Sample records for carbonate buffer ph

  1. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva.

    PubMed

    Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan

    2014-01-01

    To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

  3. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  4. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    PubMed

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  5. Aqueous photolysis of niclosamide

    USGS Publications Warehouse

    Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.

    2004-01-01

    The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.

  6. Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L

    2013-12-01

    Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.

  7. Ocean acidification buffering effects of seagrass in Tampa Bay

    USGS Publications Warehouse

    Yates, Kimberly K.; Moyer, Ryan P.; Moore, Christopher; Tomasko, David A.; Smiley, Nathan A.; Torres-Garcia, Legna; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana; Smiley, Nathan; Torres-Garcia, Legna M.; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana

    2016-01-01

    The Intergovernmental Panel on Climate Change has identified ocean acidification as a critical threat to marine and estuarine species in ocean and coastal ecosystems around the world. However, seagrasses are projected to benefit from elevated atmospheric pCO2, are capable of increasing seawater pH and carbonate mineral saturation states through photosynthesis, and may help buffer against the chemical impacts of ocean acidification. Additionally, dissolution of carbonate sediments may also provide a mechanism for buffering seawater pH. Long-term water quality monitoring data from the Environmental Protection Commission of Hillsborough County indicates that seawater pH has risen since the 1980‘s as seagrass beds have continued to recover since that time. We examined the role of seagrass beds in maintaining and elevating pH and carbonate mineral saturation state in northern and southern Tampa Bay where the percent of carbonate sediments is low (<3%) and high (>40%), respectively. Basic water quality and carbonate system parameters (including pH, total alkalinity, dissolved inorganic carbon, partial pressure of CO2, and carbonate mineral saturation state) were measured over diurnal time periods along transects (50-100 m) including dense and sparse Thalassia testudinum. seagrass beds, deep edge seagrass, and adjacent bare sand bottom. Seagrass density and productivity, sediment composition and hydrodynamic parameters were also measured, concurrently. Results indicate that seagrass beds locally elevate pH by up to 0.5 pH unit and double carbonate mineral saturation states relative to bare sand habitats. Thus, seagrass beds in Tampa Bay may provide refuge for marine organisms from the impacts of ocean acidification.

  8. Buffer-regulated biocorrosion of pure magnesium.

    PubMed

    Kirkland, Nicholas T; Waterman, Jay; Birbilis, Nick; Dias, George; Woodfield, Tim B F; Hartshorn, Richard M; Staiger, Mark P

    2012-02-01

    Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO(2) atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.

  9. Optimizing buffering chemistry to maintain near neutral pH of broiler feed during pre-enrichment for Salmonella.

    PubMed

    Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E

    2015-12-01

    Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3- fluctuations.

    PubMed

    Rasmussen, Jacob K; Boedtkjer, Ebbe

    2018-03-01

    The CO 2 /HCO 3 - buffer minimizes pH changes in response to acid-base loads, HCO 3 - provides substrate for Na + ,HCO 3 - -cotransporters and Cl - /HCO 3 - -exchangers, and H + and HCO 3 - modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO 2 /HCO 3 - buffer. Switching from CO 2 /HCO 3 - -free to CO 2 /HCO 3 - -containing extracellular solution results in initial intracellular acidification due to hydration of CO 2 followed by gradual alkalinization due to cellular HCO 3 - uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na + ,HCO 3 - -cotransport and Na + /H + -exchange activity after NH 4 + -prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH 3 flux are evident under CO 2 /HCO 3 - -free conditions but absent when the buffer capacity and apparent H + mobility increase in the presence of CO 2 /HCO 3 - even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO 2 , (b) CO 2 /HCO 3 - minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid-base transport across cell membranes during recovery from intracellular acidification.

  11. Tested Demonstrations: Visualization of Buffer Action and the Acidifying Effect of Carbon Dioxide.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Presents a buffer demonstration which features visualization of the effects of carbon dioxide on pH. Background information, list of materials needed, procedures used, and a discussion of results obtained are included. (JN)

  12. Nonuniform ocean acidification and attenuation of the ocean carbon sink

    NASA Astrophysics Data System (ADS)

    Fassbender, Andrea J.; Sabine, Christopher L.; Palevsky, Hilary I.

    2017-08-01

    Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas (pCO2) are rising, pH levels are declining, and the ocean's buffer capacity is eroding. Regional differences in short-term pH trends primarily have been attributed to physical and biological processes; however, heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.

  13. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.

  14. Development of an On-Demand, Generic, Drug-Delivery System

    DTIC Science & Technology

    1985-08-06

    systems Two systems were evaluated for CO2 evolution. The first of these was an enzymatic system based on urea and urease . The second system was based...PHM 84 Research pH Meter was used te monitor pH. Solutions of various buffer concen- trations and pHs were prepared for each buffer system. One urease ...Measurement of carbon dio~ide production was accomplished using the apparatus shown in Figure 2. Carbon dioxide was generated by putting a urease tablet in the

  15. Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Asbill-Case, Jessica R.; Deas, Michael L.

    2013-01-01

    A hydrodynamic, water temperature, and water-quality model of the Link River to Keno Dam reach of the upper Klamath River was updated to account for macrophytes and enhanced pH buffering from dissolved organic matter, ammonia, and orthophosphorus. Macrophytes had been observed in this reach by field personnel, so macrophyte field data were collected in summer and fall (June-October) 2011 to provide a dataset to guide the inclusion of macrophytes in the model. Three types of macrophytes were most common: pondweed (Potamogeton species), coontail (Ceratophyllum demersum), and common waterweed (Elodea canadensis). Pondweed was found throughout the Link River to Keno Dam reach in early summer with densities declining by mid-summer and fall. Coontail and common waterweed were more common in the lower reach near Keno Dam and were at highest density in summer. All species were most dense in shallow water (less than 2 meters deep) near shore. The highest estimated dry weight biomass for any sample during the study was 202 grams per square meter for coontail in August. Guided by field results, three macrophyte groups were incorporated into the CE-QUAL-W2 model for calendar years 2006-09. The CE-QUAL-W2 model code was adjusted to allow the user to initialize macrophyte populations spatially across the model grid. The default CE-QUAL-W2 model includes pH buffering by carbonates, but does not include pH buffering by organic matter, ammonia, or orthophosphorus. These three constituents, especially dissolved organic matter, are present in the upper Klamath River at concentrations that provide substantial pH buffering capacity. In this study, CE-QUAL-W2 was updated to include this enhanced buffering capacity in the simulation of pH. Acid dissociation constants for ammonium and phosphoric acid were taken from the literature. For dissolved organic matter, the number of organic acid groups and each group's acid dissociation constant (Ka) and site density (moles of sites per mole of carbon) were derived by fitting a theoretical buffering response to measured upper Klamath River alkalinity titration curves. The organic matter buffering in the Klamath River was modeled with two monoprotic organic acids: carboxylic acids with a mean pKa of 5.584 and site density of 0.1925, and phenolic organic acids with a mean pKa of 9.594 and site density of 0.6466. Total inorganic carbon concentrations in the model boundary inputs were recalculated based on the new buffering equations. CE-QUAL-W2 was also adjusted to allow the simulation of nonconservative alkalinity caused by nitrification, denitrification, photosynthesis, and respiration. The Klamath River model was recalibrated after the macrophyte and pH buffering updates producing improved predictions for pH, dissolved oxygen, and particulate carbon.

  16. Secular decline of seawater calcium increases seawater buffering and pH

    NASA Astrophysics Data System (ADS)

    Hain, M.; Sigman, D. M.; Higgins, J. A.; Haug, G. H.

    2015-12-01

    Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model (Millero and Pierrot, 1998) to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+] (Hain et al., 2015). We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+]~20mM; [Mg2+]~30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increase in seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.

  17. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    NASA Astrophysics Data System (ADS)

    Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian

    2015-07-01

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  19. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

    PubMed

    Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A

    2014-03-01

    Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.

  20. Carbon Dioxide Tolerance: A Review

    DTIC Science & Technology

    1967-09-01

    limited buffering capabilities. 3. !rrncefihdtar btif, frig. Part of the excess H4 diffuses into cells and is buffered by intracellular HCO...correspond with changes in venous pH and pulmonary 00- excretion, possibly indicating a significant role of bone CO.. stores in acclimatization to carbon...blood parameters included no change in hematocrit, re- ticulocyte counts, and white blood cell counts while scme decrease was seen in circulating

  1. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    USDA-ARS?s Scientific Manuscript database

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  2. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  3. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms.

    PubMed

    Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S

    2015-09-18

    The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Layer by layer assembled films between hemoglobin and multiwall carbon nanotubes for pH-switchable biosensing.

    PubMed

    Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying

    2015-05-01

    Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation.

    PubMed

    Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai

    2009-01-01

    A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41-47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.

  7. Biochar contribution to soil pH buffer capacity

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type, organic matter and type of added carbonizated material. Our study showed that the biochar content has significant role in total pH buffer capacity in soil:biochar system . References. Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J., Riha, S.J., Verchot, L., Recha, J.W., Pell, A.N. 2008. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystems, 11, 726-739. Krull, E. S., Skjemstad, J.O., Baldock, J.A. 2004 'Functions of Soil Organic Matter and the Effect on Soil Properties'. GRDC report. Project CSO 00029. Mutezo, W.T., 2013. Early crop growth and yield responses of maize (Zea mays) to biochar applied on soil. International Working Paper Series, 13/03, 50 pp.

  8. Photosynthetic activity buffers ocean acidification in seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hendriks, I. E.; Olsen, Y. S.; Ramajo, L.; Basso, L.; Steckbauer, A.; Moore, T. S.; Howard, J.; Duarte, C. M.

    2014-01-01

    Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5-12 m) seagrass (Posidonia oceanica) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (ΩAr)) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pHNBS and max and range ΩAr. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min ΩAr, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range ΩAr within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, ΩAr and carbonate deposition. Calcifying organisms, e.g. epiphytes with carbonate skeletons, may benefit from the modification of the carbonate system by the meadow. There is, however, concern for the ability of seagrasses to provide modifications of similar importance in the future. The predicted decline of seagrass meadows may alter the scope for alteration of pH within a seagrass meadow and in the water column above the meadow, particularly if shoot density and biomass decline, on which LAI is based. Organisms associated with seagrass communities may therefore suffer from the loss of pH buffering capacity in degraded meadows.

  9. Increased degradation rate of nitrososureas in media containing carbonate.

    PubMed

    Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov

    2009-01-01

    The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.

  10. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  11. Photosynthetic activity buffers ocean acidification in seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hendriks, I. E.; Olsen, Y. S.; Ramajo, L.; Basso, L.; Steckbauer, A.; Moore, T. S.; Howard, J.; Duarte, C. M.

    2013-07-01

    Macrophytes growing in shallow coastal zones characterized by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH ranges is in shallow (5-12 m) seagrass (Posidonia oceanica) meadows from 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (ΩAr) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean and max pHNBS and max ΩAr. Oxygen production positively influenced the range and maximum pHNBS and the range of ΩAr. In June, vertical mixing (as Turbulent Kinetic Energy) influenced ΩAr, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. ΩAr was positively correlated with the calcium carbonate load of the leaves, demonstrating a direct link between structural parameters, ΩAr and carbonate deposition. There was a direct relationship between ΩAr, influenced directly by meadow LAI, and CaCO3 content of the leaves. Therefore, calcifying organisms, e.g. epiphytes with carbonate skeletons, might benefit from the modification of the carbonate system by the meadow. The meadow might be capable of providing refugia for calcifiers by increasing pH and ΩAr through metabolic activity. There is, however, concern for the ability of seagrasses to provide this refugia function in the future. The predicted decline of seagrass meadows may alter the scope for alteration of pH within a seagrass meadow and in the water column above the meadow, particularly if shoot density and biomass decline, both strongly linked to LAI. Organisms associated with seagrass communities may therefore suffer from the loss of pH buffering capacity in degraded meadows.

  12. Meta-Cresol Purple Reference Material® (RM) for Seawater pH Measurements

    NASA Astrophysics Data System (ADS)

    Easley, R. A.; Waters, J. F.; Place, B. J.; Pratt, K. W.

    2016-02-01

    The pH of seawater is a fundamental quantity that governs the carbon dioxide - carbonate system in the world's oceans. High quality pH measurements for long-term monitoring, shipboard studies, and shorter-term biological studies (mesocosm and field experiments) can be ensured through a reference material (RM) that is compatible with existing procedures and which is traceable to primary pH measurement metrology. High-precision spectrophotometric measurements of seawater pH using an indicator dye such as meta-cresol purple (mCP) are well established. However, traceability of these measurements to the International System of Units (SI) additionally requires characterizing the spectrophotometric pH response of the dye in multiple artificial seawater buffers that themselves are benchmarked via primary pH (Harned cell) measurements at a range of pH, salinity, and temperature. NIST is currently developing such a mCP pH RM using this approach. This material will also incorporate new procedures developed at NIST for assessing the purity and homogeneity of the mCP reagent itself. The resulting mCP will provide long-term (years) stability and ease of shipment compared to artificial seawater pH buffers. These efforts will provide the oceanographic user community with a NIST issued mCP (RM), characterized as to its molar absorptivity values and acid dissociation constants (pKa), with uncertainties that comply with the Guide to the Expression of Uncertainty in Measurement (GUM).

  13. Differential modification of seawater carbonate chemistry by major coral reef benthic communities

    NASA Astrophysics Data System (ADS)

    Page, Heather N.; Andersson, Andreas J.; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Lebrato, Mario; Yeakel, Kiley; Davidson, Charlie; D'Angelo, Sydney; Bahr, Keisha D.

    2016-12-01

    Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification - CaCO3 dissolution) and net community organic carbon production (NCP = primary production - respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased net CaCO3 dissolution may partially counteract reductions in seawater pH associated with anthropogenic OA at the local scale.

  14. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  15. Wine pH Prevails over Buffering Capacity of Human Saliva.

    PubMed

    Obreque-Slier, Elías; Espínola-Espínola, Valeria; López-Solís, Remigio

    2016-11-02

    Wine is an acidic beverage; its pH (2.9-3.8) is critically important to its organoleptic properties. During degustation, wine interacts with <1 mL of mouth saliva, the pH of which is near 7.0. This is buffered predominantly by the carbonate/bicarbonate pair (pK a = 6.1). Few data are available on whether the buffering capacity of saliva may alter the pH of wine and thus its sensorial properties. In this study both in vitro and in vivo approaches were conducted to measure pH in mixtures of representative red and white wines with human saliva. Continuous additions of microvolumes of either wine to a definite volume (3 mL) of saliva in vitro resulted in a progressive and steep decline in the pH of the wine/saliva mixture. Thus, a few microliters of either wine (<0.27 mL) was sufficient to reduce the pH of saliva by 1 pH unit. Further additions of wine to saliva lowered the pH to that of the corresponding wine. In the in vivo assay, definite volumes (1.5-18 mL) of either wine were mixed for 15 s with the mouth saliva of individual healthy subjects before pH determination in the expectorated wine/saliva mixtures. Compared to saliva, pronounced decreases in pH were observed, thus approaching the pH of wine even with the smallest volume of wine in the assay. Altogether, these results demonstrate that the buffering capacity of wine prevails over that of saliva and that during degustation the pH of the wine/saliva mixture in the mouth is, at least temporarily, that of the corresponding wine.

  16. X-ray Absorption Near Edge Structure Spectroscopy to Resolve the in Vivo Chemistry of the Redox-Active Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019)

    PubMed Central

    2013-01-01

    Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (1, KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (2, KP1339) are promising redox-active anticancer drug candidates that were investigated with X-ray absorption near edge structure spectroscopy. The analysis was based on the concept of the coordination charge and ruthenium model compounds representing possible coordinations and oxidation states in vivo. 1 was investigated in citrate saline buffer (pH 3.5) and in carbonate buffer (pH 7.4) at 37 °C for different time intervals. Interaction studies on 1 with glutathione in saline buffer and apo-transferrin in carbonate buffer were undertaken, and the coordination of 1 and 2 in tumor tissues was studied too. The most likely coordinations and oxidation states of the compound under the above mentioned conditions were assigned. Microprobe X-ray fluorescence of tumor thin sections showed the strong penetration of ruthenium into the tumor tissue, with the highest concentrations near blood vessels and in the edge regions of the tissue samples. PMID:23282017

  17. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution. The KB‧ in DS was estimated from TB, TA, DIC and pH data measured in this study and early empirical data on artificial DS brines containing just carbonic acid. The KB‧ value was corroborated by Pitzer ion interaction model calculations using PHREEQC thermodynamic code applied to the chemical composition of the DS. Our results show that KB‧ increases considerably with the brine's ionic strength, reaching in the DS to a factor of 100 higher than in ;mean; seawater. Based on theoretical calculations and analyses of other natural brines it is suggested that brines' composition is a major factor in determining the KB‧ value and in turn the pH of such brines. We show that the higher the proportion of divalent cations in the brine the higher the dissociation constants of the weak acids (presumably due to formation of complexes). The low pH of the Dead Sea is accordingly explained by its extremely high ionic strength (TDS = 348 g/L) and the dominance of the divalent cation, Mg2+. Other natural hyper-saline brines with high concentration of divalent cations such as Kunteyi Lake in China and Don-Juan Pond in Antarctica follow the same general pattern. In contrast, the high pH of soda lakes results not only from their high TA but also by the dominance of the monovalent cation, Na+. Our study emphasizes the strong control of brine composition on pKB‧ and pH. These factors should be taken into consideration when reconstructing past and present environmental evaporitic environments.

  18. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  19. Influence of vehicle properties and excipients on hydrolytic and photochemical stability of curcumin in preparations containing Pluronics: studies of curcumin and curcuminoids XLVIII.

    PubMed

    Singh, R; Kristensen, S; Tønnesen, H H

    2013-03-01

    The influence of vehicle properties and excipients on the hydrolytic and photochemical stability of curcumin in Pluronic preparations, and the interactions between curcumin and Pluronics was investigated. Curcumin was found to be degraded by general acid-base catalyzed hydrolytic degradation in alkaline preparations. The degradation rate of curcumin was higher in carbonate buffer than in phosphate buffer (pH 8.8), while it was higher in phosphate buffer than in citrate buffer (pH 7.8). At pH 8.0-8.8 the degradation rate of curcumin increased compared to preparations with pH <8.0. The stabilizing effect of the Pluronics against hydrolytic degradation of curcumin was only detectable at pH 8.0-8.8, and it was highest for F127 and lowest for P85, in phosphate buffer pH 8.8. An increase in the ionic strength increased the stabilization against hydrolytic degradation of curcumin by all Pluronics. Addition of ethanol decreased the hydrolytic stability of curcumin in all Pluronics. Addition of PEG 400 decreased the hydrolytic stability in preparation with either P123 or F127 while the degradation in preparations with P85 remained the same as in P85 preparations without PEG 400. Vehicle properties and excipients did not to any large degree influence the spectroscopic properties or the photostability of curcumin in Pluronic preparations. Photochemical half life of curcumin was in the minutes range. Spectrophotometric data indicate that Pluronic aggregates most likely solubilize curcumin through hydrophobic interactions, although hydrogen-bonding may also be involved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paajanen, A.; Lehto, J.; Santapakka, T.

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  1. Biogeochemical Cycles of Carbon and Sulfur on Early Earth (and on Mars?)

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    2004-01-01

    The physical and chemical interactions between the atmosphere, hydrosphere, geosphere and biosphere can be examined for elements such as carbon (C) and sulfur (S) that have played central roles for both life and the environment. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. These multiple roles of C and S interact across a network of elemental reservoirs interconnected by physical, chemical and biological processes. These networks are termed biogeochemical C and S cycles.

  2. Adsorption characterizations of fulvic acid fractions onto kaolinite.

    PubMed

    Li, Aimin; Xu, Minjuan; Li, Wenhui; Wang, Xuejun; Dai, Jingyu

    2008-01-01

    Fulvic acids extracted from a typical rice-production region near Taihu Lake of China were fractionated into three fractions including F4.8, F7.0 and F11.0 (eluted by pH 4.8 buffer, pH 7.0 buffer and pH 11.0 buffer, respectively). Sorption of fulvic acid (FA) fractions onto kaolinite was studied by batch adsorption experiments, and characterizations of kaolinite before and after adsorption were investigated using scanning electron microscopy (SEM). Adsorption isotherms of kaolinite for three FA fractions fit well with the Langmuir adsorption model. The adsorption density of the three fractions was positively correlated with the ratio of the amount of the alkyl carbon to that of carboxyl and carbonyl carbon in FA fractions and followed an order of F11.0 > F7.0 > F4.8. Hydrophobic interaction was one of the control mechanisms for the sorption of FA fraction onto kaolinite. SEM images confirmed that compared to blank kaolinite samples, kaolinite samples coated by a FA fraction displayed an opener and more dispersed conformation resulting from the disruption of the floc structure in complex. Dispersion of kaolinite after adsorption was due to the repulsion between negatively charged FA-coated particles, which is closely related to the amount of FA fractions absorbed on kaolinite.

  3. Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes.

    PubMed

    Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly

    2016-09-18

    In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.

  4. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.

    PubMed

    Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang

    2016-10-01

    Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.

    PubMed

    Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin

    2016-08-02

    Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.

  6. Use of carbonates for biological and chemical synthesis

    DOEpatents

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  7. [Role of the blood bicarbonate buffer system in the mechanism of fish adaptation to different levels of carbonic acid in an aqueous medium].

    PubMed

    Romanenko, V D; Kotsar', N I

    1976-01-01

    The role of a bicarbonate buffer system of fish (Cyprinidae family) blood was studied in their organism addaptive reactions to different levels of CO2 in the aqueous medium. The fish is established to prossess rather effective for maintaining blood acid-base balance. It permits the fish to endure for a long time essential fluctuations of carbonic acid concentration in water. In prevention of possible development of carbonic acid acidosis an essential role belongs to formation of bicarbonates as a blood buffer system stablizing pH is shown to be significant for preventing possible development of acidosis. The adaptation potentialities of Cyprinidae family permit them to endure an increase of CO2 in water and are determined by the ability of their organism to formations of bicarbonate and their retaining in blood.

  8. The investigation of genetic polymorphisms in the carbonic anhydrase VI gene exon 2 and salivary parameters in type 2 diabetic patients and healthy adults.

    PubMed

    Koç Öztürk, Leyla; Ulucan, Korkut; Akyüz, Serap; Furuncuoğlu, Halit; Bayer, Hikmet; Yarat, Ayşen

    2012-05-01

    The aim of this study was to investigate carbonic anhydrase (CA) VI Exon 2 single nucleotide polymorphism (SNP) and its possible association with salivary parameters in type 2 diabetic patients compared to healthy adults. Caries status was measured by using the DMFT (number of decayed, missing, and filled teeth) index. Unstimulated whole saliva and blood samples were taken. SNPs of CA gene exon 2 were determined by PCR and DNA sequencing. Salivary CA activity and buffering capacity were determined by the method of Verpoorte and Ericson, respectively. Furthermore, salivary pH was measured with pH paper and salivary flow rate was calculated. Salivary buffering capacity and pH were significantly lower in diabetic patients than those of healthy subjects (P < 0.05). Salivary flow rate, CA activity and DMFT levels did not differ between groups (P > 0.05). Four SNPs were detected; their pubmed database number are rs2274327 (C/T), rs2274328 (A/C), rs2274329 (G/C) and rs2274330. While first three of those were responsible for amino acid changes, the last one was not. The frequencies of SNPs were not significant between groups (P > 0.05). Positive significant correlation was found between CA activity and the frequency of SNPs. There was no correlation between the SNPs frequencies and pH or buffering capacity. SNPs found in this study may be related to salivary CA activity in diabetics.

  9. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  10. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    PubMed

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water.

    PubMed

    Beltrán, Fernando J; Aguinaco, Almudena; García-Araya, Juan F; Oropesa, Ana

    2008-08-01

    In this study, water containing the pharmaceutical compound sulfamethoxazole (SMT) was subjected to the various treatments of different oxidation processes involving ozonation, and photolysis and catalysis under different experimental conditions. Removal rates of SMT and total organic carbon (TOC), from experiments of simple UVA radiation, ozonation (O(3)), catalytic ozonation (O(3)/TiO(2)), ozone photolysis (O(3)/UVA), photocatalytic oxidation (O(2)/TiO(2)/UVA) and photocatalytic ozonation (O(3)/UVA/TiO(2)), have been compared. Photocatalytic ozonation leads to the highest SMT removal rate (pH 7 in buffered systems, complete removal is achieved in less than 5min) and total organic carbon (in unbuffered systems, with initial pH=4, 93% TOC removal is reached). Also, lowest ozone consumption per TOC removed and toxicity was achieved with the O(3)/UVA/TiO(2) process. Direct ozone and free radical reactions were found to be the principal mechanisms for SMT and TOC removal, respectively. In photocatalytic ozonation, with buffered (pH 7) aqueous solutions phosphates (buffering salts) and accumulation of bicarbonate scavengers inhibit the reactions completely on the TiO(2) surface. As a consequence, TOC removal diminishes. In all cases, hydrogen peroxide plays a key role in TOC mineralization. According to the results obtained in this work the use of photocatalytic ozonation is recommended to achieve a high mineralization degree of water containing SMT type compounds.

  12. Particulate carbonate matter in snow from selected sites in south-central Rocky Mountains

    Treesearch

    David W. Clow; George P. Ingersoll

    1994-01-01

    Trends in snow acidity reflect the balance between strong acid inputs and reactions with neutralizing materials. Carbonate dust can be an important contributor of buffering capacity to snow; however, its concentration in snow is difficult to quantify because it dissolves rapidly in snowmelt. In snow with neutral or acidic pH, most calcite would dissolve during sample...

  13. Estimating iron and aluminum content of acid mine discharge from a north-central Pennsylvania coal field by use of acidity titration curves

    USGS Publications Warehouse

    Ott, A.N.

    1986-01-01

    Determination of acidity provides a value that denotes the quantitative capacity of the sample water to neutralize a strong base to a particular pH. However, much additional information can be obtained from this determination if a titration curve is constructed from recorded data of titrant increments and their corresponding pH values. The curve can be used to identify buffer capabilities, the acidity with respect to any pH value within the curve limit, and, in the case of acid mine drainage from north-central Pennsylvania, the identification and estimation of the concentration of dissolved ferrous iron, ferric iron, and aluminum. Through use of titration curves, a relationship was observed for the acid mine drainage between: (1) the titratable acidity (as milligrams per liter calcium carbonate) to pH 4.0 and the concentration of dissolved ferric iron; and (2) the titratable acidity (as milligrams per liter calcium carbonate) from pH 4.0 to 5.0 and the concentration of dissolved aluminum. The presence of dissolved ferrous iron can be detected by the buffering effect exhibited in the area between pH 5.5 to 7.5. The concentration of ferrous iron is estimated by difference between the concentrations of ferric iron in an oxidized and unoxidized sample. Interferences in any of the titrations from manganese, magnesium, and aluminate, appear to be negligible within the pH range of interest.

  14. Benthic metabolic feedbacks to carbonate chemistry on coral reefs:implications for ocean acidification

    NASA Astrophysics Data System (ADS)

    Price, N.; Rohwer, F. L.; Stuart, S. A.; Andersson, A.; Smith, J.

    2012-12-01

    The metabolic activity of resident organisms can cause spatio-temporal variability in carbonate chemistry within the benthic boundary layer, and thus potentially buffer the global impacts of ocean acidification. But, little is known about the capacity for particular species assemblages to contribute to natural daily variability in carbonate chemistry. We encapsulated replicate areas (~3m2) of reef across six Northern Line Islands in the central Pacific for 24 hrs to quantify feedbacks to carbonate chemistry within the benthic boundary layer from community metabolism. Underneath each 'tent', we quantified relative abundance and biomass of each species of corals and algae. We coupled high temporal resolution time series data on the natural diurnal variability in pH, dissolved oxygen, salinity, and temperature (using autonomous sensors) with resident organisms' net community calcification and productivity rates (using change in total dissolved carbon and total alkalinity over time) to examine feedbacks from reef metabolism to boundary layer carbonate chemistry. These reefs experienced large ranges in pH (> 0.2 amplitude) each day, similar to the magnitude of 'acidification' expected over the next century. Daily benthic pH, pCO2, and aragonite saturation state (Ωaragonite) were contrasted with seasonal threshold values estimated from open ocean climatological data extrapolated at each island to determine relative inter-island feedbacks. Diurnal amplitude in pH, pCO2, and Ωaragonite at each island was dependent upon the resident species assemblage of the benthos and was particularly reliant upon the biomass, productivity, and calcification rate of Halimeda. Net primary productivity of fleshy algae (algal turfs and Lobophora spp.) predominated on degraded, inhabited islands where net community calcification was negligible. In contrast, the chemistry over reefs on 'pristine', uninhabited islands was driven largely by net calcification of calcareous algae and stony corals. Knowledge about species specific physiological rates and relative abundances of key taxa whose metabolism significantly alters carbonate chemistry may give insight to the ability for a reef to buffer against or exacerbate ocean acidification.

  15. Maternal and fetal Acid-base chemistry: a major determinant of perinatal outcome.

    PubMed

    Omo-Aghoja, L

    2014-01-01

    Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome.

  16. Comparison of behavior in muscle fiber regeneration after bupivacaine hydrochloride- and acid anhydride-induced myonecrosis.

    PubMed

    Akiyama, C; Kobayashi, S; Nonaka, I

    1992-01-01

    We compared the morphologic characteristics of muscle fiber necrosis and subsequent regeneration after injury induced by intramuscular injections of bupivacaine hydrochloride (BPVC) and a variety of solutions at acid and alkaline pH (acetic anhydride, citric acid buffer, and sodium carbonate buffer). After BPVC injection the necrotic muscle fibers were rapidly invaded by phagocytic cells, followed by active regeneration and very little fibrous scar formation. The regenerating muscle fibers increased rapidly in size and attained complete fiber type differentiation and regained their initial fiber diameter within 1 month. Both alkaline and acid solutions induced muscle fiber necrosis followed by regeneration. Fiber necrosis induced by alkaline buffers and acetic anhydride solutions above pH 5.0 produced changes quite similar to that induced by BPVC. However, injection with 0.1 M acetic anhydride at pH below 4.0 resulted in coagulative necrosis of the injured muscle with very little phagocytic infiltration with poor regenerative activity and dense fibrous tissue scarring. Thus, pH 4.0 appears to be the critical pH determining the type of muscle injury and subsequent poor phagocytic and regenerative activities. This model of acidic acetic anhydride injury may lead to the identification of factors which interfere with regeneration and cause fibrous tissue scarring in human muscular dystrophy.

  17. Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories

    USGS Publications Warehouse

    Garcia, S.; Rosenbauer, Robert J.; Palandri, James L.; Maroto-Valer, M. Mercedes

    2012-01-01

    Iron oxyhydroxide, goethite (α-FeOOH), was evaluated as a potential formation mineral reactant for trapping CO2 in a mineral phase such as siderite (FeCO3), when a mixture of CO2-SO 2 flue gas is injected into a saline aquifer. Two thermodynamic simulations were conducted, equilibrating a CO2-SO2 fluid mixture with a NaCl-brine and Fe-rich rocks at 150 °C and 300 bar. The modeling studies evaluated mineral and fluid composition at equilibrium and the influence of pH buffering in the system. Results show siderite precipitates both in the buffered and unbuffered system; however, the presence of an alkaline pH buffer enhances the stability of the carbonate. Based on the model, an experiment was designed to compare with thermodynamic predictions. A CO2-SO2 gas mixture was reacted in 150 ml of NaCl-NaOH brine containing 10 g of goethite at 150 °C and 300 bar for 24 days. Mineralogical and brine chemistry confirmed siderite as the predominant reaction product in the system. Seventy-six mg of CO2 are sequestered in siderite per 10 g of goethite.

  18. Modeling coliform-bacteria concentrations and pH in the salt-wedge reach of the Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Haushild, W.L.; Prych, Edmund A.

    1976-01-01

    Total- and fecal-coliform bacteria, plus pH, alkalinity, and dissolved inorganic carbon are water-quality parameters that have been added to an existing numerical model of water quality in the salt-wedge reach of the Duwamish River estuary in Washington. The coliform bacteria are modeled using a first-order decay (death) rate, which is a function of the local salinity, temperature, and daily solar radiation. The pH is computed by solving a set of chemical-equilibrium equations for carbonate-bicarbonate buffered aqueous solutions. Concentrations of total- and fecal-coliform bacteria computed by the model for the Duwamish River estuary during June-September 1971 generally agreed with observed concentrations within about 40 and 60 percent, respectively. The computed pH generally agreed with observed pH within about a 0.2 pH unit; however, for one 3-week period the computed pH was about a 0.4 unit lower than the observed pH. (Woodard-USGS)

  19. Sustained Release of Naproxen in a New Kind Delivery System of Carbon Nanotubes Hydrogel

    PubMed Central

    Peng, Xiahui; Zhuang, Qiang; Peng, Dongming; Dong, Qiuli; Tan, Lini; Jiao, Feipeng; Liu, Linqi; Liu, jingyu; Zhao, Chenxi; Wang, Xiaomei

    2013-01-01

    In this paper, carbon nanotubes (CNTs) were added into chitosan (CS) hydrogels in the form of chitosan modified CNTs (CS-CNTs) composites to prepare carbon nanotubes hydrogels (CNTs-GEL). The products, named CS-MWCNTs, were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Swelling properties and effect of pH on controlled release performance of the two kinds of hydrogels, CNTs- GEL and pure chitosan hydrogels without CNTs (GEL), were investigated respectively. The results showed that CNTs-GEL possess better controlled release performance than GEL. The releasing equilibrium time of CNTs-GEL was longer than that of GEL in both pH = w7.4 and pH=1.2 conditions, although the release ratios of the model drug are similar in the same pH buffer solutions. It is found that release kinetics is better fitted Ritger-Peppas empirical model indicating a fick-diffusion process in pH = 1.2, while in pH = 7.4 it was non-fick diffusion involving surface diffusion and corrosion diffusion processes. PMID:24523738

  20. Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay.

    PubMed

    Cai, Wei-Jun; Huang, Wei-Jen; Luther, George W; Pierrot, Denis; Li, Ming; Testa, Jeremy; Xue, Ming; Joesoef, Andrew; Mann, Roger; Brodeur, Jean; Xu, Yuan-Yuan; Chen, Baoshan; Hussain, Najid; Waldbusser, George G; Cornwell, Jeffrey; Kemp, W Michael

    2017-08-28

    The combined effects of anthropogenic and biological CO 2 inputs may lead to more rapid acidification in coastal waters compared to the open ocean. It is less clear, however, how redox reactions would contribute to acidification. Here we report estuarine acidification dynamics based on oxygen, hydrogen sulfide (H 2 S), pH, dissolved inorganic carbon and total alkalinity data from the Chesapeake Bay, where anthropogenic nutrient inputs have led to eutrophication, hypoxia and anoxia, and low pH. We show that a pH minimum occurs in mid-depths where acids are generated as a result of H 2 S oxidation in waters mixed upward from the anoxic depths. Our analyses also suggest a large synergistic effect from river-ocean mixing, global and local atmospheric CO 2 uptake, and CO 2 and acid production from respiration and other redox reactions. Together they lead to a poor acid buffering capacity, severe acidification and increased carbonate mineral dissolution in the USA's largest estuary.The potential contribution of redox reactions to acidification in coastal waters is unclear. Here, using measurements from the Chesapeake Bay, the authors show that pH minimum occurs at mid-depths where acids are produced via hydrogen sulfide oxidation in waters mixed upward from anoxic depths.

  1. A reaction-diffusion model of CO2 influx into an oocyte

    PubMed Central

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela

    2012-01-01

    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674

  2. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 1. Fate of inorganic pollutants in laboratory columns

    NASA Astrophysics Data System (ADS)

    Thornton, Steven F.; Tellam, John H.; Lerner, David N.

    2000-05-01

    The attenuation of inorganic contaminants in acetogenic and methanogenic landfill leachate by calcareous and carbonate-deficient, oxide-rich Triassic sandstone aquifer materials from the English Midlands was examined in laboratory columns. Aqueous equilibrium speciation modelling, simple transport modelling and chemical mass balance approaches are used to evaluate the key processes and aquifer geochemical properties controlling contaminant fate. The results indicate that leachate-rock interactions are dominated by ion-exchange processes, acid-base and redox reactions and sorption/precipitation of metal species. Leachate NH 4 is attenuated by cation exchange with the aquifer sediments; however, NH 4 migration could be described with a simple model using retardation factors. Organic acids in the acetogenic leachate buffered the system pH at low levels during flushing of the calcareous aquifer material. In contrast, equilibrium with Al oxyhydroxide phases initially buffered pH (˜4.5) during flushing of the carbonate-deficient sandstone with methanogenic leachate. This led to the mobilisation of sorbed and oxide-bound heavy metals from the aquifer sediment which migrated as a concentrated pulse at the leachate front. Abiotic reductive dissolution of Mn oxyhydroxides on each aquifer material by leachate Fe 2+ maintains high concentrations of dissolved Mn and buffers the leachate inorganic redox system. This feature is analogous to the Mn-reducing zones found in leachate plumes and in the experiments provides a sink for the leachate Fe load and other heavy metals. The availability of reactive solid phase Mn oxyhydroxides limits the duration of redox buffering and Fe attenuation by these aquifer sediments. Aquifer pH and redox buffering capacity exert a fundamental influence on leachate inorganic contaminant fate in these systems. The implications for the assessment of aquifer vulnerability at landfills are discussed and simple measurements of aquifer properties which may improve the prediction of contaminant attenuation are outlined.

  3. Maternal and Fetal Acid-Base Chemistry: A Major Determinant of Perinatal Outcome

    PubMed Central

    Omo-Aghoja, L

    2014-01-01

    Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome. PMID:24669324

  4. Biophysical feedbacks mediate carbonate chemistry in coastal ecosystems across spatiotemporal gradients.

    PubMed

    Silbiger, Nyssa J; Sorte, Cascade J B

    2018-01-15

    Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions. Specifically, non-encrusting producer-dominated systems had the highest and most variable pH environments and the highest production rates, patterns that were consistent across sites spanning 11° of latitude and encompassing multiple gradients of natural variability. Furthermore, we demonstrated a biophysical feedback loop in which net community production increased pH, leading to higher net ecosystem calcification. Extreme spatiotemporal variability in pH is, thus, both impacting and driven by biological processes, indicating that shifts in community composition and ecosystem metabolism are poised to locally buffer or intensify the effects of OA.

  5. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Krám, Pavel; Oulehle, Filip; Posch, Maximilian

    2016-10-15

    Using statistical relationships between the composition of precipitation at eight long-term monitoring stations and emission rates of sulphur (S) and nitrogen (N) compounds, as well as industrial dust in the Czech Republic and Slovakia (Central Europe), we modelled historic pH and concentrations of sulphate (SO4(2-)), nitrate (NO3(-)), ammonium (NH4(+)), chloride (Cl(-)), base cations (BC), and bicarbonate (HCO3(-)) in bulk precipitation from 1850 to 2013. Our model suggests that concentrations of SO4(2-), NO3(-), and HCO3(-) were similar (11-16 μeq l(-1)) in 1850. Cations were dominated by NH4(+) and BC (24-27 μeq l(-1)) and precipitation pH was >5.6. The carbonate buffering system was depleted around 1920 and precipitation further acidified at an exponential rate until the 1980s, when concentrations of SO4(2-), NO3(-), Cl(-), NH4(+) and BC reached maxima of 126, 55, 16, 76, and 57 μeq l(-1), respectively, and pH decreased to 4.2. Dust emissions from industrial sources were an important source of BC. Without their contribution, pH would have decreased to 4.0 in the 1980s, and the carbonate buffering system would have been depleted already in the 1870s. Since the late 1980s, concentrations of strong acid anions and BC have decreased by 46-81% (i.e. more than in Europe on average) due to a 53-93% reduction in regional emissions of S and N compounds and dust from industrial and agricultural sources. The present composition of precipitation is similar to the late 19th century, except for NO3(-) concentrations, which are similar to those during 1926-1950. Precipitation pH now exceeds 5.0, the carbonate buffering system has been re-established, and HCO3(-) has again become (after almost a century) a significant component of precipitation chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Physiological responses of Daphnia pulex to acid stress

    PubMed Central

    Weber, Anna K; Pirow, Ralph

    2009-01-01

    Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of whether a carbonic anhydrase (CA) is involved in the catalysis of the reaction, which led to the discovery of 31 CA-genes in the genome of D. pulex. PMID:19383148

  7. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Nwokoro, Ogbonnaya; Anthonia, Odiase

    2015-01-01

    Amylases are among the main enzymes used in food and other industries. They hydrolyse starch molecules into polymers composing glucose units. Amylases have potential applications in a number of industrial processes including foods and pharmaceutical industries. Alkaline α-amylase has the potential of hydrolysing starch under alkaline pH and is useful in the starch and textile industries and as an ingredient of detergents. Amylases are produced from plants, however, microbial production processes have dominated applications in the industries. Optimization of microbial production processes can result in improved enzyme yields. Amylase activity was assayed by incubating the enzyme solution (0.5 ml) with 1% soluble starch (0.5 ml) in 0.1 M Tris/HCl buffer (pH 8.5). After 30 minutes, the reaction was stopped by the addition of 4 mL of 3,5-dinitrosalicylic acid (DNS) reagent then heated for 10 min in boiling water bath and cooled in a refrigerator. Absorbance readings were used to estimate the units of enzyme activity from glucose standard curve. Hydrolysed native starches from cassava, rice, corn, coco yam, maize and potato and soluble starch were adjusted to pH 8.5 prior to incubation with crude enzyme solution. Reducing sugars produced were therefore determined. The effect of pH on enzyme activity of the alkaline α-amylase was determined by using buffer solutions of different pH (potassium phosphate buffer, 6.0-7.0; Tris-HCl buffer 7.5 to 9.0 and carbonate/bicarbonate buffer, pH 9.5-11) for enzyme assay. The pH stability profile of the enzyme was determined by incubating 0.5 ml of α-amylase enzyme in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h in various buffers. The effect of temperature on enzyme activity was studied by incubating 0.5 mL of the enzyme solution contained in the test tube and 0.5 mL of 1% soluble starch (Merck) solution prepared in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (25, 30, 35, 40, 45, 50, 55 and 60°C) in a thermo static water bath. The reactions were stopped by adding DNS reagent. The enzyme activity was therefore determined. Thermal stability was studied by incubating 0.5 ml of enzyme solution in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (20, 30, 40, 50, 60 and 70°C) for 60 min. The enzyme displayed optimal activity at pH 8.0 at which it produced maximum specific activity of 34.3 units/mg protein. Maximum stability was at pH 8.0 to 9.0. Maximum activity was observed at temperature of 50°C while thermo stability of the enzyme was observed at 40-50°C. The enzyme displayed a wide range of activities on starch and caused the release of 5.86, 4.75, 5.98, 3.44, 3.96, 8.84 mg/mL reducing sugar from cassava, potato, cocoyam, corn, rice and soluble starch respectively. This investigation reports some biochemical characterization of alkaline α-amylase from Bacillus subtilis CB-18. The substrate specificities of this enzyme on various starches suggested that the alkaline α-amylase enzyme had combined activities on raw and soluble starch.

