Huo, M. Q.; Sato, K.; Ohizumi, T.; Akimoto, H.; Takahashi, K.

    2016-12-01

    A methodology for the collection and analysis of organic carbon (OC) and elemental carbon (EC) in precipitation was established and the monitoring of OC and EC in precipitation and aerosol was implemented at the Niigata (rural), Sado (remote), and Tokyo (urban) sites in Japan. The OC in precipitation was measured for water-insoluble OC (WIOC) and water-soluble OC (WSOC) separately. The concentrations of EC and WIOC in precipitation were 78.9 μg/l and 657 μg/l at the Tokyo site, 26.0 μg/l and 274 μg/l at the Sado site, 24.6 μg/l and 274 at the Niigata site. The ratio of EC to OC in the precipitation and aerosol samples were the highest at Tokyo site. The scavenging ratio of OC was higher than EC, implying that OC was more easily removed from the atmosphere compared to EC. The high concentrations of EC in precipitation in winter and spring at the Sado site were mainly due to the long-range transport from the Northeast Asian Continent, whereas at the Tokyo site the high level of EC concentration was mainly from domestic emissions. The seasonal variation of EC and OC in precipitation in East Asia was obtained for the first time. The major source for the high EC concentrations in precipitation at the Sado site in winter was ascribed to the fuel combustion, but in spring, it may be the result of biomass burning in the Northeast of the continent.

  19. Polycyclic Aromatic Aerosol Components: Chemical Analysis and Reactivity

    NASA Astrophysics Data System (ADS)

    Schauer, C.; Niessner, R.; Pöschl, U.

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants in the atmosphere and originate primarily from incomplete combustion of organic matter and fossil fuels. Their main sources are anthropogenic (e.g. vehicle emissions, domes- tic heating or tobacco smoke), and PAHs consisting of more than four fused aromatic rings reside mostly on combustion aerosol particles, where they can react with atmo- spheric trace gases like O3, NOx or OH radicals leading to a wide variety of partially oxidized and nitrated derivatives. Such chemical transformations can strongly affect the activity of the aerosol particles as condensation nuclei, their atmospheric residence times, and consequently their direct and indirect climatic effects. Moreover some poly- cyclic aromatic compounds (PACs = PAHs + derivatives) are known to have a high carcinogenic, mutagenic and allergenic potential, and are thus of major importance in air pollution control. Furthermore PACs can be used as well defined soot model sub- stances, since the basic structure of soot can be regarded as an agglomerate of highly polymerized PAC-layers. For the chemical analysis of polycyclic aromatic aerosol components a new analyti- cal method based on LC-APCI-MS has been developed, and a data base comprising PAHs, Oxy-PAHs and Nitro-PAHs has been established. Together with a GC-HRMS method it will be applied to identify and quantify PAHs and Nitro-PAHs in atmo- spheric aerosol samples, diesel exhaust particle samples and model soot samples from laboratory reaction kinetics and product studies. As reported before, the adsorption and surface reaction rate of ozone on soot and PAH-like particle surfaces is reduced by competitive adsorption of water vapor at low relative humidity (< 25 %). Recent results at higher relative humidities (ca. 50 %), however, indicate re-enhanced gas phase ozone loss, which may be due to absorbtion of ozone into an aqueous surface layer. The interaction of ozone and nitrogen

  20. Long-term trends of carbonaceous aerosol at Cape Hedo, Okinawa, Japan: based on changes in source emissions in Asian Continent

    NASA Astrophysics Data System (ADS)

    Shimada, K.; Hatakeyama, S.; Takami, A.; Shuichi, H.; Kajii, Y. J.; Kato, S.; Fushimi, A.

    2011-12-01

    Since 2004, carbonaceous aerosol were measured at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan, which was certified a super site by UNEP, focusing on investigating trans-boundary air pollutions or the long-term effects of aerosols on climate impact at CHAAMS using RP5400. Measurements were carried out with a time resolution of 3 hours and the observation as a whole was on a long-term basis. We found a general downward trend in the measured OC concentration at CHAAMS, with a reduction of -0.13±0.04 μgm-3 yr-1. On the other hand, EC concentration showed an increase of 16±8 ngm-3 yr-1 since 2004. The increase of EC concentration at CHAAMS is, however, not statistically significant. Firstly, to elucidate the influence of different emission source origin on downward trend of OC, we tried using OC/EC ratio. The OC/EC ratio showed a downward trend, suggesting that the reduction of biomass burning caused a downward trend in OC/EC ratio. On the other hand, the influence of emission source origin on upward trend of EC was shown to be the increasing tendency of sulphate. (year 2003~). It is suggested that increasing emission of coal combustion in the Asian continent affects upward trend on EC at CHAAMS. But, during winter and spring seasons, EC did not show an upward trend. We hypothesized that a combination of increasing fossil fuel combustion and decreasing biomass burning affects this trend. To further understand the effects of fossil fuel and biomass burning respectively, detailed data analysis will be done. Also, the ratio of EC and/or OC concentrations with CO concentrations which has been showing interesting features, will also be discussed.

  1. Interstellar organics and possible connections with the carbonaceous components of meteorites and IDPs

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1991-01-01

    Studying the chemical and isotopic composition of interstellar ice and dust provides insight into the composition and chemical history of the solid bodies in the solar nebula and the nature of the materials subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to probe the composition of these microscopic interstellar particles. High quality IR spectra of many different astronomical sources (some associated with dark molecular clouds, and others in the diffuse interstellar medium) are now available. Comparisons of these spectra with laboratory spectra and complex organic components of these materials are discussed.

  2. Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam Co Station, 4730 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Wan, Xin; Kang, Shichang; Wang, Yuesi; Xin, Jinyuan; Liu, Bin; Guo, Yuhong; Wen, Tianxue; Zhang, Guoshuai; Cong, Zhiyuan

    2015-02-01

    The chemical composition and size distribution characteristics of atmospheric aerosols have important effects on the environment, human health and climate change. In this paper, we study the size distribution of carbonaceous aerosols at the remote and pristine site, Nam Co Monitoring and Research Station for Multisphere Interactions, in the inland Tibetan Plateau (TP) based on collected size-segregated aerosols during 2012. The samples were quantified using the thermal/optical (TOR) method. The overall average concentrations of OC and EC in TSP, PM9.0, PM2.1, and PM1.0 were 4.61 μg m- 3 and 0.19 μg m- 3, 4.52 μg m- 3 and 0.18 μg m- 3, 2.72 μg m- 3 and 0.11 μg m- 3, and 2.11 μg m- 3 and 0.09 μg m- 3, respectively. Generally, the highest concentration of OC and EC in different aerosol size occurred during winter. The low level of EC indicated that direct anthropogenic disturbances in the interior of the TP still remain insignificant. The size distributions of OC and EC concentrations presented bimodal variations. In winter, pre-monsoon, monsoon, and post-monsoon seasons, the peaks for OC were in droplet mode (0.43-0.65 μm) and coarse mode (4.7-5.8 μm); while in the monsoon period, the coarse mode shifted to a smaller size bin (3.3-4.7 μm). The coarse mode may be due to dust particles while the droplet mode may be due to the growth process of particles. For EC, the peaks variations in coarse mode were as same as OC, while the other peaks were complicated: the peaks during winter, pre-monsoon, and monsoon seasons exhibited in droplet mode (1.1-2.1 μm, 0.65-1.1 μm, and 0.43-0.65 μm, respectively), and in post-monsoon period, the peak located in condensation mode. The highest peak concentrations for OC and EC occurred in winter and the pre-monsoon period, while the lowest peak values in the monsoon and post-monsoon periods, respectively. The size distribution variations may be caused by deposition, gas/particles exchange, hygroscopic growth, external mixing

  3. Determining Oxidation Rates in Multi-component Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Sage, A. M.; Weitkamp, E. A.; Huff Hartz, K. E.; Robinson, A. L.; Donahue, N. M.

    2006-12-01

    Aerosol composition influences the kinetics of condensed-phase organic species, making extrapolation of rate constants from single-component systems to atmospherically-relevant mixtures difficult. Using a mixed-phase relative rate constants approach, we have overcome this difficulty, obtaining heterogeneous oxidation rate constants for each species in several multi-component organic mixtures. We have also derived a compound- specific uptake coefficient that relates these rate constants to previous uptake measurements. In the ozonolysis of model meat-cooking mixtures, we observe significant decay of saturated and unsaturated acids and sterols. By relating the observed decomposition of condensed-phase species to that of gas-phase standards, we track the evolution of effective rate constants for oleic acid and palmitoleic acid oxidation as the aerosol is chemically processed. Each decreases by nearly a factor of ten over the course of an experiment. Rate constants also depend strongly on aerosol composition, changing by more than an order of magnitude with increasing mixture complexity. To compare these results with previous results, we have derived a compound-specific uptake coefficient (γi' for condensed-phase species i), which describes the kinetics of reactive uptake in mixtures and can be meaningfully related to the traditional uptake coefficient. We express uptake in terms of the concentrations of condensed-phase species, and to do so accurately, we use alkanoic acids to correct the decay of reactive alkenoic acids for secondary chemistry. This correction is incorporated into the definition of γi', and in terms of γi', the standard uptake coefficient can be written as: γ=∑χiγi', where χi is the mass fraction of species i and the summation is over all oxidized species. By using condensed-phase decay to calculate the uptake, we have apportioned reactive uptake among responsible species. This provides information not only about the potential of a particle

  4. Radiocarbon-insights into temporal variations in the sources and concentrations of carbonaceous aerosols in the Los Angeles and Salt Lake City Metropolitan Areas

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson

    2014-05-01

    Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire

  5. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley of Chamonix: a dual approach based on radiocarbon and levoglucosan

    NASA Astrophysics Data System (ADS)

    Bonvalot, Lise; Tuna, Thibaut; Fagault, Yoann; Jaffrezo, Jean-Luc; Jacob, Véronique; Chevrier, Florie; Bard, Edouard

    2016-11-01

    Atmospheric particulate matter (PM) affects the climate in various ways and has a negative impact on human health. In populated mountain valleys in Alpine regions, emissions from road traffic contribute to carbonaceous aerosols, but residential wood burning can be another source of PM during winter. We determine the contribution of fossil and non-fossil carbon sources by measuring radiocarbon in aerosols using the recently installed AixMICADAS facility. The accelerator mass spectrometer is coupled to an elemental analyzer (EA) by means of a gas interface system directly connected to the gas ion source. This system provides rapid and accurate radiocarbon measurements for small samples (10-100 µgC) with minimal preparation from the aerosol filters. We show how the contamination induced by the EA protocol can be quantified and corrected for. Several standards and synthetic samples are then used to demonstrate the precision and accuracy of aerosol measurements over the full range of expected 14C / 12C ratios, ranging from modern carbon to fossil carbon depleted in 14C. Aerosols sampled in Chamonix and Passy (Arve River valley, French Alps) from November 2013 to August 2014 are analyzed for both radiocarbon (124 analyses in total) and levoglucosan, which is commonly used as a specific tracer for biomass burning. NOx concentration, which is expected to be associated with traffic emissions, is also monitored. Based on 14C measurements, we can show that the relative fraction of non-fossil carbon is significantly higher in winter than in summer. In winter, non-fossil carbon represents about 85 % of total carbon, while in summer this proportion is still 75 % considering all samples. The largest total carbon and levoglucosan concentrations are observed for winter aerosols with values up to 50 and 8 µg m-3, respectively. These levels are higher than those observed in many European cities, but are close to those for other polluted Alpine valleys. The non-fossil carbon

  6. Monte Carlo simulation of two-component aerosol processes

    NASA Astrophysics Data System (ADS)

    Huertas, Jose Ignacio

    Aerosol processes have been extensively used for production of nanophase materials. However when temperatures and number densities are high, particle agglomeration is a serious drawback for these techniques. This problem can be addressed by encapsulating the particles with a second material before they agglomerate. These particles will agglomerate but the primary particles within them will not. When the encapsulation is later removed, the resulting powder will contain only weakly agglomerated particles. To demonstrate the applicability of the particle encapsulation method for the production of high purity unagglomerated nanosize materials, tungsten (W) and tungsten titanium alloy (W-Ti) particles were synthesized in a sodium/halide flame. The particles were characterized by XRD, SEM, TEM and EDAX. The particles appeared unagglomerated, cubic and hexagonal in shape, and had a size of 30-50 nm. No contamination was detected even after extended exposure to atmospheric conditions. The nanosized W and W-Ti particles were consolidated into pellets of 6 mm diameter and 6-8 mm long. Hardness measurements indicate values 4 times that of conventional tungsten. 100% densification was achieved by hipping the samples. To study the particle encapsulation method, a code to simulate particle formation in two component aerosols was developed. The simulation was carried out using a Monte Carlo technique. This approach allowed for the treatment of both probabilistic and deterministic events. Thus, the coagulation term of the general dynamic equation (GDE) was Monte Carlo simulated, and the condensation term was solved analytically and incorporated into the model. The model includes condensation, coagulation, sources, and sinks for two-component aerosol processes. The Kelvin effect has been included in the model as well. The code is general and does not suffer from problems associated with mass conservation, high rates of condensation and approximations on particle composition. It has

  7. The importance of non-fossil sources in carbonaceous aerosols in a megacity of central China during the 2013 winter haze episode: A source apportionment constrained by radiocarbon and organic tracers

    NASA Astrophysics Data System (ADS)

    Liu, Junwen; Li, Jun; Vonwiller, Matthias; Liu, Di; Cheng, Hairong; Shen, Kaijun; Salazar, Gary; Agrios, Konstantinos; Zhang, Yanlin; He, Quanfu; Ding, Xiang; Zhong, Guangcai; Wang, Xinming; Szidat, Sönke; Zhang, Gan

    2016-11-01

    To determine the causes of a severe haze episode in January 2013 in China, a source apportionment of different carbonaceous aerosols (CAs) was conducted in a megacity in central China (Wuhan, Hubei Province) by using the measurements of radiocarbon and molecular organic tracers. Non-fossil sources (e.g., domestic biofuel combustion and biogenic emissions) were found to be responsible for 62% ± 5% and 26% ± 8% of organic carbon (OC) and elemental carbon (EC) components by mass, respectively. Non-fossil sources contributed 57% ± 4% to total CAs in this large-scale haze event, whereas fossil-fuel sources were less dominant (43% ± 4%). The CAs were composed of secondary organic carbon (SOC; 46% ± 10%), primary fossil-fuel carbon (29% ± 4%) and primary biomass-burning carbon (25% ± 10%). Although SOC was formed mainly from non-fossil sources (70% ± 4%), the role of fossil precursors was substantial (30% ± 4%), much higher than at the global scale. Combined measurement of organic tracers and radiocarbon showed that most non-fossil SOC was probably derived from biomass burning during this long-lasting haze episode in central China.

  8. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  9. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; Masalaite, A.; Blees, J.; Fröhlich, R.; Dällenbach, K. R.; Canonaco, F.; Slowik, J. G.; Dommen, J.; Zimmermann, R.; Schnelle-Kreis, J.; Salazar, G. A.; Agrios, K.; Szidat, S.; El Haddad, I.; Prévôt, A. S. H.

    2015-09-01

    In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 μg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the TC, respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 % and 7-12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  10. Maritime Aerosol Network (MAN) as a Component of AERONET

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; Quinn, P. K.

    2008-01-01

    The World Ocean produces a large amount of natural aerosols that have all impact on the Earth's albedo and climate. Sea-salt is the major contributor to aerosol optical depth over the oceans. [Mahowald et al. 2006; Chin et al. 2002; Satheesh et al. 1999; Winter and Chylek, 1997] and therefore affects the radiative balance over the ocean through the direct [Haywood et al. 1999] and indirect aerosol effect [O'Dowd et al. 1999]. Aerosols over the oceans (produced marine and advected from land sources) are important for various atmospheric processes [Lewis and Schwartz, 2004] and remote sensing studies [Gordon, 1997].

  11. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    NASA Astrophysics Data System (ADS)

    Liu, Junwen; Li, Jun; Liu, Di; Ding, Ping; Shen, Chengde; Mo, Yangzhi; Wang, Xinming; Luo, Chunling; Cheng, Zhineng; Szidat, Sönke; Zhang, Yanlin; Chen, Yingjun; Zhang, Gan

    2016-03-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  12. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, J.; Liu, D.; Ding, P.; Shen, C.; Mo, Y.; Wang, X.; Luo, C.; Cheng, Z.; Szidat, S.; Zhang, Y.; Chen, Y.; Zhang, G.

    2015-12-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities of China, yet seldom study simultaneously focuses on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), respectively, using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 % in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 % in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  13. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds

    NASA Astrophysics Data System (ADS)

    Fujii, Yusuke; Kawamoto, Haruo; Tohno, Susumu; Oda, Masafumi; Iriana, Windy; Lestari, Puji

    2015-06-01

    Smoke emitted from Indonesian peatland fires has caused dense haze and serious air pollution in Southeast Asia such as visibility impairment and adverse health impacts. To mitigate the Indonesian peatland fire aerosol impacts, an effective strategy and international framework based on the latest scientific knowledge needs to be established. Although several attempts have been made, limited data exist regarding the chemical characteristics of peatland fire smoke for the source apportionment. In order to identify the key organic compounds of peatland fire aerosols, we conducted intensive field studies based on ground-based and source-dominated sampling of PM2.5 in Riau Province, Sumatra, Indonesia, during the peatland fire seasons in 2012. Levoglucosan was the most abundant compound among the quantified organic compounds at 8.98 ± 2.28% of the PM2.5 mass, followed by palmitic acid at 0.782 ± 0.163% and mannosan at 0.607 ± 0.0861%. Potassium ion was not appropriate for an indicator of Indonesian peatland fires due to extremely low concentrations associated with smoldering fire at low temperatures. The vanillic/syringic acids ratio was 1.06 ± 0.155 in this study and this may be a useful signature profile for peatland fire emissions. Particulate n-alkanes also have potential for markers to identify impact of Indonesian peatland fire source at a receptor site.

  14. A new comprehensive approach to characterizing carbonaceous aerosol with an application to wintertime Fresno, California PM2.5

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fine particulate matter (PM2.5) samples were collected during a three week winter period in Fresno (CA). A composite sample was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the aerosol samples was recovered and characterized. Only 35% of the organic matter was water soluble with another third soluble in dichloromethane and the remainder insoluble. Within the isolated water soluble material, hydrophobic acid and hydrophilic acids plus neutrals fractions contained the largest amounts of carbon. The hydrophobic acids fraction appears to contain significant amounts of lignin type structures, spectra of the hydrophilic acids plus neutrals fraction are indicative of carbohydrates and secondary organic material. The dichloromethane soluble fraction contains a variety of organic compound families typical of many previous studies of organic aerosol speciation, including alkanes, alkanols, alkanals and alkanoic acids. Finally the water and solvent insoluble fraction exhibits a strong aromaticity as one would expect from black or elemental carbon like material; however, these spectra also show a substantial amount of aliphaticity consistent with linear side chains on the aromatic structures.

  15. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  16. Organic Aerosol Component (OACOMP) Value-Added Product

    SciTech Connect

    Fast, J; Zhang, Q; tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10–90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties accurately. This deficiency represents a large source of uncertainty in quantification of aerosol effects and prediction of future climate change. Evaluation and development of aerosol models require data products generated from field observations. Real-time, quantitative data acquired with aerosol mass spectrometers (AMS) (Canagaratna et al. 2007) are critical to this need. The AMS determines size-resolved concentrations of non-refractory (NR) species in submicrometer particles (PM1) with fast time resolution suitable for both ground-based and aircraft deployments. The high-resolution AMS (HR-AMS), which is equipped with a high mass resolution time-of-flight mass spectrometer, can be used to determine the elemental composition and oxidation degrees of OA (DeCarlo et al. 2006).

  17. Emission ratio of carbonaceous aerosols observed near crop residual burning sources in a rural area of the Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Taketani, F.; Tanimoto, H.; Irie, H.; Takashima, H.; Inomata, S.

    2012-11-01

    Intensive open crop residue burning (OCRB) has a great impact on regional air quality and climate. A field observation campaign in a rural area of the Yangtze River Delta Region (YRDR) was performed during the harvest season, and Elemental carbon (ECa), organic carbon (OC), black carbon (BCe), carbon monoxide (CO), carbon dioxide (CO2) and PM2.5mass were concurrently measured. During the observation period, urban pollution and OCRB-impact episodes were classified. The emission ratio of ECa mass (defined as the ΔECa/ΔCO ratio) from OCRB was estimated to be 18.2 ± 4.6 ng/m3/ppbv, much higher than that (3.0 ± 0.3 ng/m3/ppbv) of urban pollution from the YRDR. A significant amount of OC was emitted from OCRB with ΔOC/ΔCO ratio of 101.3 ± 41.6 ng/m3/ppbv. The value found in the present study was near the upper limit of OC emission ratios in the literature, implying great impacts from combustion conditions, types of biomass burned and subsequent evolution. Regarding urban pollution episodes, the ΔOC/ΔCO ratio was found to be 23.7 ± 2.4 ng/m3/ppbv, and secondary organics accounted for the major fraction of OC mass. Combustions phases of OCRB were classified according to a modified combustion efficiency (MCE, defined as ΔCO2/(ΔCO + ΔCO2)). Our results support the view that ECa tend to be produced in flaming combustions (MCE > 0.95) than in smoldering combustions (MCE < 0.95), whereas OC is emitted preferentially from smoldering combustions. Based on our observed carbonaceous aerosol correlations, we estimate that the ECa and OC emissions from OCRB in East Asia might be underestimated by at least 50%.

