Science.gov

Sample records for carbonate wash solutions

  1. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  2. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  3. Soil washing of fluorine contaminated soil using various washing solutions.

    PubMed

    Moon, Deok Hyun; Jo, Raehyun; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Park, Jeong-Hun

    2015-03-01

    Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.1 to 3 M with a liquid to solid ratio of 10. The soil washing results showed that the most effective washing solution for the removal of fluoride from contaminated soils was HCl. The highest fluoride removal results of approximately 97 % from the contaminated soil were obtained using 3 M HCl. The fluoride removal efficiency of the washing solution increases in the following order: C4H6O6 < NaOH < H2SO4 < HNO3 < HCl.

  4. Potential of activated carbon to recover randomly-methylated-β-cyclodextrin solution from washing water originating from in situ soil flushing.

    PubMed

    Sniegowski, K; Vanhecke, M; D'Huys, P-J; Braeken, L

    2014-07-01

    Despite the overall high efficacy of cyclodextrins to accelerate the treatment of soil aquifer remediation by in-situ soil flushing, the use in practice remains limited because of the high costs of cyclodextrin and high concentrations needed to significantly reduce the treatment time. The current study tested the potential of activated carbon to treat washing water originating from soil flushing in order to selectively separate hydrocarbon contaminants from washing water containing cyclodextrin and subsequently reuse the cyclodextrin solution for reinfiltration. A high recovery of the cyclodextrin from the washing water would reduce the costs and would make the technique economically feasible for soil remediation. This study aimed to investigate whether cyclodextrin can pass through the activated carbon filter without reducing the cyclodextrin concentration when the contaminated washing water is treated and whether the presence of cyclodextrin negatively affects the purification potential of activated carbon to remove the organic pollutants from the pumped soil water. Lab-scale column experiments showed that with the appropriate activated carbon 100% of cyclodextrin (randomly-methylated-β-cyclodextrin) can be recovered from the washing water and that the effect on the efficiency of activated carbon to remove the hydrocarbon contaminants remains limited. These results show that additional field tests are useful to make in-situ soil flushing with cyclodextrin both a technical and an economical interesting technique. These results might stimulate the application of cyclodextrin in soil treatment technology.

  5. 7 CFR 2902.51 - Parts wash solutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Items § 2902.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts in manual or automatic cleaning systems. Such systems include, but are not limited to, soak vats and tanks... 7 Agriculture 15 2010-01-01 2010-01-01 false Parts wash solutions. 2902.51 Section...

  6. 7 CFR 2902.51 - Parts wash solutions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Items § 2902.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts in manual or automatic cleaning systems. Such systems include, but are not limited to, soak vats and tanks... 7 Agriculture 15 2011-01-01 2011-01-01 false Parts wash solutions. 2902.51 Section...

  7. Fresh produce washing aid, T-128, enhances inactivation of salmonella and pseudomonas biofilms on stainless steel in chlorinated wash solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of chlorine wash solutions, with/without the washing aid, T-128, on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel coupons was evaluated under conditions of increasing organic matter loads in the wash water. Biofilms were formed statically on stai...

  8. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.

    PubMed

    Wan, Jinzhong; Chai, Lina; Lu, Xiaohua; Lin, Yusuo; Zhang, Shengtian

    2011-05-15

    The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils. PMID:21397398

  9. Aquifer washing by micellar solutions: 2. DNAPL recovery mechanisms for an optimized alcohol surfactant solvent solution

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Lefebvre, René; Gélinas, Pierre J.

    1998-03-01

    A large sand column experiment is used to illustrate the principles of complex organic contaminants (DNAPL) recovery by a chemical solution containing an alcohol ( n-butanol), a surfactant (Hostapur SAS), and two solvents ( d-limonene and toluene). The washing solution is pushed by viscous polymer solutions to keep the displacement stable. The main NAPL recovery mechanisms identified are: (1) immiscible displacement by oil saturation increase (oil swelling), oil viscosity reduction, interfacial tension lowering, and relative permeability increase; (2) miscible NAPL displacement by solubilization. Most of the NAPL was recovered in a Winsor, type II system ahead of the washing solution. The 0.8 pore volume (PV) of alcohol-surfactant-solvent solution injected recovered more than 89% of the initial residual DNAPL saturation (0.195). Winsor system types were determined by visual observation of phases and confirmed by electrical resistivity measurements of phases and water content measurements in the oleic phase. Viscosity and density lowering of the oleic phase was made using solvents and alcohol transfer from the washing solution. Small sand column tests are performed to check different rinsing strategies used to minimize washing solution residual ingredients which can be trapped in sediments. An alcohol/surfactant rinsing solution without solvent, injected behind the washing solution, minimizes solvent trapping in sediments. More than five pore volumes of polymer solution and water must be injected after the rinsing solution to decrease alcohol and SAS concentrations in sediments to an acceptable level. To obtain reasonable trapped surfactant concentrations in sediments, the displacement front between the rinsing solution and the subsequent the following polymer solution has to be stable.

  10. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. PMID:26086811

  11. Aquifer washing by micellar solutions: 1. Optimization of alcohol-surfactant-solvent solutions

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Gélinas, Pierre J.; Desnoyers, Jacques E.

    1998-03-01

    Phase diagrams were used for the formulation of alcohol-surfactant-solvent and to identify the DNAPL (Dense Non Aqueous Phase Liquid) extraction zones. Four potential extraction zones of Mercier DNAPL, a mixture of heavy aliphatics, aromatics and chlorinated hydrocarbons, were identified but only one microemulsion zone showed satisfactory DNAPL recovery in sand columns. More than 90 sand column experiments were performed and demonstrate that: (1) neither surfactant in water, alcohol-surfactant solutions, nor pure solvent can effectively recover Mercier DNAPL and that only alcohol-surfactant-solvent solutions are efficient; (2) adding salts to alcohol-surfactant or to alcohol-surfactant-solvent solutions does not have a beneficial effect on DNAPL recovery; (3) washing solution formulations are site specific and must be modified if the surface properties of the solids (mineralogy) change locally, or if the interfacial behavior of liquids (type of oil) changes; (4) high solvent concentrations in washing solutions increase DNAPL extraction but also increase their cost and decrease their density dramatically; (5) maximum DNAPL recovery is observed with alcohol-surfactant-solvent formulations which correspond to the maximum solubilization in Zone C of the phase diagram; (6) replacing part of surfactant SAS by the alcohol n-butanol increases washing solution efficiency and decreases the density and the cost of solutions; (7) replacing part of n-butanol by the nonionic surfactant HOES decreases DNAPL recovery and increases the cost of solutions; (8) toluene is a better solvent than D-limonene because it increases DNAPL recovery and decreases the cost of solutions; (9) optimal alcohol-surfactant-solvent solutions contain a mixture of solvents in a mass ratio of toluene to D-limonene of one or two. Injection of 1.5 pore volumes of the optimal washing solution of n-butanol-SAS-toluene- D-limonene in water can recover up to 95% of Mercier DNAPL in sand columns. In the first

  12. Efficacy of wash solutions in recovering Cyclospora cayetanensis, Cryptosporidium parvum, and Toxoplasma gondii from basil.

    PubMed

    Chandra, Venessa; Torres, Maria; Ortega, Ynés R

    2014-08-01

    Parasitic diseases can be acquired by ingestion of contaminated raw or minimally processed fresh produce (herbs and fruits). The sensitivity of methods used to detect parasites on fresh produce depends in part on the efficacy of wash solutions in removing them from suspect samples. In this study, six wash solutions (sterile E-Pure water, 3% levulinic acid-3% sodium dodecyl sulfate, 1 M glycine, 0.1 M phosphate-buffered saline, 0.1% Alconox, and 1% HCl-pepsin) were evaluated for their effectiveness in removing Cyclospora cayetanensis, Cryptosporidium parvum, and Toxoplasma gondii from basil. One hundred or 1,000 oocysts of these parasites were inoculated onto the adaxial surfaces of 25 g of basil leaves, placed in stomacher bags, and stored for 1 h at 21°C or 24 h at 4°C. Leaves were hand washed in each wash solution for 1 min. DNA was extracted from the wash solutions and amplified using PCR for the detection of all parasites. Oocysts inoculated at a concentration of 1,000 oocysts per 25 g of basil were detected in all wash solutions. At an inoculum concentration of 100 oocysts per 25 g, oocysts were detected in 18.5 to 92.6% of the wash solutions. The lowest variability in recovering oocysts from basil inoculated with 100 oocysts was observed in 1% HCl-pepsin wash solution. Oocyst recovery rates were higher at 1 h than at 24 h postinoculation. Unlike most bacteria, parasites cannot be enriched; therefore, an optimal recovery process for oocysts from suspected foods is critical. The observations in this study provide guidance concerning the selection of wash solutions giving the highest retrieval of parasite oocysts. PMID:25198596

  13. Effect of Variations of Washing Solution Chemistry on Nanomaterial Physicochemical Changes in the Laundry Cycle.

    PubMed

    Mitrano, Denise M; Arroyo Rojas Dasilva, Yadira; Nowack, Bernd

    2015-08-18

    Engineered nanoparticle (ENP) life cycles are strongly dependent on the life-cycle of the nanoenhanced products in which they are incorporated. An important phase for ENP associated with textiles is washing. Using a set of liquid and powdered commercially available detergents that span a wide range of different chemistries, washing studies were performed with one "standard" nanoparticle suspended in wash solution to systematically investigate (changes to) particle size distribution, dissolution, reprecipitation (i.e., "new" particle formation), and complexation to particulate matter. Au ENPs were used as a "tracer" through the system. TEM and EDX analysis were performed to observe morphological and chemical changes to the particles, and single-particle ICP-MS was used to build a size distribution of particles in solution. Varying the washing solution chemistry was found to dictate the extent and rate of dissolution, particle destruction, surface chemistry change(s), and new particle formation. Detergent chemistry, dominated by oxidizing agents, was a major factor. The detergent form (i.e., powder vs liquid) was the other decisive factor, with powder forms providing available surfaces for precipitation and sorption reactions. Control experiments with AgNO3 indicated metallic Ag particles formed during the washing process from dissolved Ag, implying not all Ag-NPs observed in a textile washing study are indicative of released Ag-ENPs but can also be the result of sequential dissolution/reduction reactions.

  14. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.

    PubMed

    Pociecha, Maja; Lestan, Domen

    2009-06-15

    The feasibility of a two-phase method for remediation of Cu (364+/-2 mg kg(-1)) contaminated vineyard soil was evaluated. In the first phase we used ethylenediamine tetraacetae (EDTA) for Cu leaching, while in the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of the washing solution for soil rinsing (removal of soil-retained, chelant-mobilized Cu complexes) in a closed loop. In the EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (40 mA cm(-2)). The released Cu was removed from the solution mostly as an electro-deposit on the cathode. Two consecutive additions of 10 mmol kg(-1) EDTA removed 26% of Cu from the soil, mostly from carbonate and oxide soil fractions (58% and 40% Cu reduction). The soil Cu oral availability (in vitro Physiologically Based Extraction Test) was reduced after remediation by 42% and 51% in the simulated stomach and intestinal phases. The discharge solution was clear, almost colorless, with pH 8.4 and 0.5 mg L(-1) Cu and 0.07 mM EDTA. The novel method enables soil Cu availability stripping using small volumes of process waters, and no wastewater generation or other emissions into the environment. PMID:19022571

  15. Washing of Petroleum and Arsenic Contaminated Soil with Ultrasound and Alkali Phosphate Solution

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hwa; Kim, Jae Gon; Cho, Yong-chan; Chon, Chul-Min; Nam, In-Hyun; Keum, Mi Jung

    2015-04-01

    Soil washing of fine textured soil has been a challenging remedial strategy due to its low remediation efficiency. We adapted ultrasound and dispersion solution to increase the remediation efficiency of the soil washing. The ultrasound and dispersion agent may enhance the dispersion of the aggregate into individual particles and may enhance release of contaminants from the aggregate. We collected the arsenic (As) contaminated silt loam soil from a smelting site, spiked with 1% of diesel and incubated for 6 months. We tested the dispersion rate and the release of diesel with the incubated soil at various pH and concentrations of orthophosphate, pyrophosphate and hexametaphosphate with or without the ultrasound of 28 kHz and 400 W. The As concentrations of coarse (> medium silt) and fine (washing. The dispersion rate and diesel release increased with increasing phosphate concentration and pH of the solution. The application of ultrasound sharply increased the dispersion rate and diesel release comparing with no ultrasound. The optimum condition of the soil washing was turned out to be pH 11_10 mM Na-hexametaphosphate with the ultrasound. The concentration of total petroleum hydrocarbon of the incubated soil reduced from 3101.3 mg kg-1 to 14.0 mg kg-1 after 10 minute washing at the optimum condition. The fine fraction had much higher As concentration than the coarse fraction: 44.4 mg kg-1 for the fine fraction and 14.4 mg kg-1 for the coarse fraction. The results of this study indicate that the ultrasound and alkali phosphate solution increase the soil washing efficiency and can be a promising technology for the remediation of fine textured contaminated soils. Key Words : Ultrasound, Phosphate solution, Soil washing, Mixed contaminants

  16. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    PubMed

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. PMID:25482580

  17. Wash Solution Bath Life Extension for the Space Shuttle Rocket Motor Aqueous Cleaning System

    NASA Technical Reports Server (NTRS)

    Saunders, Chad; Evans, Kurt; Sagers, Neil

    1999-01-01

    A spray-in-air aqueous cleaning system, which replaced 1,1,1 trichloroethane (TCA) vapor degreasing, is used for critical cleaning of Space Shuttle Redesigned Solid Rocket Motor (RSRM) metal parts. Small-scale testing demonstrated that the alkaline-based wash solution possesses adequate soil loading and cleaning properties. However, full-scale testing exhibited unexpected depletion of some primary components of the wash solution. Specifically, there was a significant decrease in the concentration of sodium metasilicate which forced change-out of the wash solution after eight days. Extension of wash solution bath life was necessary to ease the burden of frequent change-out on manufacturing. A laboratory study supports a depletion mechanism that is initiated by the hydrolysis of sodium tripolyphosphate (STPP) lowering the pH of the solution. The decrease in pH causes polymerization and subsequent precipitation of sodium metasilicate (SM). Further investigation showed that maintaining the pH was the key to preventing the precipitation of the sodium metasilicate. Implementation to the full scale operation demonstrated that periodic additions of potassium hydroxide (KOH) extended the useful bath life to more than four months.

  18. Efficacy of different washing solutions and contact times on the microbial quality and safety of fresh-cut paprika.

    PubMed

    Das, B Kumar; Kim, Ji Gang; Choi, Ji Weon

    2011-10-01

    The role of different washing solutions and contact times was investigated to determine their use as potential sanitizers for maintaining the microbial quality and food safety of fresh-cut paprika. Samples were cut into small pieces, washed for both 90 and 180 s by different washing solutions: tap water, chlorinated water (100 mg/L and pH 6.5-7), electrolyzed water (pH 7.2) and ozonized water (4 mg/L). Then, samples were packaged in 50 µm polypropylene bags and stored at 5 °C for 12 days, followed by an evaluation of the antimicrobial efficacy of the treatments. Various quality and safety parameters, such as gas composition, color, off-odor, electrical conductivity and microbial numbers, were evaluated during storage. Results revealed insignificant differences in gas composition, and no off-odor was observed in any of the samples during the storage period. However, longer contact time resulted in slightly lower hue angle value than a short one for all washing solutions. Moreover, samples washed with ozone washings showed lower electrolyte leakage than other washing solutions. Samples washed for longer contact time except those washed in ozonized water showed increased microbial numbers during storage. Hence, it has been concluded that longer contact time with ozone has positive effects, whereas the other washing solutions adversely affect the microbial quality and safety aspects of fresh-cut paprika.

  19. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    NASA Astrophysics Data System (ADS)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally

  20. Electrochemical treatment of spent solution after EDTA-based soil washing.

    PubMed

    Voglar, David; Lestan, Domen

    2012-04-15

    The use of EDTA in soil washing technologies to remediate soils contaminated with toxic metals is prohibitive because of the large volumes of waste washing solution generated, which must be treated before disposal. Degradation of EDTA in the waste solution and the removal of Pb, Zn and Cd were investigated using electrochemical advanced oxidation processes (EAOP) with a boron-doped diamond anode (BDDA), graphite and iron anodes and a stainless-steel cathode. In addition to EAOP, the efficiency of electro-Fenton reactions, induced by the addition of H(2)O(2) and the regulation of electrochemical systems to pH 3, was also investigated. Soil extraction with 15 mmol kg(-1) of soil EDTA yielded waste washing solution with 566 ± 1, 152 ± 1 and 5.5 ± 0.1 mg L(-1) of Pb, Zn and Cd, respectively. Treatments of the waste solution in pH unregulated electrochemical systems with a BDDA and graphite anode (current density 67 mA cm(-2)) were the most efficient and removed up to 98 ± 1, 96 ± 1, 99 ± 1% of Pb, Zn and Cd, respectively, by electrodeposition on the cathode and oxidatively degraded up to 99 ± 1% of chelant. In the electrochemical system with an Fe anode operated at pH 3, the chelant remained preserved in the treated solution, while metals were removed by electrodeposition. This separation opens up the possibility of a new EDTA recycling method from waste soil washing solution. PMID:22305659

  1. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  2. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  3. Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil.

    PubMed

    Ferraro, Alberto; van Hullebusch, Eric D; Huguenot, David; Fabbricino, Massimiliano; Esposito, Giovanni

    2015-11-01

    Soil washing is an extensively used process for remediation of heavy metals contaminated soils. However the amount of fresh washing solution to be used represents a significant economical drawback of this process. This paper investigates the application of an electrochemical process (Fe/Fe electrodes couple) for the regeneration of a spent EDDS solution, containing Cu and major competitor cations (Ca, Fe, Mg, and Mn). The effect of current density, pH and conductivity of the washing solution on the recovery process performances was investigated. Current density showed the highest influence on Cu, Mg and Mn removal yields. Maximum removal yields reached 99% for Cu, 77% for Mn and 49% for Mg. No influence of the investigated parameters on Ca removal was observed, while an increase of Fe concentration due to anode dissolution occurred. Characterization of sludge produced from the 2 h electrochemical test (5 mA cm(-2), pH = 8, 8 mS cm(-1)) displayed concentrations of 2.8 g kg(-1) for Ca, 0.4 g kg(-1) for Cu, 535.6 g kg(-1) for Fe, 2.6 g kg(-1) for Mg. TCLP tests at pH 2.88 and 4.93 showed a low leaching percentage (Ca, 10-21%; Cu, 6-12%; Fe, 0.22% Mg, 27-36%). Multi-washing tests were carried out to assess the decrease of the chelating ability of the regenerated washing solution and the Cu extraction efficiency.

  4. Enhanced Inactivation of Salmonella and Pseudomonas Biofilms on Stainless Steel by Use of T-128, a Fresh-Produce Washing Aid, in Chlorinated Wash Solutions

    PubMed Central

    Shen, Cangliang; Luo, Yaguang; Nou, Xiangwu; Bauchan, Gary; Zhou, Bin; Wang, Qin

    2012-01-01

    The effect of the washing aid T-128 (generally recognized as safe [GRAS] formulation, composed mainly of phosphoric acid and propylene glycol) on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel was evaluated under conditions of increasing organic matter loads in chlorinated wash solutions dominated by hypochlorous acid. Biofilms were formed statically on stainless steel coupons suspended in 2% lettuce extract after inoculation with Salmonella enterica serovar Thompson or Newport or with Pseudomonas fluorescens. Coupons with biofilms were washed in chlorine solutions (0, 0.5, 1, 2, 5, 10, or 20 mg/liter at pH 6.5, 5.0 and 2.9), with or without T-128, and with increasing loads of organic matter (0, 0.25, 0.5, 0.75, or 1.0% lettuce extract). Cell populations on coupons were dispersed using intermittent, pulsed ultrasonication and vortexing and enumerated by colony counts on XLT-4 or Pseudomonas agars. Cell responses to fluorescent viability staining of biofilm treatment washing solutions were examined using confocal laser scanning microscopy. Results showed that 0.1% T-128 (without chlorine) reduced P. fluorescens biofilm populations by 2.5 log10 units but did not reduce Salmonella populations. For both Salmonella and Pseudomonas, the sanitizing effect of free chlorine (1.0 to 5.0 mg/liter) was enhanced (P < 0.05) when it was combined with T-128. Application of T-128 decreased the free chlorine depletion rate caused by increasing organic matter in wash waters and significantly (P < 0.05) augmented inactivation of bacteria in biofilms compared to treatments without T-128. Image analysis of surfaces stained with SYTO and propidium iodide corroborate the cultural assay results showing that T-128 can aid in reducing pathogen viability in biofilms and thus can aid in sanitizing stainless steel contact surfaces during processing of fresh-cut produce. PMID:22752180

  5. Effect of number and washing solutions on functional properties of surimi-like material from duck meat.

    PubMed

    Ramadhan, Kurnia; Huda, Nurul; Ahmad, Ruzita

    2014-02-01

    Duck meat is less utilized than other meats in processed products because of limitations of its functional properties, including lower water holding capacity, emulsion stability, and higher cooking loss compared with chicken meat. These limitations could be improved using surimi technology, which consists of washing and concentrating myofibrillar protein. In this study, surimi-like materials were made from duck meat using two or three washings with different solutions (tap water, sodium chloride, sodium bicarbonate, and sodium phosphate buffer). Better improvement of the meat's functional properties was obtained with three washings versus two washings. Washing with tap water achieved the highest gel strength; moderate elevation of water holding capacity, pH, lightness, and whiteness; and left a small amount of fat. Washing with sodium bicarbonate solution generated the highest water holding capacity and pH and high lightness and whiteness values, but it resulted in the lowest gel strength. Processing duck meat into surimi-like material improves its functional properties, thereby making it possible to use duck meat in processed products. PMID:24493882

  6. Formulating essential oil microemulsions as washing solutions for organic fresh produce production.

    PubMed

    Zhang, Linhan; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2014-12-15

    Applications of plant-derived organic essential oils (EOs) as antimicrobials for post-harvest produce operations are limited by their low water solubility. To dissolve EOs in water, microemulsions were studied using two surfactants permitted for organic production, sucrose octanoate ester (SOE) and soy lecithin that were mixed at various mass ratios before dilution with water to 40% w/w. EOs were then mixed with the surfactant solution by hand shaking. Based on visual transparency, intermediate lecithin:SOE mass ratios favoured the formation of microemulsions, e.g., up to 4.0% clove bud oil at ratios of 2:8 and 3:7, and 4.0% cinnamon bark oil and 3.0% thyme oil at ratios of 2:8 and 1:9, respectively. Microemulsions with intermediate lecithin:SOE mass ratios had a relatively low viscosity and better ability to wet fresh produce surfaces. The microemulsions established in this work may be used as washing solutions to enhance the microbial safety of organic fresh produce.

  7. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils.

    PubMed

    Andrade, M D; Prasher, S O; Hendershot, W H

    2007-06-01

    Three experiments were conducted to optimize the use of ethylenediaminetetraacetic acid (EDTA) for reclaiming urban soils contaminated with trace metals. As compared to Na(2)EDTA, (NH(4))(2)EDTA extracted 60% more Zn and equivalent amounts of Cd, Cu and Pb from a sandy loam. When successively saturating and draining loamy sand columns during a washing cycle, which submerged it once with a (NH(4))(2)EDTA wash and four times with deionised water, the post-wash rinses largely contributed to the total cumulative extraction of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Both the washing solution and the deionised water rinses were added in a 2:5 liquid to soil (L:S) weight ratio. For equal amounts of EDTA, concentrating the washing solution and applying it and the ensuing rinses in a smaller 1:5 L:S weight ratio, instead of a 2:5 L:S weight ratio, increased the extraction of targeted Cr, Cu, Ni, Pb and Zn.

  8. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review.

    PubMed

    Trellu, Clément; Mousset, Emmanuel; Pechaud, Yoan; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The release of hydrophobic organoxenobiotics such as polycyclic aromatic hydrocarbons, petroleum hydrocarbons or polychlorobiphenyls results in long-term contamination of soils and groundwaters. This constitutes a common concern as these compounds have high potential toxicological impact. Therefore, the development of cost-effective processes with high pollutant removal efficiency is a major challenge for researchers and soil remediation companies. Soil washing (SW) and soil flushing (SF) processes enhanced by the use of extracting agents (surfactants, biosurfactants, cyclodextrins etc.) are conceivable and efficient approaches. However, this generates high strength effluents containing large amount of extracting agent. For the treatment of these SW/SF solutions, the goal is to remove target pollutants and to recover extracting agents for further SW/SF steps. Heterogeneous photocatalysis, technologies based on Fenton reaction chemistry (including homogeneous photocatalysis such as photo-Fenton), ozonation, electrochemical processes and biological treatments have been investigated. Main advantages and drawbacks as well as target pollutant removal mechanisms are reviewed and compared. Promising integrated treatments, particularly the use of a selective adsorption step of target pollutants and the combination of advanced oxidation processes with biological treatments, are also discussed.

  9. Effect of Nitric Acid ``Washing'' Procedure on Electrochemical Behavior of Carbon Nanotubes and Glassy Carbon μ-Particles

    NASA Astrophysics Data System (ADS)

    Anik, Ülkü; Çevik, Serdar; Pumera, Martin

    2010-05-01

    The electroanalytic performances of glassy carbon paste electrode (GCPE), multi-walled carbon nanotube (MWCNT)-GCPE and double-walled carbon nanotube (DWCNT)-GCPE, which include HNO3 washed/unwashed materials, were compared by monitoring cyclic voltammograms of potassium ferricyanide and catechol. Electrodes were prepared by introducing proper amount of DWCNT and MWCNT into GCPE. First untreated materials (DWCNT, MWCNT, GC μ-particles) were used in the electrodes and then HNO3-treated materials were utilized for comparing difference in electrochemical performances. The effect of treatment procedure was also examined by applying Raman spectroscopy to treated and untreated materials. Moreover, TEM images were obtained for further investigation of MWCNT and DWCNT.

  10. The source of groundwater and solutes to Many Devils Wash at a former uranium mill site in Shiprock, New Mexico

    USGS Publications Warehouse

    Robertson, Andrew J.; Ranalli, Anthony J.; Austin, Stephen A.; Lawlis, Bryan R.

    2016-04-21

    The Shiprock Disposal Site is the location of the former Navajo Mill (Mill), a uranium ore-processing facility, located on a terrace overlooking the San Juan River in the town of Shiprock, New Mexico. Following the closure of the Mill, all tailings and associated materials were encapsulated in a disposal cell built on top of the former Mill and tailings piles. The milling operations, conducted at the site from 1954 to 1968, created radioactive tailings and process-related wastes that are now found in the groundwater. Elevated concentrations of constituents of concern—ammonium, manganese, nitrate, selenium, strontium, sulfate, and uranium—have also been measured in groundwater seeps in the nearby Many Devils Wash arroyo, leading to the inference that these constituents originated from the Mill. These constituents have also been reported in groundwater that is associated with Mancos Shale, the bedrock that underlies the site. The objective of this report is to increase understanding of the source of water and solutes to the groundwater beneath Many Devils Wash and to establish the background concentrations for groundwater that is in contact with the Mancos Shale at the site. This report presents evidence on three working hypotheses: (1) the water and solutes in Many Devils Wash originated from the operations at the former Mill, (2) groundwater in deep aquifers is upwelling under artesian pressure to recharge the shallow groundwater beneath Many Devils Wash, and (3) the groundwater beneath Many Devils Wash originates as precipitation that infiltrates into the shallow aquifer system and discharges to Many Devils Wash in a series of springs on the east side of the wash. The solute concentrations in the shallow groundwater of Many Devils Wash would result from the interaction of the water and the Mancos Shale if the source of water was upwelling from deep aquifers or precipitation.In order to compare the groundwater from various wells to groundwater that has been

  11. Nasal Wash Treatment

    MedlinePlus

    ... Make the nasal wash solution. Do not use tap water for the nasal wash (unless boiled or filtered ... water. You may use: Distilled water Sterilized water Tap water that has been boiled for 1 minute (at ...

  12. Effects of washing produce contaminated with the snail and slug hosts of Angiostrongylus cantonensis with three common household solutions.

    PubMed

    Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H

    2013-06-01

    The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

  13. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges.

  14. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...

  15. The source of groundwater and solutes to Many Devils Wash at a former uranium mill site in Shiprock, New Mexico

    USGS Publications Warehouse

    Robertson, Andrew J.; Ranalli, Anthony J.; Austin, Stephen A.; Lawlis, Bryan R.

    2016-04-21

    The Shiprock Disposal Site is the location of the former Navajo Mill (Mill), a uranium ore-processing facility, located on a terrace overlooking the San Juan River in the town of Shiprock, New Mexico. Following the closure of the Mill, all tailings and associated materials were encapsulated in a disposal cell built on top of the former Mill and tailings piles. The milling operations, conducted at the site from 1954 to 1968, created radioactive tailings and process-related wastes that are now found in the groundwater. Elevated concentrations of constituents of concern—ammonium, manganese, nitrate, selenium, strontium, sulfate, and uranium—have also been measured in groundwater seeps in the nearby Many Devils Wash arroyo, leading to the inference that these constituents originated from the Mill. These constituents have also been reported in groundwater that is associated with Mancos Shale, the bedrock that underlies the site. The objective of this report is to increase understanding of the source of water and solutes to the groundwater beneath Many Devils Wash and to establish the background concentrations for groundwater that is in contact with the Mancos Shale at the site. This report presents evidence on three working hypotheses: (1) the water and solutes in Many Devils Wash originated from the operations at the former Mill, (2) groundwater in deep aquifers is upwelling under artesian pressure to recharge the shallow groundwater beneath Many Devils Wash, and (3) the groundwater beneath Many Devils Wash originates as precipitation that infiltrates into the shallow aquifer system and discharges to Many Devils Wash in a series of springs on the east side of the wash. The solute concentrations in the shallow groundwater of Many Devils Wash would result from the interaction of the water and the Mancos Shale if the source of water was upwelling from deep aquifers or precipitation.In order to compare the groundwater from various wells to groundwater that has been

  16. A soft-solution process for recovering rare metals from metal/alloy-wastes by grinding and washing with water.

    PubMed

    Zhang, Qiwu; Saeki, Shu; Tanaka, Yasumitsu; Kano, Junya; Saito, Fumio

    2007-01-31

    We have developed a novel process for recovering metals from alloy-wastes by using a mechanochemical (MC) reaction. The process consists of co-grinding both alloy and polyvinyl chloride (PVC) samples, followed by washing with water and filtration. The co-grinding of the wastes causes a solid-state MC reaction to form metal chlorides and hydrocarbon in the product. The former products are soluble in water, so they can be recovered from the wastes by washing with water, followed by filtration. The PVC waste plays a significant role as a chlorine source in the MC reaction. After filtration, the solid residue can be used as a fuel, due to the absence of chlorine in the product, and the filtrate is subjected to hydrometallurgical process to extract metals from the solution.

  17. Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes, Phase 2

    SciTech Connect

    Withers, C.; Kono, J.

    2015-04-01

    This report provides results from a second-phase research study of a phenomenon generally referred to as wind washing. Wind washing is the movement of unconditioned air around or through building thermal barriers in such a way as to diminish or nullify the intended thermal performance. In some cases, thermal and air barriers are installed very poorly or not at all, and air can readily move from unconditioned attic spaces into quasi-conditioned interstitial spaces. This study focused on the impact of poorly sealed and insulated floor cavities adjacent to attic spaces in Florida homes. In these cases, unconditioned attic air can be transferred into floor cavities through pathways driven by natural factors such as wind, or by thermal differences between the floor cavity and the attic. Air can also be driven into a floor cavity through mechanical forces imposed by return duct leakage in the floor cavity.

  18. Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing.

    PubMed

    Radwan, M A; Abu-Elamayem, M M; Shiboob, M H; Abdel-Aal, A

    2005-04-01

    Profenofos (Selecron 72% EC), was sprayed on field-grown pepper and eggplant at the recommended rate of 1.28 kg a,i/ha. Fruit samples were collected at 1 h to 14 days after application and analysed to determine the content and dissipation rate of profenofos. The effect of different washing solutions and some household processing on the removal of such residues from treated vegetables were also investigated. Profenofos residues were quantified by using gas chromatography. The results showed that the consumable safety time were found to be 10 days on sweet pepper and 14 days on hot pepper and eggplant fruits. The initial disappearance of profenofos appeared to follow first order kinetics with different rates of reaction of 0.38, 0.40 and 0.35 day(-1) for hot pepper, sweet pepper and eggplant, respectively. The corresponding half-lives (t1/2) were 1.84, 1.74 and 1.96 days. Also, the results indicated that tap water, potassium permenganate and acetic acid solution gave high percent removal of profenofos residues from hot and sweet pepper fruits, while no detectable residues was found in eggplant fruit after washing with soap and acetic acid solutions. In general, all tested washing solutions gave higher percent removal of profenofos residues from eggplant fruit than the two other pepper fruits. Blanching and frying of pepper and eggplant fruits resulted in great reduction to almost completely removed (approximately 100%) of the deposited profenofos. In addition, pickling process removed 92.58 and 95.61% from hot pepper fruit after one week and after two weeks, respectively. PMID:15721202

  19. Technology Solutions Case Study: Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes: Phase 2, Southeastern United States

    SciTech Connect

    2015-05-01

    In many two-story homes, there are attic spaces above the first-floor of the home that border portions of the second-story conditioned space. These spaces have breaches of the air and thermal boundaries, creating a phenomenon known as wind washing. This can cause attic air above the first-floor space to be driven into the cavity between the first and second floors by wind, thermal buoyancy forces, or mechanical driving forces as well as circulation of hot attic air against the wallboard because of gaps between insulation batts installed on knee walls and the gypsum wallboard. In this project, the U.S. Department of Energy team Building America Partnership for Improved Residential Construction (BA-PIRC) investigated wind washing in 56 homes. The goals were to identify the failure mechanisms that lead to wind washing, characterize the pathways for air and heat to enter the house, and evaluate the seasonal energy savings and peak demand reduction that can result from repairing these wind washing problems. Based on this research, the team developed recommendations for cost-effective retrofit solutions and information that can help avoid these problems in new construction.

  20. Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes, Phase 2

    SciTech Connect

    Withers, Charles R.; Kono, Jamie

    2015-04-13

    With U.S. Department of Energy goals of reducing existing home energy use by 30% and new home energy use by 50%, it is imperative to focus on several energy efficiency measures, including the quality of air and thermal barriers. This report provides results from a second-phase research study of a phenomenon generally referred to as wind washing. Wind washing is the movement of unconditioned air around or through building thermal barriers in such a way as to diminish or nullify the intended thermal performance. In some cases, thermal and air barriers are installed very poorly or not at all, and air can readily move from unconditioned attic spaces into quasi-conditioned interstitial spaces. This study focused on the impact of poorly sealed and insulated floor cavities adjacent to attic spaces in Florida homes. In these cases, unconditioned attic air can be transferred into floor cavities through pathways driven by natural factors such as wind, or by thermal differences between the floor cavity and the attic. Air can also be driven into a floor cavity through mechanical forces imposed by return duct leakage in the floor cavity.

  1. Fresh produce washing aid, T-128, enhances inactivation of Salmonella and pseudomonas biofilms on stainless steel coupons in chlorinated wash solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Bacterial biofilms on food processing equipment can protect pathogens against sanitizers. When chlorine is rapidly depleted by organic materials present in process wash water, inactivation of biofilm pathogens is further challenging. Purpose: This study was conducted to evaluate the e...

  2. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity.

  3. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    PubMed

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  4. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    PubMed

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  5. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    PubMed Central

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  6. Natural laccase mediators separated from water-washed solution of steam exploded corn straw by nanofiltration and organic solvent fractionation.

    PubMed

    Qiu, Weihua; Zhang, Wenyan; Chen, Hongzhang

    2014-03-01

    Artificially synthetic mediators of laccase had the limitation of high cost and possible toxicity. The separation of natural laccase mediators from water-washed solution (WWS) of steam exploded corn straw (SECS) was studied using nano-filtration and successive organic solvents extraction. Results indicated that the UV absorption intensity of nano-filtrated WWS was significantly enhanced. The UV absorption intensity of each extractive from WWS could be ranked as ether extractive (EE)>ethyl acetate extractive (EAE)>chloroform extractive (CE). Decoloration of crystal violet catalyzed by laccase/EE was higher than that by laccase/ABTS, which was 66.95% and 61.9% at 8h, respectively. All the decoloration rates of malachite green at 60min using EE, EAE and ABTS as mediator were both more than 80%. This research would benefit for broaden the source of laccase mediator and reduce the using cost of laccase/mediator system.

  7. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of lauric acid (LA)-potassium hydroxide (KOH) solutions to reduce carcass bacterial contamination was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Campylobacter coli. In one trial, in...

  8. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS.

    PubMed

    Yang, Kun; Zhu, Lizhong; Xing, Baoshan

    2006-07-01

    Increased desorption of hydrophobic organic compounds (HOCs) from soils and sediments is a key to the remediation of contaminated soils and groundwater. In this study, phenanthrene desorption from a contaminated soil by mixed solutions of a nonionic surfactant(octylphenol polyethoxylate, TX100) and an anionic surfactant (sodium dodecylbenzenesulfonate, SDBS) was investigated. Phenanthrene desorption depended on not only aqueous surfactant concentrations and phenanthrene solubility enhancement but also the soil-sorbed surfactant amount and the corresponding sorption capacity of sorbed surfactants. The added surfactant critical desorption concentrations (CDCs) for phenanthrene from soil depended on both sorbed concentrations of surfactants and their critical micelle concentrations (CMCs). Phenanthrene desorption by mixed solutions was more efficient than individual surfactants due to the low sorption loss of mixed surfactants to soil. Among the tested surfactant systems, mixed TX100 and SDBS with a 1:9 mass ratio exhibited the highest phenanthrene desorption. Mixed micelle formation, showing negative deviation of CMCs from the ones predicted by the ideal mixing theory, was primarily responsible for the significant reduction of soil-sorbed amounts of TX100 and SDBS in their mixed systems. Therefore, mixed anionic-nonionic surfactants had great potential in the area of enhanced soil and groundwater remediation.