  8. Histological preparation of developing vestibular otoconia for scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Huss, D.; Dickman, J. D.

    2003-01-01

    The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.

  9. Longitudinal meta-analysis of NIST pH Standard Reference Materials(®): a complement to pH key comparisons.

    PubMed

    Pratt, Kenneth W

    2015-04-01

    This meta-analysis assesses the long-term (up to 70 years) within-laboratory variation of the NIST pH Standard Reference Material® (SRM) tetroxalate, phthalate, phosphate, borate, and carbonate buffers. Values of ΔpH(S), the difference between the certified pH value, pH(S), of each SRM issue and the mean of all pH(S) values for the given SRM at that Celsius temperature, t, are graphed as a function of the SRM issue and t. In most cases, |ΔpH(S)| < 0.004. Deviations from the nominal base:acid amount (mole) ratio of a buffer yield t-independent, constant shifts in ΔpH(S). The mean ΔpH(S) characterizes such deviations. The corresponding mole fraction of impurity in the conjugate buffer component is generally <0.3 %. Changes in the equipment, personnel, materials, and methodology of the pH(S) measurement yield t-dependent variations. The standard deviation of ΔpH(S) characterizes such changes. Standard deviations of ΔpH(S) are generally 0.0015 or less. The results provide a long-term, single-institution complement to the time-specific, multi-institution results of pH key comparisons administered by the Consultative Committee for Metrology in Chemistry and Biology (CCQM).

  10. Water-Rock Interactions in the Peridotite Aquifer of the Oman-UAE Ophiolite: Strontium Isotopic Ratio and Geochemical Evolution of Groundwater

    NASA Astrophysics Data System (ADS)

    Bompard, Nicolas; Matter, Juerg; Teagle, Damon

    2016-04-01

    The peridotite aquifer in Wadi Tayin, Sultanate of Oman, is a perfect example of natural carbonation of ultramafic rocks. In situ mineral carbonation is considered the most safest and permanent option of CO2 Capture and Sequestration (CCS). However, the process itself is yet to be characterised and a better understanding of the mechanisms involved in natural mineral carbonation is needed before geo-engineering it. We used the 87Sr/86Sr system to follow the water-rock interactions along the groundwater flowpath in the peridotite aquifer and to determine the sources of divalent cations (Mg2+, Ca2+) required for mineral carbonation. The Sr-isotope data of groundwater show that the aquifer rocks are the main source for divalent cations (Mg2+, Ca2+ and Sr2+) and secondary carbonates are their main sink. The groundwater 87Sr/86Sr ratio evolves with its pH: from 87Sr/86Sr = 0.7087 (n=3) to 0.7082 (n=8) between pH 7 and 8, and from 0.7086 (n=6) at pH 9 to 0.07075 (n=9) at pH 11. This evolution seems to support a two-step model for the water-rock interactions in the peridotite aquifer. From pH 7 to 8, secondary Ca-carbonate precipitation buffers the pH rise resulting from peridotite serpentinisation. From pH 9 to 11, peridotite serpentinisation drives the pH to alkaline condition. The change from a Mg-rich to a Ca-rich groundwater at pH 9 seems to confirm the two-step model.

  11. Chapter 3: Soil Chemistry

    Treesearch

    Jennifer D. Knoepp; Leonard F. DeBano; Daniel G. Neary

    2005-01-01

    The chemical properties of the soil that are affected by fire include individual chemical characteristics, chemical reactions, and chemical processes (DeBano and others 1998). The soil chemical characteristics most commonly affected by fire are organic matter, carbon (C), nitrogen (N), phosphorus (P), sulfur (S), cations, cation exchange capacity, pH, and buffer power...

  12. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    PubMed

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  13. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN

    USGS Publications Warehouse

    Ng, Gene-Hua Crystal; Bekins, Barbara A.; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Bennett, Philip C.; Amos, Richard T.

    2014-01-01

    Secondary water quality impacts can result from a broad range of coupled reactions triggered by primary groundwater contaminants. Data from a crude-oil spill research site near Bemidji, MN provide an ideal test case for investigating the complex interactions controlling secondary impacts, including depleted dissolved oxygen and elevated organic carbon, inorganic carbon, CH4, Mn, Fe, and other dissolved ions. To better understand these secondary impacts, this study began with an extensive data compilation of various data types, comprising aqueous, sediment, gas, and oil phases, covering a 260 m cross-sectional domain over 30 years. Mass balance calculations are used to quantify pathways that control secondary components, by using the data to constrain the sources and sinks for the important redox processes. The results show that oil constituents other than BTEX (benzene, toluene, ethylbenzene, o-, m- and p-xylenes), including n-alkanes and other aromatic compounds, play significant roles in plume evolution and secondary water quality impacts. The analysis underscores previous results on the importance of non-aqueous phases. Over 99.9% of the Fe2+ plume is attenuated by immobilization on sediments as Fe(II) and 85–95% of the carbon biodegradation products are outgassed. Gaps identified in carbon and Fe mass balances and in pH buffering mechanisms are used to formulate a new conceptual model. This new model includes direct out-gassing of CH4 and CO2 from organic carbon biodegradation, dissolution of directly produced CO2, and sorption with H+ exchange to improve pH buffering. The identification of these mechanisms extends understanding of natural attenuation of potential secondary impacts at enhanced reductive dechlorination sites, particularly for reduced Fe plumes, produced CH4, and pH perturbations.

  14. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN

    NASA Astrophysics Data System (ADS)

    Ng, G.-H. Crystal; Bekins, Barbara A.; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Bennett, Philip C.; Amos, Richard T.

    2014-08-01

    Secondary water quality impacts can result from a broad range of coupled reactions triggered by primary groundwater contaminants. Data from a crude-oil spill research site near Bemidji, MN provide an ideal test case for investigating the complex interactions controlling secondary impacts, including depleted dissolved oxygen and elevated organic carbon, inorganic carbon, CH4, Mn, Fe, and other dissolved ions. To better understand these secondary impacts, this study began with an extensive data compilation of various data types, comprising aqueous, sediment, gas, and oil phases, covering a 260 m cross-sectional domain over 30 years. Mass balance calculations are used to quantify pathways that control secondary components, by using the data to constrain the sources and sinks for the important redox processes. The results show that oil constituents other than BTEX (benzene, toluene, ethylbenzene, o-, m- and p-xylenes), including n-alkanes and other aromatic compounds, play significant roles in plume evolution and secondary water quality impacts. The analysis underscores previous results on the importance of non-aqueous phases. Over 99.9% of the Fe2 + plume is attenuated by immobilization on sediments as Fe(II) and 85-95% of the carbon biodegradation products are outgassed. Gaps identified in carbon and Fe mass balances and in pH buffering mechanisms are used to formulate a new conceptual model. This new model includes direct out-gassing of CH4 and CO2 from organic carbon biodegradation, dissolution of directly produced CO2, and sorption with H+ exchange to improve pH buffering. The identification of these mechanisms extends understanding of natural attenuation of potential secondary impacts at enhanced reductive dechlorination sites, particularly for reduced Fe plumes, produced CH4, and pH perturbations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less

  16. Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.

    PubMed

    Chu, Bei; Goyne, Keith W; Anderson, Stephen H; Lin, Chung-Ho; Lerch, Robert N

    2013-01-01

    Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( < 0.05) influences SMZ sorption (ABS > GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. A mathematical model of the influence of salivary urea on the pH of fasted dental plaque and on the changes occurring during a cariogenic challenge.

    PubMed

    Dibdin, G H; Dawes, C

    1998-01-01

    Urea diffusing from saliva into dental plaque is converted to ammonia and carbon dioxide by bacterial ureases. The influence of normal salivary urea levels on the pH of fasted plaque and on the depth and duration of a Stephan curve is uncertain. A numerical model which simulates a cariogenic challenge (a 10% sucrose rinse alone or one followed by use of chewing-gum with or without sugar) was modified to include salivary urea levels from 0 to 30 mmol/l. It incorporated: site-dependent exchange between bulk saliva and plaque surfaces via a salivary film; sugar and urea diffusion into plaque; pH-dependent rates of acid formation and urea breakdown; diffusion and dissociation of end-products and other buffers (acetate, lactate, phosphate, ammonia and carbonate); diffusion of protons and other ions; equilibration with fixed and mobile buffers; and charge-coupling between ionic flows. The Km (2.12 mmol/l) and Vmax (0.11 micromol urea/min/mg dry weight) values for urease activity and the pH dependence of Vmax were taken from the literature. From the results, it is predicted that urea concentrations normally present in saliva (3-5 mmol/l) will increase the pH at the base of a 0.5-mm-thick fasted plaque by up to 1 pH unit, and raise the pH minimum after a sucrose rinse or sugar-containing chewing-gum by at least half a pH unit. The results suggest that plaque cariogenicity may be inversely related to salivary urea concentrations, not only when the latter are elevated because of disease, but even when they are in the normal range.

  18. The chemistry, physiology and pathology of pH in cancer

    PubMed Central

    Swietach, Pawel; Vaughan-Jones, Richard D.; Harris, Adrian L.; Hulikova, Alzbeta

    2014-01-01

    Cell survival is conditional on the maintenance of a favourable acid–base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid–base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H+-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H+-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H+-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H+/H+-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H+/H+-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors. PMID:24493747

  19. The chemistry, physiology and pathology of pH in cancer.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta

    2014-03-19

    Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.

  20. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  1. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode.

    PubMed

    Sun, Wei; Gao, Ruifang; Jiao, Kui

    2007-05-03

    Room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to construct a new carbon ionic liquid electrode (CILE), which exhibited enhanced electrochemical behavior as compared with the traditional carbon paste electrode with paraffin. By using the CILE as the basal electrode, hemoglobin (Hb) was immobilized on the surface of the CILE with nano-CaCO3 and Nafion film step by step. The Hb molecule in the film kept its native structure and showed good electrochemical behavior. In pH 7.0 Britton-Robinson (B-R) buffer solution, a pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared with cathodic and anodic peak potentials located at -0.444 and -0.285 V (vs SCE), respectively, and the formal potential (E degrees') was at -0.365 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The formal potential of Hb shifted linearly to the increase of buffer pH with a slope of -50.6 mV pH-1, indicating that one electron transferred was accompanied with one proton transportation. Ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopy studies showed that Hb immobilized in the Nafion/nano-CaCO3 film still remained its native arrangement. The Hb modified electrode showed an excellent electrocatalytic behavior to the reduction of H2O2, trichloroacetic acid (TCA), and NaNO2.

  2. Computing the carbonate chemistry of the coral calcifying medium and its response to ocean acidification.

    PubMed

    Raybaud, Virginie; Tambutté, Sylvie; Ferrier-Pagès, Christine; Reynaud, Stéphanie; Venn, Alexander A; Tambutté, Éric; Nival, Paul; Allemand, Denis

    2017-07-07

    Critical to determining vulnerability or resilience of reef corals to Ocean Acidification (OA) is a clearer understanding of the extent to which corals can control carbonate chemistry in their Extracellular Calcifying Medium (ECM) where the CaCO 3 skeleton is produced. Here, we employ a mathematical framework to calculate ECM aragonite saturation state (Ω arag.(ECM) ) and carbonate system ion concentration using measurements of calcification rate, seawater characteristics (temperature, salinity and pH) and ECM pH (pH (ECM) ). Our calculations of ECM carbonate chemistry at current-day seawater pH, indicate that Ω arag.(ECM) ranges from ∼10 to 38 (mean 20.41), i.e. about 5 to 6-fold higher than seawater. Accordingly, Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) were calculated to be around 3 times higher in the ECM than in seawater. We also assessed the effects of acidification on ECM chemical properties of the coral Stylophora pistillata. At reduced seawater pH our calculations indicate that Ω arag.(ECM) remains almost constant. DIC (ECM) and TA (ECM) gradually increase as seawater pH declines, reaching values about 5 to 6-fold higher than in seawater, respectively for DIC and TA. We propose that these ECM characteristics buffer the effect of acidification and explain why certain corals continue to produce CaCO 3 even when seawater chemistry is less favourable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biogeochemical Cycles of Carbon and Sulfur

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.

  4. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    NASA Astrophysics Data System (ADS)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  5. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  6. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  7. Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility.

    PubMed

    Lehoux, Alizée P; Lockwood, Cindy L; Mayes, William M; Stewart, Douglas I; Mortimer, Robert J G; Gruiz, Katalin; Burke, Ian T

    2013-10-01

    Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.

  8. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  9. Butanol production from thin stillage using Clostridium pasteurianum.

    PubMed

    Ahn, Jae-Hyung; Sang, Byoung-In; Um, Youngsoon

    2011-04-01

    The production of butanol from thin stillage by Clostridium pasteurianum DSM 525 was evaluated in the paper. At initial pH values ranging from 5.0 to 7.0 C. pasteurianum DSM 525 produced 6.2-7.2 g/L of butanol utilizing glycerol in thin stillage as the main carbon source, with yields of 0.32-0.44 g butanol produced/g glycerol consumed, which are higher than previously reported yields (e.g., 0.14-0.31 g butanol/g glycerol, Biebl, 2001). Lactic acid in the thin stillage acted as a buffering agent, maintaining the pH of the medium within a range of 5.7-6.1. Lactic acid was also utilized along with glycerol, enhancing butanol production (6.5 g/L butanol vs. 8.7 g/L butanol with 0 and 16 g/L lactic acid, respectively). These results demonstrate the feasibility of cost-effective butanol production using thin stillage as a nutrient-containing medium with a pH buffering capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus

    DOE R&D Accomplishments Database

    Ouellet, C.; Benson, A. A.

    1951-10-23

    The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.

  11. Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.

    PubMed

    Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M

    2015-10-01

    Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. ©2015 American Association for Cancer Research.

  12. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    PubMed

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  13. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution.

    PubMed

    Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A

    2014-02-01

    This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.

  14. Kinetic and Mechanistic Study of the pH-Dependent Activation (Epoxidation) of Prodrug Treosulfan Including the Reaction Inhibition in a Borate Buffer.

    PubMed

    Romański, Michał; Ratajczak, Whitney; Główka, Franciszek

    2017-07-01

    A prodrug treosulfan (T) undergoes a pH-dependent activation to epoxide derivatives. The process seems to involve an intramolecular Williamson reaction (IWR) but clear kinetic evidence is lacking. Moreover, a cis-diol system present in the T structure is expected to promote complexation with boric acid. As a result, the prodrug epoxidation would be inhibited; however, this phenomenon has not been investigated. In this article, the effect of pH on the kinetics of T conversion to its monoepoxide was studied from a mechanistic point of view. Also, the influence of boric acid on the reaction kinetics was examined. The rate constants observed for the activation of T (k obs ) in acetate, phosphate, and carbonate buffers satisfied the equation logk obs  = -7.48 + 0.96 pH. The reaction was inhibited in the excess of boric acid over T, and the k obs decreased with increasing borate buffer concentration. The experimental results were consistent with the inhibition model that included the formation of a tetrahedral, anionic T-boric acid monoester. To conclude, in nonborate buffers, the T activation to (2S,3S)-1,2-epoxybutane-3,4-diol 4-methanesulfonate follows IWR mechanism. A borate buffer changes the reaction kinetics and complicates kinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  16. Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH.

    PubMed

    Zareie, Mohammad; Keuning, Eelco D; ter Wee, Piet M; Schalkwijk, Casper G; Beelen, Robert H J; van den Born, Jacob

    2006-01-01

    Chronic exposure to conventional peritoneal dialysis fluid (PDF) is associated with functional and structural alterations of the peritoneal membrane. The bioincompatibility of conventional PDF can be due to hypertonicity, high glucose concentration, lactate buffering system, presence of glucose degradation products (GDPs) and/or acidic pH. Although various investigators have studied the sole effects of hyperosmolarity, high glucose, GDPs and lactate buffer in experimental PD, less attention has been paid to the chronic impact of low pH in vivo. Rats received daily 10 ml of either conventional lactate-buffered PDF (pH 5.2; n=7), a standard bicarbonate/lactate-buffered PDF with physiological pH (n=8), bicarbonate/lactate-buffered PDF with acidic pH (adjusted to pH 5.2 with 1 N hydrochloride, n=5), or bicarbonate/lactate buffer, without glucose, pH 7.4 (n=7). Fluids were instilled via peritoneal catheters connected to implanted subcutaneous mini vascular access ports for 8 weeks. Control animals with or without peritoneal catheters served as control groups (n=8/group). Various functional (2 h PET) and morphological/cellular parameters were analyzed. Compared with control groups and the buffer group, conventional lactate-buffered PDF induced a number of morphological/cellular changes, including angiogenesis and fibrosis in various peritoneal tissues (all parameters P<0.05), accompanied by increased glucose absorption and reduced ultrafiltration capacity. Daily exposure to standard or acidified bicarbonate/lactate-buffered PDF improved the performance of the peritoneal membrane, evidenced by reduced new vessel formation in omentum (P<0.02) and parietal peritoneum (P<0.008), reduced fibrosis (P<0.02) and improved ultrafiltration capacity. No significant differences were found between standard and acidified bicarbonate/lactate-buffered PDF. During PET, acidic PDF was neutralized within 15 to 20 min. The bicarbonate/lactate-buffered PDF, acidity per se did not contribute substantially to peritoneal worsening in our in vivo model for PD, which might be explained by the buffering capacity of the peritoneum.

  17. Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification

    NASA Astrophysics Data System (ADS)

    Mongin, Mathieu; Baird, Mark E.; Hadley, Scott; Lenton, Andrew

    2016-03-01

    The equilibration of rising atmospheric {{CO}}2 with the ocean is lowering {pH} in tropical waters by about 0.01 every decade. Coral reefs and the ecosystems they support are regarded as one of the most vulnerable ecosystems to ocean acidification, threatening their long-term viability. In response to this threat, different strategies for buffering the impact of ocean acidification have been proposed. As the {pH} experienced by individual corals on a natural reef system depends on many processes over different time scales, the efficacy of these buffering strategies remains largely unknown. Here we assess the feasibility and potential efficacy of a reef-scale (a few kilometers) carbon removal strategy, through the addition of seaweed (fleshy multicellular algae) farms within the Great Barrier Reef at the Heron Island reef. First, using diagnostic time-dependent age tracers in a hydrodynamic model, we determine the optimal location and size of the seaweed farm. Secondly, we analytically calculate the optimal density of the seaweed and harvesting strategy, finding, for the seaweed growth parameters used, a biomass of 42 g N m-2 with a harvesting rate of up 3.2 g N m-2 d-1 maximises the carbon sequestration and removal. Numerical experiments show that an optimally located 1.9 km2 farm and optimally harvested seaweed (removing biomass above 42 g N m-2 every 7 d) increased aragonite saturation by 0.1 over 24 km2 of the Heron Island reef. Thus, the most effective seaweed farm can only delay the impacts of global ocean acidification at the reef scale by 7-21 years, depending on future global carbon emissions. Our results highlight that only a kilometer-scale farm can partially mitigate global ocean acidification for a particular reef.

  18. Determination of phenolic constituents of biological interest in red wine by capillary electrophoresis with electrochemical detection.

    PubMed

    Peng, Youyuan; Chu, Qingcui; Liu, Fanghua; Ye, Jiannong

    2004-01-28

    A simultaneous determination of trans-resveratrol, (-)-epicatechin, and (+)-catechin in red wine by capillary electrophoresis with electrochemical detection (CE-ED) is reported. The effects of the potential of the working electrode, pH and concentration of running buffer, separation voltage, and injection time on CE-ED were investigated. Under the optimum conditions, the analytes could be separated in a 100 mmol/L borate buffer (pH 9.2) within 20 min. A 300 microm diameter carbon disk electrode has a good response at +0.85 V (vs SCE) for all analytes. The response was linear over 3 orders of magnitude with detection limit (S/N = 3) ranging from 2 x 10(-7) to 5 x 10(-7) g/mL for all analytes. This method has been used for the determination of these analytes in red wine without enrichment, and the assay result was satisfactory.

  19. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.

    PubMed

    Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F

    2002-09-01

    Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.

  20. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    PubMed

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases

    PubMed Central

    Dixon, Daniel P.; Van Ekeris, Leslie; Linser, Paul J.

    2017-01-01

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the new millennium. PMID:28230813

  2. Salivary buffer capacity, pH, and stimulated flow rate of crack cocaine users.

    PubMed

    Woyceichoski, Iverson Ernani Cogo; Costa, Carlos Henrique; de Araújo, Cristiano Miranda; Brancher, João Armando; Resende, Luciane Grochocki; Vieira, Iran; de Lima, Antonio Adilson Soares

    2013-08-01

    Crack cocaine is the freebase form of cocaine that can be smoked. The use of this drug has been considered a public health problem in many countries. The aim of this study was to assess the stimulated salivary flow rate (SSFR), pH, and the buffer capacity of saliva in crack cocaine users. Stimulated whole saliva was collected from 54 selected crack cocaine users and 40 non-users. All samples were analyzed for SSFR, pH, and buffer capacity. SSFR was analyzed by gravimetric method. The buffer capacity and pH were determined using a digital pH meter. The crack cocaine users demonstrated higher buffer capacity than the control group (P > 0.05). Salivary pH was lower in crack cocaine users (P < 0.05). Mean values of the SSFR for the experimental and control groups were 1.1 and 1.3 mL/min, respectively (P > 0.05). Crack cocaine users might exhibit a significant decrease in salivary pH, but not in salivary flow rate or buffer capacity. © 2012 Blackwell Publishing Asia Pty Ltd.

  3. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.

  4. Effect of a low-moisture buffer block on ruminal pH in lactating dairy cattle induced with subacute ruminal acidosis.

    PubMed

    Krause, K M; Dhuyvetter, D V; Oetzel, G R

    2009-01-01

    The objective of this study was to evaluate the effect of a low-moisture buffer block on ruminal pH and milk production in cows induced with subacute ruminal acidosis (SARA). Sixteen ruminally cannulated cows were randomly assigned to treatment (access to buffer blocks) or control (no buffer blocks). Ruminal pH was recorded each minute; dry matter intake (DMI), milk yield, and milk composition were measured daily. The experiment lasted 12 d and consisted of a 3-d pre-SARA period (without access to buffer blocks; d 1 to 3), after which 8 cows were given access to buffer blocks and 8 cows continued without access to buffer blocks. The next 4 d (d 4 to 7) were for evaluating the response to buffer blocks. On d 8, cows were restricted to 50% of previous DMI, and on d 9 SARA was induced (addition of 4 kg of wheat/barley pellet to pre-SARA total mixed ration (TMR). Cows were then monitored for a 3-d recovery period (d 10 to 12). The SARA challenge was successful in decreasing mean ruminal pH and time and area below pH 5.6. Intake of buffer blocks averaged 0.33 kg of DM/cow per day and was greatest on d 4 and d 8. Total DMI (TMR plus buffer block) and yields of milk and milk components were not affected by treatment. Although there was no overall effect of treatment on any of the ruminal pH variables measured, there were significant treatment by period interactions for several ruminal pH variables. Cows on the control treatment tended to experience a greater decrease in mean ruminal pH when induced with SARA than cows with access to buffer blocks (-0.55 vs. -0.20 pH units). Cows on the control treatment also experienced a greater increase in time (9.7 vs. 4.1 h/d) and area (249 vs. 83 min x pH units/d) below pH 5.6 compared with cows with access to buffer blocks. Ruminal volatile fatty acids, lactate, ethanol, and succinate concentrations during the SARA challenge did not differ between treatments. Eating behavior was not affected by treatment. Size of the first meal of the day was greater on the SARA challenge day than during the pre-SARA period (11.0 vs. 5.7 kg, as fed). Giving cows access to a buffer-containing molasses block may reduce the duration and the severity of a 1-d SARA challenge.

  5. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: pH buffering properties of cheese.

    PubMed

    Upreti, P; Bühlmann, P; Metzger, L E

    2006-03-01

    The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.

  6. Calorimetric and Diffractometric Evidence for the Sequential Crystallization of Buffer Components and the Consequential pH Swing in Frozen Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj

    2010-06-22

    Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followedmore » by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.« less

  7. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-04-01

    Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH

  9. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon-Polyaniline Composite.

    PubMed

    Rahimi, Rahim; Ochoa, Manuel; Tamayol, Ali; Khalili, Shahla; Khademhosseini, Ali; Ziaie, Babak

    2017-03-15

    The development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This method produces highly porous carbonized 2D serpentine traces that are subsequently permeated with polyaniline (PANI) as the conductive filler, binding material, and pH-sensitive membrane. The experimental and simulation results demonstrate that the stretchable serpentine PANI/C-PI interconnections with an optimal trace width of 0.3 mm can withstand elongations of up to 135% and are robust to more than 12 000 stretch-and-release cycles at 20% strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity of -53 mV/pH (r 2 = 0.976) with stable performance in the physiological range of pH 4-10. The sensor shows excellent stability to applied longitudinal and transverse strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. The material biocompatibility is confirmed with NIH 3T3 fibroblast cells via PrestoBlue assays.

  10. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.

    Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.

  12. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept. Copyright © 2016. Published by Elsevier B.V.

  13. A Quick Reference on Respiratory Alkalosis.

    PubMed

    Johnson, Rebecca A

    2017-03-01

    Respiratory alkalosis, or primary hypocapnia, occurs when alveolar ventilation exceeds that required to eliminate the carbon dioxide produced by tissues. Concurrent decreases in Paco 2 , increases in pH, and compensatory decreases in blood HCO 3 - levels are associated with respiratory alkalosis. Respiratory alkalosis can be acute or chronic, with metabolic compensation initially consisting of cellular uptake of HCO 3 - and buffering by intracellular phosphates and proteins. Chronic respiratory alkalosis results in longer-lasting decreases in renal reabsorption of HCO 3 - ; the arterial pH can approach near-normal values. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.

    PubMed

    Lusk, Bradley G; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, Cesar I

    2016-12-01

    We assessed the effects of pH and buffer concentration on current production and growth of biofilms of Thermincola ferriacetica - a thermophilic, Gram-positive, anode-respiring bacterium (ARB) - grown on anodes poised at a potential of -0.06V vs. SHE in microbial electrolysis cells (MECs) at 60°C. T. ferriacetica generated current in the pH range of 5.2 to 8.3 with acetate as the electron donor and 50mM bicarbonate buffer. Maximum current density was reduced by ~80% at pH5.2 and ~14% at 7.0 compared to pH8.3. Increasing bicarbonate buffer concentrations from 10mM to 100mM resulted in an increase in the current density by 40±6%, from 6.8±1.1 to 11.2±2.7Am(-2), supporting that more buffer alleviated pH depression within T. ferriacetica biofilms. Confocal laser scanning microscopy (CLSM) images indicated that higher bicarbonate buffer concentrations resulted in larger live biofilm thicknesses: from 68±20μm at 10mM bicarbonate to >150μm at 100mM, supporting that buffer availability was a strong influence on biofilm thickness. In comparison to mesophilic Geobacter sulfurreducens biofilms, the faster transport rates at higher temperature and the ability to grow at relatively lower pH allowed T. ferriacetica to produce higher current densities with lower buffer concentrations. Published by Elsevier B.V.

  15. Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide

    PubMed Central

    Lopalco, Antonio; Dalwadi, Gautam; Niu, Sida; Schowen, Richard L.; Douglas, Justin; Stella, Valentino J.

    2015-01-01

    The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2 – 9 at 25°C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry (1H, 13C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics since the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first order kinetics. No buffer catalysis was observed. The calculated second order rate constants for the reaction followed a sigmoidal shape with pH independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate determining nucleophilic attack of the deprotonated peroxide species, HOO−, on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized. PMID:26422524

  16. Expansion of mesenchymal stem cells under atmospheric carbon dioxide.

    PubMed

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richard P; Harcum, Sarah W

    2013-01-01

    Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system - which relies upon an elevated CO2 environment - typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers.

  17. Highly efficient treatment of aerobic vaginitis with simple acidic buffered gels: The importance of pH and buffers on the microenvironment of vaginas.

    PubMed

    Sun, Xiaodong; Qiu, Haiying; Jin, Yiguang

    2017-06-15

    Aerobic vaginitis (AV) leads to uterus deep infection or preterm birth. Antibacterial agents are not optimal therapeutics of AV. Here, we report a series of temperature-sensitive in situ forming acidic buffered gels for topical treatment of AV, involving lactate, acetate, and citrate gels at pH 3.5, 5.0, and 6.5. AV rat models were prepared following vaginal infection with Staphylococcus aureus and Escherichia coli. In vitro/in vivo studies of the buffered gels were performed compared with ofloxacin gels and blank gels. All the buffered gels showed the lower in vitro antibacterial activities than ofloxacin gels but the better in vivo anti-S. aureus effects and similar anti-E. coli effects. The buffered gels improved Lactobacillus growth in the vaginas. Both the healthy rat vaginal pH and the pH of rat vaginas treated with the buffered gels were about 6.5 though the AV rat models or ones treated with ofloxacin gels still remained at the high pH more than 7.0. After treatments with the buffered gels, the vaginal smears changed to a clean state nearly without aerobic bacteria, the vaginal tissues were refreshed, and the immunoreactions were downregulated. The acidic buffered gels bring rapid decrease of local vaginal pH, high antibacterial activities, improvement of probiotics, and alleviation of inflammation. They are simple, highly efficient, and safe anti-AV formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Potential Role of Systemic Buffers in Reducing Intratumoral Extracellular pH and Acid-Mediated Invasion

    PubMed Central

    Silva, Ariosto S.; Yunes, Jose A.; Gillies, Robert J.; Gatenby, Robert A.

    2013-01-01

    A number of studies have shown that the extracellular pH (pHe) in cancers is typically lower than that in normal tissue and that an acidic pHe promotes invasive tumor growth in primary and metastatic cancers. Here, we investigate the hypothesis that increased systemic concentrations of pH buffers reduce intratumoral and peritumoral acidosis and, as a result, inhibit malignant growth. Computer simulations are used to quantify the ability of systemic pH buffers to increase the acidic pHe of tumors in vivo and investigate the chemical specifications of an optimal buffer for such purpose. We show that increased serum concentrations of the sodium bicarbonate (NaHCO3) can be achieved by ingesting amounts that have been used in published clinical trials. Furthermore, we find that consequent reduction of tumor acid concentrations significantly reduces tumor growth and invasion without altering the pH of blood or normal tissues. The simulations also show that the critical parameter governing buffer effectiveness is its pKa. This indicates that NaHCO3, with a pKa of 6.1, is not an ideal intratumoral buffer and that greater intratumoral pHe changes could be obtained using a buffer with a pKa of ~7. The simulations support the hypothesis that systemic pH buffers can be used to increase the tumor pHe and inhibit tumor invasion. PMID:19276380

  19. Affinity chemiresistor sensor for sugars.

    PubMed

    Tlili, Chaker; Badhulika, Sushmee; Tran, Thien-Toan; Lee, Ilkeun; Mulchandani, Ashok

    2014-10-01

    In this work, a non-enzymatic chemiresistive sugar sensor has been developed by combining a synthetic receptor with aligned single-walled carbon nanotubes (SWNTs) device. Briefly, boronic acid as a multivalent sugar receptor was immobilized on carbon nanotubes through amide bond formation. The interaction between three common sugars (d-glucose, d-fructose and sucrose) and boronic acid modified SWNTs device was studied. The effect of pH on the receptor-ligand binding was examined and highest response was observed at pH 9. The chemiresistive sensor exhibited specific and reproducible detection with sensitivity over the concentration range of 1-20mM, 1-25 mM, and 1-30 mM for fructose, glucose, and sucrose, respectively. The sensor showed no interference from common electroactive compounds such as citric acid, uric acid, and ascorbic acid. Furthermore, the sensor retained 97.4% of the initial value after five regeneration cycles with an acidic buffer at pH 5, thus ensuring good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    PubMed

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Basal buffer systems for a newly glycosylated recombinant human interferon-β with biophysical stability and DoE approaches.

    PubMed

    Kim, Nam Ah; Song, Kyoung; Lim, Dae Gon; Hada, Shavron; Shin, Young Kee; Shin, Sangmun; Jeong, Seong Hoon

    2015-10-12

    The purpose of this study was to develop a basal buffer system for a biobetter version of recombinant human interferon-β 1a (rhIFN-β 1a), termed R27T, to optimize its biophysical stability. The protein was pre-screened in solution as a function of pH (2-11) using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the result, its experimental pI and optimal pH range were 5.8 and 3.6-4.4, respectively. Design of experiment (DoE) approach was developed as a practical tool to aid formulation studies as a function of pH (2.9-5.7), buffer (phosphate, acetate, citrate, and histidine), and buffer concentration (20 mM and 50 mM). This method employed a weight-based procedure to interpret complex data sets and to investigate critical key factors representing protein stability. The factors used were Tm, enthalpy, and relative helix contents which were obtained by DSC and Fourier Transform Infrared spectroscopy (FT-IR). Although the weights changed by three responses, objective functions from a set of experimental designs based on four buffers were highest in 20 mM acetate buffer at pH 3.6 among all 19 scenarios tested. Size exclusion chromatography (SEC) was adopted to investigate accelerated storage stability in order to optimize the pH value with susceptible stability since the low pH was not patient-compliant. Interestingly, relative helix contents and storage stability (monomer remaining) increased with pH and was the highest at pH 4.0. On the other hand, relative helix contents and thermodynamic stability decreased at pH 4.2 and 4.4, suggesting protein aggregation issues. Therefore, the optimized basal buffer system for the novel biobetter was proposed to be 20 mM acetate buffer at pH 3.8±0.2. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Preliminary findings on the correlation of saliva pH, buffering capacity, flow, Consistency and Streptococcus mutans in relation to cigarette smoking.

    PubMed

    Voelker, Marsha A; Simmer-Beck, Melanie; Cole, Molly; Keeven, Erin; Tira, Daniel

    2013-02-01

    The purpose of this preliminary study was to examine the relationship of caries risk, salivary buffering capacity, salivary pH, salivary quality (flow, consistency) and levels of Streptococcus mutans in relation to cigarette smoking. This clinical trial consisted of 53 volunteer patients receiving care in a university based dental hygiene clinic. Participants completed a questionnaire specific to their social history in regards to tobacco use, oral health and dietary history. Measurements of unstimulated saliva were collected followed by collection of stimulated saliva samples. These samples were used to measure salivary pH, buffering capacity and Streptococcus mutans levels. The subject's smoking status was significantly associated with caries risk (p= 0.001), with 25% of the variability of caries risk attributed to smoking. The smoking status was significantly associated with buffering capacity (p=0.025), with 9% of the variability of buffering status attributed to the smoking. Associations between smoking status and salivary pH were not statistically significant. The subject's caries risk was significantly associated with buffering capacity (p= 0.001), with 25% of the variability of caries risk attributed to the buffering capacity. The subject's caries risk was significantly associated with salivary pH (p= 0.031), with 9% of the variability of caries risk attributed to the salivary pH. The Streptococcus mutans test showed no statistical significance (p>0.05) possibly due to the number and low variance in the subjects. A relationship between caries risk and smoking, buffering capacity and smoking, and stimulated salivary pH and smoking were concluded. No significance difference (p>0.05) between caries risk and salivary pH, salivary quality and smoking, S. mutans and smoking were noted from the preliminary results.

  3. Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells.

    PubMed

    Torres, César I; Lee, Hyung-Sool; Rittmann, Bruce E

    2008-12-01

    Anodes of biological fuel cells (BFCs) normally must operate at a near-neutral pH in the presence of various ionic species required for the function of the biological catalyst (e.g., substrate, nutrients, and buffers). These ionic species are in higher concentration than protons (H+) and hydroxides (OH-); slow transport of H+ and OH- equivalents between anode and cathode compartments can lead to a large pH gradient that can inhibit the function of biological components, decrease voltage efficiency in BFCs, or both. We evaluate the use of carbonate species as OH- carriers from the cathode to the anode compartment. This is achieved by adding CO2 to the influent air in the cathode. CO2 is an acid that combines with OH- in the cathode to produce bicarbonate and carbonate. These species can migrate to the anode compartment as OH- carriers at a rate much greater than can OH- itself when the pH is not extremely high in the cathode compartment We demonstrate this concept by feeding different air/CO2 mixtures to the cathode of a dual-chamber microbial fuel cell (MFC) fed with acetate as substrate. Our results show a 45% increase in power density (from 1.9 to 2.8 W/m2) by feeding air augmented with 2-10% CO2. The cell voltage increased by as much as 120 mV, indicating that the pH gradient decreased by as much as 2 pH units. Analysis of the anode effluent showed an average increase of 4.9 mM in total carbonate, indicating that mostly carbonate was transferred from the cathode compartment This process provides a simple way to minimize potential losses in BFCs due to pH gradients between anode and cathode compartments.

  4. Inactivation of viruses using novel protein A wash buffers.

    PubMed

    Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J

    2015-01-01

    Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.

  5. In vitro degradation of ZM21 magnesium alloy in simulated body fluids.

    PubMed

    Witecka, Agnieszka; Bogucka, Aleksandra; Yamamoto, Akiko; Máthis, Kristián; Krajňák, Tomáš; Jaroszewicz, Jakub; Święszkowski, Wojciech

    2016-08-01

    In vitro degradation behavior of squeeze cast (CAST) and equal channel angular pressed (ECAP) ZM21 magnesium alloy (2.0wt% Zn-0.98wt% Mn) was studied using immersion tests up to 4w in three different biological environments. Hanks' Balanced Salt Solution (Hanks), Earle's Balanced Salt Solution (Earle) and Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM+10% FBS) were used to investigate the effect of carbonate buffer system, organic compounds and material processing on the degradation behavior of the ZM21 alloy samples. Corrosion rate of the samples was evaluated by their Mg(2+) ion release, weight loss and volume loss. In the first 24h, the corrosion rate sequence of the CAST samples was as following: Hanks>E-MEM+10% FBS>Earle. However, in longer immersion periods, the corrosion rate sequence was Earle>E-MEM+10% FBS≥Hanks. Strong buffering effect provided by carbonate buffer system helped to maintain the pH avoiding drastic increase of the corrosion rate of ZM21 in the initial stage of immersion. Organic compounds also contributed to maintain the pH of the fluid. Moreover, they adsorbed on the sample surface and formed an additional barrier on the insoluble salt layer, which was effective to retard the corrosion of CAST samples. In case of ECAP, however, this effect was overcome by the occurrence of strong localized corrosion due to the lower pH of the medium. Corrosion of ECAP samples was much greater than that of CAST, especially in Hanks, due to higher sensitivity of ECAP to localized corrosion and the presence of Cl(-). The present work demonstrates the importance of using an appropriate solution for a reliable estimation of the degradation rate of Mg-base degradable implants in biological environments, and concludes that the most appropriate solution for this purpose is E-MEM+10% FBS, which has the closest chemical composition to human blood plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study.

