Science.gov

Sample records for carbonate fuel cells

  1. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  2. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  3. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  4. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  5. Molten carbonate fuel cell

    DOEpatents

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  6. Molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  7. Carbon fuel particles used in direct carbon conversion fuel cells

    SciTech Connect

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  9. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  10. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  11. Carbon fuel cells with carbon corrosion suppression

    DOEpatents

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  12. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  13. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  14. Molten carbonate fuel cell matrices

    DOEpatents

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  15. Carbon-based Fuel Cell

    SciTech Connect

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  16. Clean energy from a carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  17. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  18. Electrolyte reservoir for carbonate fuel cells

    DOEpatents

    Iacovangelo, C.D.; Shores, D.A.

    1984-05-23

    An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  19. Electrolyte reservoir for carbonate fuel cells

    DOEpatents

    Iacovangelo, Charles D.; Shores, David A.

    1985-01-01

    An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  20. Progress in carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.

    1995-08-01

    Our objective is to increase both the life and power of the molten carbonate fuel cell (MCFC) by developing improved components and designs. Current activities are as follows: (1) Development of lithium ferrate (LiFeO{sub 2}) and lithium cobaltate (LiCoO{sub 2}) cathodes for extended MCFC life, particularly in pressurized operation, where the present cathode, NiO, provides insufficient life; (2) Development of distributed-manifold MCFC designs for increased volumetric power density and decreased temperature gradients (and, therefore, increased life); (3) Development of components and designs appropriate for high-power-density operation (>2 kW/m{sup 2} and >100 kW/m{sup 3} in an integrated MCFC system); and (4) Studies of pitting corrosion of the stainless-steel interconnects and aluminized seals now being employed in the MCFC (alternative components will also be studied). Each of these activities has the potential to reduce the MCFC system cost significantly. Progress in each activity will be presented during the poster session.

  1. Electrode for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    A sintered porous electrode useful for a molten carbonate fuel cell is produced which is composed of a plurality of 5 wt. % to 95 wt. % nickel balance copper alloy encapsulated ceramic particles sintered together by the alloy.

  2. Carbonate fuel cells: Milliwatts to megawatts

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  3. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  4. Progress in carbonate fuel cells

    SciTech Connect

    Myles, K.M.; Krumpelt, M.; Roche, M.F.

    1995-12-31

    Our objective is to increase both the life and power of the molten carbonate fuel (MCFC) by developing improved components and designs. Current activities are as follows: (1)Development of LiFeO{sub 2} and LiCoO{sub 2} cathodes for extended MCFC life, particularly in pressurized operation, where the present cathode, NiO, provides insufficient life (2) Development of distributed-manifold MCFC designs for increased volumetric power density and decreased temperature gradients (and, therefore, increased life) (3) Development of components and designs appropriate for high-power density operation (>2 kW/m{sup 2}and >100 kW/m{sup 3}in an integrated MCFC system) (4)Studies of pitting corrosion of the stainless-steel interconnects and aluminized seals now being employed in the MCFC (alternative components will also be studied). Each of these activities has the potential to reduce the MCFC system cost significantly. Progress in each activity will be presented during the poster session.

  5. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  6. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  7. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  8. Sulfur tolerant molten carbonate fuel cell anode and process

    DOEpatents

    Remick, Robert J.

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  9. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  10. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste

  11. Anode composite for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    An anode composite useful for a molten carbonate fuel cell comprised of a porous sintered metallic anode component having a porous bubble pressure barrier integrally sintered to one face thereof, said barrier being comprised of metal coated ceramic particles sintered together and to said anode by means of said metal coating, said metal coating enveloping said ceramic particle and being selected from the group consisting of nickel, copper and alloys thereof, the median pore size of the barrier being significantly smaller than that of the anode.

  12. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  13. Development of internal reforming carbonate fuel cell stack technology

    SciTech Connect

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  14. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  15. Alternative cathodes for molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Lanagan, M.; Roche, M.F.; Krumpelt, M.

    1996-02-01

    Argonne National Laboratory (ANL) is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC). The present cathode, lithiated nickel oxide, tends to transport to the anode of the MCFC, where it is deposited as metallic nickel. The rate of transport increases with increasing CO{sub 2} pressure. This increase is due to an increased solubility of nickel oxide (NiO) in the molten carbonate electrolyte. An alternative cathode is lithium cobaltate (LiCoO{sub 2})-Solid solutions of LiCoO{sub 2} in LiFeO{sub 2} show promise for long-lived cathode materials. We have found that small additions of LiCoO{sub 2} to LiFeO{sub 2} markedly decrease the resistivity of the cathode material. Cells containing the LiCoO{sub 2}-LiFeO{sub 2} cathodes have stable performance for more than 2100 h of operation and display lower cobalt migration.

  16. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  17. An update of ERC's carbonate fuel cell development program

    SciTech Connect

    Farooque, M.; Bernard, R.; Doyon, J.; Paetsch, L.; Patel, P.; Skok, A.; Yuh, C.; Steinfield, G.; O'Shea, T.

    1992-01-01

    Energy Research Corporation's molten carbonate fuel goals are commericalization of the MW-class natural gas units and 100 MW-class coal gas/natural gas dual fuel units (long-term). Accomplishments have been made in stack height scale-up, issues relevant to attaining a long useful life for the carbonate fuel cell have been resolved, and organizational and financial aspects of power plant demonstration have been addressed. 10 figs, 7 refs. (DLC)

  18. Development of molten carbonate fuel cell power plant, volume 1

    NASA Astrophysics Data System (ADS)

    1985-03-01

    The technical results of a molten carbonate fuel cell power plant evelopment program are presented which establish the necessary technology base and demonstrate readiness to proceed with the fabrication and test of full size prototype stacks for coal fueled molten carbonate fuel cell power plants. The effort covered power plant systems studies, fuel cell component technology development, fuel cell stack design and analysis, manufacturing process definition, and an extensive experimental program. The reported results include: the definition and projected costs for a reference coal fueled power plant system based on user requirements, state-of-the-art advances in anode and electrolyte matrix technology, the detailed description of an internally manifolded stack design concept offering a number of attractive advantages, and the specification of the fabrication processes and methods necessary to produce and assemble this design. Results from the experimental program are documented.

  19. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  20. Cathode side hardware for carbonate fuel cells

    DOEpatents

    Xu, Gengfu; Yuh, Chao-Yi

    2011-04-05

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.

  1. Applicability of molten carbonate fuel cells to various fuels

    NASA Astrophysics Data System (ADS)

    Watanabe, Takao; Izaki, Yoshiyuki; Mugikura, Yoshihiro; Morita, Hiroshi; Yoshikawa, Masahiro; Kawase, Makoto; Yoshiba, Fumihiko; Asano, Koichi

    MCFCs can utilize CO rich and H 2 lean fuel, such as gasified biomass or gasified waste as a Pt catalyst is not used and Pt poisoning by CO does not occur. This feature has become very important due to the worldwide CO 2 depression requirements. CRIEPI has developed MCFC technologies in line with a governmental program, which mainly focused on natural gas fuel. However, CRIEPI has recently been focussing on technologies for various fuel applications. Single cells and stacks were tested with various gas compositions and showed stable performance even with high CO and high fuel utilization conditions. Gasified biomass or waste can contain many kinds of impurities such as H 2S, HCl, HF, NH 3, etc. The effects of these impurities were taken into account for single cells, and the permissible limits were estimated.

  2. Processing of carbon composite paper as electrode for fuel cell

    NASA Astrophysics Data System (ADS)

    Mathur, R. B.; Maheshwari, Priyanka H.; Dhami, T. L.; Sharma, R. K.; Sharma, C. P.

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material.

  3. Method of making molten carbonate fuel cell ceramic matrix tape

    DOEpatents

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  4. Pitting corrosion of aluminized seals in molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.

    1994-08-01

    The objective of this research is to gain a better understanding of the corrosion of the aluminized type 316 stainless steel employed in the seal areas of the molten carbonate fuel cell. The seals are formed between the aluminized Type 316 SS surface and the electrolyte (generally a mixture of molten alkali carbonates and lithium aluminate).

  5. Coated powder for electrolyte matrix for carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Browall, Kenneth W.

    1985-01-01

    A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell.

  6. Oxygen electrode reaction in molten carbonate fuel cells

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  7. Cathode preparation method for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Sim, James W.; Kucera, Eugenia H.

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  8. Cathode-preparation method for molten-carbonate fuel cell

    SciTech Connect

    Smith, J.L.; Sim, J.W.; Kucera, E.H.

    1982-01-28

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  9. Molten carbonate fuel cell networks: Principles, analysis, and performance

    NASA Astrophysics Data System (ADS)

    Wimer, J. G.; Williams, M. C.

    1993-01-01

    The chemical reactions in an internally reforming molten carbonate fuel cell (IRMCFC) are described and combined into the overall IRMCFC reaction. Thermodynamic and electrochemical principles are discussed, and structure and operation of fuel cell stacks are explained. In networking, multiple fuel cell stacks are arranged so that reactant streams are fed and recycled through stacks in series for higher reactant utilization and increased system efficiency. Advantages and performance of networked and conventional systems are compared, using ASPEN simulations. The concept of networking can be applied to any electrochemical membrane, such as that developed for hot gas cleanup in future power plants.

  10. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  11. FUEL PROCESSING FOR FUEL CELLS: EFFECTS ON CATALYST DURABILITY AND CARBON FORMATION

    SciTech Connect

    R. BORUP; M. INBODY; B. MORTON; L. BROWN

    2001-05-01

    On-board production of hydrogen for fuel cells for automotive applications is a challenging developmental task. The fuel processor must show long term durability and under challenging conditions. Fuel processor catalysts in automotive fuel processors will be exposed to large thermal variations, vibrations, exposure to uncontrolled ambient conditions, and various impurities from ambient air and from fuel. For the commercialization of fuel processors, the delineation of effects on catalyst activity and durability are required. We are studying fuels and fuel constituent effects on the fuel processor system as part of the DOE Fuel Cells for Transportation program. Pure fuel components are tested to delineate the fuel component effect on the fuel processor and fuel processor catalysts. Component blends are used to simulate ''real fuels'', with various fuel mixtures being examined such as reformulated gasoline and naptha. The aliphatic, napthenic, olefin and aromatic content are simulated to represent the chemical kinetics of possible detrimental reactions, such as carbon formation, during fuel testing. Testing has examined the fuel processing performance of different fuel components to help elucidate the fuel constituent effects on fuel processing performance and upon catalyst durability. Testing has been conducted with vapor fuels, including natural gas and pure methane. The testing of pure methane and comparable testing with natural gas (97% methane) have shown some measurable differences in performance in the fuel processor. Major gasoline fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared for their effect on the fuel processing performance. Experiments have been conducted using high-purity compounds to observe the fuel processing properties of the individual components and to document individual fuel component performance. The relative carbon formation of different fuel constituents have been measured by monitoring carbon via

  12. All ceramic structure for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  13. An Innovative Carbonate Fuel Cell Matrix, Abstract #188

    SciTech Connect

    Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi

    2015-05-28

    The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix design that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.

  14. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  15. Recent advances in carbon nanotube-based enzymatic fuel cells.

    PubMed

    Cosnier, Serge; Holzinger, Michael; Le Goff, Alan

    2014-01-01

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O2, H2O2) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications.

  16. Molten carbonate fuel cell reduction of nickel deposits

    DOEpatents

    Smith, James L.; Zwick, Stanley A.

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  17. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  18. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  19. Carbonate fuel cell system with integrated carbon dioxide/thermal management

    SciTech Connect

    Paetsch, L.

    1995-08-01

    The objective of the present work is to define the stack design and system requirements for a commercial-scale carbonate fuel cell with an integrated carbon dioxide management system. Significant simplification and cost reduction of the system is achieved by direct transfer of the fuel exhaust to the oxidant inlet of the fuel cell, thereby eliminating the anode exhaust converter and high temperature piping utilized in conventional system designs.

  20. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power

  1. Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell

    SciTech Connect

    Cherepy, N J; Fiet, K J; Krueger, R; Jankowski, A F; Cooper, J F

    2004-01-28

    Anodes of elemental carbon may be discharged in a galvanic cell using a molten carbonate electrolyte, a nickel-foam anode-current collector, and a porous nickel air cathode to achieve power densities of 40-100 mW/cm{sup 2}. We report cell and anode polarization, surface area, primary particle size and a crystallization index for nine particulate carbon samples derived from fuel oil, methane, coal, charred biological material and petroleum coke. At 800 C, current densities of 50-125 mA/cm{sup 2} were measured at a representative cell voltage of 0.8 V. Power densities for cells with two carbon-anode materials were found to be nearly the same on scales of 2.8- and 60 cm{sup 2} active area. Constant current operation of a small cell was accompanied by constant voltage during multiple tests of 10-30 hour duration. Cell voltage fell off after the carbon inventory was consumed. Three different cathode structures are compared, indicating that an LLNL fabricated porous nickel electrode with <10 {micro}m pores provides improved rates compared with nickel foam with 100-300 {micro}m pores. Petroleum coke containing substantial sulfur and ash discharges at a slightly lower rate than purified petroleum coke. The sulfur leads to degradation of the anode current collector over time. A conceptual model for electrochemical reactivity of carbon is presented which indicates the importance of (1) bulk lattice disorder, which continually provides surface reactive sites during anodic dissolution and (2) electrical conductivity, which lowers the ohmic component of anode polarization.

  2. First European fuel cell installation with anaerobic digester gas in a molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Krumbeck, M.; Klinge, T.; Döding, B.

    The City of Ahlen in North Rhine Westphalia, Germany and RWE Fuel Cells GmbH, Essen, cooperate in order to install a molten carbonate fuel cell in the municipal sewage works of Ahlen in May/June 2005. The MCFC unit, a so-called HotModule made by MTU CFC Solutions, Ottobrunn operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Europe. This article outlines the experiences of RWE Fuel Cells with planning, installation and operation of MCFC systems and is focussing on the use of digester gas. The engineering and installation phase is described regarding to the special features of digester gas, for example variation in gas composition and impurities as well as different flow rates. The results of the first months of operation are interpreted and influences to the performance of the fuel cell on digester gas composition are compared. One focus of the recent RWE Fuel Cells projects is the use of MCFC systems using different biofuels. With the results from planning, installation and operation of the MCFC in Ahlen a system design for the application of different fuels can be validated and tested.

  3. Oxygen electrode in molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Dave, B. B.; White, R. E.; Srinivasan, S.; Appleby, A. J.

    1990-12-01

    During this quarter, impedance data were analyzed for an oxygen reduction process in molten carbonate electrolyte and a manuscript, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt: Effects of Partial Pressure of Carbon Dioxide and Temperature, was prepared to be submitted to Journal of the Electrochemical Society for publication.

  4. A Computer Model for Direct Carbonate Fuel Cells

    SciTech Connect

    Ding, J.; Patel, P.S.; Farooque, M.; Maru, H.C.

    1997-04-01

    A 3-D computer model, describing fluid flow, heat and mass transfer, and chemical and electrochemical reaction processes, has been developed for guiding the direct carbonate fuel cell (DFC) stack design. This model is able to analyze the direct internal reforming (DIR) as well as the integrated IIR (indirect internal reforming)-DIR designs. Reasonable agreements between computed and fuel cell tested results, such as flow variations, temperature distributions, cell potentials, and exhaust gas compositions as well as methane conversions, were obtained. Details of the model and comparisons of the modeling results with experimental DFC stack data are presented in the paper.

  5. Research and development issues for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  6. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  7. Effects of H2S on molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Remick, R. J.

    1984-07-01

    The identification of the poisoning mechanism(s) responsible for performance losses of molten carbonate fuel cells (MCFC) when operating on sulfur containing gases was analyzed. The focusing was on out of cell and in cell experiments on single mechanistic issues, followed by incorporation of the results into a model that correlates cell potential decline to contaminants(s) concentration. When coupled with gas cleanup cost projections, the model can be used to conduct trade off studies which lead to the selection of optimum feed gas compositions for MCFC power plants. The degree to which H2S and other contaminants must be removed from typical MCFC fuels has a profound effect on the cost of cleaning the fuel gas, especially if contaminant levels lower than 0.1 ppM are required. The anticipated product from the overall program is a justifiable specification for gas cleanup requirements for MCFC power plants.

  8. Electrochemical Characterization of Carbon Nanotubes for Fuel Cell MEA's

    NASA Technical Reports Server (NTRS)

    Panagaris, Jael; Loyselle, Patricia

    2004-01-01

    Single-walled and multi-walled carbon nanotubes from different sources have been evaluated before and after sonication to identify structural differences and evaluate electrochemical performance. Raman spectral analysis and cyclic voltammetry in situ with QCM were the principle means of evaluating the tubes. The raman data indicates that sonication in toluene modifies the structural properties of the nanotubes. Sonication also affects the electrochemical performance of single-walled nanotubes and the multi-walled tubes differently. The characterization of different types of carbon nanotubes leads up to identifying a potential candidate for incorporating carbon nanotubes for fuel cell MEA structures.

  9. Critical issues and future prospects for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Joon, K.

    The molten carbonate fuel cell (MCFC) has several potential advantages over low-temperature fuel cells by virtue of its operating temperature of 650°C. This temperature allows the reforming of, for examples, methane from natural gas in the fuel cell stack itself, resulting in reduced systems cost and increased efficiency. In addition, high temperature waste heat is available for industrial processes or bottoming cycles. Furthermore, CO, which is produced in almost all fossil fuel conversion processes, can be used as fuel instead of acting as a poison as in other types of fuel cell. Drawbacks of MCFCs are the high corrosivity of the electrolyte at the operating temperature and the need for a continuous supply of CO 2 to the cathode. Research into and development of MCFCs actually started in 1950 by Ketelaar and Broers when they investigated an earlier idea of Davtyan. Since then, a lot of progress has been made with respect to understanding the cell mechanisms, improving the materials, the performance, the manufacturing techniques and up-scaling. This resulted a few years ago in proof-of-principle tests at the 100 kWe level. At present, the MCFC is the first demonstration phase with full-scale systems at the 250 kWe to 2 MWe level, marking the transition from fundamental and applied R&D to product development or from a technology push to a market pull situation. This paper reviews the most important remaining as well as expected new issues to be resolved.

  10. Carbonate fuel cell system with thermally integrated gasification

    DOEpatents

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  11. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  12. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1988-03-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  13. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have state-of-the-art cell voltage and lifetime.

  14. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1988-06-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  15. Evaluation of a 2-MW carbonate fuel cell power plant fueled by landfill gas. Final report

    SciTech Connect

    Meade, D.B.; Selander, S.; Rastler, D.M.

    1991-11-01

    This project assessed the technical and economic feasibility of operating an atmospheric pressure 2 MW carbonate fuel cell power plant on landfill gas. A commercially available low pressure gas pre-treatment system was identified for this application. System simulation studies were performed to identify component bottle-necks which would limit power production, or preclude system operation. An economic assessment was conducted to assess the competitiveness of the fuel cell system. The analysis confirmed the technical feasibility of operating Energy Research Corporation`s 2MW fuel cell system on landfill gas. Resulting net electrical efficiency was 50% based on the fuel`s lower heating value. Plant capital cost increased by {approximately}$180/kw; this was primarily for gas cleanup. Bus bar power costs for market entry and commercial fuel cell plants were found to be competitive with power produced from baseload coal plants in Minnesota.

  16. Understanding of carbonate fuel cell resistance issues for performance improvement

    SciTech Connect

    Yuh, C.Y.; Farooque, M.; Johnsen, R.

    1992-09-01

    The overall objective of the current Task 6 under Contract AC21-90MC27168 is to develop understanding as well as quantification of cell ohmic resistance in carbonate fuel cell. The important resistance-contributing interfaces and elements are being investigated in high-temperature out-of-cell resistance experiments, using an AC-impedance technique. Ohmic resistance loss in a state-of-the-art carbonate fuel cell contributes about 65 mV loss at BOL (beginning-of-life). It may increase to about as much as 145 mV after 40,000 hours. Its reduction will offer further improvement in fuel cell power plant efficiency. The important resistance contributing elements/interfaces are illustrated in Figure 1. The majority of the ohmic loss attributed to electrolyte matrix (ionic) and cathode-side hardware (electronic). The ohmic loss due to anode-side hardware can generally be neglected because the anode-side hardware is surface protected resulting in very little surface oxide formation. The ohmic resistance of the electrodes is also negligible. The matrix ionic resistance is influenced by many factors: electrolyte conductivity, matrix porosity, tortuosity, electrolyte fill level and matrix thickness. At present, matrix contributes to > 300 m{Omega}cm{sup 2} (>70% of the total cell ohmic resistance) and is the major resistance contributor.

  17. Understanding of carbonate fuel cell resistance issues for performance improvement

    SciTech Connect

    Yuh, C.Y.; Farooque, M.; Johnsen, R.

    1992-01-01

    The overall objective of the current Task 6 under Contract AC21-90MC27168 is to develop understanding as well as quantification of cell ohmic resistance in carbonate fuel cell. The important resistance-contributing interfaces and elements are being investigated in high-temperature out-of-cell resistance experiments, using an AC-impedance technique. Ohmic resistance loss in a state-of-the-art carbonate fuel cell contributes about 65 mV loss at BOL (beginning-of-life). It may increase to about as much as 145 mV after 40,000 hours. Its reduction will offer further improvement in fuel cell power plant efficiency. The important resistance contributing elements/interfaces are illustrated in Figure 1. The majority of the ohmic loss attributed to electrolyte matrix (ionic) and cathode-side hardware (electronic). The ohmic loss due to anode-side hardware can generally be neglected because the anode-side hardware is surface protected resulting in very little surface oxide formation. The ohmic resistance of the electrodes is also negligible. The matrix ionic resistance is influenced by many factors: electrolyte conductivity, matrix porosity, tortuosity, electrolyte fill level and matrix thickness. At present, matrix contributes to > 300 m{Omega}cm{sup 2} (>70% of the total cell ohmic resistance) and is the major resistance contributor.

  18. Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems

    SciTech Connect

    Wolk, R

    2004-04-23

    Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power

  19. Carbon Nanowalls for oxygen reduction reaction in Bio Fuel Cells

    NASA Astrophysics Data System (ADS)

    Lehmann, K.; Yurchenko, O.; Urban, G.

    2014-11-01

    We report on the usage of Carbon Nanowalls (CNW) synthesized by a PECVD process as electrode material for oxygen reduction reaction (ORR). In order to substitute the platinum based catalysts in fuel cells, graphene is a promising candidate. Carbon Nanowalls are a graphene modification with good accessibility and a controllable morphology. By controlling height and pore size, they can be optimized for different applications. A ID/IG ratio around 2.5 and the SEM images indicate vertical nanocrystallin graphene sheets. Tests with ferrocene as electroactive compound verify CNW suitability as electrode material. Cyclic voltammetry measurements in oxygen saturated PBS prove the catalytic activity of CNW towards ORR. The results support the feasibility of CNW as cathode in Bio Fuel Cells.

  20. Industry support for molten carbonate fuel cell commercialization

    SciTech Connect

    Nimmons, J.T.

    1996-12-31

    The Alliance to Commercialize Carbonate Technology (ACCT) is a working alliance of utilities and industry, created to help bring molten carbonate fuel cell (MCFC) technology into commercial markets by the year 2000. Its principal focus is the IMHEX{reg_sign} MCFC power plant under development by the team of M-C Power Corporation, the Institute of Gas Technology, The Bechtel Corporation, and Stewart & Stevenson Services, Inc. (the {open_quotes}Development Team{close_quotes}), although many ACCT members are also interested in other fuel cell technologies. This paper will describe ACCT`s background, mission, approach and activities, as well as opportunities for those interested to join in ACCT`s ongoing work toward MCFC commercialization.

  1. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  2. Development of large scale internal reforming molten carbonate fuel cell

    SciTech Connect

    Sasaki, A.; Shinoki, T.; Matsumura, M.

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  3. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  4. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, Chao M.; Yuh, Chao-Yi

    1999-01-01

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  5. Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells

    PubMed Central

    Cosnier, Serge; Holzinger, Michael; Le Goff, Alan

    2014-01-01

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O2, H2O2) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications. PMID:25386555

  6. Evaluation of a 2-MW carbonate fuel cell power plant fueled by landfill gas

    SciTech Connect

    Meade, D.B. ); Selander, S. ); Rastler, D.M. )

    1991-11-01

    This project assessed the technical and economic feasibility of operating an atmospheric pressure 2 MW carbonate fuel cell power plant on landfill gas. A commercially available low pressure gas pre-treatment system was identified for this application. System simulation studies were performed to identify component bottle-necks which would limit power production, or preclude system operation. An economic assessment was conducted to assess the competitiveness of the fuel cell system. The analysis confirmed the technical feasibility of operating Energy Research Corporation's 2MW fuel cell system on landfill gas. Resulting net electrical efficiency was 50% based on the fuel's lower heating value. Plant capital cost increased by {approximately}$180/kw; this was primarily for gas cleanup. Bus bar power costs for market entry and commercial fuel cell plants were found to be competitive with power produced from baseload coal plants in Minnesota.

  7. The dissolution of carbon dioxide and the diffusion of carbonate ions in alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Deruiter, B.

    If alkaline fuel cells are used, it is more economical to get the necessary oxygen from the air, instead of using pure oxygen. A problem that arises, when air is used, is the dissolution of carbon dioxide into the electrolyte solution (in the form of carbonate). After a certain period the carbonate concentration can be so high that potassium carbonate crystals are formed. This research consists of two parts. A mathematical model was made to describe the diffusion of carbon dioxide and carbonate ions in the air electrode. Second, long run tests were carried out (38 days) with two fuel cells. One cell was connected to a current source which aplied a current density of 50 mA/sq cm. The other cell was not connected to a current source. During the tests, the increase of carbonate concentration was measured. The carbonate concentration was measured by titration with HCl. The precision titration equipment made it possible to analyze very small samples (30 microns). The loss of elecrolyte was therefore negligible. The data are presented in Gran plots. The mathematical model resulted in a set of three partial differential equations which have to be solved numerically. The long run tests showed that the increase of carbonate concentration was the same in both fuel cells. The test also showed that the carbonate concentration increases linearly with respect to time.

  8. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    SciTech Connect

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-05-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  9. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    SciTech Connect

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-01-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  10. Catalytic reduction of carbon dioxide with a hydrogen fuel cell

    SciTech Connect

    Ogura, K.; Migita, C.T.; Imura, H. )

    1990-06-01

    This paper reports the catalytic reduction of carbon dioxide to methanol achieved with a hydrogen fuel cell. This process involves a homogeneous and a heterogeneous catalysis. In the former, the catalyst consisting of a metal complex and methanol were applied, and in the latter Everitt's salt (K{sub 2}Fe{sup II}(Fe{sup II}(CN{sub 6}))) which functions as an electron relay was used. The initial {ital p}H of the catholyte was fixed at 2, and the {ital p}H of the anolyte was required to be higher than 1.75 for the hydrogen fuel cell with CO{sub 2} as oxidant to be feasible thermodynamically.

  11. MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER

    SciTech Connect

    Alan A. Kornhauser; Ritesh Agarwal

    2005-04-01

    The novel molten carbonate fuel cell design described in this report uses porous bed electrodes. Molten carbonate, with carbon fuel particles and oxidizer entrained, is circulated through the electrodes. Carbon may be reacted directly, without gasification, in a molten carbonate fuel cell. The cathode reaction is 2CO{sub 2} + O{sub 2} 4e{sup -} {yields} 2CO{sub 3}{sup =}, while the anode reaction can be either C + 2CO{sub 3}{sup =} {yields} 3CO{sub 2} + 4e{sup -} or 2C + CO{sub 3}{sup =} {yields} 3CO + 2e{sup -}. The direct carbon fuel cell has an advantage over fuel cells using coal-derived synthesis gas in that it provides better overall efficiency and reduces equipment requirements. Also, the liquid electrolyte provides a means for transporting the solid carbon. The porous bed cell makes use of this carbon transport ability of the molten salt electrolyte. A one-dimensional model has been developed for predicting the performance of this cell. For the cathode, dependent variables are superficial O{sub 2} and CO{sub 2} fluxes in the gas phase, superficial O{sub 2} and CO{sub 2} fluxes in the liquid phase, superficial current density through the electrolyte, and electrolyte potential. The variables are related by correlations, from the literature, for gas-liquid mass transfer, liquid-solid mass transfer, cathode current density, electrode overpotential, and resistivity of a liquid with entrained gas. For the anode, dependent variables are superficial CO{sub 2} flux in the gas phase, superficial CO{sub 2} flux in the liquid phase, superficial C flux, superficial current density through the electrolyte, and electrolyte potential. The same types of correlations relate the variables as in the cathode, with the addition of a correlation for resistivity of a fluidized bed. CO production is not considered, and axial dispersion is neglected. The model shows behavior typical of porous bed electrodes used in electrochemical processes. Efficiency is comparable to that of

  12. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    NASA Astrophysics Data System (ADS)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  13. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance.

    PubMed

    Tursun, Hairti; Liu, Rui; Li, Jing; Abro, Rashid; Wang, Xiaohui; Gao, Yanmei; Li, Yuan

    2016-01-01

    To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency. PMID:26858695

  14. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  15. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance

    PubMed Central

    Tursun, Hairti; Liu, Rui; Li, Jing; Abro, Rashid; Wang, Xiaohui; Gao, Yanmei; Li, Yuan

    2016-01-01

    To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency. PMID:26858695

  16. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation.