  9. Washing of gloved hands in antiseptic solution prior to central venous line insertion reduces contamination.

    PubMed

    Kocent, H; Corke, C; Alajeel, A; Graves, S

    2002-06-01

    Glove contamination at the time a central venous catheter is handled is highly undesirable and likely to increase the risk of subsequent line infection. This study was designed to determine how frequently gloves become contaminated during central venous line insertion and to demonstrate the value of glove decontamination immediately prior to handling of the central venous catheter During twenty routine internal jugular catheter insertions the sterility of the operator's gloved fingertips (just prior to handling the intravenous catheter) was assessed by touching the fingertips onto blood agar plates. The gloved hands were then rinsed in chlorhexidine/alcohol and after drying were placed onto a further plate. Contamination was detected in 55% of the prewash plates but in none of the postwash plates. Procedures performed by less experienced resident staff had a higher contamination rate despite there being no evident breach of sterile technique. It is likely that glove contamination results from the persistance of bacteria within the deeper layers of the skin, despite surface disinfection. These bacteria may be released by manipulation of the skin when identifying landmarks. This hypothesis was supported by a subsequent observation that gloves were more highly contaminated after firm touching of the skin rather than light touching. Glove contamination during central line insertion is frequent. Catheter contamination rates could be reduced (without risk or additional cost) by rinsing gloved hands in a solution of chlorhexidine (0.5%) in alcohol (70%) prior to handling the catheter.

  10. Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution.

    PubMed

    Hasegawa, Hiroshi; Rahman, Ismail M M; Nakano, Masayoshi; Begum, Zinnat A; Egawa, Yuji; Maki, Teruya; Furusho, Yoshiaki; Mizutani, Satoshi

    2011-10-15

    Aminopolycarboxylate chelants (APCs) are extremely useful for a variety of industrial applications, including the treatment of toxic metal-contaminated solid waste materials. Because non-toxic matrix elements compete with toxic metals for the binding sites of APCs, an excess of chelant is commonly added to ensure the adequate sequestration of toxic metal contaminants during waste treatment operations. The major environmental impacts of APCs are related to their ability to solubilize toxic heavy metals. If APCs are not sufficiently eliminated from the effluent, the aqueous transport of metals can occur through the introduction of APCs into the natural environment, increasing the magnitude of associated toxicity. Although several techniques that focus primarily on the degradation of APCs at the pre-release step have been proposed, methods that recycle not only the processed water, but also provide the option to recover and reuse the metals, might be economically feasible, considering the high costs involved due to the chelants used in metal ion sequestration. In this paper, we propose a separation process for the recovery of metals from effluents that contain an excess of APCs. Additionally, the option of recycling the processed water using a solid phase extraction (SPE) system with an ion-selective immobilized macrocyclic material, commonly known as a molecular recognition technology (MRT) gel, is presented. Simulated effluents containing As(V), Cd(II), Cr(III), Pb(II) or Se(IV) in the presence of APCs at molar ratios of 1:50 in H2O were studied with a flow rate of 0.2 mL min(-1). The 'captured' ions in the SPE system were quantitatively eluted with HNO3. The effects of solution pH, metal-chelant stability constants and matrix elements were assessed. Better separation performance for the metals was achieved with the MRT-SPE compared to other SPE materials. Our proposed technique offers the advantage of a non-destructive separation of both metal ions and chelants

  11. Hand Washing

    MedlinePlus

    ... dirty little secrets: Students don't wash their hands often or well. In one study, only 58% of female and 48% of male middle- and high-school students washed their hands after using the bathroom. Yuck! previous continue How ...

  12. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOEpatents

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  13. [Photodegradation of paracetamol in carbonate solution].

    PubMed

    Gao, Ying; Yang, Xi; Liu, Yu

    2008-03-01

    The photodegradation of paracetamol in the solution of carbonate with comparably environmental concentration was studied through kinetics method. Experiments were carried out to compare the different photodegradation effects of paracetamol in the solution of carbonate radical and hydroxyl radical. The effects of such factors, pH, nitrate, humic matters, chloride sodium, calcium and magnesium were also analyzed. The products of the photodegradation were identified with GC/MS, and the degradation mechanism of paracetamol was discussed. The results indicate that, the scondary reaction rate constant (k(a)) between paracetamol and carbonate radical is 5.0 x 10(7) L (mol s)(-1), which is lower than that with hydroxyl radical [k(b) = 8.1 x 10(9) L (mol s)(-1)]. But in natural aqueous system, the stable concentration of carbonate radical is much higher than that of hydroxyl. Therefore, the effect of carbonate radical on paracetamol approximately equals to that of hydroxyl radical. The degradation rate of paracetamol increases when the system was changed with higher pH, adding of nitrate, chloride sodium, calcium and magnesium which increase the rigidity of the water, while decreases when the SRFA is present. PMID:18649521

  14. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    PubMed

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  15. Aqueous solution dispersement of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  16. Hand washing.

    PubMed

    2016-07-01

    A surgery matron has writt en a hand hygiene promotional video rap to encourage staff, patients and visitors to wash their hands. Vicky Cartwright from University Hospitals of Leicester NHS Trust rewrote the lyrics to 1990s hit rap, Ice Ice Baby.

  17. Hand washing.

    PubMed

    2016-07-01

    A surgery matron has writt en a hand hygiene promotional video rap to encourage staff, patients and visitors to wash their hands. Vicky Cartwright from University Hospitals of Leicester NHS Trust rewrote the lyrics to 1990s hit rap, Ice Ice Baby. PMID:27380706

  18. Part 2. Comparison of emergency washing solutions in 70% hydrofluoric acid-burned human skin in an established ex vivo explants model

    PubMed Central

    Burgher, François; Mathieu, Laurence; Lati, Elian; Gasser, Philippe; Peno-Mazzarino, Laurent; Blomet, Joël; Hall, Alan H; Maibach, Howard I

    2011-01-01

    Background: Hydrofluoric acid (HF) is a small and partially dissociated acid (pKa 3.2), able to deeply penetrate into human skin in addition to the corrosiveness of the hydrogen ion (H+) and the toxicity of the fluoride ion (F-). However, there has been a lack of experimental studies to objectively characterize the results of human HF skin exposure decontamination. Methodology/principal findings: A previously established experimental method using a human skin explants ex vivo model (Part 1. Experimental 70% hydrofluoric acid (HF) burns: Histological observations in an established human skin explants ex vivo model) described the lesions that appeared following 70% HF penetration. Within 5min, 70% HF penetrates to the dermis. Using the same experimental conditions, a comparison study of two different washing protocols was performed: water + topical calcium gluconate (CaG) versus Hexafluorine®. In these conditions, washing for 15min with running tap water followed by topical CaG ointment only delayed burn onset, while severe tissue damage appeared later. In contrast, after washing with Hexafluorine® over 10 min, no histological lesions developed. These results are in accordance with the results of accidental human industrial case reports. Conclusion/significance: Amphoteric and hypertonic Hexafluorine® can deactivate H+ and chelate F- ions. Based on these results, it should be considered as a promising first-aid decontamination solution to prevent or minimize significant local and systemic consequences of concentrated HF skin exposures. PMID:21083510

  19. Washing off intensification of cotton and wool fabrics by ultrasounds.

    PubMed

    Peila, R; Actis Grande, G; Giansetti, M; Rehman, S; Sicardi, S; Rovero, G

    2015-03-01

    Wet textile washing processes were set up for wool and cotton fabrics to evaluate the potential of ultrasound transducers (US) in improving dirt removal. The samples were contaminated with an emulsion of carbon soot in vegetable oil and aged for three hours in fan oven. Before washing, the fabrics were soaked for 3 min in a standard detergent solution and subsequently washed in a water bath. The dirt removal was evaluated through colorimetric measurements. The total color differences ΔE of the samples were measured with respect to an uncontaminated fabric, before and after each washing cycle. The percentage of ΔE variation obtained was calculated and correlated to the dirt removal. The results showed that the US transducers enhanced the dirt removal and temperature was the parameter most influencing the US efficiency on the cleaning process. Better results were obtained at a lower process temperature.

  20. Biodiesel production by two-stage transesterification with ethanol by washing with neutral water and water saturated with carbon dioxide.

    PubMed

    Mendow, G; Veizaga, N S; Sánchez, B S; Querini, C A

    2012-08-01

    Industrial production of ethyl esters is impeded by difficulties in purifying the product due to high amounts of soap formed during transesterification. A simple biodiesel wash process was developed that allows successful purification of samples containing high amounts of soap. The key step was a first washing with neutral water, which removed the soaps without increasing the acidity or affecting the process yield. Afterward, the biodiesel was washed with water saturated with CO(2), a mild acid that neutralized the remaining soaps and extracted impurities. The acidity, free-glycerine, methanol and soaps concentrations were reduced to very low levels with high efficiency, and using non-corrosive acids. Independently of the initial acidity, it was possible to obtain biodiesel within EN14214 specifications. The process included the recovery of soaps by hydrolysis and esterification, making it possible to obtain the theoretical maximum amount of biodiesel.

  1. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing.

    PubMed

    Wang, Lei; Jamro, Imtiaz Ali; Chen, Qi; Li, Shaobai; Luan, Jingde; Yang, Tianhua

    2016-03-01

    The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e., 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350 °C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents. PMID:26644396

  2. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    DOE PAGESBeta

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  3. The Comparative Photodegradation Activities of Pentachlorophenol (PCP) and Polychlorinated Biphenyls (PCBs) Using UV Alone and TiO2-Derived Photocatalysts in Methanol Soil Washing Solution

    PubMed Central

    Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing

    2014-01-01

    Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664

  4. Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur

    SciTech Connect

    Diemer, P.; Brake, W.; Dittmer, R.

    1985-04-16

    A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

  5. Picosecond Pulse Radiolysis of Highly Concentrated Carbonate Solutions.

    PubMed

    Ghalei, Mohammad; Ma, Jun; Schmidhammer, Uli; Vandenborre, Johan; Fattahi, Massoud; Mostafavi, Mehran

    2016-03-10

    Highly concentrated potassium carbonate aqueous solutions are studied by picosecond pulse radiolysis with the purpose of exploring the formation processes of carbonate radical CO3(•-). The transient absorption band of solvated electron produced by ionizing is markedly shifted from 715 to 600 nm when the solute concentration of K2CO3 is 5 mol L(-1). This spectral shift is even more important than that observed for the solvated electron in 10 mol L(-1) KOH solutions. The broad absorption band of solvated electron in K2CO3 solutions overlaps with that of carbonate radical CO3(•-) formed at ultrashort time. Nitrate ion is used to scavenge the solvated electron and to observe the contribution of carbonate radical CO3(•-). The analysis of the amplitude and the kinetics of carbonate radical formation in highly concentrated solutions shows that CO3(•-) is formed within the electron pulse (7 ps) by two parallel mechanisms: a direct effect on the solute and the oxidation of the solute by water radical hole H2O(•+). These two mechanisms are followed by an additional one, by reaction between the solute and OH(•) radical especially in lower concentration. The radiolytic yield of each process is discussed. PMID:26885876

  6. Dissolution of Spent Nuclear Fuel in Carbonate-Peroxide Solution

    SciTech Connect

    Soderquist, Chuck Z.; Hanson, Brady D.

    2010-01-31

    This study shows that spent UO2 fuel can be completely dissolved in a carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. Samples of spent nuclear fuel were pulverized and sieved to a uniform size, then duplicate aliquots were weighed into beakers for analysis. One set was dissolved in near-boiling 10M nitric acid, and the other set was dissolved in a solution of ammonium carbonate and hydrogen peroxide at room temperature. All the resulting fuel solutions were then analyzed for Sr-90, Tc-99, Cs-137, plutonium, and Am-241. For all the samples, the concentrations of Cs-137, Sr-90, plutonium, and Am-241 were the same for both the nitric acid dissolution and the ammonium carbonate-hydrogen peroxide dissolution, but the technetium concentration of the ammonium carbonate-hydrogen peroxide fuel solution was only about 25% of the same fuels dissolved in hot nitric acid.

  7. Redox reactions of actinides in carbonate and alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shilov, Vladimir P.; Yusov, Aleksander B.

    2002-06-01

    Data on redox reactions involving uranium, neptunium, plutonium and americium ions in carbonate and alkaline solutions are generalised. The results of kinetic studies of these reactions are analysed and their mechanisms are discussed. The bibliography includes 169 references.

  8. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution.

    PubMed

    Finzgar, Neza; Lestan, Domen

    2008-11-01

    The feasibility of a novel two-phase method for remediation of Pb (1374 mg kg(-1)), Zn (1007 mg kg(-1)), and Cd (9.1 mg kg(-1)) contaminated soil was evaluated. In the first phase we used EDTA for leaching heavy metals from the soil. In the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of washing solution for soil rinsing (removal of the soil-retained, chelant-mobilized metallic species). In EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (15 mA cm(-2)). The released metals were removed from the solution by filtration as insoluble participate and by electro-deposition on the cathode. Four consecutive additions of 5.0 mm ol kg(-1) EDTA (total 20 mmol kg(-1)) removed 44% Pb, 14% Zn and 35% Cd from the soil. The mobility of the Pb, Zn and Cd (Toxicity Characteristic Leaching Procedure) left in the soil after remediation was reduced by 1.6, 3.4 and 1.5 times, respectively. The Pb oral availability (Physiologically Based Extraction Test) in the simulated stomach phase was reduced by 2.4 and in the intestinal phase by 1.7 times. The discharge solution was clear, almost colorless, with pH 7.73 and 0.47 mg L(-1) Pb, 1.03 mg L(-1) Zn, bellow the limits of quantification of Cd and 0.023 mM EDTA. The novel method enables soil leaching with small water requirements and no wastewater generation or other emissions into the environment. PMID:18762318

  9. Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers.

    PubMed

    Schaden, S; Haberkorn, M; Frank, J; Baena, J R; Lendl, B

    2004-06-01

    A method for the direct determination of carbon dioxide in aqueous solutions using a room-temperature mid-infrared (MIR) quantum cascade laser at 2330 cm(-1) is reported. The absorption values of different carbon dioxide concentrations were measured in a 119 microm CaF2 flow-through cell. An optical system made of parabolic mirrors was used to probe the flow cell and to focus the laser beam on the mercury cadmium telluride (MCT) detector. Aqueous carbon dioxide standards were prepared by feeding different mixtures of gaseous N2 and CO2 through wash bottles at controlled temperature. The concentration of the dissolved CO2 was calculated according to Henry's law, taking into account the temperature and the partial pressure of CO2. The carbon dioxide standards were connected via a selection valve to a peristaltic pump for subsequent, automated measurement in the flow-through cell. A calibration curve was obtained in the range of 0.338 to 1.350 g/L CO2 with a standard deviation of the method sxo equal to 19.4 mg/L CO2. The limit of detection was calculated as three times the baseline noise over time and was determined to be 39 mg/L.

  10. Proper hand washing (image)

    MedlinePlus

    ... for proper hand washing include: Take off any jewelry. Hold your hands pointing down under warm water ... for proper hand washing include: Take off any jewelry. Hold your hands pointing down under warm water ...

  11. Phase transition of carbonate solvent mixture solutions at low temperatures

    NASA Astrophysics Data System (ADS)

    Okumura, Takefumi; Horiba, Tatsuo

    2016-01-01

    The phase transition of carbonate solvent mixture solutions consisting of ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and LiPF6 salt have been studied for improving the low temperature performance of lithium-ion batteries. The Li ion conductivity at 25 °C was maximum at x = 0.3 in a series of 1 M LiPF6 mixed carbonate solvents compositions consisting of ECxDMC0.5-0.5xEMC0.5-0.5x (x = 0 to 0.6), while the maximum tended to shift to x = 0.2 as the temperature lowered. The differential scanning calorimetry results showed that the freezing temperature depressions of EC in the 1 M LiPF6 solution were larger than those of the DMC or EMC. The chemical shift of 7Li nuclear magnetic resonance changed from a constant to increasing at around x = 0.3, which could be reasonably understood by focusing on the change in solvation energy calculated using Born equation. However, in the region of a high EC concentration of over x = 0.3 (EC/LiPF6 > 4) in the 1 M LiPF6 solution, the free EC from the solvation to the lithium ions seems to reduce the freezing temperature depression of the EC, and thus, decreases the ionic conductivity of the solution at low temperatures, due to the EC freezing.

  12. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  13. Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution

    NASA Astrophysics Data System (ADS)

    Jiao, Caina; Wang, Yanen; Li, Menghua; Wu, Qiuhua; Wang, Chun; Wang, Zhi

    2016-06-01

    In this paper, a magnetic nanoporous carbon (Fe3O4/NPC) was successfully synthesized by using MOF-5 as carbon precursor and Fe salt as magnetic precursor. The texture properties of the as-synthesized nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N2 adsorption-desorption isotherms. The Fe3O4/NPC had a high surface area with strong magnetic strength. Its adsorption behavior was tested by its adsorption capacity for the removal of methylene blue from aqueous solution. The results demonstrated that the Fe3O4/NPC had a high adsorption capacity, rapid adsorption rate, and easy magnetic separabilty. Moreover, the adsorbent could be easily regenerated by washing it with ethanol. The Fe3O4/NPC can be used as a good alternative for the effective removal of organic dyes from wastewater.

  14. Viability and functional integrity of washed platelets

    SciTech Connect

    Pineda, A.A.; Zylstra, V.W.; Clare, D.E.; Dewanjee, M.K.; Forstrom, L.A.

    1989-07-01

    The viability and functional integrity of saline- and ACD-saline-washed platelets were compared with those of unwashed platelets. After template bleeding time (TBT) was measured, 15 healthy volunteers underwent plateletpheresis and ingested 600 mg of aspirin. Autologous /sup 111/In-labeled platelets were transfused: unwashed (n = 5), washed with 0.9 percent saline solution (SS) (n = 5), and washed with a buffered 12.6 percent solution of ACD-A in 0.9 percent saline solution (n = 5). After transfusion, we measured TBT at 1, 4, and 24 hours; platelet survival at 10 minutes and 1, 4, and 24 hours and daily for 6 days; and the percentage of uptake in liver and spleen by quantitative whole-body radionuclide scintigraphy at 24 and 190 hours. We found that saline washing affected platelet recovery, 23.47 +/- 12 percent (p less than 0.001) as compared to 52.43 +/- 17 percent (p less than 0.002) for ACD-saline and 73.17 +/- 8 percent for control; that saline washing resulted in a greater liver uptake than control and ACD-saline-washed platelets (31.9 +/- 8% (p less than 0.001) vs 17.7 +/- 4.1 and 19.3 +/- 2.1% (p greater than 0.1), respectively); that, unlike control and ACD-saline-washed platelets, saline-washed platelets did not shorten bleeding time; and that neither type of washing affected survival. Although ACD-saline washing affects recovery, it also results in intact function, normal survival, higher recovery than SS platelets, and no significant liver uptake.

  15. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology.

    PubMed

    Ghaedi, Mehrorang; Nasiri Kokhdan, Syamak

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  16. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang; Kokhdan, Syamak Nasiri

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  17. The surface chemistry of lithium electrodes in alkyl carbonate solutions

    SciTech Connect

    Aurbach, D.; Ein-Ely, Y.; Zaban, A.

    1994-01-01

    The chemical composition of the surface films formed on lithium in alkyl carbonate solutions was explored using surface sensitive Fourier transform infrared spectroscopy (external reflectance mode). The solvents included propylene carbonate, ethylene carbonate, and dimethyl carbonate. The salts included LiAsF{sub 6}, LiClO{sub 4}, LiBF{sub 4}, and LiPF{sub 6}. The advantages of this work over previous studies are that highly reflective Li surfaces were prepared fresh in solution and that the aging processes of the surface films initially formed could be rigorously investigated. Furthermore these three important solvents were investigated in a single study. This work further proves that the films initially formed on Li surfaces in these solvents consist of ROCO{sub 2}Li as the major constituents. Upon storage, the films initially formed react with trace water to form Li{sub 2}CO{sub 3}, which gradually also becomes a major surface species. It was found that these aging processes also depend on the salts used (for example ROCO{sub 2}Li or Li{sub 2}CO{sub 3} films are not stable in LiPF{sub 6} or LiBF{sub 4} solutions).

  18. Simultaneous leaching and carbon sequestration in constrained aqueous solutions.

    PubMed

    Moon, Ji-Won; Cho, Kyu-Seong; Moberly, James G; Roh, Yul; Phelps, Tommy J

    2011-12-01

    The behavior of metal ions' leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.

  19. Simultaneous leaching and carbon sequestration in constrained aqueous solutions

    SciTech Connect

    Phelps, Tommy Joe; Moon, Ji Won; Roh, Yul; Cho, Kyu Seong

    2011-01-01

    The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.

  20. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  1. Development assessment of wash water reclamation

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1976-01-01

    An analytical study assessment of state-of-the-art wash water reclamation technology is presented. It covers all non-phase-change unit operations, unit processes and subsystems currently under development by NASA. Each approach to wash water reclamation is described in detail. Performance data are given together with the projected weights and sizes of key components and subsystems. It is concluded that a simple multifiltration subsystem composed of surface-type cartridge filters, carbon adsorption and ion exchange resins is the most attractive approach for spacecraft wash water reclamation in earth orbital missions of up to 10 years in duration.

  2. Sorption of cobalt on activated carbons from aqueous solutions

    SciTech Connect

    Paajanen, A.; Lehto, J.; Santapakka, T.; Morneau, J.P.

    1997-01-01

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  3. Inhibition Of Washed Sludge With Sodium Nitrite

    SciTech Connect

    Congdon, J. W.; Lozier, J. S.

    2012-09-25

    This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.

  4. Insights into non-Fickian solute transport in carbonates

    PubMed Central

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J

    2013-01-01

    [1] We study and explain the origin of early breakthrough and long tailing plume behavior by simulating solute transport through 3-D X-ray images of six different carbonate rock samples, representing geological media with a high degree of pore-scale complexity. A Stokes solver is employed to compute the flow field, and the particles are then transported along streamlines to represent advection, while the random walk method is used to model diffusion. We compute the propagators (concentration versus displacement) for a range of Peclet numbers (Pe) and relate it to the velocity distribution obtained directly on the images. There is a very wide distribution of velocity that quantifies the impact of pore structure on transport. In samples with a relatively narrow spread of velocities, transport is characterized by a small immobile concentration peak, representing essentially stagnant portions of the pore space, and a dominant secondary peak of mobile solute moving at approximately the average flow speed. On the other hand, in carbonates with a wider velocity distribution, there is a significant immobile peak concentration and an elongated tail of moving fluid. An increase in Pe, decreasing the relative impact of diffusion, leads to the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous transport. The implications for modeling field-scale transport are discussed. Citation: Bijeljic, B., P. Mostaghimi, and M. J. Blunt (2013), Insights into non-Fickian solute transport in carbonates, Water Resour. Res., 49, 2714–2728, doi:10.1002/wrcr.20238. PMID:24223444

  5. Soil washing enhancement with solid sorbents

    SciTech Connect

    El-Shoubary, Y.M.; Woodmansee, D.E.

    1996-12-31

    Soil washing is a dynamic, physical process that remediates contaminated soil through two mechanisms: particle size separation and transfer of the contaminant into the (mostly) liquid stream. The performance of different sorbents and additives to remove motor oil from sea sand was tested. Hydrocyclone, attrition scrubber, and froth flotation equipment were used for the decontamination study. Sorbents and additives were mixed with soils in the attrition scrubber prior to flotation. Sorbents used were granular activated carbon, powder activated carbon, and rubber tires. Chemical additives used were calcium hydroxide, sodium carbonate, Alconox{reg_sign}, Triton{reg_sign} X-100 and Triton{reg_sign} X-114. When a froth flotation run was performed using no additive, washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). However, when carbon or rubber (6% by weight) was added to the contaminated soils the washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). The addition of sodium carbonate or calcium hydroxide (6% by weight) had same effects as sorbents. In both cases washed soil {open_quotes}tails{close_quotes} contained total oil and grease of less than 1000 ppm. The use of these non-hazardous additives or sorbent can enhance the soil washing process and consequently saves on time (residence time in equipment design) required to achieve the target clean up levels. 18 refs., 12 figs.

  6. 3. VIEW LOOKING NORTH AT CHINA WASH FLUME SHOWING WASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH AT CHINA WASH FLUME SHOWING WASH - San Carlos Irrigation Project, China Wash Flume, Main (Florence-Case Grande) Canal at Station 137+00, T4S, R10E, S14, Coolidge, Pinal County, AZ

  7. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  8. Fluidic delivery of homogeneous solutions through carbon tube bundles

    NASA Astrophysics Data System (ADS)

    Srikar, R.; Yarin, A. L.; Megaridis, C. M.

    2009-07-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (~1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 µm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  9. carbonate solid solution at high pressures up to 55 GPa

    NASA Astrophysics Data System (ADS)

    Spivak, Anna; Solopova, Natalia; Cerantola, Valerio; Bykova, Elena; Zakharchenko, Egor; Dubrovinsky, Leonid; Litvin, Yuriy

    2014-09-01

    Magnesite, siderite and ferromagnesites Mg1- x Fe x CO3 ( x = 0.05, 0.09, 0.2, 0.4) were characterized using in situ Raman spectroscopy at high pressures up to 55 GPa. For the Mg-Fe-carbonates, the Raman peak positions of six modes (T, L, ν4, ν1, ν3 and 2ν2) in the dependence of iron content in the carbonates at ambient conditions are presented. High-pressure Raman spectroscopy shows that siderite undergoes a spin transition at ~40 GPa. The examination of the solid solutions with compositions Mg0.6Fe0.4CO3, Mg0.8Fe0.2CO3, Mg0.91Fe0.09CO3 and Mg0.95Fe0.05CO3 indicates that with increase in the amount of the Fe spin transition pressure increases up to ~45 GPa.

  10. TANK 7 CHARACTERIZATION AND WASHING STUDIES

    SciTech Connect

    Lambert, D.; Pareizs, J.; Click, D.

    2010-02-04

    and cations remaining, with the exception of sodium and oxalate, for which the percentages were 2.8% and 10.8% respectively. The post-wash sodium concentration was 9.25 wt% slurry total solids basis and 0.15 M supernate. (5) The settling rate of slurry was very fast allowing the completion of one decant/wash cycle each day. (6) The measured yield stress of as-received (6.42 wt% undissolved solids) and post-wash (7.77 wt% undissolved solids) slurry was <1 Pa. For rapidly settling slurries, it can be hard to measure the yield stress of the slurry so this result may be closer to the supernate result than the slurry. The recommended strategy for developing the oxalate target for sludge preparation for Sludge Batch 7 includes the following steps: (1) CPC simulant testing to determine the percent oxalate destruction and acid mix needed to produce a predicted redox of approximately 0.2 Fe{sup +2}/{Sigma}Fe in a SME product while meeting all DWPF processing constraints. (2) Perform a DWPF melter flammability assessment to ensure that the additional carbon in the oxalate together with other carbon sources will not lead to a flammability issue. (3) Perform a DWPF glass paper assessment to ensure the glass produced will meet all DWPF glass limits due to the sodium concentration in the sludge batch. The testing would need to be repeated if a significant CPC processing change, such as an alternative reductant to formic acid, is implemented.

  11. Dispersion of denatured carbon nanotubes by using a dimethylformamide solution

    NASA Astrophysics Data System (ADS)

    Thuy Nguyen, Thi; Uan Nguyen, Sy; Tam Phuong, Dinh; Chien Nguyen, Duc; Mai, Anh Tuan

    2011-09-01

    The dispersion of carbon nanotubes (CNTs) in liquid plays an important role in fundamental research and applied science. The most common technique applied to disperse CNTs is ultrasonication. The surfactants used for CNT dispersion are ethanol, sodium dodecyl benzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DATB), sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS). This paper presents the dispersion of denatured CNTs by using a dimethylformamide (DMF) solution. The DMF is adsorbed on the surface of the nanotubes by a hydrophobic or π–π interaction. Ultrasonication helps DMF debundle the nanotubes by Coulombic or hydrophilic interaction, allowing the Van der Waals forces among the individual nanotubes to be overcome. UV–Vis spectra of dispersed CNTs in solution showed a maximum at 260 nm and decreased from UV to near IR. The vibration properties of the carbon samples were characterized with Raman spectroscopy, which illustrated the D and G bands of denatured CNTs at 1354 and 1581 cm‑1, respectively, different from the values of 1352 cm‑1 and 1580 cm‑1, respectively, for undenatured CNTs. Finally, the interaction between surfactants and nanotubes was studied by Fourier transform infrared spectroscopy (FTIR).

  12. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    PubMed

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively.

  13. Removal of Uranium From Aqueous Solution by Carbon Nanotubes.

    PubMed

    Yu, Jing; Wang, Jianlong

    2016-10-01

    The adsorption of uranium onto carbon nanotubes (CNTs) was investigated. The effect of solution pH, contact time, initial uranium concentration, and temperature on the adsorption capacity of uranium was determined. CNTs were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder x-ray diffraction (XRD), Raman spectra, and the Fourier infrared spectra (FTIR). The diameters of the CNTs varied from 10 to 50 nm in diameter and 1 ~ 2 μm in length. FTIR spectra analysis indicated that carboxyl groups were involved in adsorption of U(VI) by CNTs. The experimental results showed that U(VI) adsorption onto CNTs reached equilibrium within 10 min, and the removal efficiency was 95% at pH = 5. The adsorption kinetics of U(VI) could be described by a pseudo first-order kinetic model. The adsorption isotherm conformed to the Slips model. The adsorption process was spontaneous and endothermic. PMID:27575349

  14. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.

  15. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal. PMID:24292474

  16. Soil washing treatability study

    SciTech Connect

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS.

  17. Wash Your Hands

    MedlinePlus

    ... do if you don't have soap and clean, running water? Washing hands with soap and water is the ... specific questions. More Information CDC's Handwashing Work Handwashing: Clean Hands Save Lives Hand Hygiene in Healthcare Settings Water-related Hygiene Hand Hygiene to Help Prevent Flu ...

  18. Domestic wash water reclamation

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    System consists of filtration unit, reverse-osmosis module, tanks, pumps, plumbing, and various gauges, meters, and valves. After water is used in washing machine or shower, it is collected in holding tank. Water is pumped through series of five particulate filters. Pressure tank supplies processed water to commode water closet.

  19. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  20. Carbon Footprint of Telemedicine Solutions - Unexplored Opportunity for Reducing Carbon Emissions in the Health Sector

    PubMed Central

    Holmner, Åsa; Ebi, Kristie L.; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    Background The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. Objectives To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. Methods A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Results Replacing physical visits with telemedicine appointments resulted in a significant 40–70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Conclusions Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints. PMID:25188322

  1. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions

    NASA Astrophysics Data System (ADS)

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A.

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods.The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are

  2. Experimental fractionation of stable carbon isotopes during degassing of carbon dioxide and precipitation of calcite from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Müller, K.; Winde, V.; Escher, P.; von Geldern, R.; Böttcher, M. E.

    2012-04-01

    Processes in the carbonate system of surface waters are in particular sensitive to variations of boundary conditions as, for instance, the partial pressure of carbon dioxide in the atmosphere and the aqueous solution. Examples range from streams, rivers, to coastal marine waters. The flux of carbon dioxide from continental flowing waters was recently included into calculations of the global carbon budget (Butman & Raymond, 2011, Nature Geo.). These solutions, are often supersaturated in carbon dioxide with respect to the atmosphere. The degassing of carbon dioxide is associated with a kinetically controlled fractionation of the stable carbon isotopes, which has to be considered in balancing water-air carbon dioxide fluxes. The degassing process additionally leads to the super-saturation of the aqueous solution with respect to calcium carbonate. Stable isotope fractionation is of particular value to identify and quantify processes at the water-gas phase interface and link these non-equilibrium processes to the formation mechanisms of calcite and the hydrodynamics of surface waters. Experiments were carried out with or without inert N2 gas flow to degas carbon dioxide from initially supersaturated solutions. Natural solutions used are from different stations of the Elbe estuary, the Jade Bay, the backbarrier tidal area of Spiekeroog Island, carbonate springs of Rügen Island, and the Baltic Sea coastline. Results are compared experiments using bottled mineral waters. By following the (physico) chemical changes in the solutions (pH, TA, Ca PHREEQC modeling) it was found, that two evolutionary stages can be differentiated. Reaction progress led to the preferential liberation of carbon dioxide containing the light carbon isotope, following a Rayleigh-type process. After an induction period, where only degassing of carbon dioxide took place, a second stage was observed where calcite began to form from the highly supersaturated solutions. In this stage the carbonate

  3. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    SciTech Connect

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  4. Washing Out the Competition

    NASA Technical Reports Server (NTRS)

    2001-01-01

    AJT Associates, Inc. (AJT) worked with NASA to develop a revolutionary ozone-based laundry system. AJT's TecH2Ozone(R) wash system presents its customers with an energy-efficient, cost-effective, and environmentally safe way to perform commercial laundering. TecH2Ozone significantly reduces the amount of water and chemical used as compared to traditional commercial laundry systems. This reduction has resulted in lower cost and shorter wash cycles. And due to the reduced use of chemicals, a significant portion of the rinse water is recycled back into the system for reuse. TecH2Ozone customers, such as hotels and other large commercial laundry facilities, have felt the benefits of this equipment. Because of the reduced cycle times, fewer washers are needed and there is a notable increase in the cleanliness of the laundry. The reduction in chemical residues is a boon to customers with allergies and those prone to skin irritation from chemicals retained in regular laundry. AJT Associates, Inc. (AJT) worked with NASA to develop a revolutionary ozone-based laundry system. AJT's TecH2Ozone(R) wash system presents its customers with an energy-efficient, cost-effective, and environmentally safe way to perform commercial laundering.

  5. On the black carbon problem and its solutions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2010-12-01

    Black carbon (BC) warms air temperatures in at least seven major ways: (a) directly absorbing downward solar radiation, (b) absorbing upward reflected solar radiation when it is situated above bright surfaces, such as snow, sea ice, and clouds, (c) absorbing some infrared radiation, (d) absorbing additional solar and infrared radiation upon obtaining a coating, (e) absorbing radiation multiply reflected within clouds when situated interstitially between cloud drops, (f) absorbing additional radiation when serving as CCN or scavenged inclusions within cloud drops, and (g) absorbing solar radiation when deposited on snow and sea ice, reducing the albedos of both. Modeling of the climate effects of BC requires treatment of all these processes in detail. In particular, treatment of BC absorption interstitially between cloud drops and from multiply-dispersed cloud drop BC inclusions must be treated simultaneously with treatment of cloud indirect effects to determine the net effects of BC on cloud properties. Here, results from several simulations of the effects of BC from fossil fuel and biofuel sources on global and regional climate and air pollution health are summarized. The simulations account for all the processes mentioned. Results are found to be statistically significant relative to chaotic variability in the climate system. Over time and in steady state, fossil-fuel soot plus biofuel soot are found to enhance warming more than methane. The sum of the soots causes less steady-state warming but more short term warming than does carbon dioxide. Thus eliminating soot emissions from both sources may be the fastest method of reducing rapid climate warming and possibly the only method of saving the Arctic ice. Eliminating such emissions may also reduce over 1.5 million deaths worldwide, particularly in developing countries. Short term mitigation options include the targeting of fossil-fuel and biofuel BC sources with particle traps, new stove technologies, and rural

  6. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.

    PubMed

    Dimiev, Ayrat M; Gizzatov, Ayrat; Wilson, Lon J; Tour, James M

    2013-04-01

    Here we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions.

  7. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.

    PubMed

    Dimiev, Ayrat M; Gizzatov, Ayrat; Wilson, Lon J; Tour, James M

    2013-04-01

    Here we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions. PMID:23435853

  8. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  9. Hydrothermal Carbonization: a feasible solution to convert biomass to soil?

    NASA Astrophysics Data System (ADS)

    Tesch, Walter; Tesch, Petra; Pfeifer, Christoph

    2013-04-01

    The erosion of fertile soil is a severe problem arising right after peak oil (Myers 1996). That this issue is not only a problem of arid countries is shown by the fact that even the European Commission defined certain milestones to address the problem of soil erosion in Europe (European Commission 2011). The application of bio-char produced by torrefaction or pyrolysis for the remediation, revegetation and restoration of depleted soils started to gain momentum recently (Rillig 2010, Lehmann 2011, Beesley 2011). Hydrothermal carbonization (HTC) is a promising thermo-chemical process that can be applied to convert organic feedstock into fertile soil and water, two resources which are of high value in regions being vulnerable to erosion. The great advantage of HTC is that organic feedstock (e.g. organic waste) can be used without any special pretreatment (e.g. drying) and so far no restrictions have been found regarding the composition of the organic matter. By applying HTC the organic material is processed along a defined pathway in the Van Krevelen plot (Behrendt 2006). By stopping the process at an early stage a nutritious rich material can be obtained, which is known to be similar to terra preta. Considering that HTC-coal is rich in functional groups and can be derived from the process under "wet" conditions, it can be expected that it shall allow soil bacteria to settle more easily compared to the bio-char derived by torrefaction or pyrolysis. In addition, up to 10 tons process water per ton organic waste can be gained (Vorlop 2009). Thus, as organic waste, loss of fertile soil and water scarcity becomes a serious issue within the European Union, hydrothermal carbonization can provide a feasible solution to address these issues of our near future. The presentation reviews the different types of feedstock investigated for the HTC-Process so far and gives an overview on the current stage of development of this technology. References Beesley L., Moreno-Jiménez E

  10. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect

    Peters, T. B.; Fink, S. D.

    2012-10-25

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  11. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect

    Peters, T. B.

    2013-10-01

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  12. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect

    Peters, T. B.

    2014-01-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  13. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.

    PubMed

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-06-01

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired. PMID:22538869

  14. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-05-01

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ~70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.

  15. THE SOLAR NEBULA ON FIRE: A SOLUTION TO THE CARBON DEFICIT IN THE INNER SOLAR SYSTEM

    SciTech Connect

    Lee, Jeong-Eun; Bergin, Edwin A.; Nomura, Hideko E-mail: ebergin@umich.edu

    2010-02-10

    Despite a surface dominated by carbon-based life, the bulk composition of the Earth is dramatically carbon poor when compared to the material available at formation. Bulk carbon deficiency extends into the asteroid belt representing a fossil record of the conditions under which planets are born. The initial steps of planet formation involve the growth of primitive sub-micron silicate and carbon grains in the Solar Nebula. We present a solution wherein primordial carbon grains are preferentially destroyed by oxygen atoms ignited by heating due to stellar accretion at radii <5 AU. This solution can account for the bulk carbon deficiency in the Earth and meteorites, the compositional gradient within the asteroid belt, and for growing evidence for similar carbon deficiency in rocks surrounding other stars.

  16. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.

    PubMed

    dos Santos, Elisama Vieira; Sáez, Cristina; Martínez-Huitle, Carlos Alberto; Cañizares, Pablo; Rodrigo, Manuel Andres

    2016-04-15

    In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal. PMID:26846982

  17. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.