    PubMed

    Jayaraj, D; Ganesan, S

    2015-01-01

    The diagnostic utility of saliva is currently being explored in various branches of dentistry, remarkably in the field of caries research. This study was aimed to determine if assessment of salivary pH and buffering capacity would serve as reliable tools in risk prediction of early childhood caries (ECC). Paraffin-stimulated salivary samples were collected from 50 children with ECC (group I) and 50 caries free children (group II). Salivary pH and buffering capacity (by titration with 0.1 N hydrochloric acid) were assessed using a handheld digital pH meter in both groups. The data obtained were subjected to statistical analysis. Statistically, no significant difference was observed between both the groups for all salivary parameters assessed, except for the buffering capacity level at 150 μl titration of 0.1 N hydrochloric acid (p = 0.73; significant at 1% level). Salivary pH and buffering capacity may not serve as reliable markers for risk prediction of ECC. How to cite this article: Jayaraj D, Ganesan S. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study. Int J Clin Pediatr Dent 2015;8(3):167-171.

  7. Evaluation of sonication treatment and buffer composition on rumen bacteria protein extraction and carboxymethylcellulase activity.

    PubMed

    Prauchner, Carlos A; Kozloski, Gilberto V; Farenzena, Roberta

    2013-05-01

    The methodological procedures for studying the fibrolytic activity of rumen bacteria are not clearly established. In this study the efficiency of sonication treatment and buffer composition (i.e. buffer varying in tonicity or pH) on the level of protein extraction from the residue of forage samples incubated in the rumen of a grazing steer and the effect of buffer composition or CaCl₂ concentration on the carboxymethylcellulase (CMCase) activity of the released protein were evaluated. The amount of protein released from the residue of incubation was higher (P < 0.05) for the sonicated material and increased linearly with increasing buffer pH (P < 0.05). The CMCase activity of the released protein was not improved by sonication treatment, whereas it was higher (P < 0.05) for hypotonic than for hypertonic buffer. Both linear and quadratic effects (P < 0.05) of buffer pH on CMCase activity were significant, with CMCase activity being maximal at pH 5.4-6.1. CMCase activity was higher (P < 0.05) at a CaCl₂ concentration of 1 mmol L(-1) compared with lower values. Although sonication treatment increases the amount of protein extracted from rumen bacteria adhered to the residue of incubation, the CMCase activity of the released protein might be measured without sonication treatment and should be carried out with a hypotonic buffer solution that includes a calcium source. When pH is not a treatment factor, the buffer pH should be between 5.5 and 6. © 2012 Society of Chemical Industry.

  8. Effects of pH and Carbon Source on Synechococcus PCC 7002 Cultivation: Biomass and Carbohydrate Production with Different Strategies for pH Control.

    PubMed

    De Farias Silva, Carlos Eduardo; Sforza, Eleonora; Bertucco, Alberto

    2017-02-01

    Synechococcus PCC 7002 is an interesting species in view of industrial production of carbohydrates. The cultivation performances of this species are strongly affected by the pH of the medium, which also influences the carbohydrate accumulation. In this work, different methods of pH control were analyzed, in order to obtain a higher production of both Synechococcus biomass and carbohydrates. To better understand the influence of pH on growth and carbohydrate productivity, manual and automatic pH regulation in CO 2 and bicarbonate system were applied. The pH value of 8.5 resulted the best to achieve both of these goals. From an industrial point of view, an alternative way to maintain the pH practically constant during the entire period of cultivation is the exploitation of the bicarbonate-CO 2 buffer system, with the double aim to maintain the pH in the viability range and also to provide the amount of carbon required by growth. In this condition, a high concentration of biomass (6 g L -1 ) and carbohydrate content (around 60 %) were obtained, which are promising in view of a potential use for bioethanol production. The chemical equilibrium of C-N-P species was also evaluated by applying the ionic balance equations, and a relation between the sodium bicarbonate added in the medium and the equilibrium value of pH was discussed.

  9. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values.

    PubMed

    Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien

    2015-01-01

    Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.

  10. Decomposition reactions of (hydroxyalkyl) nitrosoureas and related compounds: possible relationship to carcinogenicity.

    PubMed

    Singer, S S

    1985-08-01

    (Hydroxyalkyl)nitrosoureas and the related cyclic carbamates N-nitrosooxazolidones are potent carcinogens. The decompositions of four such compounds, 1-nitroso-1-(2-hydroxyethyl)urea (I), 3-nitrosooxazolid-2-one (II), 1-nitroso-1-(2-hydroxypropyl)urea (III), and 5-methyl-3-nitrosooxazolid-2-one (IV), in aqueous buffers at physiological pH were studied to determine if any obvious differences in decomposition pathways could account for the variety of tumors obtained from these four compounds. The products predicted by the literature mechanisms for nitrosourea and nitrosooxazolidone decompositions (which were derived from experiments at pH 10-12) were indeed the products formed, including glycols, active carbonyl compounds, epoxides, and, from the oxazolidones, cyclic carbonates. Furthermore, it was shown that in pH 6.4-7.4 buffer epoxides were stable reaction products. However, in the presence of hepatocytes, most of the epoxide was converted to glycol. The analytical methods developed were then applied to the analysis of the decomposition products of some related dialkylnitrosoureas, and similar results were obtained. The formation of chemically reactive secondary products and the possible relevance of these results to carcinogenesis studies are discussed.

  11. Evaluation of buffers toxicity in tobacco cells: Homopiperazine-1,4-bis (2-ethanesulfonic acid) is a suitable buffer for plant cells studies at low pH.

    PubMed

    Borgo, Lucélia

    2017-06-01

    Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis.

    PubMed

    Twahir, Umar T; Ozarowski, Andrew; Angerhofer, Alexander

    2016-11-29

    This contribution describes electron paramagnetic resonance (EPR) experiments on Mn(III) in oxalate decarboxylase of Bacillus subtilis, an interesting enzyme that catalyzes the redox-neutral dissociation of oxalate into formate and carbon dioxide. Chemical redox cycling provides strong evidence that both Mn centers can be oxidized, although the N-terminal Mn(II) appears to have the lower reduction potential and is most likely the carrier of the +3 oxidation state under moderate oxidative conditions, in agreement with the general view that it represents the active site. Significantly, Mn(III) was observed in untreated OxDC in succinate and acetate buffers, while it could not be directly observed in citrate buffer. Quantitative analysis showed that up to 16% of the EPR-visible Mn is in the +3 oxidation state at low pH in the presence of succinate buffer. The fine structure and hyperfine structure parameters of Mn(III) are affected by small carboxylate ligands that can enter the active site and have been recorded for formate, acetate, and succinate. The results from a previous report [Zhu, W., et al. (2016) Biochemistry 55, 429-434] could therefore be reinterpreted as evidence of formate-bound Mn(III) after the enzyme is allowed to turn over oxalate. The pH dependence of the Mn(III) EPR signal compares very well with that of enzymatic activity, providing strong evidence that the catalytic reaction of oxalate decarboxylase is driven by Mn(III), which is generated in the presence of dioxygen.

  13. 21 CFR 114.90 - Methodology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... buffer. First standardize the electrodes using a pH 4.0 buffer at or near 25 °C. Standardization control..., the optimum being 25 °C. Any temperature determinations made without meter compensation may affect pH... approximately ±0.01 pH unit and a reproducibility of ±0.005 pH units. (4) General procedure for determining pH...

  14. 21 CFR 114.90 - Methodology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... buffer. First standardize the electrodes using a pH 4.0 buffer at or near 25 °C. Standardization control..., the optimum being 25 °C. Any temperature determinations made without meter compensation may affect pH... approximately ±0.01 pH unit and a reproducibility of ±0.005 pH units. (4) General procedure for determining pH...

  15. The Bohr Effect Is Not a Likely Promoter of Renal Preglomerular Oxygen Shunting

    PubMed Central

    Olgac, Ufuk; Kurtcuoglu, Vartan

    2016-01-01

    The aim of this study was to evaluate whether possible preglomerular arterial-to-venous oxygen shunting is affected by the interaction between renal preglomerular carbon dioxide and oxygen transport. We hypothesized that a reverse (venous-to-arterial) shunting of carbon dioxide will increase partial pressure of carbon dioxide and decrease pH in the arteries and thereby lead to increased oxygen offloading and consequent oxygen shunting. To test this hypothesis, we employed a segment-wise three-dimensional computational model of coupled renal oxygen and carbon dioxide transport, wherein coupling is achieved by shifting the oxygen-hemoglobin dissociation curve in dependence of local changes in partial pressure of carbon dioxide and pH. The model suggests that primarily due to the high buffering capacity of blood, there is only marginally increased acidity in the preglomerular vasculature compared to systemic arterial blood caused by carbon dioxide shunting. Furthermore, effects of carbon dioxide transport do not promote but rather impair preglomerular oxygen shunting, as the increase in acidity is higher in the veins compared to that in the arteries. We conclude that while substantial arterial-to-venous oxygen shunting might take place in the postglomerular vasculature, the net amount of oxygen shunted at the preglomerular vasculature appears to be marginal. PMID:27833564

  16. The potential effects of pH and buffering capacity on dental erosion.

    PubMed

    Owens, Barry M

    2007-01-01

    Soft drink pH (initial pH) has been shown to be a causative factor--but not necessarily the primary initiating factor--of dental erosion. The titratable acidity or buffering capacity has been acknowledged as playing a significant role in the etiology of these lesions. This in vitro study sought to evaluate five different soft drinks (Coca-Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappucino coffee drink) and tap water (control) in terms of initial pH and buffering capacity. Initial pH was measured in triplicate for the six beverages. The buffering capacity of each beverage was assessed by measuring the weight (in grams) of 0.10 M sodium hydroxide necessary for titration to pH levels of 5.0, 6.0, 7.0, and 8.3. Coca-Cola Classic produced the lowest mean pH, while Starbucks Frappucino produced the highest pH of any of the drinks except for tap water. Based on statistical analysis using ANOVA and Fisher's post hoc tests at a P < 0.05 level of significance, Red Bull had the highest mean buffering capacity (indicating the strongest potential for erosion of enamel), followed by Gatorade, Coca-Cola Classic, Diet Coke, and Starbucks Frappucino.

  17. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  19. Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.

    PubMed Central

    Liu, S Y; Kono, M; Ebrey, T G

    1991-01-01

    The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939

  20. On-line pH modification of carbonate eluents using an electrolytic potassium hydroxide generator for ion chromatography.

    PubMed

    Novic, Milko; Liu, Yan; Avdalovic, Nebojsa; Pihlar, Boris

    2002-05-31

    Classical gradient elution, based on the application of a gradient pump used for mixing two or more prepared eluent components in pre-determined concentrations, was replaced by a chromatography system equipped with an isocratic pump and an electrolytic KOH generator. The isocratic pump delivered a constant concentration eluent composed of pure hydrogencarbonate solution. Carbonate ions, the main component of carbonate/hydrogencarbonate-based eluents, were formed by titration of hydrogencarbonate with KOH formed on-line in the electrolytic KOH generator. By changing the concentration of electrolytically-generated KOH, the eluent composition could be changed from pure hydrogencarbonate to a carbonate/hydrogencarbonate buffer, and finally to a carbonate/hydroxide-based eluent. The described system was tested to achieve pH-based changes of retention behavior of phosphate under constant inflow eluent composition conditions.

  1. Fluorophotometric measurement of the buffering action of human tears in vivo.

    PubMed

    Yamada, M; Kawai, M; Mochizuki, H; Hata, Y; Mashima, Y

    1998-10-01

    The buffering action of human tears is thought to be important to keep its pH constant. We measured the change in pH in the precorneal tear film in vivo when the acidic solution is challenged, using a fluorophotometric technique. Twelve eyes from 6 healthy subjects were entered in this study. Each subject was pretreated with either one drop of 0.4% oxybuprocaine for once (light anesthesia), three times (deep anesthesia), or none (controls). The measurement was initiated by instilling 20 microl of 0.067 M phosphate buffer at pH 5.5 containing 2 mM bis-carboxyethyl-carboxyfluorescein free acid, a pH sensitive dye, into the subject's eye. The pH was determined by the ratio of fluorescent intensities at two excitation wavelengths (490 and 430 nm). pH recovery time (PHRT) as defined by the time required for pH to reach 95% of pH at equilibrium was used for the marker of tear buffering action. Tear turnover rate was also determined using the fluorescent decay curve at 430 nm, which was independent of pH, but dependent on dye concentration. Immediately after the instillation, the pH value in the tear film was around 6.0-6.5 in all cases. The tear film rapidly became more alkaline, reaching its normal value in 2.3 +/- 0.5 min in untreated eyes. The pretreatment with 0.4% oxybuprocaine retarded the neutralization process. A single regression analysis revealed that the PHRT had a significant negative correlation with the tear turnover rate (r = -0.78). Our results suggest that the neutralization process of tears largely depends on the tear turnover rate. The buffering action of tears in vivo consists of the tear turnover as well as its chemical buffering capacity.

  2. Intracellular pH in mammalian stages of Trypanosoma cruzi is K+-dependent and regulated by H+-ATPases.

    PubMed

    Van Der Heyden, N; Docampo, R

    2000-02-05

    Regulation of intracellular pH (pHi) was investigated in Trypanosoma cruzi amastigotes and trypomastigotes using 2',7'-bis-(carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF). pHi was determined to be 7.33 +/- 0.08 and 7.35 +/- 0.07 in amastigotes and trypomastigotes, respectively, and there were no significant differences in the regulation of pH, between the two stages. Steady-state pHi, recovery of pHi from acidification, and H+-efflux were all decreased markedly by the H+-ATPase inhibitors N,N'-dicyclohexylcarbodi-imide (DCCD), diethylstilbestrol (DES) and N-ethylmaleimide (NEM) supporting a significant role for a plasma membrane H+-ATPase in the regulation of pHi. pHi was maintained at neutrality over a range of external pH (pHe) from 5-8 in parasites suspended in a buffer containing Na+ and K+ (standard buffer) but was acidified at low pHe in the absence of these cations (choline buffer). The pHi of trypomastigotes decreased significantly when they transformed into amastigotes. The rate of recovery of pHi by acidified parasites was similar in Na+-free buffer and standard buffer but was slower in the absence of K+ (K+-free or choline buffer) and parasites suspended in choline buffer were acidic by 0.25 pH units as compared with controls. Ba2+ and Cs+ decreased the pHi of parasites suspended in standard but not choline buffer suggesting the presence of an inward directed K+ channel. The pHi of amastigotes and trypomastigotes suspended in Cl(-)-free buffer was decreased by 0.13 and 0.2 pH units, respectively, supporting the presence of a chloride conductive channel. No evidence of pH regulation via a Na+/H+ or Cl-/HCO3- exchanger was found. These results are consistent with the presence of a plasma membrane H+-ATPase that regulates pHi and is supported by K+ and Cl- channels.

  3. Final report of the key comparison APMP.QM-K91: APMP comparison on pH measurement of phthalate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Ketrin, Rosi; Nuryatini; Thanh, Ngo Huy; Truong Chinh, Nguyen; Vospelova, Alena; Bastkowski, Frank; Sander, Beatrice; Matzke, Jessica; Prokunin, Sergey; Frolov, Dmitry; Aprelev, Alexey; Dobrovolskiy, Vladimir; Uysal, Emrah; Liv, Lokman; Velina Lara-Manzano, Judith; Montero-Ruiz, Jazmin; Ortiz-Aparicio, JosÉ Luis; Ticona Canaza, Galia; Anuar Mohd Amin, Khirul; Abd Kadir, Haslina; Bakovets, Nickolay; Wong, Siu-Kay; Lam, Wai-Hing

    2017-01-01

    The APMP.QM-K91 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phthalate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan at the APMP-TCQM meeting held September 22-23, 2014. After approval by TCQM, the comparison has been conducted by NMIJ. The comparison is a key comparison following CCQM-K91. The comparison material was a phthalate buffer of pH around 4.0 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the third APMP key comparison on pH measurement and the fifth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006, APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011 and APMP.QM-K19/APMP.QM-P25 (a borate buffer) in 2013-2014. The results can be used further by any participant to support its CMC claim at least for a phthalate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode.

    PubMed

    Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai

    2011-09-15

    A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ocean acidification may increase calcification rates, but at a cost

    PubMed Central

    Wood, Hannah L; Spicer, John I; Widdicombe, Stephen

    2008-01-01

    Ocean acidification is the lowering of pH in the oceans as a result of increasing uptake of atmospheric carbon dioxide. Carbon dioxide is entering the oceans at a greater rate than ever before, reducing the ocean's natural buffering capacity and lowering pH. Previous work on the biological consequences of ocean acidification has suggested that calcification and metabolic processes are compromised in acidified seawater. By contrast, here we show, using the ophiuroid brittlestar Amphiura filiformis as a model calcifying organism, that some organisms can increase the rates of many of their biological processes (in this case, metabolism and the ability to calcify to compensate for increased seawater acidity). However, this upregulation of metabolism and calcification, potentially ameliorating some of the effects of increased acidity comes at a substantial cost (muscle wastage) and is therefore unlikely to be sustainable in the long term. PMID:18460426

  6. Sensitivity of Ocean Chemistry and Oxygen Change to the Uncertainty in Climate Change

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, S.; Zheng, M.; Zhang, H.

    2014-12-01

    With increasing atmospheric CO2 and climate change, global ocean is undergoing substantial physical and biogeochemical changes. In particular, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would affect the projection of ocean oxygen and carbonate chemistry. To examine the effect of climate change on ocean oxygen and carbonate chemistry, we used an Earth system model of intermediate complexity to perform simulations that are driven by atmospheric CO2 concentration pathway of RCP 8.5 with climate sensitivity varying from 0.0°C to 4.5 °C. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. Our simulations show that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude, to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.

  7. Improved pH buffering agent for sodium hypochlorite

    NASA Technical Reports Server (NTRS)

    Nash, J. R.; Veeder, L. N.

    1969-01-01

    Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.

  8. Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change

    NASA Astrophysics Data System (ADS)

    Jury, C. P.; Thomas, F. I.; Atkinson, M. J.; Jokiel, P. L.; Onuma, M. A.; Kaku, N.; Toonen, R. J.

    2013-12-01

    Ocean acidification (OA) results in reduced seawater pH and aragonite saturation state (Ωarag), but also reduced seawater buffer capacity. As buffer capacity decreases, diel variation in seawater chemistry increases. However, a variety of ecosystem feedbacks can modulate changes in both average seawater chemistry and diel seawater chemistry variation. Here we model these effects for a coastal, reef flat ecosystem. We show that an increase in offshore pCO2 and temperature (to 900 μatm and +3°C) can increase diel pH variation by as much as a factor of 2.5 and can increase diel pCO2 variation by a factor of 4.6, depending on ecosystem feedbacks and seawater residence time. Importantly, these effects are different between day and night. With increasing seawater residence time and increasing feedback intensity, daytime seawater chemistry becomes more similar to present-day conditions while nighttime seawater chemistry becomes less similar to present-day conditions. Better constraining ecosystem feedbacks under global change will improve projections of coastal water chemistry, but this study shows the importance of considering changes in both average carbonate chemistry and diel chemistry variation for organisms and ecosystems. Further, we will discuss our recent work examining the effects of diel seawater chemistry variation on coral calcification rates.

  9. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes

    PubMed Central

    1983-01-01

    Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold increase in hydrogen ion concentration, free calcium must also be raised tenfold to elicit the calcium transient. PMID:6411737

  10. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  11. The influence of graded degrees of chronic hypercapnia on the acute carbon dioxide titration curve

    PubMed Central

    Goldstein, Marc B.; Gennari, F. John; Schwartz, William B.

    1971-01-01

    Studies were carried out to determine the influence of the chronic level of arterial carbon dioxide tension upon the buffering response to acute changes in arterial carbon dioxide tension. After chronic adaptation to six levels of arterial CO2 tension, ranging between 35 and 110 mm Hg, unanesthetized dogs underwent acute whole body CO2 titrations. In each instance a linear relationship was observed between the plasma hydrogen ion concentration and the arterial carbon dioxide tension. Because of this linear relationship, it has been convenient to compare the acute buffering responses among dogs in terms of the slope, dH+/dPaco2. With increasing chronic hypercapnia there was a decrease in this slope, i.e. an improvement in buffer capacity, which is expressed by the equation dH+/dPaco2=-0.005 (Paco2)chronic + 0.95. In effect, the ability to defend pH during acute titration virtually doubled as chronic Paco2 increased from 35 to 110 mm Hg. The change in slope, dH+/dPaco2, was the consequence of the following two factors: the rise in plasma bicarbonate concentration which occurs with chronic hypercapnia of increasing severity, and the greater change in bicarbonate concentration which occurred during the acute CO2 titration in the animals with more severe chronic hypercapnia. These findings demonstrate the importance of the acid-base status before acute titration in determining the character of the carbon dioxide titration curve. They also suggest that a quantitative definition of the interplay between acute and chronic hypercapnia in man should assist in the rational analysis of acid-base disorders in chronic pulmonary insufficiency. PMID:5543876

  12. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  13. Noncontact tomography and a pH-sensitive nanocomposite for monitoring osseointegrated prosthesis interfaces

    NASA Astrophysics Data System (ADS)

    Gupta, Sumit; Loh, Kenneth J.

    2017-04-01

    The main objective of this research is to develop a noncontact and noninvasive method for monitoring infections at the interface of human tissue and osseointegrated prostheses. The technique used here is centered on the theory of a noncontact permittivity imaging technique known as electrical capacitance tomography (ECT). This work is divided into two main parts. First, an ECT electrical permittivity reconstruction software and hardware system was developed. Second, a carbon nanotube-polyaniline nanocomposite thin film was designed and fabricated such that its electrical permittivity is sensitive to pH stimuli. The dielectric properties of this thin film were characterized as it was exposed to different pH buffer solutions. It is envisioned that osseointegrated implants can be pre-coated with the pH-sensitive nanocomposite prior to implant. When infection occurs and alters the local pH of tissue at the human-prosthesis interface, the dielectric property of the film would change accordingly. Then, ECT can interrogate the cross-section of the human limb and reconstruct its permittivity distribution, revealing localized changes in permittivity due to infection. To validate this concept, a prosthesis phantom was coated with the nanocomposite pH sensor and then immersed in different pH buffer solutions. ECT was conducted, and the results showed that the magnitude and location of subsurface, localized, pH changes could be detected. In general, noncontact tomography coupled with stimuliresponsive thin films could pave way for new modalities of noninvasive human body imaging, in particular, for patients with osseointegrated implants and prostheses.

  14. The decomposition of peroxynitrite to nitroxyl anion (NO−) and singlet oxygen in aqueous solution

    PubMed Central

    Khan, Ahsan Ullah; Kovacic, Dianne; Kolbanovskiy, Alexander; Desai, Mehul; Frenkel, Krystyna; Geacintov, Nicholas E.

    2000-01-01

    The mechanism of decomposition of peroxynitrite (OONO−) in aqueous sodium phosphate buffer solution at neutral pH was investigated. The OONO− was synthesized by directly reacting nitric oxide with superoxide anion at pH 13. The hypothesis was explored that OONO−, after protonation at pH 7.0 to HOONO, decomposes into 1O2 and HNO according to a spin-conserved unimolecular mechanism. Small aliquots of the concentrated alkaline OONO− solution were added to a buffer solution (final pH 7.0–7.2), and the formation of 1O2 and NO− in high yields was observed. The 1O2 generated was trapped as the transannular peroxide (DPAO2) of 9,10-diphenylanthracene (DPA) dissolved in carbon tetrachloride. The nitroxyl anion (NO−) formed from HNO (pKa 4.5) was trapped as nitrosylhemoglobin (HbNO) in an aqueous methemoglobin (MetHb) solution. In the presence of 25 mM sodium bicarbonate, which is known to accelerate the rate of decomposition of OONO−, the amount of singlet oxygen trapped was reduced by a factor of ≈2 whereas the yield of trapping of NO− by methemoglobin remained unaffected. Because NO3− is known to be the ultimate decomposition product of OONO−, these results suggest that the nitrate anion is not formed by a direct isomerization of OONO−, but by an indirect route originating from NO−. PMID:10716721

  15. Long-term geochemical evolution of the near field repository: Insights from reactive transport modelling and experimental evidences

    NASA Astrophysics Data System (ADS)

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M.; Villar, María V.; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-01

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution-precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.

  16. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.

    PubMed

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M; Villar, María V; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-12

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution-precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.

  17. Removal of nitrogen compounds from landfill leachate using reverse osmosis with leachate stabilization in a buffer tank.

    PubMed

    Talalaj, Izabela Anna

    2015-01-01

    In this paper, a removal of nitrogen compounds from a landfill leachate during reverse osmosis (RO) was evaluated. The treatment facility consists of a buffer tank and a RO system. The removal rate of N─NH4, [Formula: see text] and [Formula: see text] in the buffer tank reached 14%, 91% and 41%, respectively. The relatively low concentration of organic carbon limits N─NH4 oxidation in the buffer tank. The removal rate for the total organic nitrogen (TON) was 47%. The removal rate in RO was 99% for [Formula: see text], 84.1% for [Formula: see text] and 41% for [Formula: see text]. The accumulation of [Formula: see text] may be the result of a low pH, which before the RO process is reduced to a value of 6.0-6.5. Besides it, the cause for a low removal rate of the [Formula: see text] in the buffer tank and during RO may be free ammonia, which can inhibit the [Formula: see text] oxidation. The removal rates of total inorganic nitrogen and TON in the RO treatment facility were similar being 99% and 98.5%, respectively.

  18. Modeling the carbon isotope composition of bivalve shells (Invited)

    NASA Astrophysics Data System (ADS)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., <10%) in shells from aquatic organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation relations dictate that shell carbonate should be preferentially enriched in C-13 by 3 to 5 per mill (from 30° to 0°C) compared to EPF at a pH of 7.5. Anomalous positive excursions are rarely, if ever, observed in shell carbonate and they have yet to be associated with growth cessation markers in bivalves. The most likely explanation for the lack of anomalous positive values is that the percentage of metabolic carbon increases in EPF when bivalves experience stressful condition. This influx of metabolic carbon is balanced to a measureable extent by the enhanced fractionation of carbon isotopes during shell deposition from EPF at relatively low pH. These two processes may be combined in a quantitative model to extract a historical record of metabolic activity from the carbon isotope profiles of bivalve shells.

  19. [Relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetes patients].

    PubMed

    Elkafri, I H; Mashlah, A; Shaqifa, A

    2014-03-13

    This study was evaluated the relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetic patients. The sample comprised 210 participants (age ranged 40-60 years). Based on fasting blood glucose levels the participants were divided into 3 groups: controls with normal blood glucose levels; diabetic patients with levels ≤ 200 mg/dL; and diabetic patients with levels > 200 mg/dL. Salivary pH and buffering capacity were determined in a sample of resting (non-stimulated) saliva taken from each participant. Salivary pH levels in diabetic patients with blood glucose levels > 200 mg/dL were lower than in the controls and diabetic patients with levels ≤ 200 mg/dL. Salivary pH levels were comparable in controls and diabetic patients with blood glucose levels ≤ 200 mg/dL. Salivary buffering capacity in the 3 groups was comparable.

  20. Bicarbonate availability for vocal fold epithelial defense to acidic challenge.

    PubMed

    Durkes, Abigail; Sivasankar, M Preeti

    2014-01-01

    Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Ion transport was measured in viable porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, 32 vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. The vocal fold transepithelial resistance was greater than 300 Ω*cm(2), suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes.

  1. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer

    PubMed Central

    1976-01-01

    We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619

  2. Physicochemical factors affecting ethanol adsorption by activated carbon.

    PubMed

    Bradley, K J; Hamdy, M K; Toledo, R T

    1987-03-01

    Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.

  3. Rapid and sensitive analytical method for monitoring of 12 organotin compounds in natural waters.

    PubMed

    Vahčič, Mitja; Milačič, Radmila; Sčančar, Janez

    2011-03-01

    A rapid analytical method for the simultaneous determination of 12 different organotin compounds (OTC): methyl-, butyl-, phenyl- and octyl-tins in natural water samples was developed. It comprises of in situ derivatisation (by using NaBEt4) of OTC in salty or fresh water sample matrix adjusted to pH 6 with Tris-citrate buffer, extraction of ethylated OTC into hexane, separation of OTC in organic phase on 15 m GC column and subsequent quantitative determination of separated OTC by ICP-MS. To optimise the pH of ethylation, phosphate, carbonate and Tris-citrate buffer were investigated alternatively to commonly applied sodium acetate - acetic acid buffer. The ethylation yields in Tris-citrate buffer were found to be better for TBT, MOcT and DOcT in comparison to commonly used acetate buffer. Iso-octane and hexane were examined as organic phase for extraction of ethylated OTC. The advantage of hexane was in its ability for quantitative determination of TMeT. GC column of 15 m in length was used for separation of studied OTC under the optimised separation conditions and its performances compared to 30 m column. The analytical method developed enables sensitive simultaneous determination of 12 different OTC and appreciably shortened analysis time in larger series of water samples. LOD's obtained for the newly developed method ranged from 0.05-0.06 ng Sn L-1 for methyl-, 0.11-0.45 ng Sn L-1 for butyl-, 0.11-0.16 ng Sn L-1 for phenyl-, and 0.07-0.10 ng Sn L-1 for octyl-tins. By applying the developed analytical method, marine water samples from the Northern Adriatic Sea containing mainly butyl- and methyl-tin species were analysed to confirm the proposed method's applicability.

  4. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Expanding pH screening space using multiple droplets with secondary buffers for protein crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan

    2017-04-01

    We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.

  6. Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements.

    PubMed

    Rérolle, Victoire M C; Floquet, Cedric F A; Harris, Andy J K; Mowlem, Matt C; Bellerby, Richard R G J; Achterberg, Eric P

    2013-07-05

    High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ship's underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used instead of the current USB mini spectrophotometer. Artefacts due to the polychromatic light source and inhomogeneity in the absorption cell are shown to have a negligible impact on the data quality. The next step in the miniaturization of the sensor will be the incorporation of a photodiode as detector to replace the spectrophotometer. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  8. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons.

    PubMed

    Gao, Shuang; Li, Guo-Dong; Liu, Yipu; Chen, Hui; Feng, Liang-Liang; Wang, Yun; Yang, Min; Wang, Dejun; Wang, Shan; Zou, Xiaoxin

    2015-02-14

    One of the main barriers blocking sustainable hydrogen production is the use of expensive platinum-based catalysts to produce hydrogen from water. Herein we report the cost-effective synthesis of catalytically active, nitrogen-doped, cobalt-encased carbon nanotubes using inexpensive starting materials-urea and cobalt chloride hexahydrate (CoCl2·6H2O). Moreover, we show that the as-obtained nanocarbon material exhibits a remarkable electrocatalytic activity toward the hydrogen evolution reaction (HER); and thus it can be deemed as a potential alternative to noble metal HER catalysts. In particular, the urea-derived carbon nanotubes synthesized at 900 °C (denoted as U-CNT-900) show a superior catalytic activity for HER with low overpotential and high current density in our study. Notably also, U-CNT-900 has the ability to operate stably at all pH values (pH 0-14), and even in buffered seawater (pH 7). The possible synergistic effects between carbon-coated cobalt nanoparticles and the nitrogen dopants can be proposed to account for the HER catalytic activity of U-CNT-900. Given the high natural abundance, ease of synthesis, and high catalytic activity and durability in seawater, this U-CNT-900 material is promising for hydrogen production from water in industrial applications.

  9. Polysaccharide That May Serve as a Carbon and Energy Storage Compound for Sporulation in Bacillus cereus

    PubMed Central

    Slock, J. A.; Stahly, D. P.

    1974-01-01

    An intracellular, glucose-containing polysaccharide accumulates in Bacillus cereus early in sporulation and is degraded at the time of spore maturation. This pattern of accumulation and degradation occurred when growth was limited by glucose or a component of yeast extract. These data suggest that the polysaccharide may be serving as a carbon and energy storage compound for sporulation. A somewhat similar pattern of accumulation and degradation of poly-β-hydroxybutyric acid (PHB) was shown earlier by Kominek and Halvorson (1965) to occur in Bacillus cereus. When cells were grown in a medium buffered strongly at pH 7.4, however, very little accumulation of PHB occurred. We have found that polysaccharide accumulates in cells grown in both the strong and weakly buffered media. Perhaps polysaccharide is the major carbon and energy storage compound when cells are grown under conditions preventing significant accumulation of PHB. The lack of polysaccharide accumulation during the exponential phase of growth may be an indication that the needed biosynthetic enzymes are controlled by catabolite repression during growth. The polysaccharide was purified and found to consist of glucose. The iodine absorption spectrum suggests a degree of branching between that of glycogen and amylopectin. PMID:4214355

  10. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    PubMed

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (<1%), whereas substantial (>10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Report of the key comparison APMP.QM-K19. APMP comparison on pH measurement of borate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Obromsook, Krairerk; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Wong, Siu-Kay; Lam, Wai-Hing; Zakaria, Osman; Anuar Mohd. Amin, Khirul; Thanh, Ngo Huy; Máriássy, Michal; Vyskocil, Leos; Hankova, Zuzana; Fisicaro, Paola; Stoica, Daniela; Singh, Nahar; Soni, Daya; Ticona Canaza, Galia; Kutovoy, Viatcheslav; Barbieri Gonzaga, Fabiano; Dias, Júlio Cesar; Vospelova, Alena; Bakovets, Nickolay; Zhanasbayeva, Bibinur

    2015-01-01

    The APMP.QM-K19 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a borate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan (NMIJ) and the National Institute of Metrology (Thailand) (NIMT) at the APMP-TCQM meeting held 26-27 November 2012. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K19 and CCQM-K19.1. The comparison material was a borate buffer of pH around 9.2 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the second APMP key comparison on pH measurement and the fourth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006 and APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck

    2011-01-01

    The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms.

    PubMed

    González-López, C V; Acién Fernández, F G; Fernández-Sevilla, J M; Sánchez Fernández, J F; Molina Grima, E

    2012-07-01

    A new methodology to use efficiently flue gases as CO(2) source in the production of photosynthetic microorganisms is proposed. The CO(2) is absorbed in an aqueous phase that is then regenerated by microalgae. Carbonated solutions could absorb up to 80% of the CO(2) from diluted gas reaching total inorganic carbon (TIC) concentrations up to 2.0 g/L. The pH of the solution was maintained at 8.0-10.0 by the bicarbonate/carbonate buffer, so it is compatible with biological regeneration. The absorption process was modeled and the kinetic parameters were determined. Anabaena sp. demonstrated to tolerate pH (8.0-10.0) and TIC (up to 2.0 g/L) conditions imposed by the absorption step. Experiments of regeneration of the liquid phase demonstrated the feasibility of the overall process, converting CO(2) into organic matter. The developed process avoids heating to regenerate the liquid whereas maximizing the efficiency of CO(2) use, which is relevant to achieve the commercial production of biofuels from microalgae. Copyright © 2012 Wiley Periodicals, Inc.

  14. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.

    PubMed

    Bae, Sungjun; Hanna, Khalil

    2015-09-01

    While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).

  16. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    PubMed

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  18. Polyamine binding to proteins in oat and Petunia protoplasts.

    PubMed

    Mizrahi, Y; Applewhite, P B; Galston, A W

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  19. Optimization of protein solution by a novel experimental design method using thermodynamic properties.

    PubMed

    Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon

    2012-09-01

    In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.

  20. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.

    PubMed

    Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas

    2012-10-15

    In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.

  1. Simultaneous quantitative determination of fluorine and sodium monofluorophosphate in oral hygiene products.

    PubMed

    Wang, L H

    2001-01-01

    An ion chromatographic method for simultaneous quantitative determination of fluorine and sodium monofluorophosphate in oral hygiene products is described. The liquid chromatographic system consisted of an IC A1 polymethacrylate-based anion exchanger and carbonate buffer (pH 9.85) as the mobile phase with a conductive detector. Various excipient ions were investigated with respect to their interference with the determination of fluoride. Comparison with results obtained from a fluoride-ion electrode technique show good agreement.

  2. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  3. Effects of pH buffering agents on the anaerobic hydrolysis acidification stage of kitchen waste.

    PubMed

    Wang, Yaya; Zang, Bing; Gong, Xiaoyan; Liu, Yu; Li, Guoxue

    2017-10-01

    This study investigated effects of initial pH buffering agents on the lab-scale anaerobic hydrolysis acidification stage of kitchen waste (KW). Different cheap, available and suitable buffering agents (NaOH(s), NaOH(l), CaO(s)-NaOH, KOH(l)-NaOH, K 2 HPO 4 (s)-KOH, Na 2 CO 3 (s)-NaOH) were added under optimal adjusting mode (first two days: per 16h, after: one time per day) which was obtained in previous work. The effects of buffering agents were evaluated according to indexes of pH, VFAs, NH 4 + -N, TS, VS, VS/TS, TS and VS removal rate. The results showed treatment 5 with adding K 2 HPO 4 -KOH buffering agents had the most stable pH (6.7-7.0). Also treatment 5, 2, 4 and 6 provided stable pH ranging in 5-8. Among the treatments, treatment 6 with adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator was chosen as the optimal mode for highest VFAs content (44.05g/L) with high acetic acid and butyrate acid proportion (42.64%), TS and VS removal rate (44.84% and 58.67%, respectively), low VS/TS ratio (58.55), fewer adding dosage and low adjusting frequency. The VFAs content of treatment 6 at the end of hydrolysis acidification stage could be used for methanogenic phase of anaerobic two-phase digestion. Thus, treatment 6 (adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator) with highest VFAs content and TS and VS removal rate could be considered using in anaerobic hydrolysis acidification stage pH adjustment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  5. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    NASA Astrophysics Data System (ADS)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are <6 are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet environments and acid soils with wet environments. Furthermore acid soils often have lost much of their easily weatherable primary minerals and their soluble (plant nutrient) ions, and thus much of their ability to buffer against acidity introduced by biological respiration and its products. Acid soils are closer to thermodynamic equilibrium with their near-surface environment and are less vulnerable to change compared with soils that contain a substantial supply of weatherable minerals (young soils) or carbonate minerals (dry soils). The impact of changing seasonal and annual rainfall and evapotranspiration patterns associated with climate change depends on how current pedogenic thresholds manifest across the landscape. We expect that humid soils subjected to drying should undergo less change than arid or semi-arid soils subjected to wetter seasonal conditions. Land-use changes can drive differential responses depending on changing chemistry and porosity. Collectively these factors provide the framework from which to predict and map soil sensivity to global change and climate change in particular.

  6. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    PubMed

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  7. The formation of stable pH gradients with weak monovalent buffers for isoelectric focusing in free solution

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan

    1985-01-01

    Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.

  8. Free Available Chlorine Disinfection Criteria for Fixed Army Installation Primary Drinking Water

    DTIC Science & Technology

    1981-12-01

    Buffered Water with Fuivic Acid (5 C.U.) at pH 9 and 60C ............................................ 6. FAC Disinfection of f 2 Coliphage in Buffered Water ...with and without 250 mg/L -Ca+ at pH 5, 7, and 9 and 6°C ............... 31 10. FAC Disinfection of f 2 Coliphage in Water Containing 5 NTU Bentonite2...rngi L Ca+ 2 at pH- 5, 7, and q and 60C ...... ........................ 34 13. FAC Disinfection of f 2 Coliphage in Borate-Buffered Water with 250 mg

  9. Studies on bicarbonate transporters and carbonic anhydrase in porcine non-pigmented ciliary epithelium

    PubMed Central

    Shahidullah, Mohammad; C-H, To; Pelis, Ryan M.; Delamere, Nicholas A

    2009-01-01

    Purpose Bicarbonate transport plays a role in aqueous humor (AH) secretion. Here, we examined bicarbonate transport mechanisms and carbonic anhydrase (CA) in porcine non-pigmented ciliary epithelium (NPE). Methods Cytoplasmic pH (pHi) was measured in cultured porcine NPE loaded with BCECF. Anion exchanger (AE), sodium bicarbonate cotransporter (NBC) and CA were examined by RT-PCR and immunolocalization. AH secretion was measured in the intact porcine eye using a fluorescein dilution technique. Results Anion exchanger AE2, CAII and CAIV were abundant in the NPE layer. In cultured NPE superfused with a CO2/HCO3− free HEPES buffer, exposure to a CO2/HCO3−-containing buffer caused a rapid acidification followed by a gradual pHi increase. Subsequent removal of CO2/HCO3− with HEPES buffer caused rapid alkalinization followed by gradual pHi decrease. The rate of gradual alkalinization after addition of HCO3−/CO2 was inhibited by sodium-free conditions, DIDS, CA inhibitors acetazolamide and methazolamide but not by Na-H exchange inhibitor dimethylamiloride or low chloride buffer. The phase of gradual acidification after removal of HCO3−/CO2 was inhibited by DIDS, acetazolamide, methazolamide and by low chloride buffer. DIDS reduced baseline pHi. In the intact eye, DIDS and acetazolamide reduced AH secretion by 25% and 44% respectively. Conclusion The results suggest the NPE uses a Na+-HCO3− cotransporter to import bicarbonate and a Cl−/HCO3− exchanger to export bicarbonate. CA influences the rate of bicarbonate transport. AE2, CAII and CAIV are enriched in the NPE layer of the ciliary body and their coordinated function may contribute to AH secretion by effecting bicarbonate transport into the eye. PMID:19011010

  10. On the pH of Aqueous Attoliter-Volume Droplets

    NASA Astrophysics Data System (ADS)

    Ramos, Kieran P.; Velpula, Samson S.; Demille, Trevor B.; Pajela, Ryan; Goldner, Lori S.