  17. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOEpatents

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  18. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    PubMed

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  19. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    PubMed

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects. PMID:24856957

  20. Carbon nanotube modification of microbial fuel cell electrodes.

    PubMed

    Yazdi, Alireza Ahmadian; D'Angelo, Lorenzo; Omer, Nada; Windiasti, Gracia; Lu, Xiaonan; Xu, Jie

    2016-11-15

    The use of carbon nanotubes (CNTs) for energy harvesting devices is preferable due to their unique mechanical, thermal, and electrical properties. On the other hand, microbial fuel cells (MFCs) are promising devices to recover carbon-neutral energy from the organic matters, and have been hindered with major setbacks towards commercialization. Nanoengineered CNT-based materials show remarkable electrochemical properties, and therefore have provided routes towards highly effective modification of MFC compartments to ultimately reach the theoretical limits of biomass energy recovery, low-cost power production, and thus the commercialization of MFCs. Moreover, these CNT-based composites offer significant flexibility in the design of MFCs that enable their use for a broad spectrum of applications ranging from scaled-up power generation to medically related devices. This article reviews the recent advances in the modification of MFCs using CNTs and CNT-based composites, and the extent to which each modification route impacts MFC power and current generation. PMID:27213269

  1. A Direct Carbon Fuel Cell with a Molten Antimony Anode

    SciTech Connect

    Jayakumar, Abhimanyu; Kungas, Rainer; Roy, Sounak; Javadekar, Ashay; Buttrey, Douglas J.; Vohs, John M.; Gorte, Raymond J.

    2011-01-01

    The direct utilization of carbonaceous fuels is examined in a solid oxide fuel cell (SOFC) with a molten Sb anode at 973 K. It is demonstrated that the anode operates by oxidation of metallic Sb at the electrolyte interface, with the resulting Sb₂O₃ being reduced by the fuel in a separate step. Although the Nernst Potential for the Sb-Sb₂O₃ mixture is only 0.75 V, the electrode resistance associated with molten Sb is very low, approximately 0.06 Ωcm², so that power densities greater than 350 mW cm⁻² were achieved with an electrolyte-supported cell made from Sc-stabilized zirconia (ScSZ). Temperature programmed reaction measurements of Sb₂O₃ with sugar char, rice starch, carbon black, and graphite showed that the Sb₂O₃ is readily reduced by a range of carbonaceous solids at typical SOFC operating conditions. Finally, stable operation with a power density of 300 mW cm⁻² at a potential of 0.5 V is demonstrated for operation on sugar char.

  2. Molten carbonate fuel cell technology improvement. [25 kW

    SciTech Connect

    Not Available

    1990-09-01

    This report summarizes the work performed under Department of Energy Contract AC21-87MC23270 during the period March 1, through May 30, 1990. The overall objective of this program is to define a competitive CG/MCFC power plant and the associated technology development requirements and to develop an improved cell configuration for molten carbonate fuel cells which has improved performance, has reduced cell creep and electrolyte management consistent with 40,000 hour projected life, reduces existing cell cost, and is adaptable to a range of power plant applications. The 8-ft{sup 2} 20-cell, 25-kW stack assembly and installation in the test facility were completed. Testing of the stack was started and 896 hours of test time were reached. Manifold seal development focused on a seal to reduce electrolyte transport and test rigs were initiated for shunt current and seal leakage evaluation. Development on sheet metal parts was initiated with focus on improved aluminization for separator plate corrosion protection and nickel clad stainless steel for the anode current collector. Development of porous parts was initiated with focus on an alternative binder for the electrodes. Design of a laboratory scale continuous debinding oven was completed. Development of an improved material blend for the matrix was also initiated. 19 figs., 2 tabs.

  3. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    SciTech Connect

    Lanagan, M.T.; Wolfenstine, J.; Bloom, I.; Kaun, T.D.; Krumpelt, M.

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at approximately 650 degrees Centigrade. These cathodes are based on lithium ferrate (LiFeO[sub 2]) which is attractive because of its very low solubility in the molten (Li,K)[sub 2]CO[sub 3] electrolyte. Because of its high resistivity, LiFeO[sub 2] cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. The effect of cation substitution on the resistivity and deformation of LiFeO[sub 2] was determined. The substitutes were chosen because their respective oxides as well as LiFeO[sub 2] crystallize with the rock-salt structure.

  4. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    SciTech Connect

    Lanagan, M.T.; Bloom, I.; Kaun, T.D.

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at {approximately}650{degrees}C. To be economically viable for stationary power generation, molten carbonate fuel cells must have lifetimes of more than 25,000 h while exhibiting superior cell performance. In the present technology, lithiated NiO is used as the cathode. Over the lifetime of the cell, however, N{sup 2+} ions tend to transport to the anode, where they are reduced to metallic Ni. With increased CO{sub 2} partial pressure, the transport of Ni increases because of the increased solubility of NiO in the carbonate electrolyte. Although this process is slow in MCFCs operated at 1 atm and a low CO{sub 2} partial pressure (about 0.1 atm), transport of nickel to the anode may be excessive at a higher pressure (e.g., 3 atm) and a high CO{sub 2} partial pressure (e.g., about 0.3 arm). This transport is expected to lead eventually to poor MCFC performance and/or short circuiting. Several alternative cathode compositions have been explored to reduce cathode solubility in the molten salt electrolyte. For example, LiCoO{sub 2} has been studied extensively as a potential cathode material. The LiCoO{sub 2} cathode has a low resistivity, about 10-cm, and can be used as a direct substitute for NiO. Argonne is developing advanced cathodes based on lithium ferrate (LiFeO{sub 2}), which is attractive because of its very low solubility in the molten (Li,K){sub 2}CO{sub 3} electrolyte. Because of its high resistivity (about 3000-cm), however, LiFeO{sub 2} cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. We determined the effect of cation substitution on the resistivity and deformation of LiFeO{sub 2}. The substituents were chosen because their respective oxides as well as LiFeO{sub 2} crystallize with the rock-salt structure.

  5. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    SciTech Connect

    Kevin Peavey; Norm Bessette

    2007-09-30

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  6. Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Chunyu; Wang, Baorong; Cheng, Xinqun

    This communication described the fabrication of a hierarchy carbon paper, and its application to the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells. The carbon paper was fabricated by growing carbon nanotubes (CNTs) on carbon fibers via covalently assembling metal nanocatalysts. Surface morphology observation revealed a highly uniform distribution of hydrophobic materials within the carbon paper. The contact angle to water of this carbon paper was not only very large but also particularly even. Polarization measurements verified that the hierarchy carbon paper facilitated the self-humidifying of PEM fuel cells, which could be mainly attributed to its higher hydrophobic property as diagnosed by electrochemical impedance spectroscopy (EIS).

  7. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    NASA Astrophysics Data System (ADS)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  8. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Bushnell, C. L.; Davis, C. L.; Dayton, J. E.; Johnson, C. K.; Katz, M.; Krasij, M.; Kunz, H. R.; Maricle, D. L.; Meyer, A. P.; Pivar, J. C.

    1984-09-01

    A prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive, coal-fired electrical utility central station, or industrial cogeneration power plant was developed. Compressive creep testing of the present anode is continuedl the samples and support the earlier data showing improved creep resistance. Testing to define the operating limits that are suitable for extending the life of nickel oxide cathodes to an acceptable level is continuing. The mechanical characteristics of several one-piece cathode current collector candidates are measured for suitability. Metallographic evaluation of stack separators was initiated. Posttest characterization of surface treated INCO 825 was completed, retort corrosion testing of this material is continuing, potentiostatic immersion testing of alternative single piece cathode current collector materials is initiated. The 20-cell Stack No. 3 progressed from completion and delivery of the Test Plan through Design Review, assembly, and initial heat-up for the start of testing. Manufacture of separator plates for the upcoming 20-cell Stack No. 4 has begun. The primary objective of this follow-on test is stack cost reduction.

  9. Pack aluminization of nickel anode for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Chun, H. S.; Park, G. P.; Lim, J. H.; Kim, K.; Lee, J. K.; Moon, K. H.; Youn, J. H.

    1994-04-01

    The aluminum pack cementation (pack aluminization) process on a porous nickel anode for molten carbonate fuel cells has been studied to improve anode creep resistance. The porous nickel substrates used in this study were fabricated by doctor blade equipment followed by sintering (850 C). Packs surrounding the Ni anode were made by mixing Al2O3 powder, Al powder, and NaCl as activator. The pack aluminization was performed at 700 to 850 C for 0.5-5.0 h. After pack aluminization, the principal Ni-Al intermetallic compounds detected were Ni3Al at 700 C, NiAl at 750 C and Ni3Al2 at 800 C. The aluminum content in the aluminized Ni anode was proportional to the square root of pack aluminizing time. With increasing the Al content in the anode, the creep of the anode decreased. It was nearly constant (2.0%) when the Al content was above 5.0%. Although the exchange current density (24 mA/sq cm) for the aluminized (2.5 wt.%) Ni anode was somewhat lower than that of the pure Ni anode (40 mA/sq cm), the performance of a single cell using an aluminized Ni anode was similar to that of the one with pure Ni anode.

  10. NAS Miramar Molten Carbonate Fuel Cell demonstration status

    SciTech Connect

    Scroppo, J.A.

    1996-12-31

    Part of M-C Power`s Technology Development Program, this MCFC power plant is designed to supply 250 kW of electricity to Naval Air Station (NAS) Miramar. It also cogenerates steam for the district heating system. The power plant is a fully integrated unit incorporating an advanced design fuel cell based on years of laboratory tests and a prior field test. This demonstration incorporates many innovative features, one of which is the plate type reformer which processes the natural gas fuel for use in the fuel cell. M-C Power Corp. has completed the design, fabrication, and conditioning of a 250-cell fuel cell stack, which was shipped to the site where it will be installed, tested, and evaluated as a 250 kW Proof-of-Concept MCFC Power Plant. (Originally going to Kaiser Permanente`s Sand Diego Medical Center, it was relocated to Miramar.)

  11. Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells

    SciTech Connect

    Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

    2005-11-01

    Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The

  12. Assessment of commercial prospects of molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Dicks, Andrew; Siddle, Angie

    The commercial prospects of molten carbonate fuel cells have been evaluated. Market applications, and the commercial criteria that the MCFC will need to satisfy for these applications, were identified through interviews with leading MCFC developers. Strengths, weaknesses, opportunities and threats (SWOT) analyses were carried out to critically evaluate the prospects for commercialisation. There are many competing technologies, but it is anticipated that MCFCs can make significant penetration into markets where their attributes, such as quality of power, low emissions and availability, give them a leading position in comparison with, for example, engine and turbine-based power generation systems. Analysis suggests that choosing the size for MCFC plant is more important than the target market sector/niche. Opportunities will exist in many market sectors, though the commercial market would be easier to penetrate initially. Developers are optimistic about the commercial prospects for the MCFC. Most believe that early commercial MCFC plants may start to appear in the first decade of the next century, the earliest date suggested for initial market entry being 2002.

  13. Assessment of deposition for power-plant molten-carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Wenglarz, R. A.

    1982-03-01

    Particulate deposition in molten carbonate fuel cell anodes is addressed for operation with future coal gasification power plants. Power plant systems factors affecting deposition are explored such as gas cleanup requirements for particulate removal and gasifier product gas composition differences for various gasifier types and operational modes (air blown versus oxygen blown). Effects of fuel cell characteristics (including average cell current density and fuel utilization) on anode deposition are also quantified. Particulate effects on molten carbonate fuel cell anode performance may not be as detrimental as perhaps perceived in the past. Gas cleanup to remove virtually all particles larger than one micron in diameter is expected to prevent or at least greatly reduce anode deposition. However, cathode deposition in molten carbonate fuel cells should be evaluated in the future since cathodes are likely more prone to deposition than anodes even though cathode channel particle concentrations are much lower.

  14. An update of ERC`s carbonate fuel cell development program

    SciTech Connect

    Farooque, M.; Bernard, R.; Doyon, J.; Paetsch, L.; Patel, P.; Skok, A.; Yuh, C.; Steinfield, G.; O`Shea, T.

    1992-09-01

    Energy Research Corporation`s molten carbonate fuel goals are commericalization of the MW-class natural gas units and 100 MW-class coal gas/natural gas dual fuel units (long-term). Accomplishments have been made in stack height scale-up, issues relevant to attaining a long useful life for the carbonate fuel cell have been resolved, and organizational and financial aspects of power plant demonstration have been addressed. 10 figs, 7 refs. (DLC)

  15. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  16. Humidifier for fuel cell using high conductivity carbon foam

    DOEpatents

    Klett, James W.; Stinton, David P.

    2006-12-12

    A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.

  17. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  18. Simulated coal-gas-fueled molten carbonate fuel cell development program

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  19. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  20. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  1. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  2. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  3. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  4. Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate

    DOEpatents

    Singh, R.N.; Dusek, J.T.

    1979-12-27

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  5. Porous electrolyte retainer for molten carbonate fuel cell

    DOEpatents

    Singh, Raj N.; Dusek, Joseph T.

    1983-06-21

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H.sub.2 and CO opposite to oxidant gases such as O.sub.2 and CO.sub.2. The tile is prepared with a porosity of 55-65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  6. Effects of coal-derived trace species on the performance of molten carbonate fuel cells

    SciTech Connect

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  7. Molten carbonate fuel cell networks: Principles, analysis and performance

    SciTech Connect

    Wimer, J.G.; Williams, M.C.; Archer, D.H.; Osterle, J.F.

    1993-09-01

    Key to the concept of networking is multiple fuel cell stacks with regard to flow of reactant streams. In a fuel cell network, reactant streams are ducted so that they are fed and recycled through stacks in series. Stacks networked in series more closely approach a reversible process, which increases efficiency. Higher total reactant utilizations can be achieved by stacks networked in series. Placing stacks in series also allows reactant streams to be conditioned at different stages of utilization. Between stacks, heat can be consumed or removed, (methane injection, heat exchange) which improves thermal balance. Composition of streams can be adjusted between stacks by mixing exhaust streams or by injecting reactant streams. Computer simulations demonstrated that a combined cycle system with MCFC stacks networked in series is more efficient than an identical system with MCFC stacks in parallel.

  8. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, J. L., Jr.; Louis, G. A.; Abrams, M. L.

    1980-08-01

    During this quarter, effort was continued in all four major task areas: system studies to define the reference power plant design; cell and stack design, development and verification; preparation for fabrication and testing of the full-scale prototype stack; and developing the capability for operation of stacks on coal-derived gas. Preliminary module and cell stack design requirements were completed. Fuel processor characterization was completed. Design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping were defined. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication was made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated. Theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects.

  9. Carbon composites with metal nanoparticles for Alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  10. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  11. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    SciTech Connect

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  12. Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells.

    PubMed

    Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng

    2011-09-01

    Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance.

  13. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  14. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  15. Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  16. Utilization of corn cob biochar in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Jinshuai; Zhao, Yicheng; Li, Yongdan

    2014-12-01

    Biochar obtained from the pyrolysis of corn cob is used as the fuel of a direct carbon fuel cell (DCFC) employing a composite electrolyte composed of a samarium doped ceria (SDC) and a eutectic carbonate phase. An anode layer made of NiO and SDC is utilized to suppress the cathode corrosion by the molten carbonate and improves the whole cell stability. The anode off-gas of the fuel cell is analyzed with a gas chromatograph. The effect of working temperature on the cell resistance and power output is examined. The maximum power output achieves 185 mW cm-2 at a current density of 340 mA cm-2 and 750 °C. An anode reaction scheme including the Boudouard reaction is proposed.

  17. Molten carbonate fuel cell networks: Principles, analysis, and performance. Technical note

    SciTech Connect

    Wimer, J.G.; Williams, M.C.

    1993-01-01

    The chemical reactions in an internally reforming molten carbonate fuel cell (IRMCFC) are described and combined into the overall IRMCFC reaction. Thermodynamic and electrochemical principles are discussed, and structure and operation of fuel cell stacks are explained. In networking, multiple fuel cell stacks are arranged so that reactant streams are fed and recycled through stacks in series, for higher reactant utilization and increased system efficiency. Advantages and performance of networked and conventional systems are compared, using ASPEN simulations. The concept of networking can be applied to any electrochemical membrane, such as that developed for hot gas cleanup in future power plants. 2 tabs, 16 figs, 9 refs.

  18. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, Carl A.; Maricle, Donald L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

  19. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, C.A.; Maricle, D.L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  20. Creep resistant, metal-coated LiFeO[sub 2] anodes for molten carbonated fuel cells

    DOEpatents

    Khandkar, A.C.

    1994-08-23

    A porous, creep-resistant, metal-coated, LiFeO[sub 2] ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well. 11 figs.

  1. Creep resistant, metal-coated LiFeO.sub.2 anodes for molten carbonated fuel cells

    DOEpatents

    Khandkar, Ashok C.

    1994-01-01

    A porous, creep-resistant, metal-coated, LiFeO.sub.2 ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well.

  2. Novel Carbon-based Electrode Materials for Up-scaled Microfluidic Fuel Cells

    NASA Astrophysics Data System (ADS)

    Fuerth, Dillon Adam

    In this work, a MFC fabrication procedure including two non-conventional techniques (partial baking and cap-sealing) were employed for the development of an up-scaled microfluidic fuel cell (MFC). Novel carbon-based electrode materials were employed, including carbon foam, fibre, and cloth, the results from which were compared with traditionally-employed carbon paper. The utilization of carbon cloth led to 15% of the maximum power that resulted from carbon paper; however, carbon fibre led to a 24.6% higher power density than carbon paper (normalized by electrode volume). When normalized by projected electrode area, the utilization of carbon foams resulted in power densities up to 42.5% higher than that from carbon paper. The impact of catalyst loading on MFC performance was also investigated, with an increase from 10.9 to 48.3 mgPt cm-2 resulting in a 195% increase in power density.

  3. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. PMID:27076055

  4. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology.

  5. Major design issues of molten carbonate fuel cell power generation unit

    SciTech Connect

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  6. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Bo; Xiong, Shi-Chang; Guan, Yu-Jiang; Zhu, Xue-Qiang

    2016-03-01

    The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L-1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

  7. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.

    An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m -2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m -2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth.

  8. Thermal decomposition of alkane hydrocarbons inside a porous Ni anode for fuel supply of direct carbon fuel cell: Effects of morphology and crystallinity of carbon

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Yi, Hakgyu; Jalalabadi, Tahereh; Lee, Donggeun

    2015-10-01

    This study improved the physical contact between anode and fuel in a direct carbon fuel cell (DCFC) by directly generating carbon in a porous Ni anode through thermal decomposition of three kinds of hydrocarbons (CH4, C2H6, C3H8). From electron microscope observations of the carbon particles generated from each hydrocarbon, carbon spheres (CS), carbon nanotubes (CNT) and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering analysis was performed to determine the crystallinity of the carbon samples. As a result, the carbon samples (CS, CNT, and CNF) produced from CH4, C2H6 and C3H8 were found to be less crystalline and more flexible with increasing the carbon number. DCFC performance was measured at 700 °C for the anode fueled with the same mass of the carbon sample. It was found that the 1-dimensional CNT and CNF were more active to produce 148% and 210% times higher power density than the CS. The difference was partly attributed to the finding that the less-crystalline CNT and CNF had much lower charge transfer resistances than the CS. A lifetime test found that the CNT and CNF, which are capable of transporting electrons for much longer periods, maintained the power density much longer, as compared to the CS which can lose their point contacts between the particles shortly at high current density.

  9. Carbon-based composite electrocatalysts for low temperature fuel cells

    SciTech Connect

    Popov, Branko N.; Lee, Jog-Won; Subramanian, Nalini P.; Kumaraguru, Swaminatha P.; Colon-Mercado, Hector R.; Nallathambi, Vijayadurga; Li, Xuguang; Wu, Gang

    2009-12-08

    A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.

  10. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  11. Performance of an internal reforming molten carbonate fuel cell supplied with ethanol/water mixture

    SciTech Connect

    Freni, S.; Maggio, G.; Barone, F.

    1996-12-31

    The state of an on the field of molten carbonate fuel cell (MCFC) systems covers many technological aspects related to the use of these systems for the production of electricity. In this respect, extensive research efforts have been made to develop a technology using the methane based on the steam reforming process, and different configurations have been analyzed and their performance determined for several operative cell conditions. However, the operative temperature (T-923 K) of the MCFC. that allows the direct conversion of hydrocarbons or alcohols into H{sub 2} and CO, promotes researches in the field of alternative fuels, more easily transported and reformed compared to methane. In this paper are described the most indicative results obtained by a study that considers the use of water/ethanol mixture as an attractive alternative to the methane for a molten carbonate fuel cell.

  12. Catalytic properties of composite amorphous carbon-platinum layers in fuel cells

    SciTech Connect

    Nechitailov, A. A. Zvonareva, T. K.; Remenyuk, A. D.; Tolmachev, V. A.; Goryachev, D. N.; El'tsina, O. S.; Belyakov, L. V.; Sreseli, O. M.

    2008-10-15

    Catalytic properties of composite amorphous carbon-platinum layers produced by magnetron cosputtering have been studied. The layers were characterized by electron microscopy, IR spectroscopy, ellipsometry, gravimetry, and spectrophotometric chemical analysis. The catalytic activity of the layers was studied in an air-hydrogen fuel cell by measuring its load and power characteristics.

  13. Reactions of the Carbon Anode in Alternative Battery and Fuel Cell Configurations

    SciTech Connect

    Cooper, J F; Krueger, R

    2003-10-01

    A model is formulated by combining carbonate dissociation with pre-existing anode mechanisms involving heterogeneous reaction kinetics. The proposed model accounts for both the observed preponderance of CO{sub 2} evolution and dependence of rate on carbon anode microstructure. Implications of the model for the design of carbon batteries and fuel cells are discussed, and the laboratory cells used in earlier research are described. High coulombic efficiencies for the net reaction C + O{sub 2} = CO{sub 2} require severely limiting the thickness of paste anodes in powder-fed fuel cells while the unreacting surfaces of solid prismatic anodes must be isolated from the CO{sub 2} product atmosphere to prevent Boudouard corrosion, according to C + CO{sub 2} = 2CO.

  14. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  15. SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS

    SciTech Connect

    J.M. Calo

    2004-12-01

    This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence times on anode surfaces, and can be

  16. Non-segregating electrolytes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Kaun, T.; Lanagan, M.

    1996-08-01

    Current MCFCs use a Li/K carbonate mixture; the segregation increases the K concentration near the cathode, leading to increase cathode solubility and performance decline. ANL is developing molten carbonates that have minimal segregation; the approach is using Li-Na carbonates. In screening tests, fully developed potential distributions were obtained for 4 Li/Na compositions, and performance data were used to compare these.

  17. Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell.

    PubMed

    Herrero-Hernandez, E; Smith, T J; Akid, R

    2013-01-15

    Microbial fuel cells represent a new method for producing electricity from the oxidation of organic matter. A mediatorless microbial fuel cell was developed using Escherichia coli as the active bacterial component with synthetic wastewater of potato extract as the energy source. The two-chamber fuel cell, with a relation of volume between anode and cathode chamber of 8:1, was operated in batch mode. The response was similar to that obtained when glucose was used as the carbon source. The performance characteristics of the fuel cell were evaluated with two different anode and cathode shapes, platinised titanium strip or mesh; the highest maximum power density (502mWm(-2)) was achieved in the microbial fuel cell with mesh electrodes. In addition to electricity generation, the MFC exhibited efficient treatment of wastewater so that significant reduction of initial oxygen demand of wastewater by 61% was observed. These results demonstrate that potato starch can be used for power generation in a mediatorless microbial fuel cell with high removal efficiency of chemical oxygen demand.

  18. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells.

    PubMed

    García, Gonzalo; Koper, Marc T M

    2011-08-01

    Herein the general concepts of fuel cells are discussed, with special attention to low temperature fuel cells working in alkaline media. Alkaline low temperature fuel cells could well be one of the energy sources in the next future. This technology has the potential to provide power to portable devices, transportation and stationary sectors. With the aim to solve the principal catalytic problems at the anode of low temperature fuel cells, a fundamental study of the mechanism and kinetics of carbon monoxide as well as water dissociation on stepped platinum surfaces in alkaline medium is discussed and compared with those in acidic media. Furthermore, cations involved as promoters for catalytic surface reactions are also considered. Therefore, the aim of the present work is not only to provide the new fundamental advances in the electrocatalysis field, but also to understand the reactions occurring at fuel cell catalysts, which may help to improve the fabrication of novel electrodes in order to enhance the performance and to decrease the cost of low temperature fuel cells.

  19. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  20. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  1. Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell

    DOEpatents

    Swarr, T.E.; Wnuck, W.G.

    1986-01-29

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  2. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.

  3. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.

    PubMed

    Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B

    2012-06-01

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.

  4. Carbon corrosion in PEM fuel cells during drive cycle operation

    SciTech Connect

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; Spernjak, Dusan; Langlois, David Alan; Ahluwalia, Rajesh; More, Karen L.; Grot, Steve

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potential regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.

  5. Carbon corrosion in PEM fuel cells during drive cycle operation

    DOE PAGES

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; Spernjak, Dusan; Langlois, David Alan; Ahluwalia, Rajesh; More, Karen L.; Grot, Steve

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potentialmore » regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.« less

  6. Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report No. 18

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1988-03-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  7. Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report No. 21

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1988-06-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  8. Composite anodes for improved performance of a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Giddey, S.; Kulkarni, A.; Munnings, C.; Badwal, S. P. S.

    2015-06-01

    Direct carbon fuel cell (DCFC) technology has the potential to double the electric efficiency and halve the CO2 emissions compared with conventional coal fired power plants. The anode performance, long term stability and cell scalability, in addition to fuel feed mechanism, are the major issues for the development of this technology. In this study, lanthanum strontium cobalt ferrite (LSCF) - silver composite anode was evaluated in a scalable version of the DCFC tubular cell in a bed of carbon powder. Ag was added to increase lateral conductivity of the anode and reduce ohmic losses. The cell was operated for 100 h during which it was twice thermally cycled. The performance degradation was studied by employing electrochemical and structural characterisation techniques. The composite anode, in comparison to LSCF anode, produced a 60% improvement in the power density. The sources of performance degradation of the cell were found to be the partial decomposition of the perovskite phase and anode microstructure changes as revealed by XRD and SEM analysis in addition to the loss of carbon contact to the anode resulting from the continuous carbon consumption in the cell.

  9. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    PubMed

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  10. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  11. Cycle Analysis of Micro Gas Turbine-Molten Carbonate Fuel Cell Hybrid System

    NASA Astrophysics Data System (ADS)

    Kimijima, Shinji; Kasagi, Nobuhide

    A hybrid system based on a micro gas turbine (µGT) and a high-temperature fuel cell, i.e., molten carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC), is expected to achieve a much higher efficiency than conventional distributed power generation systems. In this study, a cycle analysis method and the performance evaluation of a µGT-MCFC hybrid system, of which the power output is 30kW, are investigated to clarify its feasibility. We developed a general design strategy in which a low fuel input to a combustor and higher MCFC operating temperature result in a high power generation efficiency. A high recuperator temperature effectiveness and a moderate steam-carbon ratio are the requirements for obtaining a high material strength in a turbine. In addition, by employing a combustor for complete oxidation of MCFC effluents without additional fuel input, i.e., a catalytic combustor, the power generation efficiency of a µGT-MCFC is achieved at over 60%(LHV).

  12. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  13. Modeling of indirect carbon fuel cell systems with steam and dry gasification

    NASA Astrophysics Data System (ADS)

    Ong, Katherine M.; Ghoniem, Ahmed F.

    2016-05-01

    An indirect carbon fuel cell (ICFC) system that couples coal gasification to a solid oxide fuel cell (SOFC) is a promising candidate for high efficiency stationary power. This study couples an equilibrium gasifier model to a detailed 1D MEA model to study the theoretical performance of an ICFC system run on steam or carbon dioxide. Results show that the fuel cell in the ICFC system is capable of power densities greater than 1.0 W cm-2 with H2O recycle, and power densities ranging from 0.2 to 0.4 W cm-2 with CO2 recycle. This result indicates that the ICFC system performs better with steam than with CO2 gasification as a result of the faster electro-oxidation kinetics of H2 relative to CO. The ICFC system is then shown to reach higher current densities and efficiencies than a thermally decoupled gasifier + fuel cell (G + FC) system because it does not include combustion losses associated with autothermal gasification. 55-60% efficiency is predicted for the ICFC system coupled to a bottoming cycle, making this technology competitive with other state-of-the-art stationary power candidates.

  14. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    SciTech Connect

    Skok, A.J.; Abueg, R.Z.; Schwartz, P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  15. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode.

    PubMed

    Kakarla, Ramesh; Min, Booki

    2014-12-01

    Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around -0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of -0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m(2), whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m(2). In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were -31 mA and -850 µA, respectively. PMID:24890136

  16. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode.

    PubMed

    Kakarla, Ramesh; Min, Booki

    2014-12-01

    Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around -0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of -0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m(2), whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m(2). In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were -31 mA and -850 µA, respectively.

  17. High temperature corrosion of metallic materials in molten carbonate fuel cells environment

    NASA Astrophysics Data System (ADS)

    Durante, G.; Vegni, S.; Capobianco, P.; Golgovici, F.

    Molten carbonate fuel cells (MCFCs) are electrochemical devices that convert energy of a chemical reaction into electricity without any kind of combustion. So, MCFCs are promising for their high efficiency and their low environmental pollution. A limiting aspect for reaching the goal of 40,000 h of life-time is the corrosion of metallic parts of MCFC, especially for current collectors and separator plates. Generally, this corrosion leads to metal loss and to an important increase of the electrical resistance due to the formation of resistive oxides. One of the most critic components in a MCFC is the anodic side metallic components. More used choice for these components is actually a sheet of AISI310S cladded at both sides by a Ni layer. The analysis of the behaviour of this material after different steps of corrosion in a typical molten carbonate fuel cell environment could be important to understand some phenomena that cause the damage of the anodic current collector.

  18. Development of sulfur-tolerant components for the molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Nicholson, S. B.; Ang, P. G. P.

    1980-02-01

    The sulfur tolerance of candidate anode and anode current collector materials for the molten carbonate fuel cell were evaluated in an electrochemical half-cell using both steady-state and transient potentiostatic techniques. Hydrogen sulfide was introduced into the fuel at concentrations of 50 and 1000 ppm; at the higher sulfur concentration nickel and cobalt underwent a negative shift in their open-circuit potentials, and high anodic and cathodic currents were observed compared with clean fuels. Exchange currents were not greatly affected by 50 ppm H2S; but, at higher sulfur concentrations, higher apparent exchange currents were observed, indicating a probable sulfidation reaction. New anode materials including TiC showed good stability in the anodic region. Of the anode current collector materials evaluated, high stabilities were found for 410 and 310 stainless steels.