  18. Assessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport.

    PubMed

    Friedman, C L; Pierce, J R; Selin, N E

    2014-03-18

    We use the chemical transport model GEOS-Chem to evaluate the hypothesis that atmospheric polycyclic aromatic hydrocarbons (PAHs) are trapped in secondary organic aerosol (SOA) as it forms. We test the ability of three different partitioning configurations within the model to reproduce observed total concentrations in the midlatitudes and the Arctic as well as midlatitude gas-particle phase distributions. The configurations tested are (1) the GEOS-Chem default configuration, which uses instantaneous equilibrium partitioning to divide PAHs among the gas phase, a primary organic matter (OM) phase (absorptive), and a black carbon (BC) phase (adsorptive), (2) an SOA configuration in which PAHs are trapped in SOA when emitted and slowly evaporate from SOA thereafter, and (3) a configuration in which PAHs are trapped in primary OM/BC upon emission and subsequently slowly evaporate. We also test the influence of changing the fraction of PAHs available for particle-phase oxidation. Trapping PAHs in SOA particles upon formation and protecting against particle-phase oxidation (2) better simulates observed remote concentrations compared to our default configuration (1). However, simulating adsorptive partitioning to BC is required to reproduce the magnitude and seasonal pattern of gas-particle phase distributions. Thus, the last configuration (3) results in the best agreement between observed and simulated concentration/phase distribution data. The importance of BC rather than SOA to PAH transport is consistent with strong observational evidence that PAHs and BC are coemitted.

  19. Online coupling of pure O2 thermo-optical methods - 14C AMS for source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-10-01

    This paper reports on novel separation methods developed for the direct determination of 14C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of 14C aerosol source apportionment.

  20. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Chen, Pengfei; Kang, Shichang; Yan, Fangping; Hu, Zhaofu; Qu, Bin; Sillanpää, Mika

    2016-02-01

    Light absorption properties of carbonaceous aerosol strongly influence the Earth's radiative balance, yet the related knowledge is limited for the Tibetan Plateau (TP), the highest and largest plateau in the world. In this study, organic carbon (OC), elemental carbon (EC) and water soluble organic carbon (WSOC) of PM2.5 and PM10 of Lhasa collected from May 2013 to March 2014 were studied. It showed that daily-average concentrations of OC, EC and WSOC of PM2.5 and PM10 were lower than those of other megacities. Lhasa PM2.5 was characterized by low OC/EC ratio (1.46 ± 0.55), which was similar to that of Lhasa roadside PM2.5 (1.25 ± 0.45), reflecting mainly direct influence of primary emissions and less secondary formation. Hence, although Lhasa atmosphere is relatively clean, it is intensively influenced by local vehicle emissions. Mass absorption cross-section of EC (MACEC) for both PM2.5 and PM10 at 632 nm were 7.19 ± 1.19 m2 g-1 and 7.98 ± 2.32 m2 g-1, respectively, both of which had similar variation patterns to OC/EC and secondary OC (SOC)/OC, indicating that the increase of MACEC might be caused by coating with organic aerosol. Additionally, the loading of EC for both PM2.5 and PM10 showed logarithmic relationships with those of optical attenuation (ATN) of EC, implying that the shadowing effect enhanced logarithmic with increased EC concentration. MAC of WSOC at 365 nm for PM2.5 (0.74 ± 0.22 m2 g-1) and PM10 (0.78 ± 0.21 m2 g-1) were also close to reported values of other cities mainly influenced by fossil combustion. Additionally, attenuation at 365 nm of WSOC of both PM2.5 and PM10 showed the same relationship with their WSOC concentrations, implying no difference for light absorption properties of WSOC for these two grain sizes.

  1. Improved measurement of carbonaceous aerosol: evaluation of the sampling artifacts and inter-comparison of the thermal-optical analysis methods

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.

    2010-09-01

    The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and

  2. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century

    NASA Astrophysics Data System (ADS)

    Yue, Xu; Mickley, Loretta J.; Logan, Jennifer A.; Kaplan, Jed O.

    2013-10-01

    We estimate future wildfire activity over the western United States during the mid-21st century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the variance in observed annual area burned during 1980-2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ˜0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at midcentury. We calculate increases of 24-124% in area burned using regressions and 63-169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p < 0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at midcentury. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46-70% and black carbon by 20-27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by ˜90% and BC by ˜50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in

  3. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested.

  4. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  5. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M.

    2015-11-01

    Since there have been individual reports of persistent haze-fog events in January 2013 in central-eastern China, questions on factors causing the drastic differences in changes in 2013 from changes in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributing to such changes is yet to be determined. The study intends to present the changes in daily based major water-soluble constituents, carbonaceous species, and mineral aerosol in PM10 at 13 stations within different haze regions in China from 2006 to 2013, which are associated with specific meteorological conditions that are highly related to aerosol pollution (parameterized as an index called Parameter Linking Aerosol Pollution and Meteorological Elements - PLAM). No obvious changes were found in annual mean concentrations of these various chemical components and PM10 in 2013, relative to 2012. By contrast, wintertime mass of these components was quite different. In Hua Bei Plain (HBP), sulfate, organic carbon (OC), nitrate, ammonium, element carbon (EC), and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21, and 130 μg m-3, respectively; these masses were approximately 2 to 4 times higher than those in background mass, which also exhibited a decline during 2006 to 2010 and then a rise till 2013. The mass of these concentrations and PM10, except minerals, respectively, increased by approximately 28 to 117 % and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze-fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In the Yangtze River Delta (YRD) area, winter masses of these components, unlike HBP, have not significantly increase since 2010; PLAM were also maintained at a similar level without

  6. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  7. Production-based emissions, consumption-based emissions and consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Nansai, Keisuke; Tohno, Susumu; Nishizawa, Masato; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-11-01

    This study determined the production-based emissions, the consumption-based emissions, and the consumption-based health impact of primary carbonaceous aerosols (black carbon: BC, organic carbon: OC) in nine countries and regions in Asia (Indonesia, Malaysia, the Philippines, Singapore, Thailand, China, Taiwan, South Korea, and Japan) in 2008. For the production-based emissions, sectoral emissions inventory of BC and OC for the year of 2008 based on the Asian international input-output tables (AIIOT) was compiled including direct emissions from households. Then, a multiregional environmental input-output analysis with the 2008 AIIOT which was originally developed by updating the table of 2000 was applied for calculating the consumption-based emissions for each country and region. For the production-based emissions, China had the highest BC and OC emissions of 4520 Gg-C in total, which accounted for 75% of the total emissions in the nine countries and regions. For consumption-based emissions, China was estimated to have had a total of 4849 Gg-C of BC and OC emissions, which accounted for 77% of the total emissions in the Asia studied. We also quantified how much countries and regions induced emissions in other countries and regions. Furthermore, taking account of the source-receptor relationships of BC and OC among the countries and regions, we converted their consumption-based emissions into the consumption-based health impact of each country and region. China showed the highest consumption-based health impact of BC and OC totaling 111 × 103 premature deaths, followed by Indonesia, Japan, Thailand and South Korea. China accounted for 87% of the sum total of the consumption-based health impacts of the countries/regions, indicating that China's contribution to consumption-based health impact in Asia was greater than its consumption-based emissions. By elucidating the health impacts that each country and region had on other countries and from which country the impacts

  8. Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Li, Guanghui; Yang, Weiqiang; Huang, Zhonghui; Zhang, Zhou; Huang, Xinyu; Deng, Wei; Liu, Tengyu; Huang, Zuzhao; Zhang, Zhanyi

    2015-12-01

    Motor vehicles contribute primarily and secondarily to air quality problems due to fine particle (PM2.5) and ozone (O3) pollution in China's megacities. Characterizing vehicle emission with the rapid change of vehicle numbers and fleet compositions is vital for both bottom-up emission survey and top-down source apportioning. To obtain emission factors (EFs) of PM2.5, carbonaceous aerosols and trace gases for road vehicles, in urban Guangzhou we conducted a field campaign in 2014 in the Zhujiang Tunnel, a heavily burdened tunnel with about 40,000 motor vehicles passing through each of its two separated bores per day. PM2.5 and volatile organic compounds (VOCs) were sampled for offline analysis while trace gases including SO2, NOx and CO were measured online and in situ. An eddy covariance system with an integrated 3-D sonic anemometer was also adopted to measure CO2 and winds inside the tunnel. We recorded an average fleet composition of 61% light-duty gasoline vehicles (LDVs) + 12% heavy-duty diesel vehicles (HDVs) + 27% liquefied petroleum gas vehicles (LPGVs), and EFs of 82.7 ± 28.3, 19.3 ± 4.7 and 13.3 ± 3.3 mg veh-1 km-1, respectively, for PM2.5, organic carbon (OC) and elemental carbon (EC). These EFs were respectively 23.4%, 18.3% and 72.3% lower when compared to that measured in the same tunnel in 2004. EFs of PM2.5, OC and EC were higher at night time (148 ± 126, 29 ± 24 and 21 ± 18 mg veh-1 km-1, respectively) due to significantly elevated fractions of HDVs in the traffic fleets. An average ratio of OC to EC 1.45 from this tunnel study was much higher than that of ∼0.5 in previous tunnel studies. The EFs of SO2, NOx, CO, CO2 and NMHCs for road traffic were also obtained from our tunnel tests, and they were 20.7 ± 2.9, (1.29 ± 0.2)E+03, (3.10 ± 0.68)E+03, (3.90 ± 0.49)E+05, and 448 ± 39 mg veh-1 km-1, respectively.

  9. Maritime Aerosol Network (MAN) as a component of AERONET - first results

    NASA Astrophysics Data System (ADS)

    Smirnov, A.

    2009-04-01

    The paper presents a concept and the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). The proposed activity includes deployment of hand-held sunphotometers at sea and measurements from various ships of opportunity. Overall MAN will complement island-based AERONET measurements and will expand AERONET program to acquire additional data over the oceans. Scientific objectives of this kind of activity are primarily climate change studies (direct and indirect forcing); satellite retrievals validation; validation of global aerosol transport model simulations; and atmospheric correction in ocean color studies. MAN deploys Microtops hand-held sunphotometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site (http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html) dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. Accomplished cruises included transects from Northern to Southern Atlantic, from Northern to Southern Pacific, from New Zealand to Japan, measurements in Southern Indian Ocean, in the Tropical Atlantic, along the western coast of South America, near the coast of Antarctica, in the Mediterranean, Arabian, Beafort, Bering, Barents, Greenland Seas and in the Bay of Bengal. First results are presented. MAN ship-based aerosol optical depth compare well to simultaneous island and near-coastal AERONET site AOD. We believe that the Maritime Aerosol Network will provide the scientific community with valuable information on aerosol optical properties over the oceans. Employing simple, standard and commercially available instrumentation, traceable calibration, a scientifically sound processing scheme and easily accessible web-based public data archive, the network has strong growth potential. Expanded spatial coverage will contribute

  10. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M.

    2015-07-01

    Since individuals experienced persistent haze-fog events in January 2013 in central-eastern China, questions on factors causing differences in drastic changes in 2013 from those in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributed to such changes is yet to be determined. The study intends to present the changes in daily-based major water-soluble constituents, carbonaceous species and mineral aerosol in PM10 at 13 stations within different haze regions in China from 2006 to 2013, associated with specific meteorological conditions that are highly related with aerosol pollution (parameterized as an index called "PLAM"). No obvious changes were found in annual mean concentrations of these various chemical components and PM10 in 2013, relative to 2012. By contrast, wintertime mass of these components were quite different, in Hua Bei Plain (HBP), sulfate, OC, nitrate, ammonium, EC, and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21 and 130 μg m-3, respectively; these masses were approximately two to four times higher than those in background mass, also exhibiting a decline during 2006 to 2010, and then a rise till 2013. The mass of these concentrations and PM10, except mineral, respectively increased by approximately 28 to 117 and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze-fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In Yangtzi River Delta (YRD) area, winter masses of these components, unlike HBP, did not significantly increase since 2010; PLAM was also maintained at a similar level without significant changes. In the Pearl River Delta (PRD) area, the regional background concentrations of the major chemical components were similar

  11. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2016-02-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  12. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  13. The Magnetization of Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Herndon, James Herndon

    1974-01-01

    Alternating field demagnetization experiments have been conducted on representative samples of the carbonaceous meteorites (carbonaceous chondrites and ureilites). The results indicate that many, if not all, of these meteorites possess an intense and stable magnetic moment of extraterrestrial origin. Thermomagnetic analyses have been conducted on samples of all known carbonaceous meteorites. In addition to yielding quantitative magnetite estimates, these studies indicate the presence of a thermally unstable component, troilite, which reacts with gaseous oxygen to form magnetite. It is proposed that the magnetite found in some carbonaceous chondrites resulted from the oxidation of troilite during the early history of the solar system. The formation of pyrrhotite is expected as a natural consequence of magnetite formation via this reaction. Consideration is given to the implications of magnetite formation on paleointensity studies.

  14. Assessment of the aerosol optics component of the coupled WRF-CMAQ model using CARES field campaign data and a single column model

    NASA Astrophysics Data System (ADS)

    Gan, Chuen Meei; Binkowski, Francis; Pleim, Jonathan; Xing, Jia; Wong, David; Mathur, Rohit; Gilliam, Robert

    2015-08-01

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) - Community Multiscale Air Quality (CMAQ) model. This campaign included comprehensive measurements of aerosol composition and optical properties at two ground sites and aloft from instrumentation on-board two aircraft. A single column model (SCM) was developed to evaluate the accuracy and consistency of the coupled model using both observation and model information. Two cases (June 14 and 24, 2010) are examined in this study. The results show that though the coupled WRF-CMAQ estimates of aerosol extinction were underestimated relative to these measurements, when measured concentrations and characteristics of ambient aerosols were used as input to constrain the SCM calculations, the estimated extinction profiles agreed well with aircraft observations. One of the possible causes of the WRF-CMAQ extinction errors is that the simulated sea-salt (SS) in the accumulation mode in WRF-CMAQ is very low in both cases while the observations indicate a considerable amount of SS. Also, a significant amount of organic carbon (OC) is present in the measurement. However, in the current WRF-CMAQ model all OC is considered to be insoluble whereas most secondary organic aerosol is water soluble. In addition, the model does not consider external mixing and hygroscopic effects of water soluble OC which can impact the extinction calculations. In conclusion, the constrained SCM results indicate that the scattering portion of the aerosol optics calculations is working well, although the absorption calculation could not be effectively evaluated. However, a few factors such as greatly underestimated accumulation mode SS, misrepresentation of water soluble OC, and incomplete mixing state representation in the full coupled model

  15. Modelling multi-component aerosol transport problems by the efficient splitting characteristic method

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Fu, Kai; Wang, Wenqia

    2016-11-01

    In this paper, a splitting characteristic method is developed for solving general multi-component aerosol transports in atmosphere, which can efficiently compute the aerosol transports by using large time step sizes. The proposed characteristic finite difference method (C-FDM) can solve the multi-component aerosol distributions in high dimensional domains over large ranges of concentrations and for different aerosol types. The C-FDM is first tested to compute the moving of a Gaussian concentration hump. Comparing with the Runge-Kutta method (RKM), our C-FDM can use very large time step sizes. Using Δt = 0.1, the accuracy of our C-FDM is 10-4, but the RKM only gets the accuracy of 10-2 using a small Δt = 0.01 and the accuracy of 10-3 even using a much smaller Δt = 0.002. A simulation of sulfate transport in a varying wind field is then carried out by the splitting C-FDM, where the sulfate pollution is numerically showed expanding along the wind direction and the effects of the different time step sizes and different wind speeds are analyzed. Further, a realistic multi-component aerosol transport over an area in northeastern United States is studied. Concentrations of PM2.5 sulfate, ammonium, nitrate are high in the urban area, and low in the marine area, while sea salts of sodium and chloride mainly exist in the marine area. The normalized mean bias and the normalized mean error of the predicted PM2.5 concentrations are -6.5% and 24.1% compared to the observed data measured at monitor stations. The time series of numerical aerosol concentration distribution show that the strong winds can move the aerosol concentration peaks horizontally for a long distance, such as from the urban area to the rural area and from the marine area to the urban and rural area. Moreover, we also show the numerical time duration patterns of the aerosol concentration distributions due to the affections of the turbulence and the deposition removal. The developed splitting C-FDM algorithm

  16. Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite.

    PubMed

    Davidson, Jemma; Schrader, Devin L; Alexander, Conel M O'D; Lauretta, Dante S; Busemann, Henner; Franchi, Ian A; Greenwood, Richard C; Connolly, Harold C; Domanik, Kenneth J; Verchovsky, Alexander

    2014-12-01

    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.

  17. Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite

    PubMed Central

    Davidson, Jemma; Schrader, Devin L; Alexander, Conel M O'D; Lauretta, Dante S; Busemann, Henner; Franchi, Ian A; Greenwood, Richard C; Connolly, Harold C; Domanik, Kenneth J; Verchovsky, Alexander

    2014-01-01

    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable. PMID:26640360

  18. Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Davidson, Jemma; Schrader, Devin L.; Alexander, Conel M. O'd.; Lauretta, Dante S.; Busemann, Henner; Franchi, Ian A.; Greenwood, Richard C.; Connolly, Harold C.; Domanik, Kenneth J.; Verchovsky, Alexander

    2014-12-01

    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.

  19. Constraining Carbonaceous Aerosol Sources in a Receptor Model Using Combined 14C, Redox Species, Organic Tracers, and Elementary/Organic Carbon Measurements

    EPA Science Inventory

    Sources of carbonaceous PM2.5 were quantified in downtown Cleveland, OH and Chippewa Lake, OH located ~40 miles southwest of Cleveland during the Cleveland Multiple Air Pollutant Study (CMAPS). PM2.5 filter samples were collected daily during July-August 200...

  20. REDOX AND ELECTROPHILIC PROPERTIES OF VAPOR- AND PARTICLE-PHASE COMPONENTS OF AMBIENT AEROSOLS

    PubMed Central

    Eiguren-Fernandez, Arantzazu; Shinyashiki, Masaru; Schmitz, Debra A.; DiStefano, Emma; Hinds, William; Kumagai, Yoshito; Cho, Arthur K.; Froines, John R.

    2010-01-01

    Particulate matter (PM) has been the primary focus of studies aiming to understand the relationship between the chemical properties of ambient aerosols and adverse health effects. Size and chemical composition of PM have been linked to their oxidative capacity which has been postulated to promote or exacerbate pulmonary and cardiovascular diseases. But in the last few years, new studies have suggested that volatile and semivolatile components may also contribute to many adverse health effects. The objectives of this study were: i) assess for the first time the redox and electrophilic potential of vapor-phase components of ambient aerosols, and ii) evaluate the relative contributions of particle- and vapor-fractions to the hazard of a given aerosol. To achieve these objectives vapor- and particle-phase samples collected in Riverside (CA) were subjected to three chemical assays to determine their redox and electrophilic capacities. The results indicate that redox active components are mainly associated with the particle-phase, while electrophilic compounds are found primarily in the vapor-phase. Vapor-phase organic extracts were also capable of inducing the stress responding protein, heme-oxygenase-1 (HO-1), in RAW264.7 murine macrophages. These results demonstrate the importance of volatile components in the overall oxidative and electrophilic capacity of aerosols, and point out the need for inclusion of vapors in future health and risk assessment studies. PMID:20152964

  1. Effects of mineral dust on the semivolatile inorganic aerosol components in a polluted Megacity

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Fountoukis, C.; Nenes, A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2009-04-01

    Aerosols play a significant role in the atmosphere having adverse impacts on human health and directly affecting air quality, visibility and climate change. One of the most challenging tasks for models is the prediction of the partitioning of the semivolatile inorganic aerosol components (ammonia, nitric acid, hydrochloric acid, etc) between the gas and particulate phases. Moreover, the effects of mineral aerosols in the atmosphere remain largely uncertain. As a result, most current models have serious difficulties in reproducing the observed particulate nitrate and chloride concentrations. The improved aerosol thermodynamic model ISORROPIA II (Fountoukis and Nenes, 2007) simulating explicitly the chemistry of Ca, Mg, and K salts has been linked to the regional chemical transport model PMCAMx (Gaydos et al., 2007). PMCAMx also includes the CMU inorganic aerosol growth module (Gaydos et al., 2003; Koo et al., 2003a) and the VSRM aqueous-phase chemistry module (Fahey and Pandis, 2001). The hybrid approach (Koo et al., 2003b) for modeling aerosol dynamics is applied in order to accurately simulate the inorganic components in the coarse mode. This approach assumes that the smallest particles are in equilibrium, while the condensation/evaporation equation is solved for the larger ones. PMCAMx is applied to the Mexico City Metropolitan Area (MCMA). The emission inventory has been improved and now includes more accurate dust and NaCl emissions. The April 2003 (MCMA Campaign) and the March 2006 (MILAGRO campaign) datasets are used to evaluate the inorganic aerosol module of PMCAMx in order to test our understanding of inorganic aerosol. The results from the new modeling framework are also compared with the results from the previous version of PMCAMx in order to investigate the influence of each of the added features to the formation of the semivolatile inorganic components. References Fountoukis, C. and Nenes, A., (2007). ISORROPIA II: a computationally efficient

  2. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  3. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-06-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. This is the first 3-d modeling study that focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3-, POA and SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has

  4. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-11-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. The present 3-D modeling study focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has increased

  5. Impact of wet scavenging of natural and anthropogenic aerosol components on the columnar aerosol optical depth over a tropical rural atmosphere

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Jayaraman, Achuthan

    A typical feature of Indian monsoon is that, several dry days are observed even between the rain events. Atmospheric aerosol shows significant variations in their concentration between "before" and "after" the rain because of their efficient scavenging during the rain. The below cloud scavenging of several aerosol components during the rain has a direct impact on the columnar aerosol optical depth (AOD) between "before" and "after" the rain. In order to investigate the impact of the scavenging of several natural and anthropogenic aerosol components on spectral properties of aerosol, simultaneous studies on the characterization of aerosol, rainwater and AOD were done during July-December 2009 over a tropical rural atmosphere at Gadanki (13.5 0N, 79.2 0E) in southern peninsular India. Aerosols were collected and analyzed before, during and after the rain along with the collection and analysis of rainwater in several rain events during the entire study period. AOD data (at wavelengths of 400, 500, 675, 870, 1020 nm) was retrieved by processing the data obtained from an automatic sunphotomer (PREDE, PM 01) using the standard SKYRAD pack. Aerosols and rainwater samples were analyzed for water soluble ionic species using an Ion Chromatograph (Metrohm, 861). We observed that aerosols were highly loaded in the atmosphere just before the rain, efficiently scavenged during the rain and built-up slowly after the rain. Interestingly, the loading of sulphate aerosol after the rain was remarkably high whereas that of calcium and magnesium were remarkably low. The poor resuspension of soil dust from the wet soils after the rain could not allow calcium and magnesium to be loaded in the atmosphere whereas the high relative humidity favored the gas-to-particle conversion of SO2 to SO42-which allowed the high loading of sulphate aerosol in the atmosphere. Significant reductions in AOD both at lower (400 nm) and higher wavelength (1020 nm) were observed after the rain events. Two

  6. Physicochemical and Toxicological Characteristics of Semi-volatile Components of Atmospheric Aerosols in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Verma, V.; Pakbin, P.; Cheung, K. L.; Cho, A. K.; Schauer, J. J.; Shafer, M. M.; Kleinman, M. T.; Sioutas, C.