    Droplets of water dispersed in perfluorinated liquids have widespread use including microfluidics, drug delivery and single-molecule measurements. Perfluorinated liquids are distinctly biocompatible due to their stability, low surface tension, lipophobicity, and hydrophobicity. For this reason, the effect of the perfluorinated surface on droplet contents is usually ignored. However, as the droplet diameter is reduced, we expect that any effect of the water/oil interface on droplet contents will become more obvious. We studied the pH of attoliter-volume aqueous droplets in perfluorinated liquids using pH-sensing fluorescent dyes. Droplets were prepared either by sonication or extrusion from buffer and perfluorinated liquids (FC40 or FC77). A non-ionic surfactant was used to stabilize the droplets. Buffer strength, ionic strength, and pH of the aqueous phase were varied and resulting droplet pH compared to the pH of the buffer from which they were formed. Preliminary data are consistent with a pH in droplets that depends on the concentration of non-ionic surfactant. At low surfactant concentrations, the pH in droplets is distinctly lower than the stock buffer. However, as the concentration of non-ionic surfactant is increased the change in pH decreases. This work was funded by NSF/DBI-1152386.

  11. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed Central

    Imon, M A; White, J F

    1981-01-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption. PMID:7310697

  12. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed

    Imon, M A; White, J F

    1981-05-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption.

  13. Drivers of Water Column Calcium Carbonate Fluxes and Dissolution in the Gulf of Maine: Impacts on the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Pilskaln, C. H.; Wang, A. Z.; Lawson, G. L.; Hayashi, K.; Salisbury, J.

    2016-02-01

    Recent studies indicate that the U.S. Northeast coastal region, particularly the Gulf of Maine (GoME), may be more susceptible to ocean acidification (OA) than previously thought due to the low buffer capacity, low pH, and low calcium carbonate saturation measured in the region. In particular, sub-surface waters of the GoME already experience under-saturation with respect to aragonite in spring and summer and recent data suggest that water-column aragonite dissolution may occur throughout the year, even when aragonite is slightly over-saturated. This dissolution process appears associated with organic carbon remineralization in the extensive benthic nepheloid layers and may thus represent a major control over the calcium carbonate (CaCO3) budget of deep, near-bottom waters of the GoME. These findings are surprising for shallow, non-upwelling shelf systems and have important implications for the CaCO3 cycle, shell-building organisms, and the GoME planktonic ecosystem. Additionally, freshening of the GoME over the past several decades due to an increase in low-salinity water input originating in the Labrador Sea may further decrease seawater pH and aragonite saturation in the gulf. We present a variety of biogeochemical data that suggest linkages between potential water column CaCO3 dissolution and their impacts on the GoME carbon cycle.

  14. Century-long acidification reveals possible consequences of coral reef sediment dissolution

    NASA Astrophysics Data System (ADS)

    Fink, A.; Hassenrueck, C.; Guilini, K.; Lichtschlag, A.; Borisov, S.; Fabricius, K.; de Beer, D.

    2016-02-01

    Coarse permeable carbonate sediments play a key role as biocatalytical filters in element cycling on coral reefs, but are subjected to increased dissolution due to ocean acidification (OA). We investigated coral reef sediment properties and remineralization rates along a pH gradient in an area of volcanic CO2 seeping within a fringing coral reef (Papua New Guinea). In coarse carbonate-rich sediments of the reference site (water column pHT = 8.1) in-situ microprofiles showed a buffered porewater pH of 7.7 to 7.9. In contrast, sites with diffuse CO2 seeping (water column pHT 8.0 to 7.7) experienced porewater pH of less than 6 to 7. At the seep sites, the sediments were almost free of carbonates and were dominated by silicates. We found that this resulted in reduced grain sizes leading to decreased permeability and oxygen penetration into the sediment. Areal oxygen consumption and sulfate reduction rates declined at the seep sites. The pattern in oxygen consumption could be explained by oxygen limitation due to lower permeability. However, sulfate reduction was never limited by electron acceptor, indicating that the seep site sediments were limited in electron donors. In line with lower process rates, abundances of microorganisms and meiofauna declined at the seep sites. Our findings suggest that an enhanced dissolution of carbonate sediments due to OA could impact their biocatalytical filtration function. This could slow down the intense element cycling in coral reefs and other coastal carbonate environments, with consequences for ecosystem productivity and functioning.

  15. Studies on the electrochemical behavior of thiazolidine and its applications using a flow-through chronoamperometric sensor based on a gold electrode.

    PubMed

    Wang, Lai-Hao; Li, Wen-Jie

    2011-09-06

    The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.

  16. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...

  17. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...

  18. Simple electro-assisted immobilization of ciprofloxacin on carbon nanotube modified electrodes: its selective hydrogen peroxide electrocatalysis.

    PubMed

    Sornambikai, Sundaram; Kumar, Annamalai Senthil

    2014-09-01

    Ciprofloxacin (Cf) is a synthetic fourth generation fluoroquinolone class antibiotic used for the treatment of gram-positive, gram-negative and mycobacterium species infections. Electrochemical characteristic of the Cf antibiotic on carbon nanotube modified glassy carbon electrode (GCE/CNT) in pH 7 phosphate buffer solution has been investigated. Electrochemically oxidized radical byproduct of the Cf drug, which is formed as intermediate, gets immobilized on the GCE/CNT (GCE/Cf@CNT) and showed stable and well defined surface confined redox peak at -0.220 V versus Ag/AgCl. Control electrochemical experiment with unmodified GCE failed to show any such immobilization and redox features. Physicochemical characterizations of the Cf@CNT by transmission electron microscope, scanning electron microscope, infrared spectroscopy, UV-Vis and gas chromatography coupled mass spectroscopic analyses of Cf@CNT collectively revealed presence of native form of the Cf antibiotic molecule onto the CNT. The interaction between the Cf molecule and the CNT tubes are revealed from the decreased intensity in the Raman spectrum. The GCE/Cf@CNT showed excellent electrocatalytic response to hydrogen peroxide reduction reaction in pH 7 phosphate buffer solution. Amperometric i-t analysis for the detection of H2O2 showed a current linearity plot upto [H2O2] = 200 μM at an applied potential - 0.1 V versus Ag/AgCl with a current sensitivity value 678 μA mM(-1) cm(-2). No interferences were noticed with ascorbic acid, uric acid, cysteine and nitrite. The present study can be highly helpful to understand the interaction between the Cf and H2O2 in physiological systems and for the removal of Cf from the antibiotic polluted water samples especially in the aquaculture and agricultural systems.

  19. Bicarbonate Availability for Vocal Fold Epithelial Defense to Acidic Challenge

    PubMed Central

    Durkes, Abigail; Sivasankar, M. Preeti

    2014-01-01

    Objectives Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Methods Ion transport was measured in viable, porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. Results The vocal fold transepithelial resistance was greater than 300 Ω*cm2, suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Conclusions Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes. PMID:24574427

  20. Regional postprandial differences in pH within the stomach and gastroesophageal junction.

    PubMed

    Simonian, Hrair P; Vo, Lien; Doma, Siva; Fisher, Robert S; Parkman, Henry P

    2005-12-01

    Our objective was to determine regional differences in intragastric pH after different types of meals. Ten normal subjects underwent 27-hr esophagogastric pH monitoring using a four-probe pH catheter. Meals were a spicy lunch, a high-fat dinner, and a typical bland breakfast. The fatty dinner had the highest postprandial buffering effect, elevating proximal and mid/distal gastric pH to 4.9 +/- 0.4 and 4.0 +/- 0.4, respectively, significantly (P < 0.05) higher compared to 4.2 +/- 0.3 and 3.0 +/- 0.4 for the spicy lunch and 3.0 +/- 0.3 and 2.5 +/- 0.8 for the breakfast. The buffering effect of the high-volume fatty meal to pH > 4 was also longer (150 min) compared to that of the spicy lunch (45 min) and the bland breakfast, which did not increase gastric pH to > 4 at any time. Proximal gastric acid pockets were seen between 15 and 90 min postprandially. These were located 3.4 +/- 0.8 cm below the proximal LES border, extending for a length of 2.3 +/- 0.8 cm, with a drop in mean pH from 4.7 +/- 0.4 to 1.5 +/- 0.9. Acid pockets were seen equally after the spicy lunch and fatty dinner but less frequently after the bland breakfast. We conclude that a high-volume fatty meal has the highest buffering effect on gastric pH compared to a spicy lunch or a bland breakfast. Buffering effects of meals are significantly higher in the proximal than in the mid/distal stomach. Despite the intragastric buffering effect of meals, focal areas of acidity were observed in the region of the cardia-gastroesophageal junction during the postprandial period.

  1. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water.

    PubMed

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Tatin, Arnaud

    2015-06-02

    Substitution of the four paraphenyl hydrogens of iron tetraphenylporphyrin by trimethylammonio groups provides a water-soluble molecule able to catalyze the electrochemical conversion of carbon dioxide into carbon monoxide. The reaction, performed in pH-neutral water, forms quasi-exclusively carbon monoxide with very little production of hydrogen, despite partial equilibration of CO2 with carbonic acid-a low pKa acid. This selective molecular catalyst is endowed with a good stability and a high turnover frequency. On this basis, prescribed composition of CO-H2 mixtures can be obtained by adjusting the pH of the solution, optionally adding an electroinactive buffer. The development of these strategies will be greatly facilitated by the fact that one operates in water. The same applies for the association of the cathode compartment with a proton-producing anode by means of a suitable separator.

  2. Salivary pH and buffering capacity in early and late human immunodeficiency virus infection.

    PubMed

    Hegde, Mithra N; Malhotra, Amit; Hegde, Nidarsh D

    2013-11-01

    Human immunodeficiency virus (HIV) causes severe immunosuppression due to progressive decrease in the CD4 T lymphocyte cells during the course of the disease and this affects all the body systems including glandular secretions. A number of lesions affecting the salivary glands have been noted in HIV infection. The objective of this study was to evaluate the salivary pH and the buffering capacity in HIV positive individuals and comparing it with the HIV negative healthy individuals. The study was carried out on 200 HIV positive subjects aged 20-40 years, divided into two groups on the basis of CD4 count and 100 HIV negative healthy individuals as control group. Both unstimulated and stimulated saliva were collected and the pH and buffering capacity ascertained using the saliva check kit. (GC Asia Dental Pvt. Ltd., Singapore, 508724). All the three groups were compared using the ANOVA and it was found there was highly significant decrease in pH and buffering capacity with increase in immunosuppression. The intergroup comparison was carried out using the Tukey honestly significant difference (HSD) and the Chi square test. Group 1; CD4 count <200 and Group 2, CD4 count >200 showed a significant decrease in unstimulated salivary flow, stimulated salivary flow, and pH in comparison to HIV negative individuals; however, change in buffering capacity in Group 2 was not significant. There is a decrease in pH and buffering capacity in HIV infected patients. This decrease may be one of the factors responsible for increased caries in HIV infected population.

  3. Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants.

    PubMed

    Yi, H; Wu, K; Hu, S; Cui, D

    2001-12-24

    In this paper, a new voltammetric method for the determination of phenol is described. In pH 8.00 phosphate buffer and in the presence of long-chain cationic surfactant-cetyltrimethylammonium bromide-phenol has a very sensitive oxidation peak at 0.47 V (vs. SCE) on the Nafion-modified glassy carbon electrode (GCE). The experimental parameters, such as supporting electrolyte and pH values, amounts of Nafion, varieties and concentration of surfactants, accumulation potential and time, as well as scan rate were optimized. The peak current is linear with the concentration of phenol in the range from 8x10(-9) to 1x10(-5) M, and the detection limit is 1x10(-9) M after being accumulated at -0.50 V (vs. SCE) for 3 min. Trace levels of phenol in water samples were determined by using this voltammetric method, the average recovery was calculated to be 99.56%.

  4. Towards understanding the effects of additives on the vermicomposting of sewage sludge.

    PubMed

    Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian

    2015-03-01

    This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.

  5. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    PubMed

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Determination of the pH of Standard Buffer Solution: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Harris, K. R.

    1985-01-01

    Describes an experiment which shows: (1) how measurements of the reaction electromotive force for the cell (Pt/glass/NaCl(aq,m),buffer/AgCl/Ag/Pt) can be utilized in determining the absolute pH of the buffer; and (2) the demonstration of the use of the Debye-Huckel model of an electrolyte solution in solving an important electrochemical problem.…

  7. Optimization of buffer injection for the effective bioremediation of chlorinated solvents in aquifers

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.

    2008-12-01

    Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range to aquifer heterogeneity and groundwater velocity. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aims to evaluate and improve enhanced bioremediation of chlorinated solvent source zones. In this context, numerical simulations are supporting the upscaling of the technique, including identifying the most appropriate buffer injection strategies for field applications

  8. Buffer capacity of the coelomic fluid in echinoderms.

    PubMed

    Collard, Marie; Laitat, Kim; Moulin, Laure; Catarino, Ana I; Grosjean, Philippe; Dubois, Philippe

    2013-09-01

    The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8mmolkg(-1) SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4mmolkg(-1) SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3mmolkg(-1) SW compared to unfed ones who showed a difference of about 0.5mmolkg(-1) SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH7.7 to about twice that of the control individuals and, for those at pH7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH7.7 but not for those at pH7.4. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Buffered versus non-buffered ocean carbon reservoir variations: Application to the sensitivity of atmospheric pCO2 to ocean circulation changes

    NASA Astrophysics Data System (ADS)

    d'Orgeville, M.; England, M. H.; Sijp, W. P.

    2011-12-01

    Changes in the ocean circulation on millenial timescales can impact the atmospheric CO2 concentration by two distinct mechanisms: either by modifying the non-buffered ocean carbon storage (through changes in the physical and biological oceanic pumps) or by directly varying the surface mean oceanic partial pressure of pCO2 (through changes in mean surface alkalinity, temperature or salinity). The equal importance of the two mechanisms is illustrated here by introducing a diagnostic buffered carbon budget on the results of simulations performed with an Earth System Climate Model. For all the circulation changes considered in this study (due to a freshening of the North Atlantic, or a change in the Southern Hemisphere Westerly winds), the sign of the atmospheric CO2 response is opposite to the sign of the non-buffered ocean carbon storage change, indicating a transfer of carbon between ocean and atmosphere reservoirs. However the concomitant changes in the buffered ocean carbon reservoir can either greatly enhance or almost inhibit the atmospheric response depending on its sign. This study also demonstrates the utility of the buffered carbon budget approach in diagnosing the transient response of the global carbon cycle to climatic variations.

  10. Biophysical stability of hyFc fusion protein with regards to buffers and various excipients.

    PubMed

    Lim, Jun Yeul; Kim, Nam Ah; Lim, Dae Gon; Eun, Chang-yong; Choi, Donghoon; Jeong, Seong Hoon

    2016-05-01

    A novel non-cytolytic hybrid Fc (hyFc) with an intact Ig structure without any mutation in the hyFc region, was developed to construct a long-acting agonistic protein. The stability of interleukin-7 (IL-7) fused with the hyFc (GXN-04) was evaluated to develop early formulations. Various biophysical methods were utilized and three different buffer systems with various pH ranges were investigated including histidine-acetate, sodium citrate, and tris buffers. Various excipients were incorporated into the systems to obtain optimum protein stability. Two evident thermal transitions were observed with the unfolding of IL-7 and hyFc. The Tm and ΔH increased with pH, suggesting increased conformational stability. Increased Z-average size with PDI and decreased zeta potential with pH increase, with the exception of tris buffer, showed aggregation issues. Moreover, tris buffer at higher pH showed aggregation peaks from DLS. Non-ionic surfactants were effective against agitation by outcompeting protein molecules for hydrophobic surfaces. Sucrose and sorbitol accelerated protein aggregation during agitation, but exhibited a protective effect against oxidation, with preferential exclusion favoring the compact states of GXN-04. The stability of GXN-04 was varied by basal buffers and excipients, hence the buffers and excipients need to be evaluated carefully to achieve the maximum stability of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrochemical study of the interaction between dsDNA and copper(I) using carbon paste and hanging mercury drop electrode.

    PubMed

    Stanić, Z; Girousi, S

    2008-06-30

    The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.

  12. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  13. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe(0)/GAC micro-electrolysis system.

    PubMed

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Yang, Jinghui; Wang, Juling

    2013-01-01

    The degradation of 3,3'-iminobis-propanenitrile was investigated using the Fe(0)/GAC micro-electrolysis system. Effects of influent pH value, Fe(0)/GAC ratio and granular activated carbon (GAC) adsorption on the removal efficiency of the pollutant were studied in the Fe(0)/GAC micro-electrolysis system. The degradation of 3,3'-iminobis-propanenitrile was affected by influent pH, and a decrease of the influent pH values from 8.0 to 4.0 led to the increase of degradation efficiency. Granular activated carbon was added as cathode to form macroscopic galvanic cells between Fe(0) and GAC and enhance the current efficiency of the Fe(0)/GAC micro-electrolysis system. The GAC could only adsorb the pollutant and provide buffer capacity for the Fe(0)/GAC micro-electrolysis system, and the macroscopic galvanic cells of the Fe(0)/GAC micro-electrolysis system played a leading role in degradation of 3,3'-iminobis-propanenitrile. With the analysis of the degradation products with GC-MS, possible reaction pathway for the degradation of 3,3'-iminobis-propanenitrile by the Fe(0)/GAC micro-electrolysis system was suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Determination of trace levels of diosmin in a pharmaceutical preparation by adsorptive stripping voltammetry at a glassy carbon electrode.

    PubMed

    El-Shahawi, M S; Bashammakh, A S; El-Mogy, T

    2006-10-01

    A systematic study on the electrochemical behavior of diosmin in Britton-Robinson buffer (pH 2.0-10.0) at a glassy carbon electrode (GCE) was made. The oxidation process of the drug was found to be quasi-reversible with an adsorption-controlled step. The adsorption stripping response was evaluated with respect to various experimental conditions, such as the pH of the supporting electrolyte, the accumulation potential and the accumulation time. The observed anodic peak current at +0.73 V vs. Ag/AgCl reference electrode increased linearly over two orders of magnitude from 5.0x10(-8) M to 9.0x10(-6) M. A limit of detection down to 3.5x10(-8) M of diosmin at the GCE was achieved with a mean recovery of 97+/-2.1%. Based on the electrochemical data, an open-circuit accumulation step in a stirred sample solution of BR at pH 3.0 was developed. The proposed method was successfully applied to the determination of the drug in pharmaceutical formulations. The results compared favorably with the data obtained via spectrophotometric and HPLC methods.

  15. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor.

    PubMed

    Zhao, Yingxin; Feng, Chuanping; Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio

    2011-09-15

    An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO(3)(-)-N50 mg L(-1)) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO(3)(-)-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO(2) produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon.

    PubMed

    Chen, Xingxing; Eckhard, Kathrin; Zhou, Min; Bron, Michael; Schuhmann, Wolfgang

    2009-09-15

    A strategy for the screening of the electrocatalytic activity of electrocatalysts for possible application in fuel cells and other devices is presented. In this approach, metal nanoclusters (Pt, Au, Ru, and Rh and their codeposits) were prepared using a capillary-based droplet-cell by pulsed electrodeposition in a diffusion-restricted viscous solution. A glassy carbon surface was modified with carbon nanotubes (CNTs) by electrophoretic accumulation and was used as substrate for metal nanoparticle deposition. The formed catalyst spots on the CNT-modified glassy carbon surface were investigated toward their catalytic activity for oxygen reduction as a test reaction employing the redox competition mode of scanning electrochemical microscopy (RC-SECM). Qualitative information on the electrocatalytic activity of the catalysts was obtained by varying the potential applied to the substrate; semiquantitative evaluation was based on the determination of the electrochemically deposited catalyst loading by means of the charge transferred during the metal nanoparticle deposition. Qualitatively, Au showed the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) in phosphate buffer among all investigated single metal catalysts which was attributed to the much higher loading of Au achieved during electrodeposition. Coelectrodeposited Au-Pt catalysts showed a more positive onset potential (-150 mV in RC-SECM experiments) of the ORR in phosphate buffer at pH 6.7. After normalizing the SECM image by the charge during the metal nanocluster deposition which represents the mass loading of the catalyst, Ru showed a higher electrocatalytic activity toward the ORR than Au.

  17. Comparative evaluation of the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gum on salivary flow rate, pH and buffering capacity in children: An in vivo study.

    PubMed

    Hegde, Rahul J; Thakkar, Janhavi B

    2017-01-01

    This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.

  18. Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi.

    PubMed Central

    DePasquale, D A; Montville, T J

    1990-01-01

    In this study we examined the mechanism by which ammonium bicarbonate inhibits mycotoxigenic fungi. Elevated extracellular pH, alone, was not responsible for the antifungal activity. Although conidia of Penicillium griseofulvum and Fusarium graminearum had internal pH (pHi) values as high as 8.0 in buffer at an external pH (pHo) of 9.5, their viability was not markedly affected. The pHi values from conidia equilibrated in glycine-NaOH-buffered treatments without ammonium bicarbonate or ammonium sulfate were similar to values obtained from buffered treatments containing the ammonium salts. Thus, inhibition did not appear to be directly related to increased pHi. Ammonium sulfate in buffered media at pH greater than or equal to 8.7 was as inhibitory as ammonium bicarbonate, but was completely ineffective at pH less than or equal to 7.8. The hypothesis that free ammonia caused the fungal inhibition was tested by using ammonium sulfate as a model for ammonium bicarbonate. Viability, expressed as log CFU/ml, and percent germination of P. griseofulvum and F. graminearum decreased dramatically as the free ammonia concentration increased. Germination rate ratios (the germination rate in buffered ammonium sulfate divided by the germination rate in buffer alone) decreased linearly as the free ammonia concentration increased, further establishing NH3 as the toxic agent. Ammonium bicarbonate inhibits fungi because the bicarbonate anion supplies the alkalinity necessary to establish an antifungal concentration of free ammonia. PMID:2082821

  19. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.... 3.8Timer. 4. Reagents 4.1Standardized 1.0 N sodium hydroxide solution. 4.2Hydroxylamine.... Start the timer. 5.6Stir for 5 minutes. Titrate to pH 4.0 with standardized 1.0 N sodium hydroxide...

  20. Preliminary findings on the correlation of saliva pH, buffering capacity, flow rate and consistency in relation to waterpipe tobacco smoking.

    PubMed

    Khemiss, Mehdi; Ben Khelifa, Mohamed; Ben Saad, Helmi

    2017-12-01

    The aim of the present comparative study was to compare some salivary characteristics between exclusive waterpipe smokers (EWPS) and non-smokers. 72 males (36 EWPS) were recruited. The volume of stimulated saliva was determined and divided by the duration of saliva collection. The pH was measured directly using a pH meter. The buffering capacity was determined using a quantitative method which involved the addition of 10 µl HCl. Up to a total of 160 µL was titrated up to obtain a pH titration curve. At 50 µL of titrated HCl, buffering capacity was ranked into three categories: high, medium and low. EWPS and non-smoker groups had similar flow rates (1.81 ± 0.79 and 1.78 ± 1.14 mL min-1) and similar baseline pH (6.60 ± 0.37 and 6.76 ± 0.39). Statistically significant differences in the two groups' pH were observed from 30 to 160 µL of titrated up HCl. At 50 µL of titrated up HCl, the EWPS group compared to the non-smoker group had a significantly higher pH (4.79 ± 0.72 vs. 5.32 ± 0.79). To conclude, waterpipe tobacco smoking alters the buffering capacity but does not alter either salivary flow rates or the baseline pH and consistency.

  1. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater.

    PubMed

    Piccapietra, Flavio; Sigg, Laura; Behra, Renata

    2012-01-17

    To gain important information on fate, mobility, and bioavailability of silver nanoparticles (AgNP) in aquatic systems, the influence of pH, ionic strength, and humic substances on the stability of carbonate-coated AgNP (average diameter 29 nm) was systematically investigated in 10 mM carbonate and 10 mM MOPS buffer, and in filtered natural freshwater. Changes in the physicochemical properties of AgNP were measured using nanoparticle tracking analysis, dynamic light scattering, and ultraviolet-visible spectroscopy. According to the pH-dependent carbonate speciation, below pH 4 the negatively charged surface of AgNP became positive and increased agglomeration was observed. Electrolyte concentrations above 2 mM Ca(2+) and 100 mM Na(+) enhanced AgNP agglomeration in the synthetic media. In the considered concentration range of humic substances, no relevant changes in the AgNP agglomeration state were measured. Agglomeration of AgNP exposed in filtered natural freshwater was observed to be primarily controlled by the electrolyte type and concentration. Moreover, agglomerated AgNP were still detected after 7 days of exposure. Consequently, slow sedimentation and high mobility of agglomerated AgNP could be expected under the considered natural conditions. A critical evaluation of the different methods used is presented as well.

  2. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-05-06

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.

  3. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  4. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  5. Electrogenerated chemiluminescence of tris(2,2' bipyridine)ruthenium(II) using common biological buffers as co-reactant, pH buffer and supporting electrolyte.

    PubMed

    Kebede, Noah; Francis, Paul S; Barbante, Gregory J; Hogan, Conor F

    2015-11-07

    A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.

  6. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.

    PubMed

    Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng

    2018-06-01

    Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  8. Anodic voltammetric behavior and determination of rosiglitazone in pharmaceutical dosage forms and biological fluids on solid electrode.

    PubMed

    Dogan-Topal, Burcu; Tuncel, Secil; Ozkan, Sibel A

    2010-09-01

    The anodic voltammetric behavior and electroanalytical determination of rosiglitazone was studied using cyclic, linear sweep, differential pulse and square wave voltammetric techniques on glassy carbon electrode. The oxidation of rosiglitazone was irreversible and exhibited diffusion controlled process depending on pH. Different parameters were tested to optimize the conditions for the determination of the oxidation mechanism of rosiglitazone. The dependence of current intensities and potentials on pH, concentration, scan rate, nature of the buffer was also investigated. According to the linear relationship between the peak current and the concentration, differential pulse and square wave voltammetric methods for rosiglitazone assay in pharmaceutical dosage forms and biological fluids were developed. A linear response was obtained within the range of 1x10-6M - 6x10-5M in 0.1 M H2SO4 and acetate buffer at pH 5.70 for both voltammetric methods in human serum samples. The practical analytical value of the method is demonstrated by quantitative determination of rosiglitazon in pharmaceutical formulation and human serum, without the need for separation or complex sample preparation, since there was no interference from the excipients and endogenous substances. The methods were fully validated and successfully applied to the high throughput determination of the drug in tablets and human serum with good recoveries.

  9. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    USGS Publications Warehouse

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  10. Salivary Parameters (Salivary Flow, pH and Buffering Capacity) in Stimulated Saliva of Mexican Elders 60 Years Old and Older

    PubMed Central

    Islas-Granillo, H; Borges-Yañez, SA; Medina-Solís, CE; Galan-Vidal, CA; Navarrete-Hernández, JJ; Escoffié-Ramirez, M; Maupomé, G

    2014-01-01

    ABSTRACT Objective: To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. Subjects and Methods: A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Socio-demographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Results: Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. Conclusions: These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders. PMID:25867562

  11. Salivary Parameters (Salivary Flow, pH and Buffering Capacity) in Stimulated Saliva of Mexican Elders 60 Years Old and Older.

    PubMed

    Islas-Granillo, H; Borges-Yañez, S A; Medina-Solís, C E; Galan-Vidal, C A; Navarrete-Hernández, J J; Escoffié-Ramirez, M; Maupomé, G

    2014-12-01

    To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Sociodemographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders.

  12. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    PubMed

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Phasic changes in bone CO2 fractions, calcium, and phosphorus during chronic hypercapnia.

    PubMed

    Schaefer, K E; Pasquale, S; Messier, A A; Shea, M

    1980-05-01

    The bone CO2 buffering system and bone calcium and phosphorus were studied in guinea pigs exposed to 1% CO2 for periods up to 8 wk and killed at weekly intervals together with control animals of the same age. Measurements were made of arterial CO2 tension, pH, standard bicarbonate, and bone Ca and P. Heat-stabile bone CO2 (carbonate) was determined as dry bone CO2 and heat-labile bone CO2 (bicarbonate) as delta wet-dry bone CO2. During the first 3-4 wk of exposure to 1% CO2, a systemic acidosis was found as indicated in a lowered pH, increased arterial CO2 tension, and decreased standard bicarbonate. The acidosis subsided during the last 4 wk of exposure. Phasic changes in bone bicarbonate were observed as shown in immediate rise lasting for 2 wk followed by a 2-wk decline and second rise after 6 and 8 wk. Bone carbonate exhibited the opposite change during the first 4 wk and thereafter remained stable at an elevated level. Bone Ca and P fell in association with increasing bone bicarbonate and rose with increasing bone carbonate.

  14. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    NASA Astrophysics Data System (ADS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-05-01

    Due to increasing atmospheric CO2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO2 and those which involve CO2-induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.

  16. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  17. Metronidazole prodrugs: synthesis, physicochemical properties, stability, and ex vivo release studies.

    PubMed

    Mura, Carla; Valenti, Donatella; Floris, Costantino; Sanna, Roberta; De Luca, Maria Antonietta; Fadda, Anna Maria; Loy, Giuseppe

    2011-09-01

    The aim of the present study was to develop a colon targeted delivery system for metronidazole using polymeric prodrug formulation. Two chitosan amide conjugates of metronidazole were prepared by using two different spacers to covalently link the drug to the amino group of the chitosan glucosamine units. Glutaric and succinic hemiesters of metronidazole were thus prepared and then coupled to chitosan to obtain metronidazole-glutaryl- and metronidazole-succinyl-chitosan conjugates. Polymeric prodrugs were characterized by solid state NMR method, namely carbon 13 cross polarization magic angle spinning ((13)C NMR CPMAS). Prodrug stability study was carried out in acid (pH = 1.2) and in alkaline (pH = 7.4) buffers in a thermostatic bath at 37 °C. Drug release from the two prodrugs was studied by incubating each of them with 10% w/v cecal and colonic content of rats. Obtained results showed that both prodrugs were adequately stable in acid environment, while the succinyl conjugate was more stable than the glutaryl one in alkaline buffer. Both the prodrugs released the drug in cecal and colonic content, showing that the two systems could serve as colon specific delivery systems of metronidazole. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).

    PubMed

    Fadda, Angela; Barberis, Antonio; Sanna, Daniele

    2018-02-01

    The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.

    PubMed

    Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut

    2016-03-08

    In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.

  20. Synthesis of a water-soluble analog of 6-methyl-3-N-alkyl catechol labeled with carbon 13: NMR approach to the reactivity of poison ivy/oak sensitizers toward proteins.

    PubMed

    Goetz, G; Meschkat, E; Lepoittevin, J P

    1999-04-19

    A 13-C labeled water soluble derivative of alkylcatechol was synthesized and reacted with human serum albumin in phosphate buffer at pH 7.4 in air to allow a slow oxidation of the catechol into orthoquinone. The formation of several adducts was evidenced by a combination of 13C and 1H-13C correlation NMR. Although some adducts could result from a classical o-quinone formation - Michael type addition, our results suggest that a second pathway, involving a direct reaction of a carbon centered radical with proteins could be an important mechanism in the formation of modified proteins.

  1. Inorganic Substrates and Encapsulation Layers for Transient Electronics

    DTIC Science & Technology

    2014-07-01

    surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for

  2. Analysis of Natural Buffer Systems and the Impact of Acid Rain

    ERIC Educational Resources Information Center

    Powers, David C.; Yoder, Claude H.; Higgs, Andrew T.; Obley, Matt L.; Hess, Kenneth R.; Leber, Phyllis A.

    2005-01-01

    The environmental significance of acid rain on water systems of different buffer capacities is discussed. The most prevalent natural buffer system is created by the equilibrium between carbonate ions and carbon dioxide.

  3. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification

    PubMed Central

    Stumpp, Meike; Hu, Marian Y.; Melzner, Frank; Gutowska, Magdalena A.; Dorey, Narimane; Himmerkus, Nina; Holtmann, Wiebke C.; Dupont, Sam T.; Thorndyke, Michael C.; Bleich, Markus

    2012-01-01

    Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid–base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H+-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pHe and pHi) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO2 conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO2. Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pHe whenever seawater pH changes. However, measurements of pHi demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na+ and HCO3−, suggesting a bicarbonate buffer mechanism involving secondary active Na+-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pHi enables calcification to proceed despite decreased pHe. However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage. PMID:23077257

  4. Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2018-05-01

    The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Guoping; Luo, Wensui; Brooks, Scott C

    We conducted batch and recirculating column titration tests with contaminated acidic sediments with controlled CO2 in the headspace, and extended the geochemical model by Gu et al. (2003, GCA) to better understand and quantify the reactions governing trace metal fate in the subsurface. The sediment titration curve showed slow pH increase due to strong buffering by Al precipitation and CO2 uptake. Assuming precipitation of basaluminite at low saturation index (SI=-4), and decreasing cation exchange selectivity coefficient (kNa\\Al=0.3), the predictions are close to the observed pH and Al; and the model explains 1) the observed Ca, Mg, and Mn concentration decreasemore » by cation exchange with sorbed Al, and 2) the decrease of U by surface complexation with Fe hydroxides at low pH, and precipitation as liebigite (Ca2UO2(CO3)3:10H2O) at pH>5.5. Without further adjustment geochemical parameters, the model describes reasonably well previous sediment and column titration tests without CO2 in the headspace, as well as the new large column test. The apparent inhibition of U and Ni decrease in the large column can be explained by formation of aqueous carbonate complexes and/or competition with carbonate for surface sites. These results indicated that ignoring labile solid phase Al would underestimate base requirement in titration of acidic aquifers.« less

  6. Analysis of Factors Influencing Soil Salinity, Acidity, and Arsenic Concentration in a Polder in Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayers, J. C.; Patton, B.; Fry, D. C.; Goodbred, S. L., Jr.

    2017-12-01

    Soil samples were collected on Polder 32 in the coastal zone of SW Bangladesh in wet (October) and dry (May) seasons from 2013-2017 and analyzed to characterize the problems of soil salinization and arsenic contamination and identify their causes. Soils are entisols formed from recently deposited, predominantly silt-sized sediments with low carbon concentrations typical of the local mangrove forests. Soluble (DI extract) arsenic concentrations were below the Government of Bangladesh limit of 50 ppb for drinking water. Soil acidity and extract arsenic concentrations exhibit spatial variation but no consistent trends. In October soil extract As is higher and S and pH are lower than in May. These observations suggest that wet season rainwater oxidizes pyrite, reducing soil S and releasing H+, causing pH to decrease. Released iron is oxidized to form Hydrous Ferric Oxyhydroxides (HFOs), which sorb As and increase extractable As in wet season soils. Changes in pH are small due to pH buffering by soil carbonates. Soil and rice paddy water salinities are consistently higher in May than October, reaching levels in May that reduce rice yields. Rice grown in paddies should be unaffected by salt concentrations in the wet season, while arsenic concentrations in soil may be high enough to cause unsafe As levels in produced rice.

  7. Preliminary findings on the correlation of saliva pH, buffering capacity, flow rate and consistency in relation to waterpipe tobacco smoking

    PubMed Central

    Khemiss, Mehdi; Ben Khelifa, Mohamed; Ben Saad, Helmi

    2017-01-01

    ABSTRACT The aim of the present comparative study was to compare some salivary characteristics between exclusive waterpipe smokers (EWPS) and non-smokers. 72 males (36 EWPS) were recruited. The volume of stimulated saliva was determined and divided by the duration of saliva collection. The pH was measured directly using a pH meter. The buffering capacity was determined using a quantitative method which involved the addition of 10 µl HCl. Up to a total of 160 µL was titrated up to obtain a pH titration curve. At 50 µL of titrated HCl, buffering capacity was ranked into three categories: high, medium and low. EWPS and non-smoker groups had similar flow rates (1.81 ± 0.79 and 1.78 ± 1.14 mL min-1) and similar baseline pH (6.60 ± 0.37 and 6.76 ± 0.39). Statistically significant differences in the two groups’ pH were observed from 30 to 160 µL of titrated up HCl. At 50 µL of titrated up HCl, the EWPS group compared to the non-smoker group had a significantly higher pH (4.79 ± 0.72 vs. 5.32 ± 0.79). To conclude, waterpipe tobacco smoking alters the buffering capacity but does not alter either salivary flow rates or the baseline pH and consistency. PMID:28266252

  8. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak

  9. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell.

    PubMed

    Ren, Yueping; Chen, Jinli; Shi, Yugang; Li, Xiufen; Yang, Na; Wang, Xinhua

    2017-11-01

    Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO 3 - concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P max ) increased from 322.9mWm -2 to 527.2mWm -2 , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development and evaluation of a novel polymeric hydrogel of sucrose acrylate-co-polymethylacrylic acid for oral curcumin delivery.

    PubMed

    Huang, Sijin; Wang, Jialei; Shang, Qing

    2017-02-01

    A monomer of sucrose acrylate (AC-sucrose) was synthesized by conjugating starting compound sucrose with methyl acrylate (MA). The obtained AC-sucrose was characterized by mass spectrometry (MS) and Fourier transform infrared (FTIR) spectroscopy. AC-sucrose was selected as a monomer to fabricate a novel pH sensitive hydrogel via free radical polymerization. The inner morphology of the final hydrogel was observed with an S-4800 scanning electron microscope (SEM). The swelling and de-swelling behaviors of the hydrogel chips were also studied. Curcumin (CUR) was selected as a model drug and loaded into the final hydrogel. The release profiles of CUR were performed via dialysis method in pH 1.2, 6.8 and 7.4 buffers, respectively. Mass and FTIR spectra confirmed the synthesis of AC-sucrose. SEM photographs showed that poly(AC-sucrose-co-MAA) hydrogels had many 3D meshes. In pH 1.2 buffer, the hydrogel chips showed the biggest swelling ratio (SR) of 34.4 ± 1.9%. However, in pH 7.4 buffer, the SRs of the hydrogel chips reached to 368.7 ± 28.0%, which suggested that the hydrogel had an excellent pH sensibility. The releasing profiles showed that only 4.6 ± 0.4% of CUR was released in pH 1.2 buffer but 93.7 ± 4.7% of CUR was diffused into pH 7.4 buffer. These data suggested that the CUR-loaded poly (AC-sucrose-co-MAA) hydrogel could direct CUR to release in basic environments.

  11. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.

    PubMed

    Zheng, Songyan; Qiu, Difei; Adams, Monica; Li, Jinjiang; Mantri, Rao V; Gandhi, Rajesh

    2017-01-01

    This study aimed in understanding the degradation behaviors of an IgG 1 subtype therapeutic monoclonal antibody A (mAb-A) associated with pH and buffer species. The information obtained in this study can augment conventional, stability-based screening paradigms by providing the direction necessary for efficient experimental design. Differential scanning calorimetry (DSC) was used for studying conformational stability. Dynamic light scattering (DLS) was utilized to generate B 22 *, a modified second virial coefficient for the character of protein-protein interaction. Size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC) were employed to separate degradation products. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for determining the molecular size and liquid chromatography mass spectrometry (LC-MS) were used for identifying the sequence of the separated fragments. The results showed that both pH and buffer species played the roles in controlling the degradation behaviors of mAb-A, but the pH was more significant. In particular, pH 4.5 induced additional thermal transition peaks occurring at a low temperature compared with pH 6.5. A continual temperature-stress study illustrated that the additional thermal transition peaks related to the least stable structure and a greater fragmentation. Although mAb-A showed the comparable conformational structures and an identical amount of aggregates at time zero between the different types of buffer species at pH 6.5, the aggregation formation rate showed a buffer species-dependent discrepancy over a temperature-stress period. It was found that the levels of aggregations associated with the magnitudes of protein-protein interaction forces.

  12. Comparative Quantitative Assessments of Salivary Ion Activity Product for Hydroxyapatite and Buffering Capacity in Children with Different Caries Experience.