  19. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  20. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  1. Molten carbonate fuel cells fed with biogas: combating H(2)S.

    PubMed

    Ciccoli, R; Cigolotti, V; Lo Presti, R; Massi, E; McPhail, S J; Monteleone, G; Moreno, A; Naticchioni, V; Paoletti, C; Simonetti, E; Zaza, F

    2010-06-01

    The use of biomass and waste to produce alternative fuels, due to environmental and energy security reasons, is a high-quality solution especially when integrated with high efficiency fuel cell applications. In this article we look into the coupling of an anaerobic digestion process of organic residues to electrochemical conversion to electricity and heat through a molten carbonate fuel cell (MCFC). In particular the pathway of the exceedingly harmful compound hydrogen sulphide (H(2)S) in these phases is analysed. Hydrogen sulphide production in the biogas is strongly interrelated with methane and/or hydrogen yield, as well as with operating conditions like temperature and pH. When present in the produced biogas, this compound has multiple negative effects on the performance and durability of an MCFC. Therefore, there are important issues of integration to be solved. Three general approaches to solve the sulphur problem in the MCFC are possible. The first is to prevent the formation of hydrogen sulphide at the source: favouring conditions that inhibit its production during fermentation. Secondly, to identify the sulphur tolerance levels of the fuel cell components currently in use and develop sulphur-tolerant components that show long-term electrochemical performance and corrosion stability. The third approach is to remove the generated sulphur species to very low levels before the gas enters the fuel cell.

  2. Molten carbonate fuel cells fed with biogas: combating H(2)S.

    PubMed

    Ciccoli, R; Cigolotti, V; Lo Presti, R; Massi, E; McPhail, S J; Monteleone, G; Moreno, A; Naticchioni, V; Paoletti, C; Simonetti, E; Zaza, F

    2010-06-01

    The use of biomass and waste to produce alternative fuels, due to environmental and energy security reasons, is a high-quality solution especially when integrated with high efficiency fuel cell applications. In this article we look into the coupling of an anaerobic digestion process of organic residues to electrochemical conversion to electricity and heat through a molten carbonate fuel cell (MCFC). In particular the pathway of the exceedingly harmful compound hydrogen sulphide (H(2)S) in these phases is analysed. Hydrogen sulphide production in the biogas is strongly interrelated with methane and/or hydrogen yield, as well as with operating conditions like temperature and pH. When present in the produced biogas, this compound has multiple negative effects on the performance and durability of an MCFC. Therefore, there are important issues of integration to be solved. Three general approaches to solve the sulphur problem in the MCFC are possible. The first is to prevent the formation of hydrogen sulphide at the source: favouring conditions that inhibit its production during fermentation. Secondly, to identify the sulphur tolerance levels of the fuel cell components currently in use and develop sulphur-tolerant components that show long-term electrochemical performance and corrosion stability. The third approach is to remove the generated sulphur species to very low levels before the gas enters the fuel cell. PMID:20211554

  3. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  4. Electricity Generation from Microbial Fuel Cell with Polypyrrole-Coated Carbon Nanofiber Composite.

    PubMed

    Roh, Sung-Hee

    2015-02-01

    Polyacrylonitrile (PAN) nanofibers, with and without embedded carbon nanotubes (CNTs) were fabricated by the electrospinning process. Polypyrrole (PPy) was coated on the activated PAN/CNT nanofiber by in-situ chemical polymerization in order to improve the electrochemical performance. The electrocatalytic behaviors of the PPy-PAN/CNT composite anode were investigated by means of cyclic voltammetry to evaluate as the anode for microbial fuel cells (MFCs) application. In comparison with unmodified carbon cloth (CC) anodes, PPy-PAN/CNT nanofiber composite showed the improvement of the maximum power density by 40%. The PPy-PAN/CNT nanofiber composite electrode therefore offers good prospects for application in MFCs. PMID:26353717

  5. Hot-gas cleanup for molten carbonate fuel cells-dechlorination and soot formation

    NASA Astrophysics Data System (ADS)

    Ham, D.; Gelb, A.; Lord, G.; Simons, G.

    1984-01-01

    Two separate aspects of hot-gas conditioning for molten carbonate fuel cells (MCFC) were investigated: potential high temperature chloride sorbent materials were screened and tested and carbon deposition on MCFC components was studied experimentally to determine guidelines for maximizing MCFC efficiency while avoiding carbon fouling. Natural minerals containing sodium carbonate were identified as the most promising candidates for economical removal of chlorides from coal gasifier effluents at temperatures of about 800 K (980 F). The mineral Shortite was tested in a fixed bed and found to perform remarkably well with no calcination. Measurements showed that carbon deposition can occur in the equilibrium carbon free region because of the relative rates of the relevant reactions. On all surfaces tested, the Boudouard carbon formation reaction is much faster than the water-gas shift reaction which is much faster than the methanation reaction. This means that the normal practice of adding steam to prevent carbon formation will only succeed if flows are slow enough for the water shift reaction to go substantially to completion. More direct suppression of carbon formation can be achieved by CO2 addition through anode recycle to force the Boudouard reaction backward.

  6. Molted carbonate fuel cell product design and improvement - 4th quarter, 1995. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect

    1998-04-01

    The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.

  7. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  8. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials.

  9. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  10. Clean power for the 1990s; Opportunity in carbonate fuel cell commercialization

    SciTech Connect

    Rude, T. ); Claussen, R.W. ); Serfass, J.A. )

    1991-01-01

    This paper reports on the result of a year-long effort to identify attractive fuel cell technologies and commercialization programs for near-term consideration within the electric and gas utility industries that is the development of significant buyer support for one fuel cell technology. This effort began under the auspices of the American Public Power Association's Notice of Market Opportunity for Fuel Cells: (NOMO) with support form the Electric Power Research Institute (EPRI). Energy Research Corporation's (ERC) 2-MW power plant and commercialization program was identified as having the highest potential for electric and gas utility and appropriate cogeneration markets. The program is based on internal reforming, molten carbonate fuel cell technology with a heat rate of {approximately}6,300 Btu/k Wh and installed commercial costs of {approximately}$1000/kW. The framework for the introduction of this new product and principles for its commercialization are summarized herein. This framework has attractive financial and risk management features worthy of broad utility consideration and support.

  11. Temperature and voltage responses of a molten carbonate fuel cell in the presence of a hydrogen fuel leakage

    NASA Astrophysics Data System (ADS)

    Law, M. C.; Liang, G. V. Y.; Lee, V. C. C.; Wee, S. K.

    2015-04-01

    A two dimensional (2-D), dynamic model of a molten carbonate fuel cell (MCFC) was developed using COMSOL Multi-physics. The model was used to investigate the dynamic behaviour of the MCFC in the presence of hydrogen fuel leakage. A leakage was modelled as a known outflow velocity at the anode gas channel. The effects of leakage velocity and the leakage location were investigated. The simulations show that anode electrode temperature increases as the leakage velocity increases. The voltage generated is shown to decrease at the start of the leakage occurrence due to loss of hydrogen gas. Later the voltage increases as the anode temperature increases. The results also show that the changes of temperature and voltage are more significant if a leakage occurs nearer to the inlet compared to that at the outlet of anode gas channel.

  12. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro

    2015-02-01

    Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).

  13. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  14. Electricity generation from carbon monoxide in a single chamber microbial fuel cell.

    PubMed

    Mehta, P; Hussain, A; Tartakovsky, B; Neburchilov, V; Raghavan, V; Wang, H; Guiot, S R

    2010-05-01

    Electricity production from carbon monoxide (CO) is demonstrated in a single chamber microbial fuel cell (MFC) with a CoTMPP-based air cathode. The MFC was inoculated with anaerobic sludge and continuously sparged with CO as a sole carbon source. Volumetric power output was maximized at a CO flow rate of 4.8LLR(-1)d(-1) reaching 6.4mWLR(-1). Several soluble and gaseous degradation products including hydrogen, methane, and acetate were detected, resulting in a relatively low apparent Coulombic efficiency of 8.7%. Tests also demonstrated electricity production from hydrogen and acetate with the highest and fastest increase in voltage exhibited after acetate injection. It is hypothesized that electricity generation in a CO-fed MFC is accomplished by a consortium of carboxydotrophic and carbon monoxide - tolerant anodophilic microorganisms. PMID:25919620

  15. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.

    PubMed

    Yu, Yang-Yang; Guo, Chun Xian; Yong, Yang-Chun; Li, Chang Ming; Song, Hao

    2015-12-01

    Nitrogen doped carbon nanoparticles (NDCN) were applied to modify the carbon cloth anodes of microbial fuel cells (MFCs) inoculated with Shewanella oneidensis MR-1, one of the most well-studied exoelectrogens. Experimental results demonstrated that the use of NDCN increased anodic absorption of flavins (i.e., the soluble electron mediator secreted by S. oneidensis MR-1), facilitating shuttle-mediated extracellular electron transfer. In addition, we also found that NDCN enabled enhanced contact-based direct electron transfer via outer-membrane c-type cytochromes. Taken together, the performance of MFCs with the NDCN-modified anode was enormously enhanced, delivering a maximum power density 3.5 times' higher than that of the MFCs without the modification of carbon cloth anodes.

  16. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.

    PubMed

    MacAodha, Domhnall; Ó Conghaile, Peter; Egan, Brenda; Kavanagh, Paul; Leech, Dónal

    2013-07-22

    Co-immobilisation of three separate multiple blue copper oxygenases, a Myceliophthora thermophila laccase, a Streptomyces coelicolor laccase and a Myrothecium verrucaria bilirubin oxidase, with an [Os(2,2'-bipyridine)2 (polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of multi-walled carbon nanotubes (MWCNTs) on graphite electrodes results in enzyme electrodes that produce current densities above 0.5 mA cm(-2) for oxygen reduction at an applied potential of 0 V versus Ag/AgCl. Fully enzymatic membraneless fuel cells are assembled with the oxygen-reducing enzyme electrodes connected to glucose-oxidising anodes based on co-immobilisation of glucose oxidase or a flavin adenine dinucleotide-dependent glucose dehydrogenase with an [Os(4,4'-dimethyl-2,2'-bipyridine)2(polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of MWCNTs on graphite electrodes. These fuel cells can produce power densities of up to 145 μW cm(-2) on operation in pH 7.4 phosphate buffer solution at 37 °C containing 150 mM NaCl, 5 mM glucose and 0.12 mM O2. The fuel cells based on Myceliophthora thermophila laccase enzyme electrodes produce the highest power density if combined with glucose oxidase-based anodes. Although the maximum power density of a fuel cell of glucose dehydrogenase and Myceliophthora thermophila laccase enzyme electrodes decreases from 110 μW cm(-2) in buffer to 60 μW cm(-2) on testing in artificial plasma, it provides the highest power output reported to date for a fully enzymatic glucose-oxidising, oxygen-reducing fuel cell in artificial plasma.

  17. Evaluation of the feasibility of ethanol steam reforming in a molten carbonate fuel cell

    SciTech Connect

    Cavallaro, S.; Passalacqua, E.; Maggio, G.; Patti, A.; Freni, S.

    1996-12-31

    The molten carbonate fuel cells (MCFCs) utilizing traditional fuels represent a suitable technological progress in comparison with pure hydrogen-fed MCFCs. The more investigated fuel for such an application is the methane, which has the advantages of low cost and large availability; besides, several authors demonstrated the feasibility of a methane based MCFC. In particular, the methane steam-reforming allows the conversion of the fuel in hydrogen also inside the cell (internal reforming configuration), utilizing the excess heat to compensate the reaction endothermicity. In this case, however, both the catalyst and the cell materials are subjected to thermal stresses due to the cold spots arising near to the reaction sites MCFC. An alternative, in accordance with the recent proposals of other authors, may be to produce hydrogen from methane by the partial oxidation reaction, rather than by steam reforming. This reaction is exothermic ({Delta}H{degrees}=-19.1 kJ/mol H{sub 2}) and it needs to verify the possibility to obtain an acceptable distribution of the temperature inside the cell. The alcohols and, in particular, methanol shows the gas reformed compositions as a function of the steam/ethanol molar ratio, ranging from 1.0 to 3.5. The hydrogen production enhances with this ratio, but it presents a maximum at S/EtOH of about 2.0. Otherwise, the increase of S/EtOH depresses the production of CO and CH{sub 4}, and ethanol may be a further solution for the hydrogen production inside a MCFC. In this case, also, the reaction in cell is less endothermic compared with the methane steam reforming with the additional advantage of a liquid fuel more easily storable and transportable. Aim of the present work is to perform a comparative evaluation of the different solutions, with particular reference to the use of ethanol.

  18. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    SciTech Connect

    Skok, A.J.; Leo, A.J.; O`Shea, T.P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  19. Effects of coal-derived trace species on the performance of molten carbonate fuel cells. Topical report on thermochemical studies

    SciTech Connect

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  20. Novel carbon-ion fuel cells. Final report, October 1, 1993--September 30, 1996

    SciTech Connect

    Cocks, F.H.

    1997-01-01

    Mixed lanthanide dicarbides having the fluorite crystal structure have been synthesized using the elemental lanthanide metals and elemental carbon that was 99.9% pure carbon-13 isotope. A two step process of first, arc furnace melting of the components, followed by an annealing step in a high vacuum furnace, was adopted as the standard method of fabricating small cast ingots of the dicarbides. The crystal structure of the various lanthanide dicarbides produced were confirmed by x-ray diffraction under protective atmospheres at both room temperature at Duke University and at high temperature at Oak Ridge National Laboratory. After more than 15 combinations of cerium or lanthanum with dopants were tried, low temperature x-ray diffraction showed that Ce{sub .5}Er{sub .5}C{sub 2} had been successfully stabilized and had the desired fluorite crystal structure at room temperature. The fluorite crystal structure lanthanide dicarbide cast ingots were further prepared by having flat and clean surfaces ground onto their surfaces by high-speed milling machines inside argon gas atmosphere gloveboxes. The surfaces thus created were then coated with carbon-12 by the arc evaporation method under low pressure argon gas. The coated ingots were then allowed to have carbon diffusion occur from the surface coating of carbon-12 into the ingot of dicarbide that had been synthesized from carbon-13. After the diffusion run, the cast ingots were slit down the axis perpendicular to the carbon coating. The fracture surface created was then squared and polished by high,speed milling in a glove box with a argon atmosphere. The high diffusion co-efficient of carbon in lanthanide dicarbides having the fluorite crystal structure would make possible the manufacture of a carbon-ion electrolyte for use in a battery or a fuel cell that could consume solid carbon as it`s feedstock.

  1. Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode.

    PubMed

    Unni, Sreekuttan M; Illathvalappil, Rajith; Bhange, Siddheshwar N; Puthenpediakkal, Hasna; Kurungot, Sreekumar

    2015-11-01

    Current low-temperature fuel cell research mainly focuses on the development of efficient nonprecious electrocatalysts for the reduction of dioxygen molecule due to the reasons like exorbitant cost and scarcity of the current state-of-the-art Pt-based catalysts. As a potential alternative to such costly electrocatalysts, we report here the preparation of an efficient graphene nanotube based oxygen reduction electrocatalyst which has been derived from single walled nanohorns, comprising a thin layer of graphene nanotubes and encapsulated iron oxide nanoparticles (FeGNT). FeGNT shows a surface area of 750 m(2)/g, which is the highest ever reported among the metal encapsulated nanotubes. Moreover, the graphene protected iron oxide nanoparticles assist the system to attain efficient distribution of Fe-Nx and quaternary nitrogen based active reaction centers, which provides better activity and stability toward the oxygen reduction reaction (ORR) in acidic as well as alkaline conditions. Single cell performance of a proton exchange membrane fuel cell by using FeGNT as the cathode catalyst delivered a maximum power density of 200 mW cm(-2) with Nafion as the proton exchange membrane at 60 °C. The facile synthesis strategy with iron oxide encapsulated graphitic carbon morphology opens up a new horizon of hope toward developing Pt-free fuel cells and metal-air batteries along with its applicability in other energy conversion and storage devices. PMID:26458554

  2. Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode.

    PubMed

    Unni, Sreekuttan M; Illathvalappil, Rajith; Bhange, Siddheshwar N; Puthenpediakkal, Hasna; Kurungot, Sreekumar

    2015-11-01

    Current low-temperature fuel cell research mainly focuses on the development of efficient nonprecious electrocatalysts for the reduction of dioxygen molecule due to the reasons like exorbitant cost and scarcity of the current state-of-the-art Pt-based catalysts. As a potential alternative to such costly electrocatalysts, we report here the preparation of an efficient graphene nanotube based oxygen reduction electrocatalyst which has been derived from single walled nanohorns, comprising a thin layer of graphene nanotubes and encapsulated iron oxide nanoparticles (FeGNT). FeGNT shows a surface area of 750 m(2)/g, which is the highest ever reported among the metal encapsulated nanotubes. Moreover, the graphene protected iron oxide nanoparticles assist the system to attain efficient distribution of Fe-Nx and quaternary nitrogen based active reaction centers, which provides better activity and stability toward the oxygen reduction reaction (ORR) in acidic as well as alkaline conditions. Single cell performance of a proton exchange membrane fuel cell by using FeGNT as the cathode catalyst delivered a maximum power density of 200 mW cm(-2) with Nafion as the proton exchange membrane at 60 °C. The facile synthesis strategy with iron oxide encapsulated graphitic carbon morphology opens up a new horizon of hope toward developing Pt-free fuel cells and metal-air batteries along with its applicability in other energy conversion and storage devices.

  3. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS).

  4. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS). PMID:25959077

  5. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  6. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Li, Baikun; Cristiani, Pierangela; Ieropoulos, Ioannis

    2015-12-01

    In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process.

  7. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Li, Baikun; Cristiani, Pierangela; Ieropoulos, Ioannis

    2015-12-01

    In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process. PMID:26343045

  8. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT LADWP MAIN STREET SERVICE CENTER

    SciTech Connect

    William W. Glauz

    2004-09-10

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Main Street 250kW MCFC power plant during its first year of operation from September 2003 to August 2004. The data for the month of

  9. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  10. Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells.

    PubMed

    Park, Hyungmin; Li, Xiaxi; Lai, Samson Y; Chen, Dongchang; Blinn, Kevin S; Liu, Mingfei; Choi, Sinho; Liu, Meilin; Park, Soojin; Bottomley, Lawrence A

    2015-09-01

    Carbon deposition on nickel anodes degrades the performance of solid oxide fuel cells that utilize hydrocarbon fuels. Nickel anodes with BaO nanoclusters deposited on the surface exhibit improved performance by delaying carbon deposition (i.e., coking). The goal of this research was to visualize early stage deposition of carbon on nickel surface and to identify the role BaO nanoclusters play in coking resistance. Electrostatic force microscopy was employed to spatially map carbon deposition on nickel foils patterned with BaO nanoclusters. Image analysis reveals that upon propane exposure initial carbon deposition occurs on the Ni surface at a distance from the BaO features. With continued exposure, carbon deposits penetrate into the BaO-modified regions. After extended exposure, carbon accumulates on and covers BaO. The morphology and spatial distribution of deposited carbon was found to be sensitive to experimental conditions.

  11. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  12. Microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, Erik

    Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

  13. Development of molten carbonate fuel cell technology at M-C Power Corporation

    SciTech Connect

    Dilger, D.

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  14. Handbook of fuel cell performance

    SciTech Connect

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  15. Study of different carbon materials for their use as bioanodes in microbial fuel cells.

    PubMed

    González-Nava, Catalina; Godínez, Luis A; Chávez, Abraham U; Cercado, Bibiana; Arriaga, Luis G; Rodríguez-Valadez, Francisco J

    2016-01-01

    Microbial fuel cells (MFCs) are capable of removing the organic matter contained in water while generating a certain amount of electrical power at the same time. One of the most important aspects in the operation of MFCs is the formation of biofilms on the anode. Here, we report the characterization of different carbon electrodes and biofilm using a rapid and easy methodology for the growth of biofilms. The biofilms were developed and generated a voltage in less than 4 days, obtaining a maximum of 0.3 V in the cells. Scanning electron microscopy images revealed that growth of the biofilm was only on the surface of the electrode, and consequently both carbon cloth Electrochem and carbon cloth Roe materials showed a greater quantity of volatile solids on the surface of the anode and power density. The results suggested that the best support was carbon cloth Electrochem because it generated a power density of 13.4 mW/m(2) and required only a few hours for the formation of the biofilm. PMID:27332829

  16. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth.

  17. Study of CO2 recovery in a carbonate fuel cell tri-generation plant

    NASA Astrophysics Data System (ADS)

    Rinaldi, Giorgio; McLarty, Dustin; Brouwer, Jack; Lanzini, Andrea; Santarelli, Massimo

    2015-06-01

    The possibility of separating and recovering CO2 in a biogas plant that co-produces electricity, hydrogen, and heat is investigated. Exploiting the ability of a molten carbonate fuel cell (MCFC) to concentrate CO2 in the anode exhaust stream reduces the energy consumption and complexity of CO2 separation techniques that would otherwise be required to remove dilute CO2 from combustion exhaust streams. Three potential CO2 concentrating configurations are numerically simulated to evaluate potential CO2 recovery rates: 1) anode oxidation and partial CO2 recirculation, 2) integration with exhaust from an internal combustion engine, and 3) series connection of molten carbonate cathodes initially fed with internal combustion engine (ICE) exhaust. Physical models have been calibrated with data acquired from an operating MCFC tri-generating plant. Results illustrate a high compatibility between hydrogen co-production and CO2 recovery with series connection of molten carbonate systems offering the best results for efficient CO2 recovery. In this case the carbon capture ratio (CCR) exceeds 73% for two systems in series and 90% for 3 MCFC in series. This remarkably high carbon recovery is possible with 1.4 MWe delivered by the ICE system and 0.9 MWe and about 350 kg day-1 of H2 delivered by the three MCFC.

  18. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth. PMID:22437017

  19. Miniaturized ascorbic acid fuel cells with flexible electrodes made of graphene-coated carbon fiber cloth

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-04-01

    Ascorbic acid (AA) is a biologically friendly compound and exists in many products such as sports drinks, fruit, and even in human blood. Thus, a miniaturized and flexible ascorbic acid fuel cell (AAFC) is expected be a power source for portable or implantable electric devices. In this study, we fabricated an AAFC with anode and cathode dimensions of 3 × 10 mm2 made of a graphene-coated carbon fiber cloth (GCFC) and found that GCFC electrodes significantly improve the power generated by the AAFC. This is because the GCFC has more than two times the effective surface area of a conventional carbon fiber cloth and it can contain more enzymes. The power density of the AAFC in a phosphate buffer solution containing 100 mM AA at room temperature was 34.1 µW/cm2 at 0.46 V. Technical issues in applying the AAFC to portable devices are also discussed.

  20. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  1. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    PubMed

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  2. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    PubMed

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  3. Development of PEM fuel cell technology at international fuel cells

    SciTech Connect

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  4. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    SciTech Connect

    Krumpelt, M. Gorelov, A. M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  5. Continuous Preparation of Carbon Nanotube Film and Its Applications in Fuel and Solar Cells.

    PubMed

    Luo, Xiao Gang; Huang, Xin Xin; Wang, Xiao Xia; Zhong, Xin Hua; Meng, Xin Xin; Wang, Jian Nong

    2016-03-01

    So far, simultaneously realizing the continuous, controllable, and scalable preparation of carbon nanotube (CNT) film has remained a big challenge. Here, we report a scalable approach to continuously prepare CNT film with good control of film size and thickness. This is achieved through the layer-by-layer condensation and deposition of a cylindrical CNT assembly that is continuously produced from a floating catalyst CVD reactor on a paper strip. The promising applications of such a film are demonstrated by directly using it as an effective protecting layer for the Pt/C catalyst in proton exchange membrane fuel cells and as an efficient counter electrode material in quantum-dot-sensitized solar cells.

  6. Porous carbon with defined pore size as anode of microbial fuel cell.

    PubMed

    Chen, Xiaofen; Cui, Dan; Wang, Xiaojun; Wang, Xianshu; Li, Weishan

    2015-07-15

    This paper reported a novel anode material, porous carbon with a defined pore size (DPC) matching bacteria, for microbial fuel cell (MFC). The DPC was prepared by using silica spheres as templates and sucrose as carbon precursor. The structure and morphology of the as-prepared DPC were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and its performance as anode of MFC based on Escherichia coli (E. coli) was evaluated with chronoamperometry, cyclic voltammetry (CV) and polarization curve measurement. The result from SEM demonstrates that pores in the as-prepared DPC are well defined with an average diameter of 400nm, which is a little larger than that of E. coli, and the polarization curve measurement shows that the as-prepared DPC exhibits superior performance as anode material loaded on carbon felt, delivering a power output of 1606mWm(-2), compared to the 402mWm(-2) of naked carbon felt anode, in the solution containing 2g/L glucose. The excellent performance of the as-prepared DPC is attributed to its suitable pore size for accommodating E. coli strain, which facilitates the formation of bacterial biofilm and the electron transfer between bacteria and anode.

  7. Organic fuel cells and fuel cell conducting sheets

    DOEpatents

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  8. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.

    PubMed

    Lan, Rong; Tao, Shanwen

    2016-08-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency.

  9. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.

    PubMed

    Lan, Rong; Tao, Shanwen

    2016-08-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  10. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation

    PubMed Central

    Lan, Rong; Tao, Shanwen

    2016-01-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required CO32− or CO42− ions for continuous operation. The dissolved O2− ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  11. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godínez García, Andrés; Pérez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180 °C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3 × 10-2 and 7.4 × 10-2 Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96 V) than that with a PBIPA membrane (0.8 V) at 180 °C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1 wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  12. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials. PMID:27416965

  13. Experimental study on the dynamic characteristics of kW-scale molten carbonate fuel cell systems

    NASA Astrophysics Data System (ADS)

    Kang, Byoung Sam; Koh, Joon-Ho; Lim, Hee Chun

    The aim of this work is to develop dynamic models for two types of kW-scale molten carbonate fuel cell (MCFC) systems on the basis of experimental data. The dynamic models are represented as a 3×3 transfer function matrix for a multi-input and multi-output (MIMO) system with three inputs and three outputs. The three controlled variables which severely affect the stack performance and lifetime are the temperature difference in the stack and the pressure drop at the anode and the cathode. Three manipulated variables, namely, current load, fuel and oxidant utilization, are selected to keep the three controlled variables within their safety limits for the reliable operation and protection of the system in case of emergency. Each element in the transfer function matrix is in the form of a first-order model using a simple, unit step, response test during operation. The non-zero off-diagonal elements in the transfer function matrix show that some interactions exist among the operating variables, and two zeros show no interaction between fuel and oxidant flow without gas cross-over. The stability of both dynamic models is analyzed using the relative gain array (RGA) method. Large diagonal elements in the RGA matrix show that the pairing between the manipulated and controlled variables is appropriate. Proper pairing is also proven by the singular value analysis (SVA) method with a smaller singular value in each system.

  14. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  15. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance.

    PubMed

    Thepsuparungsikul, N; Ng, T C; Lefebvre, O; Ng, H Y

    2014-01-01

    The microbial fuel cell (MFC) is an innovative technology for producing electricity directly from biodegradable organic matter using bacteria. Among all the influenceable factors, anode materials play a crucial role in electricity generation. Recently, carbon nanotubes (CNTs) have exhibited promising properties as electrode material due to their unique structural, and physical and chemical properties. In this study, the impacts of CNT types in CNT-based anodes were investigated to determine their effect on both efficiency of wastewater treatment and power generation. The CNTs, namely single-walled CNT with carboxyl group (SWCNT), multi-walled CNT with carboxyl group (MWCNT-COOH) and multi-walled CNT with hydroxyl group (MWCNT-OH) were used to fabricate CNT-based anodes by a filtration method. Overall, MWCNTs provided better results than SWCNTs, especially in the presence of the -OH groups. The highest power and treatment efficiencies in MFC were achieved with an anode made of MWCNT-OH filtered on Poreflon membrane; the open circuit voltage attained was 0.75 V and the maximum power density averaged 167 mW/m(2), which was 130% higher than that obtained with plain carbon cloth. In addition, MWCNT-OH is more cost-effective, further suggesting its potential to replace plain carbon cloth generally used for the MFC anode. PMID:24804666

  16. Tungsten carbide modified high surface area carbon as fuel cell catalyst support

    NASA Astrophysics Data System (ADS)

    Shao, Minhua; Merzougui, Belabbes; Shoemaker, Krista; Stolar, Laura; Protsailo, Lesia; Mellinger, Zachary J.; Hsu, Irene J.; Chen, Jingguang G.

    Phase pure WC nanoparticles were synthesized on high surface area carbon black (800 m 2 g -1) by a temperature programmed reaction (TPR) method. The particle size of WC can be controlled under 30 nm with a relatively high coverage on the carbon surface. The electrochemical testing results demonstrated that the corrosion resistance of carbon black was improved by 2-fold with a surface modification by phase pure WC particles. However, the WC itself showed some dissolution under potential cycling. Based on the X-ray diffraction (XRD) and inductively coupled plasma (ICP) analysis, most of the WC on the surface was lost or transformed to oxides after 5000 potential cycles in the potential range of 0.65-1.2 V. The Pt catalyst supported on WC/C showed a slightly better ORR activity than that of Pt/C, with the Pt activity loss rate for Pt/WC/C being slightly slower compared to that of Pt/C. The performance and decay rate of Pt/WC/C were also evaluated in a fuel cell.

  17. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Yang, Gang; de Figueiredo, Paul; Sadr, Reza; Yu, Choongho; Han, Arum

    2015-12-01

    Highly-porous, light-weight, and inexpensive three-dimensional (3D) sponges consisting of interconnected carbon nanotubes (CNTs) without base materials are synthesized with a facile and scalable one-step chemical vapor deposition process as anode of microbial fuel cells (MFCs). The MFCs generates higher power densities of 2150 W m-3 (per anode volume) or 170 W m-3 (per anode chamber volume), comparable to those of commercial 3D carbon felt electrodes under the same conditions. The high performances are due to excellent charge transfer between CNTs and microbes owing to 13 times lower charge transfer resistance compared to that of carbon felt. The material cost of producing these CNT sponge estimates to be ∼0.1/gCNT, significantly lower than that of other methods. In addition, the high production rate of about 3.6 g h-1 compared to typical production rate of 0.02 g h-1 of other CNT-based materials makes this process economically viable. The one-step synthesis method allowing self-assembly of 3D CNT sponges as they grow is low cost and scalable, making this a promising method for manufacturing high-performance anodes of MFCs, with broad applicability to microbial electrochemical systems in general.