    2010-12-01

    Recent toxicological studies have confirmed the oxidative properties of atmospheric aerosols and their capability to generate reactive oxygen species (ROS) in biological systems (Chen and Lippmann, 2009). While the links between aerosol toxicity and refractory transition metals present in ambient particulate matter (PM) have been documented, there are limited studies investigating the oxidative characteristics of semi-volatile species. The goal of present study is to examine the contribution of semi-volatile compounds in the oxidative potential of atmospheric aerosols. Concentrated ambient and thermodenuded quasi-ultrafine particles (<180 nm) were collected using the versatile aerosol concentration enrichment system (VACES) at an urban site near downtown Los Angeles. A thermodenuder (TD) was used to selectively remove the semi-volatile components of these aerosols over the temperature range of 50-200 oC. The oxidative potential of PM was measured by means of the DTT (dithiothreitol) assay. Detailed chemical analyses of PM samples, including organic and elemental carbon, water soluble elements, inorganic ions and polycyclic aromatic hydrocarbons (PAHs), were conducted to quantify the volatility profiles of different PM species, and also to investigate their effect on the measured oxidative potential. Refractory constituents, such as metals and elemental carbon, were marginally affected by heating, while labile species such as organic carbon and PAHs showed progressive loss in concentration with increase in TD temperature. The DTT-measured oxidative potential of PM was significantly decreased as the aerosols were heated and their semi-volatile components were progressively removed (42 %, 47 % and 66 % decrease in DTT activity at 50, 100 and 200 oC, respectively). Regression analysis performed between chemical constituents and DTT activity showed that the oxidative potential was strongly correlated with organic carbon and PAHs (R≥0.80; p≤0.05). Thus, semi

  7. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  8. Estimation of gas-particle partitioning coefficients (Kp) of carcinogenic polycyclic aromatic hydrocarbons in carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand.

    PubMed

    Pongpiachan, Siwatt; Ho, Kin Fai; Cao, Junji

    2013-01-01

    To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days at three different atmospheric layers at the heart of Chiang-Mai, Bangkok and Hat-Yai from December 2006 to February 2007. A DRI Model 2001 Thermal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon (OC) and elemental carbon (EC) contents in PM10. Diurnal and vertical variability was also carefully investigated. In general, OC and EC mass concentration showed the highest values at the monitoring period of 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis at nighttime. Morning peaks of carbonaceous compounds were observed during the sampling period of 06:00-09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime particulate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifetime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approximately ten times higher than those air samples collected at Prince of Songkla University Hat-Yai campus corpse incinerator and fish-can manufacturing factory but only slightly higher than those of rice straw burning in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in PM10, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas

  9. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  10. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J.; Webb, P.; Lewis, A.; Hopkins, J.; Smith, S.; Davy, P.

    2004-03-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-OF/MS). Over 10 000 individual organic components were isolated from around 10 μg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated relatively early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  11. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P.

    2004-08-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-TOF/MS). Over 10000 individual organic components were isolated from around 10µg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  12. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the

  13. Carbonaceous Matter in Growing Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  14. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    NASA Technical Reports Server (NTRS)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  15. Characterisation of solid particles emitted from diesel and petrol engines as a contribution to the determination of the origin of carbonaceous particles in urban aerosol

    NASA Astrophysics Data System (ADS)

    Michalik, M.; Brzeżański, M.; Wilczyńska-Michalik, W.; Fisior, K.; Klimas, B.; Samek, L.; Pietras, B.

    2016-09-01

    Solid particles emitted from diesel and petrol engines were studied using a scanning electron microscope fitted with an energy dispersive spectrometer. The soot emitted from different engines under different operating conditions differed in particle size, and the form and size of aggregates. Identification of the soot particles emitted from diesel or petrol engines in urban aerosol based on their size and morphology was found to be impossible.

  16. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2012-09-01

    Simultaneous Fourier transform infrared (FTIR) extinction spectra and aerosol size distributions have been measured for some components of mineral dust aerosol including feldspars (albite, oligoclase) and diatomaceous earth, as well as more complex authentic dust samples that include Iowa loess and Saharan sand. Spectral simulations for single-component samples, derived from Rayleigh-theory models for characteristic particle shapes, better reproduce the experimental spectra including the peak position and band shape compared to Mie theory. The mineralogy of the authentic dust samples was inferred using analysis of FTIR spectra. This approach allows for analysis of the mineralogy of complex multicomponent dust samples. Extinction spectra for the authentic dust samples were simulated from the derived sample mineralogy using published optical constant data for the individual mineral constituents and assuming an external mixture. Nonspherical particle shape effects were also included in the simulations and were shown to have a significant effect on the results. The results show that the position of the peak and the shape of the band of the IR characteristic features in the 800 to 1400 cm-1 spectral range are not well simulated by Mie theory. The resonance peaks are consistently shifted by more than +40 cm-1 relative to the experimental spectrum in the Mie simulation. Rayleigh model solutions for different particle shapes better predict the peak position and band shape of experimental spectra, even though the Rayleigh condition may not be strictly obeyed in these experiments.

  17. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Aller, Josephine Y.; Radway, JoAnn C.; Kilthau, Wendy P.; Bothe, Dylan W.; Wilson, Theodore W.; Vaillancourt, Robert D.; Quinn, Patricia K.; Coffman, Derek J.; Murray, Benjamin J.; Knopf, Daniel A.

    2017-04-01

    Dissolved organic polymers released by phytoplankton and bacteria abiologically self-assemble in surface ocean waters into nano-to micro-sized gels containing polysaccharides, proteins, lipids and other components. These gels concentrate in the sea surface microlayer (SML), where they can potentially contribute to sea spray aerosol (SSA). Sea spray is a major source of atmospheric aerosol mass over much of the earth's surface, and knowledge of its properties (including the amount and nature of the organic content), size distributions and fluxes are fundamental for determining its role in atmospheric chemistry and climate. Using a cascade impactor, we collected size-fractionated aerosol particles from ambient air and from freshly generated Sea Sweep SSA in the western North Atlantic Ocean together with biological and chemical characterization of subsurface and SML waters. Spectrophotometric methods were applied to quantify the polysaccharide-containing transparent exopolymer (TEP) and protein-containing Coomassie stainable material (CSM) in these particles and waters. This study demonstrates that both TEP and CSM in surface ocean waters are aerosolized with sea spray with the greatest total TEP associated with particles <180 nm in diameter and >5 000 nm. The higher concentrations of TEP and CSM in particles >5 000 nm most likely reflects collection of microorganism cells and/or fragments. The greater concentration of CSM in larger size particles may also reflect greater stability of proteinaceous gels compared to polysaccharide-rich gels in surface waters and the SML. Both TEP and CSM were measured in the ambient marine air sample with concentrations of 2.1 ± 0.16 μg xanthan gum equivalents (XG eq.) m-3 and 14 ± 1.0 μg bovine serum albumin equivalents (BSA eq.) m-3. TEP in Sea Sweep SSA averaged 4.7 ± 3.1 μg XG eq. m-3 and CSM 8.6 ± 7.3 μg BSA eq. m-3. This work shows the transport of marine biogenic material across the air-sea interface through primary

  18. Use of the integrated organic gas and particle sampler to improve the characterization of carbonaceous aerosol in the near-road environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dabek-Zlotorzynska, Ewa; Liggio, John; Stroud, Craig A.; Charland, Jean-Pierre; Brook, Jeffrey R.

    2016-02-01

    Particle phase organic carbon (OC), elemental carbon (EC) and particle phase semi-volatile organic carbon were measured simultaneously at two distances downwind of a highway using an integrated organic gas and particle sampler. This method reduces sampling artifacts associated with OC measurement. On average, artifact-corrected OC (referred to as OCT) was 2.4 μg/m3 and the positive and negative artifacts were significant at 0.8 and 1.0 μg/m3 respectively. Close to the highway negative artifacts are potentially dominant over positive artifacts indicating that traditional integrated filter-based sampling for OC and fine particles (PM2.5) may be biased low. Decreases in OCT between the near and far site ranged from 25 to 44% while the decreases observed for EC, which reflects the impact of dispersion, were larger at 42-84%. The nature of the OCT changed between sites becoming less volatile and having a greater content of pyrolized organic carbon. Collectively, these results suggest that secondary organic aerosol (SOA) formed downwind of the highway from vehicle-related emissions and was detectable within the 15 min transit time between the highway and the far site. These results highlight the need for improvements in understanding the processes influencing organic aerosols in locations directly impacted by motor vehicle emissions in order to realistically predict PM2.5 using air quality models.

  19. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  20. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2016-05-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1° × 1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  1. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Remer, L. A.; Kahn, R. A.; Kleidman, R. G.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  2. Organic components of aerosols in a forested area of central Greece

    NASA Astrophysics Data System (ADS)

    Pio, Casimiro; Alves, Célia; Duarte, Armando

    Total suspended particulate matter was collected in a Abies boressi forest in central Greece during the period of 20 July-12 August 1997. Filters were extracted with solvents and the soluble content was separated into functional group fractions for analyses by gas chromatography/mass spectrometry. A total of 1050 different compounds could be identified in the various extracts. The lipid material consisted primarily of n-alkanes, n-alkan-2-ones, n-alkanols and n-fatty acids, with a higher concentration of molecular weights >C 20, derived from vascular plant waxes. Biomarkers for vegetation sources such as phytosterols and triterpenic compounds were also detected. Microbial components (aerosol extracts. Photochemical products deriving from volatile organic compounds emitted by vegetation or from anthropogenic precursors were also detected. These secondary organics include alkane derivatives, di- and carboxylic acids, nitroaromatics and many terpene photo-oxidation products.

  3. Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility

    NASA Astrophysics Data System (ADS)

    Zappoli, S.; Andracchio, A.; Fuzzi, S.; Facchini, M. C.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Molnár, Á.; Mészáros, E.; Hansson, H.-C.; Rosman, K.; Zebühr, Y.

    A chemical mass balance of fine aerosol (<1.5 μm AED) collected at three European sites was performed with reference to the water solubility of the different aerosol classes of components. The sampling sites are characterised by different pollution conditions and aerosol loading in the air. Aspvreten is a background site in central Sweden, K-puszta is a rural site in the Great Hungarian Plain and San Pietro Capofiume is located in the polluted Po Valley, northern Italy. The average fine aerosol mass concentration was 5.9 μg m -3 at the background site Aspvreten, 24 μg m -3 at the rural K-puszta and 38 μg m -3 at the polluted site San Pietro Capofiume. However, a similarly high soluble fraction of the aerosol (65-75%) was measured at the three sites, while the percentage of water soluble organic species with respect to the total soluble mass was much higher at the background site (ca. 50%) than at the other two sites (ca. 25%). A very high fraction (over 70%) of organic compounds in the aerosol consisted of polar species. The presence of water soluble macromolecular compounds was revealed in the samples from K-puszta and San Pietro Capofiume. At both sites these species accounted for between ca. 20-50% of the water soluble organic fraction. The origin of the compounds was tentatively attributed to biomass combustion.

  4. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-05-01

    A new aerosol microphysical module MATRIX, the Multiconfiguation Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) is described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol mode, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble modes. A detailed model description and results of box-model simulations of various mode configurations are presented. The number concentration of aerosol particles activated to cloud drops depends on the mode configuration. Simulations on the global scale with the GISS climate model are evaluated against aircraft and station measurements of aerosol mass and number concentration and particle size. The model accurately captures the observed size distributions in the aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment.

  5. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud

  6. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance

    NASA Astrophysics Data System (ADS)

    Liu, Qifan; Jing, Bo; Peng, Chao; Tong, Shengrui; Wang, Weigang; Ge, Maofa

    2016-01-01

    The hygroscopic properties of two water-soluble organic compounds (WSOCs) relevant to urban haze pollution (phthalic acid and levoglucosan) and their internally mixtures with inorganic salts (ammonium sulfate and ammonium nitrate) are investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA) system. The multi-component particles uptake water gradually in the range 5-90% relative humidity (RH). The experimental results are compared with the thermodynamic model predictions. For most mixtures, Extended Aerosol Inorganic Model (E-AIM) predictions agree well with the measured growth factors. The hygroscopic growth of mixed particles can be well described by the Zdanovskii-Stokes-Robinson (ZSR) relation as long as the mixed particles are completely liquid. ZSR calculations underestimate the water uptake of mixed particles at moderate RH due to the partial dissolution of ammonium sulfate in the organic and ammonium nitrate solution in this RH region. The phase of ammonium nitrate in the initial dry particles changes dramatically with the composition of mixtures. The presence of organics in the mixed particles can inhibit the crystallization of ammonium nitrate during the drying process and results in water uptake at low RH (RH < 60%). These results demonstrate that certain representative WSOCs can substantially influence the hygroscopicity of inorganic salts and overall water uptake of particles.

  7. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition

    NASA Astrophysics Data System (ADS)

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya

    2015-12-01

    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL-11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2 θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as CaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.

  8. Understanding dust emission in the Bodélé region by extracting locally mobilized dust aerosols from satellite Aerosol Optical Depth data using principal component analysis

    NASA Astrophysics Data System (ADS)

    Parajuli, Sagar Prasad; Yang, Zong-Liang

    2017-02-01

    Despite the increasing availability of satellite and ground-based Aerosol Optical Depth (AOD) data, their application in dust modeling is limited because these data do not differentiate locally mobilized dust from remotely advected dust and other aerosols. In this work, we extract the locally mobilized Dust Optical Depth (DOD) in the Bodélé region from historical AOD data through a principal component analysis of wind speed and AOD time series (2003-2012). Principal component analysis effectively identifies the correlated signature between wind speed and AOD making it possible to separate the dust component from AOD data. Using the reconstructed DOD, we then study the effect of key environmental variables, namely wind speed, soil moisture, soil temperature, vegetation, and boundary layer height on dust emission. Results show that all of these environmental variables are significantly correlated with the reconstructed DOD indicating their association with the dust emission process. The extraction technique described in this study can be extended to regional and global scales to identify the dust sources which are not adequately represented in regional and global dust models.

  9. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    SciTech Connect

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  10. Carbonaceous materials water mixtures

    SciTech Connect

    Papalos, J.G.; Sinka, J.V.

    1985-04-30

    Particulate carbonaceous materials water mixtures are prepared by adding a condensate which is a condensation product of an aldehyde having from about 1 to about 7 carbon atoms, a benzene derivative such as benzene sulfonic acid, an alkyl benzene sulfonic acid having at least one alkyl group of from about 1 to about 20 carbon atoms and mixtures thereof, and optionally, and a naphthalene derivative such as naphthalene sulfonic acid, an alkyl naphthalene sulfonic acid having at least one alkyl group of from about 1 to about 12 carbon atoms and mixtures thereof. The condensate is added in an amount sufficient to reduce viscosity of the water mixture of carbonaceous materials, to stabilize carbonaceous materials in the water network and to improve pumpability. An acid form of the condensate or a salt may be added.

  11. Progress and Understanding Spatial and Temporal Variability of PM2.5 and its Components in the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...

  12. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  13. Nature and origin of the resistant carbonaceous polymorphs involved the fossilization of biogenic soil-aggregates

    NASA Astrophysics Data System (ADS)

    Courty, M.-A.

    2012-04-01

    which are all finely imbricated with phosphides, phosphates, sulphides, sulphates and native metals (Fe-Cr-Ni and Fe-Cr alloys, Ni, Al, Cu, Zn, Pb, As, Sn, Ag, Au, Bi). The 3D observations show that the carbonaceous filaments play a major role in the cohesion of the fine fraction. The carbonaceous components only start to decompose under HF attack and from 400°C heating. They do not display evidence of microbial degradation. The biogenic aggregates with high amount of carbonaceous polymorphs appear to have resisted to cryoturbation and to hard setting under water saturation. Biogenic micro-aggregates from present-day top soils only contain rare exotic components. In contrast to the ones of the soil archives, they display highly variable structural stability depending upon local edaphic conditions. The exotic assemblage of the stable biogenic micro-aggregates from the soil archives is shown to be similar to the range of terrestrial aerosols that are associated to meteor explosion (Courty et al., this volume). This suggests that the fossilized organic-rich surface horizons in soil archives would trace singular situations possibly marked by recurrent meteor explosion with high stratospheric aerosol production. Mechanisms explaining how the dual stratospheric/cosmic processes formed resistant carbon species from fossil combustible precursors yet remain to be investigated. Courty, Benoît and Vaillant (2012). Possible interaction of meteor explosion with stratospheric aerosols on cloud nucleation based on 2011 observations. Geophysical Research Abstracts Vol. 14, EGU2012.

  14. The distribution of trace elements in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Knab, H.-J.

    1981-09-01

    Twelve carbonaceous chondrites, among them representatives of nearly all known petrologic types, were analyzed for twenty trace elements by spark source mass spectrography combined with the isotope dilution method. Data on different element groups (refractory, moderately volatile and volatile) show that the distribution of the trace elements in the carbonaceous chondrites, with the exception of Renazzo, can be well explained by Anders' two-component model. This is also valid for the highly metamorphosed CV5 chondrite Karoonda. Furthermore, it is observed that the Zr/Hf-ratios in the carbonaceous chondrites increase with increasing petrologic type, which is interpreted as the result of mixing two components with different Zr/Hf-ratios.

  15. A Cautionary Tale About Volatile-Rich Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Beltran, E.

    2015-07-01

    The organic component of volatile-rich carbonaceous chondrite meteorites are primarily in the form of polycyclic aromatic hydrocarbons (PAHs). While PAHs are common in the environment, many species of PAHs are either toxic or carcinogenic or both.

  16. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D. L.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-10-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to

  17. Raman-shifted eye-safe aerosol lidar (REAL) in 2010: instrument status and two-component wind measurements

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.

    2010-10-01

    This paper and corresponding seminar given on 20 September 2010 at the 16th International School for Quantum Electronics in Nesebar, Bulgaria, will describe the key hardware aspects of the Raman-shifted Eye-safe Aerosol Lidar (REAL) and recent advances in extracting two-component wind vector fields from the images it produces. The REAL is an eye-safe, ground-based, scanning, elastic aerosol backscatter lidar operating at 1.54 microns wavelength. Operation at this wavelength offers several advantages compared to other laser wavelengths including: (1) maximum eye-safety, (2) invisible beam, (3) superior performance photodetectors compared with those used at longer wavelengths, (4) low atmospheric molecular scattering when compared with operation at shorter wavelengths, (5) good aerosol backscattering, (6) atmospheric transparency, and (7) availability of optical and photonic components used in the modern telecommunations industry. A key issue for creating a high-performance direct-detection lidar at 1.5 microns is the use of InGaAs avalanche photodetectors that have active areas of at most 200 microns in diameter. The small active area imposes a maximum limitation on the field-of-view of the receiver (about 0.54 mrad full-angle for REAL). As a result, a key requirement is a transmitter that can produce a pulsed (>10 Hz) beam with low divergence (<0.25 mrad full-angle), high pulse-energy (>150 mJ), and short pulse-duration (<10 ns). The REAL achieves this by use of a commercially-available flashlamp-pumped Nd:YAG laser and a custom high-pressure methane gas cell for wavelength shifting via stimulated Raman scattering. The atmospheric aerosol features in the images that REAL produces can be tracked to infer horizontal wind vectors. The method of tracking macroscopic aerosol features has an advantage over Doppler lidars in that two components of motion can be sensed. (Doppler lidars can sense only the radial component of flow.) Two-component velocity estimation is done

  18. Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements

    SciTech Connect

    Chuang, C; Penner, J E; Kawamoto, K

    2002-03-08

    Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

  19. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant.

  20. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    PubMed Central

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2014-01-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March–May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls. PMID:24707452

  1. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    SciTech Connect

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  2. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION

    EPA Science Inventory

    Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...

  3. Cellular component of lavage fluid from broilers with normal versus aerosol-primed airways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we reported that intratracheal administration of lipopolysaccharide (LPS) elicits pulmonary hypertension (PH) in broilers reared under commercial conditions, in broilers reared in environmental chambers and pre-treated with aerosolized red food colorant # 3 and propylene glycol (Red#3+PG)...

  4. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Watson, Richard M; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-03-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment.

  5. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  6. Charicteristics of Aerosol indices distribution followed by Aerosol types

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, J.; Lee, J.; Kim, M.; Lee, S.; Song, C.

    2010-12-01

    Transboundary transport of aerosol has been a hot issue in East Asia and with various aerosol types from different source region. To detect signals from aerosols, OMI provides aerosol indices. Aerosol Indices (AI) represent the change of spectral contrast between two wavelengths and these indices are derived in UV and Visible regions. These indices also can get not only in ocean but also in land region so that AI is good to observe the source region and transport of aerosols. In UV region, AI (UV-AI) can classify the absorbing and non-absorbing aerosols (Torres et al., 1998) so that this value is frequently used for dust detection. Additionally, visible AI (VIS-AI) uses to differentiate the absorbing and non-absorbing aerosol types. If we combine two types of indices at the coordinate system of two types of AI, distribution of indices contains different signals if aerosol types change theoretically. In this study, we want to find out classification results based by the observation data to see the theoretical distribution in two AI values. For the observation data, aerosol types are obtained from the results of MODIS-OMI algorithm and 4-channel algorithm classify four types of aerosols, i.e. dust, carbonaceous, sea-salt and Non-Absorbing (NA). These algorithms classify aerosol by using the characteristics of aerosol optical properties in visible and near IR regions. MODIS-OMI algorithm uses the MODIS AOD and UV-AI in OMI values. For UV-AI case, dust and carbonaceous types have larger UV-AI values than non-absorbing aerosols because of absorbing characteristics. However, dust and carbonaceous types cannot classify if UV-AI values use only. For VIS-AI case, dust has larger proportion, but carbonaceous aerosol has smaller proportion in high AI value. However, VIS-AI cannot clearly classify between dust and carbonaceous types except for the case of extremely high AI cases. In NA type, VIS-AI has almost positive values, but the distribution has smaller than the absorbing

  7. Study on polarization features of carbonaceous particles in atmosphere pollutants

    NASA Astrophysics Data System (ADS)

    Li, Da; Zeng, Nan; Wang, Yunfei; Chen, Dongsheng; Chen, Yuerong; Ma, Hui

    2016-09-01

    The carbonaceous particles are the main source of the light absorption in atmospheric aerosol. Different from the case in tissue-like turbid media, the light absorption in atmospheric environments can be described as an inherent attribute on scatterers rather than an interstitial propagation effect. In this paper, we simulated the optical absorption due to carbonaceous scatterers and analyzed the influence of various parameters on their polarization properties, such as the imaginary part refractive index, the size and shape. Also we compare these results with our previous research work on absorption effect in ambient medium. For the single scattering, the polarization scattering angular distribution implies the potential of distinguishing different carbonaceous particles with different structural and absorption parameters. In the other hand, for the week scattering case of suspension system, using the backward Mueller matrix polar decomposition method, we can find out that the additional absorption effect on carbonaceous particles can enhance their depolarization and moreover produce more diattenuation and linear retardance for those anisotropic particles. The subsequent experiments of standard samples show a good agreement with simulation results. The paper further studies the phase function of single scattering and the distribution of scattering numbers, which can explain these unique polarization scattering phenomena. We hope these fundamental results can help to investigate how to identify the carbonaceous particles and characterize their optical features from the atmospheric hybrid suspension system.