    PubMed

    dos Santos, Elisama Vieira; Sáez, Cristina; Martínez-Huitle, Carlos Alberto; Cañizares, Pablo; Rodrigo, Manuel Andres

    2016-04-15

    In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal.

  18. Study of the reuse of treated wastewater on waste container washing vehicles.

    PubMed

    Vaccari, Mentore; Gialdini, Francesca; Collivignarelli, Carlo

    2013-02-01

    The wheelie bins for the collection of municipal solid waste (MSW) shall be periodically washed. This operation is usually carried out by specific vehicles which consume about 5000 L of water per day. Wastewater derived from bins washing is usually stored on the same vehicle and then discharged and treated in a municipal WWTP. This paper presents a study performed to evaluate the reuse of the wastewater collected from bins washing after it has been treated in a small plant mounted on the vehicle; the advantage of such a system would be the reduction of both vehicle dimension and water consumption. The main results obtained by coagulation-flocculation tests performed on two wastewater samples are presented. The addition of 2 mL/L of an aqueous solution of aluminum polychloride (18% w/w), about 35 mL/L of an aqueous solution of CaO (4% w/w) and 25 mL/L of an aqueous solution of an anionic polyelectrolyte (1 ‰ w/w) can significantly reduce turbidity and COD in treated water (to about 99% and 42%, respectively); the concomitant increase of UV transmittance at 254 nm (up to 15%) enables UV disinfection application by a series of two ordinary UV lamps. Much higher UV transmittance values (even higher than 80%) can be obtained by dosing powdered activated carbon, which also results in a greater removal of COD. PMID:23142511

  19. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  20. PROCESS FOR RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS BY REDUCTION-PRECIPITATION

    DOEpatents

    Ellis, D.A.; Lindblom, R.O.

    1957-09-24

    A process employing carbonate leaching of ores and an advantageous methcd of recovering the uranium and vanadium from the leach solution is described. The uranium and vanadium can be precipitated from carbonate leach solutions by reaction with sodium amalgam leaving the leach solution in such a condition that it is economical to replenish for recycling. Such a carbonate leach solution is treated with a dilute sodium amalgam having a sodium concentration within a range of about 0.01 to 0.5% of sodium. Efficiency of the treatment is dependent on at least three additional factors, intimacy of contact of the amalgam with the leach solution, rate of addition of the amalgam and exclusion of oxygen (air).

  1. Simple Method for Simultaneous Determination of Carbonate, Sulfite and Hydroxide in Solution

    NASA Astrophysics Data System (ADS)

    Al-Itawi, Hossam I.; Al-Ebaisat, Hamdan; Al-Garaleh, Mazen

    A method is proposed for the simultaneous determination of carbon dioxide and sulphur dioxide in a complex matrices. The method involves salvation of the tow gases in Sodium Hydroxide solution followed by simultaneous determination of the three species (carbonate, sulfite and hydroxide) using conductometric and potentiometric titration. What set this method apart from other determination methods it`s simplicity.

  2. Immunotoxicity of washing soda in a freshwater sponge of India.

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2015-03-01

    The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat.

  3. Inhibitive effects of palm kernel oil on carbon steel corrosion by alkaline solution

    NASA Astrophysics Data System (ADS)

    Zulkafli, M. Y.; Othman, N. K.; Lazim, A. M.; Jalar, A.

    2013-11-01

    The behavior of carbon steel SAE 1045 in 1 M NaOH solution containing different concentrations of palm kernel oil (PKO) has been studied by weight loss and polarization measurement. Results showed that the corrosion of carbon steel in NaOH solution was considerably reduced in presence of such inhibitors. The inhibition efficiency increases when concentration of inhibitor increase. Maximum inhibition efficiency (≈ 96.67%) is obtained at PKO concentration 8 v/v %. This result revealed that palm kernel oil can act as a corrosion inhibitor in an alkaline medium. Corrosion rates of carbon steel decrease as the concentration of inhibitor is increased.

  4. Effect of retained austenite and solute carbon on the mechanical properties in TRIP steels

    NASA Astrophysics Data System (ADS)

    Seong, B. S.; Shin, E. J.; Han, Y. S.; Lee, C. H.; Kim, Y. J.; Kim, S. J.

    2004-07-01

    The mechanical properties of transformation induced plasticity (TRIP) steels are strongly affected by the amount of retained austenite and the solute carbon in austenite. In this study, the Rietveld method using neutron diffraction patterns was introduced for determining the weight fraction of retained austenite and the solute carbon content. C-Si-Mn TRIP steels with different austempering temperatures were used. The retained austenite and the carbon content in the austenite of these steel sheets were quantitatively analyzed by neutron diffractions, and their effects on the mechanical properties of the steels were evaluated.

  5. Basic solutions to carbon/carbon oxidation: Science and technology. Annual technical report, 15 April 1993-14 April 1994

    SciTech Connect

    Harrison, T.R.; Chung, T.; Radovic, L.; Pantano, C.; Thrower, P.A.

    1994-05-13

    The attached report addresses the first year of a program aimed at developing basic solutions to carbon/carbon composite oxidation. In particular, one primary thrust is the development of boron containing carbons through pyrolysis of boron containing polymers. Additionally, a basic understanding of the oxidation mechanisms in carbons and boron containing carbons is being sought. Several new boron containing precursors have been synthesized, which can be converted to B/C materials after pyrolysis. In particular, polyacrylonitrile (PAN) has been copolymerized with a boron-containing monomer (vinylcatecholborane.) Approximately 68% of the original boron is retained after pyrolysis yielding a product with 3.4% boron. 1,4-polybutadiene (PBD) has been hydroborated to contain large amounts of boron. Model compounds have been used to prepare polydiyne with considerable amounts of boron. In the latter two cases, direct analysis for % boron is not yet available. Preliminary TGA data suggests that PBD containing boron results in a more stable structure.

  6. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis.

    PubMed

    Wang, Chengwei; Wang, Yuan; Graser, Jake; Zhao, Ran; Gao, Fei; O'Connell, Michael J

    2013-12-23

    A facile and scalable solution-based, spray pyrolysis synthesis technique was used to synthesize individual carbon nanospheres with specific surface area (SSA) up to 1106 m(2)/g using a novel metal-salt catalyzed reaction. The carbon nanosphere diameters were tunable from 10 nm to several micrometers by varying the precursor concentrations. Solid, hollow, and porous carbon nanospheres were achieved by simply varying the ratio of catalyst and carbon source without using any templates. These hollow carbon nanospheres showed adsorption of to 300 mg of dye per gram of carbon, which is more than 15 times higher than that observed for conventional carbon black particles. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed, with no capacitance loss after 20,000 cycles.

  7. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  8. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  9. Efficient organic solar cells with solution-processed carbon nanosheets as transparent electrodes

    NASA Astrophysics Data System (ADS)

    Na, Seok-In; Noh, Yong-Jin; Son, Su-Young; Kim, Tae-Wook; Kim, Seok-Soon; Lee, Sungho; Joh, Han-Ik

    2013-01-01

    We demonstrate that solution-processed carbon nanosheet (CNS) films can efficiently serve as transparent electrodes for organic solar cells (OSCs). The CNS was obtained by spin-coating of polyacrylonitrile (PAN) dissolved in dimethylformamide on quartz substrates, followed by stabilization and carbonization processes to convert polymer into CNS. The thickness of the newly developed CNS films was easily controlled by varying the PAN solution concentration. The polymer-converted CNS films were intensively examined for the feasibility of the use as transparent anodes in solar cells. This approach could be highly desirable for all-solution-processed or printed OSCs.

  10. Fabrication of carbon nanowires by pyrolysis of aqueous solution of sugar within asbestos nanofibers

    NASA Astrophysics Data System (ADS)

    Butko, V. Yu.; Fokin, A. V.; Nevedomskii, V. N.; Kumzerov, Yu. A.

    2015-05-01

    Carbon nanowires have been fabricated by pyrolysis of an aqueous solution of sugar in nanochannels of asbestos fibers. Electron microscopy demonstrates that the diameter of these nanochannels corresponds to the diameter of the thinnest of the carbon nanowires obtained. Some of these nanowires have a graphite crystal lattice and internal pores. After asbestos is etched out, the carbon nanowires can retain the original shape of the asbestos fibers. Heating in an inert atmosphere reduces the electrical resistivity of the carbon nanowires to ˜0.035 Ω cm.

  11. Prototype wash water renovation system integration with goverment-furnished wash fixture

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.

  12. Extraction of actinides into aqueous polyethylene glycol solutions from carbonate media in the presence of alizarin complexone

    SciTech Connect

    Molochnikova, N.P.; Frenkel', V.Ya.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-01-01

    Actinide extraction in a two-phase aqueous system based on polyethylene glycol from carbonate solutions of various compositions in presence of alizarin complexone is studied. It is shown that the nature of the alkali metals affects actinide extraction into the polyethylene glycol phase. Tri- and tetravalent actinides are extracted maximally from sodium carbonate solutions. Separation of actinides in different oxidation states is more effective in potassium carbonate solutions. The behavior of americium in different oxidation states in the system carbonate-polyethylene glycol-complexone is studied. The possibility of extraction separation of microamount of americium(V) from curium in carbonate solutions in presence of alizarin complexone is shown.

  13. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  14. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  15. Ceramic wash-coat for catalyst support

    SciTech Connect

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  16. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    SciTech Connect

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.; Browning, G.J.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict the densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.

  17. Adsorption of Basic Violet 14 in aqueous solutions using KMnO4-modified activated carbon.

    PubMed

    Shi, Qianqian; Zhang, Jian; Zhang, Chenglu; Nie, Wei; Zhang, Bo; Zhang, Huayong

    2010-03-01

    In this paper, an activated carbon was prepared from Typha orientalis and then treated with KMnO(4) and used for the removal of Basic Violet 14 from aqueous solutions. KMnO(4) treatment influenced the physicochemical properties of the carbon and improved its adsorption capacity. Adsorption experiments were then conducted with KMnO(4)-modified activated carbon to study the effects of carbon dosage (250-1500 mg/L), pH (2-10), ion strength (0-0.5 mol/L), temperature, and contact time on the adsorption of Basic Violet 14 from aqueous solutions. The equilibrium data were analyzed by the Langmuir and Freundlich isotherms and fitted well with the Langmuir model. The pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to evaluate the kinetic data and the pseudo-second-order kinetics was the best with good correlation.

  18. Optoelectronically automated system for carbon nanotubes synthesis via arc-discharge in solution

    NASA Astrophysics Data System (ADS)

    Bera, Debasis; Brinley, Erik; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Kabes, Bradley

    2005-03-01

    The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy.

  19. [The effectiveness of ozonated water for hand washing before surgery].

    PubMed

    Isosu, T; Kan, K; Hayashi, T; Fujii, M

    2001-06-01

    Using an ozonated water-dispensing machine for sterilization of hands (Mediaqua MA-III; Core Medical Co., Ltd, Tokyo, Japan), we investigated the effectiveness of ozonated water as a disinfectant for hand washing before surgery. The effectiveness of this new hand-washing method, using 4 ppm of ozonated water, which is expected to have a short-term bactericidal effect, and 0.2% benzalkonium chloride/83% ethanol solution (Welpas), which is expected to have a long-term bactericidal effect, was compared with that of the conventional hand-washing method (Fürbringer's method using a scrubbing agent containing povidone-iodine). The results showed no significant differences in the numbers of live bacteria and exponential reduction rates in live bacteria. Thus, this new method for hand washing using ozonated water is an effective method for sterilization of the hands before surgery.

  20. Aragonite nanorods in calcium carbonate/polymer hybrids formed through self-organization processes from amorphous calcium carbonate solution.

    PubMed

    Kajiyama, Satoshi; Nishimura, Tatsuya; Sakamoto, Takeshi; Kato, Takashi

    2014-04-24

    Nanostructured inorganic/polymer hybrid thin films comprising aragonite nanorods derived from aqueous suspensions of amorphous calcium carbonate (ACC) are prepared. For the formation of calcium carbonate (CaCO₃)/polymer hybrids, spincoated and annealed films of poly(vinyl alcohol) (PVA) that function as polymer matrices are soaked in aqueous colloidal solutions dispersing ACC stabilized by poly(acrylic acid) (PAA). In the initial stage, calcite thin films form on the surface. Subsequently, aragonite crystals start to form inside the PVA matrix that contains PVA crystallites which induce aragonite nucleation. Nanostructured hybrids composed of calcite thin films consisting of nanoparticles and assembled aragonite nanorods are formed in the matrices of PVA.

  1. Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wubbolts, F. E.; Bruinsma, O. S. L.; van Rosmalen, G. M.

    1999-03-01

    Carbon dioxide is a very poor solvent for many organic compounds, which makes it a good anti-solvent. When a solution is sprayed into carbon dioxide vapour the anti-solvent reduces the solubility within several tens of milliseconds and the solute precipitates. Two distinct regions can be identified, below and above the mixture critical pressure. Below this critical pressure the yield remains relatively low and the process is not well controlled. Above the critical pressure small crystals are obtained of about 2 μm with a yield of 90%.

  2. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.

    PubMed

    Mohamed, E F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2011-01-01

    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge-based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p-nitrophenol, p-chlorophenol, p-hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single-solute isotherms. Moreover, the Langmuir-Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi-solute system was in the following order: p-nitrophenol > p-chlorophenol > PHBA > phenol.

  3. Effects of dilute substitutional solutes on interstitial carbon in α-Fe: Interactions and associated carbon diffusion from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2014-07-01

    By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.

  4. Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability.

    PubMed

    Ohba, Tomonori

    2014-02-24

    An understanding of the structure and behavior of electrolyte solutions in nanoenvironements is crucial not only for a wide variety of applications, but also for the development of physical, chemical, and biological processes. We demonstrate the structure and stability of electrolyte in carbon nanotubes using hybrid reverse Monte Carlo simulations of X-ray diffraction patterns. Hydrogen bonds between water are adequately formed in carbon nanotubes, although some hydrogen bonds are restricted by the interfaces of carbon nanotubes. The hydrogen bonding network of water in electrolyte in the carbon nanotubes is further weakened. On the other hand, formation of the ion hydration shell is significantly enhanced in the electrolyte in the carbon nanotubes in comparison to ion hydration in bulk electrolyte. The significant hydrogen bond and hydration shell formation are a result of gaining stability in the hydrophobic nanoenvironment.

  5. Solution and shock-induced exsolution of argon in vitreous carbon

    NASA Technical Reports Server (NTRS)

    Gazis, Carey; Ahrens, Thomas J.

    1991-01-01

    To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.

  6. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.

    PubMed

    Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I

    2009-10-15

    The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.

  7. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  8. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  9. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  10. 27 CFR 19.328 - Wash water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wash water. 19.328 Section... THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production Chemical By-Products § 19.328 Wash water. Water used in washing chemicals to remove spirits therefrom may be run into a wash tank or a...

  11. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  12. The Anion Effect on Li(+) Ion Coordination Structure in Ethylene Carbonate Solutions.

    PubMed

    Jiang, Bo; Ponnuchamy, Veerapandian; Shen, Yuneng; Yang, Xueming; Yuan, Kaijun; Vetere, Valentina; Mossa, Stefano; Skarmoutsos, Ioannis; Zhang, Yufan; Zheng, Junrong

    2016-09-15

    Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li(+)-bound and Li(+)-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li(+) is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, allowing only two EC molecules to coordinate to Li(+) directly. Our results demonstrate for the first time, to the best of our knowledge, the anion influence on the overall structure of the first solvation shell of the Li(+) ion. The formation of such a cation/solvent/anion complex provides a rational explanation for the ionic conductivity drop of lithium/carbonate electrolyte solutions at high concentrations. PMID:27560477

  13. The Anion Effect on Li(+) Ion Coordination Structure in Ethylene Carbonate Solutions.

    PubMed

    Jiang, Bo; Ponnuchamy, Veerapandian; Shen, Yuneng; Yang, Xueming; Yuan, Kaijun; Vetere, Valentina; Mossa, Stefano; Skarmoutsos, Ioannis; Zhang, Yufan; Zheng, Junrong

    2016-09-15

    Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li(+)-bound and Li(+)-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li(+) is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, allowing only two EC molecules to coordinate to Li(+) directly. Our results demonstrate for the first time, to the best of our knowledge, the anion influence on the overall structure of the first solvation shell of the Li(+) ion. The formation of such a cation/solvent/anion complex provides a rational explanation for the ionic conductivity drop of lithium/carbonate electrolyte solutions at high concentrations.

  14. Carbon-13 NMR characterization of actinyl(VI) carbonate complexes in aqueous solution

    SciTech Connect

    Clark, D.L.; Hobart, D.E.; Palmer, P.D.; Sullivan, J.C.; Stout, B.E.

    1992-07-01

    The uranyl(VI) carbonate system has been re-examined using {sup 13}C NMR of 99.9% {sup 13}C-enriched U{sup VI}O{sub 2} ({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} in millimolar concentrations. By careful control of carbonate ion concentration, we have confirmed the existence of the trimer, and observed dynamic equilibrium between the monomer and the timer. In addition, the ligand exchange reaction between free and coordinated carbonate on Pu{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} and Am{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} systems has been examined by variable temperature {sup 13}C NMR line-broadening techniques {sup 13}C NMR line-broadening techniques. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was written to allow for experimental determination of ligand exchange parameters for paramagnetic actinide complexes. Preliminary Eyring analysis has provided activation parameters of {Delta}G{sup {double_dagger}}{sub 295} = 56 kJ/M, {Delta}H{sup {double_dagger}} = 38 kJ/M, and {Delta}S{sup {double_dagger}} = {minus}60 J/M-K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl (VI) carbonate complex self-exchange reaction. Experiments for determination of the activation parameters for the americium (VI) carbonate system are in progress.

  15. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R. H.

    1981-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of and at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fast formation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  16. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  17. Radiolysis of Bicarbonate and Carbonate Aqueous Solutions: Product Analysis and Simulation of Radiolytic Processes

    SciTech Connect

    Cai Zhongli; Li Xifeng; Katsumura, Yosuke; Urabe, Osamu

    2001-11-15

    An understanding of the radiation-induced effects in groundwater is essential to evaluate the safe geological disposal of spent fuel. In groundwater, the bicarbonate ion is the predominant and common anion; this work investigated radiation-induced chemical reactions of (bi)carbonate aqueous solutions with steady-state irradiation and pulse radiolysis methods. Aqueous solutions of sodium (bi)carbonate as high as 50 mmol.dm{sup -3} were used. The formation of formate, oxalate, and H{sub 2}O{sub 2} were measured under different conditions. A complete set of reaction steps and reliable kinetic data for the radiolysis of (bi)carbonate aqueous solutions at ionic strength close to the groundwater were proposed. Kinetic calculations were completed based on the proposed reaction steps and the kinetic data obtained in the present work. The results from the calculation are in good agreement with the experimental results. With these proposed reaction steps and kinetic data, computer simulation can be performed to predict the yield of radiolytic products of (bi)carbonate aqueous solutions as a function of irradiation time and used to evaluate the safety of geological disposal options of spent fuel.

  18. Adsorption Behavior of Ferromagnetic Carbon Nanotubes for Methyl Orange from Aqueous Solution.

    PubMed

    Wang, Liping; Zhang, Mingyu; Zhao, Chenxi; Yang, Shan

    2016-03-01

    The ferromagnetic carbon nanotubes which can be easily separated from aqueous solution were prepared and characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Batch experiments were carried out to investigate the adsorption behavior of ferromagnetic carbon nanotubes for removing methyl orange (MO). The results showed that these ferromagnetic carbon nanotubes were richer in surface function groups than the carbon nanotubes did, furthermore, both γ-Fe2O3 and Fe with ferromagnetism were found on the surface of carbon nanotubes. The results also demonstrated that ferromagnetic carbon nanotubes possessed stronger adsorption ability for MO than carbon nanotubes did. The adsorption isotherms followed Langmuir isotherm equation and the adsorption kinetics could be well described with the pseudo second-order kinetic model. The adsorption process involved an intraparticle diffusion, while it was not the only rate-controlling step. The values of AG were negative and the value of ΔH is -12.37 kJ/mol, proving that the adsorption of MO onto ferromagnetic carbon nanotubes was a spontaneous and exothermic process.

  19. Adsorption Behavior of Ferromagnetic Carbon Nanotubes for Methyl Orange from Aqueous Solution.

    PubMed

    Wang, Liping; Zhang, Mingyu; Zhao, Chenxi; Yang, Shan

    2016-03-01

    The ferromagnetic carbon nanotubes which can be easily separated from aqueous solution were prepared and characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Batch experiments were carried out to investigate the adsorption behavior of ferromagnetic carbon nanotubes for removing methyl orange (MO). The results showed that these ferromagnetic carbon nanotubes were richer in surface function groups than the carbon nanotubes did, furthermore, both γ-Fe2O3 and Fe with ferromagnetism were found on the surface of carbon nanotubes. The results also demonstrated that ferromagnetic carbon nanotubes possessed stronger adsorption ability for MO than carbon nanotubes did. The adsorption isotherms followed Langmuir isotherm equation and the adsorption kinetics could be well described with the pseudo second-order kinetic model. The adsorption process involved an intraparticle diffusion, while it was not the only rate-controlling step. The values of AG were negative and the value of ΔH is -12.37 kJ/mol, proving that the adsorption of MO onto ferromagnetic carbon nanotubes was a spontaneous and exothermic process. PMID:27455713

  20. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    NASA Astrophysics Data System (ADS)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  1. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    SciTech Connect

    Afanasiev, Pavel

    2014-05-01

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoS{sub x} (x≈4) of 10–30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoS{sub x} under nitrogen or hydrogen flow at 400 °C allows obtaining mesoporous MoS{sub 2} materials with very high pore volume and specific surface area, up to 0.45 cm{sup 3}/g and 190 m{sup 2}/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts. - Graphical abstract: Solution reaction in propylene carbonate allows preparing weakly agglomerated molybdenum sulfide with particle size 20 nm and advantageous catalytic properties. - Highlights: • Solution reaction in propylene carbonate yields MoS{sub x} particles near 20 nm size. • Addition of starch as capping agent reduces particles size and hinder agglomeration. • EXAFS at Mo K edge shows rapid oxygen to sulfur exchange in the solution. • Thermal treatment leads to MoS{sub 2} with very high porosity and surface area.

  2. Physical solubility of hydrogen sulfide and carbon dioxide in alkanolamine solutions

    SciTech Connect

    Abu-Arabi, M.K.

    1988-01-01

    The study was undertaken to develop a method that would make direct measurements of acid gases, hydrogen sulfide and carbon dioxide, physical solubilities in aqueous alkanolamine solutions possible. Hydrogen sulfide and carbon dioxide physical solubilities in 20, 35, and 50% by weight diethanolamine aqueous solutions were measured. The solubility measurements were made at acid gas partial pressure up to 1000 psia and temperatures of 80, 150, 240 F. The solubility of nitrous oxide in water and in protonated diethanolamine solution was also determined at 80 F. A method that allows for direct measurements of acid gases physical solubilities has been developed. The method eliminates amines reactivity with acid gases by protonating the amines prior to their contact with acid gases. CO{sub 2} physical solubility in aqueous DEA solutions occurs mainly in the water portion of the solution. Therefore, the physical solubility of CO{sub 2} in an aqueous amine solution must be corrected based on the fraction of water in the solution. However, H{sub 2}S physical solubility in aqueous DEA solutions is the same as H{sub 2}S solubility in water. At any acid gas partial pressure, the physical solubility of H{sub 2}S is higher than that of CO{sub 2} for the same solution concentration and for the same temperature. This is also true for their solubilities is pure water. The ratio of CO{sub 2} to H{sub 2}S physical solubility to N{sub 2}O solubility in aqueous DEA solutions is not the same as their ratio in pure water.

  3. A Window-Washing Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Skyscrapers sure do have a lot of windows, and these windows are cleaned and checked regularly. All this takes time, money, and puts workers at potential risk. Might there be a better way to do it? In this article, the author discusses a window-washing challenge and describes how students can tackle this task, pick up the challenge, and creatively…

  4. Performance evaluation of trimethylamine-carbon dioxide thermolytic draw solution for engineered osmosis

    SciTech Connect

    Boo, C; Khalil, YF; Elimelech, M

    2015-01-01

    We evaluated the performance of trimethylamine-carbon dioxide (TMA-CO2) as a potential thermolytic draw solution for engineered osmosis. Water flux and reverse solute flux with TMA-CO2 draw solution were measured in forward osmosis (FO) and pressure retarded osmosis (PRO) modes using thin-film composite (TFC) and cellulose triacetate (CTA) FO membranes. Water flux with the TMA-CO2 draw solution was comparable to that obtained with the more common ammonia-carbon dioxide (NH3-CO2) thermolytic draw solution at similar (1 M) concentration. Using a TFC-FO membrane, the water fluxes produced by 1 M TMA-CO2 and NH3-CO2 draw solutions with a DI water feed were, respectively, 33.4 and 35.6 L m(-2) h(-1) in PRO mode and 14.5 and 152 L m(-2) h(-1) in FO mode. Reverse draw permeation of TMA-CO2 was relatively low compared to NH3-CO2, ranging from 0.1 to 0.2 mol m(-2) h(-1) in all experiments, due to the larger molecular size of TMA. Thermal separation and recovery efficiency for TMA-CO2 was compared to NH3-CO2 by modeling low-temperature vacuum distillation utilizing low-grade heat sources. We also discuss possible challenges in the use TMA-CO2, including potential adverse impact on human health and environments. (C) 2014 Elsevier B.V. All rights reserved.

  5. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions

    SciTech Connect

    Dai, Sheng; Lee, Jeseung; Tsouris, Costas; DePaoli, David W; Wang, Xiqing

    2010-01-01

    Mesoporous carbon with a narrow pore size distribution centered at about 9 nm, which was prepared by self assembly of block copolymer and phloroglucinol-formaldehyde resin via the soft-template method, was activated by CO{sub 2} and potassium hydroxide (KOH). The effects of activation conditions, such as the temperature, activation time, and mass ratio of KOH/C, on the textural properties of the resulting activated mesoporous carbons were investigated. Activated mesoporous carbons exhibit high BET specific surface areas (up to {approx} 2000 m{sup 2} g{sup -1}) and large pore volumes (up to {approx} 1.6 cm{sup 3} g{sup -1}), but still maintain a highly mesoporous structure. Heat treatment of mesoporous carbons by CO{sub 2} generally requires a moderate to high extent of activation in order to increase its BET surface area by 2-3 times, while KOH activation needs a much smaller degree of activation than the former to reach an identical surface area, ensuring high yields of activated mesoporous carbons. In addition, KOH activation allows a controllable degree of activation by adjusting the mass ratio of KOH/C (2-8), as evidenced by the fact that surface area and pore volume increase with the mass ratio of KOH/C. The electrosorption properties of activated mesoporous carbons were investigated by cyclic voltammetry in 0.1 M NaCl aqueous solutions. Upon activation, the electrosorption capacitance of activated mesoporous carbons was greatly enhanced.

  6. Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes

    SciTech Connect

    Y Mikata

    2006-08-22

    This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbon nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.

  7. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  8. Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems

    SciTech Connect

    Gonzalez, L.A.; Lohmann, K.C.

    1985-01-01

    Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

  9. Removal of Heavy Metal Ions and Diethylenetriamine Species from Solutions by Magnetic Activated Carbon

    NASA Astrophysics Data System (ADS)

    Liu, Kaiwen

    Even though activated carbon is widely used in the removal of contaminants from effluents, it is difficult to be completely recovered by screening or classification. In this project, we prepared a magnetic form of activated carbon (M-AC) by co-precipitation of iron oxides onto activated carbon surface. M-AC can be separated from solutions by applying an external magnetic field and regenerated for reuse. The synthesized M-AC was characterized by X-ray diffraction, specific surface area measurement, and scanning electron microscope. Characterization results show that the major phase of coated iron oxides is magnetite (Fe 3O4). Batch adsorption experiments were carried out for single-component and multi-component solutions. M-AC shows a better adsorption capacity for singlecomponent of Cu (II), Ni (II), or diethylenetriamine (DETA) and for multiple-components of Cu-DETA and Ni-DETA complexes in deionized water than activated carbon. M-AC also shows the potential application in carbon-in-pulp process for gold recovery.

  10. A basket for washing benthological samples

    USGS Publications Warehouse

    Selgeby, James H.

    1971-01-01

    Since benthological samples collected with dredges are usually too large to be preserved in toto, a washing method must be employed to reduce the sample volume without losing or damaging the organisms. Traditionally, the sample is washed in a sieve until the volume is small enough for convenient handling or preservation. Most washing procedures are time-consuming and laborious. To save time in washing samples, a washing 'basket' was designed which accomadates a Ponar dredge. The only additional equipment needed to employ the washing basket effectively is a pump that delivers about 8 gallons of water per minute.

  11. Bending and Twisting of Suspended Single-Walled Carbon Nanotubes in Solution

    NASA Astrophysics Data System (ADS)

    Barnard, Arthur; Xu, Ya-Qiong; McEuen, Paul

    2010-03-01

    We combine suspended, aligned carbon nanotube transistors with optical trapping techniques and scanning photocurrent microscopy to investigate the mechanics of suspended single-walled carbon nanotubes as well as DNA-nanotube systems in solution. We study the movement of nanotubes by monitoring their photocurrent images and measure their thermal fluctuations by imaging microbeads that are tightly attached to nanotubes by single-stranded DNA. By analyzing thermal fluctuations of these microbeads and by using optical tweezers we are able to obtain the torsional and bending stiffness of nanotubes and then calculate their diameters. We can also measure, with subangstrom resolution, the effective attachment point of the microbead to the nanotube.

  12. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  13. Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes.

    PubMed

    Shao, Dadong; Sheng, Guodong; Chen, Changlun; Wang, Xiangke; Nagatsu, Masaaki

    2010-04-01

    Cyclodextrins have excellent ability in the preconcentration of organic pollutants from aqueous solutions by forming inclusion complexes. Multiwalled carbon nanotubes (MWCNTs) possess high adsorption capacity in the removal of organic pollutants through the formation of conjugated complexes. In this paper, beta-cyclodextrin (beta-CD) was grafted on the surfaces of MWCNTs by using plasma technique. The beta-CD grafted MWCNTs (MWCNT-g-CD) were characterized by using Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, thermo gravimetric analysis-differential thermal analysis, and scanning electron microscopy in detail. The prepared MWCNT-g-CD were used to remove polychlorinated biphenyls (PCBs) from aqueous solutions under ambient conditions. The results suggest that MWCNT-g-CD have much higher adsorption capacity than MWCNTs in the removal of PCBs from aqueous solutions. MWCNT-g-CD are suitable materials in the preconcentration and immobilization of PCBs from large volumes of aqueous solutions in environmental pollution cleanup.

  14. [Dissolved aluminum and organic carbon in soil solution under six tree stands in Lushan forest ecosystems].

    PubMed

    Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing

    2003-10-01

    Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.

  15. Experimental study of the behavior of molybdenum in hot sulfide-carbonate solutions

    SciTech Connect

    Agapova, G.F.; Shmariovich, E.M.; Vorob'ev, I.M.; Khitarov, D.N.

    1987-04-01

    Previous experiments have characterized the behavior of uranium in sulfide-carbonate solutions at 200/sup 0/C, analogous to the solutions that produced many endogenous pitchblende deposits, as indicated by fluid inclusions in minerals and by mineralogical and geochemical data. Molybdenum often accompanies uranium in endogenous pitchblende and related deposits and may form economic accumulations as low-temperature molybdenite. There have been repeated discussions on the forms taken by molybdenum and the reasons for deposition in such ores. The experiments described here indicate the existence of various complexes of molybdenum under different conditions and explain some of the paragenesis of molybdenum minerals with uranium minerals. 12 references, 3 figures, 1 table.

  16. Electro-adsorption of tetracycline from aqueous solution by carbonized pomelo peel and composite with aniline

    NASA Astrophysics Data System (ADS)

    Li, Na; Yang, Shaogui; Chen, Jian; Gao, Jia; He, Huan; Sun, Cheng

    2016-11-01

    Tetracycline is an important broad-spectrum antibiotic. Its overuse can easily cause water and soil pollution. In this study, a carbon electrode was successfully prepared by simple carbonization of a natural material pomelo peel to remove tetracycline from aqueous solution through electro-adsorption. Then the carbon electrode was modified by aniline to improve its mechanical strength. These materials were characterized by XRD, SEM, FT-IR and Zeta Potential, and all these characterizations demonstrated aniline coated on the carbon electrode perfectly. CV tests of electrodes demonstrated that carbon electrode was more inclined to the double layer capacitance, and composite electrode exhibited more properties of the pseudo capacitance. Adsorption experiments showed that adsorption efficiency of the carbon electrode was 95.11% after 3000 s and that of the composite electrode was 92.32% after 5000 s; polyaniline greatly improved the mechanical stability of the composite electrode. The composite electrode with high adsorbability and strong mechanical stability, has potential to treat tetracycline-containing wastewaters.

  17. Static and dynamic adsorption of phenol from aqueous solution using spherical carbon

    NASA Astrophysics Data System (ADS)

    Bhargavi, R.; Kadirvelu, K.; Kumar, N. S.

    2013-06-01

    The objective of this work is to evaluate spherical carbon and modified spherical carbon for the removal of phenol from aqueous solution in static and dynamic studies under various conditions. It explores mainly two adsorbents, that is, activated spherical carbon (ASC) and modified activated spherical carbon (SSC). SEM characterization of both the adsorbents showed a clear change in the physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The phenol removal increased for modified carbon. The aim of carrying out column mode studies will aid in ascertaining the practical applicability of the adsorbent in the real system and therefore, to assess the effect of various process variables, viz., bed height of the adsorbent, flow rate and initial concentration of the adsorbate on breakthrough time and adsorption capacity. The column studies generated data were modeled using the empirical relationship based on Bohart-Adams model. At the end, the option of regenerating the adsorbent was also explored using sodium hydroxide with the aim of minimize the hazardous generated and also to reuse the adsorbent material for many cycles without affecting original properties. Adsorbent regeneration efficiency of 72% was achieved. This investigation reveals that the material used as an adsorbent is very effective with high adsorption capacities and also possible to use in the real contaminated system.

  18. Removal of insecticide carbofuran from aqueous solutions by banana stalks activated carbon.

    PubMed

    Salman, J M; Hameed, B H

    2010-04-15

    In this work, activated carbon was prepared from banana stalks (BSAC) waste to remove the insecticide carbofuran from aqueous solutions. The effects of contact time, initial carbofuran concentration, solution pH and temperature (30, 40 and 50 degrees C) were investigated. Adsorption isotherm, kinetics and thermodynamics of carbofuran on BSAC were studied. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models and the data best represented by the Langmuir isotherm. Thermodynamic parameters such as standard enthalpy (DeltaH(o)), standard entropy (DeltaS(o)) and standard free energy (DeltaG(o)) were evaluated. Regeneration efficiency of spent BSAC was studied using ethanol as a solvent. The efficiency was found to be in the range of 96.97-97.35%. The results indicated that the BSAC has good regeneration and reusability characteristics and can be used as alternative to present commercial activated carbon.

  19. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon.

    PubMed

    Selvi, K; Pattabhi, S; Kadirvelu, K

    2001-10-01

    Activated carbon (AC) prepared from coconut tree sawdust was used as an adsorbent for the removal of Cr(VI) from aqueous solution. Batch mode adsorption studies were carried out by varying agitation time, initial Cr(VI) concentration, carbon concentration and pH. Langmuir and Freundlich adsorption isotherms were applied to model the adsorption data. Adsorption capacity was calculated from the Langmuir isotherm and was 3.46 mg/g at an initial pH of 3.0 for the particle size 125-250 microm. The adsorption of Cr(VI) was pH dependent and maximum removal was observed in the acidic pH range. Desorption studies were carried out using 0.01-1 M NaOH solutions.

  20. [Bactericidal power's assessment of eight antiseptic products intended to surgeon's hand-washing (author's transl)].

    PubMed

    Charrel, J; Gevaudan, M J; Mallet, M N; Blancard, A; Gevaudan, P

    1977-01-01

    A standard hand-washing technique was used in order to test the relative effectiveness of eight both detergent and alcoholic preparations intended to surgeon's hands disinfection. A single four or seven minutes washing with alcoholic solutions was shown to eliminate a much larger proportion of the skin flora than could be removed by a single four or seven minutes hand-washing with detergent antiseptic preparations. Authors have also determined effect of wearing surgical rubber gloves after skin disinfection and compared viable bacterial counts in hand washings immediately after the antiseptic treatment and when gloves had been worn for one hour.

  1. Changing fluxes of carbon and other solutes from the Mekong River

    PubMed Central

    Li, Siyue; Bush, Richard T.

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  2. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-04-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

  3. Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-13

    Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  4. InP synthesis by the synthesis, solute diffusion (SSD) method using glassy-carbon crucibles

    SciTech Connect

    Miskys, C.R.; Oliveira, C.E.M. de; Carvalho, M.M.G. de

    1996-12-31

    An Indium Phosphide (InP) Synthesis system by the Synthesis, Solute Diffusion (SSD) method has been built. It provides high purity InP charges with low carrier densities (3 {times} 10{sup 14} to 2 {times} 10{sup 15} cm{sup {minus}3}) to be used as starting material for InP single-crystal Liquid Encapsulated Czochralski (LEC) growth. Glassy-carbon is a refractory material with low vapor pressure that can be moulded in various forms and sizes. Indeed the glassy-carbon crucible is reusable after the synthesis because InP does not stick to its walls. Preliminary electrical characteristics measurements showed residual carrier concentration below 3 {times} 10{sup 15} cm{sup {minus}3}. These results are comparable with those achieved utilizing quartz crucibles. The features denoted makes glassy-carbon an interesting alternative in comparison with quartz and PBN crucibles.

  5. Shear-induced structure evolution of carbon nanotubes dispersions in polyacrylonitrile-dimethylsulfoxide solution

    NASA Astrophysics Data System (ADS)

    Karpushkin, Evgeny; Lapshina, Maria; Sergeyev, Vladimir

    2015-04-01

    Rheological behavior of carbon nanotubes finely dispersed in polyacrylonitrile-dimethylsulfoxide solution has been studied as function of the applied pre-shear stress and discussed in view of possible structural changes induced by the pre-shearing of the samples. The observed effects can be ascribed to a combination of internal processes involving alignment and association of the macromolecules as well as orientation and association of carbon nanotubes. The effects caused by the macromolecules alignment and association are mainly observed at low concentration of the filler and at higher shear stress, whereas the processes involving carbon nanotubes reorganization are mainly observed at the higher filler content and at low pre-shear stress.