    PubMed

    Anand, Siddharth; Masih, Updesh; Yeluri, Ramakrishna

    If a relation exists between salivary I PHA , buffer capacity and caries experience, then this relationship could be used as screening chair side test for caries risk assessment. One hundred ninety seven children aged 4 to 6 years were examined. Data was collected by interview and clinical examination. They were divided into low, moderate and high caries experience group of 20 children each. Two ml of each sample was used to measure the pH value with pH meter. Regarding the buffering capacity, freshly prepared hydrochloric acid (HCl) was titrated into saliva and pH was recorded. The collected saliva samples were sent to Laboratory for measurement of calcium and phosphorus. I PHA was calculated and the negative logarithms of I PHA were used to determine the enamel solubility. The correlation between salivary I PHA , buffering capacity and caries experience were evaluated. There was a significant relation between pH, log I PHA and dental caries experience, it could be considered as a predictor of dental caries. pH measurement after HCl titration in saliva could be used as chair side screening test for the assessment of caries risk.

  13. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.

    PubMed

    Zhou, Marilyn X; Foley, Joe P

    2006-03-15

    To optimize separations in capillary electrophoresis, it is important to control the electroosmotic mobility of the running buffer and the factors that affect it. Through the application of a site-dissociation-site-binding model, we demonstrated that the electroosmotic mobility could be controlled qualitatively and quantitatively by the parameters related to the physical and chemical properties of the running buffer: pH, cation valence, ionic strength, viscosity, activity, and dissociation constant. Our study illustrated that the logarithm of the number of apparent silanol sites on a fused-silica surface has a linear relationship with the pH of a buffer solution. The extension of the chemical kinetics approach allowed us to obtain the thickness of the electrical double layer when multivalent inorganic cations are present with monovalent cations in a buffer solution, and we found that the thickness of the electrical double layer does not depend on the charge of anions. The general equation to predict the electroosmotic mobility suggested here also indicates the increase of electroosmotic mobility with temperature. The general equation was experimentally verified by three buffer scenarios: (i) buffers containing only monovalent cations; (ii) buffers containing multivalent inorganic cations; and (iii) buffers containing cations and neutral additives. The general equation can explain the experimental observations of (i) a maximum electroosmotic mobility for the first scenario as the pH was varied at constant ionic strength and (ii) the inversion and maximum value of the electroosmotic mobility for the second scenario when the concentration of divalent cations was varied at constant pH. A good agreement between theory and experiment was obtained for each scenario.

  14. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Cox, T. Erin; Gazeau, Frédéric; Alliouane, Samir; Hendriks, Iris E.; Mahacek, Paul; Le Fur, Arnaud; Gattuso, Jean-Pierre

    2016-04-01

    Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m3, and an additional reference plot in the ambient environment (2 m2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of ˜ 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.

  15. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation.

    PubMed

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Mason, Thomas G; Kraut, Jeffrey A; Gazmuri, Raúl J

    2016-11-01

    Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO 2 accumulation-and activation of the Na + -H + exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO 2 -consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na + entry via NHE-1 with consequent Ca 2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along with myocardial function and survival.

  16. Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry.

    PubMed

    Marák, Jozef; Stanová, Andrea

    2014-05-01

    In this work, the impact of buffer salts/matrix effects on the signal in direct injection MS with an electrospray interface (DI-ESI-MS) following pITP fractionation of the sample was studied. A range of buffers frequently used in CE analyses (pH 3-10) was prepared containing 10, 50, and 90% v/v of ACN, respectively. The sets of calibration solutions of cetirizine (an antihistaminic drug with an amphiprotic character) within a 0.05-2.0 mg/L concentration range were prepared in different buffers. The greatest enhancements in the MS signal (in terms of change in the slope of the calibration line) were obtained for the beta-alanine buffer (pH 3.5) in positive ionization and for the borate buffer (pH 9.2) in negative ionization, respectively. The procedure was successfully applied to the analysis of buserelin (a peptidic drug). The slope of the calibration line for solutions containing the beta-alanine buffer with 50% of ACN was 4 times higher than for water or urine, respectively. This study clearly demonstrates that the buffer salt/matrix effects in an offline combination of pITP and DI-ESI-MS can also play a positive role, as they can enhance the signal in MS. A similar influence of the above effects can also be presumed in the CE techniques combined on-line with ESI-MS.

  17. Cell membrane antigen-antibody complex dissociation by the widely used glycine-HCL method: an unreliable procedure for studying antibody internalization.

    PubMed

    Tsaltas, G; Ford, C H

    1993-02-01

    Methods following the process of binding and internalization of antibodies to cell surface antigens have often employed low pH isoosmolar buffers in order to dissociate surface antigen-antibody complexes. One of the most widely used buffers is a 0.05 M glycine-HCL buffer pH 2.8. Since the efficacy of action of this buffer was critical to a series of internalization experiments employing monoclonal antibodies (Mabs) to carcinoembryonic antigen (CEA) expressing cancer cell lines in this laboratory, we tested its performance in a number of different assays. Our results indicate that this buffer only partially dissociates antigen-antibody bonds and therefore can introduce major inaccuracies in internalization experiments.

  18. Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2016-06-01

    In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.

  19. Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions.

    PubMed

    Buamah, R; Petrusevski, B; Schippers, J C

    2009-01-01

    For the removal of iron from groundwater, aeration followed with rapid (sand) filtration is frequently applied. Iron removal in this process is achieved through oxidation of Fe(2 + ) in aqueous solution followed by floc formation as well as adsorption of Fe(2 + ) onto the filter media. The rate of oxidation of the adsorbed Fe(2 + ) on the filter media plays an important role in this removal process. This study focuses on investigating the effect of pH on the rate of oxidation of adsorbed Fe(2 + ). Fe(2 + ) has been adsorbed, under anoxic conditions, on iron oxide coated sand (IOCS) in a short filter column and subsequently oxidized by feeding the column with aerated water. Ferrous ions adsorbed at pH 5, 6, 7 and 8 demonstrated consumption of oxygen, when aerated water was fed into the column. The oxygen uptake at pH 7 and 8 was faster than at pH 5 and 6. However the difference was less pronounced than expected. The difference is attributed to the pH buffering effect of the IOCS. At feedwater pH 5, 6 and 7 the pH in the effluent was higher than in the influent, while a pH drop should occur because of oxidation of adsorbed Fe(2 + ). At pH 8, the pH dropped. These phenomena are attributed to the presence of calcium and /or ferrous carbonate in IOCS.

  20. Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Shi, Suan; Kang, Li; Lee, Y Y

    2015-03-01

    Paper mill sludge is a solid waste material composed of pulp residues and ash generated from pulping and paper making process. The carbohydrate portion of the sludges from Kraft/Recycle paper mill has chemical and physical characteristics similar to those of commercial wood pulp. Because of its high carbohydrate content and well-dispersed structure, the sludge can be biologically converted to value-added products without pretreatment. In bioconversion of solid feedstock such as paper mill sludge, a certain amount of water must be present to attain fluidity. In this study, hemicellulose pre-hydrolysate, in place of water, was added to the sludge to increase the concentration of the final product. Pre-hydrolysate was obtained by hot-water treatment of pine wood in which the total sugar concentration reached 4 wt.%. The mixture was processed by simultaneous saccharification and fermentation (SSF) using enzymes (cellulase and pectinase) and Lactobacillus rhamnosus (ATCC-10863). Pectinase was added to hydrolyze mannose oligomers in the pre-hydrolysate to monomers. During the SSF of the mixture, calcium carbonate in the paper sludge acted as a buffer, yielding calcium lactate as the final product. External pH control was unnecessary due to the buffer action of calcium carbonate that maintained the pH near optimum for the SSF. The lactic acid yield in the range of 80-90 % of the theoretical maximum was obtained. Use of the mixed feed of pre-hydrolysate and pulp mill sludges in the SSF raised the product concentration to 60 g of lactate/L.

  1. Determination of bromhexine in plasma by reversed-phase liquid chromatography. Interference of lipoproteins on extraction.

    PubMed

    Johansson, M; Lenngren, S

    1988-11-18

    Extraction of the hydrophobic tertiary amine bromhexine from plasma using cyclohexane-heptafluorobutanol (99.5:0.5, v/v) was studied at different pH values. The extraction yield from buffer solutions was quantitative at pH greater than 4.1, but from plasma the extraction yield decreased with increasing pH. Furthermore, at pH 8.4 the extraction yield varied greatly (56-99%) in different human plasma. The addition of lipoproteins to phosphate buffer, at pH 8.1, decreased the extraction yields considerably. Quantitative extraction from plasma was obtained by using a very long extraction time at pH 8.4 or by decreasing the pH to 5.4. The chromatographic system consisted of a reversed-phase column (Nucleosil C18, 5 microns) with an acidic mobile phase (methanol-phosphate buffer, pH 2) containing an aliphatic tertiary amine. UV detection at 308 or 254 nm was used. The limit of quantitation was 5 ng/ml using 3.00 ml of plasma and detection at 254 nm. The intra-assay precision for bromhexine was better than 3.6% at 5 ng/ml.

  2. Carbonic acid buffer species measured in real time with an intracellular microelectrode array

    PubMed Central

    Wietasch, Kristina; Kraig, Richard P.

    2009-01-01

    Carbonic acid buffer anions, HCO3−andCO32−, play an instrumental role in a host of vital processes in animal cells and tissues. Yet study of carbonic acid buffer species is hampered because no means are available to simultaneously monitor them at a cellular level in a rapid and dynamic fashion. An ion-selective cocktail, previously reported to measure changes in bicarbonate activity (αHCO3−), was instead shown to be principally selective for αCO32−. Ion-selective micropipettes (ISMs) based on this exchanger and consisting of a 3:1:6 (volume) mixture of tri-n-octylpropylammonium chloride, 1-octanol, and trifluoroacetyl-p-butylbenzene showed no significant interference from bicarbonate, chloride, phosphate, ascorbate, lactate, glutamate, acetate, or hydroxyl ions at concentrations expected in vivo. Intracellular and triple-barrel ISMs, consisting of a CO32−-sensitive, pH-sensitive, and reference barrel, were fabricated. Skeletal muscle cells (n = 17) were penetrated in vivo and showed values of 74 ± 7 mV for membrane potential, 6.94 ± 0.09 pHi, and 11 ± 5 µM intracellular αCO32−, from which intracellular αHCO3− of 25 ± 10 mM and CO2 tension of 120 ± 55 Torr were calculated. All ion measurements reached a new steady state in 9 ± 2 s after cell penetration. Thus measurements of intracellular αCO32− and pH and associated levels of αHCO3 and CO2 tension can be determined in biological tissues and cells with a spatial and temporal resolution previously unattainable. PMID:1653544

  3. The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens.

    PubMed

    Frederiksen, Trine-Maria; Finster, Kai

    2004-02-01

    The physiology of the sulfur disproportionator Desulfocapsa sulfoexigens was investigated in batch cultures and in a pH-regulated continuously flushed fermentor system. It was shown that a sulphide scavanger in the form of ferric iron was not obligatory and that the control of pH allowed production of more biomass than was possible in carbonate buffered but unregulated batch cultures. Small amounts of sulphite were produced during disproportionation of elemental sulfur and thiosulphate. In addition, it was shown that in the presence of hydrogen, a respiratory type of process is favored before the disproportionation of sulphite, thiosulphate and elemental sulfur. Sulphate reduction was not observed. D. sulfoexigens assimilated inorganic carbon even in the presence of organic carbon sources. Inorganic carbon assimilation was probably catalyzed by the reverse CO-dehydrogenase pathway, which was supported by the constitutive expression of the gene encoding CO-dehydrogenase in cultures grown in the presence of acetate and by the high carbon fractionation values that are indicative of this pathway.

  4. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

  5. Erosive and buffering capacities of yogurt.

    PubMed

    Kargul, Betul; Caglar, Esber; Lussi, Adrian

    2007-05-01

    The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the erosion of dental enamel. The aim of the present study was to measure the initial pH of several types of yogurt and to test the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine the buffering capacity and related erosive potential of yogurt. Twenty-five milliliters of 7 types of freshly opened yogurt was titrated with 1 mol/L of sodium hydroxide, added in 0.5 mL increments, until the pH reached 10, to assess the total titratable acidity, a measure of the drink's own buffering capacity. The degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite were also calculated, using a computer program developed for this purpose. For statistical analysis, samples were compared using Kruskal-Wallis test. The buffering capacities can be ordered as follows: fruit yogurt >low-fat yogurt >bioyogurt >butter yogurt >natural yogurt >light fruit yogurt >light yogurt. The results suggest that, in vitro, fruit yogurt has the greatest buffering capacity. It can be stated that it is not possible to induce erosion on enamel with any type of yogurt.

  6. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    PubMed

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  7. Stacking and determination of phenazine-1-carboxylic acid with low pKa in soil via moving reaction boundary formed by alkaline and double acidic buffers in capillary electrophoresis.

    PubMed

    Sun, Chong; Yang, Xiao-Di; Fan, Liu-Yin; Zhang, Wei; Xu, Yu-Quan; Cao, Cheng-Xi

    2011-04-01

    As shown herein, a normal moving reaction boundary (MRB) formed by an alkaline buffer and a single acidic buffer had poor stacking to the new important plant growth promoter of phenazine-1-carboxylic acid (PCA) in soil due to the leak induced by its low pK(a). To stack the PCA with low pK(a) efficiently, a novel stacking system of MRB was developed, which was formed by an alkaline buffer and double acidic buffers (viz., acidic sample and blank buffers). With the novel system, the PCA leaking into the blank buffer from the sample buffer could be well stacked by the prolonged MRB formed between the alkaline buffer and blank buffer. The relevant mechanism of stacking was discussed briefly. The stacking system, coupled with sample pretreatment, could achieve a 214-fold increase of PCA sensitivity under the optimal conditions (15 mM (pH 11.5) Gly-NaOH as the alkaline buffer, 15 mM (pH 3.0) Gly-HCl-acetonitrile (20%, v/v) as the acidic sample buffer, 15 mM (pH 3.0) Gly-HCl as the blank buffer, 3 min 13 mbar injection of double acidic buffers, benzoic acid as the internal standard, 75 μm i.d. × 53 cm (44 cm effective length) capillary, 25 kV and 248 nm). The limit of detection of PCA in soil was decreased to 17 ng/g, the intra-day and inter-day precision values (expressed as relative standard deviations) were 3.17-4.24% and 4.17-4.87%, respectively, and the recoveries of PCA at three concentration levels changed from 52.20% to 102.61%. The developed method could be used for the detection of PCA in soil at trace level.

  8. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    NASA Astrophysics Data System (ADS)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  9. Geochemical and lithological factors in acid precipitation

    Treesearch

    James R. Kramer

    1976-01-01

    Acid precipitation is altered by interaction with rocks, sediment and soil. A calcareous region buffers even the most intense loading at pH ~8; an alumino silicate region with unconsolidated sediment buffers acid loadings at pH ~6.5; alumino silicate outcrops are generally acidified. Either FeOOH or alumino silicates are probable H+...

  10. Effects of rehydration and food consumption on salivary flow, pH and buffering capacity in young adult volunteers during ergometer exercise.

    PubMed

    Tanabe, Mai; Takahashi, Toshiyuki; Shimoyama, Kazuhiro; Toyoshima, Yukako; Ueno, Toshiaki

    2013-10-28

    The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett's test (p < 0.05). The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food.

  11. Voltammetric behavior of Mammeisin (MA) at a glassy carbon electrode and its interaction with Bovine Serum Albumin (BSA).

    PubMed

    Leuna, Jules-Blaise Mabou; Sop, Sergeot Kungo; Makota, Suzanne; Njanja, Evangeline; Ebelle, Thiery Christophe; Azebaze, Anatole Guy; Ngameni, Emmanuel; Nassi, Achille

    2018-02-01

    The electrochemical oxidation of Mammeisin (MA) was studied in a solution containing acetone and 0.1M phosphate buffer +0.1M KCl (pH=5.3) at a glassy carbon electrode (GCE), using cyclic (CV) and square wave voltammetry (SWV). MA showed a quasi-reversible process, which is pH dependent and that involves the exchange of two electrons and two protons. The oxidation product was adsorbed by the electrode surface to form a film that blocks active sites over repetitive cyclic. Moreover, the interaction of MA and bovine serum albumin (BSA) was studied by CV and SWV at different pHs (5.4, 7.2, 9.5). As a result of the affinity binding with BSA, electrochemically inactive complex was formed. In addition, the oxidation potential of MA in the presence of BSA depends on the pH. The diffusion coefficients of both free and bound MA were estimated from the cyclic voltammetry data using the method developed by Randles-Sevich (D f =9.85×10 -5 cm 2 s -1 and D b =1.27×10 -9 cm 2 s -1 ) and the binding constant of MA-BSA complex, K=3.47×10 2 Lmol -1 , was obtained. Copyright © 2017. Published by Elsevier B.V.

  12. Voltammetric Determination of the Herbicide Linuron Using a Tricresyl Phosphate-Based Carbon Paste Electrode

    PubMed Central

    Đorđević, Jelena; Papp, Zsigmond; Guzsvány, Valéria; Švancara, Ivan; Trtić-Petrović, Tatjana; Purenović, Milovan; Vytřas, Karel

    2012-01-01

    This paper summarises the results of voltammetric studies on the herbicide 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (Linuron), using a carbon paste electrode containing tricresyl phosphate (TCP-CPE) as liquid binder. The principal experimental conditions, such as the pH effect, investigated in Britton-Robinson buffer solutions (pH 2.0–7.0), the peak characteristics for the analyte of interest, or instrumental parameters for the differential pulse voltammetric mode were optimized for the method. As found out, the best electroanalytical performance of the TCP-CPE was achieved at pH 2.0, whereby the oxidation peak of Linuron appeared at ca. +1.3 V vs. SCE. The analytical procedure developed offers good linearity in the concentration range of 1.25–44.20 μg mL−1 (1.77 × 10−4–5.05 × 10−6 mol L−1), showing—for the first time—the applicability of the TCP-CPE for anodic oxidations in direct voltammetry (without accumulation). The method was then verified by determining Linuron in a spiked river water sample and a commercial formulation and the results obtained agreed well with those obtained by the reference HPLC/UV determination. PMID:22368461

  13. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography.

    PubMed

    Hirsh, Allen G; Tsonev, Latchezar I

    2017-04-28

    This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    PubMed

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Developing procedures for the large-scale purification of human serum butyrylcholinesterase.

    PubMed

    Saxena, Ashima; Luo, Chunyuan; Doctor, Bhupendra P

    2008-10-01

    Human serum butyrylcholinesterase (Hu BChE) is the most viable candidate for the prophylactic treatment of organophosphate poisoning. A dose of 200 mg/70 kg is predicted to protect humans against 2x LD(50) of soman. Therefore, the aim of this study was to develop procedures for the purification of gram quantities of this enzyme from outdated human plasma or Cohn Fraction IV-4. The purification of Hu BChE was accomplished by batch adsorption on procainamide-Sepharose-CL-4B affinity gel followed by ion-exchange chromatography on a DEAE-Sepharose column. For the purification of enzyme from Cohn Fraction IV-4, it was resuspended in 25 mM sodium phosphate buffer, pH 8.0, and fat was removed by decantation, prior to batch adsorption on procainamide-Sepharose gel. In both cases, the procainamide gel was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0, containing 0.05 M NaCl, and the enzyme was eluted with the same buffer containing 0.1 M procainamide. The enzyme was dialyzed and the pH was adjusted to 4.0 before loading on the DEAE column equilibrated in sodium acetate buffer, pH 4.0. The column was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0 containing 0.05 M NaCl before elution with a gradient of 0.05-0.2M NaCl in the same buffer. The purity of the enzyme following these steps ranged from 20% to 40%. The purity of the enzyme increased to >90% by chromatography on an analytical procainamide affinity column. Results show that Cohn Fraction IV-4 is a much better source than plasma for the large-scale isolation of purified Hu BChE.

  16. Simultaneous carbon and nitrogen removal using a litre-scale upflow microbial fuel cell.

    PubMed

    Zhao, Ling-ling; Song, Tian-shun

    2014-01-01

    A 10 L upflow microbial fuel cell (UMFC) was constructed for simultaneous carbon and nitrogen removal. During the 6-month operation, the UMFC constantly removed carbon and nitrogen, and then generated electricity with synthetic wastewater as substrate. At 5.0 mg L(-1) dissolved oxygen, 100 Ω external resistance, and pH 6.5, the maximum power density (Pmax) and nitrification rate for the UMFC was 19.5 mW m(-2) and 17.9 mg·(L d)(-1), respectively. In addition, Pmax in the UMFC with chicken manure wastewater as substrate was 16 mW m(-2), and a high chemical oxygen demand (COD) removal efficiency of 94.1% in the UMFC was achieved at 50 mM phosphate-buffered saline. Almost all ammonia in the cathode effluent was effectively degraded after biological denitrification in the UMFC cathode. The results can help to further develop pilot-scale microbial fuel cells for simultaneous carbon and nitrogen removal.

  17. Potential benefits of pH 8.8 alkaline drinking water as an adjunct in the treatment of reflux disease.

    PubMed

    Koufman, Jamie A; Johnston, Nikki

    2012-07-01

    At the cellular level, tissue-bound pepsin is fundamental to the pathophysiologic mechanism of reflux disease, and although the thresholds for laryngeal damage in laryngopharyngeal reflux and for esophageal damage in gastroesophageal reflux disease differ, both forms of damage are due to pepsin, which requires acid for its activation. In addition, human pepsin remains stable at pH 7.4 and may be reactivated by hydrogen ions from any source. Thus, most tap and bottled waters (typically pH 6.7 to 7.4) would not be expected to affect pepsin stability. The purposes of these in vitro studies were to investigate whether artesian well water containing natural bicarbonate (pH 8.8) might irreversibly denature (inactivate) human pepsin, and to establish its potential acid-buffering capacity. Laboratory studies were performed to determine whether human pepsin was inactivated by pH 8.8 alkaline water. In addition, the buffering capacity of the alkaline water was measured and compared to that of the two most popular commercially available bottled waters. The pH 8.8 alkaline water irreversibly inactivated human pepsin (in vitro), and its hydrochloric acid-buffering capacity far exceeded that of the conventional-pH waters. Unlike conventional drinking water, pH 8.8 alkaline water instantly denatures pepsin, rendering it permanently inactive. In addition, it has good acid-buffering capacity. Thus, the consumption of alkaline water may have therapeutic benefits for patients with reflux disease.

  18. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction.

    PubMed

    Ambika, Selvaraj; Devasena, M; Nambi, Indumathi Manivannan

    2016-10-01

    Understanding contaminant degradation by different sized zero valent iron (ZVI) particles is one important aspect in addressing the long-term stability of these particles in field studies. In this study, meso zero valent iron (mZVI) particles were synthesised in a milling time of 10 h using ball milling technique. The efficacy of mZVI particles for removal of phenol was quantitatively evaluated in comparison with coarse zero valent iron (cZVI) and nano zero valent iron (nZVI) particles. Phenol degradation experiments were carried out in sacrificial batch mode at room temperature independently with cZVI, nZVI and mZVI under varied pH conditions of 3, 4, 6, 7, 8 and 10. Batch experiments substantiating the reactivity of mZVI under unbuffered pH system were also carried out and compared with buffered and poorly buffered pH systems. mZVI particles showed consistent phenol degradation at circum-neutral pH with efficiency of 44%, 67%, and 89% in a span of 5, 10 and 20 min respectively. The dissolved iron species and residual iron formation were also measured as a function of pH. Unbuffered systems at circum-neutral pH produced less residual iron when compared to buffered and poorly buffered systems. At this pH, oxidation of Fe(2+) produced a different oxidant Ferryl ion, which was found to effectively participate in phenol degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    PubMed

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  20. Gut pH as a limiting factor for digestive proteolysis in cultured juveniles of the gilthead sea bream (Sparus aurata).

    PubMed

    Márquez, Lorenzo; Robles, Rocío; Morales, Gabriel A; Moyano, Francisco J

    2012-06-01

    After the development of the gastric function in juvenile fish, dietary proteins enter a two-phase digestive process comprising an acidic gastric phase followed by an alkaline intestinal phase. However, the main gastric protease, pepsin, is strictly dependent on the existence of a low-enough environmental pH. In 20-g gilthead sea bream, Sparus aurata, the mean minimal gastric pH is close to 4.5, while the mean pH in the duodenal portion of the intestine was nearly fixed at 6.5. The mean maximal gastric content of HCl was approximately 20 microEq for a low-buffering diet. Gastric proteases were more severely affected than intestinal proteases when assayed at actual sub-optimal pH values, 4.5 and 6.5, respectively. When the gastric proteases of juvenile fish were pre-incubated with a citric acid buffer at pH 6.0, the activity at pH 4.5 was very low, whereas when they were pre-incubated with the same buffer at pH 3.0, the activity at pH 4.5 was significantly increased; this fact suggests a deficient activation of zymogens during the gastric digestion and points to a potential approach to improve protein digestion in juvenile gilthead sea bream.

  1. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores.

    PubMed

    Esteban, María-Dolores; Huertas, Juan-Pablo; Fernández, Pablo S; Palop, Alfredo

    2013-05-01

    In recent years, highly thermo-resistant mesophilic spore-forming bacteria belonging to the species Bacillus sporothermodurans have caused non-sterility problems in industrial sterilization processes. The aim of this research was to evaluate the effect of the heating medium characteristics (pH and buffer/food) on the thermal inactivation of B. sporothermodurans spores when exposed to isothermal and non-isothermal heating and cooling treatments and the suitability of non-linear Weibull and Geeraaerd models to predict the survivors of these thermal treatments. Thermal treatments were carried out in pH 3, 5 and 7 McIlvaine buffer and in a courgette soup. Isothermal survival curves showed shoulders that were accurately characterized by means of both models. A clear effect of the pH of the heating medium was observed, decreasing the D120 value from pH 7 to pH 3 buffer down to one third. Differences in heat resistance were similar, regardless of the model used and were kept at all temperatures tested. The heat resistance in courgette soup was similar to that shown in pH 7 buffer. When the heat resistance values obtained under isothermal conditions were used to predict the survival in the non-isothermical experiments, the predictions estimated the experimental data quite accurately, both with Weibull and Geeraerd models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Accelerating the dissolution of enteric coatings in the upper small intestine: evolution of a novel pH 5.6 bicarbonate buffer system to assess drug release.

    PubMed

    Varum, Felipe J O; Merchant, Hamid A; Goyanes, Alvaro; Assi, Pardis; Zboranová, Veronika; Basit, Abdul W

    2014-07-01

    Despite rapid dissolution in compendial phosphate buffers, gastro resistant (enteric coated) products can take up to 2 h to disintegrate in the human small intestine, which clearly highlights the inadequacy of the in vitro test method to predict in vivo behaviour of these formulations. The aim of this study was to establish the utility of a novel pH 5.6 bicarbonate buffer, stabilized by an Auto pH™ System, as a better surrogate of the conditions of the proximal small intestine to investigate the dissolution behaviour of standard and accelerated release enteric double coating formulations. Prednisolone tablets were coated with 3 or 5 mg/cm(2) of partially neutralized EUDRAGIT(®) L 30 D-55, HP-55 or HPMC adjusted to pH 6 or 8. An outer layer of EUDRAGIT(®) L 30 D-55 was applied at 5mg/cm(2). For comparison purposes, a standard single layer of EUDRAGIT(®) L 30 D-55 was applied to the tablets. Dissolution was carried out using USP II apparatus in 0.1 M HCl for 2 h, followed by pH 5.6 bicarbonate buffer. EUDRAGIT(®) L 30 D-55 single-coated tablets showed a slow drug release with a lag time of 75 min in buffer, whereas release from the EUDRAGIT(®) L 30 D-55 double-coated tablets was accelerated. These in vitro lag times closely match the in vivo disintegration times for these coated tablets reported previously. Drug release was further accelerated from modified double coatings, particularly in the case of coatings with a thinner inner layer of HP-55 or HPMC (pH 8 and KH2PO4). This study confirms that the pH 5.6 bicarbonate buffer system offers significant advantages during the development of dosage forms designed to release the drug in the upper small intestine. Copyright © 2014. Published by Elsevier B.V.

  3. The Amygdala is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior

    PubMed Central

    Ziemann, Adam E.; Allen, Jason E.; Dahdaleh, Nader S.; Drebot, Iuliia I.; Coryell, Matt; Wunsch, Amanda M.; Lynch, Cynthia M.; Faraci, Frank M.; Howard, Matthew A.; Welsh, Michael J.; Wemmie, John A.

    2009-01-01

    SUMMARY The amygdala processes and directs inputs and outputs that are key to fear behavior. However, whether it directly senses fear-evoking stimuli is unknown. Because the amygdala expresses acid sensing ion channel-1a (ASIC1a), and ASIC1a is required for normal fear responses, we hypothesized that the amygdala might detect a reduced pH. We found that inhaled CO2 reduced brain pH and evoked fear behavior in mice. Eliminating or inhibiting ASIC1a markedly impaired this activity, and localized ASIC1a expression in the amygdala rescued the CO2- induced fear deficit of ASIC1a-null animals. Buffering pH attenuated fear behavior, whereas directly reducing pH with amygdala microinjections reproduced the effect of CO2. These data identify the amygdala as an important chemosensor that detects hypercarbia and acidosis and initiates behavioral responses. They also give a molecular explanation for how rising CO2 concentrations elicit intense fear and provide a foundation for dissecting the bases of anxiety and panic disorders. PMID:19945383

  4. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Out-of-equilibrium pH transients in the guinea-pig ventricular myocyte

    PubMed Central

    Leem, Chae-Hun; Vaughan-Jones, Richard D

    1998-01-01

    Following an intracellular alkali load (imposed by acetate prepulsing in CO2/HCO3− buffer), intracellular pH (pHi) of the guinea-pig ventricular myocyte (recorded from intracellular SNARF fluorescence) recovers to control levels. Recovery has two phases. An initial rapid phase (lasting up to 2 min) is followed by a later slow phase (several minutes). Inhibition of sarcolemmal acid-loading carriers (by removal of extracellular Cl−) inhibits the later, slow phase but the initial rapid recovery phase persists. It also persists in the absence of extracellular Na+ and in the presence of the HCO3− transport inhibitor DIDS (4,4-di-isothiocyanatostilbene-2,2-disulphonic acid). The rapid recovery phase is not evident if the alkali load has been induced by reducing PCO2 (from 10 to 5 %), and it is inhibited in the absence of CO2/HCO3− buffer (i.e. Hepes buffer). It is also slowed by the carbonic anhydrase (CA) inhibitor acetazolamide (ATZ). We conclude that it is caused by buffering of the alkali load through the hydration of intracellular CO2 (CO2-dependent buffering). The time course of rapid recovery is consistent with an intracellular CO2 hydration rate constant (k1) of 0.36 s−1 in the presence of CA activity, and 0.14 s−1 in the absence of CA activity. This latter k1 value matches the literature value for uncatalysed CO2 hydration in free solution. Natural CO2 hydration is accelerated 2.6-fold in the ventricular myocyte by endogenous CA. The rapid recovery phase represents a period when the intracellular CO2/HCO3− buffer is out of equilibrium (OOE). Modelling of the recovery phase using our k1 value, indicates that OOE conditions will normally extend for at least 2 min following a step rise in pHi (at constant PCO2). If CA is inactive, this period can be as long as 5 min. During normal pHi regulation, the recovery rate during these periods cannot be used as a measure of sarcolemmal acid loading since it is a mixture of slow CO2-dependent buffering and transmembrane acid loading. The implication of this finding for quantification of pHi regulation during alkalosis is discussed. PMID:9575296

  6. Metabolic component of intestinal PCO(2) during dysoxia.

    PubMed

    Raza, O; Schlichtig, R

    2000-12-01

    The adequacy of intestinal perfusion during shock and resuscitation might be estimated from intestinal tissue acid-base balance. We examined this idea from the perspective of conventional blood acid-base physicochemistry. As the O(2) supply diminishes with failing blood flow, tissue acid-base changes are first "respiratory, " with CO(2) coming from combustion of fuel and stagnating in the decreasing blood flow. When the O(2) supply decreases to critical, the changes become "metabolic" due to lactic acid. In blood, the respiratory vs. metabolic distinction is conventionally made using the buffer base principle, in which buffer base is the sum of HCO(3)(-) and noncarbonate buffer anion (A(-)). During purely respiratory acidosis, buffer base stays constant because HCO(3)(-) cannot buffer its own progenitor, carbonic acid, so that the rise of HCO(3)(-) equals the fall of A(-). During anaerobic "metabolism," however, lactate's H(+) is buffered by both A(-) and HCO(3)(-), causing buffer base to decrease. We quantified the partitioning of lactate's H(+) between HCO(3)(-) and A(-) buffer in anoxic intestine by compressing intestinal segments of anesthetized swine into a steel pipe and measuring PCO(2) and lactate at 5- to 10-min intervals. Their rises followed first-order kinetics, yielding k = 0. 031 min(-1) and half time = approximately 22 min. PCO(2) vs. lactate relations were linear. Over 3 h, lactate increased by 31 +/- 3 mmol/l tissue fluid (mM) and PCO(2) by approximately 17 mM, meaning that one-half of lactate's H(+) was buffered by tissue HCO(3)(-) and one-half by A(-). The data were consistent with a lumped pK(a) value near 6.1 and total A(-) concentration of approximately 30 mmol/kg. We conclude that the respiratory vs. metabolic distinction could be made in tissue by estimating tissue buffer base from measured pH and PCO(2).

  7. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  8. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    PubMed

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission, which is mediated by both presynaptic and postsynaptic mechanisms. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-06-07

    Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed.

  10. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast.

    PubMed

    Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen

    2014-06-01

    The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.

  11. Inactivation of human and simian rotaviruses by chlorine dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Shiaw; Vaughn, J.M.

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide weremore » similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.« less

  12. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome.

    PubMed

    Euterpio, Maria Anna; Cavaliere, Chiara; Capriotti, Anna Laura; Crescenzi, Carlo

    2011-11-01

    Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.

  13. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO 3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.

  14. Characterization of pH-fractionated humic acids with respect to their dissociation behaviour.

    PubMed

    Klučáková, Martina

    2016-04-01

    Humic acids were divided into several fractions using buffer solutions as extraction agents with different pH values. Two methods of fractionation were used. The first one was subsequent dissolution of bulk humic acids in buffers adjusted to different pH. The second one was sequential dissolution in buffers with increasing pH values. Experimental data were compared with hypothesis of partial solubility of humic acids in aqueous solutions. Behaviour of humic fractions obtained by sequential dissolution, original bulk sample and residual fractions obtained by subsequent dissolution at pH 10 and 12 agrees with the hypothesis. Results demonstrated that regardless the common mechanism, solubility and dissociation degree of various humic fractions may be very different and can be estimated using parameters of the model based on the proposed mechanism. Presented results suggest that dissolving of solid humic acids in water environment is more complex than conventional solubility behaviour of sparingly soluble solids.

  15. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes.

    PubMed

    Perlatti, Fabio; Otero, Xosé Luis; Macias, Felipe; Ferreira, Tiago Osório

    2014-12-01

    The potentially hazardous effects of rock wastes disposed at open pit in three different areas (Pr: Ore processing; Wr: Waste rock and Bd: Border) of an abandoned copper mine were evaluated in this study, with emphasis on acid drainage generation, metal contamination and copper geochemical dynamics in soils. Samples of waste rock were analyzed by Energy dispersive X-ray fluorescence (XRF), scanning electron microscopy with microanalysis (SEM-EDS) and X-ray diffraction (XRD). Soil samples were analyzed to determine the total metal contents (XRF), mineralogy (XRD), pH (H2O and H2O2), organic and inorganic carbon, % of total N, S and P, particle size, and a sequential extraction procedure was used to identify the different copper fractions. As a result of the prevalence of carbonates over sulphides in the wastes, the soil pH remained close to neutral, with absence of acid mine drainage. The geochemical interaction between these mineral phases seems to be the main mechanism to release Cu(2)(+) ions. Total Cu in soils from the Pr area reached 11,180mg.kg(-1), while in Wr and Bd areas the values reached, on average, 4683 and 1086mg.kg(-1), respectively, indicating a very high level of soil contamination. In the Pr and Wr, the Cu was mainly associated with carbonates and amorphous iron oxides. In the Bd areas, the presence of vegetation has influenced the geochemical behavior of copper by increasing the dissolution of carbonates, affecting the buffer capacity of soils against sulphide oxidation, reducing the pH levels and enhancing the proportion of exchangeable and organic bound Cu. The present findings show that the use of plants or organic amendments in mine sites with high concentration of Cu carbonate-containing wastes should be viewed with caution, as the practice may enhance the mobilization of copper to the environment due to an increase in the rate of carbonates dissolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  17. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    PubMed

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  18. Fabrication of an Electrochemical Sensor Based on Gold Nanoparticles/Carbon Nanotubes as Nanocomposite Materials: Determination of Myricetin in Some Drinks

    PubMed Central

    Hajian, Reza; Yusof, Nor Azah; Faragi, Tayebe; Shams, Nafiseh

    2014-01-01

    In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L−1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10−8 to 4.0×10−5 mol L−1 with the detection limit of 1.2×10−8 mol L−1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices. PMID:24809346

  19. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.

    PubMed

    Zhang, Jiewen; Bell, Leonard N

    2017-04-01

    Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.

  20. Structure-Function Relationship of Hydrophiidae Postsynaptic Neurotoxins

    DTIC Science & Technology

    1990-09-18

    24 hr. Buffer F consisted of 10 mM sodium phosphate, pH 7.5. containing 0.02% (w/v) lauryl sulfate (SDS), and 0.04% (w/v) sodium cholate. The...subjected to gel filtration on Sephadex G-50-50 using 10 mM sodium phosphate buffer (pH 6.5) containing 0.1 M NaCl. Samples were dissolved in 3.5 ml buffer...sequencing. Isolation of Cobrotoxin. The venom from NaJa naia atra was subjected to Sephadex G50-50 gel filtration pre-equilibrated with 10 mM sodium

  1. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification.

    PubMed

    Stumpp, Meike; Hu, Marian Y; Melzner, Frank; Gutowska, Magdalena A; Dorey, Narimane; Himmerkus, Nina; Holtmann, Wiebke C; Dupont, Sam T; Thorndyke, Michael C; Bleich, Markus

    2012-10-30

    Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.

  2. Soy matrix drug delivery systems obtained by melt-processing techniques.

    PubMed

    Vaz, Cláudia M; van Doeveren, Patrick F N M; Reis, Rui L; Cunha, António M

    2003-01-01

    The aim of this study was to develop new soy protein drug delivery matrix systems by melt-processing techniques, namely, extrusion and injection moulding. The soy matrix systems with an encapsulated drug (theophylline, TH) were previously compounded by extrusion performed at two different pH values, (i) pH 4 (SIpDtp) and (ii) pH 7 (SIDtp), and further injection-moulded into a desired shape. During the extrusion process the matrixes SIDtp were also cross-linked with glyoxal (0.6X-SIDtp) and reinforced with a bioactive filler, hydroxylapatite (SI-HADtp). The obtained mouldings were used to study the drug-release mechanisms from the plastic soy-TH matrixes. In an isotonic saline solution (ISS) buffered at pH 5.0 (200 mM acetate buffer), the resulting release kinetics could be described using the Fick's second law of diffusion. Because the diffusion coefficients were found to be constant and the boundary conditions to be stationary, these systems are drug-diffusion controlled. Conversely, the dominant phenomena in an isotonic saline solution buffered at pH 7.4 (200 mM Tris/HCl buffer) are more complex. In fact, because of the higher polymer solubility, the resulting matrix is time-variant. So, the drug release is affected by swelling, drug diffusion, and polymer dissolution, being faster when compared to ISS-200 mM acetate buffer, pH 5.0. The changes in the formulation composition affecting the correspondent release rates were also investigated. At pH 7.4, increasing the cross-linking degree of the polymer matrix (via reaction with glyoxal or heat treatment) or decreasing the net charge (extruding at pH near its isoelectric point) led to lower release rates. The incorporation of ceramic filler caused the opposite effect. Because of the low solubility of the matrix at pH 5.0, no significant variations were detected with variations in the selected formulations. These systems, based on a nonstandard protein-based material, seem to be very promising to be used as carriers for drug delivery.

  3. Repurposing tromethamine as inhaled therapy to treat CF airway disease

    PubMed Central

    Alaiwa, Mahmoud H. Abou; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.

    2016-01-01

    In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3– and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3– increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3–-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778

  4. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed.

  5. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle.

    PubMed

    Abe, H; Dobson, G P; Hoeger, U; Parkhouse, W S

    1985-10-01

    Histidine-related compounds (HRC) were analyzed in fish skeletal muscle as a means of identifying their precise role in intracellular buffering. Fish muscle was used because it contains two functionally and spatially distinct fiber types, red and white. Two fish species, rainbow trout (Salmo gairdneri) and the Pacific blue marlin (Makaira nigricans), were studied because these species demonstrate widely different activity patterns. Marlin red and white muscle buffer capacity was two times higher than trout with white muscle, buffering being two times greater than red in both species. Buffer capacity was highest in the 6.5-7.5 pH range for all tissues, which corresponded to their high anserine levels. The titrated HRC buffering was greater than the observed HRC buffering, which suggested that not all HRC were available to absorb protons. The HRC contribution to total cellular buffering varied from a high of 62% for marlin white to a low of 7% for trout red. The other principal buffers were found to be phosphate and protein with taurine contributing within red muscle in the 7.0-8.0 pH range. HRC were found to be dominant in skeletal muscle buffering by principally accounting for the buffering capacity differences found between the species and fiber types.