  8. Carbonaceous film coating

    DOEpatents

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  9. Carbonaceous film coating

    DOEpatents

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  10. Measurements of the composition of aerosol component of Venusian atmosphere with Vega 1 lander, preliminary data

    NASA Technical Reports Server (NTRS)

    Surkov, Y. A.; Ivanova, V. F.; Pudov, A. N.; Volkov, V. P.; Sheretov, E. P.; Kolotilin, B. I.; Safonov, M. P.; Thomas, R.; Lespagnol, J.; Hauser, A.

    1986-01-01

    Preliminary investigation of mass spectra of gaseous products of pyrolyzed Venusian cloud particles collected and analyzed by the complex device of mass-spectrometer and collector pyrolyzer on board Vega 1 lander revealed the presence of heavy particles in the upper cloud layer. Based on 64 amu peak (SO2+), an estimate of the lower limit of the sulfuric acid aerosol content at the 62 to 54 km heights of approximately 2.0 mg/cu m is obtained. A chlorine line (35 and 37 amu) is also present in the mass spectrum with a lower limit of the chlorine concentration of approximately 0.3 mg/ cu m.

  11. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure

  12. Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer

    NASA Astrophysics Data System (ADS)

    Witthuhn, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2017-03-01

    The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.

  13. Laboratory studies of reactions of atmospheric gases with components of mineral dust aerosol and research in chemical education

    NASA Astrophysics Data System (ADS)

    Schuttlefield, Jennifer Dianne

    Mineral dust aerosol surfaces provide a medium in the atmosphere for heterogeneous chemistry to occur, which can alter the chemical balance of the Earth's atmosphere. It is becoming increasingly clear that the heterogeneous chemistry of these aerosols is a function of relative humidity (RH), as water on the surface of these particles can enhance or inhibit reactivity depending on the reaction. In this thesis, the uptake of water on clays and oxides was investigated, as well as phase transitions for atmospherically relevant salts. Reactions of carbon dioxide and nitric acid on oxide particles in the presence and absence of water were also examined. Following the reaction of HNO 3 on an alumina surface, photoirradiation experiments were preformed to determine the effect of irradiation on the adsorbed nitrate. The results presented in this thesis provide insight into the heterogeneous reactivity of mineral dust aerosol in the presence and absence of co-adsorbed water, as well as a fundamental understanding of water uptake on soluble and insoluble aerosols. A new method, using a quartz crystal microbalance, was developed to attempt to obtain a better fundamental understanding of different mineral dust components. In addition to the laboratory research, research in chemical education is also presented in this thesis. Two different types of work being done in the area of chemical education are shown. First a new experiment was implemented into an undergraduate physical chemistry course. The technique, ATR-FTIR spectroscopy, was chosen for its ability to expose students to a technique that is commonly used in laboratory research as well as the ease for which high quality results can be obtained. Students used ATR-FTIR spectroscopy to monitor sulfate, SO 42-, adsorption on TiO2 thin films. Second, the role of cognitive load and problem difficulty was accessed with data acquired while students completed an introductory-level chemistry word problem using a web-based tool

  14. A modelling methodology to predict the range of organic components expected to condense to atmospheric aerosol: Sensitivities to fundamental properties and routes for reduced complexity parameterisations

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; McFiggans, G. B.; Barley, M.; Jenkin, M.

    2009-12-01

    Atmospheric aerosol particles are an important yet uncertain component of climate change and air quality. Influencing climate directly by the scattering and absorption of solar radiation and indirectly through their role as cloud condensation nuclei, their radiatively important properties are determined by the chemical composition, mass loading, mixing state and size distribution, as are their impacts on human health. Mechanistic understanding and knowledge of individual compounds involved in the chemical evolution of aerosol particles is far from complete. A full chemical analysis of the organic component of atmospheric aerosols is not available. Whilst explicit hydrocarbon oxidation mechanisms that track many thousands of degradation products of volatile organic compounds (VOC) have been developed, aerosol schemes in large-scale models neglect the majority of chemical components predicted to occur in the organic mixture and will continue to do so in the future. This is a result of prohibitive computational expense of explicit mechanisms which must be avoided via a reduction in complexity (numerical, chemical or both). Reduction mechanisms that neglect compositional information are widely used to derive those parameters deemed important for climatic and health impacts. However, it is possible to make detailed predictions of the range of organic components expected to condense to atmospheric aerosol by combining a gas/particle partitioning model with a detailed gas phase chemical mechanism. Provided they are of sufficient skill, these predictions can be used as the basis for process and composition complexity reduction whilst retaining mechanistic understanding. Here we present development of compound selection methodologies that combine detailed gas phase mechanisms, pure component vapour pressure calculations, thermodynamic properties and a gas/aerosol partition model. As an example, we combine the methodology with the master chemical mechanism (MCM) to simulate

  15. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  16. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    DOE PAGES

    Campbell, Matthew Frederick; Haylett, D. R.; Davidson, D. F.; ...

    2015-08-18

    Here, this paper introduces an algorithm that determines the thermodynamic conditions behind incident and reflectedshocksinaerosol-ladenflows.Importantly,the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component- fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm’s calculations given typical exper- imental uncertainties

  17. Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern biocontaminants.

  18. Gasification of carbonaceous solids

    DOEpatents

    Coates, Ralph L.

    1976-10-26

    A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

  19. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    SciTech Connect

    Mazurek, M.A. ); Hildemann, L.M. . Dept. of Civil Engineering); Cass, G.R.; Rogge, W.F. ); Simoneit, B.R.T. . Coll. of Oceanography)

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs.

  20. Carbonaceous fuel combustion with improved desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-shing

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  1. Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols

    NASA Astrophysics Data System (ADS)

    Petters, Sarah Suda; Petters, Markus Dirk

    2016-02-01

    This work presents experimental data on the cloud condensation nuclei (CCN) activity of two-component mixtures containing surfactants. Nine binary systems were tested combining strong ionic (sodium dodecyl sulfate) and nonionic surfactants (Zonyl FS-300 and Triton X-100) with nonsurfactant compounds (glucose, ammonium sulfate, or sodium chloride). Control tests were performed for systems combining organic (glucose) and inorganic compounds (ammonium sulfate or sodium chloride). Results show that CCN activity deviates strongly relative to predictions made from measurements of bulk surface tension. Köhler theory accounting for surface tension reduction and surface partitioning underpredicts the CCN activity of particles containing Zonyl FS-300 and Triton X-100. Partitioning theory better describes data for Zonyl FS-300 and Triton X-100 when limiting surface adsorption to 1.5 monolayers of the growing drop. Deviations from predictions were observed. Likely explanations include solute-solute interactions and nonspherical particle shape. The findings presented here examine in detail the perturbation of CCN activity by surfactants and may offer insight into both the success and limitations of physical models describing CCN activity of surface active molecules.

  2. Shock metamorphism of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Scott, Edward R. D.; Keil, Klaus; Stoeffler, Dieter

    1992-01-01

    Shock effects were studied in 69 carbonaceous chondrites, including CM2, CO3, CV3, ungrouped C2-C4, and CK4-6 chondrites, using optical microscopy of thin sections. It is shown that the classification scheme of Stoeffler et al. (1991) for the progressive stages of shock metamorphism in ordinary chondrites is also applicable to carbonaceous chondrites. On the basis of shock effects in olivine, the 69 carbonaceous chondrites could be assigned to four shock stage, S1 to S4. The CM2 and CO3 groups were found to be the least shocked chondrite groups, whereas the CK4-6 and CV3 were the most strongly shocked groups.

  3. Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007

    NASA Astrophysics Data System (ADS)

    Huang, Kan; Zhuang, Guoshun; Li, Juan; Wang, Qiongzhen; Sun, Yele; Lin, Yanfen; Fu, Joshua S.

    2010-04-01

    An intensive spring aerosol sampling campaign over northwestern and northern China and a megacity in eastern China was conducted in the spring of 2007 to investigate the mixing of Asian dust with pollution aerosol during its long-range transport. On the basis of the results of the three sites near dust source regions (Tazhong, Yulin, and Duolun) and a metropolitan city (Shanghai), three dust sources, i.e., the western high-Ca dust in the Taklimakan Desert, the northwestern high-Ca dust and the northeastern low-Ca dust in Mongolia Gobi, were identified on the basis of the air mass trajectories and the elemental tracer analysis (e.g., Ca/Al, SO42-/S, Ca2+/Ca, and Na+/Na). The western dust was least polluted in comparison to the other two dust sources. The results evidently indicated that the dust could have already mixed with pollution aerosol even in near dust source regions. The concentrations of As, Cd, Cu, Pb, Zn, and S were elevated several times at all sites during dust days, showing the entrainment of pollution elements by dust. The secondary SO42- was observed to show much higher concentration due to the heterogeneous reaction on the alkaline dust during dust storm, while the concentrations of NO3- and NH4+ decreased owing to the dilution of the local pollution by the invaded dust. The western dust contained relatively low anthropogenic aerosols, and it mainly derived from the Taklimakan Desert, a paleomarine source. The northwestern dust had a considerable chemical reactivity and mixing with sulfur precursors emitted from the coal mines on the pathway of the long-range transport of dust. The northeastern dust reached Shanghai with high acidity, and it became the mixed aerosol with the interaction among dust, local pollutants, and sea salts. Comparison of the speciation of the water-soluble ions on both nondust and dust days at all sites illustrated the evolution of major ion species from different dust sources during the long-range transport of dust. The

  4. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  5. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  6. Carbonaceous chondrites as bioengineered comets

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert B.; Hoover, Richard

    2012-10-01

    The discovery of microfossils on carbonaceous meteorites has electrified the public with the first concrete evidence of extraterrestrial biology. But how these organisms colonized and grew on the parent body-the comet-remains a mystery. We report on several features of cyanobacteria that permit them to bioengineer comets, as well as a tantalizing look at interplanetary uses for magnetite framboids that are found in abundance on carbonaceous chondrites. We argue that these structures provide important directionality and energy harvesting features similar to magnetotactic bacteria found on Earth.

  7. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan - Implication of aerosol aging during long-range transport

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Engling, Guenter; Chang, Shih-Yu; Chang, Shuenn-Chin; Sheu, Guey-Rong; Lin, Neng-Huei; Sopajaree, Khajornsak; Chang, You-Jia; Hong, Guo-Jun

    2016-07-01

    The transport of biomass burning (BB) aerosol from Indochina may cause a potential effect on climate change in Southeast Asia, East Asia, and the Western Pacific. Up to now, the understanding of BB aerosol composition modification during long-range transport (LRT) is still very limited due to the lack of observational data. In this study, atmospheric aerosols were collected at the Suthep/Doi Ang Khang (DAK) mountain sites in Chiang Mai, Thailand and the Lulin Atmospheric Background Station (Mt. Lulin) in central Taiwan from March to April 2010 and from February to April 2013, respectively. During the study period, an upwind and downwind relationship between the Suthep/DAK and Lulin sites (2400 km apart) was validated by backward trajectories. Comprehensive aerosol properties were resolved for PM2.5 water-soluble inorganic ions, carbonaceous content, water-soluble/insoluble organic carbon (WSOC/WIOC), dicarboxylic acids and their salts (DCAS), and anhydrosugars. A Modification Factor (MF) is proposed by employing non-sea-salt potassium ion (nss-K+) or fractionalized elemental carbon evolved at 580 °C after pyrolized OC correction (EC1-OP) as a BB aerosol tracer to evaluate the mass fraction changes of aerosol components from source to receptor regions during LRT. The MF values of nss-SO42-, NH4+, NO3-, OC1 (fractionalized organic carbon evolved from room temperature to 140 °C), OP (pyrolized OC fraction), DCAS, and WSOC were above unity, which indicated that these aerosol components were enhanced during LRT as compared with those in the near-source region. In contrast, the MF values of anhydrosugars ranged from 0.1 to 0.3, indicating anhydrosugars have degraded during LRT.

  8. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  9. Hydrogenation process for solid carbonaceous materials

    DOEpatents

    Cox, John L.; Wilcox, Wayne A.

    1979-01-01

    Coal or other solid carbonaceous material is contacted with an organic solvent containing both hydrogen and a transition metal catalyst in solution to hydrogenate unsaturated bonds within the carbonaceous material. This benefaction step permits subsequent pyrolysis or hydrogenolysis of the carbonaceous fuel to form gaseous and liquid hydrocarbon products of increased yield and quality.

  10. Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment

    NASA Astrophysics Data System (ADS)

    EstelléS, VíCtor; MartíNez-Lozano, José A.; Pey, Jorge; Sicard, MichaëL.; Querol, Xavier; Esteve, Anna R.; Utrillas, MaríA. P.; Sorribas, Mar; Gangoiti, Gotzon; Alastuey, AndréS.; Rocadenbosch, Francesc

    2012-02-01

    Although routinely monitored by ground based air quality networks, the particulate matter distribution could be eventually better described with remote sensing techniques. However, valid relationships between ground level and columnar ground based quantities should be known beforehand. In this study we have performed a comparison between particulate matter measurements at ground level at different cut sizes (10, 2.5 and 1.0 μm), and the aerosol optical depth obtained by means of a ground based sunphotometer during a multiinstrumental field campaign held in El Arenosillo (Huelva, Spain) from 28 June to 4 July 2006. All the PM fractions were very well correlated with AOD with correlation coefficients that ranged from 0.71 to 0.81 for PM10, PM2.5 and PM1. Furthermore, the influence of the mixing layer height in the correlations was explored. The improvement in the correlation when the vertical distribution is taken into account was significant for days with a homogeneous mixing layer. Moreover, the chemical analysis of the individual size fractions allowed us to study the origin of the particulate matter. Secondary components were the most abundant and also well correlated in the three size fractions; but for PM10 fraction, chemical species related to marine origin were best correlated. Finally, we obtained a relationship between MODIS L3 AOD from collection 5.1 and the three PM cut sizes. In spite of being a relatively clean environment, all the techniques were able to capture similar day to day variations during this field campaign.

  11. A ten-year global record of absorbing aerosols above clouds from OMI's near-UV observations

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torrres, Omar; Ahn, Changwoo

    2016-05-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosolcloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong `color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  12. Radiocarbon: nature's tracer for carbonaceous pollutants

    SciTech Connect

    Currie, L.A.; Klouda, G.A.; Gerlach, R.W.

    1982-01-01

    Recent developments in radiocarbon dating techniques have made it feasible to determine /sup 14/C//sup 12/C ratios in samples containing milligram or even microgram quantities of carbon. As a result, it has become practicable to apply these techniques to the study of trace gases and particles in the atmosphere, as a means of resolving anthropogenic from natural source components. Interpretation of /sup 14/C data is straightforward: biospheric carbon (such as vegetation) is alive with a /sup 14/C//sup 12/C ratio of about 1.5 x 10 to the 12th power, whereas fossil carbon is dead. Beyond this dichotomous classification it becomes very interesting to combine the isotopic data with concurrent chemical data, as well as spatial and temporal distributions, in order to infer the strengths of specific sources of carbonaceous pollutants. A brief review will be presented of program on atmospheric gases and carbonaceous particles. For the latter, the authors have assayed individual chemical and size fractions, and samples collected in urban, rural, and remote locales. The biogenic carbon fraction -- presumably from wood-burning -- ranged from 10 to 100% for the urban samples analyzed.

  13. Method for heating nongaseous carbonaceous material

    DOEpatents

    Lumpkin, Jr., Robert E.

    1978-01-01

    Nongaseous carbonaceous material is heated by a method comprising introducing tangentially a first stream containing a nongaseous carbonaceous material and carbon monoxide into a reaction zone; simultaneously and separately introducing a second stream containing oxygen into the reaction zone such that the oxygen enters the reaction zone away from the wall thereof and reacts with the first stream thereby producing a gaseous product and heating the nongaseous carbonaceous material; forming an outer spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous carbonaceous material; removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous carbonaceous material before a major portion of the gaseous product can react with the nongaseous carbonaceous material; and removing a fourth stream containing the nongaseous carbonaceous material from the reaction zone.

  14. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  15. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.

    2015-07-01

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO-HR-ToF-CIMS are highly correlated with, and explain at least 25-50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  16. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; Kroll, J. H.; Worsnop, D.; Thornton, J. A.

    2015-02-01

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25-50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  17. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  18. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  19. Catalyst for hydrotreating carbonaceous liquids

    DOEpatents

    Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.

    1982-01-01

    A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

  20. Structure of high-molecular carbonaceous compound in carbonaceous chondrites and formation of IR-spectroscopically similar compounds in the laboratory

    NASA Astrophysics Data System (ADS)

    Murae, T.

    1997-05-01

    Main components of carbonaceous matter in carbonaceous chondrites are high molecular organic matter. Examinations of the compounds using pyrolysis GC/MS and FT-IR indicated the structural resemblance of major part of the molecule for all of the compounds from different types of carbonaceous chondrites (8 Antarctic and 2 none-Antarctic meteorites). A carbonaceous matter derived from graphite on a shock experiment using a rail gun (1g projectile at 7 km/s) showed similar IR spectrum to those of the meteoritic high-molecular organic matter. C-60 fulleren also gave a similar compound (with minor differences in IR spectra) on a shock experiment under the same conditions. A shock experiment using coronene also examined.

  1. A review of natural aerosol interactions and feedbacks within the Earth system

    NASA Astrophysics Data System (ADS)

    Carslaw, K. S.; Boucher, O.; Spracklen, D. V.; Mann, G. W.; Rae, J. G. L.; Woodward, S.; Kulmala, M.

    2010-02-01

    The natural environment is a major source of atmospheric aerosols, including dust, secondary organic material from terrestrial biogenic emissions, carbonaceous particles from wildfires, and sulphate from marine phytoplankton dimethyl sulphide emissions. These aerosols also have a significant effect on many components of the Earth system such as the atmospheric radiative balance and photosynthetically available radiation entering the biosphere, the supply of nutrients to the ocean, and the albedo of snow and ice. The physical and biological systems that produce these aerosols can be highly susceptible to modification due to climate change so there is the potential for important climate feedbacks. We review the impact of these natural systems on atmospheric aerosol based on observations and models, including the potential for long term changes in emissions and the feedbacks on climate. The number of drivers of change is very large and the various systems are strongly coupled. There have therefore been very few studies that integrate the various effects to estimate climate feedback factors. Nevertheless, available observations and model studies suggest that the regional radiative perturbations are potentially several Watts per square metre due to changes in these natural aerosol emissions in a future climate. Taking into account only the direct radiative effect of changes in the atmospheric burden of natural aerosols, and neglecting potentially large effects on other parts of the Earth system, a global mean radiative perturbation approaching 1 W m-2 is possible by the end of the century. The level of scientific understanding of the climate drivers, interactions and impacts is very low.

  2. Carbonaceous Material in Extraterrestrial Matter

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2015-08-01

    Comets, asteroids and their fragments (i.e. meteorite, micrometeorites and interplanetary dust particles (IDPs)) are known to contain carbonaceous material. IDPs have ~10% of carbon by mass [1-3], while both micrometeorites and IDPs contain organic molecules. However, it is not certain whether these molecules are indigenous or terrestrial contamination [4-7]. On the other hand, ultra-carbonaceous Antarctic micrometeorites (UCAMMs) contain 50-80% of carbonaceous material, which is one of the highest organic matter contents detected in an extraterrestrial body [8]. Comets also have several extraterrestrial organic molecules [9, 10], including the simplest amino acid glycine [11]. In addition, the impact-shock of a typical comet ice mixture produces several amino acids from simple precursors [12]. Carbonaceous meteorites contain up to 5wt% of organic carbon [13], which is either locked in an insoluble kerogen-like polymer, or in a rich organic inventory of soluble organic compounds [14-16]. Bulk analysis of the meteoritic soluble organic fraction has revealed a high molecular diversity of tens of thousands of different molecular compositions [17]. The analysis of the carbonaceous content of comets, asteroids and their fragments provides a window into the resources delivered to the early Earth.[1] Brownlee (1985) Ann. Rev. Earth and Plan. Sci. 13, 147. [2] Schramm et al. (1989) Meteoritics 24, 99. [3] Messenger (2002) MAPS 37, 1491. [4] Clemett et al. (1993) Science 262, 721. [5] Brinton et al. (1998) OLEB 28, 413. [6] Flynn (2003) GCA 67, 4791. [7] Matrajt et al. (2004) MAPS 39, 1849. [8] Duprat et al. (2010) Science 328, 742-745. [9] Bockelée-Morvan et al. (2004) in: Comets II. pp. 391-423. [10] Mumma and Charnley (2011) ARAA 49, 471. [11] Elsila et al. (2009) MAPS 44, 1323. [12] Martins et al. (2013) Nature Geoscience 6, 1045. [13] Alexander et al. (2013) GCA 123, 244. [14] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [15] Cody and

  3. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    PubMed

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Beddows, David C S; Esser-Gietl, Johanna K; Healy, Robert M; Harrison, Roy M

    2015-03-17

    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.