  6. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Su, Ting-Yi

    2006-06-30

    The adsorption behaviors of bisphenol-A, which has been listed as one of endocrine disrupting chemicals, from aqueous solution onto four minerals including andesite, diatomaceous earth, titanium dioxide, and activated bleaching earth, and two activated carbons with coconut-based and coal-based virgins were examined in this work. Based on the adsorption results at the specified conditions, the adsorption capacities of activated carbons are significantly larger than those of mineral adsorbents, implying that the former is effective for removal of the highly hydrophobic adsorbate from the aqueous solution because of its high surface area and low surface polarity. The adsorption capacities of bisphenol-A onto these mineral adsorbents with different pore properties are almost similar in magnitude mainly due to the weakly electrostatic interaction between the mineral surface with negative charge and the target adsorbate with hydrophobic nature. Further, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of bisphenol-A onto the two common activated carbons at different solution conditions. It was found that the adsorption process could be well described with the pseudo-second-order model. The kinetic parameters of the model obtained in the present work are in line with the pore properties of the two adsorbents.

  7. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Su, Ting-Yi

    2006-06-30

    The adsorption behaviors of bisphenol-A, which has been listed as one of endocrine disrupting chemicals, from aqueous solution onto four minerals including andesite, diatomaceous earth, titanium dioxide, and activated bleaching earth, and two activated carbons with coconut-based and coal-based virgins were examined in this work. Based on the adsorption results at the specified conditions, the adsorption capacities of activated carbons are significantly larger than those of mineral adsorbents, implying that the former is effective for removal of the highly hydrophobic adsorbate from the aqueous solution because of its high surface area and low surface polarity. The adsorption capacities of bisphenol-A onto these mineral adsorbents with different pore properties are almost similar in magnitude mainly due to the weakly electrostatic interaction between the mineral surface with negative charge and the target adsorbate with hydrophobic nature. Further, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of bisphenol-A onto the two common activated carbons at different solution conditions. It was found that the adsorption process could be well described with the pseudo-second-order model. The kinetic parameters of the model obtained in the present work are in line with the pore properties of the two adsorbents. PMID:16343748

  8. Removal of organic contaminants from aqueous solution by cattle manure compost (CMC) derived activated carbons

    NASA Astrophysics Data System (ADS)

    Qian, Qingrong; Chen, Qinghua; Machida, Motoi; Tatsumoto, Hideki; Mochidzuki, Kazuhiro; Sakoda, Akiyoshi

    2009-04-01

    The activated carbons (ACs) prepared from cattle manure compost (CMC) with various pore structure and surface chemistry were used to remove phenol and methylene blue (MB) from aqueous solutions. The adsorption equilibrium and kinetics of two organic contaminants onto the ACs were investigated and the schematic models for the adsorptive processes were proposed. The result shows that the removal of functional groups from ACs surface leads to decreasing both rate constants for phenol and MB adsorption. It also causes the decrement of MB adsorption capacity. However, the decrease of surface functional groups was found to result in the increase of phenol adsorption capacity. In our schematic model for adsorptive processes, the presence of acidic functional groups on the surface of carbon is assumed to act as channels for diffusion of adsorbate molecules onto small pores, therefore, promotes the adsorption rate of both phenol and MB. In phenol solution, water molecules firstly adsorb on surface oxygen groups by H-bonding and subsequently form water clusters, which cause partial blockage of the micropores, deduce electrons from the π-electron system of the carbon basal planes, hence, impede or prevent phenol adsorption. On the contrary, in MB solution, the oxygen groups prefer to combine with MB + cations than water molecules, which lead to the increase of MB adsorption capacity.

  9. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons.

    PubMed

    Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O

    2015-07-01

    This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices.

  10. Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang

    2014-06-15

    Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. PMID:24767505

  11. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  12. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  13. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  14. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  15. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  16. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  17. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  18. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  19. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  20. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  1. Alternative Antimicrobial Commercial Egg Washing Procedures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures ...

  2. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    NASA Astrophysics Data System (ADS)

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-06-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

  3. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  4. Washing and caustic leaching of Hanford Tank C-106 sludge

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Hoopes, F.V.; Steele, R.T.

    1996-10-01

    This report describes the results of a laboratory-scale washing and caustic leaching test performed on sludge from Hanford Tank C-106. The purpose of this test was to determine the behavior of important sludge components when subjected to washing with dilute or concentrated sodium hydroxide solutions. The results of this laboratory-scale test were used to support the design of a bench-scale washing and leaching process used to prepare several hundred grams of high-level waste solids for vitrification tests to be done by private contractors. The laboratory-scale test was conducted at Pacific Northwest Laboratory in FY 1996 as part of the Hanford privatization effort. The work was funded by the US Department of Energy through the Tank Waste Remediation System (TWRS; EM-30).

  5. Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon.

    PubMed

    Peng, Xiaoming; Hu, Fengping; Lam, Frank L-Y; Wang, Yajun; Liu, Zhanmeng; Dai, Hongling

    2015-12-15

    The performances of ordered mesoporous carbon CMK-3 (OMC), bamboo-based carbon (BC), and these two kinds of adsorbents modified by thermal treatment in the ammonia atmosphere at high temperatures were evaluated for the removal fluoroquinolone antibiotic (ciprofloxacin) from aqueous solution. The adsorption behavior of ciprofloxacin (CIP) onto OMC and BC including adsorption isotherms and kinetics were investigated. The effect of various factors (pH, ionic strength and temperature) on the adsorption process was also investigated. The results demonstrated that the modified OMC and BC can further enhance the adsorption capacity due to introduce of alkaline nitrogen functionalities on the carbon surface. And their maximum adsorption capacity reached as high as 233.37mgg(-1) and 362.94mgg(-1) under the same experimental conditions, respectively. This is primarily ascribed to the positive effect of the surface basicity. The highest sorption was observed at the lowest solubility, which indicated that hydrophobic interaction was the dominant sorption mechanism for CIP uptake onto the four adsorbents. The adsorption data of antibiotics was analyzed by Langmuir and Freundlich model, and the better correlation was achieved by the Langmuir isotherm. The kinetic data showed that the adsorption of CIP onto OMC and BC follow closely the pseudo-second order model. The removal efficiency and adsorption capacity increased with increasing temperature. The results of thermodynamic study indicated that the adsorption process was a spontaneous and endothermic. PMID:26385593

  6. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions.

    PubMed

    Sharma, K; Kim, Y-H; Gabitto, J; Mayes, R T; Yiacoumi, S; Bilheux, H Z; Walker, L M H; Dai, S; Tsouris, C

    2015-01-27

    Desalination of high-salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization (CDI) for water desalination. Experiments were conducted with a flow-through CDI cell designed for neutron imaging and with lithium-6 chloride ((6)LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of (6)LiCl solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the CDI process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why CDI is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of CDI devices, which can improve the process for high ionic-strength solutions.

  7. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.

    PubMed

    Regmi, Pusker; Garcia Moscoso, Jose Luis; Kumar, Sandeep; Cao, Xiaoyan; Mao, Jingdong; Schafran, Gary

    2012-10-30

    Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g). PMID:22687632

  8. Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution.

    PubMed

    Kim, Jin Hee; Kataoka, Masakazu; Fujisawa, Kazunori; Tojo, Tomohiro; Muramatsu, Hiroyuki; Vega-Díaz, Sofía M; Tristán-López, F; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-01

    The dispersibility in a DNA solution of bundled multiwalled carbon nanotubes (MWCNTs), having different chemical functional groups on the CNT sidewall, was investigated by optical spectroscopy. We observed that the dispersibility of nitrogen (N)-doped MWCNTs was significantly higher than that of pure MWCNTs and MWCNTs synthesized in the presence of ethanol. This result is supported by the larger amount of adsorbed DNA on N-doped MWCNTs, as well as by the higher binding energy established between nucleobases and the N-doped CNTs. Pure MWCNTs are dispersed in DNA solution via van der Waals and hydrophobic interactions; in contrast, the nitrogenated sites within N-doped MWCNTs provided additional sites for interactions that are important to disperse nanotubes in DNA solutions.

  9. Electrolyte interactions with vapor dosed and solution dosed carbon monoxide on platinum (111)

    NASA Astrophysics Data System (ADS)

    Borup, R. L.; Sauer, D. E.; Stuve, E. M.

    1997-03-01

    Carbon monoxide adsorption and interactions with electrolyte species were examined for a Pt(111) electrode in 0.1M HClO 4. The experiments were conducted with an ex situ ultrahigh vacuum (UHV)-electrochemical system, with CO being adsorbed either from the vapor phase in the vacuum chamber or from solution. CO oxidation coulometry and cyclic voltammetry were used to characterize CO coverage in solution, and thermal desorption spectroscopy was used to measure CO coverage in vacuum, desorption kinetics and to detect coadsorbed electrolyte species. In agreement with earlier studies, the saturation coverage of 0.68 ML of CO from solution dosing is nearly 40% greater than the saturation coverage of 0.50 ML in vacuum at room temperature. The higher saturation coverages survive transfer to vacuum, but only in the presence of coadsorbed electrolyte species (H 2O and ClO 4) retained after removal of the electrode from the electrolyte. In the absence of coadsorbed electrolyte species, saturated, solution dosed CO transferred to vacuum exhibits the same coverage as vapor dosed CO. Interaction between CO and electrolyte species was confirmed through detection of both in thermal desorption following immersion of a vapor dosed CO adlayer into solution and back-transfer to vacuum. Kinetic modeling of CO thermal desorption showed that, regardless of whether CO is adsorbed from solution or from vapor, the COCO repulsive interactions are approximately 40% less when electrolyte species are retained than when they are absent.

  10. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions. PMID:23912795

  11. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions.

  12. Fabrication of Carbon Nanotube High-Frequency Nanoelectronic Biosensor for Sensing in High Ionic Strength Solutions

    PubMed Central

    Kulkarni, Girish S.; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11. PMID:23912795

  13. TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES

    SciTech Connect

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-09-29

    insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

  14. Precipitation of Co(2+) carbonates from aqueous solution: insights on the amorphous to crystalline transformation.

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Fernández-González, Ángeles; Jiménez, Amalia

    2016-04-01

    Cobalt is toxic metal that is present only as a trace in the Earth crust. However, Co might concentrate on specific areas due to both natural and anthropogenic factors and thus, soils and groundwater can be contaminated. It is from this perspective that we are interested in the precipitation of cobalt carbonates, since co-precipitation with minerals phases is a well-known method for metal immobilization in the environment. In particular, the carbonates are widely used due to its reactivity and natural abundance. In order to evaluate the cobalt carbonate precipitation at room temperature, a simple experimental work was carried out in this work. The precipitation occurred via reaction of two common salts: 0.05M of CoCl2 and 0.05M of Na2CO3 in aqueous solution. After reaction, the precipitated solid was kept in the remaining water at 25 oC and under constant stirring for different aging times of 5 min, 1 and 5 hours, 1, 2, 4, 7, 30 and 60 days. In addition to the aging and precipitation experiments, we carried out experiments to determine the solubility of the solids. In these experiments each precipitate was dissolved in Milli-Q water until equilibrium was reached and then the aqueous solution was analyzed regarding Co2+ and total alkalinity. Furthermore, acid solution calorimetry of the products were attained. Finally, we modeled the results using the PHREEQC code. Solid and aqueous phase identification and characterization have been extensively reported in a previous work (González-López et al., 2015). The main results of our investigation were the initial precipitation of an amorphous cobalt carbonate that evolve towards a poorly crystalline cobalt hydroxide carbonate with aging treatment. Solubility of both phases have been calculated under two different approaches: precipitation and dissolution. Values of solubility from each approach were obtained with a general error due to differences in experiment conditions, for instance, ionic strength, temperature and

  15. [Investigation of FTIR spectra analysis on carbon dioxide absorption with improved amine solution].

    PubMed

    Yin, Wen-xuan; Liu, Jian-zhou; Gao, Li-ping; Jiang, Jing-liang; Wang, Zhi-hua

    2011-05-01

    Carbon dioxide is a major sort of greenhouse gas as well as important carbon resource. With the developments of industries, emission of carbon dioxide has increased sharply. Hence, controls of carbon dioxide emission and resource transformation have become the hotspot of current study. As a new kind of carbon resource, the fields of CO2 research and application are very extensive. Among those methods, the amine absorption has good qualities of faster absorption rate, higher efficiency and so on, so it has been widely studied. But organic amine have such shortcomings: high consumption of heat energy, strong corrosive and easy oxidated, now pursuer mainly focused on the organic amine modified. The results showed that, when the time the amount of antioxidant 1010 is 0.152, the absorption capacity is 2503.53 mL. the volume of analysis is 982.00 mL, and the absorption rate changes more slowly, by FTIR, Samples of its renewable-OH associating is not apparent that the antioxidant content in 1010, oxidation products of the MEA is acid or less oxidation and antioxidant 1010 product in early to respond fully to form stable non-radical compounds. Therefore, the best dosage of antioxidant 1010 is 0.15%. When the time that the amount of Na2SO3 is 0.15%, the absorption capacity is 2922.88 mL. Analysis of the volume is 723.00 mL, by FTIR, which reveals the oxidation products of the MEA is amide -C=O which in alkaline solution can be transiting into primary amine, and be easy absorbing CO2. Comparing the antioxygenic proerty of antioxidant 1010 with Na2SO3, from the absorption rate, the amount of absorption , Na2SO3's antioxidant properties is superior than antioxidant 1010; by infrared spectral analysis, 1010/20% MEA solution's oxidation products is the acid, Na2SO3/20% MEA solutions, the oxidation product is amide, amide solution is advantaged for absorbing CO2, So Na2SO3's antioxidant properties is superior than antioxidant 1010.

  16. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin.

    PubMed

    Lee, Chang-Gu; Jeon, Jun-Woo; Hwang, Min-Jin; Ahn, Kyu-Hong; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2015-07-01

    Phenolic resin-based carbon foam was prepared as an adsorbent for removing heavy metals from aqueous solutions. The surface of the produced carbon foam had a well-developed open cell structure and the specific surface area according to the BET model was 458.59m(2)g(-1). Batch experiments showed that removal ratio increased in the order of copper (19.83%), zinc (34.35%), cadmium (59.82%), and lead (73.99%) in mixed solutions with the same initial concentration (50mgL(-1)). The results indicated that the Sips isotherm model was the most suitable for describing the experimental data of lead and copper. The maximum adsorption capacity of lead and copper determined to Sips model were 491mgg(-1) and 247mgg(-1). The obtained pore diffusion coefficients for lead and copper were found to be 1.02×10(-6) and 2.42×10(-7)m(2)s(-1), respectively. Post-sorption characteristics indicated that surface precipitation was the primary mechanism of lead and copper removal by the carbon foam, while the functional groups on the surface of the foam did not affect metal adsorption. PMID:25819762

  17. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes.

    PubMed

    Cho, Hyun-Hee; Huang, Haiou; Schwab, Kellogg

    2011-11-01

    Single-walled carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), and oxidized MWCNTs (O-MWCNTs) were studied for the adsorption of ibuprofen (IBU) and triclosan (TCS) as representative types of pharmaceutical and personal care products (PPCPs) under different chemical solution conditions. A good fitting of sorption isotherms was obtained using a Polanyi-Manes model (PMM). IBU and TCS sorption was stronger for SWCNTs than for MWCNTs due to higher specific surface area. The high oxygen content of O-MWCNT further depressed PPCP sorption. The sorption capacity of PPCPs was found to be pH-dependent, and more adsorption was observed at pHs below their pK(a) values. Ionic strength was also found to substantially affect TCS adsorption, with higher adsorption capacity observed for TCS at lower ionic strength. In the presence of a reference aquatic fulvic acid (FA), sorption of IBU and TCS was reduced due to the competitive sorption of FA on carbon nanotubes (CNTs). Sorption isotherm results with SWCNTs, MWCNTs and O-MWCNTs confirmed that the surface chemistry of CNTs, the chemical properties of PPCPs, and aqueous solution chemistry (pH, ionic strength, fulvic acid) all play an important role in PPCP adsorption onto CNTs.

  18. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin.

    PubMed

    Lee, Chang-Gu; Jeon, Jun-Woo; Hwang, Min-Jin; Ahn, Kyu-Hong; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2015-07-01

    Phenolic resin-based carbon foam was prepared as an adsorbent for removing heavy metals from aqueous solutions. The surface of the produced carbon foam had a well-developed open cell structure and the specific surface area according to the BET model was 458.59m(2)g(-1). Batch experiments showed that removal ratio increased in the order of copper (19.83%), zinc (34.35%), cadmium (59.82%), and lead (73.99%) in mixed solutions with the same initial concentration (50mgL(-1)). The results indicated that the Sips isotherm model was the most suitable for describing the experimental data of lead and copper. The maximum adsorption capacity of lead and copper determined to Sips model were 491mgg(-1) and 247mgg(-1). The obtained pore diffusion coefficients for lead and copper were found to be 1.02×10(-6) and 2.42×10(-7)m(2)s(-1), respectively. Post-sorption characteristics indicated that surface precipitation was the primary mechanism of lead and copper removal by the carbon foam, while the functional groups on the surface of the foam did not affect metal adsorption.

  19. OPTIMIZATION OF THE WASH-OFF METHOD FOR MEASURING AEROSOL CONCENTRATIONS

    EPA Science Inventory

    Using the fluorescence-washing technique, oleic acid particles tagged with uranine were extracted and analyzed fluorometrically. The possible sources of errors in the technique were evaluated in this study. First, the sensitivity of uranine fluorescence in different solutions ...

  20. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 in 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.

  1. Effect of solution additives on the performance of PMAN carbon anodes in 1M LiPF{sub 6}/EC-DMC solutions

    SciTech Connect

    Guidotti, R.A.; Johnson, B.J.

    1996-12-31

    A study was undertaken to examine the use of a number of solution additives in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions to improve the performance of carbon anodes derived from polymethylacrylonitrile (PMAN)-divinylbenzene (DVB) copolymers. The study goals were to improve the cycle life and reduce the formation of the passivation layer during the first reduction, thereby minimizing the irreversible-capacity losses. Additives studied were 12-crown-4 (12-Cr-4) ether, decalin, and dilithium phthalocyanine (Li{sub 2}Pc). The carbon performance was characterized by galvanostatic cycling, cyclic voltammetry, and complex-impedance spectroscopy. Limited success was obtained with 12-Cr-4 ether at 0.25 M and decalin at 1 v/o. Poor results were noted with Li{sub 2}Pc at 0.025 M and 0.5 M.

  2. Role of PF6- in the radiolytical and electrochemical degradation of propylene carbonate solutions

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Jimenez Gordon, Isabel; Legand, Solène; Dauvois, Vincent; Baltaze, Jean-Pierre; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie

    2016-09-01

    The behavior under irradiation of neat propylene carbonate (PC), a co-solvent usually used in Li-ion batteries (LIB), and also of Li salt solutions is investigated. The decomposition of neat PC is studied using radiolysis in the pulse and steady state regime and is assigned to the ultrafast formation, in the reducing channel, of the radical anion PCrad - by electron attachment, followed by the ring cleavage, leading to CO. In the oxidative channel, the PC(sbnd H)rad radical is formed, generating CO2. The CO2 and CO yields are both close to the ionization yield of PC. The CO2 and CO productions in LiClO4, LiBF4 and LiN(CF3)2(SO2)2 solutions are similar as in neat PC. In contrast, in LiPF6/PC a strong impact on PC degradation is measured with a doubling of the CO2 yield due to the high reactivity of the electron towards PF6- observed in the picosecond range. A small number of oxide phosphine molecules are detected among the various products of the irradiated solutions, suggesting that most of them, observed in carbonate mixtures used in LIBs, arise from linear rather than from cyclical molecules. The similarity between the degradation by radiolysis or electrolysis highlights the interest of radiolysis as an accelerated aging method.

  3. Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution.

    PubMed

    Al-Johani, Hind; Abdel Salam, Mohamed

    2011-08-15

    Multi-walled carbon nanotubes (MWCNTs) were used in the adsorptive removal of aniline, an organic pollutant, from an aqueous solution. It was found that carbon nanotubes with a higher specific surface area adsorbed and removed more aniline from an aqueous solution. The adsorption was dependent on factors, such as MWCNTs dosage, contact time, aniline concentration, solution pH and temperature. The adsorption study was analyzed kinetically, and the results revealed that the adsorption followed pseudo-second order kinetics with good correlation coefficients. In addition, it was found that the adsorption of aniline occurred in two consecutive steps, including the slow intra-particle diffusion of aniline molecules through the nanotubes. Various thermodynamic parameters, including the Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°), were calculated. The results indicated that the spontaneity of the adsorption, exothermic nature of the adsorption and the decrease in the randomness reported as ΔG°, ΔH° and ΔS°, respectively, were all negative.

  4. Integration of High-Purity Carbon Nanotube Solution into Electronic Devices

    NASA Astrophysics Data System (ADS)

    Tulevski, George; IBM TJ Watson Reserach Center Team

    Due to their exceptional electronic properties, carbon nanotubes (cnt) are leading candidates to be employed as channel materials in future nanoelectronic devices. A key bottleneck to realizing device integration is the sorting of carbon nanotubes, namely the isolation of high-purity, semiconducting cnt solutions. This talk will describe our efforts in using polymer-based sorting methods to isolate high-density and high-purity semiconducting cnt solutions. We explore the dependence of starting material and polymer to cnt ratio on the effectiveness of the separation. We confirm optically and electrically that the semiconducting purity is >99.99% through several thousand individual device measurements. In addition to single-cnt devices, thin-film transistors were also fabricated and tested. Due to the high purity of the solutions, device switching (~105 ION/IOFF) was observed at channel lengths below the percolation threshold (<500 nm). Operating below the percolation threshold allows for devices with much higher current densities and effective mobilities as transport is now the result of direct transport as opposed to hopping between cnts.

  5. The Electrochemical Behavior of Zn-Mn Alloy Coating in Carbonated Concrete Solution

    NASA Astrophysics Data System (ADS)

    Touazi, S.; Bučko, M.; Makhloufi, L.; Legat, A.; Bajat, J. B.

    2016-05-01

    In order to improve the protective performance of Zn coating on reinforcing steel in concrete, the electrochemical deposition of Zn-Mn coatings was conducted on steel surface. The morphology, chemical and phase compositions of Zn-Mn coatings obtained from sulfate-citrate bath were investigated in the first part of paper. In the second part, the obtained deposits were tested in solution simulating carbonated concrete, consisting of NaHCO3 and Na2CO3. Data obtained from Tafel analysis showed higher corrosion resistance for Zn-Mn alloy deposits obtained at -1700 and -1800mV versus SCE, when compared to pure Zn deposit. Impedance spectroscopy investigations revealed that the total impedance of Zn-Mn coatings increased steadily with time, and was significantly higher as compared to pure Zn after 24h in corrosion solution. On the contrary, for pure Zn, the impedance increased in the first 12h, and then decreased during prolonged exposure time, which can be explained by rapid growth of nonprotective white rust and the degradation of zinc coating, as was confirmed by optical microscope after 24h of immersion in carbonated concrete pore solution.

  6. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  7. Dynamic effects in the production of diamond from solid-solution carbon

    SciTech Connect

    Sobolev, V.V.; Didyk, R.P.; Merezhko, Y.I.; Skidanenko, A.I.; Slobodskoi, V.Y.

    1984-03-01

    The authors examine the scope for diamond to grow at atmospheric pressure in iron alloys. For the purpose of this investigation, diamond nuclei were produced in a cast-iron specimen by a dynamic pressure of 80-90GPa. The mass proportion of diamond polycrystals of maximum size 40-50 ..mu..m did not exceed 1%. The largest diamond content occurred in the fraction 0.1-5 ..mu..m and constituted about 80%. The studies show that: the presence of diamond inclusions in a metal matrix substantially influences the structural transformations during isothermal heating and slow cooling; the solid-solution carbon, the carbon compounds, and the graphite inclusions can serve as sources of carbon in the growth of diamond crystals in the metastable region; and dynamic pressures generate numerous defects in cast-iron specimens, which are sources of vacancies, which facilitate the diffusion of the carbon to the growing diamond crystals and the removal of iron from them.

  8. Mass-transfer in solution: on the context and cause of spherulitic lacustrine carbonate deposits

    NASA Astrophysics Data System (ADS)

    Rogerson, Michael; Mercedes-Martin, Ramon; Brasier, Alex; Vonhof, Hubert; Prior, Tim; Fellows, Simon; Reijmer, John; Pedley, Martyn; McGill, Rona

    2016-04-01

    Understanding how laterally extensive spherulitic carbonate deposits originated in the 'Pre-Salt' Aptian volcanic-influenced lacustrine basins of Brazil and Angola is challenging, especially as few good analog systems are known to compare the Pre-Salt to. Here, we report a particularly good analog system in the Carboniferous of the Scotland (the East Kirkton Limestone), and examine the geochemical and sedimentological context in which spherular radial calcite has developed. Using empirical and theoretical approaches, we analyse the link between metal mobilization from sub-surface volcaniclastic rocks, and the potential precipitation of carbonates, Mg-Si minerals and chalcedony in a lacustrine spherulitic carbonate setting. This suite of minerals at the surface can be explained by CO2 ingassing to a springwater derived from reaction of alkali igneous rocks in the subsurface with meteoric groundwater. This forms a 'source-to-sink' system occurring entirely in solution in the subsurface, but demonstrably capable of forming significant depositional units at the surface. We hypothesise that analogous processes occurring on a larger scale are implicated in the development of the 'Pre-Salt' spherulitic carbonate deposits.

  9. Carbon enters silica forming a cristobalite-type CO2-SiO2 solid solution.

    PubMed

    Santoro, Mario; Gorelli, Federico A; Bini, Roberto; Salamat, Ashkan; Garbarino, Gaston; Levelut, Claire; Cambon, Olivier; Haines, Julien

    2014-01-01

    Extreme conditions permit unique materials to be synthesized and can significantly update our view of the periodic table. In the case of group IV elements, carbon was always considered to be distinct with respect to its heavier homologues in forming oxides. Here we report the synthesis of a crystalline CO2-SiO2 solid solution by reacting carbon dioxide and silica in a laser-heated diamond anvil cell (P = 16-22 GPa, T>4,000 K), showing that carbon enters silica. Remarkably, this material is recovered to ambient conditions. X-ray diffraction shows that the crystal adopts a densely packed α-cristobalite structure (P4(1)2(1)2) with carbon and silicon in fourfold coordination to oxygen at pressures where silica normally adopts a sixfold coordinated rutile-type stishovite structure. An average formula of C0.6(1)Si0.4(1)O2 is consistent with X-ray diffraction and Raman spectroscopy results. These findings may modify our view on oxide chemistry, which is of great interest for materials science, as well as Earth and planetary sciences. PMID:24781844

  10. Role of the surface chemistry of activated carbons in dye removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Hua-lei; Zhen, Wen-juan; Zhu, Qian; Wu, Xiao-bin; Chang, Zhi-dong; Li, Wen-jun

    2015-07-01

    Commercial activated carbons were modified by a series of chemical or physical treatments using H2O2, NH3, and heating under N2 flow without notably changing their pore structures. The resultant carbons were characterized by N2 adsorption and Bohem titration and then used to remove Ponceau 4R, methyl orange and brilliant blue from aqueous solutions. Surface chemistry was found to play a significantly different role in removing these three compounds. The removal of anionic Ponceau 4R increases with increasing carbon surface basicity due to the predominant dispersive interaction mechanism. In contrast, surface chemistry has little effect on the removal of anionic methyl orange, which can be explained by two parallel mechanisms involving electrostatic and dispersive interactions due to the basic amine group in a dye molecule. The influence of surface chemistry on the removal of amphoteric brilliant blue dye can also be ignored due to a weak interaction between the carbons and dye molecules, which is resulted from strong cohesive energy from electrostatic forces inside amphoteric dye molecules.

  11. Free-solution interaction assay of carbonic anhydrase to its inhibitors using back-scattering interferometry.

    PubMed

    Morcos, Ereny F; Kussrow, Amanda; Enders, Carolyn; Bornhop, Darryl

    2010-11-01

    Back-scattering interferometry (BSI) is a label-free, free-solution, small-volume technique used for characterizing binding interactions, which is also relevant to a growing number of biosensing applications including drug discovery. Here, we use BSI to characterize the interaction of carbonic anhydrase enzyme II with five well-known carbonic anhydrase enzyme II inhibitors (± sulpiride, sulfanilamide, benzene sulfonamide, dansylamide, and acetazolamide) in the presence of DMSO. Dissociation constants calculated for each interaction were consistent with literature values previously obtained using surface plasmon resonance and fluorescence-based competition assays. Results demonstrate the potential of BSI as a drug-screening tool which is fully compatible with DMSO and does not require immobilization or labeling, therefore allowing binding interactions to be characterized in the native state. BSI has the potential for reducing labor costs, sample consumption, and assay time while providing enhanced reliability over existing techniques. PMID:20972990

  12. Constant-distance mode scanning potentiometry. 1. Visualization of calcium carbonate dissolution in aqueous solution.

    PubMed

    Etienne, Mathieu; Schulte, Albert; Mann, Stefan; Jordan, Guntram; Dietzel, Irmgard D; Schuhmann, Wolfgang

    2004-07-01

    Constant-distance mode scanning potentiometry was established by integrating potentiometric microsensors as ion-selective scanning probes into a SECM setup that was equipped with a piezoelectric shear force-based tip-to-sample distance control. The combination of specially designed micrometer-sized potentiometric tips with an advanced system for tip positioning allowed simultaneous acquisition of both topographic and potentiometric information at solid/liquid interfaces with high spatial resolution. The performance of the approach was evaluated by applying Ca(2+)-selective constant-distance mode potentiometry to monitor the dissolution of calcium carbonate occurring either at the (104) surface of calcite crystals or in proximity to the more complex surface of cross sections of a calcium carbonate shell of Mya arenaria exposed to slightly acidic aqueous solutions. Micrometer-scale heterogeneities in the apparent calcium activity profiles have successfully been resolved for both samples.

  13. Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions.

    PubMed

    Kumar, Sandeep; Bhanjana, Gaurav; Jangra, Kavita; Dilbaghi, Neeraj; Umar, Ahmad

    2014-06-01

    Carbon nanotubes (CNTs) are attracting increasing research interest as promising adsorbents for harmful cations, anions, and other organic and inorganic impurities present in natural sources of water. This study examined the feasibility of removing Rhodamine B dye from aqueous solutions using multi walled carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition (CVD) method. The effects of dye concentration, pH and contact time on adsorption of direct dye by CNTs were also evaluated. The study used the Langmuir and Temkin isotherms to describe equilibrium adsorption. Additionally, pseudo second-order model was adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. The adsorption percentage of dye increased as contact time increased. Conversely, the adsorption percentage of dye decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. The capacity of CNTs to adsorb Rhodamine B was 65-90% at different pH values.

  14. Dehydration and crystallization of amorphous calcium carbonate in solution and in air.

    PubMed

    Ihli, Johannes; Wong, Wai Ching; Noel, Elizabeth H; Kim, Yi-Yeoun; Kulak, Alexander N; Christenson, Hugo K; Duer, Melinda J; Meldrum, Fiona C

    2014-01-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fraction--comprising less than 15% of the total--then triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes.

  15. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  16. Macromolecular conformation in solution. Study of carbonic anhydrase by the positron annihilation technique.

    PubMed Central

    Handel, E D; Graf, G; Glass, J C

    1980-01-01

    The structural features of carbonic anhydrase (carbonate hydro-lyase; EC 4.2.1.1) in aqueous solution were probed by the positron annihilation technique. The data obtained under varying conditions of temperature, pH, and enzyme concentration were interpreted in terms of the free volume model. The change of enzymic activity with temperature is accompanied by a change in free volume of the protein. Upon thermal denaturation an irreversible change in free volume of the molecule occurred. At low temperatures the protein-water interactions were investigated. These results are discussed in terms of current concepts of structure-function relationships in proteins. This study shows the sensitivity of the positron annihilation method toward the structure of proteins related to their overall conformation and to the nature of bound water. PMID:6789901

  17. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators. PMID:25133545

  18. Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions.

    PubMed

    Kumar, Sandeep; Bhanjana, Gaurav; Jangra, Kavita; Dilbaghi, Neeraj; Umar, Ahmad

    2014-06-01

    Carbon nanotubes (CNTs) are attracting increasing research interest as promising adsorbents for harmful cations, anions, and other organic and inorganic impurities present in natural sources of water. This study examined the feasibility of removing Rhodamine B dye from aqueous solutions using multi walled carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition (CVD) method. The effects of dye concentration, pH and contact time on adsorption of direct dye by CNTs were also evaluated. The study used the Langmuir and Temkin isotherms to describe equilibrium adsorption. Additionally, pseudo second-order model was adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. The adsorption percentage of dye increased as contact time increased. Conversely, the adsorption percentage of dye decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. The capacity of CNTs to adsorb Rhodamine B was 65-90% at different pH values. PMID:24738392

  19. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. PMID:21724329

  20. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  1. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  2. Carbonized material adsorbents for the removal of mercury from aqueous solutions

    SciTech Connect

    1996-10-01

    Charcoal in itself is porous making it an excellent material for activated charcoal manufacture. However, few studies have been conducted in harnessing its potential for adsorption purposes, especially in water treatment. This paper describes the possibility of utilizing charcoal materials from Sugi (Cryptomeria japonica) for adsorbing heavy metals like mercury from aqueous solutions of different concentrations. The effect of soaking time, pore analyses and chemical properties on the adsorption capabilities of the carbonized materials were discussed. The pH value and chemical oxygen demand (COD) monitored during the soaking period were also described.

  3. Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions.

    PubMed

    Ji, Wei; Chen, Weizhe; Lim, Sanhua; Lin, Jianyi; Guo, Zhixin

    2006-10-01

    We report the observation of thermally-induced self-diffraction in carbon nanotube (CNT) solutions under the influence of the gravity. We present a theoretical model in which CNTs are assumed to obey the Boltzmman distribution law. Under the approximations of small temperature rise and a very narrow distribution of CNT masses, the model simulation is consistent with the data measured at low laser powers. An immediate application of such a gravitation-dependent characteristic is the optical measurement for molecular weights of CNTs.

  4. Adsorption of alkenyl succinic anhydride from solutions in carbon tetrachloride on a fine magnetite surface

    NASA Astrophysics Data System (ADS)

    Balmasova, O. V.; Ramazanova, A. G.; Korolev, V. V.

    2016-06-01

    The adsorption of alkenyl succinic anhydride from a solution in carbon tetrachloride on a fine magnetite surface at a temperature of 298.15 K is studied using fine magnetite, which forms the basis of magnetic fluids, as the adsorbent. An adsorption isotherm is recorded and interpreted in terms of the theory of the volume filling of micropores (TVFM). Adsorption process parameters are calculated on the basis of the isotherm. It is shown that at low equilibrium concentrations, the experimental adsorption isotherm is linear in the TVFM equation coordinates.

  5. Removal of trihalomethanes from aqueous solution through armchair carbon nanotubes: a molecular dynamics study.

    PubMed

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo; Yin, Binfeng

    2015-04-01

    Molecular dynamics simulations were performed to investigate the removal of trihalomethanes (THMs) including CH3Cl, CH2Cl2 and CHCl3 from aqueous solutions by armchair carbon nanotubes (CNTs) under induced pressure. The studied system involved the armchair CNTs embedded between two graphene sheets with an aqueous solution of THMs in the simulation box. An external pressure was applied to the system along the z-axis of the simulation box. Six types of armchair CNTs with different diameter were used in this work, included (4,4), (5,5), (6,6), (7,7), (8,8) and (9,9) CNTs. The results of molecular dynamics simulation display that the armchair CNTs behave differently relative to THMs and water molecules. The permeation of THMs and water molecules through the armchair CNTs was dependent on the diameter of CNTs and the applied pressure.

  6. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    NASA Astrophysics Data System (ADS)

    Afanasiev, Pavel

    2014-05-01

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoSx (x≈4) of 10-30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoSx under nitrogen or hydrogen flow at 400 °C allows obtaining mesoporous MoS2 materials with very high pore volume and specific surface area, up to 0.45 cm3/g and 190 m2/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts.

  7. Carbon dioxide removal from flue gases by absorption/ desorption in aqueous diethanolamine solutions.

    PubMed

    Kierzkowska-Pawlak, Hanna; Chacuk, Andrzej

    2010-08-01

    The carbon dioxide (CO2) desorption rate from CO2- loaded aqueous diethanolamine (DEA) solutions was measured using a stirred cell with a flat gas-liquid interface. The measurements were performed in the temperature range of 293.15-313.15 K and an amine concentration range of 10-20% mass DEA. Measurements were based on a semibatch isothermal absorption of the gas until the equilibrium state was reached, followed by desorption, which was initiated by the pressure release in the system. A simplified mass transfer model based on the film theory coupled with CO2, mass balance was developed to interpret the experimental data. On the basis of the proposed model, the initial mass transfer rates were calculated from the experimental results. The calculated initial desorption rates enabled estimation of the enhancement factor for CO2 mass transfer from aqueous DEA solutions. Analysis of the experimental data showed that desorption took place in the diffusive mass transfer regime.

  8. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC. PMID:27372113

  9. Corrosion Inhibition of Carbon Steel by New Thiophene Azo Dye Derivatives in Acidic Solution

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mahmoud N.; Fouda, A. S.; Mostafa, H. A.

    2013-08-01

    Inhibition of carbon steel corrosion in 2 M hydrochloric acid (HCl) solution by thiophene azo dye derivatives were studied using weight loss, electrochemical frequency modulation (EFM), and atomic absorption techniques. The experimental data suggest that the inhibition efficiency increases with increasing inhibitors concentration in presence of 103 μM potassium iodide (KI). This is due to synergistic effect. Thus, the experimental results suggested that the presence of these anions in the solution stabilized the adsorption of inhibitors molecules on the metal surface and improved the inhibition efficiency. The results of EFM experiments are a spectrum of current response as a function of frequency. The corrosion rate and Tafel parameters can be obtained with measurement by analyzing the harmonic frequencies. The adsorption of the inhibitors on metal surface obeys the Langmuir adsorption isotherm. The surface of metal examined using Fourier transform infrared and ultraviolet spectroscopy. Quantum chemical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  10. Analytical solutions to dissolved contaminant plume evolution with source depletion during carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian

    2016-06-01

    Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system.