  6. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  7. Osmotic agents and buffers in peritoneal dialysis solution: monocyte cytokine release and in vitro cytotoxicity.

    PubMed

    Plum, J; Schoenicke, G; Grabensee, B

    1997-09-01

    Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found for the bicarbonate-buffered solutions. Amino acids (1%) proved to be comparable to glucose (1.5%) as an osmotic agent at a neutral pH with regard to LPS-stimulated cytokine release and cytotoxicity. The incubation with a glucose polymer solution (7.5% glucose polymer in phosphate-buffered saline, pH 7.3) resulted in a significantly lowered cytokine release (LPS stimulation: IL-1beta, 69 +/- 19 pg/mL) compared with the other solutions with neutral pH (P < 0.01). These results suggest that bicarbonate as a buffer provided better biocompatibility with regard to mononuclear cytokine release and viability compared with lactate. Amino acids and glucose were equivalent to these parameters at a physiologic pH. The glucose polymer solution, however, was associated with a marked depression of cytokine release.

  8. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    NASA Astrophysics Data System (ADS)

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  9. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    PubMed Central

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  10. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Nilsson, D.; Danielsson, Ö.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement showsmore » a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.« less

  11. Thermal stability of tagatose in solution.

    PubMed

    Luecke, Katherine J; Bell, Leonard N

    2010-05-01

    Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.

  12. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  13. Intestinal absorption of calcium from calcium ascorbate in rats.

    PubMed

    Tsugawa, N; Yamabe, T; Takeuchi, A; Kamao, M; Nakagawa, K; Nishijima, K; Okano, T

    1999-01-01

    The intestinal absorption of calcium (Ca) from Ca ascorbate (Ca-AsA) was investigated in normal rats. Each animal was perorally administered either 5mg (low dose) or 10mg (high dose) of Ca in 1ml of distilled water as Ca-AsA, Ca carbonate (CaCO3), or Ca chloride (CaCl2), which were intrinsically labeled with 45Ca using 45CaCl2. The amount of radioactivity in plasma was measured periodically up to 34h after dosing, and pharmacokinetic parameters were calculated from the radioactivity in plasma. The time taken to reach the maximum 45Ca level (Tmax) did not differ among the three groups. The area under the plasma 45Ca level/time curve (AUCinfinity) value for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups. The radioactivity at Tmax (Cmax) for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups for the low dose, and comparable with or significantly higher than those for the CaCl2 and CaCO3 groups for the high dose. Similar results were observed for whole-body 45Ca retention. Radioactivity in the femur 34h after dosing was the highest in the Ca-AsA group and the lowest in the CaCO3 group. The rank order of solubility in water, the first fluid (pH 1.2, JP-1) of JPXIII disintegration medium, acetate buffer solution (pH 4.0), triethanolamine-malate buffer solution (pH 7.0) and ammonium chloride buffer solution (pH 10.0) at 37 degrees C was CaCl2 > Ca-AsA > CaCO3. In contrast, the rank order of the solubility in the second fluid (pH 6.8, JP-2) of JPXIII disintegration medium at 37 degrees C was Ca-AsA > CaCl2 > CaCO3. These results indicate that the absorbability of Ca from Ca-AsA is almost comparable with, or higher than, that from CaCl2 and significantly higher than that from CaCO3 because of its high degree of solubility in the intestine. Therefore, Ca-AsA would be useful as a Ca supplement with relatively high absorption from intestine.

  14. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  15. Effects of rehydration and food consumption on salivary flow, pH and buffering capacity in young adult volunteers during ergometer exercise

    PubMed Central

    2013-01-01

    Background The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Methods Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett’s test (p < 0.05). Results The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. Conclusions The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food. PMID:24160307

  16. pH tunability and influence of alkali metal basicity on the plasmonic resonance of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta

    2017-07-01

    Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.

  17. Nitrate and Nitrite Determination in Gunshot Residue Samples by Capillary Electrophoresis in Acidic Run Buffer.

    PubMed

    Erol, Özge Ö; Erdoğan, Behice Y; Onar, Atiye N

    2017-03-01

    Simultaneous determination of nitrate and nitrite in gunshot residue has been conducted by capillary electrophoresis using an acidic run buffer (pH 3.5). In previously developed capillary electrophoretic methods, alkaline pH separation buffers were used where nitrite and nitrate possess similar electrophoretic mobility. In this study, the electroosmotic flow has been reversed by using low pH running buffer without any additives. As a result of reversing the electroosmotic flow, very fast analysis has been actualized, well-defined and separated ion peaks emerge in less than 4 min. Besides, the limit of detection was improved by employing large volume sample stacking. Limit of detection values were 6.7 and 4.3 μM for nitrate and nitrite, respectively. In traditional procedure, mechanical agitation is employed for extraction, while in this work the extraction efficiency of ultrasound mixing for 30 min was found sufficient. The proposed method was successfully applied to authentic gunshot residue samples. © 2016 American Academy of Forensic Sciences.

  18. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  19. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  20. Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.

    PubMed

    Murase, Akio; Nakao, Kazunari; Takada, Junji

    2008-01-01

    In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.

  1. Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.

    PubMed

    Irving, M; Maylie, J; Sizto, N L; Chandler, W K

    1990-04-01

    Junge and McLaughlin (1987) derived an expression for the apparent diffusion constant of protons in the presence of both mobile and immobile buffers. Their derivation applies only to cases in which the values of pH are considerably greater than the largest pK of the individual buffers, a condition that is not expected to hold in skeletal muscle or many other cell types. Here we show that, if the pH gradients are small, the same expression for the apparent diffusion constant of protons can be derived without such constraints on the values of the pK's. The derivation is general and can be used to estimate the apparent diffusion constant of any substance that diffuses in the presence of both mobile and immobile buffers. The apparent diffusion constant of protons is estimated to be 1-2 x 10(-6) cm2/s at 18 degrees C inside intact frog twitch muscle fibers. It may be smaller inside cut fibers, owing to a reduction in the concentration of mobile myoplasmic buffers, so that in this preparation a pH gradient, if established within a sarcomere following action potential stimulation, could last 10 ms or longer after stimulation ceased.

  2. Vermiculite's strong buffer capacity renders it unsuitable for studies of acidity on soybean (Glycine max L.) nodulation and growth.

    PubMed

    Indrasumunar, Arief; Gresshoff, Peter M

    2013-11-14

    Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.

  3. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study.

    PubMed

    Mockus, Linas N; Paul, Timothy W; Pease, Nathan A; Harper, Nancy J; Basu, Prabir K; Oslos, Elizabeth A; Sacha, Gregory A; Kuu, Wei Y; Hardwick, Lisa M; Karty, Jacquelyn J; Pikal, Michael J; Hee, Eun; Khan, Mansoor A; Nail, Steven L

    2011-01-01

    A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.

  4. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold

    PubMed Central

    Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.

    2015-01-01

    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187

  6. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type.

    PubMed

    Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong

    2016-02-01

    The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Zinc(II) complexation by some biologically relevant pH buffers.

    PubMed

    Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L

    2014-12-01

    The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Electrochemical Detection of Nicotine Using Cerium Nanoparticles Modified Carbon Paste Sensor and Anionic Surfactant

    NASA Astrophysics Data System (ADS)

    Fekry, A. M.; Azab, S. M.; Shehata, M.; Ameer, M. A.

    A promising electrochemical sensor for the determination of nicotine (NIC) was developed by electrodeposition of Ce-Nanoparticles on a carbon paste electrode (CPE). The interaction of nicotine was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques, in both aqueous and micellar media. The NIC Measurements were carried out in Britton-Robinson (B-R) buffer solution of pH range (2.0-8.0) containing (1.0 mM) sodium dodecylsulfate (SDS). The linear response range of the sensor was between 8 × 10-6 and 10-4 M with a detection limit of 9.43 × 10-8 M. Satisfactory results were achieved for the detection of NIC in real samples as urine and different brands of commercial cigarettes.

  9. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I.

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffersmore » also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.« less

  10. A calorimetric investigation of the interaction of the lac repressor with inducer.

    PubMed

    Donnér, J; Caruthers, M H; Gill, S J

    1982-12-25

    A calorimetric study has been made of the interaction between the lac repressor and isopropyl-1-thio-beta-D-galactopyranoside (IPTG). The buffer-corrected enthalpy of reaction at 25 degrees C was found to be -15.6, -24.7, -4.6 kJ/mol of bound IPTG at pH 7.0, pH 8.1, and pH 9.0, respectively. This large range of enthalpy values is in contrast to a maximum difference in the free energy of the reaction of only 1.5 kJ/mol of bound IPTG between these pH values. The reaction was found by calorimetric measurements in different buffers to be accompanied by an uptake of 0.29 mol of protons/mol of bound IPTG at pH 8.1. The pH dependency of the reaction enthalpy suggests differences in the extent of protonation of the binding site and the involvement of H bonding with IPTG. The lack of strong hydrophobic contributions in the IPTG binding process is revealed by the absence of any determinable heat capacity change for the reaction at pH 7.0. The presence of phosphate buffer significantly alters the enthalpy of IPTG binding at higher pH values, but has little effect upon the binding constant. This implies that highly negative phosphate species change the nature of the IPTG binding site without any displacement of phosphate upon IPTG binding.

  11. The acid-base buffer capacity of podzolic soils and its changes under the impact of treatment with the Mehra-Jackson and Tamm reagents

    NASA Astrophysics Data System (ADS)

    Maksimova, Yu. G.; Maryakhina, N. N.; Tolpeshta, I. I.; Sokolova, T. A.

    2010-10-01

    The acid-base buffer capacity before and after the treatment with the Mehra-Jackson and Tamm reagents was assessed by continuous potentiometric titration for the main genetic horizons of two profiles of podzolic soils in the Central Forest State Reserve. The total buffer capacity was calculated in the pH range from the initial titration point (ITP) to 3 for the acid titration and from the ITP to 10 for the base titration, as well as the buffer capacities in the pH intervals of 0.25. It was found that both treatments abruptly decreased the base buffer capacity, which reached 70-90% in the E horizons. The high direct linear correlation of the difference between the total base buffer capacities before and after each treatment with the content of Fe in the Tamm extract was revealed. From the results obtained, a conclusion was drawn that finely dispersed Fe hydroxides were the main solid-phase constituents ensuring the base buffer capacity, and the deprotonation of hydroxyl groups on the surface of Fe hydroxides was the essential buffer reaction during the base titration.

  12. pH-Dependent Solubility and Dissolution Behavior of Carvedilol--Case Example of a Weakly Basic BCS Class II Drug.

    PubMed

    Hamed, Rania; Awadallah, Areeg; Sunoqrot, Suhair; Tarawneh, Ola; Nazzal, Sami; AlBaraghthi, Tamadur; Al Sayyad, Jihan; Abbas, Aiman

    2016-04-01

    The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1-2591.4 μg/mL within the pH range 1.2-5.0) and low solubility at high pH (5.8-51.9 μg/mL within the pH range 6.5-7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8-98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2-5.0) and relatively low (15.9-86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5-7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.

  13. Sensitive and rapid determination of quinoline yellow in drinks using polyvinylpyrrolidone-modified electrode.

    PubMed

    Zhang, Shenghui; Shi, Zhen; Wang, Jinshou

    2015-04-15

    A novel electrochemical sensor using polyvinylpyrrolidone (PVP)-modified carbon paste electrode was developed for the sensitive and rapid determination of quinoline yellow. In 0.1M, pH 6.5 phosphate buffer, an irreversible oxidation wave at 0.97 V was observed for quinoline yellow. PVP exhibited strong accumulation ability to quinoline yellow, and consequently increased the oxidation peak current of quinoline yellow remarkably. The effects of pH value, amount of PVP, accumulation potential and time were studied on the oxidation signals of quinoline yellow. The linear range was from 5×10(-8) to 1×10(-6) M, and the limit of detection was evaluated to be 2.7×10(-8) M. It was used to detect quinoline yellow in different drink samples, and the results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Unstimulated Saliva-Related Caries Risk Factors in Individuals with Cystic Fibrosis: A Cross-Sectional Analysis of Unstimulated Salivary Flow, pH, and Buffering Capacity.

    PubMed

    Alkhateeb, Alaa A; Mancl, Lloyd A; Presland, Richard B; Rothen, Marilynn L; Chi, Donald L

    2017-01-01

    Salivary flow rate, pH, and buffering capacity are associated with dental caries, but studies from the cystic fibrosis (CF) literature are inconclusive regarding these salivary factors and caries. The aim of this study was to evaluate these factors and their associations with dental caries in individuals with CF. Unstimulated whole saliva was collected from individuals aged 6-20 years at Seattle Children's Hospital CF Clinic, USA (n = 83). Salivary flow rate was measured in milliliters per minute. Salivary pH was assessed using a laboratory pH meter. Buffering capacity was assessed by titration with HCl. The outcome measure was caries prevalence, defined as the number of decayed, missing, or filled primary and permanent tooth surfaces. Spearman's rank correlation coefficient and the t test were used to test for bivariate associations. Multiple variable linear regression models were used to (1) run confounder-adjusted analyses and (2) assess for potential interactions. There was no significant association between salivary flow rate or buffering capacity and caries prevalence. There was a significant negative association between salivary pH and caries prevalence, but this association was no longer significant after adjusting for age. There was no significant interaction between salivary flow rate and buffering capacity or between antibiotic use and the 3 salivary factors. Our results indicate that unstimulated salivary factors are not associated with dental caries prevalence in individuals with CF. Future studies should investigate other potential saliva-related caries risk factors in individuals with CF such as cariogenic bacteria levels, salivary host defense peptide levels, and medication use. © 2016 S. Karger AG, Basel.

  15. Relationship between Physicochemical Properties of Saliva and Dental Caries and Periodontal Status among Female Teachers Living in Central Iran

    PubMed Central

    Hosseini-Yekani, Amene; Nadjarzadeh, Azadeh; Vossoughi, Mehrdad; Reza, Javad Zavvar; Golkari, Ali

    2018-01-01

    Objectives: There are inconsistent data about the association between saliva properties, dental caries, and periodontal status. In this study, we tried to examine the association between dental caries and periodontal status with salivary viscosity, flow rate, pH, and buffering capacity in adults. Methods: In the present cross-sectional study, 450 female teachers were randomly selected from schools located in Yazd, Iran. Oral examinations were conducted, and unstimulated saliva samples were collected. Salivary viscosity, flow rate, pH, and buffering capacity were assessed. The salivary physicochemical properties were compared among teachers with different types of oral health. Analyses were done using the Statistical Package for the Social Sciences version 16. Results: In total, 431 female teachers aged 40.45 ± 8.18 years were included in the study. Salivary flow rate, buffering capacity, pH, and viscosity, community periodontal index status were not significantly different in participants with and without tooth caries. There was a reverse linear association between salivary pH and flow rate with the decayed, missed, and filled teeth index (P < 0.05). The saliva buffering capacity was not significantly related to dental properties. Those with bleeding on probing had lower salivary pH, and buffering capacity compared to those with healthy gum. However, the salivary resting flow rate was not different in participants with bleeding on probing and healthy participants. Conclusion: Based on our results, saliva properties might be important predictors in oral health status. This means that any change in saliva combination might affect periodontal and dental diseases. Future prospective studies are recommended to confirm these results. PMID:29629329

  16. Cell wall pH and auxin transport velocity

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  17. Salivary carbonic anhydrase VI and its relation to salivary flow rate and buffer capacity in pregnant and non-pregnant women.

    PubMed

    Kivelä, Jyrki; Laine, Merja; Parkkila, Seppo; Rajaniemi, Hannu

    2003-08-01

    Previous studies have shown that pregnancy may have unfavourable effects on oral health. The pH and buffer capacity (BC) of paraffin-stimulated saliva, for example, have been found to decrease towards late pregnancy. Salivary carbonic anhydrase VI (CA VI) probably protects the teeth by accelerating the neutralization of hydrogen ions in the enamel pellicle on dental surfaces. Since estrogens and androgens are known to regulate CA expression in some tissues, we studied here whether salivary CA VI concentration shows pregnancy-related changes. Paraffin-stimulated salivary samples were collected from nine pregnant women 1 month before delivery and about 2 months afterwards and assayed for salivary CA VI concentration, BC and flow rate. The enzyme concentration was determined using a specific time-resolved immunofluorometric assay. The control group consisted of 17 healthy non-pregnant women. The results indicated that salivary CA VI levels varied markedly among individuals, but no significant differences in mean concentrations were seen between the samples collected during late pregnancy and postpartum. BC values were lower during pregnancy, however. Our findings suggest that CA VI secretion is not significantly affected by the hormonal alterations associated with pregnancy, and confirm the earlier reports that CA VI is not involved in the regulation of actual salivary BC.

  18. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies.

    PubMed

    Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh

    2003-04-01

    Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.

  19. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  20. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  1. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.

    PubMed

    Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E

    2014-11-01

    Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of two mouthwashes on salivary ph.

    PubMed

    Belardinelli, Paola A; Morelatto, Rosana A; Benavidez, Tomás E; Baruzzi, Ana M; López de Blanc, Silvia A

    2014-01-01

    To analyze the effect of two mouthwashes on salivary pH and correlate it with age, buffer capacity and saliva flow rate in healthy volunteers, a crossover phase IV clinical study involving three age-based groups was designed. Two commercial mouthwashes (MW), Cool Mint ListerineR (MWa) and Periobacter R (MWb) were used. The unstimulated saliva of each individual was first characterized by measuring flow rate, pH, and buffer capacity. Salivary pH was evaluated before rinsing with a given MW, immediately after rinsing, 5 minutes later, and then every 10 min (at 15, 25, 35 min) until the baseline pH was recovered. Paired t-test, ANOVA with a randomized block design, and Pearson correlation tests were used. Averages were 0.63 mL/min, 7.06, and 0.87 for flow rate, pH, and buffer capacity, respectively. An immediate significant increase in salivary pH was observed after rinsing, reaching average values of 7.24 (MWb) and 7.30 (MWa), which declined to an almost stable value 15 minutes. The great increase in salivary pH, after MW use shows that saliva is a dynamic system, and that the organism is capable of responding to a stimulus with changes in its composition. It is thus evident that pH of the external agent alone is not a good indicator for its erosive potential because biological systems tend to neutralize it. The results of this study enhance the importance of in vivo measurements and reinforce the concept of the protective action of saliva.

  3. Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode.

    PubMed

    Safavi, Afsaneh; Ahmadi, Raheleh; Mahyari, Farzaneh Aghakhani

    2014-04-01

    A linear sweep voltammetric method is used for direct simultaneous determination of L-cysteine and L-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for L-cysteine (0.62 V) and L-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0-450 and 5.0-700 μM and detection limits were estimated to be 0.298 and 4.258 μM for L-cysteine and L-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of L-cysteine and L-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices.

  4. Vulnerability of polar oceans to anthropogenic acidification: comparison of arctic and antarctic seasonal cycles.

    PubMed

    Shadwick, E H; Trull, T W; Thomas, H; Gibson, J A E

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 μmol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation.

  5. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    PubMed Central

    Shadwick, E. H.; Trull, T. W.; Thomas, H.; Gibson, J. A. E.

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 μmol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation. PMID:23903871

  6. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)-A Unique Microbial Habitat.

    PubMed

    Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  7. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)—A Unique Microbial Habitat

    PubMed Central

    Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741

  8. Acid-base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva.

    PubMed

    Collard, Marie; Eeckhaut, Igor; Dehairs, Frank; Dubois, Philippe

    2014-12-01

    Sea cucumbers are dominant invertebrates in several ecosystems such as coral reefs, seagrass meadows and mangroves. As bioturbators, they have an important ecological role in making available calcium carbonate and nutrients to the rest of the community. However, due to their commercial value, they face overexploitation in the natural environment. On top of that, occurring ocean acidification could impact these organisms, considered sensitive as echinoderms are osmoconformers, high-magnesium calcite producers and have a low metabolism. As a first investigation of the impact of ocean acidification on sea cucumbers, we tested the impact of short-term (6 to 12 days) exposure to ocean acidification (seawater pH 7.7 and 7.4) on two sea cucumbers collected in SW Madagascar, Holothuria scabra, a high commercial value species living in the seagrass meadows, and H. parva, inhabiting the mangroves. The former lives in a habitat with moderate fluctuations of seawater chemistry (driven by day-night differences) while the second lives in a highly variable intertidal environment. In both species, pH of the coelomic fluid was significantly negatively affected by reduced seawater pH, with a pronounced extracellular acidosis in individuals maintained at pH 7.7 and 7.4. This acidosis was due to an increased dissolved inorganic carbon content and pCO2 of the coelomic fluid, indicating a limited diffusion of the CO2 towards the external medium. However, respiration and ammonium excretion rates were not affected. No evidence of accumulation of bicarbonate was observed to buffer the coelomic fluid pH. If this acidosis stays uncompensated for when facing long-term exposure, other processes could be affected in both species, eventually leading to impacts on their ecological role.

  9. Effect of Three Factors in Cheese Production (pH, Salt, and Heat) on Mycobacterium avium subsp. paratuberculosis Viability

    PubMed Central

    Sung, Nackmoon; Collins, Michael T.

    2000-01-01

    Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml. PMID:10742208

  10. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  11. Computer simulation of two electrophoretic columns coupled for isoelectric focusing in simple buffers

    NASA Technical Reports Server (NTRS)

    Tsai, Amos; Mosher, Richard A.; Bier, Milan

    1986-01-01

    Computer simulation is used to analyze a system of two electrophoretic columns coupled by mixing the anolyte of one with the catholyte of the other. A mathematical model is presented which is used to predict the pH gradients formed by monovalent buffers in this system, when the currents in the columns are unequal. In the column with the higher current a pH gradient is created which increases from anode to cathode and is potentially useful for isoelectric focusing. The breadth of this gradient is dependent upon the ratio of the currents. The function of the second column is the compensation of buffer migration which occurs in the first column, thereby maintaining constant electrolyte composition. The effects of buffer pKs and mobilities are evaluated.

  12. Free Radical Production from the Interaction of 2-Chloroethyl Vesicants (Mustard Gas) with Pyridine Nucleotide-Driven Flavoprotein Electron Transport Systems

    DTIC Science & Technology

    2009-01-01

    or HN2 at desired mM levels and 2.4 mM NADPH were introduced with 40 µM cytochrome c in 0.1 M KPO4 buffer pH 7.5 made 0.25 M with respect to NaCl. The...because 4-POBN is a nitrone , the adduct formed occurred at the carbon adjacent to the imino nitrogen of the spin trap, too many bonds distant from...EPR spectrometry with spin trapping. Inclusion of the nitrone 4-POBN in our incubation mixture at the molar level enabled us to observe a six-line 4

  13. A Quick Reference on Respiratory Acidosis.

    PubMed

    Johnson, Rebecca A

    2017-03-01

    Respiratory acidosis, or primary hypercapnia, occurs when carbon dioxide production exceeds elimination via the lung and is mainly owing to alveolar hypoventilation. Concurrent increases in Paco 2 , decreases in pH and compensatory increases in blood HCO 3 - concentration are associated with respiratory acidosis. Respiratory acidosis can be acute or chronic, with initial metabolic compensation to increase HCO 3 - concentrations by intracellular buffering. Chronic respiratory acidosis results in longer lasting increases in renal reabsorption of HCO 3 - . Alveolar hypoventilation and resulting respiratory acidosis may also be associated with hypoxemia, especially evident when patients are inspiring room air (20.9% O 2 ). Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Element mobilization from Bakken shales as a function of water chemistry.

    PubMed

    Wang, Lin; Burns, Scott; Giammar, Daniel E; Fortner, John D

    2016-04-01

    Waters that return to the surface after injection of a hydraulic fracturing fluid for gas and oil production contain elements, including regulated metals and metalloids, which are mobilized through interactions between the fracturing fluid and the shale formation. The rate and extent of mobilization depends on the geochemistry of the formation and the chemical characteristics of the fracturing fluid. In this work, laboratory scale experiments investigated the influence of water chemistry on element mobilization from core samples taken from the Bakken formation, one of the most productive shale oil plays in the US. Fluid properties were systematically varied and evaluated with regard to pH, oxidant level, solid:water ratio, temperature, and chemical additives. Element mobilization strongly depended on solution pH and redox conditions and to a lesser extent on the temperature and solid:water ratio. The presence of oxygen and addition of hydrogen peroxide or ammonium persulfate led to pyrite oxidation, resulting in elevated sulfate concentrations. Further, depending on the mineral carbonates available to buffer the system pH, pyrite oxidation could lower the system pH and enhance the mobility of several metals and metalloids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level.

    PubMed

    Liu, Liming; Li, Yin; Zhu, Yang; Du, Guocheng; Chen, Jian

    2007-01-01

    Manipulation of cofactor (thiamine, biotin and Ca(2+)) levels as a potential tool to redistribute carbon flux was studied in Torulopsis glabrata. With sub-optimization of vitamin in fermentation medium, the carbon flux was blocked at the key node of pyruvate, and 69 g/L pyruvate was accumulated. Increasing the concentrations of thiamine and biotin could selectively open the valve of carbon flux from pyruvate to pyruvate dehydrogenase complex, the pyruvate carboxylase (PC) pathway and the channel into the TCA cycle, leading to the over-production of alpha-ketoglutarate. In addition, the activity of PC was enhanced with Ca(2+) present in fermentation medium. By combining high concentration's vitamins and CaCO(3) as the pH buffer, a batch culture was conducted in a 7-L fermentor, with the pyruvate concentration decreased to 21.8 g/L while alpha-ketoglutarate concentration increased to 43.7 g/L. Our study indicated that the metabolic flux could be redistributed to overproduce desired metabolites with manipulating the cofactor levels. Furthermore, the manipulation of vitamin level provided an alternative tool to realize metabolic engineering goals.

  16. Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film.

    PubMed

    Ardila, Jorge Armando; Oliveira, Geiser Gabriel; Medeiros, Roberta Antigo; Fatibello-Filho, Orlando

    2014-04-07

    A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

  17. Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia.

    PubMed

    Hyne, Ross V; Pablo, Fleur; Julli, Moreno; Markich, Scott J

    2005-07-01

    This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30-125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters.

  18. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH.

    PubMed

    Kelly, M; Vardhanabhuti, B; Luck, P; Drake, M A; Osborne, J; Foegeding, E A

    2010-05-01

    Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.

    PubMed Central

    Chase, P B; Kushmerick, M J

    1988-01-01

    We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH. Images FIGURE 1 PMID:2969265

  20. Effects of xylitol chewing gum on salivary flow rate, pH, buffering capacity and presence of Streptococcus mutans in saliva.

    PubMed

    Ribelles Llop, M; Guinot Jimeno, F; Mayné Acién, R; Bellet Dalmau, L J

    2010-03-01

    The first studies on the use of chewing gum in dentistry were done in the 1970s. The Turku Sugar Studies, carried out between 1970 and 1973, showed the excellent anticaries properties of xylitol chewing gums. Since then, many dentists, particularly in Scandinavian countries, have studied the role of chewing xylitol-sweetened chewing gums as another preventive strategy in the control of dental caries. To compare variations in salivary flow rate, pH, buffering capacity, and levels of Streptococcus mutans in baseline conditions and after chewing paraffin pellets or xylitol chewing gum in children between the ages of 6 and 12 years who eat lunch in a school canteen. The study sample consisted of 90 children divided into 2 study groups, and a control group. The children ate lunch at the canteen of the Escultor Ortells state school in the town of Vila-real (Castellón, Spain). The baseline data recorded in the first phase of the study were compared with the data recorded in the second phase, after 15 minutes of chewing xylitol- sweetened chewing gums or paraffin pellets, depending on the study group. Salivary flow rate was measured by collecting the stimulated saliva in a graduated beaker. Levels of pH were measured using a Cyberscan pH 110 pH meter (Eutech Instruments). CRT buffer strips and the CRT bacteria test (Ivoclar-Vivadent) were used to measure buffering capacity and levels of S. mutans, respectively. The data obtained after sample collection were compared by means of a 1-way analysis of variance using the StatGraphics Plus statistical software package, version 5.0. Statistically significant differences were found (p<.05) when pH, buffering capacity and levels of S. mutans were compared between the 3 groups. Comparison of salivary flow rates revealed no statistically significant differences (p>.05), though salivary flow rates were higher in the groups where gum was chewed. The effect of chewing is essential to the stimulation of salivary flow and the resulting recovery of pH levels and reduction of levels of S. mutans in saliva.

  1. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications.

    PubMed

    Sahle, Fitsum Feleke; Gerecke, Christian; Kleuser, Burkhard; Bodmeier, Roland

    2017-01-10

    pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit ® L 100, Eudragit ® L 100-55, Eudragit ® S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10mM pH 7.5 buffer and released>80% of the drug within 7h. The acrylate nanoparticles dissolved in 40mM pH 7.5 buffer and released 65-70% of the drug within 7h. The nanoparticles remained intact in 10 and 40mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.

    PubMed

    Sonawane, N D; Szoka, Francis C; Verkman, A S

    2003-11-07

    The "proton sponge hypothesis" postulates enhanced transgene delivery by cationic polymer-DNA complexes (polyplexes) containing H+ buffering polyamines by enhanced endosomal Cl- accumulation and osmotic swelling/lysis. To test this hypothesis, we measured endosomal Cl- concentration, pH, and volume after internalization of polyplexes composed of plasmid DNA and polylysine (POL), a non-buffering polyamine, or the strongly buffering polyamines polyethylenimine (PEI) or polyamidoamine (PAM). [Cl-] and pH were measured by ratio imaging of fluorescently labeled polyplexes containing Cl- or pH indicators. [Cl-] increased from 41 to 80 mM over 60 min in endosomes-contained POL-polyplexes, whereas pH decreased from 6.8 to 5.3. Endosomal Cl- accumulation was enhanced (115 mM at 60 min) and acidification was slowed (pH 5.9 at 60 min) for PEI and PAM-polyplexes. Relative endosome volume increased 20% over 75 min for POL-polyplexes versus 140% for PEI-polyplexes. Endosome lysis was seen at >45 min for PEI but not POL-containing endosomes, and PEI-containing endosomes showed increased osmotic fragility in vitro. The slowed endosomal acidification and enhanced Cl- accumulation and swelling/lysis were accounted for by the greater H+ buffering capacity of endosomes containing PEI or PAM versus POL (>90 mM versus 46 H+/pH unit). Our results provide direct support for the proton sponge hypothesis and thus a rational basis for the design of improved non-viral vectors for gene delivery.

  3. Acid-base metabolism: implications for kidney stones formation.

    PubMed

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ <--> NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  4. Gas diffusion liquid storage bag and method of use for storing blood

    NASA Technical Reports Server (NTRS)

    Bank, H.; Cleland, E. L. (Inventor)

    1979-01-01

    The shelf life of stored whole blood may be doubled by adding a buffer which maintains a desired pH level. However, this buffer causes the generation of CO2 which, if not removed at a controlled rate, causes the pH value of the blood to decrease, which shortens the useful life of the blood. A blood storage bag is described which permits the CO2 to be diffused out at a controlled rate into the atmosphere, thereby maintaining the desired pH value and providing a bag strong enough to permit handling.

  5. Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.

    PubMed

    Ragoonanan, Vishard; Suryanarayanan, Raj

    2014-06-01

    We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.

  6. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  7. The sensitivity of particle pH to NH3: Can high NH3 cause London Fog conditions?

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Nenes, A.

    2017-12-01

    High ammonia emissions from agriculture or other sources have been suggested to elevate ambient particle pH levels to near neutral acidity (pH=7), a condition that promotes rapid SO2 oxidation by NO2 to form aerosol sulfate concentration consistent with "London fog" levels. This mechanism has been used to explain pollution haze events in China. Predicted pH for locations in the US and Europe show fine particles are highly acidic with pH typically less than 2. The results are consistent with measured ammonia and nitric acid gas-particle partitioning, validating predicted pH levels. Using these data sets from representative sites around the world we conduct a thermodynamic analysis of aerosol pH and its sensitivity to ammonia levels. We find that particle pH, regardless of ammonia levels, is always acidic even for the unusually high ammonia levels found in highly polluted Asian cities, Beijing (pH=4.5) and Xi'an (pH=5), locations where sulfate production from NOx is proposed. These results indicate that sulfur dioxide oxidation through a NO2-mediated pathway is not likely in China, nor any other region of the world (e.g., US, Mediterranean) since the fine aerosol is consistently acidic. The mildly acidic conditions would, however, permit rapid oxidation of sulfur dioxide through transition metal chemistry. The limited alkalinity from the carbonate buffer in dust and seasalt can provide the only likely set of conditions where NO2-mediated oxidation of SO2 outcompetes with other well-established pathways.

  8. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  9. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  10. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  11. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce.

    PubMed

    Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W

    2012-01-16

    Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this resulted in up to 3.5 and 2.0 log inactivation for A. acidoterrestris and B. coagulans respectively. We conclude that HP treatment can induce germination and inactivation of spores from thermoacidophilic bacteria in acidic foods, and may thus be useful to reduce spoilage of such foods caused by these bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  13. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  14. Functional Analysis of Human NF1 in Drosophila

    DTIC Science & Technology

    2007-01-01

    adjusted to 1 mg/ml. Fifty microlitres of 2 assay buffer (50 mM Tris– acetate buffer at pH 7.5, 20 mM MgCl2, 2 mM dithiothreitol, 10 mM creatine phosphate...200 units/ml creatinine kinase, 0.1 mM cAMP at pH 7.5, 0.2 mg/ml bovine serum albumin, 0.02 mg/ml aprotinin, 0.02 mg/ml pepstatin and fresh 0.2 mg

  15. Influence of succinylation on physicochemical property of yak casein micelles.

    PubMed

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH < 3. Succinylation increased yak casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Analysis of pilocarpine and its trans epimer, isopilocarpine, by capillary electrophoresis.

    PubMed

    Baeyens, W; Weiss, G; Van Der Weken, G; Van Den Bossche, W

    1993-05-28

    Capillary zone electrophoresis was used for the separation of pilocarpine from its epimer, isopilocarpine, using coated fused-silica capillaries of 20 cm x 25 microm I.D., 8 kV running voltage, migration buffer of 0.1 M sodium dihydrogenphosphate pH 8, detection at 217 nm and injection by electromigration. Injections of aqueous, acid and basic solutions were compared. Linearity of the signal for pilocarpine hydrochloride up to 200 microg ml(-1) in 0.05 M hydrochloric acid was obtained, using naphazoline nitrate as internal standard. Optimization of migration buffer pH using coated silica capillaries of 50 cm x 50 microm I.D. showed that at pH 6.9 pilocarpine can be separated from ++isopilocarpine. Inclusion of beta-cyclodextrin in the buffer allows full baseline separation of both epimers. The method was applied to the analysis of a commercial ophthalmic pilocarpine solution.

  17. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products.

    PubMed

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-03-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100-250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B₁ fumonisin (HFB₁) and partially hydrolysed B₁ fumonisin (isomers a and b: PHFB 1a and PHFB 1b , respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB₁, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB₁ molecules disintegrate.

  18. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products

    PubMed Central

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-01-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100–250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B1 fumonisin (HFB1) and partially hydrolysed B1 fumonisin (isomers a and b: PHFB1a and PHFB1b, respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB1, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB1 molecules disintegrate. PMID:28257053

  19. Screening and confirmatory methods for the analysis of macrocyclic lactone mycotoxins by CE with amperometric detection.

    PubMed

    Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Téllez, Helena; Rodríguez-Flores, Juana; Zougagh, Mohammed; Ríos, Angel; Chicharro, Manuel

    2009-02-01

    A simple analytical scheme for the screening and quantification of zearalenone and its metabolites, alpha-zearalenol and beta-zearalenol, is reported. Extracts from maize flour samples were collected by supercritical fluid extraction and afterwards, they were analyzed by CE with amperometric detection. This scheme allowed a rapid and reliable identification of contaminated flour samples according to the reference value established for zearalenone by directive 2005/38/EC (200 microg/kg). The sample screening method was carried out by CZE using 25 mM borate separation buffer at pH 9.2 and 25.0 kV as separation voltage, monitoring the amperometric signal at +700 mV with a carbon paste electrode. In this way, total amount of mycotoxins was determined and samples were processed in 4 min with a detection limit of 12 microg/L, enough to discriminate between positive (more than 200 microg/L total mycotoxins) and negative samples (less than 200 microg/L total mycotoxins). Positive samples were then subjected to CZE separation and quantification of each analyte was done with 50 mM borate running buffer modified with 30% methanol at pH 9.7 and 17.5 kV as separation voltage. Under these conditions, separation was achieved in 15 min with detection limits from 20 to 35 microg/L for each analyte.

  20. Bicarbonate- versus lactate-buffered solutions for acute continuous haemodiafiltration or haemofiltration.

    PubMed

    Tian, Jin Hui; Ma, Bin; Yang, KeHu; Liu, Yali; Tan, Jiying; Liu, Tian Xi

    2015-03-05

    Acute kidney injury (AKI) is a severe loss of kidney function that results in patients' inability to appropriately excrete nitrogenous wastes and creatinine. Continuous haemodiafiltration (HDF) or haemofiltration (HF) are commonly used renal replacement therapies for people with AKI. Buffered dialysates and solutions used in HDF or HF have varying effects on acid-base physiology and several electrolytes. The benefits and harms of bicarbonate- versus lactate-buffered HDF or HF solutions for treating patients with AKI remain unclear. To assess the benefits and harms of bicarbonate- versus lactate-buffered solutions for HDF or HF for treating people with AKI. We searched the Cochrane Renal Group's Specialised Register to 6 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. We also searched the Chinese Biomedical Literature Database. All randomised controlled trials (RCT) and quasi-RCTs that reported comparisons of bicarbonate-buffered solutions with lactate-buffered solutions for AKI were selected for inclusion irrespective of publication status or language. Two authors independently assessed titles and abstracts, and where necessary the full text of studies, to determine which satisfied our inclusion criteria. Data were extracted by two authors who independently assessed studies for eligibility and quality using a standardised data extraction form. Methodological quality was assessed using the Cochrane risk of bias tool. Results were expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). We identified four studies (171 patients) that met our inclusion criteria. Overall, study quality was suboptimal. There were significant reporting omissions related to methodological issues and potential harms. Outcome measures were not defined or reported adequately. The studies were small and lacked follow-up phases.Serum lactate levels were significantly lower in patients treated with bicarbonate-buffered solutions (4 studies, 171 participants: MD -1.09 mmol/L, 95% CI -1.30 to -0.87; I(2) = 0%). There were no differences in mortality (3 studies, 163 participants: RR 0.76, 95% CI 0.50 to 1.15; I(2) = 0%); serum bicarbonate levels (3 studies, 163 participants: MD 0.27 mmol/L, 95% CI -1.45 to 1.99; I(2) = 78%), serum creatinine (2 studies, 137 participants: MD -22.81 µmol/L, 95% CI -129.61 to 83.99; I(2) = 73%), serum base excess (3 studies, 145 participants: MD 0.80, 95% CI -0.91 to 2.50; I(2) = 38%), serum pH (4 studies, 171 participants: MD 0.01, 95% CI -0.02 to 0.03; I(2) = 70%) or carbon dioxide partial pressure (3 studies, 151 participants: MD -1.04, 95% CI -3.84 to 1.76; I(2) = 83%). A single study reported fewer cardiovascular events (RR 0.39, 95% CI 0.20 to 0.79), higher mean arterial pressure (10.25 mm Hg, 95% CI 6.68 to 13.82) and less hypotensive events (RR 0.44, 95% CI 0.26 to 0.75) in patients receiving bicarbonate-buffered solutions. One study reported no significant difference in central venous pressure (MD 2.00 cm H2O, 95% CI -0.7 to, 4.77). Total length of hospital and ICU stay and relapse were not reported by any of the included studies. There were no significant different between bicarbonate- and lactate-buffered solutions for mortality, serum bicarbonate levels, serum creatinine, serum base excess, serum pH, carbon dioxide partial pressure, central venous pressure and serum electrolytes. Patients treated with bicarbonate-buffered solutions may experience fewer cardiovascular events, lower serum lactate levels, higher mean arterial pressure and less hypotensive events. With the exception of mortality, we were not able to assess the main primary outcomes of this review - length of time in ICU, total length of hospital stay and relapse.

  1. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Causes of acidification of four streams on Laurel Hilld in southwestern Pennsylvania

    USGS Publications Warehouse

    Sharpe, William E.; DeWalle, David R.; Leibfried, Robert T.; Dinicola, Richard S.; Kimmel, William G.; Sherwin, Lysle S.