  4. Comparison between simulated and observed chemical composition of fine aerosols in Paris (France) during springtime: contribution of regional versus continental emissions

    NASA Astrophysics Data System (ADS)

    Sciare, J.; D'Argouges, O.; Sarda-Estève, R.; Gaimoz, C.; Gros, V.; Zhang, Q. J.; Beekmann, M.; Sanchez, O.

    2010-07-01

    Hourly concentrations of inorganic salts (ions) and carbonaceous material in fine aerosols (aerodynamic diameter, A.D.<2.5 μm) have been determined experimentally from fast measurements performed for a 3-week period in spring 2007 in Paris (France). The sum of these two chemical components (ions and carbonaceous aerosols) has shown to account for most of the fine aerosol mass (PM2.5). This time-resolved dataset allowed investigating the factors controlling the levels of PM2.5 in Paris and showed that polluted periods with PM2.5<15 μg/m3 were characterized by air masses of continental (North-Western Europe) origin and chemical composition made by 75% of ions. By contrast, periods with clean marine air masses have shown the lowest PM2.5 concentrations (typically of about 10 μg/m3); carbonaceous aerosols contributing for most of this mass (typically 75%). In order to better discriminate between regional and continental contributions to the observed chemical composition and concentrations of PM2.5 over Paris, a comparative study was performed between this time-resolved dataset and the outputs of a chemistry transport model (CHIMERE), showing a relatively good capability of the model to reproduce the time-limited intense maxima observed in the field for PM2.5 and ion species. Different model scenarios were then investigated switching off regional and European (North-Western and Central) emissions. Results of these scenarios have clearly shown that most of the ions observed over Paris during polluted periods, were either transported or formed in-situ from gas precursors transported from Northern Europe. By opposite, long-range transport from Europe appeared to poorly contribute to the levels of carbonaceous aerosols observed over Paris. The model failed to properly account for the concentration levels and variability of secondary organic aerosols (SOA) determined experimentally by the EC-tracer method. The abundance of SOA (relatively to organic aerosol, OA) was as

  5. Comparison between simulated and observed chemical composition of fine aerosols in Paris (France) during springtime: contribution of regional versus continental emissions

    NASA Astrophysics Data System (ADS)

    Sciare, J.; D'Argouges, O.; Zhang, Q. J.; Sarda-Estève, R.; Gaimoz, C.; Gros, V.; Beekmann, M.; Sanchez, O.

    2010-12-01

    Hourly concentrations of inorganic salts (ions) and carbonaceous material in fine aerosols (aerodynamic diameter, A.D. <2.5 μm) have been determined experimentally from fast measurements performed for a 3-week period in spring 2007 in Paris (France). The sum of these two chemical components (ions and carbonaceous aerosols) has shown to account for most of the fine aerosol mass (PM2.5). This time-resolved dataset allowed investigating the factors controlling the levels of PM2.5 in Paris and showed that polluted periods with PM2.5 > 15 μg m-3 were characterized by air masses of continental (North-Western Europe) origin and chemical composition made by 75% of ions. By contrast, periods with clean marine air masses have shown the lowest PM2.5 concentrations (typically of about 10 μg m-3); carbonaceous aerosols contributing for most of this mass (typically 75%). In order to better discriminate between local and continental contributions to the observed chemical composition and concentrations of PM2.5 over Paris, a comparative study was performed between this time-resolved dataset and the outputs of a chemistry transport model (CHIMERE), showing a relatively good capability of the model to reproduce the time-limited intense maxima observed in the field for PM2.5 and ion species. Different model scenarios were then investigated switching off local and European (North-Western and Central) emissions. Results of these scenarios have clearly shown that most of the ions observed over Paris during polluted periods, were either transported or formed in-situ from gas precursors transported from Northern Europe. On the opposite, long-range transport from Europe appeared to weakly contribute to the levels of carbonaceous aerosols observed over Paris. The model failed to properly account for the concentration levels and variability of secondary organic aerosols (SOA) determined experimentally by the EC-tracer method. The abundance of SOA (relatively to organic aerosol, OA) was as

  6. Process for gasification of carbonaceous material

    SciTech Connect

    Lancet, M.S.; Gorin, E.

    1984-04-03

    A process of tar destruction in gasification of carbonaceous material comprises providing a mixture of finely divided calcium compound of a particle size smaller than 65 mesh and finely divided carbonaceous material of a particle size smaller than 65 mesh, the calcium compound to carbonaceous material ratio being from about 0.5 to 1.0 and contacting the mixture with CO/sub 2/ and tar exothermally whereby the tar is destroyed.

  7. Carbonaceous Material in Extra-terrestrial Matter

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2016-10-01

    Comets, asteroids, meteorites, micrometeorites, interplanetary dust particles (IDPs), and ultra-carbonaceous Antarctic micrometeorites (UCAMMs) may contain carbonaceous material, which was exogenously delivered to the early Earth. Carbonaceous chondrites have an enormous variety of extra-terrestrial compounds, including all the key compounds important in terrestrial biochemistry. Comets contain several carbon-rich species and, in addition, the hypervelocity impact-shock of a comet can produce several α-amino acids. The analysis of the carbonaceous content of extra-terrestrial matter provides a window into the resources delivered to the early Earth, which may have been used by the first living organisms.

  8. Carbonaceous PM2.5 emitted from light-duty vehicles operating on low-level ethanol fuel blends.

    EPA Science Inventory

    This study aims to examine carbonaceous aerosol emissions from three Tier 2-certified 2008 model year LDVs burning e0, e10, and e85 fuel blends at -7°C and 24°C. The LDVs were tested on an electric chasis dynamometer using the LA-92 Urban Driving Cycle (UDC). Exhaust was ...

  9. Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins.

    PubMed

    Shiraiwa, Manabu; Selzle, Kathrin; Pöschl, Ulrich

    2012-08-01

    This review outlines recent advances in the investigation of the chemical properties, molecular interactions and health effects of hazardous compounds in atmospheric aerosols, in particular reactive oxygen species (ROS), soot, polycyclic aromatic compounds (PACs) and allergenic proteins. Epidemiological studies show correlations between air particulate matter and adverse health effects of air pollution including allergy, asthma, cardiovascular and respiratory diseases, but the causative relations and mechanisms of interaction on the molecular level are still unclear. ROS generated by photochemical and heterogeneous reactions in the atmosphere seem to play a key role in aerosol health effects and provide a direct link between atmospheric and physiological multiphase processes. Soot and PACs can trigger formation of ROS in vivo, leading to inflammation and cellular damage. PACs as well as allergenic proteins are efficiently oxygenated and nitrated upon exposure to ozone and nitrogen dioxide, which leads to an enhancement of their toxicity and allergenicity.

  10. Chemical and structural composition of organic carbonaceous structures in Tissint: evidence for a biogenetic origin

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    Earlier studies of the Tissint Martian meteorite identified the presence of a number of 5-50μm carbonaceous spherical structures. SEM and EDS elemental spectra for 11 selected structures confirmed that they comprise of a carbonaceous outer coating with a inner core of FeS2 (pyrite) and are characterised as immiscible globules with curved boundaries. Here we report on the results of Raman spectroscopic studies that unambiguously confirm the mantle as comprising of `disordered carbonaceous material'. R1 = ID/IG against ΓD (cm-1) band parameter plots of the carbonaceous coatings imply a complex precursor carbon inventory comparable to the precursor carbon component of materials of known biotic source (plants, algae, fungi, crustaceans, prokaryotes). Correlation between peak metamorphic temperatures and Raman D-band (ΓD) parameters further indicate the carbonaceous component was subjected to a peak temperature of ~250 OC suggesting a possible link with the hydrothermal precipitation processes responsible for the formation of similar globules observed in hydrothermal calcite veins in central Ireland. Ω G (cm-1), ΓG (cm-1), Ω D (cm-1) and ΓD (cm-1) parameters further imply a level of crystallinity and disorder of the carbon component consistent with carbonaceous material recovered from a variety of non-terrestrial sources. Cl, N, O and S to C elemental ratios are typical of high volatility bituminous coals and distinctly higher than equivalent graphite standards.

  11. Investigating a two-component model of solid fuel organic aerosol in London: processes, PM1 contributions, and seasonality

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Harrison, R. M.; Yin, J.; Flynn, M. J.; Gallagher, M. W.; Coe, H.

    2015-03-01

    Solid fuel emissions, including those from biomass burning, are increasing in urban areas across the European Union due to rising energy costs and government incentives to use renewable energy sources for heating. In order to help protect human health as well as to improve air quality and pollution abatement strategies, the sources of combustion aerosols, their contributions, and the processes they undergo need to be better understood. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was therefore deployed at an urban background site between January and February 2012 to investigate solid fuel organic aerosols (SFOA) in London. The variability of SFOA was examined and the factors governing the split between the two SFOA factors derived from Positive Matrix Factorisation (PMF) were assessed. The concentrations of both factors were found to increase during the night and during cold periods, consistent with domestic space heating activities. The split between the two factors is likely governed predominantly by differences in burn conditions where SFOA1 best represents more efficient burns and SFOA2 best represents less efficient burns. The differences in efficiency may be due to burner types or burn phase, for example. Different fuel types and levels of atmospheric processing also likely contribute to the two factors. As the mass spectral profile of SFOA is highly variable, the findings from this study may have implications for improving future source apportionment and factorisation analyses. During the winter, SFOA was found to contribute 38% to the total non-refractory submicron organic aerosol (OA) mass, with similar contributions from both SFOA factors (20% from SFOA1 and 18% from SFOA2). A similar contribution of SFOA was derived for the same period from a compact time-of-flight AMS (cToF-AMS), which measured for a full calendar year at the same site. The seasonality of SFOA was investigated using the year-long data set where concentrations

  12. Investigating the two-component model of solid fuel organic aerosol in London: processes, PM1 contributions, and seasonality

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Harrison, R. M.; Yin, J.; Flynn, M. J.; Gallagher, M. W.; Coe, H.

    2014-08-01

    Solid fuel emissions, including those from biomass burning, are increasing in urban areas across the European Union due to rising energy costs and government incentives to use renewable energy sources for heating. In order to help protect human health as well as to improve air quality and pollution abatement strategies, the sources of combustion aerosols, their contributions, and the processes they undergo need to be better understood. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was therefore deployed at an urban background site between January and February 2012 to investigate solid fuel organic aerosols (SFOA) in London. The variability of SFOA was examined and the factors governing the split between the two SFOA factors derived from positive matrix factorisation (PMF) were assessed. The concentrations of both factors were found to increase during the night and during cold periods, consistent with domestic space heating activities. The split between the two factors is likely governed predominantly by differences in burn conditions where SFOA1 best represents more efficient burns in the south and SFOA2 best represents less efficient burns in the east and west. The differences in efficiency may be due to burner types or burn phase, for example. Different fuel types and levels of atmospheric processing also likely contribute to the two factors. As the mass spectral profile of SFOA is highly variable, the findings from this study have implications for improving future source apportionment and factorisation analyses. During the winter, SFOA was found to contribute 38% to the total submicron organic aerosol (OA) mass, with SFOA2 contributing slightly more than SFOA1 (20% compared to 18%). A similar contribution of SFOA was derived for the same period from compact time-of-flight AMS (cToF-AMS), which measured for a full calendar year at the same site. The seasonality of SFOA was investigated using the year-long data set where concentrations

  13. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  14. Conversion of raw carbonaceous fuels

    DOEpatents

    Cooper, John F.

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  15. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    NASA Astrophysics Data System (ADS)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  16. Visibility-reducing organic aerosols in the vicinity of Grand Canyon Nationl Park: 1. Properties observed by high resolution gas chromatography

    SciTech Connect

    Mazurek, M.A.; Mason-Jones, M.; Mason-Jones, H. |

    1995-12-31

    During the summer of 1989, an air monitoring program was established within the Grand Canyon and on the South Rim to define summertime organic aerosol concentration and composition as a function of elevation in the canyon. Supporting information was collected on the composition of the inorganic portion of the atmospheric aerosol to help place the relative importance of organics in perspective. The present paper describes the ambient air monitoring experiment, quantifies the bulk chemical composition of the fine (dp< 2.1=135m) and total aerosol components, distinguishes carbonaceous aerosols according to their organic carbon, elemental carbon and carbonate content, and then examines those characteristics of the organic aerosol that can be defined via capillary gas chromatography using flame ionization detection (GC-FID). At both Indian Gardens (in-canyon, IG) and at Hopi Point (South Rim, HP), the largest contributors to the fine aerosol consist of sulfate and associated ammonium ion plus aerosol carbon species. At IG, sulfate and ammonium ion account for 25.5% and 7.5% of the fine aerosol, respectively, nearly equaled by the 29.9% of the sample composed of organic compounds and 1% contributed by elemental carbon. Somewhat more than half of the fine aerosol at HP can be explained by sulfate ion, ammonium ion, organic compounds and elemental carbon, again with roughly equal mass concentrations due to the ionic versus carbonaceous components. Monthly average mass concentrations for fine aerosol organics were 1.1 = B5gm -3(IG) and 1.3 =135gm-3 (HP), while the total organics monthly average mass concentrations were 1.9 =135gm-3 (IG) and 2.1 =135gm-3 (HP). The fraction of aerosol organics that could be evaluated by GC-FID (elutable organics) constituted 27% to 53% of the total organics mass collected as fine or total aerosol. For the fine particle monthly composites, the elutable organics were present in mass concentrations of 0.28 =B5gm-3 (IG) and 0.46 =135gm-3 (HP).

  17. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  18. Quenched Carbonaceous Composite: a laboratory analog for carbonaceous material in the interstellar medium.

    PubMed

    Tokunaga, A T; Wada, S

    1997-01-01

    We review the properties of Quenched Carbonaceous Composite (QCC), a residue produced from a hydrocarbon plasma, and the properties of its derivatives. A. Sakata and his colleagues have shown that QCC has a 220 nm absorption band, visible fluorescence matching the extended red emission seen in reflection nebulae, and infrared absorption bands that correspond to the infrared emission features in reflection nebulae, HII regions, and planetary nebulae. These properties make QCC a strong candidate material as a laboratory analog to the carbonaceous material in the interstellar medium. QCC is distinguished from the PAH hypothesis in that (1) it is a condensate composed of aromatic and aliphatic molecules, as well as radicals; (2) it exhibits a 220 nm absorption that is very similar in wavelength to the 217 nm absorption in the interstellar medium; (3) it exhibits visible fluorescence consistent with that seen in reflection nebulae; and (4) the bands at 7.7 and 8.6 microns are caused by ketone bands in oxidized QCC. The aromatic component in QCC is thought to be typically 1-4 rings, with the majority being about 1-2 rings.

  19. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  20. Bacterial Paleontology and Studies of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Gerasimenko, L. M.; Hoover, Richard B.; Rozanov, Alexei Y.; Zhegallo, E. A.; Zhmur, S. I.

    1999-01-01

    The study of the fossilization processes of modern cyanobacteria provides insights needed to recognize bacterial microfossils. The fossilization of cyanobacteria is discussed and images of recent and fossil bacteria and cyanobacteria from the Early Proterozoic to Neogene carbonaceous rocks (kerites, shungites, and black shales) and phosphorites are provided. These are compared with biomorphic microstructures and possible microfossils encountered in-situ in carbonaceous meteorites.

  1. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  2. Large S-33 Anomalies in Late Archean Carbonacous Shales

    NASA Astrophysics Data System (ADS)

    Ono, S.; Rumble, D.; Pavlov, A.; Kharecha, P.; Kasting, J. F.

    2002-12-01

    Multi-sulfur isotope ratios (34S/33S/32S) were determined on sulfides extracted from two late Archean carbonaceous shale units, the Mt. McRae shale (~2.5 Ga) and the Jeerinah formation (~2.7 Ga), from the Hamersley Basin, Western Australia by using the CO2-laser fluorination line at the Geophisical Laboratory. We have measured the largest Δ33S anomaly yet reported for a terrestrial sample on sulfides from 22 m core section of the Mt McRae shale. The large positive Δ33S, up to +6.9 ‰ , is found in the lower part of the core section; the Δ33S shifts to negative upward in the section to as low as -1.9 ‰ . The age of the Mt. McRae shale is bracketed by 2470 and 2561 Ma. Therefore, the observed isotopic shift represents the maximum duration of 91 million years, but most likely less than 30 million years by assuming a constant sedimentation rate for the Mt. McRae shale that has average thickness of 60 m in the area. Sulfide sulfur from the Jeerinah formation also yield large Δ33S anomalies ranging from -0.1 to +4.4 ‰ . Our model fundamentally follows the one proposing a strong atmospheric influence in the Archean sulfur cycle by Farquhar et al. (2000). Our new data show the large and systematic variation between Δ33S and δ34S. This allows us to further speculate the isotopic compositions of Archean sulfur reservoirs and the manner in which the atmospheric signature was transferred to sediments. Our data are consistent with the late Archean seawater sulfate reservoir that has a negative Δ33S of ~ -2 ‰ . Thus, pyrite formed via microbial sulfate reduction shows variable δ34S and negative Δ33S. The large positive Δ33S of + 6.9 ‰ is likely to be a signature of deposition of sulfur aerosol, probably elemental sulfur. Our sulfur isotope data is best explained by mixing of those two components. Atmospheric deposition of elemental sulfur requires an anoxic atmosphere, and subsequent burial and preservation of the signature into pelagic sediments would have

  3. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    SciTech Connect

    Mazurek, M.A. ); Hildemann, L.M. . Dept. of Civil Engineering); Cass, G.R.; Rogge, W.F. . Dept. of Environmental Engineering Science); Simoneit, B.R.T. . Coll. of Oceanography)

    1990-04-01

    Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analytical method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs.

  4. Optical and Structural Properties of Aerosols Emitted from Open Biomass Burning (Invited)

    NASA Astrophysics Data System (ADS)

    Moosmuller, H.; Chakrabarty, R. K.; Lewis, K.; Gyawali, M.; Mazzoleni, C.; Dubey, M. K.; Kreidenweis, S. M.; Arnott, W. P.

    2010-12-01

    Open biomass burning including wildland fires and agricultural burning emits substantial quantities of carbonaceous aerosols into the atmosphere. Fuel, soil, and atmospheric conditions largely determine the combustion phase. High temperature flaming combustion emits black aerosols, generally consisting of fractal-like chain aggregates that have a high black carbon content and therefore strongly absorb visible light. Low temperature, smoldering combustion, on the other hand, emits fairly white aerosols, often consisting of near-spherical particles that have high organic carbon content. While this organic carbon is traditionally considered to cause negligent absorption of visible light, more recent studies have shown that organic carbon from biomass burning often contains brown carbon. Brown carbon is a component of organic carbon, optically defined by its increasing light absorption toward shorter wavelengths. The physical characteristics of biomass combustion aerosol particles are determined by a combination of their morphology, monomer size, and shape, all of which can be determined from electron microscopy and image analysis. Here, we review optical and structural properties of aerosols emitted from open biomass burning with a focus on relevance for radiative forcing and climate change and satellite remote sensing. This review is followed by a discussion of measurements and modeling of brown carbon optical properties, of associated metrics such as the Ångström absorption coefficient, and of future research needs.

  5. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; Jayaraman, A.; Pandit, A.; Raj, A.; Kumar, H.; Kumar, S.; Singh, A.; Stenchikov, G.; Wienhold, F.; Bian, J.

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  6. Plagioclase-rich inclusions in carbonaceous chondrite meteorites - Liquid condensates?

    NASA Technical Reports Server (NTRS)

    Wark, D. A.

    1987-01-01

    The characteristics and formation of coarse-grained, plagioclase-rich inclusions are investigated. The textures, mineralogical compositions, and initial Al-26/Al-27 ratios for the plagioclase-rich inclusions are described. It is observed that plagioclase-rich inclusions in carbonaceous chondrites are either Ca-Al-rich inclusions (CAIs) composed of 30-60 vol pct anorthite, and less than 35 vol pct Ti-Al-pyroxene and melilite, or CA chondrites composed of plagioclase, pyroxene, olivine, spinel, and melilite. It is observed that CA chondrules are chemically and mineralogically the most similar components shared by carbonaceous and ordinary chondrites. The textural changes observed in the inclusions are examined. The data reveal that the CAIs have three textural groups: coarse anorthite laths, equigranular anorthite and Ti-Al-pyroxene, and lacy Ti-Al-pyroxene and fine-grained anorthite.

  7. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1982-01-01

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  8. The Biological Potency Of Carbonaceous Nanoparticles Is Associated With The State Of Oxidation Of Surface Carbon Atoms

    EPA Science Inventory

    Epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with excess morbidity and mortality. An important component of PM consists of inorganic and organic compounds adsorbed onto a carbonaceous particle core. Toxicological studies indica...

  9. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols.

    PubMed

    Verma, Vishal; Rico-Martinez, Roberto; Kotra, Neel; King, Laura; Liu, Jiumeng; Snell, Terry W; Weber, Rodney J

    2012-10-16

    Relative contributions of water- and methanol-soluble compounds and their hydrophobic/hydrophilic subfractions to the ROS (reactive oxygen species)-generating potential of ambient fine aerosols (D(p) < 2.5 μm) are assessed. ROS-generating (or oxidative) potential of the particulate matter (PM) was measured by the dithiothreitol (DTT) assay. Particles were collected on quartz filters (N = 8) at an urban site near central Atlanta during January-February 2012 using a PM(2.5) high-volume sampler. Filter punches were extracted separately in both water and methanol. Hydrophobic and hydrophilic fractions were then subsequently segregated via a C-18 solid phase extraction column. The DTT assay response was significantly higher for the methanol extract, and for both extracts a substantial fraction of PM oxidative potential was associated with the hydrophobic compounds as evident from a substantial attenuation in DTT response after passing PM extracts through the C-18 column (64% for water and 83% for methanol extract; both median values). The DTT activities of water and methanol extracts were correlated with the water-soluble (R = 0.86) and water-insoluble organic carbon (R = 0.94) contents of the PM, respectively. Brown carbon (BrC), which predominantly represents the hydrophobic organic fraction (referred to as humic-like substances, HULIS), was also correlated with DTT activity in both the water (R = 0.78) and methanol extracts (R = 0.83). Oxidative potential was not correlated with any metals measured in the extracts. These findings suggest that the hydrophobic components of both water-soluble and insoluble organic aerosols substantially contribute to the oxidative properties of ambient PM. Further investigation of these hydrophobic organic compounds could help identify sources of a significant fraction of ambient aerosol toxicity.