  11. Adsorptive removal of aniline by granular activated carbon from aqueous solutions with catechol and resorcinol.

    PubMed

    Suresh, S; Srivastava, V C; Mishrab, I M

    2012-01-01

    In the present paper, the removal of aniline by adsorption process onto granular activated carbon (GAC) is reported from aqueous solutions containing catechol and resorcinol separately. The Taguchi experimental design was applied to study the effect of such parameters as the initial component concentrations (C(0,i)) of two solutes (aniline and catechol or aniline and resorcinol) in the solution, temperature (T), adsorbent dosage (m) and contact time (t). The L27 orthogonal array consisting of five parameters each with three levels was used to determine the total amount of solutes adsorbed on GAC (q(tot), mmol/g) and the signal-to-noise ratio. The analysis of variance (ANOVA) was used to determine the optimum conditions. Under these conditions, the ANOVA shows that m is the most important parameter in the adsorption process. The most favourable levels of process parameters were T = 303 K, m = 10 g/l and t = 660 min for both the systems, qtot values in the confirmation experiments carried out at optimum conditions were 0.73 and 0.95 mmol/g for aniline-catechol and aniline-resorcinol systems, respectively.

  12. Analytical solutions to dissolved contaminant plume evolution with source depletion during carbon dioxide storage.

    PubMed

    Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian

    2016-06-01

    Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system.

  13. Na⁺-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination.

    PubMed

    Guo, Chun Xian; Zhao, Dieling; Zhao, Qipeng; Wang, Peng; Lu, Xianmao

    2014-07-14

    A new type of biocompatible draw solute, Na(+)-functionalized carbon quantum dots (Na_CQDs) with ultra-small size and rich ionic species, in forward osmosis (FO) is developed for seawater desalination. The aqueous dispersion of Na_CQDs demonstrates a high osmotic pressure, which allows high FO water flux and negligible reverse solute permeation.

  14. Laboratory differential simulation design method of pressure absorbers for carbonization of phenolate solution by carbon dioxide in coal-tar processing

    SciTech Connect

    Linek, V.; Sinkule, J.; Moucha, T.; Rejl, J.F.

    2009-01-15

    A laboratory differential simulation method is used for the design of carbonization columns at coal-tar processing in which phenols are regenerated from phenolate solution by carbon dioxide absorption. The design method is based on integration of local absorption rates of carbon dioxide along the column. The local absorption rates into industrial phenolate mixture are measured in a laboratory model contactor for various compositions of the gas and liquid phases under the conditions that ensure the absorption rates in the laboratory absorber simulate the local rates in the industrial column. On the bases of the calculations, two-step carbonization columns were designed for 30000 t/year of the phenolate solution treatment by carbon dioxide. The absorption proceeds at higher pressure of 500 kPa and temperatures from 50 to 65 C, pure carbon dioxide is used and toluene is added. These conditions have the following favourable effects: (I) significant size reduction of the columns, (ii) it is possible to process more concentrated solutions without danger of silting the columns by crystallization of NaHCO{sub 3} on the packing. (iii) small amount of inert gas is released, (iv) lower alkalinity and better separability of the organic phase (phenols with toluene) from water phase (soda or bicarbonate solution) in separators.

  15. Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing

    SciTech Connect

    Ichin, Yoshimichi; Mitamura, Koji; Saito, Nagahiro; Takai, Osamu

    2009-07-15

    In order to improve the energy-conversion efficiency in fuel cells, the authors loaded Pt nanoparticles on carbon nanoballs (CNBs) by using solution plasma processing (SPP) involving CNB and Pt ion with a protection group. In this study, we employed poly(vinylpyrrolidone) (PVP) or sodium dodecyl sulfate (SDS) to prepare Pt nanoparticles supported on CNB (Pt/CNB) by the SPP, and the electrochemical properties as a catalyst was evaluated by cyclic voltammetry. The carbon nanoballs were prepared by thermal decomposition process of ethylene and hydrogen gases. Color of the solution changed from yellow to dark brown as synthesis time. This change indicates the improvement of dispersibility of CNB. Moreover, transmission electron microscopy images and elemental mapping images showed the Pt nanoparticles supported on CNB. A catalytic activity of the Pt/CNB in use of SDS was shown to be higher than the Pt/CNB prepared with PVP system. The SDS-containing Pt/CNB also showed the higher activity than that obtained by the conventional method.

  16. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program. PMID:26421625

  17. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  18. Postoperative washing of sutured wounds.

    PubMed

    Harrison, Conrad; Wade, Cian; Gore, Sinclair

    2016-11-01

    A best evidence topic was written according to the structured protocol. The three part question addressed was: [In patients undergoing closure of surgical wounds with sutures] does [keeping the wound dry for the first 48 h after closure] [reduce the incidence of surgical site infections (SSIs)]? 4 relevant papers were culled from the literature and appraised. The authors, date, country, population, study type, main outcomes, key results and study weaknesses were tabulated. Current NICE guidelines recommend cleaning surgical wounds with sterile saline only for the first 48 h following skin closure. We found no evidence that washing wounds with tap water during this period increases the incidence of SSIs compared to keeping them dry. Further randomised controlled trials will enable the construction of conclusive systematic reviews and meta-analyses. PMID:27668079

  19. Wash water waste pretreatment system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  20. Bathing or washing babies after birth?

    PubMed

    Henningsson, A; Nyström, B; Tunnell, R

    One group of healthy full-term newborn babies was washed after birth and another was bathed to remove vernix caseosa and clean the skin. Few infections, none of them serious, occurred in either group. Bacterial colonisation of the umbilical cord on the third day of life was similar in both groups. The rectal temperature fell further and more infants cried during washing than during bathing. Thus bathing the baby after birth makes it calmer, quieter, and more comfortable than washing and causes less heat-loss. Clinical signs of infection and bacterial colonisation rates are no higher after bathing than after washing. PMID:6118769

  1. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes' carbons.

    PubMed

    Bansal, Manjeet; Singh, Diwan; Garg, V K

    2009-11-15

    This paper reports the feasibility of using agricultural waste and timber industry waste carbons to remove Cr(VI) from synthetic wastewater under different experimental conditions. For this, rice husk and saw dust have been used as adsorbent after sulphuric acid treatment. Effect of various process parameters, namely, pH, adsorbent dose, initial chromium concentration and contact time has been studied in batch systems. Maximum metal removal was observed at pH 2.0. The efficiencies of rice husk carbon (RHC) and saw dust carbon (SDC) for Cr(VI) removal were 91.75% and 94.33%, respectively for aqueous solutions (250 mg L(-1)) at 20 g L(-1) adsorbent dose. The experimental data was analyzed using Freundlich, Langmuir, Dubinin-Redushkevich (D-R) and Temkin isotherm models. It was found that Langmuir, D-R and Temkin models fitted well. The results revealed that the hexavalent chromium is considerably adsorbed on RHC and SDC and it could be an economical method for the removal of hexavalent chromium from aqueous systems. FTIR and SEM of the adsorbents were recorded in native and Cr(VI)-loaded state to explore the number and position of various functional groups available for Cr(VI) binding onto studied adsorbents and changes in adsorbent surface morphology. The surface area of RHC and SDC was 1.12 and 1.16 m(2)g(-1), respectively. PMID:19553015

  2. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids.

    PubMed

    Kleinerman, O; Parra-Vasquez, A Nicholas G; Green, M J; Behabtu, N; Schmidt, J; Kesselman, E; Young, C C; Cohen, Y; Pasquali, M; Talmon, Y

    2015-07-01

    Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy. PMID:25818279

  3. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids.

    PubMed

    Kleinerman, O; Parra-Vasquez, A Nicholas G; Green, M J; Behabtu, N; Schmidt, J; Kesselman, E; Young, C C; Cohen, Y; Pasquali, M; Talmon, Y

    2015-07-01

    Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy.

  4. Removal of nickel(II) from aqueous solution using Citrus Limettioides peel and seed carbon.

    PubMed

    Sudha, R; Srinivasan, K; Premkumar, P

    2015-07-01

    The agricultural wastes like Citrus Limettioides peel and seed to be suitable precursor for the preparation of carbon [Citrus Limettioides peel carbon (CLPC) and seed carbon (CLSC)] has been explored in the present work, utilizing sulfuric acid as the activating agent. Adsorption studies were performed by varying contact time, solution pH, adsorbent dose and temperature. The equilibrium time for Ni(II) ions was determined as 4h and optimal pH was 4-7. Surface morphology and functionality of the CLPC and CLSC were characterized by SEM, EDX and FT-IR. The experimental data were analysed using the Freundlich, Langmuir, Temkin, Redlich-Peterson, Sips and Dubinin-Radushkevich adsorption isotherm equations using nonlinear regression analysis. Equilibrium data were found to fit well in the Langmuir isotherm, which confirmed the monolayer coverage of Ni(II) ions. The Langmuir monolayer adsorption capacity of CLPC and CLSC was found to be 38.46 and 35.54 mg/g. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic in nature. The kinetic data followed pseudo-second order model with film diffusion process. The adsorbents were tested with Ni(II) plating wastewater in connection with the reuse and selectivity of the adsorbents. PMID:25841067

  5. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk.

    PubMed

    Awwad, N S; Gad, H M H; Ahmad, M I; Aly, H F

    2010-12-01

    A biomass agricultural waste material, rice husk (RH) was used for preparation of activated carbon by chemical activation using phosphoric acid. The effect of various factors, e.g. time, pH, initial concentration and temperature of carbon on the adsorption capacity of lanthanum and erbium was quantitatively determined. It was found that the monolayer capacity is 175.4 mg g(-1) for La(III) and 250 mg g(-1) for Er(III). The calculated activation energy of La(III) adsorption on the activated carbon derived from rice husk was equal to 5.84 kJ/mol while it was 3.6 kJ/mol for Er(III), which confirm that the reaction is mainly particle-diffusion-controlled. The kinetics of sorption was described by a model of a pseudo-second-order. External diffusion and intra-particular diffusion were examined. The experimental data show that the external diffusion and intra-particular diffusion are significant in the determination of the sorption rate. Therefore, the developed sorbent is considered as a better replacement technology for removal of La(III) and Er(III) ions from aqueous solution due to its low-cost and good efficiency, fast kinetics, as well as easy to handle and thus no or small amount of secondary sludge is obtained in this application.

  6. Ultrasound-assisted adsorption of 4-dodecylbenzene sulfonate from aqueous solutions by corn cob activated carbon.

    PubMed

    Milenković, D D; Bojić, A Lj; Veljković, V B

    2013-05-01

    This study was aimed at removal of 4-dodecylbenzene sulfonate (DBS) ions from aqueous solutions by ultrasound-assisted adsorption onto the carbonized corn cob (AC). The main attention was focused on modeling the equilibrium and kinetics of adsorption of DBS onto the AC. The AC was prepared from ground dried corn cob by carbonization and activation by carbon dioxide at 880°C for 2h in a rotary furnace. The adsorption isotherm data were fitted by the Langmuir model in both the absence and the presence of ultrasound (US). The maximum adsorption capacities of the adsorbent for DBS, calculated from the Langmuir isotherms, were 29.41mg/g and 27.78mg/g in the presence of US and its absence, respectively. The adsorption process in the absence and the presence of US obeyed the pseudo second-order kinetics. The intraparticular diffusion model indicated that the adsorption of DBS ions on the AC was diffusion controlled as well as that US promoted intraparticular diffusion. The ΔG° values, -24.03kJ/mol, -25.78kJ/mol and -27.78kJ/mol, were negative at all operating temperatures, verifying that the adsorption of DBS ions was spontaneous and thermodynamically favorable. The positive value of ΔS°=187J/molK indicated the increased randomness at the adsorbent-adsorbate interface during the adsorption of DBS ions by the AC. PMID:23187067

  7. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency. PMID:25532323

  8. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency.

  9. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    NASA Astrophysics Data System (ADS)

    Camino-Serrano, Marta; Graf Pannatier, Elisabeth; Vicca, Sara; Luyssaert, Sebastiaan; Jonard, Mathieu; Ciais, Philippe; Guenet, Bertrand; Gielen, Bert; Peñuelas, Josep; Sardans, Jordi; Waldner, Peter; Etzold, Sophia; Cecchini, Guia; Clarke, Nicholas; Galić, Zoran; Gandois, Laure; Hansen, Karin; Johnson, Jim; Klinck, Uwe; Lachmanová, Zora; Lindroos, Antti-Jussi; Meesenburg, Henning; Nieminen, Tiina M.; Sanders, Tanja G. M.; Sawicka, Kasia; Seidling, Walter; Thimonier, Anne; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Janssens, Ivan A.

    2016-10-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result of recovery from acidification. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physico-chemical and biological controls. We applied trend analysis at two levels: (1) to the entire European dataset and (2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC. The rate change in soil solution DOC ranged between -16.8 and +23 % yr-1 (median = +0.4 % yr-1) across Europe. The non-significant trends (40 %) outnumbered the increasing (35 %) and decreasing trends (25 %) across the 97 ICP Forests Level II sites. By means of multivariate statistics, we found increasing trends in DOC concentrations with increasing mean nitrate (NO3-) deposition and increasing trends in DOC concentrations with decreasing mean sulfate (SO42-) deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduction of SO42- deposition could be confirmed in low to medium N deposition areas, in agreement with observations in surface waters, this was not the case in high N deposition areas. In

  10. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.

    PubMed

    Yuan, Wei; Chan-Park, Mary B

    2012-04-01

    Although carbon nanotubes have impressive tensile properties, exploiting these properties in composites, especially those made by the common solution casting technique, seems to be elusive thus far. The reasons could be partly due to the poor nanotube dispersion and the weak nanotube/matrix interface. To solve this dual pronged problem, we combine noncovalent and covalent functionalizations of nanotubes in a single system by the design and application of a novel dispersant, hydroxyl polyimide-graft-bisphenol A diglyceryl acrylate (PI(OH)-BDA), and use them with epoxidized single-walled carbon nanotubes (O-SWNTs). Our novel PI(OH)-BDA dispersant functionalizes the nanotubes noncovalently to achieve good dispersion of the nanotubes because of the strong π-π interaction due to main chain and steric hindrance of the BDA side chain. PI(OH)-BDA also functionalizes O-SWNTs covalently because it reacts with epoxide groups on the nanotubes, as well as the cyanate ester (CE) matrix used. The resulting solution-cast CE composites show 57%, 71%, and 124% increases in Young's modulus, tensile strength, and toughness over neat CE. These values are higher than those of composites reinforced with pristine SWNTs, epoxidized SWNTs, and pristine SWNTs dispersed with PI(OH)-BDA. The modulus and strength increase per unit nanotube weight fraction, i.e., dE/dW(NT) and dσ/dW(NT), are 175 GPa and 7220 MPa, respectively, which are significantly higher than those of other nanotube/thermosetting composites (22-70 GPa and 140-3540 MPa, respectively). Our study indicates that covalent cum noncovalent functionalization of nanotubes is an effective tool for improving both the nanotube dispersion and nanotube/matrix interfacial interaction, resulting in significantly improved mechanical reinforcement of the solution-cast composites. PMID:22432973

  11. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.

    PubMed

    Yuan, Wei; Chan-Park, Mary B

    2012-04-01

    Although carbon nanotubes have impressive tensile properties, exploiting these properties in composites, especially those made by the common solution casting technique, seems to be elusive thus far. The reasons could be partly due to the poor nanotube dispersion and the weak nanotube/matrix interface. To solve this dual pronged problem, we combine noncovalent and covalent functionalizations of nanotubes in a single system by the design and application of a novel dispersant, hydroxyl polyimide-graft-bisphenol A diglyceryl acrylate (PI(OH)-BDA), and use them with epoxidized single-walled carbon nanotubes (O-SWNTs). Our novel PI(OH)-BDA dispersant functionalizes the nanotubes noncovalently to achieve good dispersion of the nanotubes because of the strong π-π interaction due to main chain and steric hindrance of the BDA side chain. PI(OH)-BDA also functionalizes O-SWNTs covalently because it reacts with epoxide groups on the nanotubes, as well as the cyanate ester (CE) matrix used. The resulting solution-cast CE composites show 57%, 71%, and 124% increases in Young's modulus, tensile strength, and toughness over neat CE. These values are higher than those of composites reinforced with pristine SWNTs, epoxidized SWNTs, and pristine SWNTs dispersed with PI(OH)-BDA. The modulus and strength increase per unit nanotube weight fraction, i.e., dE/dW(NT) and dσ/dW(NT), are 175 GPa and 7220 MPa, respectively, which are significantly higher than those of other nanotube/thermosetting composites (22-70 GPa and 140-3540 MPa, respectively). Our study indicates that covalent cum noncovalent functionalization of nanotubes is an effective tool for improving both the nanotube dispersion and nanotube/matrix interfacial interaction, resulting in significantly improved mechanical reinforcement of the solution-cast composites.

  12. Short communication: Automatic washing of hooves can help control digital dermatitis in dairy cows.

    PubMed

    Thomsen, Peter T; Ersbøll, Annette Kjær; Sørensen, Jan Tind

    2012-12-01

    The objectives of this study were to develop and test a system for automatic washing of the hooves of dairy cows and to evaluate the effect of frequent automatic washing on the prevalence of digital dermatitis (DD). An automatic hoof washer was developed in an experimental dairy herd and tested in 6 commercial dairy herds in 2 experiments (1 and 2). In the experimental herd, automatic hoof washing resulted in cleaner hooves. In experiments 1 and 2, cows were washed after each milking on the left side only, leaving the right side unwashed as a within-cow control. In experiment 1, hooves were washed with a water and 0.4% soap solution. In experiment 2, hooves were washed with water only. In each experiment, DD was scored in a hoof-trimming chute approximately 60 d after the start of hoof washing. Data were analyzed using a generalized linear mixed model. The outcome was the DD status of each leg (DD positive or DD negative). Herd and cow within herd were included as random effects, and treatment (washing or control) was included as a fixed effect. The statistical analyses showed that the odds ratio of having DD was 1.48 in the control leg compared with the washed leg in experiment 1. In experiment 2, the odds ratio of having DD was 1.27 in the control leg compared with the washed leg. We concluded that automatic washing of hooves with water and soap can help decrease the prevalence of DD in commercial dairy herds.

  13. Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002

    NASA Astrophysics Data System (ADS)

    Krawczyk, Wiesława Ewa; Bartoszewski, Stefan A.

    2008-12-01

    SummarySolute fluxes and transient carbon dioxide drawdown in a small glacierized basin investigated on Svalbard in 2002 are presented. It was a sample year within a period of significant climate warming in the Arctic. Discharge was recorded in the Scottbreen Basin (10.1 km 2), Bellsund Fjord, between July 8 and September 10, 2002. Specific runoff for this period was 0.784 m, 22% more than the mean for 1986-2001. The runoff for all of 2002 (i.e. the hydrologic year) was estimated by comparison with Bayelva, the only glacial river with longer records on Svalbard. The specific runoff for 2002 was ˜1.228 m, yielding crustal solute fluxes of 69.4 t km -2 yr -1 (25.8 m 3 km -2 yr -1). This rate is the highest chemical denudation rate reported from glacierized basins on Svalbard, and it may be underestimated because higher solute fluxes at the beginning of the melt season were not taken into account. Crustal fluxes in the fall may also have been higher because it is probable that crustal ion concentrations were increasing after recording stopped in September. The cation denudation rate was 1213 ∑ meq + m -2 yr -1 and the mean annual crustal ion concentration derived from it amounted to 981 μeq L -1. Transient CO 2 drawdown in 2002 was 5242 kg C km -2 yr -1. Most of the carbon dioxide was removed in the summer ablation waters, estimated CO 2 drawdown in the fall being only 13% of the total. Comparison with crustal solute fluxes (CSF) computed from specific conductivity in the 1980s and 1990s suggests that earlier fluxes may have been overestimated by around 19%. Comparing earlier data with the 2002 rates may confirm the influence of climate warming on increasing chemical denudation rates. It was also found that a globally derived equation relating specific conductivity to concentrations of dissolved limestone in water gave estimates of the crustal solute fluxes that were only 1.1% less than those obtained via comprehensive chemical analyses of waters and ion

  14. Hydrophilic solutes in modified carbon dioxide extraction-prediction of the extractability using molecular dynamic simulation.

    PubMed

    Günther, Martina; Maus, Martin; Wagner, Karl Gerhard; Schmidt, Peter Christian

    2005-06-01

    Super- and subcritical carbon dioxide (CO2) extractions of crude drugs were simulated by molecular modelling to predict the extractability of different hydrophilic plant constituents under various extraction conditions. The CO2 extraction fluids were simulated either with pure CO2 or with solvent modified CO2 at different pressures and temperatures. Molecular modelling resulted in three different solubility parameters: the total solubility parameter delta and the partial solubility parameters delta(d) for the van der Waals and delta(EL) for the polar forces. Thus, delta(EL) enabled the estimation of the polarity of the extraction fluids and the solute molecules. If the value of delta(EL) of the extraction fluid reached the value of the solute molecule in the crude drug, i.e. minimum extraction value, the compound was soluble at the distinct extraction conditions. For a further increase in yield of the hydrophilic solutes, the polarity of the extraction fluid had to be increased, too. That means delta(EL) of the fluid exceeded the minimum extraction value. All simulations were verified by CO2 extractions of the secondary roots of Harpagophytum procumbens (harpagoside, stachyose) and the seeds of Aesculus hippocastanum (aescin). CO2 extractions of the flowers of Matricaria recutita ((-)-alpha-bisabolol) were obtained from literature data. These four constituents with different properties, like molecular size and the allocation of polar functional groups were extracted, analysed, simulated and the extract content was correlated with the extraction fluid used, respectively. PMID:15911229

  15. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon

    NASA Astrophysics Data System (ADS)

    Asgari, Ghorban; Samiee, Fateme; Ahmadian, Mohammad; Poormohammadi, Ali; solimanzadeh, Bahman

    2014-11-01

    The efficiency of granular activated carbon (GAC) was investigated in this study as a catalyst for the elimination of pentachlorophenol (PCP) from contaminated streams in a laboratory-scale semi-batch reactor. The influence of important parameters including solution pH (2-10), radical scavenger (tert-butanol, 0.04 mol/L), catalyst dosage (0.416-8.33 g/L), initial PCP concentration (100-1000 mg/L) and ozone flow rate (2.3-12 mg/min) was examined on the efficiency of the catalytic ozonation process (COP) in degradation and mineralization of PCP in aqueous solution. The experimental results showed that catalytic ozonation with GAC was most effective at pH of 8 with ozone flow rate of 12 mg/min and a GAC dosage of 2 g. Compared to the sole ozonation process (SOP), the removal levels of PCP and COP were, 98, and 79 %, respectively. The degradation rate of kinetics was also investigated. The results showed that using a GAC catalyst in the ozonation of PCP produced an 8.33-fold increase in rate kinetic compared to the SOP under optimum conditions. Tert-butanol alcohol (TBA) was used as a radical scavenger. The results demonstrated that COP was affected less by TBA than by SOP. These findings suggested that GAC acts as a suitable catalyst in COP to remove refractory pollutants from aqueous solution.

  16. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents

    PubMed Central

    Yu, Fei; Ma, Jie; Han, Sheng

    2014-01-01

    Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.3–8.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.3–8.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs. PMID:24937315

  17. Closed circuit rebreathing to achieve inert gas wash-in for multiple breath wash-out

    PubMed Central

    O'Neill, Katherine; Downey, Damian G.; Elborn, J. Stuart; Bell, Nicholas J.; Smith, Jaclyn; Owers-Bradley, John

    2016-01-01

    Multiple breath wash-out (MBW) testing requires prior wash-in of inert tracer gas. Wash-in efficiency can be enhanced by a rebreathing tracer in a closed circuit. Previous attempts to deploy this did not account for the impact of CO2 accumulation on patients and were unsuccessful. We hypothesised that an effective rebreathe wash-in could be delivered and it would not alter wash-out parameters. Computer modelling was used to assess the impact of the rebreathe method on wash-in efficiency. Clinical testing of open and closed circuit wash-in–wash-out was performed in healthy controls and adult patients with cystic fibrosis (CF) using a circuit with an effective CO2 scrubber and a refined wash-in protocol. Wash-in efficiency was enhanced by rebreathing. There was no difference in mean lung clearance index between the two wash-in methods for controls (6.5 versus 6.4; p=0.2, n=12) or patients with CF (10.9 versus 10.8; p=0.2, n=19). Test time was reduced by rebreathe wash-in (156 versus 230 s for CF patients, p<0.001) and both methods were well tolerated. End wash-in CO2 was maintained below 2% in most cases. Rebreathe–wash-in is a promising development that, when correctly deployed, reduces wash-in time and facilitates portable MBW testing. For mild CF, wash-out outcomes are equivalent to an open circuit. PMID:27730167

  18. RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS

    DOEpatents

    Igelsrud, I.; Stephen, E.F.

    1959-08-11

    ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.

  19. Sorption of uranium from carbonate solutions by thin-layer sorbents based on titanium hydroxoperoxide and activated carbon, and the elution of uranium

    SciTech Connect

    Prishchepo, R.S.; Betenekov, N.D.; Pershko, A.A.; Vasilevskii, V.A.

    1986-05-01

    This paper studies the sorption of uranium from carbonate solutions and the elution of uranium under static conditions, on thin-layer inorganic sorbents obtained by homogeneous precipitation of titanium hydroperoxide on SKT activated carbon. The exchange capacity of the sorbents for uranium has been determined in relation to the quantity of titanium in the film, the sorbent particle size, and the contact time. Conditions have been selected for the elution.

  20. EFRT M-12 Issue Resolution: Solids Washing

    SciTech Connect

    Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. Two operating scenarios were evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-VSL-T01A/B ultrafiltration feed vessels, identified as Integrated Test A. The second scenario has caustic leaching conducted in the UFP-VSL-T02A ultrafiltration feed preparation vessel, identified as Integrated Test B. Washing operations in PEP Integrated Tests A and B were conducted successfully as per the approved run sheets. However, various minor instrumental problems occurred, and some of the process conditions specified in the run sheet were not met during the wash operations, such as filter-loop flow-rate targets not being met. Five analytes were selected based on full solubility and monitored in the post-caustic-leach wash as successful indicators of washing efficiency. These were aluminum, sulfate, nitrate, nitrite, and free hydroxide. Other analytes, including sodium, oxalate, phosphate, and total dissolved solids, showed indications of changing solubility; therefore, they were unsuitable for monitoring washing efficiency. In the post-oxidative-leach wash, two analytes with full solubility were selected as suitable indicators of washing

  1. Hand washing: changes in the skin flora.

    PubMed

    de Almeida e Borges, Lizandra Ferreira; Silva, Bruno Leonardo; Gontijo Filho, Paulo Pinto

    2007-08-01

    Frequent hand washing may result in skin damage and increase the number of microorganisms that colonize the skin. The purpose of this study was to evaluate changes in total flora of healthy and damaged hands that were caused by the use of gloves, soap, and antiseptics. Samples were collected from the healthy and damaged hands of 30 health care professionals before and after washing with water and nonmedicated soap for the technique of sterile polyethylene bag. Fifteen additional volunteers (technicians and students) were asked to wash their hands 20 times with water and soap; those with complaints of irritation were evaluated separately. Damaged or healthy hands did not present statistically significant differences (P > .05) in terms of qualitative analysis of epidemiologically important microorganisms; however, washing with water and soap was effective only for healthy hands. In short, the water and soap washing of damaged hands was not effective in reducing their contamination.

  2. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue.

    PubMed

    Li, Yaxin; Zhang, Xian; Yang, Ruiguang; Li, Guiying; Hu, Changwei

    2016-01-01

    The treatment of dye wastewater by activated carbon (AC) prepared from rice husk residue wastes was studied. Batch adsorption studies were conducted to investigate the effects of contact time, initial concentration (50-450 mg/L), pH (3-11) and temperature (30-70 °C) on the removal of methylene blue (MB), neutral red, and methyl orange. Kinetic investigation revealed that the adsorption of dyes followed pseudo-second-order kinetics. The results suggested that AC was effective to remove dyes, especially MB, from aqueous solutions. Desorption studies found that chemisorption by the adsorbent might be the major mode of dye removal. Fourier transform infrared results suggested that dye molecules were likely to combine with the O-H and P=OOH groups of AC. PMID:26942535

  3. Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Li, M. G.; Chen, Y. W.; Cheng, R. M.; Huang, S. M.; Pan, L. K.; Sun, Z.

    2006-07-01

    Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers (CNTs-CNFs) composite film electrodes has been demonstrated. The large area CNTs-CNFs film was directly grown on Ni plate by low pressure and low temperature thermal chemical vapor deposition. The CNTs-CNFs electrodes have great advantages such as low cost, easy operation, long-term reproducibility, and integrity of monolithic CNTs-CNFs film and current collector. Batch-mode experiments at low voltage (0.4-2V) were conducted in a continuously recycling system to investigate the electrosorption process. Purification of water with good reproducibility was achieved because of optimal pore size distribution of CNTs-CNFs composite films.

  4. Photosensitized Reduction of Carbon Dioxide in Solution Using Noble-Metal Clusters for Electron Transfer

    NASA Astrophysics Data System (ADS)

    Toshima, Naoki; Yamaji, Yumi; Teranishi, Toshiharu; Yonezawa, Tetsu

    1995-03-01

    Carbon dioxide was reduced to methane by visible-light irradiation of a solution composed of tris(bipyridine)ruthenium(III) as photosensitizer, ethylenediaminetetraacetic acid disodium salt as sacrificial reagent, methyl viologen as electron relay, and a colloidal dispersion of polymer-protected noble-metal clusters, prepared by alcohol-reduction, as catalyst. Among the noble-metal clusters examined, Pt clusters showed the highest activity for the formation of methane as well as hydrogen. In order to improve the activity, oxidized clusters and bimetallic clusters were also applied. For example, the CH4 yield in 3-h irradiation increased from 51 x 10-3 μmol with unoxidized Pt clusters to 72 x 10-3 μmol with partially oxidized ones. In the case of Pt/Ru bimetalic systems, the improvement of the catalytic activity by air treatment was much greater than in case of monometallic clusters.

  5. A solution processed top emission OLED with transparent carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Mo; Lefevre, Florent; Shih, Ishiang; Izquierdo, Ricardo

    2010-04-01

    Top emission organic light emitting diodes (OLEDs) with carbon nanotubes (CNTs) as top electrodes were fabricated and characterized. Devices were fabricated on glass substrates with evaporated bottom Al/LiF cathodes, a spin coated organic emissive layer and a PEDOT-PSS hole injection layer. Transparent thin CNT films were deposited on top of the emission layer to form the anode by micro-contact printing with a polydimethylsiloxane stamp. A very good device performance was obtained, with a peak luminance of 3588 cd m - 2 and a maximum current efficiency of 1.24 cd A - 1. This work shows the possibility of using CNTs as transparent electrodes to replace ITO in organic semiconductor devices. Furthermore, the top emission nature of such devices offers a broader range of applications of CNTs on any type of substrate. By combining with solution processed organic materials, it is anticipated that lower cost fabrication will be possible through roll-to-roll manufacture.

  6. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution.

    PubMed

    Kabbashi, Nassereldeen A; Atieh, Muataz A; Al-Mamun, Abdullah; Mirghami, Mohamed E S; Alam, M D Z; Yahya, Noorahayu

    2009-01-01

    The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.

  7. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Yu, Yao; Tang, Jie; Liu, Lin; Wu, Yue

    2016-05-01

    Carbon cloth (CC) is an inexpensive and highly conductive textile with excellent mechanical flexibility and strength; it holds great promise as an electrode material for flexible supercapacitors. However, pristine CC has such a low surface area and poor electrochemical activity that the energy storage capability is usually very poor. Herein, we report a green method, two-step electrochemical activation in an aqueous solution of inorganic salts, to significantly enhance the capacitance of CC for supercapacitor application. Micro-cracks, exfoliated carbon fiber shells, and oxygen-containing functional groups (OFGs) were introduced onto the surface of the carbon filament. This resulted in an enhancement of over two orders of magnitude in capacitance compared to that of the bare CC electrode, reaching up to a maximum areal capacitance of 505.5 mF cm-2 at the current density of 6 mA cm-2 in aqueous H2SO4 electrolyte. Electrochemical reduction of CC electrodes led to the removal of most electrochemically unstable surface OFGs, resulting in superior charging/discharging rate capability and excellent cycling stability. Although the activated CC electrode contained a high-level of surface oxygen functional groups (~15 at%), it still exhibited a remarkable charging-discharging rate capability, retaining ~88% of the capacitance when the charging rate increased from 6 to 48 mA cm-2. Moreover, the activated CC electrode exhibited excellent cycling stability with ~97% capacitance remaining after 10 000 cycles at a current density of 24 mA cm-2. A symmetrical supercapacitor based on the activated CC exhibited an ideal capacitive behavior and fast charge-discharge properties. Such a simple, environment-friendly, and cost-effective strategy to activate CC shows great potential in the fabrication of high-performance flexible supercapacitors.Carbon cloth (CC) is an inexpensive and highly conductive textile with excellent mechanical flexibility and strength; it holds great promise as

  8. Carbon nanotubes dispersed in aqueous solution by ruthenium(ii) polypyridyl complexes

    NASA Astrophysics Data System (ADS)

    Huang, Kewei; Saha, Avishek; Dirian, Konstantin; Jiang, Chengmin; Chu, Pin-Lei E.; Tour, James M.; Guldi, Dirk M.; Martí, Angel A.

    2016-07-01

    Cationic ruthenium(ii) polypyridyl complexes with appended pyrene groups have been synthesized and used to disperse single-walled carbon nanotubes (SWCNT) in aqueous solutions. To this end, planar pyrene groups enable association by means of π-stacking onto carbon nanotubes and, in turn, the attachment of the cationic ruthenium complexes. Importantly, the ionic nature of the ruthenium complexes allows the formation of stable dispersions featuring individualized SWCNTs in water as confirmed in a number of spectroscopic and microscopic assays. In addition, steady-state photoluminescence spectroscopy was used to probe the excited state interactions between the ruthenium complexes and SWCNTs. These studies show that the photoluminescence of both, that is, of the ruthenium complexes and of SWCNTs, are quenched when they interact with each other. Pump-probe transient absorption experiments were performed to shed light onto the nature of the photoluminescence quenching, showing carbon nanotube-based bands with picosecond lifetimes, but no new bands which could be unambigously assigned to photoinduced charge transfer process. Thus, from the spectroscopic data, we conclude that quenching of the photoluminescence of the ruthenium complexes is due to energy transfer to proximal SWCNTs.Cationic ruthenium(ii) polypyridyl complexes with appended pyrene groups have been synthesized and used to disperse single-walled carbon nanotubes (SWCNT) in aqueous solutions. To this end, planar pyrene groups enable association by means of π-stacking onto carbon nanotubes and, in turn, the attachment of the cationic ruthenium complexes. Importantly, the ionic nature of the ruthenium complexes allows the formation of stable dispersions featuring individualized SWCNTs in water as confirmed in a number of spectroscopic and microscopic assays. In addition, steady-state photoluminescence spectroscopy was used to probe the excited state interactions between the ruthenium complexes and SWCNTs

  9. Electrodeposition of tantalum on carbon black in non-aqueous solution and its electrocatalytic properties.

    PubMed

    Jo, Ara; Lee, Youngmi; Lee, Chongmok

    2016-08-24

    In this work, we synthesized tantalum (Ta) nanoclusters on carbon black (Ta/CB) via simple electrodeposition in non-aqueous solvent, acetonitrile (ACN) at ambient temperature. Transmission electron microscopy (TEM) images showed that the electrodeposited Ta nanoclusters consisted of tiny Ta nanoparticles. X-ray photoelectron spectroscopy (XPS) result represented that the outermost Ta formed the native oxide on Ta/CB due to its ambient exposure to air. Electrochemical catalytic properties of prepared Ta/CB on glassy carbon electrode (Ta/CB/GC) were investigated toward reductions of oxygen and hydrogen peroxide, and oxidations of ascorbic acid and dopamine. For oxygen reduction reaction (ORR) in acid, Ta/CB/GC represented a decent electrocatalytic performance which was better or comparable to bare Pt. The operational stability in acidic condition was maintained up to 500 repetitive potential cycles presumably due to the protective native Ta oxide layer. Ta/CB/GC also showed high amperometric sensitivity (4.5 (±0.16) mA mM(-1) cm(-2), n = 5) for reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (PBS, pH 7.4). In addition, Ta/CB/GC was demonstrated for the possibility of simultaneous detection of ascorbic acid and dopamine using differential pulse voltammetry (DPV).

  10. Hybrid multiwalled carbon nanotube--Laponite sorbent for removal of methylene blue from aqueous solutions.

    PubMed

    Loginov, Maksym; Lebovka, Nikolai; Vorobiev, Eugene

    2014-10-01

    The article discusses adsorption of methylene blue dye by novel hybrid sorbent consisting of Laponite and multiwalled carbon nanotubes. The sorbent was obtained by sonication of the aqueous suspensions of nanotubes at different concentrations of Laponite. The methods of the methylene blue adsorption, dead-end membrane filtration and environmental scanning electron microscopy were used for the sorbent characterization. It may be concluded from the results of filtration and adsorption experiments that sonication of mixed aqueous suspensions of Laponite and multiwalled carbon nanotubes leads to the formation of hybrid particles (ML-particles) with a core-shell structure. The size and the shape of hybrid particles were determined by nanotubes, while their adsorption properties were determined by Laponite particles attached to the surface of nanotubes. The Laponite content in hybrid particles was corresponding to the Laponite to nanotubes ratio in the initial suspension X(L)=0-1. Due to the presence of Laponite in the sorbent, its adsorbing capacity was much higher as compared to the adsorbing capacity of pure nanotubes, and it was directly proportional to the Laponite content. This sorbent may be used either as a purifying additive or as a filtering layer if it is deposited on the surface of a supporting membrane. Due to relatively large size of hybrid particles, they can be easily separated from the purified solution by filtration or centrifugation.

  11. Salt Solutions in Carbon Nanotubes: The Role of Cation- π Interactions

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Anh; Mortuza, Golam; Wood, Brandon; Lau, Edmond; Ogitsu, Tadashi; Buchsbaum, Steven; Siwy, Zuzanna; Fornasiero, Francesco; Schwegler, Eric

    Understanding the structure of aqueous electrolytes at interfaces is essential for predicting and optimizing device performances for a wide variety of emerging energy and environmental technologies. In this work, we investigate the structure of two common salt solutions, NaCl and KCl, at a hydrophobic interface within narrow carbon nanotubes (CNTs). Using a combination of first-principles and classical molecular dynamics simulations, we find that the solvation structure of the cations in the CNTs can deviate substantially from the conventional weakly interacting hydrophobic picture. Instead, interactions between solvated ions and the π-orbitals of the CNTs are found to play a critically important role, with the ion solvation structure ultimately determined by a subtle interplay between cation- π interactions and the intrinsic flexibility of the solvation shell. In the case of K+, these effects result in an unusually strong propensity to partially desolvate and reside closer to the carbon wall than either Na+ and Cl-, in sharp contrast to the known ion ordering at the water-vapor interface. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  12. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process.