    1984-01-01

    Atmospheric deposition, soils developed from bedrock, a natural bog, gas wells, and a ski area were all investigated as possible sources of water quality degradation for four streams on Laurel Hill in southwestern Pennsylvania where fish kills have been reported since 1960. An intensive study of the chemistry of atmospheric deposition, soil leachate, and stream water and fish populations was conducted on these basins during 1980–1981 with emphasis on dormant season periods with runoff from snowmelt and rain. Although bedrock geology was found to control the natural buffering capacity of these streams, only acid precipitation could be linked to sharp drops in pH and increases in total Al concentrations observed during stormflows in the poorly buffered streams. Three poorly buffered streams exhibited drops to pH 4.4 to 4.5 and increases in total Al concentrations up to 1.5 mg/L during observed peak flows. Mineral soil leachate from the three major soil series on the basins during this time exhibited a low pH of 4.3 and mean total Al concentrations of 3.6 mg/L, indicating stream response during storms was closely linked to chemistry of soil leachate. Poorly buffered streams did not support reproducing populations of trout (Salmonidae sp.) or other fishes. In contrast, one well-buffered stream (20 mg/L CaCO3) exhibited drops to pH 5.5 during peak flow and supported reproducing trout and sculpin (Cottus bairdi) populations. The acidification of the four streams studied was attributed to atmospheric deposition.

  3. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions.

    PubMed

    Ren, Xiang; Wang, Weiyi; Ge, Ruixiang; Hao, Shuai; Qu, Fengli; Du, Gu; Asiri, Abdullah M; Wei, Qin; Chen, Liang; Sun, Xuping

    2017-08-08

    It is highly attractive to develop efficient hydrogen-evolving electrocatalysts under neutral conditions. In this communication, we report an amorphous FeMoS 4 nanorod array on carbon cloth (FeMoS 4 NRA/CC) prepared by hydrothermal treatment of an FeOOH nanorod array on carbon cloth (FeOOH NRA/CC) in (NH 4 ) 2 MoS 4 solution. As a 3D electrode for hydrogen evolution electrocatalysis, this FeMoS 4 NRA/CC demonstrates superior catalytic activity and strong long-term electrochemical durability in 1.0 M phosphate buffered saline (pH: 7). It needs an overpotential of 204 mV to drive a geometrical current density of 10 mA cm -2 , which is 450 mV less than that for FeOOH NRA/CC. Density functional theory calculations suggest that FeMoS 4 has a more favourable hydrogen adsorption free energy than FeOOH.

  4. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor

    NASA Astrophysics Data System (ADS)

    Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh

    2017-09-01

    The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.

  5. Degradation of 2,4,6-trinitrotoluene by immobilized horseradish peroxidase and electrogenerated peroxide.

    PubMed

    Beom Lee, Ki; Bock Gu, Man; Moon, Seung Hyeon

    2003-03-01

    This paper presents horseradish peroxidase (HRP)-catalyzed removal of 2,4,6-trinitrotoluene (TNT) by an electrochemical packed-bed flow reactor operated in a circulating batch mode with the help of in situ generated hydrogen peroxide. HRP immobilized on the reticulated vitreous carbon electrode was prepared for the cyclic voltammetry of 2,4,6-TNT. Effects of pH and temperature on the TNT electroreduction in 0.2M phosphate buffer saturated with oxygen were examined. HRP immobilized carbon electrode was capable of catalyzing the oxidation and detoxification of 44 microM TNT in aqueous solution under optimized conditions. The removal rate of TNT for the electroenzymatic method was much greater than for electrochemical and biochemical methods. Stoichiometric and kinetic studies indicated that the hydrogen peroxide was utilized more effectively in the electroenzymatic method. Denitrification as intermediate reaction was also investigated.

  6. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  7. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  8. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    PubMed

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer-based formulations, especially at protein concentrations up to and including 115 mg/mL. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esswein, AJ; Surendranath, Y; Reece, SY

    A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density togethermore » with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.« less

  10. KEY COMPARISON: Final report of EUROMET Project 696: pH determination of a phthalate buffer

    NASA Astrophysics Data System (ADS)

    Spitzer, Petra; Charlet, Philippe; Eberhard, Ralf; Karpov, Oleg V.; Philippe, Rachel; Rivier, Cedric; Maximov, Igor; Sudmeier, Uwe

    2005-01-01

    The EUROMET project 696, a trilateral comparison between PTB, Germany, LNE, France and VNIIFTRI, Russia was performed in order to demonstrate and document the capability of the participants to measure the pH of a phthalate buffer by the primary measurement procedure for pH. Good agreement of the reported results was observed. The sample was very similar to the one used in the comparison CCQM-K17. PTB acts as pilot laboratory in CCQM-K17 and in EUROMET 696. This comparison allows one to link the results obtained by LNE to the CCQM-K17 key comparison through the degree of equivalence of PTB. On the other hand, the discrepancy between measured pH values at the VNIIFTRI and PTB for the same type of buffer solution decreased, as compared with a bilateral comparison in 1997. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the Mutual Recognition Arrangement (MRA).

  11. Partial Purification and Properties of an Alkaline α-Galactosidase from Mature Leaves of Cucurbita pepo1

    PubMed Central

    Gaudreault, Pierre-Richard; Webb, John A.

    1983-01-01

    A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884

  12. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the Madison Limestone, but pyrite will persist and iron oxyhydroxides will not recrystallize.

  13. Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals

    NASA Astrophysics Data System (ADS)

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S.; Schott, Jacques

    2009-08-01

    Despite the success of surface complexation models (SCMs) to interpret the adsorptive properties of mineral surfaces, their construct is sometimes incompatible with fundamental chemical and/or physical constraints, and thus, casts doubts on the physical-chemical significance of the derived model parameters. In this paper, we address the definition of primary surface sites (i.e., adsorption units) at hydrated carbonate mineral surfaces and discuss its implications to the formulation and calibration of surface equilibria for these minerals. Given the abundance of experimental and theoretical information on the structural properties of the hydrated (10.4) cleavage calcite surface, this mineral was chosen for a detailed theoretical analysis of critical issues relevant to the definition of primary surface sites. Accordingly, a single, generic charge-neutral surface site ( tbnd CaCO 3·H 2O 0) is defined for this mineral whereupon mass-action expressions describing adsorption equilibria were formulated. The one-site scheme, analogous to previously postulated descriptions of metal oxide surfaces, allows for a simple, yet realistic, molecular representation of surface reactions and provides a generalized reference state suitable for the calculation of sorption equilibria for rhombohedral carbonate minerals via Law of Mass Action (LMA) and Gibbs Energy Minimization (GEM) approaches. The one-site scheme is extended to other rhombohedral carbonate minerals and tested against published experimental data for magnesite and dolomite in aqueous solutions. A simplified SCM based on this scheme can successfully reproduce surface charge, reasonably simulate the electrokinetic behavior of these minerals, and predict surface speciation agreeing with available spectroscopic data. According to this model, a truly amphoteric behavior is displayed by these surfaces across the pH scale but at circum-neutral pH (5.8-8.2) and relatively high ΣCO 2 (⩾1 mM), proton/bicarbonate co-adsorption becomes important and leads to the formation of a charge-neutral H 2CO 3-like surface species which may largely account for the surface charge-buffering behavior and the relatively wide range of pH values of isoelectric points (pH iep) reported in the literature for these minerals.

  14. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  15. Investigations Concerning Hydrolysis and Stabilization of Antiradiation Compounds

    DTIC Science & Technology

    1982-01-01

    Stability of Unencapsulated WR 2721 31 V. DISCUSSION 35 A. Microencapsulation 35 1. Microspheres 35 2. Microcapsules 35 B. Hydrolytic Stability of...in 1.5 hours at 370C in buffered solutions of pH 1.0 or 3.0. 3^ The more promising microspheres and microcapsules released the WR 2721 within two...hours at pH 7.5 in buffered solutions. 4) Analytical procedures were developed for: "♦ WR 2721 (directly) in microcapsules using an HPLC

  16. Stability and tribological performances of fluid phospholipid bilayers: effect of buffer and ions.

    PubMed

    Dekkiche, F; Corneci, M C; Trunfio-Sfarghiu, A-M; Munteanu, B; Berthier, Y; Kaabar, W; Rieu, J-P

    2010-10-15

    We have investigated the mechanical and tribological properties of supported Dioleoyl phosphatidylcholine (DOPC) bilayers in different solutions: ultrapure water (pH 5.5), saline solution (150 mM NaCl, pH 5.8), Tris buffer (pH 7.2) and Tris saline buffer (150 mM NaCl, pH 7.2). Friction forces are measured using a homemade biotribometer. Lipid bilayer degradation is controlled in situ during friction tests using fluorescence microscopy. Mechanical resistance to indentation is measured by force spectroscopy with an atomic force microscope. This study confirms that mechanical stability under shear or normal load is essential to obtain low and constant friction coefficients. In ultrapure water, bilayers are not resistant and have poor lubricant properties. On the other hand, in Tris saline buffer, they fully resist to indentation and exhibit low (micro=0.035) and stable friction coefficient with no visible wear during the 50 min of the friction test. The unbuffered saline solution improves the mechanical resistance to indentation but not the lubrication. These results suggest that the adsorption of ions to the zwiterrionic bilayers has different effects on the mechanical and tribological properties of bilayers: higher resistance to normal indentation due to an increase in bilayer cohesion, higher lubrication due to an increase in bilayer-bilayer repulsion. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Proton Transfer Dynamics at the Membrane/Water Interface: Dependence on the Fixed and Mobile pH Buffers, on the Size and Form of Membrane Particles, and on the Interfacial Potential Barrier

    PubMed Central

    Cherepanov, Dmitry A.; Junge, Wolfgang; Mulkidjanian, Armen Y.

    2004-01-01

    Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across the interface as observed when light-triggered membrane proton pumps ejected or captured protons. By solving the system of diffusion equations we analyzed how the proton relaxation depends on the concentration of mobile pH buffers, on the surface buffer capacity, on the form and size of membrane particles, and on the height of the potential barrier. The fit of experimental data on proton relaxation in chromatophore vesicles from phototropic bacteria and in bacteriorhodopsin-containing membranes yielded estimates for the interfacial potential barrier for H+/OH− ions of ∼120 meV. We analyzed published data on the acceleration of proton equilibration by anionic pH buffers and found that the height of the interfacial barrier correlated with their electric charge ranging from 90 to 120 meV for the singly charged species to >360 meV for the tetra-charged pyranine. PMID:14747306

  18. Stable adducts of nerve agents sarin, soman and cyclosarin with TRIS, TES and related buffer compounds--characterization by LC-ESI-MS/MS and NMR and implications for analytical chemistry.

    PubMed

    Gäb, Jürgen; John, Harald; Melzer, Marco; Blum, Marc-Michael

    2010-05-15

    Buffering compounds like TRIS are frequently used in chemical, biochemical and biomedical applications to control pH in solution. One of the prerequisites of a buffer compound, in addition to sufficient buffering capacity and pH stability over time, is its non-reactivity with other constituents of the solution. This is especially important in the field of analytical chemistry where analytes are to be determined quantitatively. Investigating the enzymatic hydrolysis of G-type nerve agents sarin, soman and cyclosarin in buffered solution we have identified stable buffer adducts of TRIS, TES and other buffer compounds with the nerve agents. We identified the molecular structure of these adducts as phosphonic diesters using 1D (1)H-(31)P HSQC NMR and LC-ESI-MS/MS techniques. Reaction rates with TRIS and TES are fast enough to compete with spontaneous hydrolysis in aqueous solution and to yield substantial amounts (up to 20-40%) of buffer adduct over the course of several hours. A reaction mechanism is proposed in which the amino function of the buffer serves as an intramolecular proton acceptor rendering the buffer hydroxyl groups nucleophilic enough for attack on the phosphorus atom of the agents. Results show that similar buffer adducts are formed with a range of hydroxyl and amino function containing buffers including TES, BES, TRIS, BIS-TRIS, BIS-TRIS propane, Tricine, Bicine, HEPES and triethanol amine. It is recommended to use alternative buffers like MOPS, MES and CHES when working with G-type nerve agents especially at higher concentrations and over prolonged times. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials.

    PubMed

    Zhang, Huizhi; Fan, Daidi; Deng, Jianjun; Zhu, Chenghui; Hui, Junfeng; Ma, Xiaoxuan

    2014-09-01

    Protein preparation, which has active ingredients designated for the use of biomaterials and therapeutical protein, is obtained by genetic engineering, but products of genetic engineering are often contaminated by endotoxins. Because endotoxin is a ubiquitous and potent proinflammatory agent, endotoxin removal or depletion from protein is essential for researching any biomaterials. In this study, we have used Tris-acetate (TA) buffer of neutral pH value to evaluate endotoxins absorbed on the Pierce high-capacity endotoxin removal resin. The effects of TA buffer on pH, ionic strength, incubation time as well as human-like collagen (HLC) concentration on eliminating endotoxins are investigated. In the present experiments, we design an optimal method for TA buffer to remove endotoxin from recombinant collagen and use a chromogenic tachypleus amebocyte lysate (TAL) test kit to measure the endotoxin level of HLC. The present results show that, the endotoxins of HLC is dropped to 8.3EU/ml at 25 mM TA buffer (pH7.8) with 150 mM NaCl when setting incubation time at 6h, and HLC recovery is about 96%. Under this experimental condition, it is proved to exhibit high efficiencies of both endotoxin removal and collagen recovery. The structure of treated HLC was explored by Transmission Electron Microscopy (TEM), demonstrating that the property and structure of HLC treated by TA buffer are maintained. Compared to the most widely used endotoxin removal method, Triton X-114 extraction, using TA buffer can obtain the non-toxic HLC without extra treatment for removing the toxic substances in Triton X-114. In addition, the present study aims at establishing a foundation for further work in laboratory animal science and providing a foundation for medical grade biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Electrophoretic analysis of the major polypeptides of human erythrocyte membranes prepared by low and high osmolarity haemolysis.

    PubMed

    Zail, S S; Hoek, V D

    1975-04-16

    Human erythrocyte membranes were prepared in three ways: washing in hypotonic Tris buffer, pH 7.6, by lysis in isotonic Tris buffer pH 7.6 after incubation at 37 degrees C for 2 hours and by ultrasonication in an isotonic medium, pH 7.6. Analysis of the major polypeptides of the erythrocyte membranes by sodium dodecylsulphate polyacrylamide gel electrophoresis revealed a selective depletion of a major polypeptide representing glyceraldehyde-3-phosphate dehydrogenase in the membranes prepared by high osmolarity lysis. The pattern of seperation of the remaining polypeptides was identical in the 3 different membrane preparations.

  1. Saliva characteristics, diet and carioreceptivity in dental students.

    PubMed

    Chifor, Ioana; Badea, Iulia; Chifor, Radu; Popa, Dan; Staniste, Liviu; Tarmure, Dragos; Avram, Ramona

    2014-01-01

    The use of sugar by dental plaque microorganisms leads to acid formation from the bacteria metabolism, which determines a decrease of pH onto teeth surfaces. The value of the critical pH is 5.2-5.5. We aimed to evaluate the capacity of patients to change their diet towards caries prevention after acknowledging the values of saliva parameters (pH, buffer capacity). A group of 52 subjects were clinically examined according to the International Caries Assessment and Detection System protocol. They were required to complete a diet questionnaire and salivary tests were made for the oral mucosa hydration level, pH, buffer capacity, salivary flow rate at rest and upon stimulation. 4 pre-calibrated 6th year students and 2 dentists performed the tests and the ICDAS examination. One week after the tests, the subjects were asked to complete the diet questionnaire again. The studied group consisted of students aged between 23-26 years, randomly selected among 6(th) year students of the Faculty of Dentistry from Cluj-Napoca. The mean DMF-S index was 18.39. Most of the patients (65%) had a DMF-S index between 9 and 21. Just 2.5% had an index of 3, which was the lowest value recorded. 5% of the patients had a DMFS of 35, which was the maximal value recorded. The distribution of DMF-S was normal. 50% of the patients had no active caries. Even though most subjects (19.23%) had a pH within the normal interval, most of them were at the bottom value of the interval (6.8). Most subjects had a pH of 6.4, which is moderately acid. The mean pH was 6.7, therefore, a moderately acid one. The Pearson correlation coefficient between DMFS and pH was 0.255. A mild negative correlation (-0.275) was found between the cariogenic food and buffer capacity. A week later we noticed a statistically significant decrease of cariogenic foods and drinks in students with acid pH and with low buffer capacity. A regular intake of cakes, bonbons and chocolate was reported by subjects who had a high DMF-S value and a low saliva buffer capacity. Only after the patients were aware of their caries risk, did they change their diet towards a non-cariogenic one, even though they had had the theoretical knowledge regarding caries prevention for at least 3 years. We conclude that the use of the chair-side salivary test should be highly recommended for cario-receptive patients.

  2. Effects of solutions treated with oxygen radicals in neutral pH region on inactivation of microorganism

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsuyoshi; Hashizume, Hiroshi; Ohta, Takayuki; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2015-09-01

    The inactivation of microorganisms using nonequilbrium atmospheric pressure plasmas has been attracted much attention due to the low temperature processing and high speed treatment. In this study, we have inactivated E. coli suspended in solutions with neutral pH using an atmospheric-pressure oxygen radical source which can selectively supply electrically neutral oxygen radicals. E. coli cells were suspended with deionized distilled water (DDW) (pH = 6.8) or phosphate buffered saline (PBS) (pH = 7.4) or Citrate-Na buffer (pH = 6.5). The treated samples were diluted and spread on nutrient agar (Nutrient Broth). They were cultured at 37° C. The inactivation effects of oxygen radicals on those cells in solutions were evaluated by colony-counting method. O2 diluted by Ar gas were employed as a working gas for the radical source. The total gas flow rate and the gas mixture ratio of O2/(Ar + O2) were set at 5 slm and 0.6%, respectively. The distance between the radical exit and the suspension surface were set at 10 mm. As a result, the D values for DDW(pH = 6.8), PBS(pH = 7.4) and Citrate-Na buffer(pH = 6.5) were estimated to be 1.4 min, 0.9 min and 16.8 min respectively. The inactivation rates in DDW, PBS were significantly different from that in Citrate-Na buffer. This work was partly supported by JSPS KAKENHI Grant Number 26286072 and project for promoting Research Center in Meijo University.

  3. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  4. Delayed release film coating applications on oral solid dosage forms of proton pump inhibitors: case studies.

    PubMed

    Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R

    2010-02-01

    Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.

  5. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    PubMed

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  6. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    NASA Astrophysics Data System (ADS)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS fossil energy 1400% carbon negative.

  7. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor.

    PubMed

    Taylor, Allen D; Ladd, Jon; Yu, Qiuming; Chen, Shengfu; Homola, Jirí; Jiang, Shaoyi

    2006-12-15

    We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.

  8. Simultaneous LC determination of paracetamol and related compounds in pharmaceutical formulations using a carbon-based column.

    PubMed

    Monser, Lotfi; Darghouth, Frida

    2002-03-01

    A simple, rapid and convenient high performance liquid chromatographic method, which permits the simultaneous determination of paracetamol, 4-aminophenol and 4-chloracetanilide in pharmaceutical preparation has been developed. The chromatographic separation was achieved on porous graphitized carbon (PGC) column using an isocratic mixture of 80/20 (v/v) acetonitrile/0.05 M potassium phosphate buffer (pH 5.5) and ultraviolet detection at 244 nm. Correlation coefficient for calibration curves in the ranges 1-50 microg ml(-1) for paracetamol and 5-40 microg ml(-1) for 4-aminophenol and 4-chloroacetanilide were >0.99. The sensitivity of detection is 0.1 microg ml(-1) for paracetamol and 0.5 microg ml(-1) for 4-aminophenol and 4-chloroacetanilide. The proposed liquid chromatographic method was successfully applied to the analysis of commercially available paracetamol dosage forms with recoveries of 98-103%. It is suggested that the proposed method should be used for routine quality control and dosage form assay of paracetamol in pharmaceutical preparations. The chromatographic behaviour of the three compounds was examined under variable mobile phase compositions and pH, the results revealed that selectivity was dependent on the organic solvent and pH used. The retention selectivity of these compounds on PGC was compared with those of octadecylsilica (ODS) packing materials in reversed phase liquid chromatography. The ODS column gave little separation for the degradation product (4-aminophenol) from paracetamol, whereas PGC column provides better separation in much shorter time.

  9. Spectrophotometric Measurements of the Carbonate Ion Concentration: Aragonite Saturation States in the Mediterranean Sea and Atlantic Ocean.

    PubMed

    Fajar, Noelia M; García-Ibáñez, Maribel I; SanLeón-Bartolomé, Henar; Álvarez, Marta; Pérez, Fiz F

    2015-10-06

    Measurements of ocean pH, alkalinity, and carbonate ion concentrations ([CO3(2-)]) during three cruises in the Atlantic Ocean and one in the Mediterranean Sea were used to assess the reliability of the recent spectrophotometric [CO3(2-)] methodology and to determine aragonite saturation states. Measurements of [CO3(2-)] along the Atlantic Ocean showed high consistency with the [CO3(2-)] values calculated from pH and alkalinity, with negligible biases (0.4 ± 3.4 μmol·kg(-1)). In the warm, salty, high alkalinity and high pH Mediterranean waters, the spectrophotometric [CO3(2-)] methodology underestimates the measured [CO3(2-)] (4.0 ± 5.0 μmol·kg(-1)), with anomalies positively correlated to salinity. These waters also exhibited high in situ [CO3(2-)] compared to the expected aragonite saturation. The very high buffering capacity allows the Mediterranean Sea waters to remain over the saturation level of aragonite for long periods of time. Conversely, the relatively thick layer of undersaturated waters between 500 and 1000 m depths in the Tropical Atlantic is expected to progress to even more negative undersaturation values. Moreover, the northern North Atlantic presents [CO3(2-)] slightly above the level of aragonite saturation, and the expected anthropogenic acidification could result in reductions of the aragonite saturation levels during future decades, acting as a stressor for the large population of cold-water-coral communities.

  10. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.

    PubMed

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-08-05

    As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn2O4, LiCoxMnyNizO2, Al2O3 and C while the leach residue is composed of LiNixMnyCozO2, LiMn2O4, Al2O3, MnCO3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fe/Mg smectite formation under acidic conditions on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2016-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars have been hypothesized to form under neutral to alkaline conditions. These pH conditions would also be favorable for formation of widespread carbonate deposits which have not been detected on Mars. We propose that smectite deposits on Mars formed under moderately acidic conditions inhibiting carbonate formation. We report here the first synthesis of Fe/Mg smectite in an acidic hydrothermal system [200 °C, pHRT ∼ 4 (pH measured at room temperature) buffered with acetic acid] from Mars-analogue, glass-rich, basalt simulant with and without aqueous Mg or Fe(II) addition under N2-purged anoxic and ambient oxic redox conditions. Synthesized Fe/Mg smectite was examined by X-ray-diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy, scanning electron microscopy and electron microprobe to characterize mineralogy, morphology and chemical composition. Alteration of the glass phase of basalt simulant resulted in formation of the Fe/Mg smectite mineral saponite with some mineralogical and chemical properties similar to the properties reported for Fe/Mg smectite on Mars. Our experiments are evidence that neutral to alkaline conditions on early Mars are not necessary for Fe/Mg smectite formation as previously inferred. Phyllosilicate minerals could instead have formed under mildly acidic pH conditions. Volcanic SO2 emanation and sulfuric acid formation is proposed as the major source of acidity for the alteration of basaltic materials and subsequent formation of Fe/Mg smectite.

  12. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley

    2016-04-01

    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  13. Enantioselective determination of (R)-zopiclone and (S)-zopiclone (eszopiclone) in human hair by micropulverized extraction and chiral liquid chromatography/high resolution mass spectrometry.

    PubMed

    Miyaguchi, Hajime; Kuwayama, Kenji

    2017-10-13

    Zopiclone and its (S)-enantiomer (eszopiclone) are commonly prescribed for insomnia. Despite the high demand for enantioselective differentiation, the chiral analysis of zopiclone in hair has not been reported. In this study, a method for the enantioselective quantification of zopiclone in human hair was developed. The extraction medium and duration were optimized using real eszopiclone-positive hair samples. Specifically, micropulverized extraction with 3.0M ammonium phosphate buffer (pH 8.4) involving salting-out assisted liquid-liquid extraction with acetonitrile was utilized to minimize the degradation of zopiclone and for rapid and facile operation. On the other hand, recovery of the conventional solid-liquid extraction involved overnight soaking in 3.0M ammonium phosphate buffer (pH 8.4) was only 0.58±0.12% of the maximum recovery achieved by the present method due to the decomposition in the phosphate buffer. An excellent chiral separation (Rs=5.0) was achieved using a chiral stationary phase comprising cellulose tris(3,5-dichlorophenylcarbamate) and a volatile mobile phase of 10mM ammonium carbonate (pH 8.0)-acetonitrile (25:75, v/v). Detection was carried out using liquid chromatography/high resolution mass spectrometry (LC/HRMS) with electrospray ionization. A Q Exactive mass spectrometer equipped with a quadrupole-Orbitrap analyzer was used for detection. The concentration of 0.50pg/mg was defined as the lowest limit of quantification using 5mg of hair sample. Using the developed approach, the concentration of eszopiclone in hair after a single 2-mg dose was found to be 441pg/mg, which was higher than all the reported values regarding a single administration of zopiclone. After daily administration of racemic zopiclone (3.75mg/day), the concentrations of (R)-enantiomer and (S)-enantiomer in the black hair were 5.30-8.31ng/mg and 7.96-12.8ng/mg, respectively, and the concentration of the (S)-enantiomer was always higher than that of the (R)-enantiomer due to the enantioselective difference in the pharmacokinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The influence of chicken eggshell powder as a buffer on biohydrogen production from rotten orange (Citrus nobilis var. microcarpa) with immobilized mixed culture

    NASA Astrophysics Data System (ADS)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2017-06-01

    This research observed the influence of chicken eggshell on hydrogen production from anaerobic fermentation of rotten orange (Citrus nobilis var. microcarpa) using batch method at 36 °C and pH 7. Fermentation material were varied in several types, the first type was meat and peel of oranges with VS of 59.152 g.L-1 in A, B, C, and D compositions. The second type was orange meat added with peel (OMP) with VS of 36.852 g.L-1. The immobilized ingredients used in the experiment consisted of 2 % (w/v) alginate and active carbon with the ratio of 1:1. 3.2 g chicken eggshell powder was added to the first type of material (substrates A, B, C, and D). Results showed that pH during fermentation process using chicken eggshell as a buffer was constant at 5.5; however, without the use of chicken eggshell, the pH decreased to 3.8 and increased slightly before it stayed stable at 4.0. The total amount of gas produced in sample using the chicken eggshell was 46,35 mL.mg VS-1 and in sample produced without the eggshell, it was 3,4 mL.mg VS-1. The production of hydrogen in substrate that used chicken eggshell was 1,276 mL.gVS-1 in average on the first day. Meanwhile, for the substrate with no addition of chicken eggshell, the average production of hydrogen was 0,163 mL.gVS-1. The reduction of volatile solid (VS) in sample that used chicken eggshell was 24 %, while in sample produced without addition of chicken eggshell, the reduction was 12 %. The liquid compounds (VFA) produced in the fermentation using chicken eggshell were acetic acid and butyric acid. Meanwhile, without addition of chicken eggshell, the products were acetic acid, butyric acid, and propionic acid. This study shows that addition of chicken eggshell as a buffer effectively contributed to hydrogen production during fermentation of rotten oranges.

  15. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces.

    PubMed

    Couto, José António; Neves, Filipe; Campos, Francisco; Hogg, Tim

    2005-10-25

    The heat resistance of three strains of Dekkera/Brettanomyces (Dekkera anomala PYCC 5,153, Dekkera bruxellensis PYCC 4,801 and Dekkera/Brettanomyces 093) was evaluated at different temperatures between 32.5 and 55 degrees C. Thermal inactivation tests were performed in tartrate buffer solution (pH 4.0) and in wines. In the studies employing buffer as the heating menstruum, measurable thermal inactivation began only at temperatures of 50 degrees C. When heating was performed in wine, significant inactivation begins at 35 degrees C. Subsequent thermal inactivation tests were performed in buffer at various levels of pH, ethanol concentration, and various phenolic acids. Results from experiments in buffer with added ethanol suggest that the greater heat sensitivity shown in wines can be largely attributed to ethanol, although potentiation of this effect might be due to the phenolic content, particularly from ferulic acid. In the range of pH values tested (2.5-4.5), this factor had no influence in the heat inactivation kinetics. Relevant data, in the form of D and Z values calculated in the various environments, potentially useful for the establishment of regimes of thermal control of Dekkera/Brettanomyces yeasts in wine and contaminated equipment is presented.

  16. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  17. Characterization of biodegradable polymers irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Salguero, N. G.; del Grosso, M. F.; Durán, H.; Peruzzo, P. J.; Amalvy, J. I.; Arbeitman, C. R.; García Bermúdez, G.

    2012-02-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly- L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  18. A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds.

    PubMed

    Ozcan, Hakki Mevlut; Sagiroglu, Ayten

    2010-08-01

    In this study the biosensor was constructed by immobilizing tissue homogenate of banana peel onto a glassy carbon electrode surface. Effects of immobilization materials amounts, effects of pH, buffer concentration and temperature on biosensor response were studied. In addition, the detection ranges of 13 phenolic compounds were obtained with the help of the calibration graphs. Storage stability, repeatability of the biosensor, inhibitory effect and sample applications were also investigated. A typical calibration curve for the sensor revealed a linear range of 10-80 microM catechol. In reproducibility studies, variation coefficient and standard deviation were calculated as 2.69%, 1.44 x 10(-3) microM, respectively.

  19. Laser Raman spectra of mono-, oligo- and polysaccharides in solution

    NASA Astrophysics Data System (ADS)

    Barrett, T. W.

    We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.

  20. [Key factors in the control of electroosmosis with external radial electric field in CE].

    PubMed

    Zhu, Y; Chen, Y

    1999-11-01

    Direct control of electroosmosis flow (EOF) by external radial electric field was performed at room temperature using a home-made field-modulated capillary electrophoresis (CE) system. The EOF was monitored at 206 nm by using DMSO as a probe. To apply a radial electric field across the CE capillary wall, the capillary was cased with a wide column. Both of the concentric space and the capillary bore were then filled with an identical running buffer and applied with an axial electric field of 150 V/cm but starting from different levels. All of the tubes used were made of fused silica with polyimide over-coating (from the Yongnian Optical Fiber Work, Hebei, P. R. China). The size of the CE capillaries adopted was 25-100 microns i.d. (375 microns o.d.) x 28.5/45 cm (effective/total length), and that of the casing column 400 microns i.d. x 32 cm. To investigate the fundamentals of the external EOF control when using the flexible fused silica capillaries, various parameters have been inspected such as pH, buffer composition, additives and capillary wall feature etc.. As expected, to well control both of the magnitude and direction of the electroosmosis, the buffer pH should be kept below 4 and the buffer concentration below 50 mmol/L. However, buffers below 1 mmol/L should be avoided because such a diluted running buffer may result in poor CE separation. Weak electrolytes like citric acid, tartaric acid and acetic acid were found to be capable of generating better EOF control than the strong electrolytes such as phosphate and chlorides. This is possibly due to the formation of looser electric double layer with the weak rather than the strong electrolytes. Some wall coatings like calix arene and its derivatives can evidently improve the EOF control even at pH 5. This reveals an exciting way to expend the controllable pH range. In addition, narrow-bore capillaries were demonstrated to be better than wide-bore tubes. Other conditions such as buffer additives and capillary rinse procedure were shown to have only negligible influence on the control.

  1. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  2. Parameterization of hyperpolarized (13)C-bicarbonate-dissolution dynamic nuclear polarization.

    PubMed

    Scholz, David Johannes; Otto, Angela M; Hintermair, Josef; Schilling, Franz; Frank, Annette; Köllisch, Ulrich; Janich, Martin A; Schulte, Rolf F; Schwaiger, Markus; Haase, Axel; Menzel, Marion I

    2015-12-01

    (13)C metabolic MRI using hyperpolarized (13)C-bicarbonate enables preclinical detection of pH. To improve signal-to-noise ratio, experimental procedures were refined, and the influence of pH, buffer capacity, temperature, and field strength were investigated. Bicarbonate preparation was investigated. Bicarbonate was prepared and applied in spectroscopy at 1, 3, 14 T using pure dissolution, culture medium, and MCF-7 cell spheroids. Healthy rats were imaged by spectral-spatial spiral acquisition for spatial and temporal bicarbonate distribution, pH mapping, and signal decay analysis. An optimized preparation technique for maximum solubility of 6 mol/L and polarization levels of 19-21% is presented; T1 and SNR dependency on field strength, buffer capacity, and pH was investigated. pH mapping in vivo is demonstrated. An optimized bicarbonate preparation and experimental procedure provided improved T1 and SNR values, allowing in vitro and in vivo applications.

  3. Synthesis and characterization of oxytetracycline imprinted magnetic polymer for application in food

    NASA Astrophysics Data System (ADS)

    Aggarwal, Sneha; Rajput, Yudhishthir Singh; Singh, Gulab; Sharma, Rajan

    2016-02-01

    Magnetic imprinted polymer was prepared by polymerization of methacrylate and ethyleneglycoldimethacrylate in the presence of oxytetracycline on the surface of iron magnetite. Selectivity of prepared polymer was calculated from ratio of partition coefficient of oxytetracycline for imprinted and non- imprinted polymer in water, acetonitrile, methanol and at different pH in aqueous buffer. pH of solvent exhibited pronounced effect on selectivity. Selectivity at pH 7.0, 6.0 and 5.0 was 36.0, 2.25 and 1.61 fold higher than at pH 4.0. Imprinted polymer was not selective for oxytetracycline in methanol. However, selectivity in water and acetonitrile was 19.42 and 2.86, respectively. Oxytetracycline did bind to imprinted polymer in water or aqueous buffer (pH 7.0) and could be eluted with methanol. Prepared polymer extracted 75-80 % oxytetracycline from water, honey and egg white.

  4. Hormone-Dependence of Sarin Lethality in Rats: Sex Differences and Stage of the Estrous Cycle

    DTIC Science & Technology

    2015-06-12

    that causes numerous physiological events including miosis, salivation , respiratory failure, tremors, seizures, and death. Treatment regimens that...into 96-well plates. The reactions were initiated by the addition of 290 μL of 50 mM sodium phosphate buffer ( pH 8.0) containing one of the following...buffer containing 50mMHEPES pH 7.4 in a total volume of 280 μL. Treat- ed samples were loaded into a 96-microtiter plate well, and the reaction was

  5. High-performance cation-exchange chromatofocusing of proteins.

    PubMed

    Kang, Xuezhen; Frey, Douglas D

    2003-03-28

    Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.

  6. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu; Gates, S. M.

    2014-05-15

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, thismore » work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.« less

  7. The effect of pH, buffer capacity and ionic strength on quetiapine fumarate release from matrix tablets prepared using two different polymeric blends.

    PubMed

    Hamed, Rania; AlJanabi, Reem; Sunoqrot, Suhair; Abbas, Aiman

    2017-08-01

    The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel ® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol ® HD5 ATO). The two formulations attained release profiles of QF over 24 h similar to that of Seroquel ® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel ® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro-in vivo correlations.

  8. Towards a rational approach for heavy-atom derivative screening in protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agniswamy, Johnson; Joyce, M. Gordon; Hammer, Carl H.

    2008-04-01

    Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity ofmore » more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Met-, Cys- and His-containing peptides were derivatized against Hg, Au and Pt compounds, while Tyr-, Glu-, Asp-, Asn- and Gln-containing peptides were assessed against Pb compounds. A total of 1668 reactive conditions were examined using mass spectrometry and were compiled into heavy-atom reactivity tables. The results showed that heavy-atom derivatization reactions are highly linked to buffer and pH, with the most accommodating buffer being MES at pH 6. A group of 21 compounds were identified as most successful irrespective of ligand or buffer/pH conditions. To assess the applicability of the peptide heavy-atom reactivity to proteins, lysozyme crystals were derivatized with a list of peptide-reactive compounds that included both known and new compounds for lysozyme derivatization. The results showed highly consistent heavy-atom reactivities between the peptides and lysozyme.« less

  9. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less

  10. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.

  11. Rate of Glycolate Formation During Photosynthesis at High pH 1

    PubMed Central

    Orth, Gertrude M.; Tolbert, N. E.; Jimenez, Eduardo

    1966-01-01

    The products of C14O2 fixation by Chlamydomonas and Chlorella were studied under conditions most favorable for glycolate synthesis. The highest percentage of the C14 was incorporated into glycolate in the pH range of 8 to 9. After 1 to 2 minutes as much as 40% of the C14 was found in glycolate products and only a trace of C14 was present as phosphoglycerate. Below pH 8 the rate of photosynthesis was much faster, but only a small percent of the C14 was incorporated into glycolate in 1 or 2 minutes, while a high percent of the C14 accumulated in phosphoglycerate. C14 labeling of glycolate even at pH 8 or above did not occur at times shorter than 10 seconds. During the first seconds of photosynthesis, nearly all of the C14 was found in phosphoglycerate and sugar phosphates. Thus glycolate appears to be formed after the phosphate esters of the photosynthetic carbon cycle. Washing Chlamydomonas with water 2 or 3 times resulted in the loss of most of their free phosphate. When a small aliquot of NaHC14O3 was added to washed algae in the absence of this buffering capacity, the pH of the algal medium became 8 or above and much of the fixed C14 accumulated in glycolate. PMID:16656223

  12. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  13. Geochemical evolution of solutions derived from experimental weathering of sulfide-bearing rocks

    USGS Publications Warehouse

    Munk, L.; Faure, G.; Koski, R.

    2006-01-01

    The chemical composition of natural waters is affected by the weathering of geologic materials at or near the surface of the Earth. Laboratory weathering experiments of whole-rock sulfide rocks from the Shoe-Basin Mine (SBM) and the Pennsylvania Mine (PM) from the Peru Creek Basin, Summit County, Colorado, indicate that the mineral composition of the sulfide rocks, changes in pH, the duration of the experiment, and the formation of sorbents such as Fe and Al oxyhydroxides affect the chemical composition of the resulting solution. Carbonate minerals in the rock from SBM provide buffering capacity to the solution, contribute to increases in the pH and enhance the formation of Fe and Al oxyhydroxides, which sorb cations from solution. The final solution pH obtained in the experiments was similar to those measured in the field (i.e., 2.8 for PM and 5.0 for SBM). At PM, acidic, metal-rich mine effluent is discharged into Peru Creek where it mixes with stream water. As a result, the pH of the effluent increases causing Fe and Al oxyhydroxide and schwertmannite to precipitate. The resulting solids sorb metal cations from the water thereby improving the quality of the water in Peru Creek. ?? 2006.

  14. One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode.

    PubMed

    Reuillard, Bertrand; Abreu, Caroline; Lalaoui, Noémie; Le Goff, Alan; Holzinger, Michael; Ondel, Olivier; Buret, Francois; Cosnier, Serge

    2015-12-01

    This study reports a mixed operational/storage stability of a MWCNT-based glucose biofuel cell (GBFC) over one year. The latter was examined by performing a one hour discharge every day during one month followed by several discharges over a period of 11 months. Under continuous discharge in physiological conditions (5 mM glucose, 37°, pH7), the GBFC exhibits a 25% power decrease after 1 h of operation. This decrease is mainly due to the deactivation of laccase biocathodes at neutral pH. Nevertheless, the biocathodes can be reversibly reactivated via storage in phosphate buffer (pH 5). Under these conditions, the GBFC finally exhibits 22% of its initial maximum power density after one year at intermittent reactivation/discharge cycles. Although both GBFC electrodes can exhibit one year stability, short-term experiments show that biocathodes are limited by hydroxide inhibition while long-term experiments indicate that bioanodes are likely limited by the stability of the GOx itself. While most of the GBFCs in the literature present stability in the range of several weeks, these results demonstrate the viability of a GBFC for industrial applications in a long period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Acid-base relations in epithelium of turtle bladder: site of active step in acidification and role of metabolic CO2.