  10. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  11. Atmospheric Condensational Properties of Ultrafine Chain and Fractal Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Marlow, William H.

    1997-01-01

    The purpose for the research sponsored by this grant was to lay the foundations for qualitative understanding and quantitative description of the equilibrium vapor pressure of water vapor over the irregularly shaped, carbonaceous particles that are present in the atmosphere. This work apparently was the first systematic treatment of the subject. Research was conducted in two complementary components: 1. Calculations were performed of the equilibrium vapor pressure of water over particles comprised of aggregates of spheres in the 50-200 nm radius range. The purposes of this work were two-fold. First, since no systematic treatment of this subject had previously been conducted, its availability would be directly useful for quantitative treatment for a limited range of atmospheric aerosols. Second, it would provide qualitative indications of the effects of highly irregular particle shape on equilibrium vapor pressure of aggregates comprised of smaller spheres.

  12. Organic Chemistry of Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cronin, John R.

    2001-01-01

    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  13. Black carbon reduction will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  14. The Sequential Aerosol Technique: A Major Component in an Integrated Strategy of Intervention against Riverine Tsetse in Ghana

    PubMed Central

    Adam, Yahaya; Cecchi, Giuliano; Kgori, Patrick M.; Marcotty, Tanguy; Mahama, Charles I.; Abavana, Martin; Anderson, Benita; Paone, Massimo; Mattioli, Raffaele; Bouyer, Jérémy

    2013-01-01

    Background An integrated strategy of intervention against tsetse flies was implemented in the Upper West Region of Ghana (9.62°–11.00° N, 1.40°–2.76° W), covering an area of ≈18,000 km2 within the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign. Two species were targeted: Glossina tachinoides and Glossina palpalis gambiensis. Methodology/Principal Findings The objectives were to test the potentiality of the sequential aerosol technique (SAT) to eliminate riverine tsetse species in a challenging subsection (dense tree canopy and high tsetse densities) of the total sprayed area (6,745 km2) and the subsequent efficacy of an integrated strategy including ground spraying (≈100 km2), insecticide treated targets (20,000) and insecticide treated cattle (45,000) in sustaining the results of tsetse suppression in the whole intervention area. The aerial application of low-dosage deltamethrin aerosols (0.33–0.35 g a.i/ha) was conducted along the three main rivers using five custom designed fixed-wings Turbo thrush aircraft. The impact of SAT on tsetse densities was monitored using 30 biconical traps deployed from two weeks before until two weeks after the operations. Results of the SAT monitoring indicated an overall reduction rate of 98% (from a pre-intervention mean apparent density per trap per day (ADT) of 16.7 to 0.3 at the end of the fourth and last cycle). One year after the SAT operations, a second survey using 200 biconical traps set in 20 sites during 3 weeks was conducted throughout the intervention area to measure the impact of the integrated control strategy. Both target species were still detected, albeit at very low densities (ADT of 0.27 inside sprayed blocks and 0.10 outside sprayed blocks). Conclusions/Significance The SAT operations failed to achieve elimination in the monitored section, but the subsequent integrated strategy maintained high levels of suppression throughout the intervention area, which will

  15. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    SciTech Connect

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  16. Distinct Purine Distribution in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, Henderson J.; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    Carbonaceous chondrite meteorites are known to contain a diverse suite of organic compounds, many of which are essential components of biochemistry. Amino acids, which are the monomers of proteins, have been extensively studied in such meteorites (e.g. Botta and Bada 2002; Pizzarello et aI., 2006). The origin of amino acids in meteorites has been firmly established as extraterrestrial based on their detection typically as racemic mixtures of amino acids, the presence of many non-protein amino acids, and non-terrestrial values for compound-specific deuterium, carbon, and nitrogen isotopic measurements. In contrast to amino acids, nucleobases in meteorites have been far less studied. Nucleobases are substituted one-ring (pyrimidine) or two-ring (purine) nitrogen heterocyclic compounds and serve as the information carriers of nucleic acids and in numerous coenzymes. All of the purines (adenine, guanine, hypoxanthine, and xanthine) and pyrimidines (uracil) previously reported in meteorites are biologically common and could be interpreted as the result of terrestrial contamination (e.g. van del' Velden and Schwartz, 1974.) Unlike other meteoritic organics, there have been no observations of stochastic molecular diversity of purines and pyrimidines in meteorites, which has been a criterion for establishing extraterrestrial origin. Maltins et al. (2008) performed compound-specific stable carbon isotope measurements for uracil and xanthine in the Murchison meteorite. They assigned a non-terrestrial origin for these nucleobases; however, the possibility that interfering indigenous molecules (e.g. carboxylic acids) contributed to the 13C-enriched isotope values for these nucleobases cannot be completely ruled out. Thus, the origin of these meteoritic nucleobases has never been established unequivocally. Here we report on our investigation of extracts of II different carbonaceous chondrites covering various petrographic types (Cl, CM, and CR) and degrees of aqueous alteration

  17. Staged heating by oxidation of carbonaceous material

    DOEpatents

    Knell, Everett W.; Green, Norman W.

    1978-01-31

    A carbonaceous material is pyrolyzed in the presence of a particulate source of heat obtained by the partial oxidation of a carbon containing solid residue of the carbonaceous material. The heat obtained from the oxidation of the carbon containing solid residue is maximized by preheating the carbon containing solid residue with a hot gas stream obtained by oxidizing the gaseous combustion products of the carbon containing solid residue.

  18. Temporal variations in sources and concentrations of black and organic carbon aerosols in the LA Basin

    NASA Astrophysics Data System (ADS)

    Mouteva, G.; Kearney, J.; Fahrni, S.; Santos, G. M.; Czimczik, C. I.

    2012-12-01

    Temporal variations in sources and concentrations of black and organic carbon aerosols in the LA Basin Black carbon (BC), derived from incomplete combustion of fossil and biogenic fuels and vegetation fires, is a crucial component of the aerosol pool, but sources as well as atmospheric transport and lifetime remain poorly constrained by measurements. We characterized the composition of carbonaceous aerosols emitted from urban areas by quantifying the temporal variations in the concentrations and sources of BC and organic carbon (OC) in PM-10 and PM-2.5 from two locations in the Los Angeles basin. Using the radiocarbon signatures in BC and OC allowed us to apportion emissions into fossil and modern contributions. We separated and quantified BC and OC using a modified Sunset OC-EC analyzer coupled to a vacuum line and cryogenically trapped the evolving CO2 (Zhang et al. In Prep.). The instrument and method were tested with well-defined radiocarbon standards to determine background, accuracy and precision. The purified CO2 was converted to graphite and measured at the Keck-AMS facility on unknown samples as small as ≥5 μg C. Preliminary results suggest that radiocarbon content can be used to apportion BC into fossil and modern sources. BC concentrations are on the order of 6-31% total carbon, with 48 to 96% fossil contribution. In the OC fraction we detected several super-modern samples, suggesting local production of radiocarbon, e.g. from medical waste incinerators. Thus, the radiocarbon-based approach cannot be used to quantify sources of OC and bulk carbonaceous aerosols in urban areas. Our measurements contribute to a comprehensive quantification of temporal and spatial variations in urban BC, a key uncertainty in constraining BC sources and transport in North America. References: Zhang YL, Perron N, Zotter P, Minguillón MC, Wacker L, Prévôt ASH, Baltensperger U, Szidat S. In Prep. On the isolation of OC and EC and the optimal strategy of radiocarbon

  19. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten

    2016-11-01

    Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope

  20. Indigenous microfossils in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Jerman, Gregory; Rozanov, Alexei Y.; Sipiera, Paul P.

    2004-11-01

    Indigenous embedded microbial filaments, bacterial cells and other microfossils were found in the Orgueil, Ivuna (CI1), Murchison, and Bells (CM2) carbonaceous meteorites. Biominerals, biofilms, framboids, magnetite platelets, and curious elemental iron ovoids covered with minute fibrils and carbon sheaths were also found. The S-4100 Hitachi Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray Analysis (EDAX) were used for in situ investigations of freshly fractured interior meteorite surfaces. EDAX x-ray spectra shows the microfossils bear signatures of the meteorite matrix and possess elemental ratios indicating they are indigenous and not recent microbial contaminants. Many of the well-preserved biogenic remains in the meteorites are encased within carbon-rich, sometimes electron transparent, sheaths. Their size, morphology and ultra microstructure are comparable to microfossils known from the phosphorites of Khubsughul, Mongolia and to some of the living cyanobacteria and other sulfur- and sulfate-reducing bacteria known from the halophilic Microcoleus mats of Sivash Lagoon, Crimea and from Mono Lake in California.

  1. Sugar-Related Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Sugars and related polyols are critical components of all organisms and may have been necessary for the origin of life. To date, this class of organic compounds had not been definitively identified in meteorites. This study was undertaken to determine if polyols were present in the early Solar System as constituents of carbonaceous meteorites. Results of analyses of the Murchison and Murray meteorites indicate that formaldehyde and sugar chemistry may be responsible for the presence of a variety of polyols. We conclude that polyols were present on the early Earth through delivery by asteroids and possibly comets.

  2. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  3. Characterization Of Carbonaceous Particles Along A North South Transect Of The Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Cox, J.; Lohmann, R.; Nizzetto, L.

    2006-12-01

    In recent years an increasing number of studies have investigated carbonaceous aerosols in urban and remote locations. However, little data on carbonaceous particles in remote marine environments exists, particularly on individual organic species concentrations including so-called molecular marker species. These markers can provide valuable insights into the sources of carbonaceous material, when stable during atmospheric transport. We will present results on organic aerosol characterization performed on samples collected along a North/South Transect from Bremerhaven (Germany) to Capetown (South Africa) aboard the Polarstern research vessel. Total Suspended Particulate matter (TSP) filter samples were analyzed for total carbon as well as carbon isotope ratios. Individual organic species (including n-alkanes, n-alkanoic acids, polyaromatic hydrocarbons, hopanes, steranes, dicarboxylic acids, and levoglucosan) were quantified in discrete (12h) and pooled (24-72h) samples, following solvent extraction and analysis by gas chromatography coupled to mass spectrometry (GC/MS). Preliminary results indicate relatively low concentrations of organic matter during most of the research cruise ( <1ug/m3) with higher concentrations in less pristine areas, mostly along Europe. Carbon isotope ratios were variable (-20 < delta13C < -27) and consistent with a change from C3 to C4 vegetation, suggesting an important biomass contribution to the observed particulate matter concentrations. These observations will be discussed with a focus on our observations of molecular marker concentrations. Although marker species were generally close to the detection limit, some markers were clearly detectable during high carbon events and are indicative of the sources of the carbonaceous particles.

  4. The Oxygen Isotope Composition of Dark Inclusions in HEDs, Ordinary and Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Zolensky, M. E.; Buchanan, P. C.; Franchi, I. A.

    2015-01-01

    Dark inclusions (DIs) are lithic fragments that form a volumetrically small, but important, component in carbonaceous chondrites. Carbonaceous clasts similar to DIs are also found in some ordinary chondrites and HEDs. DIs are of particular interest because they provide a record of nebular and planetary processes distinct from that of their host meteorite. DIs may be representative of the material that delivered water and other volatiles to early Earth as a late veneer. Here we focus on the oxygen isotopic composition of DIs in a variety of settings with the aim of understanding their formational history and relationship to the enclosing host meteorite.

  5. Carbonaceous Chondrite Clasts in HED Achondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Weisberg, M. K.; Buchanan, P. C.; Mittlefehldt, David W.

    1996-01-01

    Since carbonaceous chondrite planetesimals are attractive candidates for the progenitors of HED asteroid(s), we have performed a survey of HED meteorites in order to locate and characterize the mineralogy, chemistry, and petrography of the oft-reported carbonaceous chondrite clasts by microprobe, SEM-EDX. and TEM techniques. We examined samples of all HEDs we could lay our gloved hands on, and found carbonaceous chondrite clasts in the howardites Kapoeta, Jodzie, EET 87513, Y 793497, LEW 85441, LEW 87015, and G'Day, the polymict eucrites LEW 97295 and LEW 95300, and the diogenite Ellemeet. We verified previous suggestions that the majority (about 80%) of these clasts are CM2 material, but we discovered that a significant proportion are CR2 (about 20%) and other rare types are present. We conclude that chondritic compounds of mixed CM2 and CR2 materials should be investigated in future geochemical modeling of the origin of the HED asteroid(s).

  6. Stabilized water slurries of carbonaceous materials

    SciTech Connect

    Papalos, J.G.; Knitter, K.A.; Savoly, A.; Villa, J.L.

    1984-07-03

    Improved stabilized water slurries of carbonaceous materials are obtained by having present a condensation product or a salt thereof of a substituted phenol sulfonic acid which is an arylphenol sulfonic acid, an aralkylphenol sulfonic acid, an arylphenol sulfonic acid and arylsulfonic acid mixture, or an aralkylphenol sulfonic acid and arylsulfonic acid mixture, condensed with from about 0.5 to about 4.0 moles of formaldehyde per mole of sulfonic acid with the proviso that the weight ratio if substituted phenol sulfonic acid to arylsulfonic acid is from about 0.95:0.05 to about 0.05:0.95 in the mixtures, the condensation product being present in an amount sufficient to reduce viscosity of the water slurry of carbonaceous materials, to stabilize carbonaceous materials in the water network and to improve its pumpability. If desired, an acid form or a salt of the condensation product may be used.

  7. Reactor and method for hydrocracking carbonaceous material

    DOEpatents

    Duncan, Dennis A.; Beeson, Justin L.; Oberle, R. Donald; Dirksen, Henry A.

    1980-01-01

    Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.

  8. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  9. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOEpatents

    Koutsoukos, Elias P.

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  10. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  11. Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Pekour, Mikhail; Barnard, James

    2012-10-01

    The majority of previous studies dealing with effect of coarse mode aerosols (supermicron) on the radiation budget have focused primarily on regions where total aerosol loadings are substantial. We reexamine this effect for a relatively clean area using a unique 1-month dataset collected during the recent Carbonaceous Aerosol and Radiative Effects Study (CARES, June 2010) in the central California region near Sacramento. Here we define “clean” as aerosol optical depths less than 0.1 at 0.5 μm. We demonstrate that coarse mode particles contributed substantially (more than 50%) and frequently (up to 85% of time) to the total aerosol volume during this study. In contrast to conventional expectations that the radiative impact of coarse mode aerosols should be small for clean regions, we find that neglecting large particles may lead to significant overestimation, up to 45%, of direct aerosol radiative forcing despite very small aerosol optical depths. Our findings highlight the potential for substantial impacts of coarse mode aerosols on radiative properties over clean areas and the need for more explicit inclusion of coarse mode aerosols in climate-related observational studies.

  12. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  13. Mineralogy and chemistry of the carbonaceous chondrite PCA 91467 (CH)

    NASA Astrophysics Data System (ADS)

    Bischoff, A.; Schirmeyer, S.; Palme, H.; Spettel, B.; Weber, D.

    1994-07-01

    The two carbonaceous chondrites ALH 85085 and Acfer 182 have distinct mineralogical and chemical similarities. Due to their high bulk Fe content and metal abundance they were designated as CH chondrites. Meanwhile, two other (probably unpaired) meteorites have been recognized as belonging to this new group of carbonaceous chondrites. In this study we report on the mineralogy and chemistry of PCA 91467, the largest collected piece of the PCA 91328 chondrite. In its interior PCA 91467 is quite fresh with only negligible amounts of terrestrial weathering products. Like ALH 85085 and Acfer 182, this chondrite is metal rich and has only a small fraction of chondrules. The most abundant components are mineral and lithic (often cryptocrystalline) fragments. Also, Ca, Al-rich inclusions (CAIs) and dark inclusions are embedded in a fine-grained, clastic matrix, which is highly cemented (low porosity). PCA 91467 is a breccia. Considering the chondrules, a high abundance of cryptocrystalline chondrules (less than 160 microns) exists in PCA 91467, also typical of ALH 85085 and Acfer 182. The PCA 91467 meteorite has similar unique chemical signatures to the two other CH chondrites. The total Fe content of PCA 91467 is 37.42 wt%, between that of Acfer 182 (34.87 wt%) and ALH 85085 (39.83 wt%). In addition, all siderophile elements are enhanced, together with Fe and similar to the other two CH meteorites. PCA 91467 is in many respects more similar to ALH 85085 than to Acfer 182. The chemical characteristics of PCA 91467, Acfer 182, and ALH 85085 suggest that these meteorites form a unique group of carbonaceous chondrites as suggested by Bischoff et al. The large excess in metallic Fe and associated elements documents larger metal-silicate fractionations in the solar nebula than previously observed.

  14. Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005

    NASA Astrophysics Data System (ADS)

    Prank, Marje; Sofiev, Mikhail; Tsyro, Svetlana; Hendriks, Carlijn; Semeena, Valiyaveetil; Vazhappilly Francis, Xavier; Butler, Tim; Denier van der Gon, Hugo; Friedrich, Rainer; Hendricks, Johannes; Kong, Xin; Lawrence, Mark; Righi, Mattia; Samaras, Zissis; Sausen, Robert; Kukkonen, Jaakko; Sokhi, Ranjeet

    2016-05-01

    Four regional chemistry transport models were applied to simulate the concentration and composition of particulate matter (PM) in Europe for 2005 with horizontal resolution ~ 20 km. The modelled concentrations were compared with the measurements of PM chemical composition by the European Monitoring and Evaluation Programme (EMEP) monitoring network. All models systematically underestimated PM10 and PM2.5 by 10-60 %, depending on the model and the season of the year, when the calculated dry PM mass was compared with the measurements. The average water content at laboratory conditions was estimated between 5 and 20 % for PM2.5 and between 10 and 25 % for PM10. For majority of the PM chemical components, the relative underestimation was smaller than it was for total PM, exceptions being the carbonaceous particles and mineral dust. Some species, such as sea salt and NO3-, were overpredicted by the models. There were notable differences between the models' predictions of the seasonal variations of PM, mainly attributable to different treatments or omission of some source categories and aerosol processes. Benzo(a)pyrene concentrations were overestimated by all the models over the whole year. The study stresses the importance of improving the models' skill in simulating mineral dust and carbonaceous compounds, necessity for high-quality emissions from wildland fires, as well as the need for an explicit consideration of aerosol water content in model-measurement comparison.

  15. Organic matter of the troposphere—IV. Lipids in harmattan aerosols of nigeria

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Cox, R. E.; Standley, L. J.

    Harmattan aerosols were sampled during the 1979 and 1980 seasons in urban, rural and remote areas of Nigeria, in order to characterize sources of the continental carbonaceous particulate matter. High volume air samples (400-3600 m 3) were obtained. The sample filters were extracted and the soluble lipids were separated into functional group fractions for molecular analyses. These lipids were composed primarily of vascular plant wax and minor amounts of microbial detritus, with a significant anthropogenic component from petroleum products and burning superimposed in samples under urban influence. Plant wax was characterized by the homologous series of mainly n-alkanes and n-alkanols, with minor amounts of n-alkanoic acids, n-alkan-2-ones and biomarkers, all in the higher molecular weight range (> C 20). Alcohol fractions contained characteristic phytosterols (C 27-C 29) and triterpenols (C 30 > C 29), which are the biomarkers for vegetation sources. The plant wax signatures of the aerosols in northern Nigeria could be correlated with two dominant geographic source regions (e.g. northern Nigeria and Sahara). A microbial lipid component was evident primarily in the hydrocarbon (as unresolved complex mixture, UCM) and fatty acid fractions (< C 20). Its origin was inferred to be from erosion of lacustrine detritus and from viable microbiota in the ambient particles. Petroleum residues and traces of pyrogenic polynuclear aromatic hydrocarbons (PAH) were present in HC fractions of Harmattan aerosols under some urban influence. These anthropogenic components were comprised of n-alkanes (aerosol source regions and the conclusion that the urban components are rapidly diluted

  16. Chemical Imaging of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    SciTech Connect

    O'Brien, Rachel; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao-Ying; Alpert, Peter A.; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan

    2015-09-28

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission x-ray microscopy/near edge x-ray absorption fine structure (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on June 27th and 28th during the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. Both microscopy imaging techniques showed more changes over these two days in the mixing state at the T0 site than at the T1 site. The STXM data showed evidence of changes in the mixing state associated with a build-up of organic matter confirmed by collocated measurements and the largest impact on the mixing state was due to an increase in soot dominant particles during this build-up. The CCSEM/EDX analysis showed the presence of two types of particle populations; the first was dominated by aged sea salt particles and had a higher mixing state index (indicating a more homogeneous population), the second was dominated by carbonaceous particles and had a lower mixing state index.

  17. Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization

    DOE PAGES

    O'Brien, Rachel E.; Wang, Bingbing; Laskin, Alexander; ...

    2015-08-26

    In this study, a new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission X-ray microscopy/near edge X-ray absorption fine structure (STXM/NEXAFS) and computer-controlled scanning electron microscopy/energy dispersive X-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on 27 and 28 June during the 2010 Carbonaceous Aerosols and Radiative Effects study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near themore » Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. The STXM data showed evidence of changes in the mixing state associated with a buildup of organic matter confirmed by collocated measurements, and the largest impact on the mixing state was due to an increase in soot dominant particles during this buildup. The mixing state from STXM was similar between T0 and T1, indicating that the increased organic fraction at T1 had a small effect on the mixing state of the population. The CCSEM/EDX analysis showed the presence of two types of particle populations: the first was dominated by aged sea-salt particles and had a higher mixing state index (indicating a more homogeneous population); the second was dominated by carbonaceous particles and had a lower mixing state index.« less

  18. Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization

    SciTech Connect

    O'Brien, Rachel E.; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao -Ying; Alpert, Peter; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan C.