  18. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion.

    PubMed

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-03-18

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm(-2) at 0.46 V is especially remarkable and better than that previously reported.

  19. Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode.

    PubMed

    Liao, Qiang; Zhang, Jun; Li, Jun; Ye, Dingding; Zhu, Xun; Zhang, Biao

    2015-01-15

    A novel method was proposed to improve the power output of microbial fuel cells (MFCs) by rotating the carbon-brush anode. The MFC with a rotating anode produced a peak power density of 210±3 W/m(3) and a maximum current density of 945±43 A/m(3), 1.4 and 2.7 times higher than those of the non-rotating case, respectively. The difference of the electrochemical impedance spectroscopy and cyclic voltammetry before and after anode rotation clearly suggested that the mass transfer to the spiral space was enhanced by the rotating anode. Furthermore, Tafel plots analysis also revealed that the rotating anode can improve the electrochemical activity of the biofilm. PMID:25168763

  20. Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell.

    PubMed

    Madiraju, Kartik S; Lyew, Darwin; Kok, Robert; Raghavan, Vijaya

    2012-04-01

    The aim of this work was to illustrate the use of photosynthetic microbes in a microbial fuel cell to produce electricity without the requirement of an external carbon source. This research here describes the use of a cyanobacterium Synechocystis PCC6803, to produce electricity without any net CO(2) production in a two-chambered MFC. Conditions for optimum electricity production were determined through standardizing operating parameters. A maximum power density of 6.7mWm(-3)(anode chamber volume) was achieved under high intensity lighting (10,000lux). Light intensity and wavelength directly affected electricity production, indicating the pivotal role played by photosynthesis. The maximum removal of CO(2) was 625mmolm(-3) over 20h under high intensity light. The results presented here will contribute to the understanding of how cyanobacteria can be exploited for the direct conversion of CO(2) to electric current.

  1. Three-dimensional and dynamical performance of a molten carbonate fuel cell stack

    SciTech Connect

    He, W.; Chen, Q.

    1996-12-31

    The three-dimensional and dynamic performance of a molten carbonate fuel cell (MCFC) stack operating under load-following modes have been investigated by using dynamic simulation. The major processes with regard to an MCFC`s safe and efficient operation in power-generation systems, such as the mass and heat transport, chemical reactions and electrical power generation, are formulated in a three-dimensional, time-dependent form using the computational-fluid-dynamics (CFD) technique. The grid definitions have been explained, and a simple test to determine whether the simulation results being acceptable has been introduced. In this paper, the model performance is demonstrated by applying it to calculate the distributions of current density and temperature under a step change.

  2. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    PubMed Central

    Shen, Youliang; Zhou, Yan; Chen, Shuiliang; Yang, Fangfang; Zheng, Suqi; Hou, Haoqing

    2014-01-01

    Carbon nanofibers modified graphite fibers (CNFs/GF) composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration. PMID:24883348

  3. Thin catalyst layers based on carbon nanotubes for PEM-fuel cell applications

    NASA Astrophysics Data System (ADS)

    Bohnenberger, T.; Matovic, J.; Schmid, U.

    2011-06-01

    In this study, two approaches are compared to develop thin, multifunctional films of carbon nanotubes (CNT) which are targeted to serve as a catalyst layer in fuel cells. The first is based on the direct deposition of mixed multi- and single-wall CNTs on metalized silicon wafers, using the metallization as a sacrificial layer to subsequently detach the CNT film from the substrate. It is a less time consuming and a straight forward method compared to the alternative under investigation, the layer-by-layer technique (LbL). The LbL uses bilayers of charged nanotubes to slowly build up a film with an exactly defined thickness. The process is well controlled, but the time constants for deposition of each bilayer are rather high (i.e. about 1 h). With additional annealing steps implemented during film generation this method, however, is regarded advantageous as membranes results with improved mechanical stability and a good homogeneity.

  4. Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode.

    PubMed

    Liao, Qiang; Zhang, Jun; Li, Jun; Ye, Dingding; Zhu, Xun; Zhang, Biao

    2015-01-15

    A novel method was proposed to improve the power output of microbial fuel cells (MFCs) by rotating the carbon-brush anode. The MFC with a rotating anode produced a peak power density of 210±3 W/m(3) and a maximum current density of 945±43 A/m(3), 1.4 and 2.7 times higher than those of the non-rotating case, respectively. The difference of the electrochemical impedance spectroscopy and cyclic voltammetry before and after anode rotation clearly suggested that the mass transfer to the spiral space was enhanced by the rotating anode. Furthermore, Tafel plots analysis also revealed that the rotating anode can improve the electrochemical activity of the biofilm.

  5. Carbon nanofibers modified graphite felt for high performance anode in high substrate concentration microbial fuel cells.

    PubMed

    Shen, Youliang; Zhou, Yan; Chen, Shuiliang; Yang, Fangfang; Zheng, Suqi; Hou, Haoqing

    2014-01-01

    Carbon nanofibers modified graphite fibers (CNFs/GF) composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm(-2) at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm(-2), was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  6. Effects of H/sub 2/S on molten carbonate fuel cells

    SciTech Connect

    Remick, R. J.; Anderson, G. L.

    1984-04-01

    This report summarizes the results of a literature survey conducted by the Institute of Gas Technology (IGT) under Phase I of a multi-phase program to investigate and identify the mechanism(s) responsible for molten carbonate fuel cell (MCFC) performance losses when operating on sulfur-containing gases. The objective of this literature survey was twofold: (1) to review the reported data on the interaction of H/sub 2/S with nickel-containing materials; and (2) to review reported investigations on the specific effects of H/sub 2/S on the electrochemical oxidation of H/sub 2/ in MCFC. The ultimate goal of this literature review is to determine the poisoning mechanism. 21 references.

  7. Investigation of aligned carbon nanotubes as a novel catalytic electrodes for PEM fuel cells.

    SciTech Connect

    Liu, D. J.; Yang, J.; Gosztola, D. J.

    2007-01-01

    Recent progress in synthesizing and characterizing aligned carbon nanotubes (ACNT) as the electrode catalyst material for proton exchange membrane fuel cells (PEMFC) is reported. Catalytically functionalized ACNT active towards the electrocatalytic reduction of oxygen were prepared by a chemical vapor deposition method. The electrocatalytic activities and the nanostructures of the ACNT layers were investigated by cyclic voltammetry and scanning electron microscopy. To understand the nature of the transition metal as the catalytically active site in the ACNT, we also conducted an in situ X-ray absorption spectroscopic investigation at the Advanced Photon Source at Argonne National Laboratory. The oxidation state and coordination structure of the transition metals embedded inside the nanotubes were monitored by examining the EXAFS spectra collected under different polarization potentials. We clearly observed the change in the electronic and coordinational structures during the oxygen reduction reaction.

  8. Analysis of possibilities for carbon removal from porous anode of solid oxide fuel cells after different failure modes

    NASA Astrophysics Data System (ADS)

    Subotić, Vanja; Schluckner, Christoph; Schroettner, Hartmuth; Hochenauer, Christoph

    2016-01-01

    This study focuses on the investigation of possibilities for carbon removal from the fuel electrode of anode supported solid oxide fuel cells (ASC-SOFCs) after different degradation modes. To design the conditions which generally lead the cell in the range of carbon depositions the performed thermodynamic calculations show that the SOFC operating temperature range seems to be appropriate for formation of elemental carbon in various types. Concerning this the loaded large planar single SOFCs are fed with synthetic diesel reformate thus simulating realistic operating conditions and enabling the formation and deposition of carbon on the anode side. A mixture of hydrogen/water vapor/nitrogen is used to remove the detected carbon depositions in a cell-protecting manner. For the purpose of this investigation several failure modes are induced after which determination the already defined regeneration strategy is applied. The cathode degradation is first induced and secondly the fuel supply is interrupted to induce re-oxidation of nickel (Ni) on the anode side. The undertaken investigations determine that carbon can be fully removed from the anode surface after nickel oxidation, while cathode degradation disables the complete cell regeneration.

  9. Fuel cell

    SciTech Connect

    Struthers, R.C.

    1983-06-28

    An improved fuel cell comprising an anode section including an anode terminal, an anode fuel, and an anolyte electrolyte, a cathode section including a cathode terminal, an electron distributor and a catholyte electrolyte, an ion exchange section between the anode and cathode sections and including an ionolyte electrolyte, ion transfer membranes separating the ionolyte from the anolyte and the catholyte and an electric circuit connected with and between the terminals conducting free electrons from the anode section and delivering free electrons to the cathode section, said ionolyte receives ions of one polarity moving from the anolyte through the membrane related thereto preventing chemical equilibrium in the anode section and sustaining chemical reaction and the generating of free electrons therein, said ions received by the ionolyte from the anolyte release different ions from the ionolyte which move through the membrane between the ionolyte and catholyte and which add to the catholyte.

  10. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1997-05-01

    The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

  11. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    SciTech Connect

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  12. Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994

    SciTech Connect

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  13. Pt/Carbon Nanofiber Nanocomposites as Electrocatalysts for Direct Methanol Fuel Cells: Prominent Effects of Carbon Nanofiber Nanostructures

    SciTech Connect

    Li, Zhizhou; Cui, Xiaoli; Zhang, Xinsheng; Wang, Qingfei; Shao, Yuyan; Lin, Yuehe

    2009-04-01

    Carbon nanofibers (CNFs) with different microstructures, including platelet-CNFs (PCNFs), fish-bone-CNFs, and tube-CNFs, were synthesized, characterized and evaluated toward methanol oxidation reaction (MOR). The CNFs studied here showed several structures in which various stacked morphologies as well as the ordering of their size and graphite layers can be well controlled. Platinum nanoparticles have been electrodeposited on CNFs surfaces, and their electrocatalytic activities toward MOR have been studied by using cyclic voltammetry, chronoamperometry, and linear sweep voltammograms. Morphologies, textural properties, and the crystalline structure of the CNFs supports and catalysts have been characterized with transmission electron microscopy and scanning electron microscopy. The comparative tests conclude that Pt/PCNFs have the best electrocatalytic performance and good stability at room temperature. The high electrocatalytic activity and stability can be attributed to the specific microstructure of PCNFs, which have large numbers of edge-active carbon atoms on the surface of the CNFs as well as synergistic effects between CNFs and the platinum nanoparticles. The results suggest that PCNFs are excellent potential candidates as catalyst supports in direct methanol fuel cells.

  14. The effects of halides on the performance of coal gas-fueled molten carbonate fuel cells: Final report, October 1986-October 1987

    SciTech Connect

    Magee, T.P.; Kunz, H.R.; Krasij, M.; Cote, H.A.

    1987-10-01

    This report presents the results of a program to determine the probable tolerable limits of hydrogen chloride and hydrogen fluoride present in the fuel and oxidant streams of molten carbonate fuel cells that are operating on gasified coal. A literature survey and thermodynamic analyses were performed to determine the likely effects of halides on cell performance and materials. Based on the results of these studies, accelerated corrosion experiments and electrode half-cell performance tests were conducted using electrolyte which contained chloride and fluoride. These data and the results of previous in-cell tests were used to develop a computer for predicting the performance decay due to these halides. The tolerable limits were found to be low (less than 1 PPM) and depend on the power plant system configuration, the operating conditions of the fuel cell stack, the cell design and initial electrolyte inventory, and the ability of the cell to scrub low levels of halide from the reactant streams. The primary decay modes were conversion of the electrolyte from pure carbonate to a carbonate-halide mixture and accelerated electrolyte evaporation. 75 figs., 16 tabs.

  15. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Bing; Yan, Zeyu; Higgins, Drew C.; Yang, Daijun; Chen, Zhongwei; Ma, Jianxin

    2014-09-01

    Carbon-supported platinum nanowires (PtNW/C) are successfully synthesized by a simple and inexpensive template-free methodology and demonstrated as novel, suitable cathode electrode materials for proton exchange membrane fuel cell (PEMFC) applications. The synthesis conditions, such as the amount of reducing agent and reaction time, were investigated to investigate the effect on the nanostructures and activities of the PtNW/C catalysts. High-resolution transmission electron microscopy (TEM) results show that the formic acid facilitated reduction is capable of producing uniformly distributed 1-dimensional PtNW with an average cross-sectional diameter of 4.0 ± 0.2 nm and length of 20-40 nm. Investigation of the electrocatalytic activity by half-cell electrochemical testing reveals that PtNW/C catalyst demonstrates significant oxygen reduction reaction (ORR) activity, superior to that of commercially available Pt/C. Using a loading of 0.4 mgPt cm-2 PtNW/C as the cathode catalyst, a maximum power density of 748.8 mW cm-2 in a 50 cm2 single cell of commercial Pt/C. In addition, accelerated degradation testing (ADT) showed that the PtNW/C catalyst exhibits better durability than commercial Pt/C, rendering PtNW/C as a promising replacement to conventional Pt/C as cathode electrocatalysts for PEMFCs applications.

  16. Characterisation of carbon supported platinum-ruthenium fuel cell catalysts of different degree of alloying

    NASA Astrophysics Data System (ADS)

    Albers, Peter W.; Weber, Winfried; Kunzmann, Kurt; Lopez, Marco; Parker, Stewart F.

    2008-12-01

    A series of PtRu/C fuel cell catalysts have been characterised by a combination of transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray microanalysis, X-ray diffraction and inelastic incoherent neutron scattering. The diffraction and microscopy studies show that a range of catalysts with different degrees of alloying can be obtained. It was possible to produce a strongly alloyed catalyst with average particle size below 10 nm. STEM/EDX results on the local compositions of the precious metal particles of different size and composition showed that the larger the particles the larger the Pt/Ru ratio. This indicates that ruthenium appears to prevent the agglomeration of the platinum particles to retain the smaller nanometer size. Inelastic neutron scattering spectroscopy shows that on the alloyed catalysts hydrogen occupies the threefold site, with no evidence for occupation of the on-top sites even under 800 mbar of hydrogen gas. Changes in the region of the out-of-plane C-H vibrational bands of the carbon black support indicated a contribution of the support during catalyst formation treatment by carbothermal reaction at lower temperature. Comparison of HREELS data from single crystal work and vibrational energy values from neutron spectroscopy allows to derive information on the site occupation of atomic hydrogen on finely divided precious metal particles supported on highly absorbing high surface area carbon blacks.

  17. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  18. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    PubMed

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater.

  19. Simultaneous carbon removal, denitrification and power generation in a membrane-less microbial fuel cell.

    PubMed

    Zhu, Guangcan; Onodera, Takashi; Tandukar, Madan; Pavlostathis, Spyros G

    2013-10-01

    A membrane-less microbial fuel cell (ML-MFC) was developed to investigate the simultaneous carbon removal and denitrification. The removal rates of 0.64 kg COD m(-3) of liquid cathode volume (LCV) d(-1) and 0.186 g NO3(-)-N m(-3) of LCV d(-1) were achieved, which resulted in the maximal COD and nitrate removal rates of 100% and 36.7%, respectively. The ML-MFC also achieved a maximal power output of 0.0712 W m(-3) of LCV and 0.844 A m(-3) of LCV in approximately 24h. The maximal coulombic efficiency of anode (CEAn) and cathode (CECa) was 5.1% and 475%, respectively. The anodic gas phase was consisted of 77.2±4.0% CH4, 3.9±0.5% CO2, and 3.9±1.5% N2, which indicated that the low anode coulombic efficiency was due to anodic methane production. The results of this study demonstrated the potential application of ML-MFC in simultaneous carbon and nitrogen removal and energy (electricity) production. PMID:23911679

  20. [Electricity generation by the microbial fuel cells using carbon nanotube as the anode].

    PubMed

    Liang, Peng; Fan, Ming-zhi; Cao, Xiao-xin; Huang, Xia; Peng, Yin-ming; Wang, Shuo; Gong, Qian-ming; Liang, Ji

    2008-08-01

    The characteristic of anode plays an important role in the performance of the microbial fuel cell (MFC). Thus, carbon nanotube (CN), flexible graphite (FG) and activated carbon (AC) were used as anode material in this study, and the performances of three MFCs (CN-MFC, FG-MFC and AC-MFC) were studied. The results show that CN is a kind of suitable material to be used as anode in the MFC. The maximal power densities of CN-MFC, FG-MFC and AC-MFC are 402,354 and 274 mW/m2, respectively. The CN-MFC shows a higher power density and coulombic efficiency compared with FG-MFC and AC-MFC. The CN-anode can reduce the internal resistance obviously. The internal resistances of CN-MFC, AC-MFC and FG-MFC are 263, 301 and 381 omega, respectively. The protein contents on the CN-anode, AC-anode and FG-anode are 149, 132 and 92 microg/cm2 after stable operation, and there is a positive relation between the protein content and internal resistance. The conductivity of the three types of MFCs from high to low was FG-MFC, CN-MFC and AC-MFC, which was accordant with the ohmic resistance. The stable times of CN-MFC, FG-MFC and AC-MFC, which were needed to measure the internal resistances, were 1800, 1200 and 300 s respectively.

  1. Impact of gas products around the anode on the performance of a direct carbon fuel cell using a carbon/carbonate slurry

    NASA Astrophysics Data System (ADS)

    Watanabe, Hirotatsu; Umehara, Daisuke; Hanamura, Katsunori

    2016-10-01

    This paper investigates the impact of gas products around the anode on cell performance via an in situ observation. In a direct carbon fuel cell used this study, the anode is inserted into the carbon/carbonate slurry. The current-voltage (I-V) curves are measured before and after a long discharge in the constant current discharge mode. An in situ observation shows that the anode is almost completely covered by gas bubbles when the voltage becomes nearly 0 V in the constant current discharge at 40 mA/cm2; this indicates that gas products such as CO2 prevent the carbon particles and ions from reaching the anode. Meanwhile, the long discharge at 20 mA/cm2 is achieved for 30 min, even though the anode is covered by the CO2 bubbles at 15 min. The I-V curves at 1 min after the termination of the long discharge at 20 mA/cm2 are lower than those prior to the long discharge. The overpotential significantly increases at higher current densities, where mass transport becomes the limiting process. The cell performance is significantly influenced by the gas products around the anode.

  2. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  3. Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Kou, Rong; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    The electrochemical behavior for Pt catalysts supported on multiwalled carbon nanotubes and Vulcan XC-72 in proton exchange membrane fuel cells under accelerated stress test was examined by cyclic voltammetry, electrochemical impedance spectroscopy, and polarization technique. Pt catalyst supported on multiwalled carbon nanotubes exhibited highly stable electrochemical surface area, oxygen reduction kinetics, and fuel cell performance at a highly oxidizing condition, indicating multiwalled carbon nanotubes show high corrosion resistance and strong interaction with Pt nanoparticles. The Tafel slope, ohmic resistances, and limiting current density determined were used to differentiate kinetic, ohmic, mass-transfer polarization losses from the actual polarization curve. Kinetic contribution to the total overpotential was larger throughout the stress test. However, the fraction of kinetic overpotential decreased and mass-transfer overpotential portion remained quite constant during accelerated stress test, whereas the fraction of ohmic overpotential primarily originating from severe proton transport limitation in the catalyst layer increased under the anodic potential hold.

  4. Pt and Pt-Ru/Carbon Nanotube Nanocomposites Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli; Wang, Jun; Yen, Clive; Wai, Chien M.

    2006-06-01

    In recent years, the use of supercritical fluids (SCFs) for the synthesis and processing of nanomaterials has proven to be a rapid, direct, and clean approach to develop nanomaterials and nanocomposites. The application of supercritical fluid technology can result in products (and processes) that are cleaner, less expensive, and of higher quality than those that are produced using conventional technologies and solvents. In this work, carbon nanotube (CNT)-supported Pt and Pt-Ru nanoparticles catalysts have been synthesized in supercritical carbon dioxide (scCO2). The experimental results demonstrate that Pt, Pt-Ru/CNT nanocomposites synthesized in supercritical carbon dioxide are effective electrocatalysts for low-temperature fuel cells.

  5. Synthesis and characterization of carbon nanotubes supported platinum nanocatalyst for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lin, J. F.; Kamavaram, V.; Kannan, A. M.

    Multi-walled carbon nanotubes (MWCNTs) were used as catalyst support for depositing platinum nanoparticles by a wet chemistry route. MWCNTs were initially surface modified by citric acid to introduce functional groups which act as anchors for metallic clusters. A two-phase (water-toluene) method was used to transfer PtCl 6 2- from aqueous to organic phase and the subsequent sodium formate solution reduction step yielded Pt nanoparticles on MWCNTs. High-resolution TEM images showed that the platinum particles in the size range of 1-3 nm are homogeneously distributed on the surface of MWCNTs. The Pt/MWCNTs nanocatalyst was evaluated in the proton exchange membrane (PEM) single cell using H 2/O 2 at 80 °C with Nafion-212 electrolyte. The single PEM fuel cell exhibited a peak power density of about 1100 mW cm -2 with a total catalyst loading of 0.6 mg Pt cm -2 (anode: 0.2 mg Pt cm -2 and cathode: 0.4 mg Pt cm -2). The durability of Pt/MWCNTs nanocatalyst was evaluated for 100 h at 80 °C at ambient pressure and the performance (current density at 0.4 V) remained stable throughout. The electrochemically active surface area (64 m 2 g -1) as estimated by cyclic voltammetry (CV) was also similar before and after the durability test.

  6. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    SciTech Connect

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  7. The effects of clamp torque, humidity, and carbon oxygen poisoning on PEM fuel cell performance

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Kum

    2000-10-01

    Proton exchange membrane fuel cell (PEMFC) is attracting much attention as a power source of electric vehicles due to high power density capability. Although there has been much research and development done on PEWC, there are still many problems to be solved. One of the major problems is water management inside the fuel cell. The performance of the fuel cell is strongly influenced by the state of hydration of the membrane. If the membrane is too dry, its conductivity drops resulting in reduced cell performance. An excess of water in the fuel cell can lead to flooding problems, also resulting in performance drop. This dissertation presents experimental data that may be used to verify numerical simulations of a PEM fuel cell. The key to this usefulness is the closure of a water balance in the fuel cell for various operating conditions. The closure results from experimental data showed that the inlet gas streams are not fully saturated with water vapor. Another key to the usefulness of the data is the measurement of the internal compression pressure that is exerted on the gas diffusion layer. Data is presented to show the effect of this compression on the performance of the PEMFC and on the water balance results. Another problem in application of a PEM fuel cell is CO poisoning on the MEA. Gas reformed from methanol or gasoline contains small amount of CO resulting in significant decreasing fuel cell performance. Several recovery techniques were discussed to solve the CO problem. The use of Pt-Ru alloys as anode catalyst has shown that CO is oxidized at more negative potentials as compared to pure Pt. According to the result, an improvement has been achieved at CO level 5 ppm. Another method to prevent CO poisoning has been described by blowing 5% of air into the anode side. The result shows that the performance recovers very quickly as the air is injected during reformate (50 ppm CO).

  8. Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report, April--June 1987

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-12-31

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  9. Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report, January--March 1987

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-12-31

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have state-of-the-art cell voltage and lifetime.

  10. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    NASA Astrophysics Data System (ADS)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  11. Fuel cell apparatus and method thereof

    DOEpatents

    Cooper, John F.; Krueger, Roger; Cherepy, Nerine

    2004-11-09

    Highly efficient carbon fuels, exemplary embodiments of a high temperature, molten electrolyte electrochemical cell are capable of directly converting ash-free carbon fuel to electrical energy. Ash-free, turbostratic carbon particles perform at high efficiencies in certain direct carbon conversion cells.

  12. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    NASA Astrophysics Data System (ADS)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  13. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  14. Carbon nanotube-based glucose oxidase nanocomposite anode materials for bio-fuel cells

    NASA Astrophysics Data System (ADS)

    Dudzik, Jonathan

    The field of nanotechnology has benefited medicine, science, and engineering. The advent of Carbon Nanotubes (CNTs) and protein-inorganic interfacing have received much attention due to their unique nanostructures which can be modified to act as a scaffold to house proteins or create nanowires. The current trend incorporates the robustness and specificity characteristics of proteins to the mechanical strength, enlarged surface area, and conductive capabilities emblematic of their inorganic counterparts. Bio-Fuel Cells (BFCs) and Biosensors remain at the forefront and devices such as implantable glucose monitors are closer to realization than ever before. This research strives to exploit potential energy from the eukaryotic enzyme Glucose Oxidase (GOx) during oxidation of its substrate, glucose. During this process, a two-electron transfer occurs at its two FAD redox centres which can be harnessed via an electrochemical setup involving a Multi-Walled Carbon Nanotube (MWCNTs) modified electrode. The objective is to develop a MWCNT-GOx bionanocomposite capable of producing and sustaining a competitive power output. To help with this aim, investigation into a crosslinked enzyme cluster (CEC) immobilization technique is envisioned to amplify power output due to its highly concentrated, reusable, and thermally stable characteristics. Numerous CEC-GOx-MWCNT composites were fabricated with the highest initial output reaching 170 muW/cm 2. It was hypothesized that the carbohydrate moiety increased tunnelling distance and therefore hindered electron transfer. Efforts to produce a recombinant GOx without the encumbrance were unsuccessful. Two sub-clone constructs were explored and although a recombinant protein was identified, it was not confirmed to be GOx. BFC testing on bionanocomposites integrating non-glycosylated GOx could not be performed although there remains a strong contention that the recombinant would demonstrate superior power densities in comparison to its

  15. Fuel Cell Handbook, Fourth Edition

    SciTech Connect

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  16. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Artyushkova, Kateryna; Babanova, Sofia; Atanassov, Plamen; Ieropoulos, Ioannis; Grattieri, Matteo; Cristiani, Pierangela; Trasatti, Stefano; Li, Baikun; Schuler, Andrew J

    2014-07-01

    Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested.

  17. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions.

    PubMed

    Quek, Soon Bee; Cheng, Liang; Cord-Ruwisch, Ralf

    2015-06-15

    The development of an assimilable organic carbon (AOC) detecting marine microbial fuel cell (MFC) biosensor inoculated with microorganisms from marine sediment was successful within 36 days. This established marine MFC was tested as an AOC biosensor and reproducible microbiologically produced electrical signals in response to defined acetate concentration were achieved. The dependency of the biosensor sensitivity on the potential of the electron-accepting electrode (anode) was investigated. A linear correlation (R(2) > 0.98) between electrochemical signals (change in anodic potential and peak current) and acetate concentration ranging from 0 to 150 μM (0-3600 μg/L of AOC) was achieved. However, the present biosensor indicated a different-linear relation at somewhat elevated acetate concentration ranging from 150 to 450 μM (3600-10,800 μg/L of AOC). This high concentration of acetate addition could be measured by coulombic measurement (cumulative charges) with a linear correlation. For the acetate concentration detected in this study, the sensor recovery time could be controlled within 100 min.

  18. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Artyushkova, Kateryna; Babanova, Sofia; Atanassov, Plamen; Ieropoulos, Ioannis; Grattieri, Matteo; Cristiani, Pierangela; Trasatti, Stefano; Li, Baikun; Schuler, Andrew J

    2014-07-01

    Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested. PMID:24787317

  19. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions.

    PubMed

    Quek, Soon Bee; Cheng, Liang; Cord-Ruwisch, Ralf

    2015-06-15

    The development of an assimilable organic carbon (AOC) detecting marine microbial fuel cell (MFC) biosensor inoculated with microorganisms from marine sediment was successful within 36 days. This established marine MFC was tested as an AOC biosensor and reproducible microbiologically produced electrical signals in response to defined acetate concentration were achieved. The dependency of the biosensor sensitivity on the potential of the electron-accepting electrode (anode) was investigated. A linear correlation (R(2) > 0.98) between electrochemical signals (change in anodic potential and peak current) and acetate concentration ranging from 0 to 150 μM (0-3600 μg/L of AOC) was achieved. However, the present biosensor indicated a different-linear relation at somewhat elevated acetate concentration ranging from 150 to 450 μM (3600-10,800 μg/L of AOC). This high concentration of acetate addition could be measured by coulombic measurement (cumulative charges) with a linear correlation. For the acetate concentration detected in this study, the sensor recovery time could be controlled within 100 min. PMID:25846984

  20. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells

    NASA Astrophysics Data System (ADS)

    Taylor, André D.; Kim, Edward Y.; Humes, Virgil P.; Kizuka, Jeremy; Thompson, Levi T.

    We present a method of using inkjet printing (IJP) to deposit catalyst materials onto gas diffusion layers (GDLs) that are made into membrane electrode assemblies (MEAs) for polymer electrolyte fuel cell (PEMFC). Existing ink deposition methods such as spray painting or screen printing are not well suited for ultra low (<0.5 mg Pt cm -2) loadings. The IJP method can be used to deposit smaller volumes of water based catalyst ink solutions with picoliter precision provided the solution properties are compatible with the cartridge design. By optimizing the dispersion of the ink solution we have shown that this technique can be successfully used with catalysts supported on different carbon black (i.e. XC-72R, Monarch 700, Black Pearls 2000, etc.). Our ink jet printed MEAs with catalyst loadings of 0.020 mg Pt cm -2 have shown Pt utilizations in excess of 16,000 mW mg -1 Pt which is higher than our traditional screen printed MEAs (800 mW mg -1 Pt). As a further demonstration of IJP versatility, we present results of a graded distribution of Pt/C catalyst structure using standard Johnson Matthey (JM) catalyst. Compared to a continuous catalyst layer of JM Pt/C (20% Pt), the graded catalyst structure showed enhanced performance.

  1. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  2. Development and characterization of novel cathode materials for molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Giorgi, L.; Carewska, M.; Patriarca, M.; Scaccia, S.; Simonetti, E.; Dibartolomeo, A.