    PubMed

    Wang, Huijiao; Yuan, Shi; Zhan, Juhong; Wang, Yujue; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin

    2015-09-01

    Electro-peroxone (E-peroxone) is a novel electrocatalytic ozonation process that combines ozonation and electrolysis process to enhance pollutant degradation during water and wastewater treatment. This enhancement has been mainly attributed to several mechanisms that increase O3 transformation to ·OH in the E-peroxone system, e.g., electro-generation of H2O2 from O2 at a carbon-based cathode and its subsequent peroxone reaction with O3 to ·OH, electro-reduction of O3 to ·OH at the cathode, and O3 decomposition to ·OH at high local pH near the cathode. To get more insight how these mechanisms contribute respectively to the enhancement, this study investigated total organic carbon (TOC) elimination from oxalic acid (OA) solutions by the E-peroxone process. Results show that the E-peroxone process significantly increased TOC elimination rate by 10.2-12.5 times compared with the linear addition of the individual rates of corresponding ozonation and electrolysis process. Kinetic analyses reveal that the electrochemically-driven peroxone reaction is the most important mechanism for the enhanced TOC elimination rate, while the other mechanisms contribute minor to the enhancement by a factor of 1.6-2.5. The results indicate that proper selection of electrodes that can effectively produce H2O2 at the cathode is critical to maximize TOC elimination in the E-peroxone process.

  13. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process.

    PubMed

    Wang, Huijiao; Yuan, Shi; Zhan, Juhong; Wang, Yujue; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin

    2015-09-01

    Electro-peroxone (E-peroxone) is a novel electrocatalytic ozonation process that combines ozonation and electrolysis process to enhance pollutant degradation during water and wastewater treatment. This enhancement has been mainly attributed to several mechanisms that increase O3 transformation to ·OH in the E-peroxone system, e.g., electro-generation of H2O2 from O2 at a carbon-based cathode and its subsequent peroxone reaction with O3 to ·OH, electro-reduction of O3 to ·OH at the cathode, and O3 decomposition to ·OH at high local pH near the cathode. To get more insight how these mechanisms contribute respectively to the enhancement, this study investigated total organic carbon (TOC) elimination from oxalic acid (OA) solutions by the E-peroxone process. Results show that the E-peroxone process significantly increased TOC elimination rate by 10.2-12.5 times compared with the linear addition of the individual rates of corresponding ozonation and electrolysis process. Kinetic analyses reveal that the electrochemically-driven peroxone reaction is the most important mechanism for the enhanced TOC elimination rate, while the other mechanisms contribute minor to the enhancement by a factor of 1.6-2.5. The results indicate that proper selection of electrodes that can effectively produce H2O2 at the cathode is critical to maximize TOC elimination in the E-peroxone process. PMID:25989593

  14. Electrodeposition of tantalum on carbon black in non-aqueous solution and its electrocatalytic properties.

    PubMed

    Jo, Ara; Lee, Youngmi; Lee, Chongmok

    2016-08-24

    In this work, we synthesized tantalum (Ta) nanoclusters on carbon black (Ta/CB) via simple electrodeposition in non-aqueous solvent, acetonitrile (ACN) at ambient temperature. Transmission electron microscopy (TEM) images showed that the electrodeposited Ta nanoclusters consisted of tiny Ta nanoparticles. X-ray photoelectron spectroscopy (XPS) result represented that the outermost Ta formed the native oxide on Ta/CB due to its ambient exposure to air. Electrochemical catalytic properties of prepared Ta/CB on glassy carbon electrode (Ta/CB/GC) were investigated toward reductions of oxygen and hydrogen peroxide, and oxidations of ascorbic acid and dopamine. For oxygen reduction reaction (ORR) in acid, Ta/CB/GC represented a decent electrocatalytic performance which was better or comparable to bare Pt. The operational stability in acidic condition was maintained up to 500 repetitive potential cycles presumably due to the protective native Ta oxide layer. Ta/CB/GC also showed high amperometric sensitivity (4.5 (±0.16) mA mM(-1) cm(-2), n = 5) for reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (PBS, pH 7.4). In addition, Ta/CB/GC was demonstrated for the possibility of simultaneous detection of ascorbic acid and dopamine using differential pulse voltammetry (DPV). PMID:27496997

  15. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical

  16. 49 CFR 230.60 - Time of washing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.60 Time of washing. (a) Frequency of washing. All boilers shall thoroughly be washed... inspection. The date of the boiler wash shall be noted on the FRA Form No. 1 or FRA Form No. 3. (See...

  17. 49 CFR 230.60 - Time of washing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.60 Time of washing. (a) Frequency of washing. All boilers shall thoroughly be washed... inspection. The date of the boiler wash shall be noted on the FRA Form No. 1 or FRA Form No. 3. (See...

  18. 49 CFR 230.60 - Time of washing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.60 Time of washing. (a) Frequency of washing. All boilers shall thoroughly be washed... inspection. The date of the boiler wash shall be noted on the FRA Form No. 1 or FRA Form No. 3. (See...

  19. 49 CFR 230.60 - Time of washing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.60 Time of washing. (a) Frequency of washing. All boilers shall thoroughly be washed... inspection. The date of the boiler wash shall be noted on the FRA Form No. 1 or FRA Form No. 3. (See...

  20. 49 CFR 230.60 - Time of washing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.60 Time of washing. (a) Frequency of washing. All boilers shall thoroughly be washed... inspection. The date of the boiler wash shall be noted on the FRA Form No. 1 or FRA Form No. 3. (See...

  1. Kinetics of catalytic oxidation of sulfide in aqueous solutions on activated carbon and slime of green lye

    SciTech Connect

    Yakovlev, V.A.; Andreev, S.B.

    1993-12-20

    The kinetics of heterogeneous catalytic oxidation of sulfide ion in alkali solutions by dissolved oxygen with activated carbon and the carbon component of the slime of green lye (the waste of paper and pulp production) as the catalysts has been studied experimentally. The apparent and actual rate constants of the oxidation are measured within the framework of the model of the first order reaction under diffusive limitations.

  2. Genesis Eco Systems, Inc. soil washing process

    SciTech Connect

    Cena, R.J.

    1994-10-11

    The Genesis soil washing system is an integrated system of modular design allowing for maximum material handling capabilities, with optimized use of space for site mobility. The Surfactant Activated Bio-enhanced Remediation Equipment-Generation 1 (SABRE-1, Patent Applied For) modification was developed specifically for removing petroleum byproducts from contaminated soils. Scientifically formulated surfactants, introduced by high pressure spray nozzles, displace the contaminant from the surface of the soil particles into the process solution. Once the contaminant is dispersed into the liquid fraction of the process, it is either mechanically removed, chemically oxidized, or biologically oxidized. The contaminated process water is pumped through the Genesis Biosep (Patent Applied For) filtration system where the fines portion is flocculated, and the contaminant-rich liquid portion is combined with an activated mixture of nutrients and carefully selected bacteria to decompose the hydrocarbon fraction. The treated soil and dewatered fines are transferred to a bermed stockpile where bioremediation continues during drying. The process water is reclaimed, filtered, and recycled within the system.

  3. User-oriented batch reactor solutions to the homogeneous surface diffusion model for different activated carbon dosages.

    PubMed

    Zhang, Qiong; Crittenden, John; Hristovski, Kiril; Hand, David; Westerhoff, Paul

    2009-04-01

    This paper presents a simplified approach and user-oriented solutions to the homogeneous surface diffusion model (HSDM) equations for determining the surface diffusivity using a batch reactor system. Once the surface diffusivity is known, this model could also be used to estimate the performance of activated carbon (AC) applications as a function of contact time. In addition, fixed-bed performance can be predicted using the user-oriented solutions to the HSDM for fixed beds. The step-by-step procedure for determining surface diffusion coefficients of an activated carbon adsorber, which was initially developed by Hand, Crittenden and Thacker in 1983 for a carbon dose where C(equilibrium)/C(0)=0.5, is modified to allow calculations for different carbon dosages. This modification provides solutions to the HSDM equations for different activated carbon dosages. The solutions to the HSDM framework are provided as simplified algebraic equations suitable for quick and easy estimations of D(S). The excel spread sheet is provided in the supplemental information and a detailed example is discussed. PMID:19249812

  4. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon.

    PubMed

    Demirbas, E; Kobya, M; Sulak, M T

    2008-09-01

    The preparation of activated carbon from apricot stone with H(2)SO(4) activation and its ability to remove a basic dye, astrazon yellow 7 GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 degrees C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions. PMID:18093829

  5. Solution-processed carbon nanotube thin-film complementary static random access memory

    NASA Astrophysics Data System (ADS)

    Geier, Michael L.; McMorrow, Julian J.; Xu, Weichao; Zhu, Jian; Kim, Chris H.; Marks, Tobin J.; Hersam, Mark C.

    2015-11-01

    Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties, making them one of the most promising candidates for solution-processable, high-performance integrated circuits. In particular, advances in the enrichment of high-purity semiconducting SWCNTs have enabled recent circuit demonstrations including synchronous digital logic, flexible electronics and high-frequency applications. However, due to the stringent requirements of the transistors used in complementary metal-oxide-semiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors, the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality. Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors.

  6. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  7. Nature of Glycine and Its α-Carbon Radical in Aqueous Solution: A Theoretical Investigation.

    PubMed

    Wood, Geoffrey P F; Gordon, Mark S; Radom, Leo; Smith, David M

    2008-10-14

    Quantum chemistry calculations and classical molecular dynamics simulations have been used to examine the equilibria in solution between the neutral and zwitterionic forms of glycine and also of the glycyl radical. The established preference (by 30 kJ mol(-1)) for the zwitterion of glycine was confirmed by both the quantum chemical calculations and the classical molecular dynamics simulations. The best agreement with experiment was derived from thermodynamic integration calculations of explicitly solvated systems, which gives a free energy difference of 36.6 ± 0.6 kJ mol(-1). In contrast, for the glycyl radical in solution, the neutral form is preferred, with a calculated free energy difference of 54.8 ± 0.6 kJ mol(-1). A detailed analysis of the microsolvation environments of each species was carried out by evaluating radial distribution functions and hydrogen bonding patterns. This analysis provides evidence that the change in preference between glycine and glycyl radical is due to the inherent gas-phase stability of the neutral α-carbon radical rather than to any significant difference in the solvation behavior of the constituent species. PMID:26620181

  8. Removal of 2,4-dichlorophenol from aqueous solution by static-air-activated carbon fibers.

    PubMed

    Wang, Jian-Ping; Chen, Yong-Zhen; Feng, Hui-Min; Zhang, Shu-Juan; Yu, Han-Qing

    2007-09-01

    Static-air-activated carbon fibers (ACFs) with lotus-root-like axially porous structure were used to adsorb 2,4-dichlorophenol (2,4-DCP) from aqueous solution. The adsorption isotherm was evaluated in the pH range 3.0-11.0. Results indicated that both Langmuir and Redlich-Peterson adsorption isotherms were appropriate for describing the adsorption characteristics of 2,4-DCP at various pH values and that lower pH values were favorable for adsorption. The adsorption of 2,4-DCP was controlled by the synergetic effects of pi-pi interaction and electrostatic attraction, and the former was dominant. Breakthrough curve results showed that the 2,4-DCP removal efficiency increased with an increase in the empty-bed contact time (EBCT). An EBCT of 0.660 min was sufficient for the adsorption of 2,4-DCP onto ACF, indicating a high adsorption rate. Desorption experiment results revealed that the ACF saturated with 2,4-DCP could be regenerated effectively by a 0.001 M NaOH solution. PMID:17509602

  9. Elution of zinc in dust discharged from electric arc furnace in carbonic acid solution

    NASA Astrophysics Data System (ADS)

    Yokoyama, S.; Sasaki, T.; Sasano, J.; Izaki, M.

    2012-03-01

    The dust discharged from an electric arc furnace (EAF) is a valuable resource of zinc. As a fundamental study of extraction of zinc, iron and chlorine in the EAF dust, the elution behavior of them in carbonic acid solution was studied. The influence of the weight of the EAF dust on the elution behavior was examined in this study. Experiment was carried out putting the EAF dust from 1 g to 200 g in weight into 1 L of water that was introduced by CO2. Generally, the pH in the aqueous solution increased with an increase in weight of the additive EAF dust. Maximums of the eluted concentrations of zinc and chloride ion increased with an increase in the weight of the additive EAF dust whereas the extraction ratios of both of them decreased with an increase in the weight of the additive EAF dust. Iron in the EAF dust remained in the dust without elution. The limit of extraction of zinc from the EAF dust to water was given by the solubilities of ZnFe2O4 and ZnO expressed by eq. (6) and eq. (9) respectively.

  10. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry.

    PubMed

    Engel, Maya; Chefetz, Benny

    2016-06-01

    Increasing use of carbon nanotubes (CNTs) has led to their introduction into the environment where they can interact with dissolved organic matter (DOM). This study focuses on solution chemistry effects on DOM adsorption/desorption processes by single-walled CNTs (SWCNTs). Our data show that DOM adsorption is controlled by the attachment of DOM molecules to the SWCNTs, and that the initial adsorption rate is dependent on solution parameters. Adsorbed amount of DOM at high ionic strength was limited, possibly due to alterations in SWCNT bundling. Desorption of DOM performed at low pH resulted in additional DOM adsorption, whereas at high pH, adsorbed DOM amount decreased. The extent of desorption conducted at increased ionic strength was dependent on pre-adsorbed DOM concentration: low DOM loading stimulated additional adsorption of DOM, whereas high DOM loading facilitated release of adsorbed DOM. Elevated ionic strength and increased adsorbed amount of DOM reduced the oxidation temperature of the SWCNTs, suggesting that changes in the assembly of the SWCNTs had occurred. Moreover, DOM-coated SWCNTs at increased ionic strength provided fewer sites for atrazine adsorption. This study enhances our understanding of DOM-SWCNT interactions in aqueous systems influenced by rapid changes in salinity, and facilitates potential use of SWCNTs in water-purification technologies.

  11. Solution-processed carbon nanotube thin-film complementary static random access memory.

    PubMed

    Geier, Michael L; McMorrow, Julian J; Xu, Weichao; Zhu, Jian; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2015-11-01

    Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties, making them one of the most promising candidates for solution-processable, high-performance integrated circuits. In particular, advances in the enrichment of high-purity semiconducting SWCNTs have enabled recent circuit demonstrations including synchronous digital logic, flexible electronics and high-frequency applications. However, due to the stringent requirements of the transistors used in complementary metal-oxide-semiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors, the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality. Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. PMID:26344184

  12. Direct Assembly of Modified Proteins on Carbon Nanotubes in an Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol; Harrison, Joycelyn S.

    2007-01-01

    Carbon nanotubes (CNTs) have superior mechanical and electrical properties that have opened up many potential applications. However, poor dispersibility and solubility, due to the substantial van der Waals attraction between tubes, have prevented the use of CNTs in practical applications, especially biotechnology applications. Effective dispersion of CNTs into small bundles or individual tubes in solvents is crucial to ensure homogeneous properties and enable practical applications. In addition to dispersion of CNTs into a solvent, the selection of appropriate solvent, which is compatible with a desired matrix, is an important factor to improve the mechanical, thermal, optical, and electrical properties of CNT-based fibers and composites. In particular, dispersion of CNTs into an aqueous system has been a challenge due to the hydrophobic nature of CNTs. Here we show an effective method for dispersion of both single wall CNTs (SWCNTs) and few wall CNTs (FWCNTs) in an aqueous buffer solution. We also show an assembly of cationized Pt-cored ferritins on the well dispersed CNTs in an aqueous buffer solution.

  13. Analytical solution of geological carbon sequestration under constant pressure injection into a horizontal radial reservoir

    NASA Astrophysics Data System (ADS)

    Jhang, R.; Liou, T.

    2013-12-01

    Carbon capture and sequestration (CCS) is believed to be an economically feasible technology to mitigate global warming by capturing carbon dioxide (CO2), the major component of greenhouse gases, from the atmosphere and injecting it into deep geological formations.Several mechanisms can help trap CO2 in the pore space of a geological reservoir, stratigraphic and structural trapping, hydrodynamic trapping, and geochemical trapping.Besides these trapping mechanisms, another important issue that deserves careful attention is the risk of CO2 leakage. The common ';constant injection rate' scenario may induce high pressure buildup that will endanger the mechanical integrity as well as the sealing capability of the cap rock. Instead of injecting CO2 at a constant mass rate, CO2 can be injected into the reservoir by fixing the pressure (usually the bottom-hole pressure) in the injection borehole. By doing so, the inevitable pressure buildup associated with the constant injection scheme can be completely eliminated in the constant pressure injection scheme. In this paper, a semi-analytical solution for CO2 injection with constant pressure was developed. For simplicity, structural and geochemical trapping mechanisms were not considered. Therefore, a horizontal reservoir with infinite radial extent was considered. Prior to injection, the reservoir is fully saturated with the formation brine. It is assumed that CO2 does not mix with brine such that a sharp interface is formed once CO2 invades the brine-saturated pores. Because of the density difference between CO2 and brine, CO2 resides above the interface. Additional assumptions were also made when building up the brine and CO2 mass balance equations: (1) both of the fluids and the geological formations are incompressible, (2) capillary pressure is neglected, (3)there is no fluid flow in the vertical direction, and the horizontal flow satisfies the Darcy's law.In order to solve for the height of brine-CO2 interface, the two

  14. Alternative Antimicrobial Commercial Egg Washing Procedures.

    PubMed

    Hudson, Lauren K; Harrison, Mark A; Berrang, Mark E; Jones, Deana R

    2016-07-01

    Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures were evaluated for Salmonella reduction: pH 11 at 48.9°C (industry standard), pH 11 at ambient temperature (∼20°C), pH 6 at 48.9°C, and pH 6 at ambient temperature. Alkaline washes contained potassium hydroxide-based detergent, while pH 6 washes contained approximately 200 ppm of chlorine and a proprietary chlorine stabilizer (T-128). When eggs were inoculated by immersion in a cell suspension of Salmonella Enteritidis and Salmonella Typhimurium, all treatments resulted in a slight and similar reduction of Salmonella numbers (approximately 0.77 log CFU/ml of shell emulsion reduction). When eggs were inoculated by droplet on the shell surface, Salmonella counts were reduced by approximately 5 log CFU when washed with chlorine plus the chlorine stabilizer at both temperatures and with the alkaline wash at the high temperature. The reductions in Salmonella by these treatments were not significantly (P > 0.05) different from each other but were significantly (P < 0.05) more than the reduction observed for the 20°C alkaline treatment and 20°C control water treatments. Ambient temperature acidic washes reduced Salmonella contamination to the same degree as the standard pH 11 warm water wash and may be a viable option to reduce cost, increase shelf life, and slow pathogen growth in and on shell eggs. PMID:27357042

  15. Alternative Antimicrobial Commercial Egg Washing Procedures.

    PubMed

    Hudson, Lauren K; Harrison, Mark A; Berrang, Mark E; Jones, Deana R

    2016-07-01

    Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures were evaluated for Salmonella reduction: pH 11 at 48.9°C (industry standard), pH 11 at ambient temperature (∼20°C), pH 6 at 48.9°C, and pH 6 at ambient temperature. Alkaline washes contained potassium hydroxide-based detergent, while pH 6 washes contained approximately 200 ppm of chlorine and a proprietary chlorine stabilizer (T-128). When eggs were inoculated by immersion in a cell suspension of Salmonella Enteritidis and Salmonella Typhimurium, all treatments resulted in a slight and similar reduction of Salmonella numbers (approximately 0.77 log CFU/ml of shell emulsion reduction). When eggs were inoculated by droplet on the shell surface, Salmonella counts were reduced by approximately 5 log CFU when washed with chlorine plus the chlorine stabilizer at both temperatures and with the alkaline wash at the high temperature. The reductions in Salmonella by these treatments were not significantly (P > 0.05) different from each other but were significantly (P < 0.05) more than the reduction observed for the 20°C alkaline treatment and 20°C control water treatments. Ambient temperature acidic washes reduced Salmonella contamination to the same degree as the standard pH 11 warm water wash and may be a viable option to reduce cost, increase shelf life, and slow pathogen growth in and on shell eggs.

  16. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    NASA Astrophysics Data System (ADS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-11-01

    A new procedure of elimination of Pb2+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N2 at -196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb2+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb2+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb2+. Accordingly, retention capacities as high as 63 mg of Pb2+ per gram of adsorbent have been attained.

  17. Wash water solids removal system study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    During wash water purification, surfactants tend to precipitate and foul the RO membranes, causing water flux decline and loss of salt rejection. The use of 165 to 190 ppm ferric chloride and optionally 0.25 to 1.0 ppm polymeric flocculate precipitates 92 to 96 percent of the surfactant from an Olive Leaf Soap based wash water. Crossflow filtration and pressure filtration yield good soap rejection at high water flux rates. Post-treatment of the chemically pretreated and filtered wash water with activated charcoal removes the residual soap down to an undetectable level.

  18. Spectroscopic and electrochemical studies of selected lanthanides and actinides in concentrated aqueous carbonate and carbonate-hydroxide solutions and in molten dimethyl sulfone

    SciTech Connect

    Varlashkin, P.G.

    1985-03-01

    Electrochemical and spectroscopic studies of neptunium, plutonium, americium, californium, and terbium in concentrated aqueous carbonate and carbonate-hydroxide solutions have been carried out. Changes in the absorption spectra of Np(VII), Np(V), Pu(VI), Pu(V), Am(VI), and Am(V) in concentrated Na/sub 2/CO/sub 3/ solution and in the formal potentials of the Np(VI)/Np(V) and Pu(VI)/Pu(V) couples as a function of pH were observed. Heptavalent neptunium in concentrated Na/sub 2/CO/sub 3/ solution could only be producted at pH values close to or greater than 14. Plutonium(VII) in 2 M Na/sub 2/CO/sub 3/ solution could only be produced at hydroxide ion concentrations in excess of about 2.5 M. The complexation of Np(VII) and Pu(VII) in Na/sub 2/CO/sub 3/-NaOH solution seems to be mainly by hydroxide ions. Neptunium(IV) and plutonium(IV) are insoluble in Na/sub 2/CO/sub 3/ solution above ca. pH 11-12. Neptunium(III) in carbonate solution is rapidly oxidized by water to Np(IV). Plutonium(III) is insoluble in Na/sub 2/CO/sub 3/ solution. In K/sub 2/CO/sub 3/ solution Pu(III) is stable to oxidation by water but is very sensitive to air oxidation. The redox properties of Cf(III) in Na/sub 2/CO/sub 3/ and K/sub 2/CO/sub 3/ solutions at pH values from 8 to 14 were investigated. The oxidation of terbium(III) in K/sub 2/CO/sub 3/-KOH solution was studied. Spectroscopic and electrochemical studies of cerium, samarium, europium, ytterbium, uranium, neptunium, plutonium, and americium in molten dimethyl sulfone (DMSO/sub 2/) at 400 K were performed. Differences in the DMSO/sub 2/ solution absorption spectra of trivalent Sm, Eu, and Yb and divalent Eu compared with those in aqueous solution were observed. Complexation effects on the spectra of Ce(III), Ce(IV), U(VI), Np(VI), Pu(VI), and Am(VI) are more noticeable in poorly coordinating DMSO/sub 2/ than they are in water. 123 references, 54 figures, 11 tables.

  19. Ca-Rich Carbonate Melts: A Regular-Solution Model, with Applications to Carbonatite Magma + Vapor Equilibria and Carbonate Lavas on Venus

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1995-01-01

    A thermochemical model of the activities of species in carbonate-rich melts would be useful in quantifying chemical equilibria between carbonatite magmas and vapors and in extrapolating liquidus equilibria to unexplored PTX. A regular-solution model of Ca-rich carbonate melts is developed here, using the fact that they are ionic liquids, and can be treated (to a first approximation) as interpenetrating regular solutions of cations and of anions. Thermochemical data on systems of alkali metal cations with carbonate and other anions are drawn from the literature; data on systems with alkaline earth (and other) cations and carbonate (and other) anions are derived here from liquidus phase equilibria. The model is validated in that all available data (at 1 kbar) are consistent with single values for the melting temperature and heat of fusion for calcite, and all liquidi are consistent with the liquids acting as regular solutions. At 1 kbar, the metastable congruent melting temperature of calcite (CaCO3) is inferred to be 1596 K, with (Delta)bar-H(sub fus)(calcite) = 31.5 +/- 1 kJ/mol. Regular solution interaction parameters (W) for Ca(2+) and alkali metal cations are in the range -3 to -12 kJ/sq mol; W for Ca(2+)-Ba(2+) is approximately -11 kJ/sq mol; W for Ca(2+)-Mg(2+) is approximately -40 kJ/sq mol, and W for Ca(2+)-La(3+) is approximately +85 kJ/sq mol. Solutions of carbonate and most anions (including OH(-), F(-), and SO4(2-)) are nearly ideal, with W between 0(ideal) and -2.5 kJ/sq mol. The interaction of carbonate and phosphate ions is strongly nonideal, which is consistent with the suggestion of carbonate-phosphate liquid immiscibility. Interaction of carbonate and sulfide ions is also nonideal and suggestive of carbonate-sulfide liquid immiscibility. Solution of H2O, for all but the most H2O-rich compositions, can be modeled as a disproportionation to hydronium (H3O(+)) and hydroxyl (OH(-)) ions with W for Ca(2+)-H3O(+) (approximately) equals 33 kJ/sq mol. The

  20. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  1. Wash water waste pretreatment system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  2. Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Noguchi, Yohei; Yamamoto, Taibou; Hieda, Junko; Saito, Nagahiro; Takai, Osamu; Tsuchimoto, Akiharu; Nojima, Kazuhiro; Okabe, Youji

    2013-12-01

    Solution plasma processing (SPP) has been performed on multiwalled carbon nanotubes (MWCNTs) in ammonia aqueous solution. The MWCNTs, which do not disperse in aqueous solution, uniformly dispersed after the SPP. Only 2 h was required to obtain 10 g of the dispersed MWCNTs, while 7 days and additional chemicals were required for 185 mg in a previous study. The X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the SPP-treated MWCNTs revealed that nitrogen- and oxygen-containing groups are formed on the MWCNTs. Serious damage to the MWCNT structure was not observed in the Raman spectrum or transmission electron microscopy images of the SPP-treated MWCNTs. The composite materials prepared using polyamide 6 with the SPP-treated MWCNTs showed better tensile, bending, and impact strength than those prepared with nontreated MWCNTs.

  3. Chemisorption of Perfluorooctanoic Acid on Powdered Activated Carbon Initiated by Persulfate in Aqueous Solution.

    PubMed

    Sun, Bo; Ma, Jun; Sedlak, David L

    2016-07-19

    Perfluorooctanoic acid (PFOA) is a perfluorocarboxylic acid that is difficult to treat by most conventional methods. As a result, it is often removed from solution by adsorption on powdered activated carbon (PAC), followed by incineration of the spent carbon. To provide a new approach for treatment, PFOA was exposed to sulfate radicals (SO4(-•)) produced by thermolysis of persulfate (S2O8(2-)) in the presence of PAC. Under acidic conditions, thermal activation of persulfate resulted in transformation of PFOA to shorter-chain-length perfluorinated compounds, as previously reported. However, when thermolysis of persulfate occurred under circumneutral pH conditions in the presence of PAC, a new removal pathway for PFOA was observed. Under these conditions, the removal of PFOA was attributable to chemisorption, a process in which PAC catalyzed persulfate decomposition and reacted with the transformation products to produce covalently bound PFOA. At PAC concentrations between 200 and 1000 mg/L and an initial PFOA concentration of 0.5 μM, covalent bonding resulted in removal of 10-40% of the PFOA. Under these conditions, the process resulted in removal of more than half of a more hydrophilic perfluoroalkyl acid (i.e., perfluorobutanoic acid, PFBA), which was greater than the amount of PFBA removed by physical adsorption on PAC. Although the high reaction temperatures (i.e., 80 °C) and relatively high doses of PAC used in this study may be impractical for drinking water treatment, this process may be applied to the treatment of these recalcitrant compounds in industrial wastewater, reverse osmosis concentrate, and other waters that contain high concentrations of PFOA and other perfluorocarboxylic acids. PMID:27336204

  4. Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution.

    PubMed

    Tautermann, Christofer S; Voegele, Andreas F; Loerting, Thomas; Kohl, Ingrid; Hallbrucker, Andreas; Mayer, Erwin; Liedl, Klaus R

    2002-01-01

    Dry carbonic acid has recently been shown to be kinetically stable even at room temperature. Addition of water molecules reduces this stability significantly, and the decomposition (H2CO3 + nH2O --> (n+1)H2O + CO2) is extremely accelerated for n = 1, 2, 3. By including two water molecules, a reaction rate that is a factor of 3000 below the experimental one (10 s(-1)) at room temperature was found. In order to further remove the gap between experiment and theory, we increased the number of water molecules involved to 3 and took into consideration different mechanisms for thorough elucidation of the reaction. A mechanism whereby the reaction proceedes via a six-membered transition state turns out to be the most efficient one over the whole examined temperature range. The determined reaction rates approach experimental values in aqueous solution reasonably well; most especially, a significant increase in the rates in comparison to the decomposition reaction with fewer water molecules is found. Further agreement with experiment is found in the kinetic isotope effects (KIE) for the deuterated species. For water-free carbonic acid, the KIE (i.e., kH2CO3/kD2CO3) for the decomposition reaction is predicted to be 220 at 300 K, whereas it amounts to 2.2-3.0 for the investigated mechanisms including three water molecules. This result is therefore reasonably close to the experimental value of 2 (at 300 K). These KIEs are in much better accordance with the experiment than the KIE for decomposition with fewer water entities. PMID:11822465

  5. Fabrication of transparent and conductive carbon nanotube/polyvinyl butyral films by a facile solution surface dip coating method.

    PubMed

    Li, Yuanqing; Yu, Ting; Pui, Tzesian; Chen, Peng; Zheng, Lianxi; Liao, Kin

    2011-06-01

    We present a simple solution surface dip coating method for fabricating transparent and conductive carbon nanotube/polyvinyl butyral (CNT/PVB) composite films. This fabrication process is simple to scale production and requires only ethanol and water as solvents, which is green and environment friendly.

  6. Polymorph selection and nanocrystallite rearrangement of calcium carbonate in carboxymethyl chitosan aqueous solution: Thermodynamic and kinetic analysis

    SciTech Connect

    Zhao, Donghui; Zhu, Yingchun; Li, Fang; Ruan, Qichao; Zhang, Shengmao; Zhang, Linlin; Xu, Fangfang

    2010-01-15

    In this article, the polymorph selection of calcium carbonate has been successfully achieved in water-soluble carboxymethyl chitosan aqueous solution at different temperatures (25-95 {sup o}C). Vaterite is formed in carboxymethyl chitosan solution 25 {sup o}C accompanied with trace of calcite, whereas pure aragonite is obtained at 95 {sup o}C. Scanning electron microscopy and transmission electron microscopy analyses show that the products are formed from the recrystallization of nanometer crystallites. Thermodynamic and kinetic analyses reveal that the polymorph of calcium carbonate is controlled and selected by kinetics in various temperatures. As a heterogeneous nucleator and stabilizing agent, carboxymethyl chitosan changes the nucleation and growth of calcium carbonate from thermodynamic into kinetic control. Under kinetic limitation, the reaction rate of aragonite increases along with the elevating of temperature and surpasses the rate of vaterite above 327 K.

  7. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS

    NASA Astrophysics Data System (ADS)

    Gunay, H. Burak; Ghods, Pouria; Isgor, O. Burkan; Carpenter, Graham J. C.; Wu, Xiaohua

    2013-06-01

    The atomic structure of oxide films formed on carbon steel that are exposed to highly alkaline simulated concrete pore solutions was investigated using Electron Energy Loss Spectroscopy (EELS). In particular, the effect of chloride exposure on film structure was studied in two types of simulated pore solutions: saturated calcium hydroxide (CH) and a solution prepared to represent typical concrete pore solutions (CP). It was shown that the films that form on carbon steel in simulated concrete pore solutions contained three indistinct layers. The inner oxide film had a structure similar to that of FeIIO, which is known to be unstable in the presence of chlorides. The outer oxide film mainly resembled Fe3O4 (FeIIO·Fe2IIIO3) in the CH solution and α-Fe2IIIO3/Fe3O4 in the CP solution. The composition of the transition layer between the inner and outer layers of the oxide film was mainly composed of Fe3O4 (FeIIO·Fe2IIIO3). In the presence of chloride, the relative amount of the FeIII/FeII increased, confirming that chlorides induce valence state transformation of oxides from FeII to FeIII, and the difference between the atomic structures of oxide film layers diminished.

  8. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  9. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California

    USGS Publications Warehouse

    Barnes, I.; O'Neil, J.R.

    1971-01-01

    Two calcium-magnesium carbonate solid solutions form Holocene travertines and conglomerate cements in fresh water stream channels of the Coast Range of California. Calcite does not yield the {015} diffraction maximum. The {006} diffraction maximum is lacking over most of the range of composition of calcite. Calcite has compositions from CaCO3 to Ca0.5Mg0.5CO3. Dolomite yields both the {006} and {015} diffraction maxima over its entire composition range, Ca0.6Mg0.4CO3 to Ca0.5Mg0.5CO3. The Ca-Mg carbonates form in isotopic equilibrium and thermodynamic disequilibrium from dispersion of Ca2+-rich water into CO32--rich water within the alluvium. The stable isotope data suggest that all the Mg-rich carbonates are primary precipitates and not a result of Mg-substitution in precursor CaCO3. There is a correlation between ??C13 and Mg content of the carbonates which predicts a 5%. fractionation of C13 between dolomite and calcite at sedimentary temperatures. C14 is incorporated in Ca-Mg carbonates forming from C13-poor meteoric waters and C13-rich waters from Cretaceous sediments. C14 ages of the Ca-Mg carbonates are apparent, and cannot be corrected to absolute values. Solution rates of calcite decrease with increasing MgCO3 content; dolomite dissolves slower than any calcite. ?? 1971.

  10. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    SciTech Connect

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  11. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Budinova, T.; Savova, D.; Tsyntsarski, B.; Ania, C. O.; Cabal, B.; Parra, J. B.; Petrov, N.

    2009-02-01

    The goal of this study is to investigate the preparation of low-cost activated carbon from bean pods waste and to explore their potential application for the removal of heavy metals from aqueous solutions. Conventional physical (water vapor) activation was used for synthesizing the adsorbent. The obtained carbon was employed for the removal of As (III) and Mn (II) from aqueous solutions at different initial concentrations and pH values. Adsorption for both ions follows Langmuir-type isotherm, the maximum loading capacities for arsenic (III) and Mn (II) ions being 1.01 and 23.4 mg g -1, respectively. According to the experimental data, it can be inferred that the basic character of the surface, i.e. the high content of basic groups, favors adsorption of ions. Arsenic adsorption capacity on the carbon obtained from agricultural waste was found to be similar to this of more expensive commercial carbons showing high adsorption capability. Regarding manganese adsorption, herein obtained carbon presented higher uptake adsorption than that of activated carbons reported in the literature.

  12. Metallocoenzyme-mediated reductive transformation of carbon tetrachloride in titanium (III) citrate aqueous solution

    SciTech Connect

    Chiu, P.C.; Reinhard, M.

    1995-03-01

    Transformation pathways for carbon tetrachloride (CCl{sub 4}) catalyzed by hematin or vitamin B{sub 12} in aqueous titanium(III) citrate solution are proposed. The reaction of CCl{sub 4} with B{sub 12} was zero order in CCl{sub 4} and first order in B{sub 12}, and the rate constant was measured from pH 7.3 to pH 10.3. The proposed rate-limiting step is the reduction of the stable trichloromethylcobalamin (CCl{sub 3}-Cbl) intermediate by titanium(III) citrate at alkaline pH and the sterically induced CCl{sub 3}-Cbl decomposition at neutral pH. The reaction kinetics can be described by a modified Michaelis-Menten model in the saturated regime. With hematin, only the pseudo-first-order rate constant was determined due to the significant deactivation of the coenzyme. The turnover number of hematin (molecules of CCl{sub 4} transformed/molecule of hematin deactivated) was 27 at pH 8.0 and 42 at pH 9.9. Vitamin B{sub 12} was a more stable and more effective catalyst (on a molar basis) than hematin with respect to CCl{sub 4}. Chloroform (CHCl{sub 3}) was the primary product in titanium(III) citrate solution, and the yield was a function of pH, Ti(III) concentration, and organic content regardless of whether a coenzyme was present or which coenzyme was used. Although B{sub 12} and hematin can both enhance the CCl{sub 4} transformation rate, they have little effect on the CHCl{sub 3} yield. Titanium(III) citrate, on the other hand, controls not only the transformation rate but also CHCl{sub 3} formation. 77 refs., 10 figs.

  13. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place. PMID:26050736

  14. Modification of granular activated carbon using low molecular weight polymer for enhanced removal of Cu(2+) from aqueous solution.

    PubMed

    Yin, C Y; Aroua, M K; Daud, W M A W

    2007-01-01

    Palm shell activated carbon was modified via surface impregnation with polyethyleneimine (PEI) to enhance removal of Cu(2+) from aqueous solution in this study. The effect of PEI modification on batch adsorption of Cu(2+) as well as the equilibrium behavior of adsorption of metal ions on activated carbon were investigated. PEI modification clearly increased the Cu(2+) adsorption capacities by 68% and 75.86% for initial solution pH of 3 and 5 respectively. The adsorption data of Cu(2+) on both virgin and PEI-modified AC for both initial solution pH of 3 and 5 fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.

  15. Generation of chlorine by-products in simulated wash water.

    PubMed

    Shen, Cangliang; Norris, Pauline; Williams, Olivia; Hagan, Stephanie; Li, KaWang

    2016-01-01

    Free chlorine (FC) reacting with organic matter in wash water promotes the formation of chlorine by-products. This study aims to evaluate the dynamic impact of FC and organic load on the generation of haloacetic acids (HAAs) and trihalomethanes (THMs) in simulated wash water. Lettuce juice was sequentially added into FC solution with FC periodically replenished. Water samples were collected after each lettuce juice addition to measure water qualities and determine HAAs and THMs using US-Environmental-Protection-Agency (EPA) methods. Concentrations of 88-2103 μg/l of total HAAs and 20.79-859.47 μg/l of total THMs were detected during the study. Monobromoacetic, tribromoacetic, chlorodibromoacetic and trichloroacetic acid were the major HAAs components. Chloroform (trichloromethane) was the primary THMs present. A significant correlation of HAAs with chemical oxygen demand and THMs with FC was observed. Results indicated that optimizing wash water sanitizing systems to limit organic matters and maintain minimal effective FC concentration is critical.