    PubMed

    Steinmetz, P R

    1969-07-01

    The acid-base relations across the two surfaces of the epithelium of the turtle bladder were examined. By means of the 5,5-dimethyl-2,4-oxazolidinedione (DMO) technique the intracellular OH(-) concentration was measured in the presence and absence of a transepithelial pH gradient. When both sides of the bladder were bathed with solutions free of exogenous CO(2) and bicarbonate at pH 7.41 ([OH(-)] = 239 nmoles/liter), the epithelial cells were alkaline, the mean intracellular [OH(-)] being 347nmoles/liter. This alkalinity of the cells was preserved in bladders that secreted H(+) against a gradient of over 2 pH units. In bathing solutions stirred with 4.85% CO(2) and buffered with 25 mM HCO(3) (-) at pH 7.41 the intracellular [OH(-)] was lower than in CO(2)-free solutions and close to the extracellular [OH(-)]. In the CO(2)-free system anaerobiosis caused increased alkalinity of the cells and inhibition of H(+) secretion presumably by decreased metabolic CO(2) production. Carbonic acid inhibitors reduced H(+) secretion, but had no significant effect on the alkalinity of the cells. An inactive analogue of acetazolamide had no effect on H(+) secretion. The results indicate that the active step in acidification is located near the mucosal surface of the epithelium and that the alkali formed within the epithelial cells moves passively into the serosal solution along an electro-chemical gradient. The inhibitory effect of certain sulfonamides on H(+) secretion by the bladder is directly correlated with their known carbonic anhydrase inhibitory activity, but not associated with a measurable change in the mean intracellular [OH(-)].

  16. Aqueous solution dispersement of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  17. Protein Buffering in Model Systems and in Whole Human Saliva

    PubMed Central

    Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian

    2007-01-01

    The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and α-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922

  18. Evaluation of Salivary Flow Rate, pH and Buffer in Pre, Post & Post Menopausal Women on HRT.

    PubMed

    D R, Mahesh; G, Komali; K, Jayanthi; D, Dinesh; T V, Saikavitha; Dinesh, Preeti

    2014-02-01

    Climateric is considered to be a natural phase of life which by definition is the period of life starting from decline in ovarian activity until after the end of ovarian function. It is accompanied by various health consequences that include the changes in saliva too. This study was carried out to evaluate the salivary flow rate, pH, buffering capacity in pre-menopausal, post-menopausal and post-menopausal women on HRT. (1) To evaluate the salivary flow rate, pH of resting saliva and stimulated saliva and buffer capacity of stimulated saliva in pre-menopausal, post-menopausal and post-menopausal women on Hormone Replacement Therapy (HRT). (2) To compare the above salivary findings between pre-menopausal, post-menopausal and post-menopausal women on HRT. The study was carried out on 60 patients. These patients were divided into three groups of 20 patients: Group 1: Pre-menopausal women (control), Group 2: post-menopausal women (case), Group 3: post-menopausal women on HRT (case). The control group consisted of 20 women volunteers, having regular ovulatory menstrual cycles with no known systemic illness and deleterious habits and Group 2 consists of 20 post-menopausal women and Group 3 will consist of 20 post-menopausal women on HRT. After clearing the mouth by swallowing, stimulated saliva was collected after chewing paraffin for 10 mins in to a glass centrifuge tube graded in 0.1 mL increments up to 10mL.in rare cases the collection time will be reduced or extended (5-15 min), salivary flow rate will be determined as ml/min, immediately after collection, pH was determined by dipping pH test paper directly into the sample of oral fluid, salivary buffer capacity was determined by using saliva check buffer kit (GC corporation). The data obtained was statistically evaluated using chi-square test, fisher exact test ANOVA analysis. In our study we found salivary flow rate significantly lower in the post-menopausal women in comparison with the menstruating women and also there was improvement in the flow rate in individuals who were on HRT, it was also observed that salivary pH of the post-menopausal group was significantly lower than that of the control group, statistically significant difference in buffer capacity values was found between the groups however buffer capacity values were higher in the post-menopausal group than the control group. From the above study it is clear that post-menopausal women will present with oral discomfort, while HRT can improve the same. Hence our role as physicians and health care providers is to incorporate preventive dental health care in post-menopausal women and clearly inform patients about both the benefits and the limitations of HRT.

  19. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS

    PubMed Central

    Brdička, R.

    1936-01-01

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968

  20. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers.

    PubMed

    Little, Mark G; Jackson, Robert B

    2010-12-01

    Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).

  1. The natural diatomite from caldiran-van (Turkey): electroanalytical application to antimigraine compound naratriptan at modified carbon paste electrode.

    PubMed

    Calışkan, Necla; Sögüt, Eda; Saka, Cafer; Yardım, Yavuz; Sentürk, Zuhre

    2010-09-01

    This paper is the first report describing the characterization of local diatomite of Caldiran-Van region (Eastern Anatolia, Turkey). Special attention was paid to the ability of its electroanalytical performance at modified electrodes and to the potential application of diatomite-modified electrode. For this purpose, the determination of Naratriptan which is a novel oral triptan (5-hydroxytryptamine receptor agonist) in migraine treatment, by means of a carbon paste electrode modified with 10% (w/w) of diatomite was studied using cyclic and square-wave voltammetry. The experimental conditions that affect the electrode reaction process were studied in terms of pH of the supporting electrolyte, scan rate, accumulation variables, modifier composition and square-wave parameters. Using square-wave stripping mode, the drug yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 4.0 at 0.84 V (vs. Ag/AgCl) (a pre-concentration step being carried out with an open circuit at 120 s). The process could be used to determine Naratriptan concentrations in the range 5x10(-7)-9x10(-7) M, with a detection limit of 1.25x10(-7) M (46.5 mug L(-1)). The applicability of the method to spiked human urine samples was illustrated.

  2. Simultaneous determination of uranium carbide dissolution products by capillary zone electrophoresis.

    PubMed

    Sladkov, Vladimir; Fourest, Blandine

    2009-03-20

    Separation and simultaneous determination of a number of organic acid anions (oxalate, mellitate, trimellitate and benzoate) and U(VI) with direct UV detection is developed for analysis of uranium carbide (UC) dissolution products by capillary zone electrophoresis (CZE). Reverse polarity mode is used. It is found that complex formation of U(VI) with carbonate, used as a carrier electrolyte, allows U(VI) to be determined, as negatively charged species, in a single run with organic acid anions. Some parameters such as pH value, composition of electrolyte and detection wavelength are optimized. Under the chosen conditions (carbonate buffer (ionic strength of 100 mM), pH 9.8, 0.15 mM tetradecyltrimethylammonium bromide (TTAB)) a complete separation is achieved. Calibration plots are linear in two ranges of concentration for U(VI) ( approximately 1 x 10(-5) to 1 x 10(-3)), mellitate and trimellitate ( approximately 5 x 10(-6) to 5 x 10(-4)), and about one range ( approximately 1 x 10(-4) to 5 x 10(-3)) for oxalate and benzoate. Accuracy of the procedure is checked by the "added-found" method in standard mixture solutions. Relative standard deviation is within the range of 2-10% and the recovery is in the range of 90-110%. This method is applied for the analysis of real UC dissolution samples.

  3. Kinetics and equilibria of cyanide binding to prostaglandin H synthase.

    PubMed

    MacDonald, I D; Dunford, H B

    1989-09-01

    Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.

  4. Capillary electrochromatography and capillary electrochromatography-electrospray mass spectrometry for the separation of non-steroidal anti-inflammatory drugs.

    PubMed

    Desiderio, C; Fanali, S

    2000-10-20

    In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.

  5. Toxicity screening of biochar-mineral composites using germination tests.

    PubMed

    Mumme, Jan; Getz, Josephine; Prasad, Munoo; Lüder, Ulf; Kern, Jürgen; Mašek, Ondřej; Buss, Wolfram

    2018-05-08

    This study assessed the properties and toxicity (water cress germination trials) of 38 waste-derived, novel biochar-mineral composites (BMCs) produced via slow pyrolysis and hydrothermal carbonization (hydrochars). The biochars were produced from sewage sludge and compost-like output (CLO) by varying the type of mineral additive (zeolite, wood ash and lignite fly ash), the mineral-to-feedstock ratio and the carbonization process. While pure hydrochars completely inhibited germination of water cress, this effect was ameliorated by mineral additives. Seedlings grew best in pyrolysis chars and while wood ash addition decreased plant growth in many cases, 1:10 addition to CLO doubled germination rate. The factors responsible for the phytotoxicity can be attributed to pH, salinity and organic contaminants. Importantly, while pure minerals inhibited germination, conversion of minerals into BMCs reduced their inhibitory effects due to buffered release of minerals. Overall, mineral wastes (e.g., combustion ashes) and waste biomass can be used safely as sources of nutrients and stable organic carbon (for soil carbon sequestration) when converted into specific biochar-mineral composites, exploiting synergies between the constituents to deliver superior performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Copper speciation in the gill microenvironment of carp (Cyprinus carpio) at various levels of pH.

    PubMed

    Tao, Shu; Long, Aimin; Xu, Fuliu; Dawson, R W

    2002-07-01

    The fish gill microenvironment of Cyprinus carpio under stress of copper exposure was investigated. pH and other parameters including free copper activity, alkalinity, and inorganic and organic carbons in the surrounding water (inspired water) and in the gill microenvironment (expired water) were measured or calculated at various levels of pH and varying total copper concentrations. The chemical equilibrium calculation (from MINEQA2) and complexation modeling (mucus-copper) were coupled to calculate both species distribution. The results indicate that the pH in the fish gill microenvironment was different from that in the surrounding water with a balance point around 6.9. The secretion of both CO(2) and mucus was affected in both linear and nonlinear ways when the fish were exposed to elevated concentrations of copper. The complexation capacity of the gill mucus was characterized by a conditional stability constant (logk(Cu-mucus)) of 5.37 along with a complexation equivalent concentration (L(Cu-mucus)) of 0.96 mmol Cu/mg C. For both the fish microenvironment and the surrounding water, the dominant copper species shifted from Cu(2+) to CuCO(3)(0) and to Cu(OH)(2)(0) when the pH of the surrounding water changed from 6.12 to 8.11. The change in copper speciation in the gill microenvironment is smaller than that in the surrounding water due to the pH buffering capacity of the fish gills.

  7. Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode.

    PubMed

    Li, Junhua; Zhang, Fuxing; Wang, Jianqiu; Xu, Zhifeng; Zeng, Rongying

    2009-05-01

    Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In(3+) has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In(3+) in a 0.01 M HAc-NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at -0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In(3+). A good linear relationship between the stripping peak currents and the In(3+) concentration is obtained, covering the concentration range from 5.0 x 10(-10) to 2.0 x 10(-7) M, with a correlation coefficient of 0.999; the detection limit is 1.0 x 10(-11) M. This proposed method has been applied to detect In(3+) as a new way.

  8. Amperometric L-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma

    2017-10-01

    A novel matrix, carboxylated multiwalled carbon nanotubes-tin oxide nanoparticles-graphene-chitosan (c-MWCNTs-SnO2-GR-CS) composite, was prepared for biosensor construction. Lysine oxidase (LOx) enzyme was immobilized covalently on the surface of c-MWCNTs-GR-SnO2-CS composite modified glassy carbon electrode (GCE) using N-ethyl-N‧-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS). Effects of electrode composition and buffer pH on biosensor response were investigated to optimize the working conditions. The biosensor exhibited wide linear range (9.9 × 10-7 M-1.6 × 10-4 M), low detection limit (1.5 × 10-7 M), high sensitivity (55.20 μA mM-1 cm-2) and fast amperometric response (<25 s) at +0.70 V vs. Ag/AgCl. With good repeatability and long-term stability, the c-MWCNTs-SnO2-GR-CS based biosensor offered an alternative for L-lysine biosensing. The practical applicability of the biosensor in two dietary supplements has also been addressed.

  9. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    PubMed

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate.

    PubMed Central

    Uffen, R L

    1976-01-01

    A species of Rhodopseudomonas that grows under strict anaerobic conditions in the dark and requires CO was isolated from lake and pond sediments. Although anaerobic growth in the dark occurs in a chemically defined mineral medium with CO as the only carbon and energy source, growth is stimulated by adding trypticase. Under these conditions, cells exhibit a generation time of 6.7 hr and reach a final concentration of 1 to 3 X 10(9) cells per ml of liquid medium. Resting suspensions of CO-grown cells metabolize about 6.7 mumol of CO per mg of protein in 1 hr and produce equimolar amounts of CO2 and H2 according to the equation CO + H2O leads to CO2 + H2. As predicted by this equation, when cells were suspended in tritium-labeled water containing potassium phosphate buffer at pH 7.0 and incubated with pure CO, 3H2 gas was produced at linear rate with a constant specific activity. PMID:1067620

  11. Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay - Brazil).

    PubMed

    Cotovicz, Luiz C; Knoppers, Bastiaan A; Brandini, Nilva; Poirier, Dominique; Costa Santos, Suzan J; Abril, Gwenaël

    2018-04-01

    The dynamics of the aragonite saturation state (Ω arag ) were investigated in the eutrophic coastal waters of Guanabara Bay (RJ-Brazil). Large phytoplankton blooms stimulated by a high nutrient enrichment promoted the production of organic matter with strong uptake of dissolved inorganic carbon (DIC) in surface waters, lowering the concentrations of dissolved carbon dioxide (CO 2aq ), and increasing the pH, Ω arag and carbonate ion (CO 3 2- ), especially during summer. The increase of Ω arag related to biological activity was also evident comparing the negative relationship between the Ω arag and the apparent utilization of oxygen (AOU), with a very close behavior between the slopes of the linear regression and the Redfield ratio. The lowest values of Ω arag were found at low-buffered waters in regions that receive direct discharges from domestic effluents and polluted rivers, with episodic evidences of corrosive waters (Ω arag <1). This study showed that the eutrophication controlled the variations of Ω arag in Guanabara Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electrodialysis operation with buffer solution

    DOEpatents

    Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  13. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus) Peel Using Response Surface Methodology

    PubMed Central

    Abdul Manap, Mohd Yazid; Zohdi, Norkhanani

    2014-01-01

    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403

  14. Influence of organic buffers on bacteriocin production by Streptococcus thermophilus ST110.

    PubMed

    Somkuti, George A; Gilbreth, Stefanie E

    2007-08-01

    The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37 degrees C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8-10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; microg/mL) and higher yields of thermophilin 110 (units/microg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 microg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/microg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations.

  15. Influence of Dissolution Media and Presence of Alcohol on the In Vitro Performance of Pharmaceutical Products Containing an Insoluble Drug.

    PubMed

    Friuli, Valeria; Bruni, Giovanna; Musitelli, Giorgio; Conte, Ubaldo; Maggi, Lauretta

    2018-01-01

    The purpose of this investigation is to determine how the dissolution media may influence the release rate of an insoluble drug in in vitro conditions. Some oral dosage forms containing ibuprofen, a molecule that shows pH-dependent solubility, are tested. They are evaluated in different media to simulate the gastrointestinal transit at paddle rotation speeds of 50 and 100 rpm. Moreover, the potential effect of different ethanol concentrations on drug release is tested. The dissolution profiles of the tablets show a similar behavior in water (pH 1.0) and phosphate buffer (pH 4.5) where the 2 doses are not completely dissolved. The soft capsules show a different behavior: a certain amount of ibuprofen, which is in solution inside the capsule, reprecipitates in water and in the pH 4.5 buffer. Instead, ibuprofen dissolves rapidly in the pH 6.8 buffer from all the formulations. In the water-ethanol solutions, the dissolution curves show a valuable increase in the drug dissolved at higher ethanol concentrations. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Isolation and characterization of Chinese standard fulvic acid sub-fractions separated from forest soil by stepwise elution with pyrophosphate buffer.

    PubMed

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P

    2015-03-04

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.

  17. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer

    PubMed Central

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.

    2015-01-01

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451

  18. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    NASA Astrophysics Data System (ADS)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering capacity to previously studied non-halophilic bacteria. The titration data were used to determine the number of types, concentrations, and associated deprotonation constants of functional groups on the bacterial surface; the neptunium adsorption measurements were used to constrain binding constant values for the important neptunium (V)-bacterial surface species. Together, these results can be incorporated into geochemical speciation models to aid in the prediction of neptunium (V) mobility in complex bacteria-bearing geochemical systems.

  19. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  20. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  1. Acidification of forest soil in Russia: From 1893 to present

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.

    2003-01-02

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations similar to 100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases inmore » precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place.« less

  2. Acidification of forest soil in Russia: From 1893 to present

    USGS Publications Warehouse

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  3. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting.

    PubMed

    Wong, Jonathan W-C; Fung, Shun On; Selvam, Ammaiyappan

    2009-07-01

    To evaluate the use of coal fly ash (CFA) on the decomposition efficiency of food waste, synthetic food waste was mixed with lime at 1.5% and 3% (equivalent to 0.94% and 1.88% CaCO(3), respectively), CFA at 5%, 10% and 15% with lime so as to achieve CaCO(3) equivalent of 1.88% and composted for 42 days in a thermophilic 20 l composter with two replicates each. Alkaline materials at 1.88% CaCO(3) equivalent successfully buffered the pH during the composting and enhanced the decomposition efficiency. When these buffering was achieved with CFA+lime, the composting period could be shortened to approximately 28 days compared with approximately 42 days in 3% lime. Organic decomposition in terms of CO(2) loss, carbon turnover and nitrogen transformation were significantly higher for treatments with 1.88% CaCO(3) equivalent. Nutrient transformations and compost maturity parameters indicated that addition of CFA (5-10%) with lime at 1.88% CaCO(3) equivalent enhances the decomposition efficiency and shortens the composting period by 35%.

  4. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE PAGES

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L -1 and inhibited at > 2.5 g L -1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L -1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] wasmore » mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  5. Taka-amylase A in the conidia of Aspergillus oryzae RIB40.

    PubMed

    Nguyen, Cong Ha; Tsurumizu, Ryoji; Sato, Tsutomu; Takeuchi, Michio

    2005-11-01

    A study of Taka-amylase A of conidia from Aspergillus oryzae RIB40 was done. During the research, proteins from conidia and germinated conidia were analyzed using SDS-PAGE, 2-D gel electrophoresis, Western blot analysis, MALDI-TOF Mass spectrometry, and native-PAGE combined with activity staining of TAA. The results showed that TAA exists not only in germinated conidia but also in conidia. Some bands representing degraded products of TAA were detected. Conidia, which formed on starch (SCYA), glucose (DCYA), and glycerol (GCYA) plates, contained mature TAA. Only one active band of TAA was detected after native-PAGE activity staining. In addition, TAA activity was detected in cell extracts of conidia using 0.5 M acetate buffer, pH 5.2, as extraction buffer, but was not detected in whole conidia or cell debris. The results indicate that TAA exists in conidia in active form even when starch, glucose, or glycerol is used as carbon source. TAA might belong to a set of basal proteins inside conidia, which helps in imbibition and germination of conidia.

  6. Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.

  7. 40 CFR Appendix A to Subpart Ddd... - Free Formaldehyde Analysis of Insulation Resins by the Hydroxylamine Hydrochloride Method

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., readable to 0.01 g or better. 3.2pH meter, standardized to pH 4.0 with pH 4.0 buffer and pH 7 with pH 7.0... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0, using the...

  8. Characteristics of TiO2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    NASA Astrophysics Data System (ADS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-07-01

    In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  9. Characteristics of TiO{sub 2}/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Rohanieza Abdul, E-mail: rohanieza.abdrahman@gmail.com; Zulkefle, Muhammad Al Hadi, E-mail: alhadizulkefle@gmail.com; Abdullah, Wan Fazlida Hanim, E-mail: wanfaz@salam.uitm.edu.my

    In this study, titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO{sub 2}/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V)more » biasing interfacing circuit. TiO{sub 2}/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.« less

  10. Casein maps: Effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles

    PubMed Central

    Ye, Ran; Harte, Federico

    2015-01-01

    Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10 mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (<40 nm) of the casein micelle upon acidification (pH <5) and alkalization (pH >8) in imidazole buffer. In addition, higher concentrations of casein (0.25 mg/mL) and calcium (20 mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1 mg/mL) and calcium (2 mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. PMID:23200467

  11. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin.

    PubMed

    Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J

    2008-07-01

    The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.

  12. Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles.

    PubMed

    Ye, Ran; Harte, Federico

    2013-02-01

    Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (<40 nm) of the casein micelle upon acidification (pH <5) and alkalization (pH>8) in imidazole buffer. In addition, higher concentrations of casein (0.25mg/mL) and calcium (20mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1mg/mL) and calcium (2mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Beta-lactamase-catalyzed aminolysis of depsipeptides: Proof of the nonexistence of a specific D-phenylalanine/enzyme complex by double-label isotope trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazhanisamy, S.; Pratt, R.F.

    The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-(((phenylacetyl)glycyl)oxy)benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presencemore » of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.« less

  14. Buffer Modulation of Menadione-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Lushchak, Oleh V.; Bayliak, Maria M.; Korobova, Olha V.; Levine, Rodney L.; Lushchak, Volodymyr I.

    2012-01-01

    The objective of this study was to compare in vivo the effects of bicarbonate and phosphate buffers on surviving and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. If at 25 mM concentration of buffers menadione only slightly reduced yeast surviving, at 50 mM concentration cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed. PMID:19843376

  15. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  16. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes.

    PubMed

    Xiao, Fei; Zhao, Faqiong; Li, Jiangwen; Yan, Rui; Yu, Jingjing; Zeng, Baizhao

    2007-07-16

    A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0x10(-8)-6.0x10(-6) M, and the detection limit is estimated to be 5.0x10(-9) M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.

  17. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo

    2008-03-14

    Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.

  18. Beneficial effects of humic acid on micronutrient availability to wheat

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2001-01-01

    Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.

  19. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter.

    PubMed

    Xie, Ruosong; Wu, Miaomiao; Qu, Guangfei; Ning, Ping; Cai, Yingying; Lv, Pei

    2018-04-01

    A newly designed electric assisted micro-electrolysis filter (E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis (SE) and micro-electrolysis (ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry (GC-MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds. Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon (GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial pH in E-ME systems were also studied. The best voltage value was 1V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some pH buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust pH prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater. Copyright © 2017. Published by Elsevier B.V.

  20. Technical Note: Maximising accuracy and minimising cost of a potentiometrically regulated ocean acidification simulation system

    NASA Astrophysics Data System (ADS)

    MacLeod, C. D.; Doyle, H. L.; Currie, K. I.

    2015-02-01

    This article describes a potentiometric ocean acidification simulation system which automatically regulates pH through the injection of 100% CO2 gas into temperature-controlled seawater. The system is ideally suited to long-term experimental studies of the effect of acidification on biological processes involving small-bodied (10-20 mm) calcifying or non-calcifying organisms. Using hobbyist-grade equipment, the system was constructed for approximately USD 1200 per treatment unit (tank, pH regulation apparatus, chiller, pump/filter unit). An overall tolerance of ±0.05 pHT units (SD) was achieved over 90 days in two acidified treatments (7.60 and 7.40) at 12 °C using glass electrodes calibrated with synthetic seawater buffers, thereby preventing liquid junction error. The performance of the system was validated through the independent calculation of pHT (12 °C) using dissolved inorganic carbon and total alkalinity data taken from discrete acidified seawater samples. The system was used to compare the shell growth of the marine gastropod Zeacumantus subcarinatus infected with the trematode parasite Maritrema novaezealandensis with that of uninfected snails at pH levels of 7.4, 7.6, and 8.1.

  1. Pop-cola acids and tooth erosion: an in vitro, in vivo, electron-microscopic, and clinical report.

    PubMed

    Borjian, Amirfirooz; Ferrari, Claudia C F; Anouf, Antoni; Touyz, Louis Z G

    2010-01-01

    Introduction. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare. Aim. To assess (i) cola acidity and buffering capacity in vitro, (ii) tooth erosion after swishing with colas in vivo (iii) scanning electron microscopic effects on teeth of colas, and tooth-brush abrasion, and (iv) report a clinical case of erosion from cola consumption. Materials and Methods. (i) We measured six commercially available pop "Cola beverages", pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one with teeth, the second without teeth rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described. Results. Comparisons among pop colas tested in vitro reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing in vivo with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion. Conclusions. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a clinical case of pop-cola erosion confirms this.

  2. Pop-Cola Acids and Tooth Erosion: An In Vitro, In Vivo, Electron-Microscopic, and Clinical Report

    PubMed Central

    Borjian, Amirfirooz; Ferrari, Claudia C. F.; Anouf, Antoni; Touyz, Louis Z. G.

    2010-01-01

    Introduction. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare. Aim. To assess (i) cola acidity and buffering capacity in vitro, (ii) tooth erosion after swishing with colas in vivo (iii) scanning electron microscopic effects on teeth of colas, and tooth-brush abrasion, and (iv) report a clinical case of erosion from cola consumption. Materials and Methods. (i) We measured six commercially available pop “Cola beverages”, pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one with teeth, the second without teeth rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described. Results. Comparisons among pop colas tested in vitro reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing in vivo with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion. Conclusions. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a clinical case of pop-cola erosion confirms this. PMID:21151663

  3. Effects of sucking acidic candy on whole-mouth saliva composition.

    PubMed

    Jensdottir, T; Nauntofte, B; Buchwald, C; Bardow, A

    2005-01-01

    Limited information is available on the effects of sucking acidic candies on saliva composition and the protective role of saliva in this relation. Therefore the aim of this study was to determine salivary effects of sucking acidic candies in vivo in relation to individual variations in whole-saliva flow rate (WSFR) and buffer capacity (WSbeta). Ten healthy young males (24 +/- 2 years) sucked a rhubarb-flavoured acidic hard-boiled candy with tartaric acid available on the Danish market. The whole saliva was collected into a closed system, regarding CO2, at different times as follows: firstly, unstimulated saliva for 5 min (baseline), secondly stimulated saliva for 4 min upon sucking the candy, and finally post-stimulated saliva for 10 min. Saliva pH was determined on a blood gas analyser and WSbeta was estimated from the saliva bicarbonate concentration obtained by the analyser and by ionic balance calculation. The erosive potential of the candy in saliva was estimated from the saliva pH values and degree of saturation with respect to hydroxyapatite (DS(HAp)). The results showed that saliva pH dropped from 6.5 (baseline) down to 4.5 at the fourth minute of sucking the candy, and returned to pH 6.5 five minutes after stimulation (post-stimulated). DS(HAp) decreased upon sucking the candy and saliva from all subjects became undersaturated with respect to HAp. Significant positive correlations were obtained between pH and WSFR (r(s) = 0.47; p < 0.05) and between pH and WSbeta (r(s) = 0.65; p < 0.01). In relation to WSbeta we found that 70% of the buffer capacity originating from the bicarbonate buffer system upon sucking the candy was exerted as phase buffering. We conclude that sucking this type of acidic candies changes whole-mouth saliva composition so that it may have erosive potential and that high WSFR and WSbeta have protective effects against these salivary changes. Copyright 2005 S. Karger AG, Basel.

  4. [Isolation and purification of recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5 using chromatography].

    PubMed

    Ma, Lina; Wu, Dan; Bian, Liujiao

    2012-08-01

    The Kringle 5 domain of plasminogen is one of the most potent angiogenesis inhibitors known to date, which can inhibit cell proliferation and migration efficiently. In the study, on the foundation of successful clone and expression of recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5, a two-step chromatographic method, including the use of SP Sepharose Fast Flow cation exchanger and Sephacryl S-100 HR size exclusion chromatography in sequence, was established to separate and purify angiogenesis inhibitor Kringle 5. On the SP Sepharose Fast Flow column, the buffer A consisted of 50.0 mmol/L acetic acid-sodium acetate (pH 5.2), and the buffer B consisted of buffer A with the addition of 0.5 mol/L sodium chloride (pH 5.2); on Sephacryl S-100 HR column, the elution buffer was 5.0 mmol/L phosphate solution (pH 7.0). Through the two-step chromatographic purification process, the purity of the obtained Kringle 5 was more than 98%. In addition, it was found that the obtained Kringle 5 could inhibit the blood vessel growth of chick embryo chorioallantoic membrane effectively. Finally it is concluded that this method can effectively separate active recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5.

  5. Preparation and optimization of self-assembled chondroitin sulfate-nisin nanogel based on quality by design concept.

    PubMed

    Mohtashamian, Shahab; Boddohi, Soheil; Hosseinkhani, Saman

    2018-02-01

    Self-assembled nanogel was prepared by electrostatic complexation of two oppositely charged biological macromolecules, which were cationic nisin and anionic chondroitin sulfate (ChS). The critical factors affected the physical properties of ChS-nisin nanogel was screened and optimized by Plackett-Burman design (PB) and central composite design (CCD). The independent factors selected were: concentration ratio of nisin to ChS, injection rate of nisin solution, buffer solvent type, magnetic stirring rate, pH of initial buffer solution, centrifuge-cooling temperature, and centrifuge rotation speed. Among these factors, concentration ratio changed the entrapment efficiency and loading capacity significantly. In addition, the hydrodynamic diameter and loading capacity were significantly influenced by injection rate and pH of initial buffer solution. The optimized nanogel structure was obtained by concentration ratio of 6.4mg/mL nisin to 1mg/mL ChS, pH of buffer solution at 4.6, and nisin solution injection rate of 0.2mL/min. The observed values of dependent responses were close to predicted values confirmed by model from response surface methodology. The results obviously showed that quality by design concept (QbD) could be effectively applied to optimize the developed ChS-nisin nanogel. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. pH-based fiber optic biosensors for use in clinical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Mueller, Cord; Hitzmann, Bernd; Schubert, Florian; Scheper, Thomas

    1995-05-01

    The development of pH-based fiber optic biosensors and their uses in clinical and biotechnological applications are described. Based on a pH-sensitive optode, different biosensors for urea, penicillin, glucose and creatinine were developed. A multichannel modular fluorimeter was used to measure signals from up to three optodes simultaneously. The pH value and the buffer capacity are critical factors for biosensors based on pH probes and influence the biosensor signal. A flow injection analysis (FIA) system is used to eliminate the latter influences. With this integrated system, samples can be analyzed sequentially by the injection of a defined volume of each sample into a continuously flowing buffer stream that transports the samples to the sensors. The complex signal is transformed and analyzed by a computer system. Characteristic features of the FIA peak give information about the buffer capacity in the solution. With the help of intelligent computing (neural networks) it is possible to recognize these features and relate them to the respective buffer capacity to obtain more accurate values. Various applications of these biosensors are discussed. The pH optode is also used to monitor enzymatic reactions in non aqueous solvents. In this case the production of acetic acid can be detected on line.

  7. Strategies for the depyrogenation of contaminated immunoglobulin G solutions by histidine-immobilized hollow fiber membrane.

    PubMed

    Legallais, C; Anspach, F B; Bueno, S M; Haupt, K; Vijayalakshmi, M A

    1997-03-28

    The depyrogenation of different IgG solutions using the histidine-linked hollow fiber membrane developed in our laboratory is presented here. Three strategies for endotoxin (ET) removal were investigated according to the immobilized histidine's ability to bind different immunoglobulins: (1) ET removal from 1 mg/ml non histidine-binding mouse monoclonal IgG1 (MabCD4) solution was achieved in the presence of acetate buffer (pH 5.0) without any protein loss. (2) For contaminated human IgG, combined adsorption of ET and IgG in the presence of MOPS of Tris buffer was tested, followed by differential elution using increasing salt concentrations. This attempt was not successful since ET were quantitatively found in the IgG elution fraction. (3) Alternatively, it was proposed to adsorb selectively ET in the presence of acetate buffer (pH 5.0) under non binding conditions for human IgG. Human IgG could then be purified if necessary with the same membrane in the presence of MOPS buffer (pH 6.5). With a 1 m2 histidine-PEVA module under these operating conditions, it is estimated that the depyrogenation of 3 l of 1 mg/ml IgG (human or murine) solution containing 80 EU/ml of ET should be possible.

  8. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  9. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  10. Asparagine deamidation dependence on buffer type, pH, and temperature.

    PubMed

    Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John

    2013-06-01

    The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.

  11. Partition coefficients of some purine derivatives and its application to pharmacokinetics.

    PubMed

    Chrzanowska, M; Sobiak, J; Kuehn, M; Dorawa, E; Hermann, T

    2009-12-01

    Metazathioprine (MAZA), a methylated derivative of azathioprine (AZA), demonstrated the greatest values of apparent and specific partition coefficients in n-octanol/phosphate buffer at pH 5.7 and pH 7.4 among purine derivatives such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and AZA. Introduction of a methyl group into the imidazole ring of AZA increases lipophilic properties of MAZA compared to AZA. Mass balance of purine derivatives in n-octanol and in phosphate buffer indicated their chemical stability in those media.

  12. Sensing of biologically relevant d-metal ions using a Eu(III)-cyclen based luminescent displacement assay in aqueous pH 7.4 buffered solution.

    PubMed

    Kotova, Oxana; Comby, Steve; Gunnlaugsson, Thorfinnur

    2011-06-28

    1·Eu·BPS was developed as a luminescent lanthanide sensor for use in displacement assays for detection of d-metal ions by monitoring the changes in the europium emission, which was quenched for iron(II), with a detection limit of ∼10 pM (0.002 μg L(-1)) for Fe(II) in buffered pH 7.4 solution. This journal is © The Royal Society of Chemistry 2011

  13. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  14. Oral pH in gastroesophageal reflux disease.

    PubMed

    Sujatha, S; Jalihal, Umesh; Devi, Yashoda; Rakesh, N; Chauhan, Pallavi; Sharma, Shivani

    2016-05-01

    The aim of this study is to compare surface pH in various parts of the oral cavity between patients with gastroesophageal reflux disease (GERD) and healthy controls. Using a flat pH meter sensor, fixed electrode pen type digital pH meter, oral pH levels were assessed at different mucosal sites among 34 GERD patients and 32 healthy controls. Salivary flow rates and buffering capacity were also assessed in them. A thorough oral examination was performed to screen for any oral and dental changes. A significantly lower pH of 6.65 ± 0.13 (mean ± SD) was found in the GERD group compared to control group 7.23 ± 0.12 (p < 0.05). Least pH was found in the floor of the mouth 6.594 ± 0.17 and highest in the lower labial mucosa among the GERD patients. Salivary flow rate and buffering capacity were low in these patients. Significant changes were noticed in the hard and soft tissues of the oral cavity among the GERD group. Oral mucosal pH is altered in GERD patients and may contribute to effects on the oral cavity.

  15. Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: thermodynamic characterization.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2010-10-21

    In a situation which is far from ideal, many buffers have been found to be quite reactive, besides maintaining their stable pH values. On the basis of apparent transfer free energies (ΔG(tr)'), through solubility measurements the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), and tetraglycine (Gly(4)), with several common neutral pH, amine-based buffers have been studied. The biological buffers studied in this work, including TRIS, TES, TAPS, TAPSO, and TABS are structurally related and all contain TRIS groups. These buffers have pK(a) values ranging from 7.5-9.0, which allow them to be used in biological, biochemical or environmental studies. We observed negative values of ΔG(tr)' for Gly(3) and Gly(4) from water to buffer, indicating that the interactions are favorable. However, the ΔG(tr)' values are positive for Gly and Gly(2), revealing unfavorable interactions, which except for the latter in TRIS buffer are negative. The surprising result in our data is the unexpected extraordinarily high favorable interactions between TRIS buffer and peptides (in comparison with the effect of the most common denaturants, urea and guanidine hydrochloride). The transfer free energies (ΔG(tr)') of the peptide backbone unit (-CH(2)C=O-NH-) contributions have been estimated from ΔG(tr)' values. We have also investigated the interactions of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS), zeta potential, UV-Visible absorption, fluorescence and Raman spectroscopy measurements. The results indicated that TRIS buffer stabilized the BSA molecules.

  16. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  17. Impacts of Surrounding Land Cover on Headwater Wetland Edaphic Habitat Types and Their Associated Microbial Communities

    NASA Astrophysics Data System (ADS)

    Moon, J. B.; Wardrop, D. H.; Smithwick, E. A.

    2010-12-01

    Although small in size, headwater wetland complexes provide a disproportionate share of microbially mediated ecosystem services to the surrounding landscape and hydroscape. Two services that are of current interest to scientists and managers, given their role in regulating climate and water quality, are the retention and transformation of carbon and nitrogen pools. Although it is the wetland complex’s geographic position between the landscape and hydroscape that creates these hotspots of ecosystem function, continuous shifts in the surrounding scapes can also affect the complex’s transformational capacity through changes to its natural hydrologic disturbance regime and subsequent material fluxes. We have begun to investigate the influence of surrounding land cover and associated differences in hydrology on wetland edaphic habitats and their associated microbial communities. These studies are taking place in wetland complexes located in the headwaters of the Chesapeake Bay Watershed, within the Ridge and Valley Region of central Pennsylvania. Within this region, surrounding land cover ranges from intact forested buffers to a matrix of land cover types (e.g., mixed forest, grassland, and impermeable surfaces). Over a preliminary six-month collection period we found higher frequency and intensity of hydrologic fluctuations in wetlands surrounded by a matrix of land cover types, compared to highly stable saturated conditions of wetland complexes with intact forested buffers. Differences were also found in both the abundances of edaphic habitats as well as in the types of habitats present within these surrounding land cover groups. Wetlands with intact forested buffers had (1) fresh organic residue soils with high overall microbial biomasses and relatively high abundances of microeukaryotic groups, (2) reduced muck soils with relatively large proportions of branched fatty acid microbial groups, and (3) carbon and nutrient depleted sandy mineral soils with relatively low microbial biomasses. Riparian wetland complexes surrounded by a matrix of land cover types had narrower ranges of soil properties and were predominately high pH clay loam soils dominated by bacterial groups. Although these wetland complexes had fewer edaphic habitat types than wetland complexes with intact forested buffers, preliminary investigations using the DeNitrification-DeComposition (DNDC) model showed that their higher pH levels and hydrological fluctuations could make them more suitable environments for higher rates of complete denitrification. However, depending on the depth of the water table, wetland complexes surrounded by a matrix of land cover types could also transition into hotspots of methanogenesis. These initial hypotheses will be further refined with additional hydrologic, climatic, vegetation, and soils data and tested over the next year using methods such as push-pull denitrification.

  18. A sensitive new fluorescence assay for measuring proton transport across liposomal membranes.

    PubMed

    Orosz, D E; Garlid, K D

    1993-04-01

    6-Methoxy-N-(3-sulfopropyl)-quinolinium (SPQ) is a fluorophore that is collisionally quenched by halide anions and is widely used to measure chloride ion transport across cellular and liposomal membranes. We report a new finding that SPQ fluorescence is also quenched by the zwitterionic hydrogen ion buffers introduced by Good et al. [(1966) Biochemistry 5, 467-477]. Although buffer quenching interferes with chloride ion measurements using SPQ, it can be turned to good advantage for measurements of proton flux. The basis for this application is that, for most buffers, the anion quenches and the zwitterion does not. Accordingly, buffer quenching of SPQ can be used to assay proton transport across liposomal membranes. We describe application of the technique to liposomes in which proton transport was mediated by ionophores and by the purified, reconstituted uncoupling protein of brown adipose tissue mitochondria. Because SPQ detects changes in buffer anion concentration, it can be used to measure changes in total acidity, which is the parameter desired when measuring net proton transport. Furthermore, this technique can be used to measure proton transport under conditions in which pH changes are minimized with buffers, and, consequently, effects of pH on proton transport can be dissociated from the transport itself.

  19. Fish Viruses: Buffers and Methods for Plaquing Eight Agents Under Normal Atmosphere

    PubMed Central

    Wolf, Ken; Quimby, M. C.

    1973-01-01

    A universal procedure was sought for plaque assay of eight fish viruses (bluegill myxovirus, channel catfish virus, eel virus, Egtved virus, infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus, lymphocystis virus, and the agent of spring viremia of carp (Rhabdovirus carpio), in dish cultures of various fish cells. Eagle minimal essential medium with sodium bicarbonate-CO2 buffer (Earle’s salt solution) was compared with minimal essential medium buffered principally with tris (hydroxymethyl)aminomethane or N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid at a pH or in the range of 7.6 to 8.0 depending upon temperature. Five fish cell lines collectively capable of replicating all fish viruses thus far isolated were tested and quantitatively found to grow comparably well in the three media. Two-phase (gel-liquid) media incorporating the various buffer systems allowed plaquing at 15 to 33 C either in partial pressures of CO2 or in normal atmosphere, but greater efficiency and sensitivity were obtained with the organic buffers, and, overall, the best results were obtained with tris(hydroxymethyl)aminomethane. Epizootiological data, specific fish cell line response, and plaque morphology permit presumptive identification of most of the agents. At proper pH, use of organic buffers obviates the need for CO2 incubators. Images PMID:4349252

  20. Streptomyces plicatus as a model biocontrol agent.

    PubMed

    Abd-Allah, E F

    2001-01-01

    Three hundred and seventy two isolates belonging to the genus Streptomyces were isolated and screened for chitinase production. Streptomyces plicatus was found to be the best producer. The highest chitinase production were incubated for 3 d at 30 degrees C on buffered culture medium (pH 8.0) containing chitin plus sucrose and calcium nitrate as carbon and nitrogen sources. S. plicatus chitinase had a highly significant inhibitory effect on spore germination, germ tube elongation and radial growth of Fusarium oxysporum f.sp. lycopersici, Altrernaria alternata and Verticillium albo-atrum, the causal organisms of Fusarium wilt, stem canker and Verticillium wilt diseases of tomato. Application of S. plicatus to the root system of tomato plants before transplantation markedly protected tomato plants against the tested phytopathogenic fungi in vivo.

Top