    1994-04-01

    In the development of molten carbonate fuel cell (MCFC) technology, the corrosion of materials is a serious problem for long-term operation. Indeed, slow dissolution of lithiated-NiO cathode in molten carbonates is the main obstacle for the commercialization of MCFCs. In the search of new, more stable, cathode materials, alternative compounds such as LiFeO2, Li2MnO3, and La(1-x)Sr(x)CoO3 are presently under investigation to replace the currently used lithiated-NiO. The aim of the present work was to investigate the possibility to produce electrode based on LiCoO2, a promising cathode material. At first, Li(x)CoO2 powder samples (0.8 less than x less than 1.1) were made by thermal decomposition of carbonate precursors in air. The synthesis processes were monitored by thermal analysis (TGA, DTA). The calcined and sintered powder samples were characterized by x ray diffraction (XRD) andatomic absorption spectrophotometry (F-AAS). A single phase was detected in all the samples, without any change in crystal structure as a function of lithium content. Porous sintered electrodes were prepared starting from lithium cobaltite powders mixed with different pore-formers by cold pressing and sintering. A bimodal pore-size distribution with a mean pore diameter in the range of 0.15 to 8 micron, a surface area of 2 to 12 sq m/g and a porosity of 10 to 65%, determined by the Hg-intrusion technique, were observed in all the materials. Conductivity measurements were carried out in the temperature range of 500-700 C, in air. The influence of the deviations from stoichiometry on the electronic properties was determined, the conductivity value of the stoichiometric compound being the lowest. A linear relationship between the electronic conductivity and the sample porosity was found. Solubility testing of the materials was carried out to evaluate their chemical stability in the electrolyte. The sampling method (F-AAS) and square wave voltammetry (SWV) were used to determine the

  3. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1-July 31, 1980

    SciTech Connect

    Peterson, J. R.

    1980-09-04

    The major objective of this program for development of a molten carbonate fuel cell power plant is to establish and demonstrate readiness for fabrication and test of full-scale prototype stacks. This will be accomplished by a heavy emphasis upon resolution of remaining technology problems, including materials, processes and contaminant effects research, development and testing of cell components to 10,000 hours endurance life and scaleup of laboratory hardware to commercial size. A detailed design for a prototype stack will be defined and a tenth-size of full-scale cells will be tested. Component and manufacturing processes will be developed based upon commercial cost goals. Coal-fired utility central station and industrial cogeneration power plant requirements will be defined and plant options evaluated, leading to selection of a single reference design. Cell and stack design and development will be guided by requirements based upon the reference plant design. The specific program objectives derived from the contract work statement are as follows: (1) to define a reference power plant design for a coal-fired molten carbonate power plant; (2) to develop and verify cell and stack design based upon the requirements of the reference power plant design; (3) to establish and demonstrate readiness to fabricate and test full-length stacks of full-scale cells, hereafter called prototype stacks; and (4) to quantify contaminant effects and establish a program to verify performance of molten carbonate fuel cells operating on products of coal gasification. Progress is reported.

  4. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, August 1, 1982-October 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1983-02-24

    Work proceeded this quarter under three program tasks. Under Task 1.0, work was completed on the reference power plant design description. Under Task 2.0, work continued on the development of materials, anode, cathode and electrolyte, and on stack design and analysis. Long term corrosion tests of current collector alloy specimens continued, with 310SS, GE2541 and Aggalloy showing adherent scale formation in the cathode gas atmosphere after 7000 hours. A number of alternate cathode materials were fabricated and tested for conductivity, solubility and stability. A new conductivity measurement device has been partially constructed. Under Task 4.0, testing of the effects of hydrocarbons in the fuel on the operation of carbonate fuel cells was completed. This series of tests has shown that small amounts of organic compounds do not adversely affect fuel cell operation. Testing of a cell with H/sub 2/S contamination in the fuel has proceeded for over 1700 hours. Cell performance decreased with increasing concentrations of H/sub 2/S, as would be expected, but also recovered substantially when clean fuel gas was introduced for a period of 378 hours. (WHK)

  5. Molten carbonate fuel cell product development test. Final report, September 30, 1992--March 31, 1997

    SciTech Connect

    1997-12-31

    This report summarizes the work performed for manufacturing and demonstrating the performance of its 250-kW molten carbonate fuel cell (MCFC) stack in an integrated system at the Naval Air Station Miramar (NAS Miramar) located in San Diego, California. The stack constructed for the demonstration test at the NAS Miramar consisted of 250 cells. It was manufactured using M-C Power`s patented Internally Manifolded Heat Exchanger (IMHEX{reg_sign}) stack design. The demonstration test at NAS Miramar was designed to operate the 250-kW MCFC stack in a cogeneration mode. This test represented the first attempt to thermally integrate an MCFC stack in a cogeneration system. The test was started on January 10, 1997, and voluntarily terminated on May 12, 1997, after 2,350 hours of operation at temperatures above 1,100 F and at a pressure of three atmospheres. It produced 160 MWh of d.c. power and 346,000 lbs of 110 psig steam for export during 1,566 hours of on-load operations. The test demonstrated a d.c. power output of 206 kW. Most of the balance of the plant (BOP) equipment operated satisfactorily. However, the off-the-shelf automotive turbocharger used for supplying air to the plant failed on numerous occasions and the hot gas blower developed seal leakage problems which impacted continuous plant operations. Overall the demonstration test at NAS Miramar was successful in demonstrating many critical features of the IMHEX technology. Lessons learned from this test will be very useful for improving designs and operations for future MCFC power plants.

  6. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  7. Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell

    DOEpatents

    Marchetti, George A.

    2003-01-03

    The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.

  8. Fuel Cell Handbook, Fifth Edition

    SciTech Connect

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  9. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells.

    PubMed

    Wang, Xin; Cheng, Shaoan; Feng, Yujie; Merrill, Matthew D; Saito, Tomonori; Logan, Bruce E

    2009-09-01

    Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450 degrees C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/ m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, power increased to 1015 mW/m2(51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes.

  10. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells.

    PubMed

    Wang, Xin; Cheng, Shaoan; Feng, Yujie; Merrill, Matthew D; Saito, Tomonori; Logan, Bruce E

    2009-09-01

    Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450 degrees C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/ m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, power increased to 1015 mW/m2(51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes. PMID:19764262

  11. A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Baolong; Zhao, Yicheng; Li, Yongdan

    2016-02-01

    The role of a SnO2-samarium doped ceria (SDC) additional anode layer in a direct carbon fuel cell (DCFC) with SDC-(Li0.67Na0.33)2CO3 composite electrolyte and lithiated NiO-SDC-(Li0.67Na0.33)2CO3 composite cathode is investigated and compared with a NiO-SDC extra anode layer. Catalytic grown carbon fiber mixed with (Li0.67Na0.33)2CO3 is used as a fuel. At 750 °C, the maximum power outputs of 192 and 143 mW cm-2 are obtained by the cells with SnO2-SDC and NiO-SDC layers, respectively. In the SnO2-SDC layer, the reduction of SnO2 and the oxidation of Sn happen simultaneously during the cell operation, and the Sn/SnO2 redox cycle provides an additional route for fuel conversion. The formation of an insulating dense interlayer between the anode and electrolyte layers, which usually happens in DCFCs with metal anodes, is avoided in the cell with the SnO2-SDC layer, and the stability of the cell is improved consequently.

  12. Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer

    NASA Astrophysics Data System (ADS)

    Wang, Zhiquan; Wang, Zhenbin; Yang, Wenqiang; Peng, Ranran; Lu, Yalin

    2014-06-01

    In this work, adding a NiTiO3 (NTO) reforming layer is firstly adopted as a low cost method to improve the carbon tolerance in solid oxide fuel cells. XRD patterns suggest that NTO has a good chemical compatibility with the YSZ electrolyte, and NTO can be totally reduced to Ni and TiO2 when exposing to the H2 atmosphere. Maximum power densities for the cells with the NTO layers at 700 °C are 270 mWcm-2 with wet H2 fuel, and 236 mWcm-2 with wet methane fuel, respectively. Improved discharging stability for the cells with NTO layers has also been observed. The current density remains unchanged for the cells with NTO layers during a 26 h test, while it drops to zero within 1 h for the cells without NTO. Above electro-performance and long term stability tests suggest that fabricating a NTO reforming layer on the anode surface is an efficient and inexpensive method to realize highly carbon tolerant SOFCs.

  13. Graphene nanoribbons hybridized carbon nanofibers: remarkably enhanced graphitization and conductivity, and excellent performance as support material for fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Gao, Hongrong; Li, Hong; Zhang, Yiren; Huang, Bowen; Zhao, Junhong; Zhu, Yan; Yuan, Wang Zhang; Zhang, Yongming

    2014-01-01

    High electronic conductivity of the support material and uniform distribution of the catalyst nanoparticles (NPs) are extremely desirable for electrocatalysts. In this paper, we present our recent progress on electrocatalysts for fuel cells with simultaneously improved conductivity of the supporting carbon nanofibers (CNFs) and distribution of platinum (Pt) NPs through facile incorporation of graphene nanoribbons (GNRs). Briefly, GNRs were obtained by the cutting and unzipping of multiwalled carbon nanotubes (MWCNTs) and subsequent thermal reduction and were first used as novel nanofillers in CNFs towards high performance support material for electrocatalysis. Through electrospinning and carbonization processes, GNR embedded carbon nanofibers (G-CNFs) with greatly enhanced graphitization and electronic conductivity were synthesized. Chemical deposition of Pt NPs onto G-CNFs generated a new Pt-G-CNF hybrid catalyst, with homogeneously distributed Pt NPs of ~3 nm. Compared to Pt-CNF (Pt on pristine CNFs) and Pt-M-CNF (Pt on MWCNT embedded CNFs), Pt-G-CNF hybrids exhibit significantly improved electrochemically active surface area (ECSA), better CO tolerance for electro-oxidation of methanol and higher electrochemical stability, testifying G-CNFs are promising support materials for high performance electrocatalysts for fuel cells.High electronic conductivity of the support material and uniform distribution of the catalyst nanoparticles (NPs) are extremely desirable for electrocatalysts. In this paper, we present our recent progress on electrocatalysts for fuel cells with simultaneously improved conductivity of the supporting carbon nanofibers (CNFs) and distribution of platinum (Pt) NPs through facile incorporation of graphene nanoribbons (GNRs). Briefly, GNRs were obtained by the cutting and unzipping of multiwalled carbon nanotubes (MWCNTs) and subsequent thermal reduction and were first used as novel nanofillers in CNFs towards high performance support material for

  14. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  15. Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Carmo, M.; Paganin, V. A.; Rosolen, J. M.; Gonzalez, E. R.

    Noble metal catalysts in the form of nanoparticles supported on high surface area carbon exhibit characteristics which depend strongly on the nature of the support. This work presents results with noble metal catalysts supported on carbon nanotubes (MWNT and SWNT) and also on a high surface area carbon powder Vulcan XC-72, for proton exchange membrane fuel cells (PEMFC) fed with hydrogen contaminated with CO and also for the direct methanol fuel cell (DMFC). A high performance was achieved with PtRu supported on nanotubes for H 2 + 100 ppm CO, although it was similar to that presented by PtRu on Vulcan XC-72 with an overpotential of 100 mV at 1 A cm -2. Results for the DMFC showed power densities exceeding 100 mW cm -2 at 90 °C and 0.3 MPa and the activity of the anodes followed the sequence: PtRu/MWNT > PtRu/Vulcan XC-72 > PtRu/SWNT. The electrocatalysts were all prepared with the same method, namely impregnation of the carbons with the precursors in ethanol and reduction under a hydrogen atmosphere. The role of Ni, Fe and other contaminants contained in the as-received carbon nanotubes is discussed.

  16. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; V. Colbow; M. Dutta; D. Harvey; S. Wessel

    2012-04-30

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  17. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

    2012-04-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 #2;C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  18. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells.

    PubMed

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Tyson, Trevor A; Liu, Meilin

    2011-06-21

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C(3)H(8), CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H(2)O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  19. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells

    PubMed Central

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Tyson, Trevor A.; Liu, Meilin

    2011-01-01

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C3H8, CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity. PMID:21694705

  20. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.

    PubMed

    Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I

    2012-07-01

    Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target.

  1. A comparative study on life cycle analysis of molten carbon fuel cells and diesel engines for marine application

    NASA Astrophysics Data System (ADS)

    Alkaner, Selim; Zhou, Peilin

    The study performed a life cycle assessment (LCA) of a molten carbonate fuel cell (MCFC) plant for marine applications. The results are compared to a benchmark conventional diesel engine (DE) which operates as an auxiliary power generating unit. The LCA includes manufacturing of MCFC and DE, fuel supply, operation and decommissioning stages of the system's life cycle. As a new technology in its very early stages of commercialisation, some detailed data for the FC systems are not available. In order to overcome this problem, a series of scenario analysis has also been performed to evaluate the effect of various factors on the overall impact, such as change in power load factors and effect of recycling credit at the end of life cycle. Environmental benefits from fuel cell operation are maximised with the use of hydrogen as an input fuel. For the manufacturing stage of the life cycle, input material and process energy required for fuel cell stack assemblies and balance-of-plants (BOP) represent a bigger impact than that of conventional benchmark mainly due to special materials used in the stack and the weights of the BOP components. Additionally, recovering valuable materials through re-use or re-cycle will reduce the overall environmental burden of the system over its life cycle.

  2. An investigation of a carbon dioxide-based fuel cell system as a power generation alternative for Mars exploration applications

    NASA Astrophysics Data System (ADS)

    Salinas Mejia, Oscar Roberto

    The possibility of using a bifunctional carbon dioxide-based fuel cell system as the core of a propulsion system for a Mars exploration rotorcraft is investigated here. This concept involves the production of electricity by a stack of fuel cells that rely on carbon monoxide as the fuel and oxygen as the oxidizer. These two reactants are harvested from the Martian atmosphere by employing the same stack of cells as an electrolyzing unit. The general objectives of this research are to: prove the feasibility of the concept, produce a comprehensive model that allows the prediction of performance, and offer recommendations for the successful implementation of the concept. In this work, it is pointed out and demonstrated that, at least in theory, the overall electrochemical reaction required by this concept can be achieved by transporting hydrogen protons, hydroxyl radicals, carbonate radicals, or oxygen ions between the electrodes. Complete sets of reactions are prescribed for different types of fuel cells. Anodic and cathodic reactions are presented for acid, alkaline, carbonate, and solid oxide electrolytes. Subsequently, a more detailed consideration of all relevant phenomena is done by coupling elements of chemical kinetics, electrodics, electrochemistry, and thermodynamics with experimental data, to complete the demonstration of the feasibility of the carbon dioxide-based bifunctional fuel cell system. The understanding and inclusion of key processes and mechanisms allows the construction of a model that predicts the performance of the power generation subsystem advocated here. The model adopted in this work couples mechanistics with elements derived from the application of linear regression modeling techniques. Mechanistics are used to determine: thermodynamic equilibrium potential, overvoltages due to activation, ohmic resistance, and mass transport. This approach is empirical in part because the numerical parametric expressions suggested here have to be precised

  3. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  4. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    PubMed

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC. PMID:26510492

  5. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    PubMed

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC.

  6. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    NASA Astrophysics Data System (ADS)

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-03-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm‑2 at 0.46 V is especially remarkable and better than that previously reported.

  7. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    PubMed Central

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-01-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682

  8. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  9. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  10. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2 P in direct ethanol fuel cells.

    PubMed

    Li, Guoqiang; Feng, Ligang; Chang, Jinfa; Wickman, Björn; Grönbeck, Henrik; Liu, Changpeng; Xing, Wei

    2014-12-01

    Ethanol is an alternative fuel for direct alcohol fuel cells, in which the electrode materials are commonly based on Pt or Pd. Owing to the excellent promotion effect of Ni2 P that was found in methanol oxidation, we extended the catalyst system of Pt or Pd modified by Ni2 P in direct ethanol fuel cells. The Ni2 P-promoted catalysts were compared to commercial catalysts as well as to reference catalysts promoted with only Ni or only P. Among the studied catalysts, Pt/C and Pd/C modified by Ni2 P (30 wt %) showed both the highest activity and stability. Upon integration into the anode of a homemade direct ethanol fuel cell, the Pt-Ni2 P/C-30 % catalyst showed a maximum power density of 21 mW cm(-2) , which is approximately two times higher than that of a commercial Pt/C catalyst. The Pd-Ni2 P/C-30 % catalyst exhibited a maximum power density of 90 mW cm(-2) . This is approximately 1.5 times higher than that of a commercial Pd/C catalyst. The discharge stability on both two catalysts was also greatly improved over a 12 h discharge operation.

  11. Proton exchange membrane fuel cell reversible performance loss induced by carbon monoxide produced during operation

    NASA Astrophysics Data System (ADS)

    Decoopman, B.; Vincent, R.; Rosini, S.; Paganelli, G.; Thivel, P.-X.

    2016-08-01

    Cyclic voltammetry measurements at the anode have been carried out and reveal the presence of carbon monoxide in steady-state operation, with pure hydrogen. Experiments have been performed both in single cell and in stack to find out its origin. The contamination of the anode catalyst is partly due the reverse-water gas shift (RWGS) with carbon dioxide from the cathode. However, this study shows a temperature-activated and time-related corrosion mechanism which appears under humidified hydrogen. Due to this degradation mechanism, a reversible 25 mV-loss of performances is observed and can be recovered by oxidizing carbon monoxide on the anode.

  12. Proton exchange membrane fuel cell reversible performance loss induced by carbon monoxide produced during operation

    NASA Astrophysics Data System (ADS)

    Decoopman, B.; Vincent, R.; Rosini, S.; Paganelli, G.; Thivel, P.-X.

    2016-08-01

    Cyclic voltammetry measurements at the anode have been carried out and reveal the presence of carbon monoxide in steady-state operation, with pure hydrogen. Experiments have been performed both in single cell and in stack to find out its origin. The contamination of the anode catalyst is partly due the reverse-water gas shift (RWGS) with carbon dioxide from the cathode. However, this study shows a temperature-activated and time-related corrosion mechanism which appears under humidified hydrogen. Due to this degradation mechanism, a reversible 25 mV-loss of performances is observed and can be recovered by oxidizing carbon monoxide on the anode.

  13. Catalysts compositions for use in fuel cells

    SciTech Connect

    Chuang, Steven S.C.

    2015-12-01

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  14. Carbon foam anode modified by urea and its higher electrochemical performance in marine benthic microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Fu, Yubin; Lu, Zhikai; Zai, Xuerong; Wang, Jian

    2015-08-01

    Electrode materials have an important effect on the property of microbial fuel cell (MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell (BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam (PC) and urea-modified carbon foam (UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 mV lower than that of the PC, reaching -570 ±10 mV ( vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 mW m-2, which is 566.2-fold higher than that from plain graphite anode (PG). The fuel cell containing the UC anode has the maximum power density (256.0 mW m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.

  15. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis. PMID:27467199

  16. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  17. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1, 1982-July 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1982-12-17

    Work proceeded this quarter under three program tasks. Under Task 1.0, work continued on the preparation of the reference power plant design description with Pacific Gas and Electric being one of the major contributors to the effort. Work also continued to further define the power conditioning equipment. Under Task 2.0, work continued on alternate cathode material identification, anode, cathode and electrolyte tile development, and stack design and analysis. A number of candidate cathode materials were fabricated and preliminary conductivity, solubility and stability tests performed. The chemistry of the degradation process of state-of-the-art NiO cathodes was also addressed. Under Task 4.0, studies continued to identify chemical reactions that might occur between fuel cell anode material and a number of organic compounds which could occur in fuel gases. The addition of several substances showed little effect on catalytic activity in a tube furnace or cell performance except for carbon plugging of a fuel line following ethanol addition. In addition, two cells were run this period to determine the effects of H/sub 2/S contamination on cell performance. Both tests were terminated (after 480 hours and 1450 hours of testing) due to test equipment operational problems. (WHK)

  18. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    PubMed Central

    Hu, Yan; Chua, Daniel H. C.

    2016-01-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135

  19. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells.

    PubMed

    Hu, Yan; Chua, Daniel H C

    2016-06-15

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  20. Carbon nanofiber growth optimization for their use as electrocatalyst support in proton exchange membrane (PEM) fuel cells.

    PubMed

    Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R

    2009-07-01

    Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.

  1. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chua, Daniel H. C.

    2016-06-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt-1 as compared to standard carbon black of 7.4 W.mgPt-1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  2. Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Shimizu, Takahiro; Mitsushima, Shigenori

    2016-06-01

    The adsorption behavior of CO on the anode around the concentration of 0.2 ppm allowed by ISO 14687-2 is investigated in polymer electrolyte fuel cells (PEFCs). CO and CO2 concentrations in the anode exhaust are measured during the operation of a JARI standard single cell at 60 °C cell temperature and 1000 mA cm-2 current density. CO coverage is estimated from the gas analysis and CO stripping voltammetry. The cell voltage decrease as a result of 0.2 ppm CO is 29 mV and the CO coverage is 0.6 at the steady state with 0.11 mg cm-2 of anode platinum loading. The CO coverage as a function of CO concentration approximately follows a Temkin-type isotherm. Oxygen permeated to the anode through a membrane is also measured during fuel cell operation. The exhaust velocity of oxygen from the anode was shown to be much higher than the CO supply velocity. Permeated oxygen should play an important role in CO oxidation under low CO concentration conditions.

  3. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  4. Operando fuel cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  5. A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing.

    PubMed

    Song, Yang; Xiao, Li; Jayamani, Indumathy; He, Zhen; Cupples, Alison M

    2015-01-01

    Stable isotope probing and high throughput sequencing were used to characterize the microbial communities involved in carbon uptake in microbial fuel cells at two levels of electricity generation. With acetate, the dominant phylotypes involved in carbon uptake included Geobacter and Rhodocyclaceae. With glucose, both Enterobacteriaceae and Geobacter were dominant.

  6. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications.

    PubMed

    Wang, Qi; Wang, Xiangke; Chai, Zhifang; Hu, Wenping

    2013-12-01

    Carbon nanotubes (CNTs) and graphene, and materials based on these, are largely used in multidisciplinary fields. Many techniques have been put forward to synthesize them. Among all kinds of approaches, the low-temperature plasma approach is widely used due to its numerous advantages, such as highly distributed active species, reduced energy requirements, enhanced catalyst activation, shortened operation time and decreased environmental pollution. This tutorial review focuses on the recent development of plasma synthesis of CNTs and graphene based materials and their electrochemical application in fuel cells. PMID:23959435

  7. Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Ieropoulos, Ioannis

    2016-09-01

    This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassium-rich wastewater as a fuel for microorganisms to generate electricity in the anode chamber, has resulted in the formation of caustic catholyte directly on the surface of the cathode electrode. Analysis of this liquid has shown to be highly alkaline (pH>13) and act as a CO2 sorbent. It has been later mineralised to kalicinite thus locking carbon dioxide into potassium bicarbonate salt. This work demonstrates an electricity generation method as a simple, cost-effective and environmentally friendly route towards CO2 sequestration that perhaps leads to a carbon negative economy. Moreover, it shows a potential application for both electricity production and nutrient recovery in the form of minerals from nutrient-rich wastewater streams such as urine for use as fertiliser in the future. PMID:27133363

  8. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  9. Molten carbonate fuel cell product development test. Annual report, October 1992--September 1993

    SciTech Connect

    Not Available

    1993-12-01

    Advanced fuel cell active components have been developed and scaled up from laboratory scale to commercial scale. Full width components of both the stabilized nickel cathodes and the low chrome anodes have been successfully cast on M-C Power`s production tape caster. An improved design for a fuel cell separator plate has been developed. The improved design meets the goals of lower cost and manufacturing simplicity, and addresses performance issues of the current commercial area plate. The engineering that the Bechtel Corporation has completed for the MCFC power plant includes a site design, a preliminary site layout, a Process Flow Diagram, and specification for the procurement of some of the major equipment items. Raw materials for anode and cathode components were ordered and received during the first half of 1993. Tape casting of anodes was started in late summer and continued through August. In addition to the technical progress mentioned above, an environment assessment was prepared in compliance with the National Environmental Policy Act of 1969 (NEPA). As a result, the PDT has received a categorical exclusion from the Air Pollution Control District permit requirements. The PDT is configured to demonstrate the viability of natural gas-fueled MCFC for the production of electricity and thermal energy in an environmentally benign manner for use in commercial and industrial applications.

  10. Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Hailin; Kakade, Bhalchandra A.; Tamaki, Takanori; Yamaguchi, Takeo

    2014-08-01

    The restacking of graphene or reduced graphite oxide (r-GO) is commonly regarded as a severe obstacle for potential applications. We propose the application of exfoliated carbon nanotube (e-CNT) as an effective carbon spacer for fabricating a sandwich-like three-dimensional (3D) carbon composite with GO. The 3D carbon combination of GO + e-CNT is successfully prepared via homogenously mixing of GO and e-CNT in an aqueous dispersion in which carbon spacers are homogenously intercalated with graphene layers. With the addition of a carbon spacer, the BET surface area of 3D carbon (51.6 m2 g-1) is enhanced by a factor of three compared with r-GO (17.2 m2 g-1) after thermal reduction. In addition, the 3D GO + e-CNT supported PtPd catalyst (PtPd-GO + e-CNT) shows homogenous distribution of PtPd nanoparticles of 3.9 ± 0.6 nm in size, with an enlarged electrochemical active surface area (ECSA) value of 164 m2 g-1 and a mass activity of 690 mA mg-1 toward the methanol oxidation reaction (MOR), which is the typical anode reaction for direct methanol fuel cells (DMFC).

  11. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White; Dr. Branko N. Popov

    2002-04-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Two approaches have been adopted to get a stable cathode material. First approach is the use of LiNi{sub 0.8}Co{sub 0.2}O{sub 2}, a commercially available lithium battery cathode material and the second is the use of tape cast electrodes prepared from cobalt coated nickel powders. The morphology and the structure of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and tape cast Co coated nickel powder electrodes were studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance of the two materials was investigated by electrochemical impedance spectroscopy and polarization studies. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. The model gives a good fit to the experimental data. The model has been used to analyze MCFC cathode performance under a wide range of operating conditions.

  12. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  13. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 2, January 1-March 31, 1980

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, Jr., J. L.; Louis, G. A.; Abrams, M. L.; Bushnell, C. L.; Nickols, R. C.; Gelting, R. L.; Katz, M.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Steuernagel, W. H.; Smith, R.; Smith, S. W.; Szymanski, S. T.

    1980-08-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, effort was continued in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - developing the capability for operation of stacks on coal-derived gas. In the system study activity of Task 1, preliminary module and cell stack design requirements were completed. Fuel processor characterization has been completed by Bechtel National, Inc. Work under Task 2 defined design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication has been made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated under Task 3. In Task 4, theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects. Components for the mobile test facility are being ordered.

  14. Fuel cells feasibility

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.; Charng, T.

    1981-01-01

    The technical and economic status of fuel cells is assessed with emphasis on their potential benefits to the Deep Space Network. The fuel cell, what it is, how it operates, and what its outputs are, is reviewed. Major technical problems of the fuel cell and its components are highlighted. Due to these problems and economic considerations it is concluded that fuel cells will not become commercially viable until the early 1990s.

  15. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  16. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  17. In-line deoxygenation for organic carbon detections in seawater using a marine microbial fuel cell-biosensor.

    PubMed

    Quek, Soon Bee; Cheng, Liang; Cord-Ruwisch, Ralf

    2015-04-01

    Assimilable organic carbon (AOC) is a key predictor for membrane biofouling in seawater desalination reverse osmosis (SWRO). Microbial fuel cells have been considered as biosensors for the detection of biodegradable organics. However, the presence of dissolved oxygen (DO) is known to completely suppress the signal production (i.e., current) of a typical MFC. This study describes AOC detection in normal oxygenated seawater by coupling an electrochemical cell for DO removal with a MFC-biosensor for AOC detection. The electrochemical deoxygenation for oxygen removal caused no interference in the AOC detection. A linear relationship (R(2)=0.991) between the AOC concentration and current production from the MFC biosensor was achieved. The coupling of an electrochemical cell with a MFC-biosensor can be effectively used as an online, rapid and inexpensive measure of AOC concentrations and hence as an indicator for biofouling potential of seawater.

  18. In-line deoxygenation for organic carbon detections in seawater using a marine microbial fuel cell-biosensor.

    PubMed

    Quek, Soon Bee; Cheng, Liang; Cord-Ruwisch, Ralf

    2015-04-01

    Assimilable organic carbon (AOC) is a key predictor for membrane biofouling in seawater desalination reverse osmosis (SWRO). Microbial fuel cells have been considered as biosensors for the detection of biodegradable organics. However, the presence of dissolved oxygen (DO) is known to completely suppress the signal production (i.e., current) of a typical MFC. This study describes AOC detection in normal oxygenated seawater by coupling an electrochemical cell for DO removal with a MFC-biosensor for AOC detection. The electrochemical deoxygenation for oxygen removal caused no interference in the AOC detection. A linear relationship (R(2)=0.991) between the AOC concentration and current production from the MFC biosensor was achieved. The coupling of an electrochemical cell with a MFC-biosensor can be effectively used as an online, rapid and inexpensive measure of AOC concentrations and hence as an indicator for biofouling potential of seawater. PMID:25679497

  19. Molten carbonate fuel cell product development test at SDG&E

    SciTech Connect

    Scroppo, J.A.; Laurens, R.M.; Petraglia, V.J.

    1995-12-31

    Design goals of a fuel cell power plant are described. The PDT design objectives will include improved performance at reduced cost compared with the UNOCAL demonstration project. Several specific objectives that differentiate the San Diego Gas & Electric PDT project from the UNOCAL demonstration are the following: packaging designs are more compact in the PDT program; it will also have longer unattended operation and increased reliability. Additionally, the experience gained during the design, construction and start-up of the UNOCAL power plant will be incorporated into the SDG&E design. This power plant is. being designed for compatibility with the SDG&E electrical distribution grid.

  20. Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells.

    PubMed

    Luo, Jianmei; Chi, Meiling; Wang, Hongyu; He, Huanhuan; Zhou, Minghua

    2013-12-01

    A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.