    2015-08-26

    In this study, a new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission X-ray microscopy/near edge X-ray absorption fine structure (STXM/NEXAFS) and computer-controlled scanning electron microscopy/energy dispersive X-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on 27 and 28 June during the 2010 Carbonaceous Aerosols and Radiative Effects study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. The STXM data showed evidence of changes in the mixing state associated with a buildup of organic matter confirmed by collocated measurements, and the largest impact on the mixing state was due to an increase in soot dominant particles during this buildup. The mixing state from STXM was similar between T0 and T1, indicating that the increased organic fraction at T1 had a small effect on the mixing state of the population. The CCSEM/EDX analysis showed the presence of two types of particle populations: the first was dominated by aged sea-salt particles and had a higher mixing state index (indicating a more homogeneous population); the second was dominated by carbonaceous particles and had a lower mixing state index.

  19. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  20. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    NASA Astrophysics Data System (ADS)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  1. Exposure ages of carbonaceous chondrites, 1

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Caffee, M. W.; Finkel, R. C.; Southon, J. R.; Nagai, H.; Honda, M.; Sharma, P.; Imamura, M.; Kobayashi, K.

    1993-01-01

    The recent exposure histories of carbonaceous chondrites have been investigated using cosmogenic radionuclides. Our results may indicate a clustering of exposure ages of C1 and C2 chondrites into two peaks, 0.2 My and 0.6 My, perhaps implying two collisional events of Earth-crossing parent bodies. Among carbonaceous chondrites are some having short exposure ages which Mazor et al. hypothesized cluster into a small number of families. This hypothesis is based on spallogenic Ne-21 exposure ages, which in some instances are difficult to determine owing to the large amounts of trapped noble gases in carbonaceous chondrites. Also, since Ne-21 is stable, it integrates a sample's entire exposure history, so meteorites with complex exposure histories are difficult to understand using exclusively Ne-21. Cosmogenic radionuclides provide an alternative means of determining the recent cosmic ray exposure duration. To test the hypothesis of Mazor et al. we have begun a systematic investigation of exposure histories of Antarctic and non-Antarctic carbonaceous chondrites especially C2s.

  2. Chemical Biomarkers and Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei; Six, N. Frank (Technical Monitor)

    2001-01-01

    Chemical, mineral and morphological biomarkers and microfossils are present in a wide variety of ancient rocks and meteorites. We discuss previous results and present images of microfossils of cyanobacteria, magnetotactic bacteria, and acritarchs detected in the Orgueil, Mighei, Nogoya, and Murchison carbonaceous meteorites.

  3. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  4. Mass and spatial distribution of carbonaceous component in Comet Halley

    NASA Technical Reports Server (NTRS)

    Fomenkova, M.; Chang, S.

    1993-01-01

    Cometary grains containing large amounts of carbon and/or organic matter were discovered by in situ measurements of cometary dust composition during VEGA and GIOTTO fly-by missions. In accordance with the classification for the data of PUMA-1 and PUMA-2 mass-spectrometers on board the VEGA spacecraft, particles with a ratio of C to any rock-forming element (Mg, Si, Fe, Ca etc.) greater than 10, were categorized as CHON. There are 464 such particles in PUMA-1 data and 51 in PUMA-2 data. Application of cluster analysis to these grains revealed several distinct compositional classes, namely: (H,C,N,O), (H,C,N), (H,C), (H,C,O), (C,N), (C,O), (C,N,O), and (C). Similar classes were identified among particles analyzed by PIA. Also, about a third of all particles fell into groups (H) and (O) characterized by abundances of these elements beyond chemically reasonable limits.

  5. The Distribution of Major Carbonaceous Components in Chondritic Materials

    NASA Astrophysics Data System (ADS)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Farley, C.; Cheung, J. C. H.

    2017-02-01

    With the use of Raman spectroscopy we present a study of the structure of the organic matter in the matrix and carbonate phases in five CM chondrites: Jbilet Winselwan, Murchison, Nogoya, Santa Cruz, and Wisconsin Range 91600.

  6. Mass and spatial distribution of carbonaceous component in Comet Halley

    NASA Astrophysics Data System (ADS)

    Fomenkova, M.; Chang, S.

    1993-03-01

    Cometary grains containing large amounts of carbon and/or organic matter were discovered by in situ measurements of cometary dust composition during VEGA and GIOTTO fly-by missions. In accordance with the classification for the data of PUMA-1 and PUMA-2 mass-spectrometers on board the VEGA spacecraft, particles with a ratio of C to any rock-forming element (Mg, Si, Fe, Ca etc.) greater than 10, were categorized as CHON. There are 464 such particles in PUMA-1 data and 51 in PUMA-2 data. Application of cluster analysis to these grains revealed several distinct compositional classes, namely: (H,C,N,O), (H,C,N), (H,C), (H,C,O), (C,N), (C,O), (C,N,O), and (C). Similar classes were identified among particles analyzed by PIA. Also, about a third of all particles fell into groups (H) and (O) characterized by abundances of these elements beyond chemically reasonable limits.

  7. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  8. Spectral characterisation of mineralogical components of dust, HULIS and winter time aerosol using multi-wavelength photoacoustic spectrometer. A laboratory and a field study

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Utry, Noémi; Filep, Ágnes; Tátrai, Dávid; Bozóki, Zoltán; Szabó, Gábor

    2013-04-01

    Aerosol can interact with solar radiation via scattering and absorption. The back scattering fraction of incoming solar irradiation has cooling effect, while the forward scattering redistributes electromagnetic energy into the atmosphere. The photon energy transformed into thermal energy via the light absorption, therefore the absorption process heating absorbing particles and also their surroundings While scattering can be measured fairly accurately, the assessment of the radiative effect of light absorption by aerosol can only be determined with limited accuracy, in part, because of the lack of reliable instrument for absorption measurement. The photoacoustic (PA) spectroscopy is the only method that can measure light absorption by aerosol in-situ (without sampling artifacts) with high sensitivity and temporal resolution, but not widespread in its application yet. Recently, multi-wavelength photoacoustic instruments including excitation at UVs have become available and open up a new perspective on in-situ investigation of light absorption by aerosol as well as its wavelength dependency. In this study we present novel results of an in-situ study of aerosol light absorption measurement of re-dispersed mineralogical composition of dust such as illit, caolinite, quartz, rutile, limestone, hematite and HULIS aerosols using state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS). We experimentally demonstrated that the absorption feature of MAC (mass specific aerosol absorption) could be used as chemically selective parameter. We also demonstrated the results of an in-situ winter time ambient aerosol measurement. The hourly concentration of trace elements(i.e. K, Ca, Fe, and Si), gaseous pollutants (CO and NOx), as well as the size distribution of ambient aerosol were also analyzed during the measurement campaign. The levoglucosan measurement was made to confirm that the daily fluctuation of ambient AAE (absorption Angstrom Exponent) governed by the

  9. Identification of source contributions to visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park. Interim final report

    SciTech Connect

    Mazurek, M.A.; Hallock, K.A.; Leach, M.; Mason-Jones, M.; Mason-Jones, H.; Salmon, L.G.; Winner, D.A.; Cass, G.R.

    1993-06-01

    Sulfates and carbonaceous aerosols are the largest contributors to the fine particle burden in the atmosphere near Grand Canyon National Park. While the effects of sulfate particles on visibility at the Grand Canyon has been extensively studied, much less is known about the nature and origin of the carbonaceous aerosols that are present. This disparity in understanding arises from at least two causes: aerosol carbon data for the region are less plentiful and many of the sources that could contribute to that organic aerosol are both diverse and not well characterized. The objective of this present study is to examine the origin of the carbonaceous aerosol at Grand Canyon National Park during the summer season based on molecular tracer techniques applied to source and ambient samples collected specifically for this purpose.

  10. Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere

    SciTech Connect

    Strawa, A.W.; Kirchstetter, T.W.; Puxbaum, H.

    2009-12-11

    Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or ''Carbon Conference'' as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting form the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS1 characterization, optical properties, and regional and global climate effects. The conference website, http://iccpa.lbl.gov/, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria. The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to

  11. Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Sandrini, Silvia; van Pinxteren, Dominik; Giulianelli, Lara; Herrmann, Hartmut; Poulain, Laurent; Facchini, Maria Cristina; Gilardoni, Stefania; Rinaldi, Matteo; Paglione, Marco; Turpin, Barbara J.; Pollini, Francesca; Bucci, Silvia; Zanca, Nicola; Decesari, Stefano

    2016-09-01

    The aerosol size-segregated chemical composition was analyzed at an urban (Bologna) and a rural (San Pietro Capofiume) site in the Po Valley, Italy, during June and July 2012, by ion-chromatography (major water-soluble ions and organic acids) and evolved gas analysis (total and water-soluble carbon), to investigate sources and mechanisms of secondary aerosol formation during the summer. A significant enhancement of secondary organic and inorganic aerosol mass was observed under anticyclonic conditions with recirculation of planetary boundary layer air but with substantial differences between the urban and the rural site. The data analysis, including a principal component analysis (PCA) on the size-resolved dataset of chemical concentrations, indicated that the photochemical oxidation of inorganic and organic gaseous precursors was an important mechanism of secondary aerosol formation at both sites. In addition, at the rural site a second formation process, explaining the largest fraction (22 %) of the total variance, was active at nighttime, especially under stagnant conditions. Nocturnal chemistry in the rural Po Valley was associated with the formation of ammonium nitrate in large accumulation-mode (0.42-1.2 µm) aerosols favored by local thermodynamic conditions (higher relative humidity and lower temperature compared to the urban site). Nocturnal concentrations of fine nitrate were, in fact, on average 5 times higher at the rural site than in Bologna. The water uptake by this highly hygroscopic compound under high RH conditions provided the medium for increased nocturnal aerosol uptake of water-soluble organic gases and possibly also for aqueous chemistry, as revealed by the shifting of peak concentrations of secondary compounds (water-soluble organic carbon (WSOC) and sulfate) toward the large accumulation mode (0.42-1.2 µm). Contrarily, the diurnal production of WSOC (proxy for secondary organic aerosol) by photochemistry was similar at the two sites but

  12. Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols

    SciTech Connect

    Smith, Steven J.; Bond, Tami C.

    2014-01-20

    Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  13. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  14. Aerosol contributions to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R.; Woodhead, J. D.; Hellstrom, J.

    2011-12-01

    The term "aerosols" encompasses the suspension of both fine solid or liquid particles within a gaseous medium. Aerosols become suspended into the earth's atmosphere through a multitude of processes both natural and anthropogenic. Atmospheric aerosols enter cave networks as a result of cave ventilation processes and are either deposited, or cycled and removed from the system. Speleothem offer a multiproxy palaeoclimate resource; many of the available proxies have been extensively investigated and utilised for palaeoclimatic reconstructions in a range of studies. The potential contribution of aerosols to speleothem chemistry and their applicability for palaeoenvironmental reconstructions remains untested and the extent of their value as an addition to palaeoclimate sciences unknown. Aerosols through incorporation into speleothem may provide a novel palaeoenvironmental resource. The aerosol component of interest is that which is transported into the cave atmosphere and deposited and are available for incorporation into precipitated calcite. Aerosol deposition and therefore distribution in the cave has shown to be a complex function of ventilation and changing environmental factors. Through detailed monitoring aerosols have been detected, identified, characterised and quantified to determine their prominence in the cave system. Investigations are on a case study basis, searching for suitable aerosol proxies of environmentally significant emission processes. Case studies include: Palaeofires at Yarrangobilly Caves, Australia; anthropogenic emissions at St Michaels Cave, Gibraltar and Cheddar gorge, UK; and drip water aerosol production and geochemical addition in Obir cave, Austria. Monitoring has allowed for the temporal and spatial determination of aerosols in karst networks. Speleothem samples will be analysed in combination with in-situ monitoring to determine incorporation factors and record preservation. By understanding how aerosols are transmitted within the

  15. Phyllosilicates in the Carbonaceous Chondrite Breccia Kaidun

    NASA Astrophysics Data System (ADS)

    Yang, S. V.; Zolensky, M.; Golden, D. C.; Ming, D. W.; Ivanov, A.

    1993-07-01

    observed. In contrast, most reported Kaidun and CR lithologies have approximately subequal amounts of saponite and serpentine in matrix. Phyllosilicates in Kaidun are commonly associated with sulfides; no phyllosilicates have been observed as direct overgrowths on olivine or pyroxene. Microprobe analyses of coarse-grained Kaidun saponites indicate that the majority of the exchangeable cations in the saponites studied are Mg2+ and Ca2+, with mior Na+. However, since the results of this study suggest that the saponite in Kaidun has a highly charged interlayer environment, one might speculate that any ammonium (NH4+) if present in the original parent body atmosphere or the reacting solution might be fixed in the interlayers. High- charge smectites are known to fix ammonium ions from solution [3]. There is spectroscopic evidence for ammonium-bearing phases on asteroid Ceres 1 [4]. Most carbonaceous chondrites are known to contain relatively high amounts of nitrogen (up to 3000 ppm) [5]. In order to detect if any of this N is in NH4+ form in the interlayers, we set up our Cameca electron microprobe to detect the nitrogen K-alpha X-ray peak using an ODPB crystal of a wavelength dispersive spectrometer. No nitrogen peak was positively identified on the carbonaceous matrix, nor on any saponites, although it is possible that the electron beam neutralized and evaporated any NH4+ cations before detection. In conclusion, the phyllosilicates in Kaidun are heterogeneously distributed from clast to clast, with highly charged saponite predominating in some clasts; serpentine and saponite are more nearly equally abundant in other clasts. No nitrogen was positively detected in the matrix or in any components in Kaidun by the electron microprobe in this study, although further studies of Kaidun phyllosilicates are in progress. References: [1] Zolensky M. and McSween H. Y. Jr. (1988) in Meteorites and the Early Solar System, Univ. of Arizona, 114-143. [2] Ming D. W. et. al. (1992) LPSC XXIII

  16. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.

  17. High-temperature condensates in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Grossman, L.

    1977-01-01

    Equilibrium thermodynamic calculations of the sequence of condensation of minerals from a cooling gas of solar composition play an important role in explaining the mineralogy and trace element content of different types of inclusions in carbonaceous chondrites. Group IV B iron meteorites and enstatite chondrites may also be direct condensates from the solar nebula. Condensation theory provides a framework within which chemical fractionations between different classes of chondrites may be understood.

  18. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  19. Carbon Isotopic Measurements and Aerosol Optical Determinations during CARES: Indications of the Importance of Background Biogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Begum, M.; Sturchio, N. C.; Guilderson, T. P.

    2011-12-01

    High volume size-fractionated aerosol samples were obtained in Cool, CA during the Carbonaceous Aerosol and Radiative Effects Study (CARES) in June of 2010. This site was chosen to study the regional impacts of carbonaceous aerosols originating from the Sacramento area. Samples were collected for 6 to 24 hour time periods on quartz fiber filters by using slotted impactors to allow for collection of sample size cuts above and below one micron. Both total carbon content and carbon isotopic composition, including 13C/12C and 14C, were determined on the samples. In addition, Ångstrom absorption exponents (AAEs) were determined for the region of 300-900 nm on the sub-micron size cut by using state of the art diffuse reflectance UV-visible spectroscopy with integrating sphere technology. The overall carbonaceous aerosol loadings were found to be quite low and relatively constant during the study, suggesting that most of the aerosols at the site were locally formed background aerosols. The 14C data is consistent with a substantial fraction (~80 %) being from modern carbon sources and 13C/12C results indicate that the carbon source was from C-3 plants. This is consistent with a significant fraction of the aerosols in the area arising from secondary formation from biogenic precursor emissions from trees, most likely mono- and sesquiterpenes. These results are compared to past results obtained in Mexico City and discussed in terms of the potential importance of biogenic emissions to UV absorbing aerosols as these are anticipated to increase with climate change. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Systems Research program.

  20. Light-Absorbing Carbonaceous Particles: Chemical Composition and Its Implications for Direct Climate Forcing

    NASA Astrophysics Data System (ADS)

    Hemming, B. L.; Henze, D. K.; Akhtar, F.; Pinder, R. W.; Loughlin, D. H.

    2012-12-01

    Carbonaceous particles are understood to play a substantial role in direct climate forcing, but current estimates of this effect depend on very simple assumptions concerning the light absorbing properties of the materials from these particles are formed. The practice, to date is to classify all black (graphitic, combustion-derived) carbon as having a single mass absorption coefficient, with all other carbon consider only slightly- or completely non-absorbing. The substantial literature produced by the combustion sciences, biomass energy, and paper processing research communities suggest that particle carbon comprises a wide array of light-absorbing compounds having distinct light-absorbing properties of varying degrees of extinction efficiency. These materials accumulate in the particle phase, and are emitted at all stages of solid fuel pyrolysis and combustion. Filter-based measurements of carbonaceous PM collected from various solid fuel combustion sources show substantial variability in solar wavelength-dependent light absorption, with Angstrom Exponents ranging from as high as 12, down to 1. In this presentation, the fuel and combustion variables determining the degree of light absorption by carbonaceous particle components will be discussed, followed by a presentation of the results of a study applying the adjoint of the GEOS-Chem chemical transport model to an estimation of the sensitivity of direct forcing by carbonaceous particles to variation in burning phase-specific AE values.

  1. Carbonaceous structures in the Tissint Martian Meteorite: evidence of a biogenetic origin

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    We report for the first time in situ observations of 5-50μm spherical carbonaceous structures in the Tissint Martian meteorite comprising of pyrite (FeS2) cores and carbonaceous outer coatings. The structures are characterized as smooth immiscible spheres with curved boundaries occasionally following the contours of the pyrite inclusion. The structures bear striking resemblance to similar-sized immiscible carbonaceous spheres found in hydrothermal calcite vein deposits in the Mullaghwornia Quarry in central Ireland. Similar structures have been reported in Proterozoic and Ordovician sandstones from Canada as well as in a variety of astronomical sources including carbonaceous chondrites, chondritic IDPs and primitive chondritic meteorites. SEM and X-Ray elemental mapping confirmed the presence of organic carbon filling the crack and cleavage space in the pyroxene substrate, with further evidence of pyrite acting as an attractive substrate for the collection of organic matter. The detection of precipitated carbon collecting around pyrite grains is at variance with an igneous origin as proposed for the reduced organic component in Tissint, and is more consistent with a biogenetic origin.

  2. Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.

  3. Uranium-Bearing Carbonaceous Nodules of Southwestern Oklahoma

    USGS Publications Warehouse

    Hill, James Wilcott

    1956-01-01

    Uranium-bearing carbonaceous nodules have been found along the north flank of the Wichita uplift in southwestern Oklahoma. The carbonaceous nodules are black, hard, and predominantly nodular shaped. One specimen, by analyses, was found to contain approximately 42 percent carbon and 3 percent hydrogen. The uranium, vanadium, cobalt, arsenic, nickel, lead and iron contents each range between 1 and 10 percent. It is concluded that the carbonaceous nodules are epigenetic and that the organic and inorganic constituents were derived from, mobile soluttons.

  4. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II

    NASA Astrophysics Data System (ADS)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; Iversen, Trond; Kirkevåg, Alf; Kokkola, Harri; Liu, Xiaohong; Luo, Gan; van Noije, Twan; Pringle, Kirsty J.; von Salzen, Knut; Schulz, Michael; Seland, Øyvind; Skeie, Ragnhild B.; Takemura, Toshihiko; Tsigaridis, Kostas; Zhang, Kai

    2016-02-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the

  5. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    NASA Technical Reports Server (NTRS)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; Tsigaridis, Kostas

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  6. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II

    NASA Astrophysics Data System (ADS)

    Kipling, Z.; Stier, P.; Johnson, C. E.; Mann, G. W.; Bellouin, N.; Bauer, S. E.; Bergman, T.; Chin, M.; Diehl, T.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Kokkola, H.; Liu, X.; Luo, G.; van Noije, T.; Pringle, K. J.; von Salzen, K.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2015-09-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors, we investigate the effects of individual processes in one particular model (HadGEM3-UKCA), and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global mean profile and zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. Convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulphate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea-salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number, while the profiles of larger particles are controlled by the same processes as the component mass profiles, plus the size distribution of

  7. Estimation of biomass burning influence on air pollution around Beijing from an aerosol retrieval model.

    PubMed

    Mukai, Sonoyo; Yasumoto, Masayoshi; Nakata, Makiko

    2014-01-01

    We investigate heavy haze episodes (with dense concentrations of atmospheric aerosols) occurring around Beijing in June, when serious air pollution was detected by both satellite and ground measurements. Aerosol retrieval is achieved by radiative transfer simulation in an Earth atmosphere model. We solve the radiative transfer problem in the case of haze episodes by successive order of scattering. We conclude that air pollution around Beijing in June is mainly due to increased emissions of anthropogenic aerosols and that carbonaceous aerosols from agriculture biomass burning in Southeast Asia also contribute to pollution.

  8. Analysis of Individual Carbonaceous Particles Emitted from the Las Conchas Wildfire, Los Alamos, NM, in June-July 2011

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; China, S.; Gorkowski, K.; Flowers, B. A.; Aiken, A. C.; Dubey, M. K.

    2012-12-01

    Carbonaceous aerosol emitted from biomass burning contributes significantly to atmospheric aerosol loadings regionally and globally. The net direct radiative forcing of biomass burning aerosol can be positive and/or negative and this depends on its composition, morphology and mixing state. Biomass burning aerosols can also change the cloud properties as they can act as cloud condensation nuclei. In this study we investigated biomass burning particles emitted from the Las Conchas wildfire in northern New Mexico that started on June 26, 2011 and burned an area of 245 square miles. Aerosol samples were collected on nucleopore filters at the Los Alamos National Laboratory during the third week of the wildfire event. Individual particles (~4000) were investigated using field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) to distinguish different carbonaceous particles and their shape, size, elemental composition and mixing state. A thermo-denuder was used to remove compounds that are volatile at temperatures up to 200 C, leaving behind the black carbon and any compounds that did not volatize completely. Smoke particles consisted of a) tar balls, which are amorphous spherical carbonaceous organic aerosols; b) organic particles with inorganic inclusions, c) soot particles and (d) soot with various inclusions. Two distinct kinds of tar balls, "electronically" dark and bright, were found using the field-emission scanning electron microscopy and were characterized for ambient and denuded conditions to understand coating effects and aging. It was found that dark tar balls are generally larger in size than the bright ones. Additionally, the difference between the size of ambient-bright and the size of denuded-bright tar balls was larger than the difference between the size of ambient-dark and the size of denuded-dark tar balls. EDS analysis showed that 70% of the dark tar balls had higher (~60%) relative oxygen content than in the bright

  9. Hydrothermal pretreatment to prevent scale during liquefaction of certain solid carbonaceous materials

    DOEpatents

    Stone, John B.; Floyd, Frank M.