  16. Generation of chlorine by-products in simulated wash water.

    PubMed

    Shen, Cangliang; Norris, Pauline; Williams, Olivia; Hagan, Stephanie; Li, KaWang

    2016-01-01

    Free chlorine (FC) reacting with organic matter in wash water promotes the formation of chlorine by-products. This study aims to evaluate the dynamic impact of FC and organic load on the generation of haloacetic acids (HAAs) and trihalomethanes (THMs) in simulated wash water. Lettuce juice was sequentially added into FC solution with FC periodically replenished. Water samples were collected after each lettuce juice addition to measure water qualities and determine HAAs and THMs using US-Environmental-Protection-Agency (EPA) methods. Concentrations of 88-2103 μg/l of total HAAs and 20.79-859.47 μg/l of total THMs were detected during the study. Monobromoacetic, tribromoacetic, chlorodibromoacetic and trichloroacetic acid were the major HAAs components. Chloroform (trichloromethane) was the primary THMs present. A significant correlation of HAAs with chemical oxygen demand and THMs with FC was observed. Results indicated that optimizing wash water sanitizing systems to limit organic matters and maintain minimal effective FC concentration is critical. PMID:26212946

  17. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOEpatents

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  18. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways.

    PubMed

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-12-15

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann's approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thus possible equilibrium precipitation pathways can be evaluated by calculating the evolution of surface charge, particle size and/or interfacial energy during the ongoing reaction. The approach includes the use of the Kelvin's law to express the influence of particle size on the solubility constant of precipitates, the use of Nernst's law to calculate surface potentials from solubility calculations and relate this to experimentally measured zeta potentials. Calcium carbonate precipitation and zeta potential measurements of well characterised high purity calcite have been used as a model system to validate the calculated values. The clarification of the change in zeta potential on titration illustrates the power of this approach as a tool for reaction pathway prediction and hence knowledge based tailoring of precipitation reactions.

  19. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid.

    PubMed

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas Sy

    2014-01-06

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water.

  20. Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution.

    PubMed

    Ganesan, Pandian; Kamaraj, Ramakrishnan; Sozhan, Ganapathy; Vasudevan, Subramanyan

    2013-02-01

    A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5-10-nm outer diameter, surface area of 40-600 m(2)/g, and purity above 95 % was used as an adsorbent. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. Manganese-adsorbed MWCNT was characterized by Raman, FTIR, X-ray diffraction, XPS, SEM, and TEM. The adsorption efficiency could reach 96.82 %, suggesting that MWCNT is an excellent adsorbent for manganese removal from water. The results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of manganese. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic process. The experimental results showed that MWCNT is an excellent manganese adsorbent. The MWCNTs removed the manganese present in the water and reduced it to a permissible level making it drinkable.

  1. Removal of Chemazol Reactive Red 195 from aqueous solution by dehydrated beet pulp carbon.

    PubMed

    Dursun, Arzu Y; Tepe, Ozlem

    2011-10-30

    An agricultural low-cost by-product, dehydrated beet pulp carbon (DBPC) was used as an adsorbent for removal of Chemazol Reactive Red 195 (CRR 195) from aqueous solution. The surface area of DBPC was measured as 9.5m(2)g(-1) by using BET method. The results indicated that adsorption was strongly pH-dependent and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 58.0 mg g(-1)at the temperature of 50°C at this pH value. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium and it was reported that, experimental data fitted very well to Freundlich model. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo-first-order type kinetic model. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) had been determined. The results show that adsorption of CRR 195 on DBPC is endothermic and spontaneous in nature. PMID:21890269

  2. Comparative performance of cement kiln dust and activated carbon in removal of cadmium from aqueous solutions.

    PubMed

    El-Refaey, Ahmed A

    2016-01-01

    This study compared the performance of cement kiln dust (CKD) as industrial byproduct and commercially activated carbon (AC) as adsorbent derived from agricultural waste for the removal of cadmium (Cd(2+)) from aqueous solutions. CKD and AC were characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) and surface areas demonstrate the differences of physicochemical properties. Batch equilibrium experiments were conducted for various intervals extended to 96 h at 20, 25 and 30°C to investigate the efficiency of the sorbents in the removal of Cd(2+). CKD expressed high affinity for removal of Cd(2+) and was not affected by temperature, while AC was significantly affected, which reflects dissimilarity in the retention mechanisms defendant in CKD and those pursued by AC. The results were explained by changes of FTIR and SEM images before and after sorption experiments. The suggestion is that electrostatic ion exchange and complex reactions are the main mechanisms for Cd(2+) removal. The kinetic data were evaluated by fractional power, Elovich, pseudo-first order and pseudo-second-order kinetic models. The pseudo-second-order kinetic model was found to correlate with the experimental data well. These results revealed that CKD can be used as a cost-effective and efficient sorbent for Cd(2+) removal in comparison with AC.

  3. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  4. Comparative performance of cement kiln dust and activated carbon in removal of cadmium from aqueous solutions.

    PubMed

    El-Refaey, Ahmed A

    2016-01-01

    This study compared the performance of cement kiln dust (CKD) as industrial byproduct and commercially activated carbon (AC) as adsorbent derived from agricultural waste for the removal of cadmium (Cd(2+)) from aqueous solutions. CKD and AC were characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) and surface areas demonstrate the differences of physicochemical properties. Batch equilibrium experiments were conducted for various intervals extended to 96 h at 20, 25 and 30°C to investigate the efficiency of the sorbents in the removal of Cd(2+). CKD expressed high affinity for removal of Cd(2+) and was not affected by temperature, while AC was significantly affected, which reflects dissimilarity in the retention mechanisms defendant in CKD and those pursued by AC. The results were explained by changes of FTIR and SEM images before and after sorption experiments. The suggestion is that electrostatic ion exchange and complex reactions are the main mechanisms for Cd(2+) removal. The kinetic data were evaluated by fractional power, Elovich, pseudo-first order and pseudo-second-order kinetic models. The pseudo-second-order kinetic model was found to correlate with the experimental data well. These results revealed that CKD can be used as a cost-effective and efficient sorbent for Cd(2+) removal in comparison with AC. PMID:27054742

  5. Low-cost, solution processable carbon nanotube supercapacitors and their characterization

    NASA Astrophysics Data System (ADS)

    Lehtimäki, Suvi; Tuukkanen, Sampo; Pörhönen, Juho; Moilanen, Pasi; Virtanen, Jorma; Honkanen, Mari; Lupo, Donald

    2014-06-01

    We report ecological and low-cost carbon nanotube (CNT) supercapacitors fabricated using a simple, scalable solution processing method, where the use of a highly porous and electrically conductive active material eliminates the need for a current collector. Electrodes were fabricated on a poly(ethylene terephthalate) substrate from a printable multi-wall CNT ink, where the CNTs are solubilized in water using xylan as a dispersion agent. The dispersion method facilitates a very high concentration of CNTs in the ink. Supercapacitors were assembled using a paper separator and an aqueous NaCl electrolyte and the devices were characterized with a galvanostatic discharge method defined by an industrial standard. The capacitance of the 2 cm^2 devices was 6 mF/cm^2 (2.3 F/g) and equivalent series resistance 80 Ω . Low-cost supercapacitors fabricated from safe and environmentally friendly materials have potential applications as energy storage devices in ubiquitous and autonomous intelligence as well as in disposable low-end products.

  6. Partial carbonized nanoporous resin for uptake of lead from aqueous solution.

    PubMed

    Ghiloufi, I; Al-Hobaib, A S; El Mir, L

    2015-01-01

    Four partial carbonized nanoporous resins (PCNRs), based on organic xerogel compounds, were synthesised by the sol-gel method from pyrogallol and formaldehyde mixtures in water using picric acid as catalyst. The PCNRs were prepared at different pyrolysis temperatures: T(1) = 200 °C (PF-200), T(2) = 300 °C (PF-300), T(3) = 400 °C (PF-400), or T(4) = 500 °C (PF-500). The PCNRs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and nitrogen porosimetry. The obtained results show that PF-200 is more efficient for the removal of Pb(2+) from aqueous solution than the other adsorbent prepared in this study. The characteristics of lead uptake by PF-200 were explored using well-established and effective parameters including pH, contact time, initial metal ion concentration and temperature. Optimum adsorption of Pb(2+), using PF-200, was observed at pH 4.5. The Langmuir model gave a better fit than the other models, and kinetic studies revealed that the adsorption was well fitted by the pseudo second-order kinetic model and thermodynamic properties, i.e., Gibbs free energy change, enthalpy change and entropy change, showed that adsorption of Pb(2+) onto PF-200 was endothermic, spontaneous and feasible in the temperature range of 298-328 K. PMID:26360758

  7. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.

    PubMed

    El-Bindary, Ashraf A; Diab, Mostafa A; Hussien, Mostafa A; El-Sonbati, Adel Z; Eessa, Ahmed M

    2014-04-24

    The adsorption of Acid Red 57 (AR57) onto Polyacrylonitrile/activated carbon (PAN/AC) composite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. Physical characteristics of (PAN/AC) composite such as fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were obtained. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that (PAN/AC) composite could be employed as low-cost material for the removal of acid dyes from textile effluents. PMID:24463242

  8. Arsenic adsorption by polyvinyl pyrrolidone K25 coated cassava peel carbon from aqueous solution.

    PubMed

    Selvakumar, R; Kavitha, S; Sathishkumar, M; Swaminathan, K

    2008-05-01

    Sorption of arsenic from aqueous solution was carried out using polyvinyl pyrrolidone K25 coated cassava peel carbon (PVPCC). Batch experiments were conducted to determine the effect of contact time, initial concentration, pH and desorption. Batch sorption data's were fitted to Lagergren kinetic studies. Column studies were also conducted using PVPCC as adsorbent. The optimized flow rate of 2.5 mL min(-1) and bed height 10 cm were used to determine the effect of metal ion concentration on removal of As(V). BDST model was applied to calculate the adsorption capacity (N(0)) of column. The N(0) value of 2.59 x 10(-5), 4.21 x 10(-5), 4.05 x 10(-5), 4.26 x 10(-5) and 3.2 x 10(-5) mg g(-1) were obtained for 0.5, 1.0, 1.5, 2.0 and 2.5 mg L(-1) of As(V), respectively. The batch sorption proved to be more efficient than the column sorption. The sorption of As(V) and the nature of the adsorbent was examined by Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies, respectively.

  9. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system.

    PubMed

    Xu, Minhui; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Miao, Zhouwei; Zang, Xueke; Wu, Xiaoliang

    2015-04-01

    Thermal activation of persulfate (PS) has been identified to be effective in the destruction of organic pollutants. The feasibility of carbon tetrachloride (CT) degradation in the thermally activated PS system was evaluated. The experimental results showed that CT could be readily degraded at 50 °C with a PS concentration of 0.5M, and CT degradation and PS consumption followed the pseudo-first order kinetic model. Superoxide radical anion (O2(*-)) was the predominant radical species responsible for CT degradation and the split of CCl was proposed as the possible reaction pathways for CT degradation. The process of CT degradation was accelerated by higher PS dose and lower initial CT concentration. No obvious effect of the initial pH on the degradation of CT was observed in the thermally activated PS system. Cl(*-), HCO3(*-), and humic acid (HA) had negative effects on CT degradation. In addition, the degradation of CT in the thermally activated PS system could be significantly promoted by the solvents addition to the solution. In conclusion, the thermally activated PS process is a promising option in in-situ chemical oxidation/reduction remediation for degrading highly oxidized organic contaminants such as CT that is widely detected in contaminated sites.

  10. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate.

    PubMed

    Gao, Xingbao; Wang, Wei; Ye, Tunmin; Wang, Feng; Lan, Yuxin

    2008-07-01

    The management of the big amount of fly ash as hazardous waste from the municipal solid waste incinerator (MSWI) has encountered many problems in China. In this study, a feasibility research on MSWI fly ash utilization as partial cement substitute in cement mortars was therefore carried out. MSWI fly ash was subjected to washing process to reduce its chlorine content (from 10.16% to 1.28%). Consequently, it was used in cement mortars. Ten percent and 20% replacement of cement by washed ash showed acceptable strength properties. In TCLP and 180-day monolithic tests, the mortars with washed ash presented a little stronger heavy metal leachability, but this fell to the blank level (mortar without washed ash) with the addition of 0.25% chelate. Therefore, this method is proposed as an environment-friendly technology to achieve a satisfactory solution for MSWI fly ash management.

  11. Exposure of bovine embryos to trypsin during washing does not decrease embryonic survival.

    PubMed

    Echternkamp, S E; Kappes, S M; Maurer, R R

    1989-07-01

    The objective of this study was to assess whether the exposure of zona pellucida-intact bovine embryos to the proteolytic enzyme, trypsin, during embryo washing has a detrimental effect on their subsequent survival and development. Embryos were collected nonsurgically from superovulated cows (n = 19) 7.5 d after insemination. Grade 1 and Grade 2 embryos were washed 12 times in modified Dulbecco's phosphate buffered saline (PBS) containing 0.4% bovine serum albumin (BSA), or in a series of five washes in BSA-PBS (without Ca++ and Mg++), two in 0.25% trypsin in Hank's solution (without Ca++ and Mg++) and five in PBS-BSA medium. Within 30 min after washing, embryos were either transferred nonsurgically into recipient cows, 7 to 8 d post estrus, or cryopreserved and transferred later. Frozen-thawed embryos from five of the donors were cultured for 72 h in vitro and their development was evaluated. Pregnancy rates did not differ (P>0.1) between recipient cows receiving control-washed and trypsin-washed embryos transferred fresh (51.0 vs 56.3%). However, pregnancy rates were higher (P<0.05) for frozen-thawed embryos treated with trypsin before cryopreservation than for frozen-thawed, control-washed embryos (68.2 vs 38.5%). Survival and development of embryos in vitro after cryopreservation did not differ between embryos subjected to the control- and trypsin-wash procedures. These results suggest that exposure of bovine embryos to trypsin for 2 to 3 min during washing did not have a detrimental effect on embryonic development, but may have enhanced cryopreservation of the embryos.

  12. Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland

    SciTech Connect

    Siegel, D.I.

    1992-04-09

    Peatlands are one of the most important terrestrial reservoirs in the global cycle for carbon, and are a major source for atmospheric methane. However, little is known about the dynamics of these carbon reservoirs or their feedback mechanisms with the pool of atmospheric CO{sub 2} during the Holocene. Specifically, it is unknown whether large peat basins are sources, sinks, or steady-state reservoirs for the global carbon cycle. In particular, the production and transport of methane, carbon dioxide, and dissolved organic carbon form the deeper portions of these peatlands is unknown. Our DOE research program is to conduct an integrated ecologic and hydrogeochemical study of the Glacial Lake Agassiz peatlands (northern Minnesota) to better understand the carbon dynamics in globally significant peat basins. Specifically, our study will provide local and regional data on (1), rates of carbon accumulation and loss and fluxes of methane in the peat profiles; (2) the physical and botanical factors controlling the production of methane and carbon dioxide in the wetland; and (3) the role of hydrogeologic processes in controlling the fluxes of gases and solutes through the peat. We intend to use computer simulation models, calibrated to field data, to scale-up from local to regional estimates of methane and carbon dioxide within the basin. How gases and dissolved organic carbon escapes form peatlands in unknown. It has been suggested that the concentrations of methane produced in the upper peat are sufficient to produce diffusion gradients towards the surface. Alternatively, gas may move through the peat profile by groundwater advection.

  13. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  14. Basic solutions to carbon/carbon oxidation: Science and technology. Final report, 15 April 1993--14 April 1998

    SciTech Connect

    Harrison, I.R.; Chung, T.; Pantano, C.; Radovic, L.; Thrower, P.

    1998-04-14

    The goal of this study was to gain a fundamental understanding of the role of boron in carbon oxidation. Boron-doped carbons were synthesized via CVD, ion implantation and high temperature doping are subsequently characterized. It was found that high temperature doped HOPG carbons were ideal for oxidation studies because their surface could be reproduced, their surface structures were determined and they were able to be characterized by XPS, AFM and SEM. The direct analysis of the chemical structures and atomic arrangements in boron- doped carbon or carbon surfaces by these techniques was critical in determining the effect of boron on carbon oxidation. XPS was utilized in this work to determine the local bonding environment of boron in carbon before an after oxidation. It was necessary to obtain an accurate calibration of the B1s binding energy scale which was accomplished by obtaining photoemission spectra of boron-doped carbons with known structures (local boron bonding environments), such as boron oxide, boron carbide, triphenylboroxine, tourmaline, boric acid, danburite and high temperature boron-doped graphite. All of the aforementioned standards contain boron in a unique bonding environment and thus their spectra formulated a complete conversion of B1s binding energies to boron chemical environments which has not been reported in the past. It was clearly established that a chemical shift for substitutional boron in graphite exists at 186.5 eV with a FWHM of 1.2. The chemical structures of the boron in the standards were related to the binding energy using a Pauling charge distribution model and a modification of the Sanderson electronegativity method. This approach was used to determine whether the B1s binding energy would change depending upon the specific location of boron in the graphite or graphite surface.

  15. Carbon-Impurity Affected Depth Elemental Distribution in Solution-Processed Inorganic Thin Films for Solar Cell Application.

    PubMed

    Rehan, Shanza; Kim, Ka Young; Han, Jeonghyeob; Eo, Young-Joo; Gwak, Jihye; Ahn, Seung Kyu; Yun, Jae Ho; Yoon, KyungHoon; Cho, Ara; Ahn, SeJin

    2016-03-01

    A common feature of the inorganic thin films including Cu(In,Ga)(S,Se)2 fabricated by nonvacuum solution-based approaches is the doubled-layered structure, with a top dense inorganic film and a bottom carbon-containing residual layer. Although the latter has been considered to be the main efficiency limiting factor, (as a source of high series resistance), the exact influence of this layer is still not clear, and contradictory views are present. In this study, using a CISe as a model system, we report experimental evidence indicating that the carbon residual layer itself is electrically benign to the device performance. Conversely, carbon was found to play a significant role in determining the depth elemental distribution of final film, in which carbon selectively hinders the diffusion of Cu during selenization, resulting in significantly Cu-deficient top CISe layer while improving the film morphology. This carbon-affected compositional and morphological impact on the top CISe films is a determining factor for the device efficiency, which was supported by the finding that CISe solar cells processed from the precursor film containing intermediate amount of carbon demonstrated high efficiencies of up to 9.15% whereas the performances of the devices prepared from the precursor films with very high and very low carbon were notably poor. PMID:26817680

  16. Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution

    SciTech Connect

    Pilkey, A.K.; Lambert, S.B.; Plumtree, A. . Dept. of Mechanical Engineering)

    1995-02-01

    An experimental system was developed to reproduce stress corrosion cracking (SCC) of API X-60 line pipe steels in highly alkaline (pH = 10) carbonate-bicarbonate (1 N sodium carbonate [Na[sub 2]CO[sub 3

  17. Multi-instrumental characterization of carbon nanotubes dispersed in aqueous solutions

    EPA Science Inventory

    Previous studies showed that the dispersion extent and physicochemical properties of carbon nanotubes are highly dependent upon the preparation methods (e.g., dispersion methods and dispersants). In the present work, multiwalled carbon nanotubes (MWNTs) are dispersed in aqueous s...

  18. Toward a zero-carbon energy policy in Europe: defining a viable solution

    SciTech Connect

    Jones, Christopher; Glachant, Jean-Michel

    2010-04-15

    The present pace of carbon emission is not sustainable. Human societies need to react and to change. A rational responsive policy to deliver the required carbon emission reduction can be delineated if the key objective parameters are identified and addressed. This article attempts to lay the groundwork for a viable carbon energy policy for Europe. (author)

  19. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture.

    PubMed

    Zhang, Shihan; Zhang, Zhaohui; Lu, Yongqi; Rostam-Abadi, Massoud; Jones, Andrew

    2011-11-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90 days at 50 °C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4 M), nitrate (0.05 M) and chloride (0.3 M) typically found in flue gas scrubbing liquids than their free counterparts.

  20. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture

    USGS Publications Warehouse

    Zhang, S.; Zhang, Z.; Lu, Y.; Rostam-Abadi, M.; Jones, A.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90days at 50??C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4M), nitrate (0.05M) and chloride (0.3M) typically found in flue gas scrubbing liquids than their free counterparts. ?? 2011 Elsevier Ltd.

  1. The radiation induced chemistry of uranyl cation in aqueous carbonate –bicarbonate solutions as followed by NMR spectroscopy

    SciTech Connect

    McNamara, Bruce K.; Snow, Lanee A.; Soderquist, Chuck Z.; Sinkov, Sergei I.; Cho, Herman M.; Friese, Judah I.

    2006-05-01

    Alpha radiation induced formation of hydrogen peroxide in carbonate ?bicarbonate media was followed by 13C NMR using dissolved [233UO2(13CO3)3]4- as the alpha source (Dalpha= 12.1 Gy/hr). Between the pH region between 5.9 and 11.6 hydrogen peroxide causes a varied speciation of the uranyl carbonates that is a function of the uranium, carbonate and the hydrogen peroxide concentrations. It is shown that the speciation of the peroxy carbonates (or other species) formed in solution by titration with hydrogen peroxide are common to those formed by hydrogen peroxide generated by radiolysis. The radiolysis experiment was carried out above pH = 9.96 to minimize the loss of 13CO2 over a 2800 hr period. Radiolytic generation of hydrogen peroxide was followed by formation of a uranyl peroxy carbonate complex and complex formation accelerated for about 1200 hours. Complex formation was observed to terminate at a concentration between 1x10-4 and 5x10-4 M. It is assumed that either a steady state H2O2 production rate was established in solution or that some limiting feature of the experiment was responsible for slowing the yield of product.

  2. Hand washing promotion for preventing diarrhoea

    PubMed Central

    Ejemot-Nwadiaro, Regina I; Ehiri, John E; Arikpo, Dachi; Meremikwu, Martin M; Critchley, Julia A

    2015-01-01

    Background Diarrhoea accounts for 1.8 million deaths in children in low- and middle-income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. Objectives To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adults. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (27 May 2015); CENTRAL (published in the Cochrane Library 2015, Issue 5); MEDLINE (1966 to 27 May 2015); EMBASE (1974 to 27 May 2015); LILACS (1982 to 27 May 2015); PsycINFO (1967 to 27 May 2015); Science Citation Index and Social Science Citation Index (1981 to 27 May 2015); ERIC (1966 to 27 May 2015); SPECTR (2000 to 27 May 2015); Bibliomap (1990 to 27 May 2015); RoRe, The Grey Literature (2002 to 27 May 2015); World Health Organization (WHO) International Clinical Trial Registry Platform (ICTRP), metaRegister of Controlled Trials (mRCT), and reference lists of articles up to 27 May 2015. We also contacted researchers and organizations in the field. Selection criteria Individually randomized controlled trials (RCTs) and cluster-RCTs that compared the effects of hand washing interventions on diarrhoea episodes in children and adults with no intervention. Data collection and analysis Three review authors independently assessed trial eligibility, extracted data, and assessed risk of bias. We stratified the analyses for child day-care centres or schools, community, and hospital-based settings. Where appropriate, incidence rate ratios (IRR) were pooled using the generic inverse variance method and random-effects model with 95% confidence intervals (CIs). We used the GRADE approach to assess the quality of evidence. Main results We included 22 RCTs: 12 trials from child day-care centres or schools in mainly high-income countries (54,006 participants), nine community-based trials in LMICs (15,303 participants), and one hospital-based trial among people with acquired immune deficiency

  3. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  4. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  5. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  6. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  7. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  8. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  9. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  10. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  11. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  12. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  13. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Allocation of washed coal. 1206.459 Section... INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it...

  14. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Allocation of washed coal. 1206.260 Section... INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it...

  15. 30 CFR 206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.459 Section 206... MANAGEMENT PRODUCT VALUATION Indian Coal § 206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the...

  16. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  17. 30 CFR 206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.260 Section 206... MANAGEMENT PRODUCT VALUATION Federal Coal § 206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the...

  18. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  19. conversion electron Mössbauer study of low carbon steel polarized in aqueous sulfate solution containing sulfite in low concentration

    NASA Astrophysics Data System (ADS)

    Vértes, Cs.; Lakatos-Varsányi, M.; Vértes, A.; Kuzmann, E.; Meisel, W.; Gütlich, P.

    1992-04-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5 M Na2SO4+0.001 M NaHSO3 at pH=3.5 and 6.5. The found major components at pH-3.5 were: γ-FeOOH and Fe3C, and also FeSO4.H2O could be identified on the surface of the low carbon steel as a minor component. At pH-6.5, the passive film contained only amorphous iron(III)-oxide or oxyhydroxide.

  20. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment.

  1. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. PMID:22245736

  2. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  3. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  4. Morphological degradation of human hair cuticle due to simulated sunlight irradiation and washing.

    PubMed

    Richena, M; Rezende, C A

    2016-08-01

    Morphological changes in hair surface are undesirable, since they cause shine loss, roughness increase and split ends. These effects occur more frequently in the cuticle, which is the outermost layer of the hair strand, and thus the most exposed to the environmental damages. Sunlight irradiation contributes significantly to these morphological alterations, which motivates the investigation of this effect on hair degradation. In this work, the influence of irradiation and hand-washing steps on the morphology of pigmented and non-pigmented hair cuticle was investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). To simulate daily conditions, where hair is hand-washed and light exposed, samples of dark brown and gray hair underwent three different conditions: 1) irradiation with a mercury lamp for up to 600h; 2) irradiation with the mercury lamp combined with washes with a sodium lauryl sulphate solution; and 3) only washing. A new preparation procedure was applied for TEM samples to minimize natural variations among different hair strands: a single hair strand was cut into two neighbouring halves and only one of them underwent irradiation and washing. The non-exposed half was used as a control, so that the real effects caused by the controlled irradiation and washing procedures could be highlighted in samples that had very similar morphologies initially. More than 25images/sample were analysed using FESEM (total of 300 images) and ca. 150images/sample were obtained with TEM (total of 900 images). The results presented herein show that the endocuticle and the cell membrane complex (CMC) are the cuticle structures more degraded by irradiation. Photodegradation alone results in fracturing, cavities (Ø≈20-200nm) and cuticle cell lifting, while the washing steps were able to remove cuticle cells (≈1-2 cells removed after 60 washes). Finally, the combined action of irradiation and washing caused the most severe

  5. Morphological degradation of human hair cuticle due to simulated sunlight irradiation and washing.

    PubMed

    Richena, M; Rezende, C A

    2016-08-01

    Morphological changes in hair surface are undesirable, since they cause shine loss, roughness increase and split ends. These effects occur more frequently in the cuticle, which is the outermost layer of the hair strand, and thus the most exposed to the environmental damages. Sunlight irradiation contributes significantly to these morphological alterations, which motivates the investigation of this effect on hair degradation. In this work, the influence of irradiation and hand-washing steps on the morphology of pigmented and non-pigmented hair cuticle was investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). To simulate daily conditions, where hair is hand-washed and light exposed, samples of dark brown and gray hair underwent three different conditions: 1) irradiation with a mercury lamp for up to 600h; 2) irradiation with the mercury lamp combined with washes with a sodium lauryl sulphate solution; and 3) only washing. A new preparation procedure was applied for TEM samples to minimize natural variations among different hair strands: a single hair strand was cut into two neighbouring halves and only one of them underwent irradiation and washing. The non-exposed half was used as a control, so that the real effects caused by the controlled irradiation and washing procedures could be highlighted in samples that had very similar morphologies initially. More than 25images/sample were analysed using FESEM (total of 300 images) and ca. 150images/sample were obtained with TEM (total of 900 images). The results presented herein show that the endocuticle and the cell membrane complex (CMC) are the cuticle structures more degraded by irradiation. Photodegradation alone results in fracturing, cavities (Ø≈20-200nm) and cuticle cell lifting, while the washing steps were able to remove cuticle cells (≈1-2 cells removed after 60 washes). Finally, the combined action of irradiation and washing caused the most severe

  6. Wash water reclamation technology for advanced manned spacecraft

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1977-01-01

    The results of an analytical study and assessment of state-of-the-art wash water reclamation technology for advanced manned spacecraft is presented. All non-phase-change unit operations, unit processes, and subsystems currently under development by NASA are considered. Included among these are: filtration, ultrafiltration, carbon adsorption, ion exchange, chemical pretreatment, reverse osmosis, hyperfiltration, and certain urea removal techniques. Performance data are given together with the projected weights and sizes of key components and subsystems. In the final assessment, a simple multifiltration approach consisting of surface-type cartridge filters, carbon adsorption and ion exchange resins receives the highest rating for six-man orbital missions of up to 10 years in duration.

  7. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes.

    PubMed

    Ding, Han; Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2016-05-01

    The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes (SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi-Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between logKow and logKd suggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π-π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84mg/g, from 19 to 65mg/g and from 17 to 65mg/g, respectively. The effect of pH on the adsorption of 2,6-dichlorophenol (2,6-DCP), was also studied. When pH is over the pKa of 2,6-dichlorophenol (2,6-DCP), its removal dropped sharply. When ionic strength increased (NaCl or KCl concentration from 0 to 0.02mmol/L), the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.

  8. Study of the efficacy of antiseptic handrub lotions with hand washing machines.

    PubMed

    Namura, S; Nishijima, S; Mitsuya, K; Asada, Y

    1994-06-01

    The effectiveness of quick handwashing in regards to four alcohol-based handrub lotions, including two products already on the market and our original lotions 1, 2, with two different kinds of hand washing machines was studied in vivo. We also tried to evaluate the efficacy of the four lotions in vitro. The in vivo testing of each lotion, including ethanol, was evaluated using two hand washing methods, first with and then without a previous soap wash. Computerized image analysis was used to calculate the bacterial count on the hand surface. The results showed that a 3 second application of the original lotion 2 (0.5% chlorhexidine in a 77% ethyl alcohol solution) preceded by a soap wash eradicated 89.3% of the bacteria on the hands; this was the highest reduction rate of all four detergents. AROKULIN-E (67.9% ethyl alcohol solution) without a prior handwashing produced the lowest reduction, 49.1% against hand surface bacteria. These results were compatible with those in vitro. It seems that an alcohol-based solution containing an effective antimicrobial detergent preceded by a soap wash is necessary to acceptably reduce hand surface bacteria.

  9. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2015-09-01

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions.

  10. Advances in preparation of modified activated carbon and its applications in the removal of chromium (VI) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Deng, Z. L.; Liang, M. N.; Li, H. H.; Zhu, Z. J.

    2016-08-01

    The wastewater in which Cr(VI) is not fully treated has drawn environment researchers’ attention increasingly, due to its environmental pollution and harms to human health. Thus a high efficiency of modified activated carbon (MAC) to remove Cr(VI) has become one of the hot topics among environmental material research. This paper introduces the modification methods from the physical structure features and chemical properties of the activated carbon (AC) surface. At the same time, it briefly analyses the chemical characteristics of Cr(VI) in aqueous solutions, and on the basis of the aforementioned introduces the modification methods of the surface chemical characteristics of AC, such as: oxidation modification, reduction modification, loaded metal modification, and microwave modification. Combining studies on removing Cr(VI) from aqueous solutions by MAC in recent years, this paper anticipates the new trends of preparing MAC and the points in absorption research, offering some suggestions for future studies.

  11. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  12. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  13. Kinetic characteristics of the synthesis of multiwall carbon nanotubes by aerosol pyrolysis of a ferrocene solution in benzene

    NASA Astrophysics Data System (ADS)

    Cherkasov, N. B.; Savilov, S. B.; Pryakhin, A. N.; Ivanov, A. S.; Lunin, V. V.

    2012-03-01

    Approximating the experimental data on the mass distribution of multiwall carbon nanotubes (MCNT) along a reactor, a three-step kinetic model of their synthesis in the aerosol pyrolysis of a ferrocene solution in benzene is proposed. The values of effective rate constants upon the introduction of a catalyst in situ for the reactions that are the basis for synthesizing MCNT via the pyrolysis of hydrocarbons are obtained for the first time.

  14. Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide.

    PubMed

    Barber, Patrick S; Griggs, Chris S; Gurau, Gabriela; Liu, Zhen; Li, Shan; Li, Zengxi; Lu, Xingmei; Zhang, Suojiang; Rogers, Robin D

    2013-11-18

    Chemisorption of carbon dioxide by 1-ethyl-3-methylimidazolium acetate ([C2 mim][OAc]) provides a route to coagulate chitin and cellulose from [C2 mim][OAc] solutions without the use of high-boiling antisolvents (e.g., water or ethanol). The use of CO2 chemisorption as an alternative coagulating process has the potential to provide an economical and energy-efficient method for recycling the ionic liquid. PMID:24115399

  15. The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation.

    PubMed

    Aksyonov, D A; Hickel, T; Neugebauer, J; Lipnitskii, A G

    2016-09-28

    The solution, grain boundary (GB) segregation, and co-segregation of carbon and oxygen atoms in α-titanium are studied using density functional theory. For five titanium tilt boundaries, including T1, T2, and C1 twin systems, we determine the GB structure, as well as GB energy and excess volume. The segregation energies and volumes of carbon and oxygen are calculated for 23 inequivalent interstitial voids, while for co-segregation 75 configurations are considered. It is obtained that depending on the type of the segregation void both a positive and a negative segregation process is possible. The physical reasons of segregation are explained in terms of the analysis of the void atomic geometry, excess volume and features of the electronic structure at the Fermi level. Although carbon and oxygen show qualitatively similar properties in α-Ti, several distinctions are observed for their segregation behavior and mutual interactions. PMID:27460043

  16. The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation

    NASA Astrophysics Data System (ADS)

    Aksyonov, D. A.; Hickel, T.; Neugebauer, J.; Lipnitskii, A. G.

    2016-09-01

    The solution, grain boundary (GB) segregation, and co-segregation of carbon and oxygen atoms in α-titanium are studied using density functional theory. For five titanium tilt boundaries, including T1, T2, and C1 twin systems, we determine the GB structure, as well as GB energy and excess volume. The segregation energies and volumes of carbon and oxygen are calculated for 23 inequivalent interstitial voids, while for co-segregation 75 configurations are considered. It is obtained that depending on the type of the segregation void both a positive and a negative segregation process is possible. The physical reasons of segregation are explained in terms of the analysis of the void atomic geometry, excess volume and features of the electronic structure at the Fermi level. Although carbon and oxygen show qualitatively similar properties in α-Ti, several distinctions are observed for their segregation behavior and mutual interactions.

  17. Effectiveness of hand washing and disinfection methods in removing transient bacteria after patient nursing.

    PubMed

    Ojajärvi, J

    1980-10-01

    The effectiveness of various hand washing and disinfection methods in removing transient skin bacteria was studied in hospital after dry or moist contamination of the hands when nursing burn patients. The results were compared with those of laboratory tests with volunteers. A fairly good correlation of the bacterial reductions existed between hospital and laboratory tests. All other methods removed Staph. aureus from the hands more effectively than liquid soap. Gram-negative bacilli were more easily removed than staphylococci, even with soap wash alone. In hospital, none of the washing and disinfection methods always removed all patient-borne bacteria from the hands. After dry or moist contamination and subsequent washing with soap only, colonies of Staph. aureus were often detected in finger-print samples. Staphylococci were more often completely removed by a 4% chlorhexidine detergent scrub and alcoholic solutions (either with or without previous soap wash) than by liquid soap, hexachlorophene or iodophor preparations. Gram-negative bacilli were more easily removed by all the washing and disinfection methods. After moist contamination, Gram-negative bacilli were more often completely removed from the hands by ethanol than by other treatments. The results of the present study emphasize the importance of always using gloves when nursing a profuse spreader of bacteria or one who must be protected from infection.

  18. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    SciTech Connect

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  19. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Wang, Yishan; Zuo, Yu; Zhao, Xuhui; Zha, Shanshan

    2016-08-01

    The corrosion inhibition of calcium lignosulfonate (CLS) for Q235 carbon steel in saturated Ca(OH)2 + 0.1 mol/L NaCl solution was studied by means of weight loss, polarization, fluorescence microscopy (FM), scanning electron microscopy/energy dispersive spectrometry (SEM/EDS), microscopic infrared spectral imaging (M-IR) and X-ray photoelectron spectroscopy (XPS). For the steel in simulated concrete pore solution (pH 12.6), an increase of Eb value and a decrease of icorr value occurred with different concentrations of CLS. The optimal content of CLS was 0.001 mol/L at which the inhibition rate was 98.86% and the Eb value increased to 719 mV after 10 h of immersion. In mortar solution and in reinforced concrete environment, CLS also showed good inhibition for steel. The preferential adsorption of CLS around pits was detected by M-IR. The result illustrates that at the early stage the adsorption of CLS was heterogeneous and CLS may have a competitive adsorption with chloride ions at the active sites, which would be beneficial for decreasing the susceptibility of pitting corrosion. After the pre-filming time, an intact adsorption CLS film formed on carbon steel surface. The adsorption between CLS and calcium presented as Casbnd Osbnd S bonds. The adsorption of CLS on carbon steel surface occurred probably by both physisorption and chemisorption.

  20. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    PubMed

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. PMID:24656549

  1. Ring-Oven Washing Technique Integrated Paper-based Immunodevice for Sensitive Detection of Cancer Biomarker.

    PubMed

    Liu, Wei; Guo, Yumei; Zhao, Mei; Li, Huifang; Zhang, Zhujun

    2015-08-01

    A paper-based microfluidic immunodevice has recently attracted considerable interest for point-of-care testing (POCT) and a washing procedure was used as a standard procedure in immunoassay to eliminate the nonspecific binding protein from a paper surface. However, the traditional washing method cannot get rid of the nonspecific binding protein more completely to get a lower background. In this work, a novel washing strategy with a ring-oven technique integrated on a paper-based immunodevice was presented, which can effectively wash a nonspecific binding protein and enable a low background for sensitive detection of the carcinoembryonic antigen (CEA). By immobilizing the antibody on the detection area and incorporating the temperature-controlled ring-oven under the paper-based device, the continuous washing solution can carry the nonspecific binding protein to the waste area freely by capillary force and then the waste area dried quickly by heating. The paper device, which is matched to the size of the ring-oven, is composed of eight microfluidic channels by the simple and rapid paper-cutting fabrication method. With the HRP-catalyzed 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 colorimetric detection method, a lower detection limit of 0.03 ng/mL CEA can be obtained by enzyme-linked immunosorbent assay (ELISA). The washing efficiency for the nonspecific binding protein was improved a lot compared to the traditional washing methods, and the established paper-based device can be used in the determination of CEA in human serum with high sensitivity. The paper-based device provides a new washing strategy for sensitive immunoassay and point-of-care diagnostics.