  1. Preparation of Arc Black and Carbon Nano Balloon by Arc Discharge and Their Application to a Fuel Cell

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi; Kaida, Shota; Satou, Tosiyuki; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto; Oke, Shinichiro; Ue, Hitoshi; Okawa, Takashi; Aoyagi, Nobuhiro; Shimizu, Kazuki

    2011-01-01

    Arc black (AcB) was prepared in N2 gas using the twin-torch arc discharge apparatus, and a hollow capsule with graphite layers named a carbon nano balloon (CNB) was obtained by heat treatment of the AcB in Ar gas at 2400 °C. Transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and compressive resistivity measurement confirmed that the CNB was well graphitized. In the direct methanol fuel cell (DMFC) application of these carbon nanomaterials, catalyst metal nanoparticles were supported on the AcB, and a membrane-electrode assembly (MEA) was formed from the catalyst-supported AcB and the CNB by hotpressing them on an electrolyte film. The MEA containing the CNB resulted in a higher DMFC performance than that without the CNB, indicating that the CNB with lower compressive resistivity than the AcB works as a material for the improvement of electric conductivity in an MEA.

  2. Micro fuel cell

    SciTech Connect

    Zook, L.A.; Vanderborgh, N.E.; Hockaday, R.

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  3. Limitations of Commercializing Fuel Cell Technologies

    NASA Astrophysics Data System (ADS)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  4. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Park, Young-Chul; Tokiwa, Haruki; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2016-05-01

    We investigate the effects of the carbon supports on the Pt distribution, ionomer coverage and cathode performance of carbon-supported Pt catalysts, by using STEM observation, N2 adsorption analysis and electrochemical characterization. According to the STEM observation, the effective Pt surface area (S(e)Pt), which is determined by the location and size of the Pt particles on the supports, increases in the following order: c-Pt/CB < c-Pt/GCB < n-Pt/AB800 < n-Pt/AB250. The N2 adsorption analyses show that the Pt particles observed in the interior of the CB and AB800-supported Pt catalysts during the STEM observation could be ascribed to the hollow structures inside the carbon supports, which decrease their effective Pt surface areas. The S(e)Pt values are in good agreement with the cell performance in the high current density region. In spite of the highest Pt utilization (UPt) value (>90%) and uniform ionomer coverage, the c-Pt/CB catalyst shows the lowest cell performance due to the lower S(e)Pt value. On the other hand, the n-Pt/AB250 catalyst, for which all of the Pt particles exist only on the exterior surface, is found to be the most attractive in order to generate the large current densities required by actual fuel cell operation.

  5. Carbon nanofibers as electrocatalyst support for fuel cells: Effect of hydrogen on their properties in CH 4 decomposition

    NASA Astrophysics Data System (ADS)

    Sebastián, D.; Suelves, I.; Lázaro, M. J.; Moliner, R.

    The influence of low partial pressure of hydrogen on carbon nanofibers (CNFs) properties has been studied in the synthesis by methane catalytic decomposition, with the purpose of using them in polymer electrolyte fuel cells as electrocatalyst support. Using CNFs in this kind of application presents a good perspective to improve the fuel cell overall performance. CNF growth in the catalytic decomposition of methane and the characteristics which are typically required in a carbonaceous support, are influenced by hydrogen concentration, which has been studied at different temperatures. The textural, morphological and structural characteristics of the obtained CNFs have been determined by nitrogen physisorption, X-ray diffraction, electron microscopy and thermogravimetry. Electrical conductivity of CNFs has been measured compressing the powder and using a two-probe method. It was observed that low values of partial pressure of hydrogen in methane influence positively structural ordering of CNFs, and in turn improve electrical conductivity, with a slight influence on textural properties leading to highly mesoporous carbon.

  6. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia

    2014-11-01

    Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.

  7. Fuel Cell Handbook update

    SciTech Connect

    Owens, W.R.; Hirschenhofer, J.H.; Engleman, R.R. Jr.; Stauffer, D.B.

    1993-11-01

    The objective of this work was to update the 1988 version of DOE`s Fuel Cell Handbook. Significant developments in the various fuel cell technologies required revisions to reflect state-of-the-art configurations and performance. The theoretical presentation was refined in order to make the handbook more useful to both the casual reader and fuel cell or systems analyst. In order to further emphasize the practical application of fuel cell technologies, the system integration information was expanded. In addition, practical elements, such as suggestions and guidelines to approximate fuel cell performance, were provided.

  8. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  9. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Shangfeng; Yi, Baolian; Zhang, Changkun; Liu, Sa; Yu, Hongmei; Shao, Zhigang

    2015-02-01

    Carbon-coated titanium dioxide (TiO2-C) has received much attention as a catalyst support in proton exchange membrane fuel cells. In this study, TiO2 nanorod arrays (NRs) are hydrothermally grown on carbon paper and converted into TiO2-C NRs by heat treatment at 900 °C under methane atmosphere. Then, platinum nanoparticles are sputtered onto the TiO2 NRs by physical vapor deposition to produce Pt-TiO2-C. The as-prepared Pt-TiO2-C exhibits high stability during accelerated durability tests. As compared with the commercial gas diffusion electrode (GDE, 34.4% decrease), a minor reduction in the electrochemically active surface area of the Pt-TiO2-C electrode after 1500 cycles (10.6% decrease) is observed. When the as-prepared electrode with ultra-low platinum content (Pt loading: 28.67 μg cm-2) is employed as the cathode of a single cell, the electrode generates power that is 4.84 × that of the commercial GDE (Pt loading: 400 μg cm-2). An electrode that generates power of 11.9 kW gPt-1 (as the cathode) is proposed. The fabricated Pt-TiO2-C electrode can be used in proton exchange membrane fuel cells.

  10. Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells.

    PubMed

    Dong, Heng; Yu, Hongbing; Wang, Xin

    2012-12-01

    The microbial fuel cell (MFC), being an environment-friendly technology for wastewater treatment, is limited by low efficiency and high cost. Power output based on capital cost had been greatly increased in our previous work by introducing a novel activated carbon (AC) air-cathode (ACAC). The catalysis behavior of this ACAC was studied here based on catalysis kinetics and pore analysis of both carbon powders and catalyst layers (CLs). Plain AC (AC1#), ultracapacitor AC (AC2#), and non-AC (XC-72) powders were used as catalysts. The electron transfer number (n) of oxygen reduction reaction (ORR) with CLs increased by 5-23% compared to those n values of corresponding carbon powders before being rolled to CLs with PTFE, while the n value of Pt/C decreased by 38% when it was brushed with Nafion as the CL, indicating that rolling procedure with PTFE binder substantially increased the catalytic activity of carbon catalysts. Two-four times larger in micropore area of AC powders than non-AC powder resulted in 1.3-1.9 times increase in power density of MFCs. In addition, more uniform distribution of microporosity was found in AC1# than in AC2#, which could be the reason for the 25% increase in power density of ACAC1# (1355 ± 26 mW·m(-2)) compared to 1086 ± 8 mW·m(-2) of ACAC2#. PMID:23151092

  11. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Li, Chang Ming

    2016-10-01

    To overcoming their respective shortcomings of graphene and carbon nanotube, a hierarchically porous multi-walled carbon nanotube@reduced graphene oxide (MWCNT@rGO) hybrid is fabricated through a versatile and scalable solvent method, in which the architecture is tailored by inserting MWCNTs as scaffolds into the rGO skeleton. An appropriate amount of inserted 1-D MWCNTs not only effectively prevent the aggregation of rGO sheets but also act as bridges to increase multidirectional connections between 2-D rGO sheets, resulting in a 3-D hierarchically porous structure with large surface area and excellent biocompatibility for rich bacterial biofilm and high electron transfer rate. The MWCNT@rGO1:2/biofilm anode delivers a maximum power density of 789 mW m-2 in Shewanella putrefaciens CN32 microbial fuel cells, which is much higher than that of individual MWCNT and rGO, in particular, 6-folder higher than that of conventional carbon cloth. The great enhancement is ascribed to a synergistic effect of the integrated biofilm and hierarchically porous structure of MWCNT@rGO1:2/biofilm anode, in which the biofilm provides a large amount of bacterial cells to raise the concentration of local electron shuttles for accelerating the direct electrochemistry on the 3-D hierarchically porous structured anodes.

  12. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  13. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three

  14. Operating experience with a 250 kW el molten carbonate fuel cell (MCFC) power plant

    NASA Astrophysics Data System (ADS)

    Bischoff, Manfred; Huppmann, Gerhard

    The MTU MCFC program is carried out by a European consortium comprising the German companies MTU Friedrichshafen GmbH, Ruhrgas AG and RWE Energie AG as well as the Danish company Energi E2 S/A. MTU acts as consortium leader. The company shares a license and technology exchange agreement with Fuel Cell Energy Inc., Danbury, CT, USA (formerly Energy Research Corp., ERC). The program was started in 1990 and covers a period of about 10 years. The highlights of this program to date are: Considerable improvements regarding component stability have been demonstrated on laboratory scale. Manufacturing technology has been developed to a point which enables the consortium to fabricate the porous components on a 250 cm 2 scale. Several large area stacks with 5000-7660 cm 2 cell area and a power range of 3-10 kW have been tested at the facilities in Munich (Germany) and Kyndby (Denmark). These stacks have been supplied by FCE. As far as the system design is concerned it was soon realized that conventional systems do not hold the promise for competitive power plants. A system analysis led to the conclusion that a new innovative design approach is required. As a result the "Hot Module" system was developed by the consortium. A Hot Module combines all the components of a MCFC system operating at the similar temperatures and pressures into a common thermally insulated vessel. In August 1997 the consortium started its first full size Hot Module MCFC test plant at the facilities of Ruhrgas AG in Dorsten, Germany. The stack was assembled in Munich using 292 cell packages purchased from FCE. The plant is based on the consortium's unique and proprietary "Hot Module" concept. It operates on pipeline natural gas and was grid connected on 16 August 1997. After a total of 1500 h of operation, the plant was intentionally shut down in a controlled manner in April 1998 for post-test analysis. The Hot Module system concept has demonstrated its functionality. The safety concept has been

  15. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White; Dr. Branko N. Popov

    2001-10-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Lithium Cobalt oxide was coated on Ni cathode by a sol-gel coating. The morphology and the LiCoO{sub 2} formation of LiCoO{sub 2} coated NiO was studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance lithium cobalt oxide coated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. Dissolution of nickel into the molten carbonate melt was less in case of lithium cobalt oxide coated nickel cathodes. LiCoO{sub 2} coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, lithium cobalt oxide coated nickel shows similar polarization characteristics as nickel oxide. Conventional theoretical models for the molten carbonate fuel cell cathode are based on the thin film agglomerate model. The principal deficiency of the agglomerate model, apart from the simplified pore structure assumed, is the lack of measured values for film thickness and agglomerate radius. Both these parameters cannot be estimated appropriately. Attempts to estimate the thickness of the film vary by two orders of magnitude. To avoid these problems a new three phase homogeneous model has been developed using the volume averaging technique. The model considers the potential and current variation in both liquid and solid phases. Using this approach, volume averaged

  16. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  17. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  18. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    PubMed

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons.

  19. Fuel processors for automotive fuel cell systems : a parametric analysis.

    SciTech Connect

    Doss, E. D.; Kumar, R.; Ahluwalia, R. K.; Krumpelt, M.

    2001-12-15

    An autothermally-reformed, gasoline-fueled automotive polymer electrolyte fuel cell (PEFC) system has been modeled and analyzed for the fuel processor and total system performance. The purpose of the study is to identify the influence of various operating parameters on the system performance and to investigate related tradeoff scenarios. Results of steady-state analyses at the design rated power level are presented and discussed. The effects of the following parameters are included in the analysis: operating pressure (3 and 1 atm), reforming temperature (1000-1300 K), water-to-fuel and air-to-fuel reactant feed ratios, electrochemical fuel utilization, and thermal integration of the fuel processor and the fuel cell stack subsystems. The analyses are also used to evaluate the impact of those parameters on the concentrations of methane and carbon monoxide in the processed reformate. Both of these gases can be reduced to low levels with adequate water-to-carbon used in the fuel processor. Since these two species represent corresponding amounts of hydrogen that would not be available for electrochemical oxidation in the fuel cell stack, it is important to maintain them at low levels. Subject to the assumptions used in the analyses, particularly that of thermodynamic equilibrium, it was determined that reforming temperatures of 1100 K, a water-to-carbon mole ratio of 1.5-2.5, and the use of fuel cell exhaust energy in the fuel processor subsystem can yield fuel processor efficiencies of 82-84%, and total system efficiencies of 40-42% can be achieved. For the atmospheric pressure system, if the exhaust energy is not used in the fuel processor subsystem, the fuel processor efficiency would drop to 75-82% and the total system efficiency would drop below 40%. At higher reforming temperatures, say 1300 K, the fuel processor efficiency would decrease to 78%, and the total system efficiency would drop below 39%, even with the use of the fuel cell stack exhaust energy.

  20. Enhancement of Platinum Mass Activity on the Surface of Polymer-wrapped Carbon Nanotube-Based Fuel Cell Electrocatalysts

    PubMed Central

    Hafez, Inas H.; Berber, Mohamed R.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-01-01

    Cost reduction and improved durability are the two major targets for accelerating the commercialization of polymer electrolyte membrane fuel cells (PEFCs). To achieve these goals, the development of a novel method to fabricate platinum (Pt)-based electrocatalysts with a high mass activity, deposited on durable conductive support materials, is necessary. In this study, we describe a facile approach to grow homogeneously dispersed Pt nanoparticles (Pt) with a narrow diameter distribution in a highly controllable fashion on polymer-wrapped carbon nanotubes (CNTs). A PEFC cell employing a composite with the smallest Pt nanoparticle size (2.3 nm diameter) exhibited a ~8 times higher mass activity compared to a cell containing Pt with a 3.7 nm diameter. This is the first example of the diamter control of Pt on polymer-wrapped carbon supporting materials, and the study opens the door for the development of a future-generation of PEFCs using a minimal amount of Pt. PMID:25221915

  1. Closing the fuel carbon cycle

    SciTech Connect

    Powicki, C.R.

    2007-04-01

    The global carbon cycle involves constant exchange of carbon atoms between the atmosphere, land, and ocean through biological, chemical and geological processes. This natural cycle of uptake and release of carbon is roughly in balance. However, the global industrialization of the past two centuries has released carbon to the atmosphere, mostly in the form of CO{sub 2} that had been locked up in underground coal, oil, and natural gas deposits for millions of years. It is primarily combustion of these long-stored fossil fuels that threatens to tip the balance of the carbon cycle, leading to a substantial buildup of CO{sub 2} in the upper atmosphere. Scientists believe that one key to stabilizing future atmospheric CO{sub 2} concentrations will be essentially to close the fuel carbon cycle, to capture the carbon from fossil fuels before it is released to the atmosphere and return it to permanent reservoirs in the earth or oceans. The article summarises the various options for carbon capture and storage (CCS) and looks at the state of development of technologies. It also addresses regulatory uncertainties, legal issues risks and perceptions of CCS. 3 figs., 1 tab.

  2. Is power generation possible by feeding carbon dioxide as reducing agent to polymer electrolyte fuel cell?

    NASA Astrophysics Data System (ADS)

    Umeda, Minoru; Sato, Masatoshi; Maruta, Takahiro; Shironita, Sayoko

    2013-11-01

    This paper describes the possible power generation of a polymer electrolyte fuel cell (PEFC) by feeding H2 and CO2 to the anode and cathode, respectively. First, a PEFC consisting of a Pt/C-based anode and cathode was fabricated, and the polarization curves during flowing H2, O2, and CO2 were measured with respect to the dynamic hydrogen electrode (DHE). Next, the onset potentials of the polarization curves were compared. The onset potential of the CO2 reduction reaction is higher than that of the H2 oxidation reaction, which well agrees with the PEFC power generation principle. Also, the onset potential of the CO2 reduction is theoretically supported by the standard electrode potentials of reactions in which CO2 participates. As a result, the H2-CO2 PEFC successfully generated electric power, which is the first finding that CO2 participate in the power generation by being reduced. The generated power increases with an increase in the cell temperature of the H2-CO2 PEFC, suggesting that the CO2 electroreduction is thermally activated. Under the controlled potential of 0.051 V vs. DHE, the cathode current of the H2-CO2 PEFC changed with a 2 h cycle, implying that the cathode Pt is poisoned by the CO2 reduction product and then recovered.

  3. Kinetic modelling of molten carbonate fuel cells: Effects of cathode water and electrode materials

    NASA Astrophysics Data System (ADS)

    Arato, E.; Audasso, E.; Barelli, L.; Bosio, B.; Discepoli, G.

    2016-10-01

    Through previous campaigns the authors developed a semi-empirical kinetic model to describe MCFC performance for industrial and laboratory simulation. Although effective in a wide range of operating conditions, the model was validated for specific electrode materials and dry feeding cathode compositions. The new aim is to prove that with appropriate improvements it is possible to apply the model to MCFC provided by different suppliers and to new sets of reactant gases. Specifically, this paper describes the procedures to modify the model to switch among different materials and identify a new parameter taking into account the effects of cathode water vapour. The new equation is integrated as the kinetic core within the SIMFC (SIMulation of Fuel Cells) code, an MCFC 3D model set up by the PERT group of the University of Genova, for reliability test. Validation is performed using data collected through tests carried out at the University of Perugia using single cells. The results are discussed giving examples of the simulated performance with varying operating conditions. The final formulation average percentage error obtained for all the simulated cases with respect to experimental results is maintained around 1%, despite the difference between the basic and the new conditions and facilities.

  4. Graphene-coated carbon fiber cloth for flexible electrodes of glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-02-01

    In this work, we fabricated flexible electrodes for a miniaturized, simple structured, and flexible glucose biofuel cell (BFC) using a graphene-coated carbon fiber cloth (GCFC). The areas of the anode and cathode electrodes were 3 × 10 mm2. The anode area was coated with the enzyme glucose oxidase, and the cathode area was coated with the enzyme bilirubin oxidase. No ion-exchange film was needed because glucose oxidase selectively oxidizes glucose and bilirubin oxidase selectively reduces oxygen. The power density of the BFC with GCFC electrodes in a phosphate buffer solution of 200 mM glucose solution at room temperature was 34.3 µW/cm2 at 0.43 V. The power density of a BFC using carbon fiber cloth (CFC) without graphene modification was 18.5 µW/cm2 at 0.13 V. The BFC with the GCFC electrode continued to function longer than 24 h with a power density higher than 5 µW/cm2. These effects were attributed to the much larger effective surface areas of the GCFC electrodes that maintain more enzymes than those of the CFC electrodes.

  5. Carbon-supported Pd-Pt cathode electrocatalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Yongfu; Zhang, Huamin; Zhong, Hexiang; Xu, Ting; Jin, Hong

    A series of carbon-supported Pd-Pt alloy (Pd-Pt/C) catalysts for oxygen reduction reaction (ORR) with low-platinum content are synthesized via a modified sodium borohydride reduction method. The structure of as-prepared catalysts is characterized by powder X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The prepared Pd-Pt/C catalysts with alloy form show face-centered-cubic (FCC) structure. The metal particles of Pd-Pt/C catalysts with mean size of around 4-5 nm are uniformly dispersed on the carbon support. The electrocatalytic activities for ORR of these catalysts are investigated by rotating disk electrode (RDE), cyclic voltammetry (CV), single cell measurements and electrochemical impedance spectra (EIS) measurements. The results suggest that the electrocatalytic activities of Pd-Pt/C catalysts with low platinum are comparable to that of the commercial Pt/C with the same metal loading. The maximum power density of MEA with a Pd-Pt/C catalyst, the Pd/Pt mass ratio of which is 7:3, is about 1040 mW cm -2.

  6. Incorporation of Platinum and Gold Partially Reduced Graphene Oxide in Polymer Electrolyte Membrane Fuel Cells for Increased Carbon Monoxide Tolerance

    NASA Astrophysics Data System (ADS)

    Blackburn, Lee; Isseroff, Rebecca; Rafailovich, Miriam; Kang, Jaymo; Li, Hongfei; Gentleman, Molly; Qaio, Qaio

    Polymer Electrolyte Membrane Fuel Cells (PEMFCs) can potentially provide ``green'' energy but the platinum catalyst's susceptibility to carbon monoxide (CO) poisoning reduces output power. This project hypothesized that gold and platinum-partially reduced graphene oxide (Au/Pt-prGO) catalysts, incorporated into the electrodes and Nafion membrane of a PEMFC, will increase CO tolerance. Aliquots of graphene oxide (GO) were functionalized with platinum and/or gold nanoparticles. Partial reduction with NaBH4 prevented precipitation. Raman Spectroscopy and HRTEM verified the chemical identity, structure, and presence of the materials. Setups were tested in a PEM fuel cell with a gas feed containing 1000 ppm of CO, and averaged an output power >200% over the control, with the most effective sample, Pt-prGO Electrode + Membrane, yielding an output power ~250% greater than the control. Additionally, each setup's poisoned output power (PP) was compared to its highest possible output power (PM) . AuPt-prGO Electrode + Membrane produced 100% of its highest possible output power when poisoned, displaying 100% resistance to all CO poisoning at the resistances tested. Garcia MRSEC.

  7. Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Duan, Donghong; Liu, Huihong; You, Xiu; Wei, Huikai; Liu, Shibin

    2015-10-01

    Carbon-supported Cu@Ag core-shell nanoparticles are prepared by a successive reduction method in an aqueous solution and are used as an anode electrocatalyst for the direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronopotentiometry (CP), and fuel cell tests. In situ Fourier transform infrared (FTIR) spectroscopy is employed in 2 M NaOH/0.1 M NaBH4 to understand the borohydride oxidation reaction (BOR) mechanism by studying the intermediate reactions occurring on the Cu@Ag/C electrode. The TEM images show that the average size of the Cu1@Ag1/C particles is approximately 18 nm. Among the as-prepared catalysts, the Cu2@Ag1/C catalyst presents the highest catalytic activity. As shown by in situ FTIR, the oxidation reaction mechanism of BH4- is similar to that of Ag/C: BHn(OH)4-n- + 2OH- → BHn-1(OH)5-n- +H2 O + 2e . At 25 °C, the DBHFC with Cu2@Ag1/C as the anode electrocatalyst and Pt mesh (1 cm2) as the cathode electrode exhibits a maximum anodic power density of 17.27 mW mg-1 at a discharge current density of 27.8 mA mg-1.

  8. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels

    SciTech Connect

    Yan , Jingbo; Chen, Hao; Dogdibegovic, Emir; Stevenson, Jeffry W.; Cheng, Mojie; Zhou, Xiao-Dong

    2014-04-15

    Electrochemical reduction of carbon dioxide in the intermediate temperature region was investigated by utilizing a reversible solid oxide electrolysis cell (SOEC). The current potential (i-V) curve exhibited a nonlinear characteristic at low current density. Differentiation of i-V curves revealed that the cell area specific resistance (ASR) was current-dependent and had its maximum in electrolysis mode and minimum in fuel cell mode. Impedance measurements were performed under different current densities and gas compositions, and the results were analyzed by calculating the distribution of relaxation times. The ASR variation resulted from the difference in electrochemical reactions occurring on the Ni-YSZ electrode, i.e., Ni-YSZ is a better electrode for CO oxidation than for CO2 reduction. Coke formation on Ni-YSZ played a crucial role in affecting its electrolysis performance in the intermediate temperature region. The ASR apex was associated with a decrease in cell temperature during electrolysis due to the endothermic nature of CO2 reduction reaction. It was postulated that such a decrease in temperature and rise in CO concentration led to coke formation. As a consequence, higher temperature (>700 degrees C), higher CO2 concentration (>50%), and the presence of hydrogen or steam are recommended for efficient CO2 reduction in solid oxide electrochemical cells. (C) 2013 Elsevier B.V. All rights reserved

  9. Influence of aluminum salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Insung; Kim, Wonsun; Moon, Youngjoon; Lim, Heechun; Lee, Dokyol

    Three aluminum salts are investigated as a sintering aid for the in situ sintering of electrolyte matrices for molten carbonate fuel cells (MCFCs). Only aluminum acetylacetonate shows a potential. At or above 420°C, aluminum acetylacetonate changes to Al 2O 3 and reacts with Li 2CO 3 in the electrolyte to produce γ-LiAlO 2. This reaction product forms necks between matrix particles. Necks grow with increasing sintering time and correspondingly, the mechanical strength of the electrolyte matrix shows an abrupt increase, starting at a sintering time of about 100 h until it levels off at about 250 h. The porosity of the matrices fabricated with aluminum acetylacetonate is in the range acceptable for use in MCFCs.

  10. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    PubMed

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  11. Improvements of electrical properties containing carbon nanotube in epoxy/graphite bipolar plate for polymer electrolyte membrane fuel cells.

    PubMed

    Lee, HongKi; Rim, HyungRyul; Lee, JaeYoung; Lee, Jongmin; Yoon, JeongMo; Bae, WooJung; Yang, SeungWeon

    2008-10-01

    The epoxy based graphite bipolar plate containing carbon nanotube (CNT) for polymer electrolyte membrane fuel cells (PEMFC) has been prepared and the electrical properties were compared. The density of graphite composite bipolar plate showed from 1.85 to 0.94 as expanded graphite content is increased from 10 to 50 w/o. The improvement of electrical properties was accomplished by addition of CNT. Rapid increase of conductivity was found due to the compensation between increases of the electrical pathway by addition of CNT and sufficient electrical contact among isolated large graphite particle. The polarisation curves of bipolar plate were measured at 1 M H2SO4 solution with 1 mV/sec of scan rate and the value of 1.903 uA/cm2 of corrosion rate was obtained. PMID:19198477

  12. Large stationary fuel cell systems: Status and dynamic requirements

    NASA Astrophysics Data System (ADS)

    Bischoff, Manfred

    Molten carbonate fuel cell demonstrations to-date, have been able to show the highest fuel-to-electricity conversion efficiencies (>50%) of any stand-alone fuel cell type. The primary developer of this type of fuel cell in United States is Fuel Cell Energy Corporation (FCE), the developer and manufacturer of the Direct FuelCell ™ concept. FCE and MTU CFC Solutions in Germany, a licensee of FCE have demonstrated carbonate fuel cells from 10 kW to 2 MW of electrical output on a variety of fuels. IHI in Japan are also developing carbonate fuel cells for stationary power and have recently successfully demonstrated the technology in Kawagoe, Japan. In Italy, Ansaldo fuel cell have demonstrated a 100 kW carbonate fuel cell in Milan. In Korea, the Ministry of Commerce, Industry and Energy has committed to install 300 fuel cell units, sized 250 kW to 1 MW, for distributed power generation by 2012. Carbonate fuel cell technology is more fuel flexible than lower temperature fuel cell technologies and is well suited for on-site stationary CHP applications as well as to marine, military, and traction applications. The present paper gives an overview about the commercialisation efforts for the molten carbonate fuel cell technology.

  13. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  14. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1.

    PubMed

    Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven

    2013-10-01

    We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions.

  15. Characteristics of aluminum-reinforced γ-LiAlO2 matrices for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Jin; Choi, Hyun-Jong; Hyun, Sang-Hoon; Im, Hee-Chun

    2008-05-01

    A key component in molten carbonate fuel cells (MCFCs) is the electrolyte matrix, which provides both ionic conduction and gas sealing. During initial MCFC stack start-up and operation (650 °C), the matrix experiences both mechanical and thermal stresses as a result of the difference in thermal expansion coefficients between the LiAlO2 ceramic particles and the carbonate electrolyte that causes cracking of the matrix. A pure γ-LiAlO2 matrix, however, has poor mechanical strength and low thermal expansion coefficients. In this study, fine γ-LiAlO2 powders and pure Al (3/20/50 μm)/Li2CO3 particles are used as a matrix and as reinforcing materials, respectively. The Al phase transforms completely into γ-LiAlO2 at 650 °C within 10 h. The mechanical strength of these matrices (283.48 gf mm-2) increases nearly threefold relative to that of a pure γ-LiAlO2 matrix (104.01 gf mm-2). The mismatch of the thermal expansion coefficient between the matrix and electrolyte phases can be controlled by adding Al particles, which results in improved thermal stability in the initial heating-up step. In unit-cell and thermal-cycling tests, the optimized matrix demonstrates superior performance over pure γ-LiAlO2 matrices.

  16. Microwave assisted synthesis of surfactant stabilized platinum/carbon nanotube electrocatalysts for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sakthivel, M.; Schlange, A.; Kunz, U.; Turek, T.

    Platinum electrocatalysts deposited on multi-walled carbon nanotubes (CNT) with high loading were prepared using a microwave-assisted polyol reduction method and employed for direct methanol fuel cells (DMFC). A zwitterionic surfactant was used as a stabilizing agent for the formation of Pt nanoparticles. A uniform and narrow size distribution of highly dispersed Pt nanoparticles could be achieved by adjusting the weight ratio of surfactant to Pt precursor allowing for Pt loadings of up to 60 wt%. The heating time and the temperature for the ethylene glycol (EG) oxidation were found to be the key factors for depositing Pt nanoparticles homogeneously on carbon nanotubes. The smallest average particle diameter of 1.8 nm was obtained through microwave heating to 140 °C in 50 s. The structure, amount and morphology of the electrocatalysts were characterized with XRD, TGA, and TEM, respectively. Single cell DMFC measurements were performed in a membrane-electrode assembly (MEA) with 5 cm 2 active area and very low catalyst loading (0.25 mg cm -2 of noble metal on both anode and cathode). The DMFC performance of the surfactant stabilized cathode catalyst obtained by the new method described here revealed that the power density was three times higher than for a commercial catalyst used for comparison and two times higher than for an unstabilized CNT supported catalyst.

  17. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  18. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. PMID:23899322

  19. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time.

  20. The single cell of low temperature solid oxide fuel cell with sodium carbonate-SDC (samarium-doped ceria) as electrolyte and biodiesel as fuel

    NASA Astrophysics Data System (ADS)

    Rahmawati, F.; Nuryanto, A.; Nugrahaningtyas, K. D.