    1984-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by hydrothermal pretreatment. The said pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The said pretreatment is accomplished at a total pressure within the range from about 1000 to about 4400 psia. Temperature during said pretreatment will generally be within the range from about 500.degree. to about 700.degree. F.

  10. Hydrothermal pretreatment to prevent scale during liquefaction of certain solid carbonaceous materials

    SciTech Connect

    Stone, J.B.; Floyd, F.M.

    1984-05-22

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by hydrothermal pretreatment. The said pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The said pretreatment is accomplished at a total pressure within the range from about 1000 to about 4400 psia. Temperature during said pretreatment will generally be within the range from about 500/sup 0/ to about 700/sup 0/ F.

  11. Natural organic compounds as tracers for biomass combustion in aerosols

    SciTech Connect

    Simoneit, B.R.T. |; Abas, M.R. bin |; Cass, G.R. |; Rogge, W.F. |; Mazurek, M.A.; Standley, L.J.; Hildemann, L.M.

    1995-08-01

    Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

  12. Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Schutgens, Nick; Stier, Philip

    2016-11-01

    A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid boxes, which can lead to discrepancies in simulated aerosol climate effects between high- and low-resolution models. This study investigates the impact of neglecting subgrid variability in present-day global microphysical aerosol models on aerosol optical depth (AOD) and cloud condensation nuclei (CCN). We introduce a novel technique to isolate the effect of aerosol variability from other sources of model variability by varying the resolution of aerosol and trace gas fields while maintaining a constant resolution in the rest of the model. We compare WRF-Chem (Weather and Research Forecast model) runs in which aerosol and gases are simulated at 80 km and again at 10 km resolutions; in both simulations the other model components, such as meteorology and dynamics, are kept at the 10 km baseline resolution. We find that AOD is underestimated by 13 % and CCN is overestimated by 27 % when aerosol and gases are simulated at 80 km resolution compared to 10 km. The processes most affected by neglecting aerosol subgrid variability are gas-phase chemistry and aerosol uptake of water through aerosol-gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol properties when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. These results demonstrate that aerosol variability can have a large impact on simulating aerosol climate effects, even when meteorology and dynamics are held constant. Future aerosol model development should focus on accounting for the effect of subgrid variability on these

  13. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles

    NASA Astrophysics Data System (ADS)

    Qin, F.; Brosseau, C.

    2012-03-01

    Carbon (C) is a crucial material for many branches of modern technology. A growing number of demanding applications in electronics and telecommunications rely on the unique properties of C allotropes. The need for microwave absorbers and radar-absorbing materials is ever growing in military applications (reduction of radar signature of aircraft, ships, tanks, and targets) as well as in civilian applications (reduction of electromagnetic interference among components and circuits, reduction of the back-radiation of microstrip radiators). Whatever the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues. A composite absorber that uses carbonaceous particles in combination with a polymer matrix offers a large flexibility for design and properties control, as the composite can be tuned and optimized via changes in both the carbonaceous inclusions (C black, C nanotube, C fiber, graphene) and the embedding matrix (rubber, thermoplastic). This paper offers a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix. The absorption properties of such composites can be tailored through changes in geometry, composition, morphology, and volume fraction of the filler particles. Polymer composites filled with carbonaceous particles provide a versatile system to probe physical properties at the nanoscale of fundamental interest and of relevance to a wide range of potential applications that span radar absorption, electromagnetic protection from natural phenomena (lightning), shielding for particle accelerators in nuclear physics, nuclear electromagnetic pulse protection, electromagnetic compatibility for electronic devices, high-intensity radiated field protection, anechoic chambers, and human exposure mitigation. Carbonaceous particles are also relevant to future applications that require environmentally benign and

  14. Climate effects of anthropogenic aerosols over East Asia based on modeling study

    NASA Astrophysics Data System (ADS)

    Mukai, Makiko

    The increasing emission of anthropogenic aerosols causes serious air pollution episodes and various effects on the climate by the aerosols interacting with the radiation budget by directly absorbing and scattering the solar radiation, and by them indirectly modifying the optical properties and lifetimes of clouds. In East Asia anthropogenic aerosol concentrations are rapidly increasing. It is therefore necessary to evaluate the sensitivity of anthropogenic aerosols upon the radiative forcing in this region. For this purpose we utilize an atmospheric general circulation model (AGCM) with an aerosol transport and radiation model and an ocean mixed-layer model. The model in this study was a three-dimensional aerosol transport-radiation model (SPRINTARS), driven by the AGCM developed by CCSR (Center for Climate System Research), NIES (National Institute for Environmental Studies), and FRCGC (Frontier Research Center for Global Change). This model incorporates sulfate, carbonaceous, sea salt, and mineral dust aerosols, the first three of which are assumed to acts as cloud condensation nuclei that generate cloud droplets whose number increases with the number of nuclei. We assumed sulfate and carbonaceous aerosol from fuel burning for anthropogenic aerosol. And the model simulations of equilibrium experiments were performed to investigate the impact of anthropogenic aerosols based on present-day emission data and the preindustrial-era emission data. Our simulation results showed that copious anthropogenic aerosol loading causes significant decrease in the surface downward shortwave radiation flux (SDSWRF), which indicates that a direct effect of aerosols has the greatest influence on the surface radiation. It is found from our model simulations that low-level clouds increase but convective clouds decrease due to reduced convective activity caused by surface cooling when anthropogenic aerosol increases. It was also found that the contributions of aerosols to the radiation

  15. Acritarchs in carbonaceous meteorites and terrestrial rocks

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei Y.; Hoover, Richard B.

    2013-10-01

    Acritarchs are a group of organic-walled, acid-resistant microfossils of uncertain or unknown origin. Some are thought to represent the cysts or resting stages of unicellular protists (possibly dinoflagellates), chrysophytes (green algae) or other planktonic eukaryotic algae. Acritarchs are found throughout the geologic column extending back as far at 3.2 Ga. The presence of large sphaeromorphs in the Archaean provides evidence that the eukaryotic lineage extends much farther back in time than previously thought possible. Acritarchs are abundant in the Paleoproterozoic shales (1.9-1.6 Ga) of the former Soviet Union and they have been extensively used for the investigation of Proterozoic and Paleozoic biostratigraphy and paleoenvironmental parameters. Scanning Electron Microscope studies have revealed the fossilized remains of organic-walled microfossils of unknown origin and exhibiting characteristics of acritarchs in a variety of carbonaceous meteorites. In many cases, these remains are black or brown in color and have Carbon/Oxygen ratios suggesting they have been diagenetically converted into kerogen. It is not feasible that the fossilized remains of organicwalled microfossils such as acritarchs represent biological contaminant that invaded and became embedded in the rock matrix of carbonaceous meteorites within the short time periods of their residence on Earth. Consequently, these groups of microfossils are considered to provide an additional line for the existence of indigenous extraterrestrial microbial remains in meteorites. This paper presents a brief review of acritarchs in terrestrial rocks and provides images of a number of similar morphotypes of uncertain origin found in freshly fractured samples of carbonaceous meteorites.

  16. Hypervelocity impact survivability experiments for carbonaceous impactors

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef

    1993-01-01

    We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.

  17. Chemical composition and sources of ambient aerosol in an urban environment over Athens, Greece: Case study on the role of wintertime biomass burning

    NASA Astrophysics Data System (ADS)

    Theodosi, Christina

    2016-04-01

    This study examines the chemical composition of aerosols over the Greater Athens Area (GAA). To achieve this, particulate matter sampling has been conducted on a 6h-24h basis and more than 700 aerosol samples were collected at downtown Athens, in Thissio from January 2013 to December 2015. All samples, after mass quantification, were analyzed for major anions (Cl^-, Br^-, NO{_3^-}, SO{_4-2}, PO{_4-3}, C_2O{_4-2}), cations (NH{_4^+}, K^+, Na^+, Mg+2, Ca+2), trace elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, V, Zn, Mn, Ni, Pb, P, S, Sb), organic carbon (OC) and elemental carbon (EC). Aerosol chemical mass closure calculations indicated that carbonaceous aerosol constitutes a major component, along with nitrate and sulfate anions, dust, cations and EC. Moreover, during the winter periods of December 2012-January 2013 and December 2013-January 2014, air pollution due to excessive use of biomass for domestic heating has been reported as a major environmental problem in the area. To assess the importance of biomass burning as a source of air pollution over the GAA three main sugars specific biomass burning tracers (levoglucosan, mannosan and galactosan) and Polycyclic aromatic hydrocarbons (PAHs) were also analyzed during the winter period. Acknowledgments This work was supported by the State Scholarship Foundation ("IKY Fellowships of Excellence for Postgraduate Studies in Greece - Siemens Programme") in the framework of the Hellenic Republic-Siemens Settlement Agreement.

  18. Microfossils in CI and CO Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Y.; Jerman, Gregory; Costen, James

    2003-01-01

    Secondary and backscatter electron images and x-ray spectral data of selected CI (Alais, Orgueil, and Tagish Lake) and CO3 (Rainbow and Dar a1 Gani 749) carbonaceous meteorites have recently been obtained using Field Emission and Environmental Scanning Electron Microscopes These studies indicate the presence of a large assemblage of biomarkers and complex lithified and carbonized remains of bodies that we interpret as indigenous microfossils. We discuss the meteorites, provide images of many of the biogenic forms found embedded in the freshly fractured meteorite surfaces.

  19. Sulfur removal and comminution of carbonaceous material

    DOEpatents

    Narain, Nand K.; Ruether, John A.; Smith, Dennis N.

    1988-01-01

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  20. Sulfur removal and comminution of carbonaceous material

    DOEpatents

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  1. Carbonaceous pellets and method of pelletizing

    SciTech Connect

    Dondelewski, M.A.

    1982-11-02

    A method is claimed for pelletizing carbonaceous materials including bonding coal fines and lignite coal with a polymeric hydrocarbon binder having reactive sites thereon. For example, with tall oil pitch and the like, in the case of coal, the binder is applied by slurrying the fine coal with the pitch. In the case of lignite, the binder is directly applied to the pulverized material. By action of rolling and tumbling, for example, large agglomerates are formed. With drying and heating, strong water-resistant pellets are formed which have the extremely desirable property of being easily repulverized.

  2. Fossil Diatoms in a New Carbonaceous Meteorite

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.; Wallis, J.; Wallis, D. H.; Samaranayake, Anil

    2013-01-01

    We report the discovery for the first time of diatom frustules in a carbonaceous meteorite that fell in the North Central Province of Sri Lanka on 29 December 2012. Contamination is excluded by the circumstance that the elemental abundances within the structures match closely with those of the surrounding matrix. There is also evidence of structures morphologically similar to red rain cells that may have contributed to the episode of red rain that followed within days of the meteorite fall. The new data on "fossil" diatoms provide strong evidence to support the theory of cometary panspermia.

  3. Assimilation of MODIS Dark Target and Deep Blue Observations in the Dust Aerosol Component of NMMB-MONARCH version 1.0

    NASA Technical Reports Server (NTRS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos

    2017-01-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  4. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    NASA Astrophysics Data System (ADS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  5. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  6. Direct Hydrothermal Synthesis of Carbonaceous Silver Nanocables for Electrocatalytic Applications.

    PubMed

    Chen, Chuyang; Suryanto, Bryan Harry Rahmat; Zhao, Chuan; Jiang, Xuchuan; Yu, Aibing

    2015-08-05

    This study demonstrates a facile but efficient hydrothermal method for the direct synthesis of both carbonaceous silver (Ag@C core-shell) nanocables and carbonaceous nanotubes under mild conditions (<180 °C). The carbonaceous tubes can be formed by removal of the silver cores via an etching process under temperature control (60-140 °C). The structure and composition are characterized using various advanced microscopic and spectroscopic techniques. The pertinent variables such as temperature, reaction time, and surfactants that can affect the formation and growth of the nanocables and nanotubes are investigated and optimized. It is found that cetyltrimethylammonium bromide plays multiple roles in the formation of Ag@C nanocables and carbonaceous nanotubes including: a shape controller for metallic Ag wires and Ag@C cables, a source of Br(-) ions to form insoluble AgBr and then Ag crystals, an etching agent of silver cores to form carbonaceous tubes, and an inducer to refill silver particles into the carbonaceous tubes to form core-shell structures. The formation mechanism of carbonaceous silver nanostructures depending upon temperature is also discussed. Finally, the electrocatalytic performance of the as-prepared Ag@C nanocables is assessed for the oxidation reduction reaction and found to be very active but much less costly than the commonly used platinum catalysts. The findings should be useful for designing and constructing carbonaceous-metal nanostructures with potential applications in conductive materials, catalysts, and biosensors.

  7. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes.

    PubMed

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-03-01

    High photovoltaic efficiency is one of the most important keys to the commercialization of dye sensitized solar cells (DSSCs) in the quickly growing renewable electricity generation market. The heart of the DSSC system is a wide bandgap semiconductor based photoelectrode film that helps to adsorb dye molecules and transport the injected electrons away into the electrical circuit. However, charge recombination, poor light harvesting efficiency and slow electron transport of the nanocrystalline oxide photoelectrode film are major issues in the DSSC's performance. Recently, semiconducting composites based on carbonaceous materials (carbon nanoparticles, carbon nanotubes (CNTs), and graphene) have been shown to be promising materials for the photoelectrode of DSSCs due to their fascinating properties and low cost. After a brief introduction to development of nanocrystalline oxide based films, this Review outlines advancements that have been achieved in the application of carbonaceous-based materials in the photoelectrode of DSSCs and how these advancements have improved performance. In addition, several of the unsolved issues in this research area are discussed and some important future directions are also highlighted.

  8. Evidence of Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    Investigations have been carried out on freshly broken, internal surfaces of the Murchison, Efremovka and Orgueil carbonaceous chondrites using Scanning Electron Microscopes (SEM) in Russia and the Environmental Scanning Electron Microscope (ESEM) in the United States. These independent studies on different samples of the meteorites have resulted in the detection of numerous spherical and ellipsoidal bodies (some with spikes) similar to the forms of uncertain biogenicity that were designated "organized elements" by prior researchers. We have also encountered numerous complex biomorphic microstructures in these carbonaceous chondrites. Many of these complex bodies exhibit diverse characteristics reminiscent of microfossils of cyanobacteria such as we have investigated in ancient phosphorites and high carbon rocks (e.g. oil shales). Energy Dispersive Spectroscopy (EDS) analysis and 2D elemental maps shows enhanced carbon content in the bodies superimposed upon the elemental distributions characteristic of the chondritic matrix. The size, distribution, composition, and indications of cell walls, reproductive and life cycle developmental stages of these bodies are strongly suggestive of biology' These bodies appear to be mineralized and embedded within the meteorite matrix, and can not be attributed to recent surface contamination effects. Consequently, we have interpreted these in-situ microstructures to represent the lithified remains of prokaryotes and filamentous cyanobacteria. We also detected in Orgueil microstructures morphologically similar to fibrous kerite crystals. We present images of many biomorphic microstructures and possible microfossils found in the Murchison, Efremovka, and Orgueil chondrites and compare these forms with known microfossils from the Cambrian phosphate-rich rocks (phosphorites) of Khubsugul, Northern Mongolia.

  9. Keto-acids in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Chang, P. M.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.

    2005-01-01

    The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.

  10. Novel carbonaceous materials for lithium secondary batteries

    SciTech Connect

    Sandi, G.; Winans, R.E.; Carrado, K.A.; Johnson, C.S.

    1997-07-01

    Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates. The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 C in an inert atmosphere, followed by dissolution of the inorganic template by conventional demineralization methods. X-ray powder diffraction of the carbons showed broad d{sub 002} peaks in the diffraction pattern, indicative of a disordered or turbostratic system. N{sub 2} BET surface areas of the carbonaceous materials range from 10 to 100 m{sup 2}/g. There is some microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and mesopores with radii of 2--5 nm. Electrochemical studies were performed on these carbons. Button cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode a/nd metallic lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

  11. Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahn, C.; Zhong, C.

    2014-01-01

    The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.

  12. Spatial and Temporal Variations of EC and OC Aerosol Combustion Sources in a Polluted Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Mouteva, G.; Randerson, J. T.; Fahrni, S.; Santos, G.; Bush, S. E.; Ehleringer, J. R.; Czimczik, C. I.

    2015-12-01

    Anthropogenic emissions of carbonaceous aerosols are a major component of fine air particulate matter (PM2.5) in polluted metropolitan areas and in the global atmosphere. Elemental (EC) and organic carbon (OC) aerosols influence Earth's energy balance by means of direct and indirect pathways and EC has been suggested as a better indicator of public health impacts from combustion-related sources than PM mass. Quantifying the contribution of fossil fuel and biomass combustion to the EC and OC emissions and their temporal and spatial variations is critical for developing efficient legislative air pollution control measures and successful climate mitigation strategies. In this study, we used radiocarbon (14C) to separate and quantify fossil and biomass contributions to a time series of EC and OC collected at 3 locations in Salt Lake City (SLC). Aerosol samples were collected on quartz fiber filters and a modified OC/EC analyzer was used with the Swiss_4S protocol to isolate and trap the EC fraction. Together with the total carbon (TC) content of the samples, the EC was analyzed for its 14C content with accelerator mass spectrometry. The 14C of OC was derived as a mass balance difference between TC and EC. EC had an annual average fraction modern of 0.13±0.06 and did not vary significantly across seasons. OC had an annual average FM of 0.49±0.13, with the winter mean (0.43±0.11) lower than the summer mean (0.64±0.13) at the 5% significance level. While the 3 stations were chosen to represent a variety of environmental conditions within SLC, no major differences in this source partitioning were observed between stations. During winter, the major sources of air pollutants in SLC are motor vehicles and wood stove combustion and determining their relative contributions has been the subject of debate. Our results indicated that fossil fuels were the dominant source of carbonaceous aerosols during winter, contributing 87% or more of the total EC mass and 40-75% of the OC

  13. The new Mediterranean background monitoring station of Ersa, Cape Corsica: A long term Observatory component of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)

    NASA Astrophysics Data System (ADS)

    Dulac, Francois

    2013-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) is a French initiative supported by the MISTRALS program (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The major stake is an understanding of the future of the Mediterranean region in a context of strong regional anthropogenic and climatic pressures. The target of ChArMEx is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry. In order to fulfill these objectives, important efforts have been put in 2012 in order to implement the infrastructure and instrumentation for a fully equipped background monitoring station at Ersa, Cape Corsica, a key location at the crossroads of dusty southerly air masses and polluted outflows from the European continent. The observations at this station began in June 2012 (in the context of the EMEP / ACTRIS / PEGASOS / ChArMEx campaigns). A broad spectrum of aerosol properties is also measured at the station, from the chemical composition (off-line daily filter sampling in PM2.5/PM10, on-line Aerosol Chemical Speciation Monitor), ground optical properties (extinction/absorption/light scattering coeff. with 1-? CAPS PMex monitor, 7-? Aethalometer, 3-? Nephelometer), integrated and vertically resolved optical properties (4-? Cimel sunphotometer and LIDAR, respective), size distribution properties (N-AIS, SMPS, APS, and OPS instruments), mass (PM1/PM10 by TEOM/TEOM-FDMS), hygroscopicity (CCN), as well as total insoluble deposition. So far, real-time measurement of reactive gases (O3, CO, NO, NO2), and off-line VOC measurements (cylinders, cartridges) are also

  14. Identification and Spectral Properties of Polycyclic Aromatic Hydrocarbons in Carbonaceous Soot Produced by Laser Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jäger, C.; Krasnokutski, S.; Staicu, A.; Huisken, F.; Mutschke, H.; Henning, Th.; Poppitz, W.; Voicu, I.

    2006-10-01

    Carbon soot has been prepared by laser-induced pyrolysis of a mixture of ethylene (C2H4) and benzene (C6H6) vapor. The soluble part of the carbonaceous powder has been separated from its insoluble counterpart by soxhlet extraction in toluene. Several techniques were applied to obtain information on the composition of the extract. These included UV/visible and IR spectroscopy in solid and liquid phase, gas chromatography combined with mass spectrometry, gas-phase laser spectroscopy in a supersonic jet, and matrix spectroscopy in helium droplets, the latter being also combined with mass spectrometry. The analysis revealed that the carbonaceous powder contained various polycyclic aromatic hydrocarbons (PAHs). The highest concentration was found for the three-membered catacondensed PAHs, phenanthrene and anthracene. The results are discussed in view of the possible role of these molecules as interstellar dust components.

  15. Petrology of Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Comparison With Other Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2016-01-01

    Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.

  16. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions

    NASA Astrophysics Data System (ADS)

    Zhou, Jiabin; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2016-06-01

    During the past decade, huge research resources have been devoted into studies of air pollution in China, which generated abundant datasets on emissions and pollution characterization. Due to the complex nature of air pollution as well as the limitations of each individual investigating approach, the published results were sometimes perplexing and even contradicting. This research adopted a multi-method approach to investigate region-specific air pollution characteristics and sources in China, results obtained using different analytical and receptor modeling methods were inter-compared for validation and interpretation. A year-round campaign was completed for comprehensive characterization of PM2.5 over four key emission regions: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). Atmospheric PM2.5 samples were collected from 10/2012 to 08/2013 at four regional sites, located on the diffusion paths of air masses from their corresponding megacities (i.e., Beijing, Shanghai, Guangzhou, and Chengdu). The annual average PM2.5 mass concentrations showed distinct regional difference, with the highest observed at BTH and lowest at PRD site. Nine water-soluble ions together contributed 33-41% of PM2.5 mass, with three dominant ionic species being SO42-, NO3-, NH4+, and carbonaceous particulate matter contributed 16-23% of PM2.5 mass. This implied that combustion and secondary formation were the main sources for PM2.5 in China. In addition, SO42-, NO3-, NH4+, and carbonaceous components (OC, EC) showed clear seasonal patterns with the highest concentration occurring in winter while the lowest in summer. Principal component analysis performed on aerosol data revealed that vehicular emissions, coal/biomass combustion, industry source, soil dust as well as secondary formation were the main potential sources for the ionic components of PM2.5. The characteristic chemical species combined with back trajectory analysis indicated