    2016-02-01

    In this research NSDC (composite of Na2CO3-SDC) was prepared by the sol-gel method to produce NSDC1 and also by the ceramic method to produce NSDC2. The prepared NSDC then were analyzed by XRD embedded with Le Bail refinement to study the change of characteristic peaks, their crystal structure, and their cell parameters. Meanwhile, the measurement of impedance was conducted to study the electrical conductivity of the prepared materials. A single cell was prepared by coating NSDC-L (a composite of NSDC with Li0.2Ni0.7Cu0.1O2) on both surfaces of NSDC. The NSDC-L was used as anode and cathode. The ionic conductivity of NSDC1 and NSDC2 at 400 oC are 4.1109 x 10-2 S.cm-1 and 1.6231 x 10-2 S.cm-1, respectively. Both electrolytes have ionic conductivity higher than 1 x 10-4 S.cm-1, therefore, can be categorized as good electrolyte [1]. However, the NSDC1 shows electrodeelectrolyte conduction. It indicates the existence of electronic migration from electrolyte- electrode or vice versa. Those may cause a short circuit during fuel cell operation and will reduce the fuel cell performance fastly. The single cell tests were conducted at 300, 400, 500 and 600 °C. The single fuel cell with NSDC1 and NSDC2 as electrolyte show maximum power density at 400 °C with the power density of 3.736 x 10-2 mW.cm-2 and 2.245 x 10-2 mW.cm-2, respectively.

  1. In situ microbial fuel cell-based biosensor for organic carbon.

    PubMed

    Peixoto, Luciana; Min, Booki; Martins, Gilberto; Brito, António G; Kroff, Pablo; Parpot, Pier; Angelidaki, Irini; Nogueira, Regina

    2011-06-01

    The biological oxygen demand (BOD) may be the most used test to assess the amount of pollutant organic matter in water; however, it is time and labor consuming, and is done ex-situ. A BOD biosensor based on the microbial fuel cell principle was tested for online and in situ monitoring of biodegradable organic content of domestic wastewater. A stable current density of 282±23mA/m(2) was obtained with domestic wastewater containing a BOD(5) of 317±15mg O(2)/L at 22±2°C, 1.53±0.04mS/cm and pH 6.9±0.1. The current density showed a linear relationship with BOD(5) concentration ranging from 17±0.5mg O(2)/L to 78±7.6mg O(2)/L. The current generation from the BOD biosensor was dependent on the measurement conditions such as temperature, conductivity, and pH. Thus, a correction factor should be applied to measurements done under different environmental conditions from the ones used in the calibration. These results provide useful information for the development of a biosensor for real-time in situ monitoring of wastewater quality.

  2. Oxidation Resistance of Low Carbon Stainless Steel for Applications in Solid Oxide Fuel Cells

    SciTech Connect

    Ziomek-Moroz, Margaret; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Matthes, Steven A.; Dunning, John S.; Alman, David E.; Singh, P.

    2003-10-01

    Alloys protected from corrosion by Cr2O3 (chromia) are recognized as potential replacements for LaCrO3–based ceramic materials currently used as bipolar separators (interconnects) in solid oxide fuel cells (SOFC). Stainless steels gain their corrosion resistance from the formation of chromia, when exposed to oxygen at elevated temperatures. Materials for interconnect applications must form uniform conductive oxide scales at 600–800o C while simultaneously exposed to air on the cathode side and mixtures of H2 - H2O, and, possibly, CHx and CO - CO2 on the anode side. In addition, they must possess good physical, mechanical, and thermal properties. Type 316L stainless steel was selected for the baseline study and development of an understanding of corrosion processes in complex gas environments. This paper discusses the oxidation resistance of 316L stainless steel exposed to dual SOFC environment for ~100 hours at ~900oK. The dual environment consisted of dry air on the cathode side of the specimen and a mixture of H2 and 3% H2O on the anode side. Post - corrosion surface evaluation involved the use of optical and scanning electron microscopy and x-ray diffraction analyses.

  3. A Carbon-Neutral Photosynthetic Microbial Fuel Cell Powered by Microcystis aeruginosa.

    PubMed

    Ma, Meirong; Cao, Limin; Chen, Li; Ying, Xiaofang; Deng, Zongwu

    2015-07-01

    A photosynthetic microbial fuel cell (m-PMFC) is developed for generating electricity by harnessing solar energy using Microcystis aeruginosa. In this m-PMFC, commensal bacteria can consume the nutrients that Microcystis aeruginosa produces to generate electricity so that no net CO₂production occurs. A b-MFC is constructed to confirm the role of commensal bacteria in electric generation. An s-PMFC is constructed to confirm the contribution of Microcystis aeruginosa as substrates. The power outputs of m-PMFCs exhibit no significant difference in terms of different inoculation amount of Microcystis aeruginosa or light/dark cycles. The power density of m-PMFC exhibits similar response to bubbling of N₂and O₂as that of b-MFC, as confirmed by cyclic voltammetry analysis of m-PMFC and b-MFC. Scanning electron microscope images demonstrate that the biofilm of m-PMFC consists mainly of commensal bacteria. These results suggest that commensal bacteria act as the main biocatalysts and Microcystis aeruginosa as the anode substrates in the m-PMFC.

  4. A high power density miniaturized microbial fuel cell having carbon nanotube anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Pyo, Soonjae; Lee, Jae-Ik; Park, Tae-Jin; Gittleson, Forrest S.; Leung, Frederick C. C.; Kim, Jongbaeg; Taylor, André D.; Lee, Hyung-Sool; Chae, Junseok

    2015-01-01

    Microbial fuel cells (MFCs) are a promising technology capable of directly converting the abundant biomass on the planet into electricity. Prior studies have adopted a variety of nanostructured materials with high surface area to volume ratio (SAV), yet the current and power density of these nanostructured materials do not deliver a significant leap over conventional MFCs. This study presents a novel approach to implement a miniaturized MFC with a high SAV of 4000 m-1 using three different CNT-based electrode materials: Vertically Aligned CNT (VACNT), Randomly Aligned CNT (RACNT), and Spin-Spray Layer-by-Layer (SSLbL) CNT. These CNT-based electrodes show unique biofilm morphology and thickness. The study of performance parameters of miniaturized MFCs with these CNT-electrodes are conducted with respect to a control bare gold electrode. The results show that CNT-based materials attract more exoelectrogens, Geobacter sp., than bare gold, yielding thicker biofilm formation. Among CNT-based electrodes, low sheet resistance electrodes result in thick biofilm generation and high current/power density. The miniaturized MFC having an SSLbL CNT anode exhibits a high volumetric power density of 3320 W m-3. This research may help lay the foundation for future research involving the optimization of MFCS with 2D and 3D nanostructured electrodes.

  5. 2007 Fuel Cell Technologies Market Report

    SciTech Connect

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  6. Protection of porous carbon fuel particles from boudouard corrosion

    SciTech Connect

    Cooper, John F.

    2015-05-26

    A system for producing energy that includes infusing porous carbon particles produced by pyrolysis of carbon-containing materials with an off-eutectic salt composition thus producing pore-free carbon particles, and reacting the carbon particles with oxygen in a fuel cell according to the reaction C+O.sub.2=CO.sub.2 to produce electrical energy.

  7. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White

    2000-09-30

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was

  8. Landfill gas cleanup for fuel cells

    SciTech Connect

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  9. Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future

    NASA Astrophysics Data System (ADS)

    Mehmeti, Andi; Santoni, Francesca; Della Pietra, Massimiliano; McPhail, Stephen J.

    2016-03-01

    This study aims to review and provide an up to date international life cycle thinking literature with particular emphasis on life cycle assessment (LCA), applied to Molten Carbonate Fuel Cells (MCFCs), a technology forcefully entering the field of decentralized heat and power generation. Critical environmental issues, comparison of results between studies and improvement strategies are analyzed and highlighted. The findings stress that MCFC environmental performance is heavily influenced by the current use of non-renewable energy and high material demand of rare minerals which generate high environmental burdens in the manufacturing stage, thereby confirming the prominent role of these processes in a comprehensive LCA study. The comparison of operational phases highlights that MCFCs are robust and able to compete with other mature technologies contributing substantially to airborne emissions reduction and promoting a switch to renewable fuels, however, further progress and market competitiveness urges adoption of an eco-efficiency philosophy to forge the link between environmental and economic concerns. Adopting a well-organized systematic research driven by life cycle models and eco-efficiency principles stakeholders will glean valuable information to make well balanced decisions for improving performance towards the concept 'producing more quality with less resources' and accelerate market penetration of the technology.

  10. Large size biogas-fed Solid Oxide Fuel Cell power plants with carbon dioxide management: Technical and economic optimization

    NASA Astrophysics Data System (ADS)

    Curletti, F.; Gandiglio, M.; Lanzini, A.; Santarelli, M.; Maréchal, F.

    2015-10-01

    This article investigates the techno-economic performance of large integrated biogas Solid Oxide Fuel Cell (SOFC) power plants. Both atmospheric and pressurized operation is analysed with CO2 vented or captured. The SOFC module produces a constant electrical power of 1 MWe. Sensitivity analysis and multi-objective optimization are the mathematical tools used to investigate the effects of Fuel Utilization (FU), SOFC operating temperature and pressure on the plant energy and economic performances. FU is the design variable that most affects the plant performance. Pressurized SOFC with hybridization with a gas turbine provides a notable boost in electrical efficiency. For most of the proposed plant configurations, the electrical efficiency ranges in the interval 50-62% (LHV biogas) when a trade-off of between energy and economic performances is applied based on Pareto charts obtained from multi-objective plant optimization. The hybrid SOFC is potentially able to reach an efficiency above 70% when FU is 90%. Carbon capture entails a penalty of more 10 percentage points in pressurized configurations mainly due to the extra energy burdens of captured CO2 pressurization and oxygen production and for the separate and different handling of the anode and cathode exhausts and power recovery from them.

  11. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  12. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  13. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  14. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  15. Proceedings of the fuel cells `95 review meeting

    SciTech Connect

    George, T.J.

    1995-08-01

    This document contains papers presented at the Fuel Cells `95` Review Meeting. Topics included solid oxide fuel cells; DOE`s transportation program; ARPA advanced fuel cell development; molten carbonate fuel cells; and papers presented at a poster session. Individual papers have been processed separately for the U.S. DOE databases.

  16. Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)

    SciTech Connect

    Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

    2005-05-01

    Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

  17. Fuel cells: Operating flexibly

    NASA Astrophysics Data System (ADS)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  18. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  19. Fuel Cell Applied Research Project

    SciTech Connect

    Lee Richardson

    2006-09-15

    Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

  20. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells.

    PubMed

    Sa, Young Jin; Park, Chiyoung; Jeong, Hu Young; Park, Seok-Hee; Lee, Zonghoon; Kim, Kyoung Taek; Park, Gu-Gon; Joo, Sang Hoon

    2014-04-14

    A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom-doped carbon (CNT/HDC) core-sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom-containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom-containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom-doped nanocarbon catalysts in terms of half-wave potential and kinetic current density. The four-electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long-term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.

  1. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.

    A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.

  2. Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cheng, Kui; Xiao, Xue; Yin, Jinling; Wang, Guiling; Cao, Dianxue

    2014-01-01

    Carbon fiber cloth (CFC) supported Ni and Co electrodes are prepared by electrodeposition (Ni/CFC and Co/CFC). Their catalytic performance for H2O2 electrooxidation in KOH solution is investigated and compared with Au/CFC electrode. Ni/CFC electrode exhibits higher catalytic activity than Au/CFC and Co/CFC electrodes. The performance of a direct peroxide-peroxide fuel cell (DPPFC) with Ni/CFC anode and Pd/CFC cathode is examined. The cell shows a peak power density of 21.6 mW cm-2 at 20 °C and 53.8 mW cm-2 at 50 °C. The cell performance is improved with the increase of anolyte and catholyte flow rate and operation temperature. Results indicates that the performance of DPPFC with low-cost Ni/CFC anodes is comparable with those using precious metal anodes, e.g., Au/CFC and Pd/CFC.

  3. Catalytic membranes for fuel cells

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  4. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold.

    PubMed

    Chou, Hung-Tao; Lee, Hui-Ju; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2014-10-01

    Melamine sponges coated with reduced graphene oxide/carbon nanotube (rGO-CNT sponges) through a dip-coating method were fabricated that provide a large electrical conductive surface for Escherichiacoli growth and electron transfer in microbial fuel cell. Four rGO-CNT sponges with different thicknesses and arrangements were tested as an anode in this study. The thinnest one (with a thickness of 1.5mm) exhibited the best performance, providing a maximum current density of 335 A m(-3) and a remarkably durable life time of 20 days at 37 °C. Analyses of bacterial colonisation on the rGO-CNT sponges using FE-SEM and the bacterial metabolic activity using the β-galactosidase assay indicates that the rGO-CNT sponges provide excellent biocompatibility for E. coli proliferation and could help to maintain high bacterial metabolic activity, presumably due to the high mass transfer rate of the porous scaffold. In this regard, the rGO-CNT sponges showed higher durability and performed better electrochemical properties than traditional carbon-based and metal-based anodes.

  5. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Feng, Yujie; Yang, Qiao; Wang, Xin; Logan, Bruce E.

    Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m -2, which is 34% larger than the untreated control (CF-C, 1020 mW m -2). This power density is 25% higher than using only acid treatment (1100 mW m -2) and 7% higher than that using only heat treatment (1280 mW m -2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C-O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications.

  6. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.

    PubMed

    Song, Tian-Shun; Peng-Xiao; Wu, Xia-Yuan; Zhou, Charles C

    2013-07-01

    Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m(-2), which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.

  7. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell

    PubMed Central

    Xin, Le; Zhang, Zhiyong; Wang, Zhichao; Qi, Ji; Li, Wenzhen

    2013-01-01

    A solution phase-based nanocapsule method was successfully developed to synthesize non-platinum metal catalyst—carbon supported Ag nanoparticles (Ag/C). XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm) and narrow size distribution (2–9 nm) are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR) on the Ag/C and commercial Pt/C were investigated using rotating ring disk electrode (RRDE) tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell (AEMFC) with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80°C. PMID:24790944

  8. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, February 1-April 30, 1980

    SciTech Connect

    Peterson, J. R.

    1980-01-01

    Work has been initiated during this first quarter under all four program tasks and by all major participants as described. Task 1.0 activity (establish power plant reference design) concentrated upon definition of user requirements and establishment of power plant subsystem alternatives and characteristics. Task 2.0 work (stack and cell design development and verification) was initiated with a heavy emphasis upon test facilities preparation. A total of 27 laboratory cells were operated during this reporting period and a total of nine cells continued on test at the end of the quarter. Investigation of alternative anode and cathode materials proceeded; a dual-porosity anode was fabricated and tested. Over 10,000 endurance hours on a state-of-the-art cell carried-over from a previous program has been achieved and 1500 hours endurance has been obtained with sheet metal cells. Results presented for electrolyte structure development include comparative data for spray-dried and modified aqueous slurry process powders. Shake-down tests with a rotating disc electrode apparatus for fundamental measurements are described. Concept designs for both prototype and subscale stacks have been identified. Task 3.0 effort (development capability for full-scale stack tests) included preparation of an overall test plan to commercialization for molten carbonate fuel cells and of a functional specification for the tenth-scale stack test facility; drafts of both documents were completed for internal review. Cost-effective manufacturing assessment of available designs and processes was initiated. Task 4.0 work (develop capabilities for operation of stacks on coal-derived gas) included gathering of available contaminants concentration and effects information and preparation of initial projections of contaminant ranges and concentrations. Accomplishments to date and activities planned for the next quarter are described.

  9. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  10. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  11. Fuel economy of hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.; Kumar, R.

    On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5-2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor-expander module) are critical.

  12. Fuel cell stack arrangements

    DOEpatents

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  13. Effects of microstructure on carbon support in the catalyst layer on the performance of polymer electrolyte fuel cells

    SciTech Connect

    Uchida, Makoto; Fukuoka, Yuko; Sugawara, Yasushi

    1996-12-31

    In the case of the Polymer-electrolyte fuel cells (PEFCs), the reaction sites exist on the platinum (Pt) surface covered with PFSI. Though PFSI membrane is used as an electrolyte of the PEFC, the membrane does not soak deeply into the electrodes as a liquid electrolyte does. Therefore, PFSI solution was impregnated into the catalyst layers to increase the contact areas between Pt and PFSI. In our previous work we proposed a new preparation method of the M&E assembly which emphasized the colloid formation of the PFSI to optimize the network of PFSIs in the catalyst layer and also to simplify the fabrication process of the M&E assembly. Following this work, we focused on the microstructure of the catalyst layer. The importance of the morphological properties of the gas-diffusion electrodes on performance has been reported in several papers. The catalyst layer was claimed to have had two distinctive pore distributions with a boundary of ca. 0.1 {mu}m. The smaller pore (primary pore) was identified with the space in and between the primary particles in the agglomerate of the carbon support and the larger one (secondary pore) was that between the agglomerates. In our recent work, we reported that the PFSI was distributed only in the secondary pores, and the reaction sites were therefore limited to that location. The results indicated that the PEFC system required a particular design rather than a conventional one for the fuel cells with liquid electrolytes. We proposed that novel structure and/or preparation methods of the catalyst layer were keys to higher utilization of Pt.

  14. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  15. Fuel cell water transport

    DOEpatents

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  16. Rejuvenation of automotive fuel cells

    DOEpatents

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  17. Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked Against US DOE 2017 Technical Targets

    PubMed Central

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E.; Haddon, Robert C.

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm2 - well below the value of 0.125 mgPt/cm2 set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure. PMID:23877112

  18. Polarization losses under dynamic load cycle using multiwall carbon nanotube supported Pt catalyst in PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Irmawati, Yuyun; Indriyati, Chaldun, Elsy Rahimi; Devianto, Hary

    2016-02-01

    Durability is one of the most important issues that are still being a hindrance for commercialization of polymer electrolyte membrane fuel cell (PEMFC). In this study, the degradation of PEMFC using multiwall carbon nanotube supported Pt catalyst (Pt/CNT) was investigated under dynamic load cycle procedure. The degradation was characterized by current density-voltage curves, cross-sectional scanning electron microscopy (SEM) images, and Fourier transforms infrared spectroscopy (FTIR) spectra. The load-cycle procedure was carried out for 50 cycles, where one cycle consisted of three steps (OCV-load current-constant voltage). An analysis of cell overpotentials indicated that the predominant source of performance degradation was due to ohmic losses, especially significant increase in the area specific resistance (Ra). After 50 cycles, Ra was calculated three times higher than that before durability test, from 0.67 to 1.74 Ωcm2. Based on the results from SEM images and FTIR spectra, there was no evidence of membrane degradation or thinning. Noticeable degradation was only observed from the increase in the interface gap between membrane, catalyst layer, and gas diffusion layer.

  19. Supporting PtRu catalysts on various types of carbon nanomaterials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Ozaki, Masahiro; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Muramoto, Hirokazu

    2013-04-01

    PtRu catalysts were supported on five types of carbon nanomaterials of various shapes, sizes, and graphitic properties and the catalyst supports evaluated. The carbon nanomaterial used included three types of nanoparticles: Arc Black (AcB), Vulcan XC-72 (Vulcan) and graphene oxide (GO), and two types of nanofibers: carbon nanocoil (CNC) and carbon nanotube (CNT). Pt and Ru were supported by the reduction method using sodium borohydride. The metal catalyst loading was confirmed by thermo-gravimetric analysis (TGA), electron microscopy, and X-ray diffraction (XRD). Transmission electron microscopy (TEM) and XRD revealed that the diameter of PtRu catalyst nanoparticles loaded on reduced GO (rGO) and AcB were ~2 nm and was the smallest among all the samples. Shifts in Pt (111) XRD peaks of CNC and CNT were larger than those of AcB, Vulcan, and rGO. These results suggest that the diameters of catalyst nanoparticles became smaller by loading on the carbon nanoparticles with a large surface area including rGO, AcB, and Vulcan. Loading onto the carbon nanofibers enhanced the degree of PtRu alloying.

  20. Internet Fuel Cells Forum

    SciTech Connect

    Sudhoff, Frederick A.

    1996-08-01

    The rapid development and integration of the Internet into the mainstream of professional life provides the fuel cell industry with the opportunity to share new ideas with unprecedented capabilities. The U.S. Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) has undertaken the task to maintain a Fuel Cell Forum on the Internet. Here, members can exchange ideas and information pertaining to fuel cell technologies. The purpose of this forum is to promote a better understanding of fuel cell concepts, terminology, processes, and issues relating to commercialization of fuel cell power technology. The Forum was developed by METC to provide those interested with fuel cell conference information for its current concept of exchanging ideas and information pertaining to fuel cells. Last August, the Forum expanded to an on-line and world-wide network. There are 250 members, and membership is growing at a rate of several new subscribers per week. The forum currently provides updated conference information and interactive information exchange. Forum membership is encouraged from utilities, industry, universities, and government. Because of the public nature of the internet, business sensitive, confidential, or proprietary information should not be placed on this system. The Forum is unmoderated; therefore, the views and opinions of authors expressed in the forum do not necessarily state or reflect those of the U.S. government or METC.

  1. Gasifiers optimized for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W. B.; Lee, A.; Meyers, S. J.

    Conventional coal gasification carbonate fuel cell systems are typically configured so that the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45-53 percent (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  2. PEM regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.

    1993-01-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  3. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

    2000-05-01

    The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the stability

  4. Fuel Cells: Reshaping the Future

    ERIC Educational Resources Information Center

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  5. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  6. Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm.

    PubMed

    Lee, Duu-Jong; Liu, Xiang; Weng, Hsiang-Ling

    2014-03-01

    Biological sulfur removal can be achieved by reducing sulfate to sulfide with sulfate-reducing bacteria (SRB) and then oxidising sulfide to elemental sulfur (S(0)) with sulfide oxidising bacteria (SOB) for recovery. In sulfate-carbon wastewaters lacking electron acceptor for sulfide, excess sulfide will be produced and accumulated in the reactor. This study applied the microbial fuel cell (MFC) cultivated with the SRB+SOB anodic biofilm for treating the sulfate+organic carbon wastewaters. Excess sulfate ions were efficiently converted to sulfide by SRB cells in the biofilm, while the formed sulfide was diffused to the neighboring SOB cells to be irreversibly converted to S(0) with produced electrons being transferred to the anode. The cell-cell sulfide transport principally determined the electron flux of the MFC. Short diffusional distance of sulfide ions between cells significantly reduced the polarization resistances, hence enhancing performance of the MFC.

  7. Fuel Cell Animation

    NASA Video Gallery

    Oxygen (O2) and hydrogen (H2) migrate into the fuel cell. The oxygen molecules migrate to the catalyst where the anode strips some of their electrons. This allows them to move through the cathode a...

  8. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.

    PubMed

    Jiang, Yong; Su, Min; Li, Daping

    2014-03-01

    Removal of sulfide and production of methane from carbon dioxide in microbial electrolysis cells (MECs) at the applied voltage of 0.7 V was achieved using sulfide and organic compound as electron donors. The removal rate of sulfide was 72% and the Faraday efficiency of methane formation was 57% within 70 h of operation. Microbial fuel cell (MFCs) can be connected in series to supply power and drive the reaction in MECs. Removal of sulfide and production of methane from carbon dioxide in MFCs-MEC coupled system was achieved. The sulfide removal rates were 62.5, 60.4, and 57.7%, respectively, in the three anode compartments. Methane accumulated at a rate of 0.354 mL h(-1) L(-1) and the Faraday efficiency was 51%. Microbial characterization revealed that the biocathode of MEC was dominated by relatives of Methanobacterium palustre, Methanobrevibacter arboriphilus, and Methanocorpusculum parvum. This technology has a potential for wastewater treatments and biofuel production from carbon dioxide.

  9. Rapidly refuelable fuel cell

    DOEpatents

    Joy, Richard W.

    1983-01-01

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  10. Examining of the segmented electrode use from the viewpoint of the electrolyte volatilizing in molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Yamauchi, Makoto; Soga, Masatsugu; Tanimoto, Kazumi

    Molten carbonate fuel cells (MCFCs) have entered the pre-commercialization phase, and have been experimentally demonstrated in real world applications, including beer brewery, etc. However, though MCFCs have a high potential and an enough operating experience as an energy supply system, they are not explosively widespread. One of these reasons is cost of cell components. Because the thickness of both electrodes is 0.8 mm and both electrodes are made of porous plates of 1 m 2 of the electrode area, they are often broken by a thermal stress in the sintering process of an electrode and by a worker's carelessness at the cell assembly process. Generally, because these cracking electrodes can potentially cause electrolyte leakage and gas crossover, they are not used to a MCFC stack and are disposed of. Therefore, it made the cost of MCFC be raised. The performance of a cell that uses a mosaic electrode has been evaluated. However, the causal relation between the cracking of an electrode and an electrolyte-leakage has not been yet confirmed. If this causal relationship is elucidated, a cracking electrode or a mosaic electrode can be used to MCFC, such that the cost of MCFC systems would consequently decrease. Therefore, we studied the causal relation between the cracking of an electrode and electrolyte leakage and gas crossover using a visualization technique. In the case of an anode electrode where the centre section of a cell has crack of about 1 mm, the electrolyte leakage from this crack could not be observed by the visualization technique. Moreover, the gas crossover could not be also observed by the visualization technique, and nitrogen in the anode exhaust gas was not detected by a gas chromatography. However, the electrolyte leakage observed from the wet-seal section though the gap between the separator and the electrode was always 1 mm or less. Therefore, electrolyte leakage hardly occurs, even if a cracked anode electrode is installed into the centre section of

  11. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  12. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  13. Compliant fuel cell system

    DOEpatents

    Bourgeois, Richard Scott; Gudlavalleti, Sauri

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  14. Development and Characterization of Gas Diffusion Layer Using Carbon Slurry Dispersed by Ammonium Lauryl Sulfate for Proton Exchange Member Fuel Cells

    NASA Astrophysics Data System (ADS)

    Villacorta, Rashida

    Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O 2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.

  15. Novel carbon-ion fuel cells. First quarterly technical progress report, January--March 1994

    SciTech Connect

    Cocks, F.H.; LaViers, H.

    1994-04-19

    Apparatuses are being constructed to create pressed and sintered rare-earth carbide pellets for carbon-ion conduction testing. Attempts were made to determined the temperature of crystalline phase transformation of the CeC{sub 2} and LaC{sub 2} where they change from the alpha CaC{sub 2} structure to the beta CaF{sub 2} structure.

  16. Photothermally induced bromination of carbon/polymer bipolar plate materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Schade, Martin; Franzka, Steffen; Cappuccio, Franco; Peinecke, Volker; Heinzel, Angelika; Hartmann, Nils

    2015-05-01

    A facile photothermal procedure for direct functionalization of carbon/polymer bipolar plate materials is demonstrated. Through irradiation with a microfocused beam of an Ar+-laser at λ = 514 nm in gaseous bromine and distinct laser powers and pulse lengths local bromination of the carbon/polymer material takes place. At a 1/e spot diameter of 2.1 μm, functionalized surface areas with diameters down to 5 μm are fabricated. In complementary experiments large-area bromination is investigated using an ordinary tungsten lamp. For characterization contact angle goniometry, X-ray photoelectron spectroscopy and electron microscopy in conjunction with labeling techniques are employed. After irradiation bromine groups can easily be substituted by other chemical functionalities, e.g. azide and amine groups. This provides a facile approach in order to fabricate surface patterns and gradient structures with varying wetting characteristics. Mechanistic aspects and prospects of photothermal routines in micropatterning of carbon/polymer materials are discussed.

  17. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells.

    PubMed

    Wang, Xin; Feng, Cuijuan; Ding, Ning; Zhang, Qingrui; Li, Nan; Li, Xiaojing; Zhang, Yueyong; Zhou, Qixing

    2014-04-01

    Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited.

  18. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Fang; Du, Lin; Guo, Peng-Bo; Zhu, Bao; Luong, John H. T.

    2015-06-01

    Polyaniline (PANI) was electropolymerized on the surface of macroporous graphite felt (GF) followed by the electrophoretic deposition of carbon nanotubes (CNTs). The as-prepared macroporous material was characterized by scanning electron microscopy, water contact angle goniometry and electrochemical techniques. Upon the modification of PANI, a rough and nano-cilia containing film is coated on the surface of the graphite fibers, transforming the surface from hydrophobic to hydrophilic. The subsequent modification by CNTs increases the effective surface area and electrical conductivity of the resulting material. The power output of a mediator-free dual-chamber microbial fuel cell (MFC) constructed from the GF anode and an exoelectrogen Shewanella putrefaciens increases drastically with the CNT modification. The CNT/PANI/GF MFC attains an output voltage of 342 mV across an external resistor of 1.96 kΩ constant load, and a maximum power density of 257 mW m-2, increased by 343% and 186%, compared to that of the pristine GF MFC and the PANI/GF MFC, respectively. More bacteria are attached on the CNT/PANI/GF anode than on the PANI/GF anode during the working of the MFC. This strategy provides an easy scale-up, simple and controllable method for the preparation of high-performance and low-cost MFC anodes.

  19. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    PubMed

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications.

  20. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-01

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions.

  1. Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Takei, Chikara; Kakinuma, Katsuyoshi; Kawashima, Kazuhito; Tashiro, Keisuke; Watanabe, Masahiro; Uchida, Makoto

    2016-08-01

    We focus on Pt degradation occurring during fuel cell vehicle (FCV) combined drive cycles involving load and open circuit voltage (OCV) just after startup and during idling. Load cycle durability is evaluated as a function of OCV/load holding time, load rate and relative humidity (RH) with a graphitized carbon black-supported platinum catalyst (Pt/GCB) in the cathode. The degradation of Pt/GCB is suppressed for shorter OCV holding times, lower load rates and lower RH. Scanning ion microscopy (SIM) images of membrane cross-sections indicate that the amount of Pt deposited in the membrane decreases during drive cycles involving load with short OCV holding times. Investigations of the Pt distribution in the cathode catalyst layer (CL) by using scanning TEM-EDX show that the dissolution of Pt is suppressed on the membrane side in the CL. The Pt dissolution is accelerated by the high Pt oxidation due to the long OCV holding time. A load cycle with both long OCV holding time and low load inhibits the Pt2+ migration into the membrane but accelerates the Pt particle growth due to electrochemical Ostwald ripening; meanwhile, a load cycle with long OCV holding time at lower RH prevents both the Pt dissolution and particle growth.

  2. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  3. Carbonate fuel cell monolith design for high power density and low cost

    SciTech Connect

    Allen, J.; Doyon, J.

    1996-08-01

    Objective is higher power density operation and cost reduction. This is accomplished by the design of a bipolar plate where the separate corrugated current collectors are eliminated; cost reduction was also derived through higher power density and reduced material usage. The higher volumetric power density operation was achieved through lower cell resistance, increased active component surface area, and reduced cell height.

  4. European Fuel Cells R&D Review

    NASA Astrophysics Data System (ADS)

    Michael, P. D.; Maguire, J.

    1994-09-01

    A review is presented on the status of fuel cell development in Europe, addressing the research, development, and demonstration (RD&D) and commercialization activities being undertaken, identifying key European organizations active in development and commercialization of fuel cells, and detailing their future plans. This document describes the RD&D activities in Europe on alkaline, phosphoric acid, polymer electrolyte, direct methanol, solid oxide, and molten carbonate fuel cell types. It describes the European Commission's activities, its role in the European development of fuel cells, and its interaction with the national programs. It then presents a country-by-country breakdown. For each country, an overview is given, presented by fuel cell type. Scandinavian countries are covered in less detail. American organizations active in Europe, either in supplying fuel cell components, or in collaboration, are identified. Applications include transportation and cogeneration.

  5. 2009 Fuel Cell Market Report

    SciTech Connect

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  6. Seventh Edition Fuel Cell Handbook

    SciTech Connect

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  7. Fuel cell components and systems having carbon-containing electrically-conductive hollow fibers

    SciTech Connect

    Langry, Kevin C; Farmer, Joseph C

    2015-04-28

    A method, according to one embodiment, includes acquiring a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst along one side thereof, adding an anode that extends along at least part of a length of the structure, and adding a cathode that extends along at least part of the length of the structure, the cathode being on an opposite side of the hollow fiber as the anode.

  8. Fuel cell cogeneration

    SciTech Connect

    Wimer, J.G.; Archer, D.

    1995-08-01

    The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) sponsors the research and development of engineered systems which utilize domestic fuel supplies while achieving high standards of efficiency, economy, and environmental performance. Fuel cell systems are among the promising electric power generation systems that METC is currently developing. Buildings account for 36 percent of U.S. primary energy consumption. Cogeneration systems for commercial buildings represent an early market opportunity for fuel cells. Seventeen percent of all commercial buildings are office buildings, and large office buildings are projected to be one of the biggest, fastest-growing sectors in the commercial building cogeneration market. The main objective of this study is to explore the early market opportunity for fuel cells in large office buildings and determine the conditions in which they can compete with alternative systems. Some preliminary results and conclusions are presented, although the study is still in progress.

  9. Fuel cell components and systems having carbon-containing electrically-conductive hollow fibers

    DOEpatents

    Langry, Kevin C.; Farmer, Joseph C.

    2014-07-08

    According to one embodiment, a system includes a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst coupled to the hollow fiber, an anode extending along at least part of a length of the structure, and a cathode extending along at least part of the length of the structure, the cathode being on an opposite side of the hollow fiber as the anode. In another embodiment, a method includes acquiring a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst along one side thereof, adding an anode that extends along at least part of a length of the structure, and adding a cathode that extends along at least part of the length of the structure on an opposite side as the anode.

  10. Pyrolytic carbon-coated nuclear fuel

    DOEpatents

    Lindemer, Terrence B.; Long, Jr., Ernest L.; Beatty, Ronald L.

    1978-01-01

    An improved nuclear fuel kernel having at least one pyrolytic carbon coating and a silicon carbon layer is provided in which extensive interaction of fission product lanthanides with the silicon carbon layer is avoided by providing sufficient UO.sub.2 to maintain the lanthanides as oxides during in-reactor use of said fuel.

  11. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  12. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.

    1996-12-31

    Fuel cells are being considered as alternative power sources for transportation and stationary applications. The degradation of commonly used electrode catalysts (e.g. Pt, Ag, and others) and corrosion of carbon substrates are making commercialization of fuel cells incorporating present day technologies economically problematic. Furthermore, due to the instability of the Pt catalyst, the performance of fuel cells declines on long-term operation. When methanol is used as the fuel, a voltage drop, as well as significant thermal management problems can be encountered, the later being due to chemical oxidation of methanol at the platinized carbon at the cathode. Though extensive work was conducted on platinized electrodes for both the oxidation and reduction reactions, due to the problems mentioned above, fuel cells have not been fully developed for widespread commercial use. Several investigators have previously evaluated metal macrocyclic complexes as alternative catalysts to Pt and Pt/Ru in fuel cells. Unfortunately, though they have demonstrated catalytic activity, these materials were found to be unstable on long term use in the fuel cell environment. In order to improve the long-term stability of metal macrocyclic complexes, we have chemically bonded these complexes to the carbon substrate, thereby enhancing their catalytic activity as well as their chemical stability in the fuel cell environment. We have designed, synthesized, and evaluated these catalysts for O{sub 2} reduction, H{sub 2} oxidation, and direct methanol oxidation in Proton Exchange Membrane (PEM) and aqueous carbonate fuel cells. These catalysts exhibited good catalytic activity and long-term stability. In this paper we confine our discussion to the initial performance results of some of these catalysts in H{sub 2}/O{sub 2} PEM fuel cells, including their long-term performance characteristics as well as CO poisoning effects on these catalysts.

  13. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.

    PubMed

    Liu, Hai; Gong, Chunli; Wang, Jie; Liu, Xiaoyan; Liu, Huanli; Cheng, Fan; Wang, Guangjin; Zheng, Genwen; Qin, Caiqin; Wen, Sheng

    2016-01-20

    Silica-coated carbon nanotubes (SCNTs), which were obtained by a simple sol-gel method, were utilized in preparation of chitosan/SCNTs (CS/SCNTs) composite membranes. The thermal and oxidative stability, morphology, mechanical properties, water uptake and proton conductivity of CS/SCNTs composite membranes were investigated. The insulated and hydrophilic silica layer coated on CNTs eliminates the risk of electronic short-circuiting and enhances the interaction between SCNTs and chitosan to ensure the homogenous dispersion of SCNTs, although the water uptake of CS/SCNTs membranes is reduced owing to the decrease of the effective number of the amino functional groups of chitosan. The CS/SCNTs composite membranes are superior to the pure CS membrane in thermal and oxidative stability, mechanical properties and proton conductivity. The results of this study suggest that CS/SCNTs composite membranes exhibit promising potential for practical application in proton exchange membranes.

  14. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.

    PubMed

    Liu, Hai; Gong, Chunli; Wang, Jie; Liu, Xiaoyan; Liu, Huanli; Cheng, Fan; Wang, Guangjin; Zheng, Genwen; Qin, Caiqin; Wen, Sheng

    2016-01-20

    Silica-coated carbon nanotubes (SCNTs), which were obtained by a simple sol-gel method, were utilized in preparation of chitosan/SCNTs (CS/SCNTs) composite membranes. The thermal and oxidative stability, morphology, mechanical properties, water uptake and proton conductivity of CS/SCNTs composite membranes were investigated. The insulated and hydrophilic silica layer coated on CNTs eliminates the risk of electronic short-circuiting and enhances the interaction between SCNTs and chitosan to ensure the homogenous dispersion of SCNTs, although the water uptake of CS/SCNTs membranes is reduced owing to the decrease of the effective number of the amino functional groups of chitosan. The CS/SCNTs composite membranes are superior to the pure CS membrane in thermal and oxidative stability, mechanical properties and proton conductivity. The results of this study suggest that CS/SCNTs composite membranes exhibit promising potential for practical application in proton exchange membranes. PMID:26572483

  15. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  16. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  17. A membraneless microfluidic fuel cell stack

    NASA Astrophysics Data System (ADS)

    Salloum, Kamil S.; Posner, Jonathan D.

    A membraneless microfluidic fuel cell stack architecture is presented that reuses reactants from one cell to a subsequent one, analogous to PEMFC stacks. On-chip reactant reuse improves fuel utilization and power densities relative to single cells. The reactants flow separately through porous electrodes and interface with a non-reacting and conductive electrolyte which maintains their separation. The reactants remain separated downstream of the interface and are used in subsequent downstream cells. This fuel cell uses porous carbon for electrocatalysts and vanadium redox species as reactants with a sulfuric acid supporting electrolyte. The overall power density of the fuel cell increases with reactant flow rate and decreasing the separating electrolyte flow rate. The peak power, maximum fuel utilization, and efficiency nearly double when electrically connecting the cells in parallel.

  18. Fuel cell systems program plan, Fiscal year 1994

    SciTech Connect

    Not Available

    1994-07-01

    Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

  19. Fuel cell system combustor

    DOEpatents

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  20. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  1. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  2. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  3. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2001-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  4. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Vamos, Eugene (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2008-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  5. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2004-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  6. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  7. Proceedings of the Fourth Annual Fuel Cells Contractors Review Meeting

    NASA Astrophysics Data System (ADS)

    Huber, W. J.

    1992-07-01

    The objective of the program was to develop the essential technology for private sector commercialization of various fuel cell electrical generation systems, which promise high fuel efficiencies (40-60 percent), possibilities for cogeneration, modularity, possible urban siting, and low emissions. The purpose of this meeting was to provide the R and D participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with a forum. With the near commercialization of phosphoric acid fuel cells, major emphasis was on molten carbonate and solid oxide fuel cells. Twenty-two papers were given in 3 formal sessions: molten carbonate fuel cells; solid oxide fuel cells; and systems and phosphoric acid. In addition, the proceedings also include a welcome to METC address and comments on the Fuel Cells Program from the viewpoint of EPRI and DOE's Vehicular Fuel Cell Program. Separate abstracts have been prepared.

  8. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  9. Carbon nanotube supported MnO₂ catalysts for oxygen reduction reaction and their applications in microbial fuel cells.

    PubMed

    Lu, Min; Kharkwal, Shailesh; Ng, How Yong; Li, Sam Fong Yau

    2011-08-15

    Three types of manganese dioxide, α-MnO(2), β-MnO(2), γ-MnO(2) were tested as alternative cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Prepared by solution-based methods, the MnO(2) nanomaterials were comprehensively characterized, and their electrocatalytic activities in neutral electrolyte were investigated with the supporting material of carbon nanotubes (CNTs) by cyclic voltammetry (CV). The CV results showed that all MnO(2) species could catalyze ORR in neutral NaCl solution with different catalytic activities. β-MnO(2) had the highest catalytic activity due to its intrinsic structure and better interaction with CNTs. Three MnO(2) species were further used as cathode catalysts under optimized conditions in air-cathode cubic MFCs, in which mixed culture was inoculated as biocatalysts and domestic wastewater was used as the substrate in the anode chamber. It was also found that β-MnO(2) based MFC yielded the best performance with a power density of 97.8 mWm(-2) which was 64.1% that of the Pt-based MFC, and a lower internal resistance of 165 Ω. Furthermore, the COD removal efficiency of β-MnO(2) based MFC was estimated as 84.8%, higher than that of the Pt-based MFC. This study demonstrated that using β-MnO(2) on CNT support instead of Pt could potentially improve the feasibility of scaling up air-cathode MFCs for practical applications by lowering the material cost.

  10. Status of commercial fuel cell powerplant system development

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin

    1987-01-01

    The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.

  11. Development of molten carbonate fuel cell technology. Technical progress report, July-September 1983

    SciTech Connect

    1983-01-01

    Component development concentrated on two objectives: development of a creep resistance ribbed anode and development of an internal reforming catalyst for steam-methane reforming in the MCFC anode. Satisfactory anode creep strength has been achieved with Ni + 16 wt % LiAlO composite anodes. Efforts concentrated on fabrication methods to directly produce a ribbed anode from the Ni + LiAlO/sub 2/ powder mixture. Encouraging results were obtained by mold compression in a machined graphite mold followed by in-mold sintering which was promoted by the use of a few percent LiKCO/sub 3/ as a sintering agent. Internal reforming catalyst development focused on preparation techniques for high surface area Ni catalyst supported on ..gamma..-LiAlO/sub 2/. The approach which is being most actively pursued involves first pelletizing the LiAlO/sub 2/ into suitable granule size followed by multiple impregnation in nickel salt solution and heat treatment. Several impregnations are necessary to obtain a nominal Ni loading of 15 wt %. Out-of-cell catalyst testing has been initiated in planar integral reactors as well as differential tube reactors. The LiAlO/sub 2/ supported catalyst granules have demonstrated high activity for the methane-steam reforming reaction and kinetic parameters compare favorably with those for commercially available reforming catalysts. Results are detailed. (WHK)

  12. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-03-10

    Enzyme electrodes show great potential for many applications, as biosensors and more recently as anodes and cathodes in biocatalytic fuel cells for power generation. Enzymes have advantages over metal catalysts, as they provide high specificity and reaction rates, while operating under mild conditions. Here we report on studies related to development of mass-producible, completely enzymatic printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks containing mediators and laccase, for reduction of oxygen, or aldose dehydrogenase, for oxidation of glucose. Mediator performance in these printed formats is compared to relative rate constants for the enzyme-mediator reaction in solution, for a range of anode and cathode mediators. The power output and stability of fuels cells using an acidophilic laccase isolated from Trametes hirsuta is greater, at pH 5, than that for cells based on Melanocarpus albomyces laccase, that shows optimal activity closer to neutral pH, at pH 6. Highest power output, although of limited stability, was observed for ThL/ABTS cathodes, providing a maximum power density of 3.5 μWcm(-2) at 0.34 V, when coupled to an ALDH glucose anode mediated by an osmium complex. The stability of cell voltage above a threshold of 200 mV under a moderate 75 kΩ load is used to benchmark printed fuel cell performance. Highest stability was obtained for a printed fuel cell using osmium complexes as mediators of glucose oxidation by aldose dehydrogenase, and oxygen reduction by T. hirsuta laccase, maintaining cell voltage above 200 mV for 137 h at pH 5. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells. PMID:22305173

  13. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.

  14. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 1, October 1, 1979-December 31, 1979

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, R. J.; Farris, P. F.; Mientek, A. P.; Nickols, R. C.; Katz, M.; Iczkowski, R. P.; Fredley, R. R.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Smith, S. W.; Steuernagel, W. H.; Szymanski, S. T.

    1980-03-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During the first quarter, effort was initiated in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task-4 developing the capability for operation of stacks on coal-derived gas. In the system study task, a study baseline fuel cell system and module configuration were established. Studies to determine user requirements and to characterize the fuel cell power block and coal gasifier subsystems were initiated. Cell stack design was initiated with completion of preliminary design requirements for the cell cathodes. Laboratory tests were also initiated to identify alternative materials for separator plates, reactant manifold seals, and electrolyte tile fillers. A mechanical tape casting technique for producing 18 x 24 inch sheets of electrolyte matrix tape was successfully demonstrated in Task 3. In Task 4, theoretical and experimental studies were initiated to define the effects of known sulfur contaminants on cell performance. A literature survey was initiated to identify other possible contaminants. Planning and design efforts for construction of a mobile cell test unit were initiated. The mobile unit will be used to verify the molten carbonate cell's ability to operate on gasified coal by tests at a gasifier site.

  15. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

  16. EFFECT OF FUEL IMPURITIES ON FUEL CELL PERFORMANCE AND DURABILITY

    SciTech Connect

    Colon-Mercado, H.

    2010-09-28

    A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

  17. Three-dimensional X-ray microcomputed tomography of carbonates and biofilm on operated cathode in single chamber microbial fuel cell.

    PubMed

    Santini, Maurizio; Guilizzoni, Manfredo; Lorenzi, Massimo; Atanassov, Plamen; Marsili, Enrico; Fest-Santini, Stephanie; Cristiani, Pierangela; Santoro, Carlo

    2015-09-10

    Power output limitation is one of the main concerns that need to be addressed for full-scale applications of the microbial fuel cell technology. Fouling and biofilm growth on the cathode of single chamber microbial fuel cells (SCMFC) affects their performance in long-term operation with wastewater. In this study, the authors report the power output and cathode polarization curves of a membraneless SCMFC, fed with raw primary wastewater and sodium acetate for over 6 months. At the end of the experiment, the whole cathode surface is analyzed through X-ray microcomputed tomography (microCT), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) to characterize the fouling layer and the biofilm. EDX shows the distribution of Ca, Na, K, P, S, and other elements on the two faces of the cathode. Na-carbonates and Ca-carbonates are predominant on the air (outer) side and the water (inner) side, respectively. The three-dimensional reconstruction by X-ray microCT shows biofilm spots unevenly distributed above the Ca-carbonate layer on the inner (water) side of the cathode. These results indicate that carbonates layer, rather than biofilm, might lower the oxygen reduction reaction rate at the cathode during long-term SCMFC operation.

  18. Modeling the cathode in a proton exchange membrane fuel cell using density functional theory How the carbon support can affect durability and activity of a platinum catalyst

    NASA Astrophysics Data System (ADS)

    Groves, Michael Nelson

    The current global energy and environmental challenges need to be addressed by developing a new portfolio of clean power producing devices. The proton exchange membrane fuel cell has the potential to be included and can fit into a variety of niches ranging from portable electronics to stationary residential applications. One of the many barriers to commercial viability is the cost of the cathode layer which requires too much platinum metal to achieve a comparable power output as well as would need to be replaced more frequently when compared to conventional sources for most applications. Using density functional theory, an ab initio modeling technique, these durability and activity issues are examined for platinum catalysts on graphene and carbon nanotube supports. The carbon supports were also doped by replacing individual carbon atoms with other second row elements (beryllium, boron, nitrogen, and oxygen) and the effect on the platinum-surface interaction along with the interaction between the platinum and the oxygen reduction reaction intermediates are discussed. Keywords: proton exchange membrane fuel cell, density functional theory, platinum catalyst, oxygen reduction reaction, doped carbon surfaces

  19. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses

    NASA Astrophysics Data System (ADS)

    Marie, Julien; Chenitz, Regis; Chatenet, Marian; Berthon-Fabry, Sandrine; Cornet, Nathalie; Achard, Patrick

    Carbon aerogels exhibiting high porous volumes and high surface areas, differentiated by their pore-size distributions were used as Pt-supports in the cathode catalytic layer of H 2/air-fed PEM fuel cell. The cathodes were tested as 50 cm 2 membrane electrode assemblies (MEAs). The porous structure of the synthesized catalytic layers was impacted by the nanostructure of the Pt-doped carbon aerogels (Pt/CAs). In this paper thus we present an experimental study aiming at establishing links between the porous structure of the cathode catalytic layers and the MEAs performances. For that purpose, the polarization curves of the MEAs were decomposed in 3 contributions: the kinetic loss, the ohmic loss and the mass-transport loss. We showed that the MEAs made with the different carbon aerogels had similar kinetic activities (low current density performance) but very different mass-transport voltage losses. It was found that the higher the pore-size of the initial carbon aerogel, the higher the mass-transport voltage losses. Supported by our porosimetry (N 2-adsorption and Hg-porosimetry) measurement, we interpret this apparent contradiction as the consequence of the more important Nafion penetration into the carbon aeorogel with larger pore-size. Indeed, the catalytic layers made from the larger pore-size carbon aerogel had lower porosities. We thus show in this work that carbon aerogels are materials with tailored nanostructured structure which can be used as model materials for experimentally testing the optimization of the PEM fuel cell catalytic layers.

  20. Compact fuel cell

    DOEpatents

    Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  1. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, November 1, 1981-January 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Mazandarany, F.N.; Marianowski, L.G.

    1982-02-26

    Work proceeded this quarter mainly under three program tasks. Under Task 1.0, the four candidate power plant configurations were ranked and the Steam Injection System was recommended as the reference plant design. The Steam Injection System was chosen based on its overall simplicity, high performance level, balance of plant state-of-technology readiness and economic attractiveness. Work was initiated on refinement of fuel cell piping costs. Under Task 2.0, work continued on cell component (anode, cathode, current collector and electrolyte) development and stack design and analysis. Corrosion test results after 1000 hours in fuel gas and 3000 hours in cathode gas are reported for 310SS, 316SS, 446SS, chromium, IN690, and GE2541. In the cathode environment, 310SS and GE2541 show good thermal cycling properties, whereas the other alloys show scale spalling during thermal cycling. Examination of a Ni-clad 316SS anode current collector tested in a cell for 2000 hours shows second phase precipitates along the grain boundaries of the nickel. Experiments with different grades of nickel in an anode atmosphere were started in order to evaluate the effects of impurities present in the metals. Under Task 4.0, work continued on installation of the bench scale single cell test facilities, one atmospheric and one pressurized (up to 10 atm), which will be used in cell testing with contaminants in the fuel and oxidant. (WHK)

  2. Conceptual and feasibility study on lab-scale series power generation by carbon-air and conventional solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Duan, Nan-Qi; Cao, Yong; Chi, Bo; Pu, Jian; Li, Jian

    2016-10-01

    To take the advantage chemical-looping combustion (CLC) process for CO2 sequestration, carbon-air fuel cell (CAFC) and conventional solid oxide fuel cell (SOFC) are prepared for high-efficiency series power generation. The tubular CAFC (Cell-I) consisting of Sb anode, (Y2O3)0.08(ZrO2)0.92 (YSZ) electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O3-δ (LSCF-GDC) cathode has achieved peak power densities of 117, 186 and 295 mW cm-2 at 700, 750 and 800 °C, respectively. Fueled by repeatedly added 3 g of coconut-derived activated charcoal, Cell-I has operated stably at 800 °C for 21 h under the condition of 0.4 A cm-2 and 0.502 V, with an electrical efficiency of 30.8%. The tubular conventional SOFC (Cell-II) is designed with Ni-YSZ as anode, YSZ electrolyte as electrolyte and (La0.8Sr0.2)0.95MnO3-δ-YSZ (LSM-YSZ) as cathode. The anode exhaust gas of Cell-I, which is operated at temperatures from 750 to 850 °C, contains CO and CO2. Using this exhaust gas as fuel, Cell-II has demonstrated peak power densities between 87 and 133 mW cm-2 at 750 °C, and performed stably for 6 h at 0.1 A cm-2 and 0.720 V during which 69.6% of CO in the exhaust gas is consumed. Cell-II has achieved an extra electrical efficiency of 11.0%, giving a total electrical efficiency of 41.8% for the series power generation.

  3. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  4. Fuel cell generator

    DOEpatents

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  5. An Overview of Stationary Fuel Cell Technology

    SciTech Connect

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  6. Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells.

    PubMed

    Wang, Zhijian; Jia, Rongrong; Zheng, Jianfeng; Zhao, Jianghong; Li, Li; Song, Jinling; Zhu, Zhenping

    2011-03-22

    Nitrogen atoms were found to exhibit a strong ability to promote the self-assembly of nitrogen-doped carbon nanotubes (NCNTs) from gaseous carbons, without an assistance of metal atoms. On the basis of this discovery, pure metal-free CNTs with a nitrogen-doping level as high as 20 atom % can be directly synthesized using melamine as a C/N precursor. This offers a novel pathway for carbon nanotube synthesis. Furthermore, the metal-free and intact characteristics of the NCNT samples facilitate a clear verification of the intrinsic catalytic ability of NCNTs. The results show that the NCNTs intrinsically display excellent catalytic activity for oxygen reduction in fuel cells, comparable to traditional platinum-based catalysts. More notably, they exhibit outstanding stability, selectivity, and resistance to CO poisoning, much superior to the platinum-based catalysts.

  7. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.

    PubMed

    Wen, Qing; Wang, Shaoyun; Yan, Jun; Cong, Lijie; Chen, Ye; Xi, Hongyuan

    2014-02-01

    Porous nitrogen-doped carbon nanosheet on graphene (PNCN) was used as an alternative cathode catalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Here we report a novel, low-cost, scalable, synthetic method for preparation of PNCN via the carbonization of graphite oxide-polyaniline hybrid (GO-PANI), subsequently followed by KOH activation treatment. Due to its high concentration of nitrogen and high specific surface area, PNCN exhibited an excellent catalytic activity for ORR. As a result, the maximum power density of 1159.34mWm(-2) obtained with PNCN catalyst was higher than that of Pt/C catalyst (858.49mWm(-2)) in a MFC. Therefore, porous nitrogen-doped carbon nanosheet could be a good alternative to Pt catalyst in MFCs.

  8. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.

    PubMed

    Wen, Qing; Wang, Shaoyun; Yan, Jun; Cong, Lijie; Chen, Ye; Xi, Hongyuan

    2014-02-01

    Porous nitrogen-doped carbon nanosheet on graphene (PNCN) was used as an alternative cathode catalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Here we report a novel, low-cost, scalable, synthetic method for preparation of PNCN via the carbonization of graphite oxide-polyaniline hybrid (GO-PANI), subsequently followed by KOH activation treatment. Due to its high concentration of nitrogen and high specific surface area, PNCN exhibited an excellent catalytic activity for ORR. As a result, the maximum power density of 1159.34mWm(-2) obtained with PNCN catalyst was higher than that of Pt/C catalyst (858.49mWm(-2)) in a MFC. Therefore, porous nitrogen-doped carbon nanosheet could be a good alternative to Pt catalyst in MFCs. PMID:24239870

  9. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A fuel cell technology program was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Program tasks are described consisting of baseline cell design and stack testing, hydrogen pump design and testing, and DM-2 powerplant testing and technology extension efforts. A baseline cell configuration capable of a minimum of 2000 hours of life was defined. A 6-cell prototype stack, incorporating most of the scheme cell features, was tested for a total of 10,497 hours. A 6-cell stack incorporating all of the design features was tested. The DM-2 powerplant with a 34 cell stack, an accessory section packaged in the basic configuration anticipated for the space shuttle powerplant and a powerplant control unit, was defined, assembled, and tested. Cells were used in the stack and a drag-type hydrogen pump was installed in the accessory section. A test program was established, in conjunction with NASA/JSC, based on space shuttle orbiter mission. A 2000-hour minimum endurance test and a 5000-hour goal were set and the test started on August 8, 1972. The 2000-hour milestone was completed on November 3, 1972. On 13 March 1973, at the end of the thirty-first simulated seven-day mission and 5072 load hours, the test was concluded, all goals having been met. At this time, the DM-2 was in excellent condition and capable of additional endurance.

  10. Fuel Cell Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  11. Mass transfer in fuel cells

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Developments in the following areas are reported: surface area and pore size distribution in electrolyte matrices, electron microscopy of electrolyte matrices, surface tension of KOH solutions, water transport in fuel cells, and effectiveness factors for fuel cell components.

  12. Alternative Fuels for Cancer Cells

    PubMed Central

    Keenan, Melissa; Chi, Jen-Tsan

    2015-01-01

    Tumor metabolism is significantly altered to support the various metabolic needs of tumor cells. The most prominent change is the increased tumor glycolysis that leads to increased glucose uptake and utilization. However, it has become obvious that many non-glucose nutrients, such as amino acids, lactate, acetate and macromolecules, can serve as alternative fuels for cancer cells. This knowledge reveals an unexpected flexibility and evolutionarily-conserved model in which cancer cells uptake nutrients from their external environment to fulfill their necessary energetic needs. It is possible that tumor cells have evolved the ability to utilize different carbon sources due to the limited supply of nutrient that can be driven by oncogenic mutations and tumor microenvironmental stresses. In certain cases, these factors permanently alter the tumor cells’ metabolism, causing certain nutrients to become indispensable and thus creating opportunities for therapeutic intervention to eradicate tumors by their metabolic vulnerabilities. PMID:25815843

  13. Hydrodesulfurization and prereforming of logistic fuels for use in fuel cell applications

    SciTech Connect

    Piwetz, M.M.; Larsen, J.S.; Christensen, T.S.

    1996-12-31

    Fuel cell development programs have traditionally emphasized the use of natural gas as the primary fuel. However, to meet strategic requirements for fuel cells in military use, the fuel of choice must be accessible throughout the world, easily transported and stored, and compatible with other military uses. The United States military`s logistic fuels (DF-2 diesel or JP-8 jet fuel) meet these requirements. The objectives of this program were to design and construct a fuel processing system (FPS) and by connecting the FPS with a solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), respectively, to demonstrate that such a system can be used to convert diesel or jet-fuel into a feed stream compatible with the fuel cell.

  14. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  15. Stationary power fuel cell commercialization status worldwide

    SciTech Connect

    Williams, M.C.

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  16. Fuel cell sub-assembly

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  17. Fuel cell report to congress

    SciTech Connect

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  18. Fuel cells for extraterrestrial and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.

    The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries.

  19. Fuel cells for extraterrestrial and terrestrial applications

    SciTech Connect

    Srinivasan, S.

    1987-01-01

    The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries. 11 refs.

  20. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Jiahuan; Yuan, Yong; Liu, Ting; Zhou, Shungui

    2015-01-01

    Three-dimensional (3D) electrodes have been intensively investigated as alternatives to conventional plate electrodes in the development of high-performance microbial fuel cells (MFCs). However, the energy output of the MFCs with the 3D anodes is still limited for practical applications. In this study, a 3D anode modified with a nano-structured capacitive layer is prepared to improve the performance of an microbial fuel cell (MFC). The capacitive layer composes of titanium dioxide (TiO2) and egg white protein (EWP)-derived carbon assembled core-shell nanoparticles, which are integrated into loofah sponge carbon (LSC) to obtain a high-capacitive 3D electrode. The as-prepared 3D anode produces a power density of 2.59 ± 0.12 W m-2, which is 63% and 201% higher than that of the original LSC and graphite anodes, respectively. The increased energy output is contributed to the enhanced electrochemical capacitance of the 3D anodes as well as the synergetic effects between TiO2 and EWP-derived carbon due to their unique properties, such as relatively high surface area, good biocompatibility, and favorable surface functionalization for interfacial microbial electron transfer. The results obtained in this study will benefit the optimized design of new 3D materials to achieve enhanced performance in MFCs.