  2. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT. PMID:16376966

  3. Multi-walled carbon nanotubes and poly(lactic acid) nanocomposite fibrous membranes prepared by solution blow spinning.

    PubMed

    Oliveira, Juliano E; Zucolotto, Valtencir; Mattoso, Luiz H C; Medeiros, Eliton S

    2012-03-01

    Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors. PMID:22755116

  4. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste

    SciTech Connect

    Goni, S.; Guerrero, A

    2003-01-01

    The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl{sup -} by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO{sub 2} gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl{sup -} analyses in the simulated pore solution.

  5. What Happens at a Car Wash?

    ERIC Educational Resources Information Center

    Gallick, Barbara; Lee, Lisa

    2010-01-01

    A class of 3- to 5-year-old children in a child care center in the midwestern United States chose to study a car wash as a group project. This article discusses how the project evolved, describes the three phases of the project, and provides the teachers' reflections on the project. Photos taken during the project and children's sketches are…

  6. An Alternative Antimicrobial Commercial Egg Washing Procedure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presently, commercial eggs are washed with water containing an alkali detergent at approximately pH 11 followed by a chlorine rinse. At this pH, it is likely that there is little, if any, free chlorine in the final rinse to act as an antimicrobial against pathogens like Salmonella. Using a chlorine ...

  7. SOIL-WASHING TECHNOLOGY AND PRACTICE

    EPA Science Inventory

    Soil washing in the United States has been studied and evaluated with increasing thoroughness during the last 15 to 20 years. It is now entering a phase of actual use and acceptance as its applicability and economics become clearer. This paper reviews the principles behind soil...

  8. Washing of the AW-101 entrained solids

    SciTech Connect

    GJ Lumetta

    2000-03-31

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

  9. DEMONSTRATION BULLETIN: SOIL WASHING SYSTEM - BIOTROL, INC.

    EPA Science Inventory

    The three component technologies of the BioTrol Soil Washing System (BSWS). Tested in the SITE demonstration were a Soil Washer (SW), and Aqueous Treatment System (ATS), and a Slurry Bio-Reactor (SBR). The Soil Washer operates on the principle that a significant fraction of the...

  10. EVALUATION OF THE BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    The BioGenesis Enterprises, Inc. (BioGenesis) soil washing technology was demonstrated as part of the US Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program in November 1992. The demonstration was conducted over three days at a petrol...

  11. Prototype wash water renovation system integration with government-furnished wash fixture

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The requirements of a significant quantity of proposed life sciences experiments in Shuttle payloads for available wash water to support cleansing operations has provided the incentive to develop a technique for wash water renovation. A prototype wash water waste renovation system which has the capability to process the waste water and return it to a state adequate for reuse in a typical cleansing fixture designed to support life science experiments was investigated. The resulting technology is to support other developments efforts pertaining to water reclamation by serving as a pretreatment step for subsequent reclamation procedures.

  12. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    PubMed

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal.

  13. Evaluation of carbons derived from Gingelly oil cake for the removal of lead(II) from aqueous solutions.

    PubMed

    Nagashanmugam, K B; Srinivasan, K

    2010-10-01

    The adsorption of lead(II) onto activated carbons prepared from Gingelly Oil Cake (GOC) by using thermal, sulphuric and zinc chloride activations was investigated. The effects of experimental parameters such as pH, initial concentration, contact time and adsorbents dosage on the lead(II) removal were studied. The data were fitted with Langmuir, Freundlich and Temkin models to describe the equilibrium isotherms. The kinetic data fitted well with Lagergren pseudo first order and pseudo second order models. The maximum adsorption capacity for lead(II) on adsorbents calculated from Langmuir isotherm was found to be 105.26 mg/g and 114.94 mg/g for thermally activated and sulphuric acid activated carbons respectively. R2 values show that Langmuir model fits best to sulphuric acid activated carbon and Freundlich model fits best to thermally activated and zinc chloride activated carbons. The kinetic rates were best fitted to pseudo second order model. FT-IR analysis was used to obtain information on the nature of possible interaction between adsorbents and metal ions. SEM images confirmed the adsorption of lead(II) onto GOC adsorbents through morphological observations. Thermodynamic study showed the feasibility of process and spontaneous nature of the adsorption. The adsorbents were also tested for the removal of lead(II) from lead battery synthetic wastewater. The results indicate that carbons derived from GOC could be used to effectively adsorb lead(II) from aqueous solutions and wastewaters.

  14. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    PubMed

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  15. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  16. Effect of surfactant washing on enhanced dewatering of fine coal. [Microstructure and porosity of coal filter cakes

    SciTech Connect

    Binkley, T.O.

    1985-01-01

    The final moisture content of fine coal filter cakes in coal preparation plants is determined by the filtration and dewatering process. Washing the coal filter cake with a surfactant solution is a potentially economical technique to reduce the final moisture in a fine coal filter cake. The microscopic structure of the porous coal filter cake determines the relative permeability, porosity and final moisture content of the coal filter cake. An experimental study of washing fine coal filter cakes formed from coal-water slurries was conducted. The effect of surfactants on the structure of fine coal filter cakes and the final moisture of these filter cakes was investigated. The filter cake structure was determined using the Cahn and Fullman section chord method. This micrographic technique of quantitative stereology utilized an optical microscope and an image analyzer to measure particle and pore sizes. The washing phenomena using Triton X-114 and Aerosol-OT was investigated to determine the ability of surfactants to enhance the dewatering of fine coal. A significant reduction in final moisture content was achieved by washing the filter cake with a 100 ppM Aerosol-OT solution. While Triton X-114 can also produce a significant reduction in the final moisture content in a filter cake, the amount of surfactant adsorbed from the wash liquor onto the coal in the filter cake was, however, more than Aerosol-OT. Wash ratios of ten gave optimum results for both types of surfactants. The effects of washing on particle and pore size distributions in the coal filter cake were analyzed by micrographic measurement. The mean size of the particles and pores was used to correlate the washing results. Comparisons were made between double distilled water filter cakes and double distilled water filter cakes washed with either double distilled water or surfactant solutions. Experimental results are discussed. 25 refs., 68 figs., 32 tabs.

  17. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials.

    PubMed

    Sotelo, José L; Rodríguez, Araceli R; Mateos, María M; Hernández, Sergio D; Torrellas, Silvia A; Rodríguez, Juan G

    2012-01-01

    Adsorption has been used to study the removal of atenolol, caffeine, diclofenac and isoproturon, pharmaceutical compounds as emerging contaminants and an endocrine disruptor from ultrapure water and a municipal wastewater treatment plant effluent with three carbonaceous materials: activated carbon, multiwalled carbon nanotubes and carbon nanofibers. The adsorption capacities were studied in the temperature range of 25-65°C and pH range from 3 to 9. Several model isotherms were used to model the adsorption equilibrium data. Also, the competitive adsorption was evaluated.

  18. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry.

    PubMed

    Ji, Liangliang; Chen, Wei; Bi, Jun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang; Alvarez, Pedro J

    2010-12-01

    Carbon nanotubes have shown great potential as effective adsorbents for hydrophobic organic contaminants in water treatment. The present study investigated the influence of aqueous solution chemistry on the adsorption of tetracycline to carbon nanotubes. Specifically, the effects of ionic strength (NaCl and CaCl(2) ) and presence of Cu(2+) ion (7.5 mg/L) or dissolved soil or coal humic acids (50 mg/L) on adsorption of tetracycline to single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and nonporous pure graphite as a model of the graphite surface were systematically estimated. The presence of humic acids suppressed tetracycline adsorption on graphite and MWNT prominently, with stronger effects observed on graphite, but only slightly affected tetracycline adsorption on SWNT. The relatively large humic acid components could not readily access the small interstitial spaces of SWNT and thus were less competitive with tetracycline adsorption. The presence of Cu(2+) ion increased tetracycline adsorption to both SWNT and MWNT through the mechanism of cation bridging, with much larger effects observed on MWNT. This was probably because when compared with the Cu(2+) ions complexed on the surface of SWNT, those on the surface of MWNT having larger mesoporous interstices were more accessible to the relatively bulky tetracycline molecule. Increasing the ionic strength from 10 mM to 100 mM decreased tetracycline adsorption on both SWNT and MWNT, which was attributed to electronic shielding of the negatively charged surface sites. These results show that aqueous solution chemistry is important to tetracycline adsorption on carbon nanotubes.

  19. Effect of acetate and carbonate buffers on the photolysis of riboflavin in aqueous solution: a kinetic study.

    PubMed

    Ahmad, Iqbal; Anwar, Zubair; Iqbal, Kefi; Ali, Syed Abid; Mirza, Tania; Khurshid, Adeela; Khurshid, Aqeela; Arsalan, Adeel

    2014-06-01

    The photolysis of riboflavin (RF) in the presence of acetate buffer (pH 3.8-5.6) and carbonate buffer (pH 9.2-10.8) has been studied using a multicomponent spectrophotometric method for the simultaneous assay of RF and its photoproducts. Acetate and carbonate buffers have been found to catalyze the photolysis reaction of RF. The apparent first-order rate constants for the acetate-catalyzed reaction range from 0.20 to 2.86 × 10(-4) s(-1) and for the carbonate-catalyzed reaction from 3.33 to 15.89 × 10(-4) s(-1). The second-order rate constants for the interaction of RF with the acetate and the carbonate ions range from 2.04 to 4.33 × 10(-4) M(-1) s(-1) and from 3.71 to 11.80 × 10(-4) M(-1) s(-1), respectively. The k-pH profile for the acetate-catalyzed reaction is bell shaped and for the carbonate-catalyzed reaction a steep curve. Both HCO3(-) and CO3(2-) ions are involved in the catalysis of the photolysis reaction in alkaline solution. The rate constants for the HCO3(-) and CO3(2-) ions catalyzed reactions are 0.72 and 1.38 × 10(-3) M(-1) s(-1), respectively, indicating a major role of CO3(2-) ions in the catalysis reaction. The loss of RF fluorescence in acetate buffer suggests an interaction between RF and acetate ions to promote the photolysis reaction. The optimum stability of RF solutions is observed in the pH range 5-6, which is suitable for pharmaceutical preparations.

  20. SUPERFUND TREATABILITY CLEARINGHOUSE: LABORATORY FEASIBILITY TESTING OF PROTOTYPE SOIL WASHING CONCEPTS

    EPA Science Inventory

    This draft document reports on laboratory testing of several washing solutions to decontaminate soils contaminated vith dioxins. The following extractants were evaluated; surfactant mixtures of 0.5% to 3% Adsee 799 and 0.5* to 3% Hyonic NP90 in distilled water, Freon TF with ...

  1. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  2. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...

  3. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) solution (w/v). Forty eviscerated carcasses and 5 ceca were obtained from the processing li...

  4. Preparation of Activated Carbon From Polygonum orientale Linn. to Remove the Phenol in Aqueous Solutions

    PubMed Central

    Feng, Jia; Shi, Shengli; Pei, Liangyu; Lv, Junping; Liu, Qi; Xie, Shulian

    2016-01-01

    Phenol components are major industry contaminants of aquatic environment. Among all practical methods for removing phenol substances from polluted water, activated carbon absorption is the most effective way. Here, we have produced low-cost activated carbon using Polygonum orientale Linn, a wide spreading species with large biomass. The phenol adsorption ability of this activated carbon was evaluated at different physico-chemical conditions. Average equilibrium time for adsorption was 120 min. The phenol adsorption ability of the P. orientale activated carbon was increased as the pH increases and reached to the max at pH 9.00. By contrast, the ionic strength had little effect on the phenol absorption. The optimum dose for phenol adsorption by the P. orientale activated carbon was 20.00 g/L. The dominant adsorption mechanism of the P. orientale activated carbon was chemisorption as its phenol adsorption kinetics matched with the pseudo-second-order kinetics. In addition, the equilibrium data were fit to the Langmuir model, with the negative standard free energy and the positive enthalpy, suggesting that adsorption was spontaneous and endothermic. PMID:27741305

  5. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Wang, Xuefei; Ouyang, Qin; Chen, Yousi; Yan, Qing

    2012-10-01

    The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH4HCO3, (NH4)2CO3 and (NH4)3PO4 were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH4)3PO4 electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH4)3PO4 electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH- ions in the electrolytes, the violent the oxidative reaction happened.

  6. Junction-Controlled Elasticity of Single-Walled Carbon Nanotube Dispersions in Acrylic Copolymer Gels and Solutions

    SciTech Connect

    Schoch, Andrew B.; Shull, Kenneth R.; Brinson, L. Catherine

    2008-08-26

    Oscillatory shear rheometry is used to study the mechanical response of single-walled carbon nanotubes dispersed in solutions of acrylic diblock or triblock copolymers in 2-ethyl-1-hexanol. Thermal transitions in the copolymer solutions provide a route for the easy processing of these composite materials, with excellent dispersion of the nanotubes as verified by near-infrared photoluminescence spectroscopy. The nanotube dispersions form elastic networks with properties that are controlled by the junction points between nanotubes, featuring a temperature-dependent elastic response that is controlled by the dynamic properties of the matrix copolymer solution. The data are consistent with the formation of micelle-like aggregates around the nanotubes. At low temperatures the core-forming poly(methyl methacrylate) blocks are glassy, and the overall mechanical response of the composite does not evolve with time. At higher temperatures the enhanced mobility of the core-forming blocks enables the junctions to achieve more intimate nanotube-nanotube contact, and the composite modulus increases with time. These aging effects are observed in both diblock and triblock copolymer solutions but are partially reversed in the triblock solutions by cooling through the gel transition of the triblock copolymer. This result is attributed to the generation of internal stresses during gelation and the ability of these stresses to break or weaken the nanotube junctions.

  7. Activated carbons from coal/pitch and polyethylene terephthalate blends for the removal of phenols from aqueous solutions

    SciTech Connect

    Ewa Lorenc-Grabowska; Grazyna Gryglewicz; Jacek Machnikowski

    2009-05-15

    Blends of two bituminous coals and a coal-tar pitch (CTP) with polyethylene terephthalate (PET) were evaluated as precursors of activated carbons (ACs). The intensity of the interactions between the raw materials, coal/CTP and PET during copyrolysis was closely observed by means of thermogravimetric analysis. In addition, the homogeneity of the carbon matrix of the chars produced at 800{sup o}C in a horizontal oven was studied by polarized light optical microscopy. Activated carbons were prepared from single components and their blends (1:1 w/w) by subjecting them to carbonization up to 800{sup o}C in a horizontal oven and then activation with steam at 800{sup o}C to 50% burnoff. The porous structure of the ACs was determined by sorption of N{sub 2} at 77 K and of CO{sub 2} at 273 K. The PET-containing blends produced microporous activated carbons with a maximum BET surface area of nearly 1100 m{sup 2} g{sup -1} and a maximum micropore size distribution of 0.6-0.8 nm in the case of the AC from the CTP/PET blend. The addition of PET to a bituminous coal was compared with the preoxidation of coal P in air as a way to reduce thermoplasticity and to promote the development of the porous structure. The modification of bituminous coals by PET appeared to be more effective than conventional coal preoxidation treatment. The resultant ACs were tested by measuring their effectiveness in removing phenols from an aqueous solution. The adsorption of p-chlorophenol (PCP) by the ACs prepared from the PET-containing blends was slightly higher than for the commercial activated carbon. The ability to adsorb PCP was found to be related to the volume of the super-micropores.

  8. The solvation study of carbon, silicon and their mixed nanotubes in water solution.

    PubMed

    Hashemi Haeri, Haleh; Ketabi, Sepideh; Hashemianzadeh, Seyed Majid

    2012-07-01

    Nanotubes are believed to open the road toward different modern fields, either technological or biological. However, the applications of nanotubes have been badly impeded for the poor solubility in water which is especially essential for studies in the presence of living cells. Therefore, water soluble samples are in demand. Herein, the outcomes of Monte Carlo simulations of different sets of multiwall nanotubes immersed in water are reported. A number of multi wall nanotube samples, comprised of pure carbon, pure silicon and several mixtures of carbon and silicon are the subjects of study. The simulations are carried out in an (N,V,T) ensemble. The purpose of this report is to look at the effects of nanotube size (diameter) and nanotube type (pure carbon, pure silicon or a mixture of carbon and silicon) variation on solubility of multiwall nanotubes in terms of number of water molecules in shell volume. It is found that the solubility of the multi wall carbon nanotube samples is size independent, whereas multi wall silicon nanotube samples solubility varies with diameter of the inner tube. The higher solubility of samples containing silicon can be attributed to the larger atomic size of silicon atom which provides more direct contact with the water molecules. The other affecting factor is the bigger inter space (the space between inner and outer tube) in the case of silicon samples. Carbon type multi wall nanotubes appeared as better candidates for transporting water molecules through a multi wall nanotube structure, while in the case of water adsorption problems it is better to use multi wall silicon nanotubes or a mixture of multi wall carbon/ silicon nanotubes. PMID:22271095

  9. The solvation study of carbon, silicon and their mixed nanotubes in water solution.

    PubMed

    Hashemi Haeri, Haleh; Ketabi, Sepideh; Hashemianzadeh, Seyed Majid

    2012-07-01

    Nanotubes are believed to open the road toward different modern fields, either technological or biological. However, the applications of nanotubes have been badly impeded for the poor solubility in water which is especially essential for studies in the presence of living cells. Therefore, water soluble samples are in demand. Herein, the outcomes of Monte Carlo simulations of different sets of multiwall nanotubes immersed in water are reported. A number of multi wall nanotube samples, comprised of pure carbon, pure silicon and several mixtures of carbon and silicon are the subjects of study. The simulations are carried out in an (N,V,T) ensemble. The purpose of this report is to look at the effects of nanotube size (diameter) and nanotube type (pure carbon, pure silicon or a mixture of carbon and silicon) variation on solubility of multiwall nanotubes in terms of number of water molecules in shell volume. It is found that the solubility of the multi wall carbon nanotube samples is size independent, whereas multi wall silicon nanotube samples solubility varies with diameter of the inner tube. The higher solubility of samples containing silicon can be attributed to the larger atomic size of silicon atom which provides more direct contact with the water molecules. The other affecting factor is the bigger inter space (the space between inner and outer tube) in the case of silicon samples. Carbon type multi wall nanotubes appeared as better candidates for transporting water molecules through a multi wall nanotube structure, while in the case of water adsorption problems it is better to use multi wall silicon nanotubes or a mixture of multi wall carbon/ silicon nanotubes.

  10. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    PubMed

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction.

  11. The self-similar solutions of the problem of carbon dioxide injection into the reservoir saturated with methane and its hydrate

    NASA Astrophysics Data System (ADS)

    Musakaev, N. G.; Khasanov, M. K.

    2016-10-01

    In this paper the research of carbon dioxide injection into a porous medium initially saturated with methane and its hydrate was performed. The mathematical model of heat and mass transfer in a porous media, accompanied by the formation of carbon dioxide hydrate, is presented. The self-similar solutions, for the axisymmetric problem definition, were built. These solutions describe the distribution of the fluid parameters in a reservoir.

  12. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.

    PubMed

    Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe

    2016-09-01

    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties. PMID:27404109

  13. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.

    PubMed

    Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe

    2016-09-01

    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties.

  14. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution

    PubMed Central

    Deng, Hua; Wang, Shuo; Wang, Xiumei; Du, Chang; Shen, Xingcan; Wang, Yingjun; Cui, Fuzhai

    2015-01-01

    Four self-assembled monolayer surfaces terminated with –COOH, –OH, –NH2 and –CH3 functional groups are used to direct the biomineralization processes of calcium carbonate (CaCO3) in low Ca2+ concentration, and the mechanism of nucleation and initial crystallization within 12 h was further explored. On −COOH surface, nucleation occurs mainly via ion aggregation mechanism while prenucleation ions clusters may be also involved. On −OH and −NH2 surfaces, however, nucleation forms via calcium carbonate clusters, which aggregate in solution and then are adsorbed onto surfaces following with nucleation of amorphous calcium carbonate (ACC). Furthermore, strongly negative-charged −COOH surface facilitates the direct formation of calcites, and the −OH and −NH2 surfaces determine the formation of vaterites with preferred crystalline orientations. Neither ACC nor crystalline CaCO3 is observed on −CH3 surface. Our findings present a valuable model to understand the CaCO3 biomineralization pathway in natural system where functional groups composition plays a determining role during calcium carbonate crystallization. PMID:26814639

  15. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution.

    PubMed

    Deng, Hua; Wang, Shuo; Wang, Xiumei; Du, Chang; Shen, Xingcan; Wang, Yingjun; Cui, Fuzhai

    2015-09-01

    Four self-assembled monolayer surfaces terminated with -COOH, -OH, -NH2 and -CH3 functional groups are used to direct the biomineralization processes of calcium carbonate (CaCO3) in low Ca(2+) concentration, and the mechanism of nucleation and initial crystallization within 12 h was further explored. On -COOH surface, nucleation occurs mainly via ion aggregation mechanism while prenucleation ions clusters may be also involved. On -OH and -NH2 surfaces, however, nucleation forms via calcium carbonate clusters, which aggregate in solution and then are adsorbed onto surfaces following with nucleation of amorphous calcium carbonate (ACC). Furthermore, strongly negative-charged -COOH surface facilitates the direct formation of calcites, and the -OH and -NH2 surfaces determine the formation of vaterites with preferred crystalline orientations. Neither ACC nor crystalline CaCO3 is observed on -CH3 surface. Our findings present a valuable model to understand the CaCO3 biomineralization pathway in natural system where functional groups composition plays a determining role during calcium carbonate crystallization.

  16. Corrosion inhibition behavior of propyl phosphonic acid-Zn2+ system for carbon steel in aqueous solution

    NASA Astrophysics Data System (ADS)

    Prabakaran, M.; Venkatesh, M.; Ramesh, S.; Periasamy, V.

    2013-07-01

    The effectiveness of propyl phosphonic acid (PPA) as a corrosion inhibitor in association with a bivalent cation like Zn2+ has been studied. An eco-friendly inhibitor in controlling corrosion of carbon steel in neutral aqueous medium in the absence and presence of Zn2+ has been evaluated by gravimetric method. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous environment. Potentiodynamic polarization studies showed that the inhibitor is a mixed inhibitor. X-ray photoelectron spectroscopic analysis (XPS) of the protective film exhibited the presence of the elements viz., iron, phosphorus, oxygen, carbon and zinc. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of oxides/hydroxides of iron(III), Zn(OH)2 and [Fe(II)/(III)-Zn(II)-PPA] complex. Further, the surface analysis techniques viz., FT-IR, AFM and SEM studies confirm the formation of an adsorbed protective film on the carbon steel surface. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

  17. Performance of high-recovery recycling reverse osmosis with wash water

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.

    1993-01-01

    Inclusion of a recycling loop for partially-desalted water from second-stage reverse-osmosis permeate has been shown useful for achieving high-recovery at moderate applied pressures. This approach has now been applied to simulated wash waters, to obtain data on retention by the membranes of solutes in a mixture comparable to anticipated spacecraft hygiene wastewaters, and to generate an estimate of the maximum concentration that can be expected without causing membrane fouling. A first experiment set provides selectivity information from a single membrane and an Igepon detergent, as a function of final concentration. A reject concentration of 3.1% Total Organic Carbon has been reached, at a pressure of 1.4 Mega Pascals, without membrane fouling. Further experiments have generated selectivity values for the recycle configuration from two washwater simulations, as a function of applied pump pressure. Reverse osmosis removal has also been tested for washwater containing detergent formulated for plant growth compatibility (containing nitrogen, phosphorous and potassium functional groups.)

  18. BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  19. 6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND FOR MONITORING MOVEMENT OF DAM AND EARTH. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  20. 4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP LOOKING SOUTHWEST. DAM AND SPILLWAY VISIBLE IN BOTTOM OF PHOTO. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  1. Study On Adsorption of Bromate From Aqueous Solution On Modified Activated Carbon

    NASA Astrophysics Data System (ADS)

    Liu, Tong-mian; Cui, Fu-yi; Zhao, Zhi-wei; Liu, Dong-mei; Zhu, Qi; Wang, Huan

    2010-11-01

    A coal-based activated carbon was treated chemically with nitric acid, sodium hydroxide and ammonia for its surface modification, and its adsorption capacity was investigated with bromate. Several techniques were used to characterize the physicochemical properties of these materials including BET, XPS, pHpzc and Boehm titration. The results indicated that the specific surface area of the activated carbon decreased after oxidation with nitric acid. But the amount of surface acidic oxygen-containing functional groups of the oxidized sample increased compared to the raw carbon and the points of zero charge (pHpzc) decreased. The specific surface area of the activated carbon also decreased after sodium hydroxide treatment and the points of zero charge increased. The changes of surface chemical properties after the ammonia treatment was opposite to the oxidized sample. As a result, the pHpzc of the carbon was increased to near pH9.3, the amount of surface basic groups was increased. Furthermore, the data of bromate adsorption on all the samples were fitted to the Langmuir isotherm model well which indicates monolayer adsorption. In addition, the adsorption capacity of ammonia treatment sample was the highest and its saturated adsorption capacity reached 1.55 mg/g. A strong correlation was found between basic groups and adsorption capacity of bromate. Enhancement of basic groups was favorable for bromate removal.

  2. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    SciTech Connect

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH{sub 2}){sup {minus}1/2} dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs.

  3. Origin of gasoline-range hydrocarbons and their migration by solution in carbon dioxide in Norton basin, Alaska.

    USGS Publications Warehouse

    Kvenvolden, K.A.; Claypool, G.E.

    1980-01-01

    Carbon dioxide from a submarine seep in Norton Sound carries a minor component of gas- and gasoline-range hydrocarbons. The molecular and isotopic compositions of the hydrocarbon gases and the presence of gasoline-range hydrocarbons indicate that these molecules are derived from thermal alteration of marine and/or nonmarine organic matter buried within Norton basin. The gasoline-range hydrocarbon distribution suggests that the hydrocarbon mixture is an immature petroleum-like condensate of lower temperature origin than normal crude oil. The submarine seep provides a natural example in support of a carbon dioxide solution transport mechanism thought to be operative in the migration of hydrocarbons in certain reservoirs.-Authors

  4. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution.

    PubMed

    Tan, Guangcai; Sun, Weiling; Xu, Yaru; Wang, Hongyuan; Xu, Nan

    2016-07-01

    Corn straw biochar (BC) was used as a precursor to produce Na2S modified biochar (BS), KOH modified biochar (BK) and activated carbon (AC). Experiments were conducted to compare the sorption capacity of these sorbents for aqueous Hg (II) and atrazine existed alone or as a mixture. In comparison to BC, the sorption capacity of BS, BK and AC for single Hg (II) increased by 76.95%, 32.12% and 41.72%, while that for atrazine increased by 38.66%, 46.39% and 47 times, respectively. When Hg (II) and atrazine coexisted in an aqueous solution, competitive sorption was observed on all these sorbents. Sulfur impregnation was an efficient way to enhance the Hg (II) removal due to the formation of HgS precipitate, and oxygen-containing functional groups on the sorbents also contributed to Hg (II) sorption. Activated carbon was the best sorbent for atrazine removal because of its extremely high specific surface area.

  5. Preparation of polyacrylnitrile (PAN)/ Manganese oxide based activated carbon nanofibers (ACNFs) for adsorption of Cadmium (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Yusof, N.; Jaafar, J.; Ismail, AF; Che Othman, F. E.; Hasbullah, H.; Salleh, W. N. W.; Misdan, N.

    2016-06-01

    In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylnitrile (PAN) and manganese oxide (MnO2) were prepared via electrospinning process. The electrospun PAN/MnO2-based ACNFs were characterised in term of its morphological structure and specific surface area using SEM and BET analysis respectively. The comparative adsorption study of cadmium (II) ions from aqueous solution between the neat ACNFs, composite ACNFs and commercial granular activated carbon was also conducted. SEM analysis illustrated that composite ACNFs have more compact fibers with presence of MnO2 beads with smaller fiber diameter of 437.2 nm as compared to the neat ACNFs which is 575.5 nm. BET analysis elucidated specific surface area of ACNFs/MnO2 to be 67 m2/g. Under adsorption study, it was found out that Cd (II) removal by ACNFs/MnO2 was the highest (97%) followed by neat ACNFs (96%) and GAC (74%).

  6. Salt Wash Field, Grand Country, Utah

    SciTech Connect

    Morgan, C.D. )

    1993-08-01

    The Salt Wash field is located 15 miles southeast of Green River, Utah, in the Paradox fold and fault belt. The field was discovered in 1961 and has produced over 1.3 million bbl of oil and 11.6 billion ft[sup 3] of gas from the Mississippian Leadville LImestone. The average surface elevation is 4389 ft above sea level, and the depth to the top of the oil production is form 8500 to 8914 ft. Salt Wash field is an anticline with over 200 ft of closure on top of the Leadville. The producing zone is in the lower Leadville with intercrystalline and vuggy porosity developed in limestone and crystalline dolomitic limestone. The produced oil is a 50 to 53 API gravity crude with a 40[degrees]F pour point. The gas, a mixture of two sources, is predominately nitrogen (>70[sup [approximately

  7. A new technique for bladder washing.

    PubMed

    Miller, D C; Fitkin, D L; Kropp, K A; Selman, S H

    1992-01-01

    We describe a simple adaptation of the Water Pik (Teledyne Water Pik, Fort Collins, Colorado) irrigating device which allows vigorous, direct-vision agitation of the bladder wall. Three groups of mongrel dogs were subjected to cystoscopy and either syringe barbotage, half-speed Water Pik irrigation, or full-speed Water Pik irrigation of the bladder wall. Transitional cell counts were then done on centrifuged aliquots of each bladder wash specimen. The average number of transitional cells per high-power field were similar between the control group and the syringe barbotage group (2.5 and 1.5 respectively). However, both the half-speed and the full-speed Water Pik groups demonstrated statistically higher cell counts (5.7 and 13.7) when compared to both the controls and syringe barbotage groups. We conclude that Water Pik irrigation is an effective method to increase cell yield in bladder wash specimens. PMID:1729530

  8. Assessment and optimization of an ultrasound-assisted washing process using organic solvents for polychlorinated biphenyl-contaminated soil.

    PubMed

    Bezama, Alberto; Flores, Alejandra; Araneda, Alberto; Barra, Ricardo; Pereira, Eduardo; Hernández, Víctor; Moya, Heriberto; Konrad, Odorico; Quiroz, Roberto

    2013-10-01

    The goal of this work was to evaluate a washing process that uses organic solutions for polychlorinated biphenyl (PCB)-contaminated soil, and includes an ultrasound pre-treatment step to reduce operational times and organic solvent losses. In a preliminary trial, the suitability of 10 washing solutions of different polarities were tested, from which three n-hexane-based solutions were selected for further evaluation. A second set of experiments was designed using a three-level Taguchi L27 orthogonal array to model the desorption processes of seven different PCB congeners in terms of the variability of their PCB concentration levels, polarity of the washing solution, sonication time, the ratio washing solution/soil, number of extraction steps and total washing time. Linear models were developed for the desorption processes of all congeners. These models provide a good fit with the results obtained. Moreover, statistically significant outcomes were achieved from the analysis of variance tests carried out. It was determined that sonication time and ratio of washing solution/soil were the most influential process parameters. For this reason they were studied in a third set of experiments, constructed as a full factorial design. The process was eventually optimized, achieving desorption rates of more than 90% for all congeners, thus obtaining concentrations lower than 5 ppb in all cases. The use of an ultrasound-assisted soil washing process for PCB-contaminated soils that uses organic solvents seems therefore to be a viable option, especially with the incorporation of an extra step in the sonication process relating to temperature control, which is intended to prevent the loss of the lighter congeners.

  9. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    SciTech Connect

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between approx. 20 and 400/sup 0/C. The hydrolysis of Mg/sup 2 +/ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25/sup 0/C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate.

  10. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kerisit, Sebastien; Liu, Chongxuan

    2010-09-01

    Potential-based molecular dynamics simulations of aqueous uranyl carbonate species (M xUO 2(CO 3) y2+2x-2y with M = Mg, Ca, or Sr) were carried out to gain molecular-level insight into the hydration properties of these species. The simulation results were used to estimate the self-diffusion coefficients of these uranyl carbonate species, which often dominate uranyl speciation in groundwater systems. The diffusion coefficients obtained for the monoatomic alkaline-earth cations and polyatomic ions (uranyl, carbonate, and uranyl tri-carbonate) were compared with those calculated from the Stokes-Einstein (SE) equation and its variant formulation by Impey et al. (1983). Our results show that the equation of Impey et al. (1983), originally formulated for monovalent monoatomic ions, can be extended to divalent monoatomic ions, with some success in reproducing the absolute values and the overall trend determined from the molecular dynamics simulations, but not to polyatomic ions, for which the hydration shell is not spherically symmetrical. Despite the quantitative failure of both SE formulations, a plot of the diffusion coefficients of the uranyl carbonate complexes as a function of the inverse of the equivalent spherical radius showed that a general linear dependence is observed for these complexes as expected from the SE equation. The nature of the alkaline-earth cation in the uranyl carbonate complexes was not found to have a significant effect on the ion's diffusion coefficient, which suggests that the use of a single diffusion coefficient for different alkaline-earth uranyl carbonate complexes in microscopic diffusion models is appropriate. The potential model reproduced well published quantum mechanical and experimental data of UO(CO)32x-4 and of the individual constituent ions, and therefore is expected to offer reliable predictions of the structure of magnesium and strontium uranyl carbonate aqueous species, for which there is no structural data available to date

  11. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments. PMID:27074782

  12. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  13. Washing of the AN-107 entrained solids

    SciTech Connect

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  14. Continuous concentration and constant volume washing of tetraphenylborate slurries

    SciTech Connect

    Siler, J.L.

    1999-12-08

    SRTC has completed filtration testing of tetraphenylborate (TPB) slurries with and without sludge. These tests were slightly different from previous SRS tests in that they used continuous mode concentration and constant volume washing evolutions. The extent of TPB recovery during washing was measured. The resulting washed precipitate slurry, with sludge, was stored at ambient temperature and under a nitrogen-inerted atmosphere to study TPB stability. Samples of both unwashed and washed slurries were submitted for rheology measurements.

  15. Temperature effects on the performance of PMAN-derived carbon anodes in 1M LiPF{sub 6}/EC-DMC solution

    SciTech Connect

    Guidotti, R.A.; Johnson, B.J.

    1998-04-01

    The effect of temperature on the reversible and irreversible capacities of disordered carbons derived from polymethacryonitrile (PMAN) and divinylbenzene (DVB) copolymers was studied in 1 M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) (1:1 v/v) solution by galvanostatic cycling. The kinetics of passive film formation were examined by complex-impedance spectroscopy. Temperatures of 5, 21, and 35 C were used in the study.

  16. Breadboard wash water renovation system. [using ferric chloride and ion exchange resins to remove soap and dissolved salts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A total wash water renovation system concept was developed for removing objectionable materials from spacecraft wash water in order to make the water reusable. The breadboard model system described provides for pretreatment with ferric chloride to remove soap by chemical precipitation, carbon adsorption to remove trace dissolved organics, and ion exchange for removal of dissolved salts. The entire system was put into continuous operation and carefully monitored to assess overall efficiency and equipment maintenance problems that could be expected in actual use. In addition, the capacity of the carbon adsorbers and the ion-exchange resin was calculated and taken into consideration in the final evaluation of the system adequacy. The product water produced was well within the Tentative Wash Water Standards with regard to total organic carbon, conductivity, urea content, sodium chloride content, color, odor, and clarity.

  17. Interruption of shigellosis by hand washing.

    PubMed

    Khan, M U

    1982-01-01

    High attack rates, increasing resistance to antibiotics and high mortality make shigellosis a serious problem. As Shigella is associated with poor hygiene we examined the effectiveness of a simple intervention, washing hands with soap and water, in checking the spread of the disease. The study population was comprised of confirmed cases of shigellosis. These and matched controls were followed up for 10 days. Several pieces of soap and earthenware pitchers for storing water were provided to the study families and they were advised to wash their hands with soap and water after defaecation and before meals. Compliance was monitored daily by observing the size of the soap and residual water. Rectal swabs of contacts of both the groups were obtained for culture. The secondary infection rate was 10.1% in the study group and 32.4% in the control group. The secondary case (symptomatic) rate was 2.2% in the study group and 14.2% in the control group. These results suggest that hand-washing has a positive interrupting effect, even in unsanitary environments.

  18. Electrostatic precipitator having traversing collector washing mechanism

    SciTech Connect

    Bricker, J.C.; Elsbernd, C.A.

    1980-12-23

    An electrostatic precipitator air cleaner is described that includes a number of precipitator cells having spaced parallel plates for collecting dirt particles, and a vertically disposed traversing pipe-like spray header containing a number of spray nozzles for directing a spray of wash or rinse fluid onto the collecting plates in order to remove collected particles. The header is traversed horizontally across the precipitator cells by means of a trolley supported by a rail-like guide member and reciprocated between a home position and an extended position by means of a rotating elongated helical drive screw cooperating with a gear-like follower attached to the trolley, such that the rotation of the screw produces linear motion of the header. The header is connected to a source of wash or rinse fluid by means of swivel connections and a flexible conduit. An elongated flat resilient fluid impervious strip containing a longitudinal slit in sliding sealable engagement with the header is positioned between the traversing mechanism and the spray nozzles to prevent infiltration of the precipitator airstream or wash fluid into the area occupied by the traversing mechanism. The threaded follower may also be disengaged from the helical drive screw and the header moved manually to any position along its length of travel.

  19. Bacterial Exchange in Household Washing Machines

    PubMed Central

    Callewaert, Chris; Van Nevel, Sam; Kerckhof, Frederiek-Maarten; Granitsiotis, Michael S.; Boon, Nico

    2015-01-01

    Household washing machines (WMs) launder soiled clothes and textiles, but do not sterilize them. We investigated the microbial exchange occurring in five household WMs. Samples from a new cotton T-shirt were laundered together with a normal laundry load. Analyses were performed on the influent water and the ingoing cotton samples, as well as the greywater and the washed cotton samples. The number of living bacteria was generally not lower in the WM effluent water as compared to the influent water. The laundering process caused a microbial exchange of influent water bacteria, skin-, and clothes-related bacteria and biofilm-related bacteria in the WM. A variety of biofilm-producing bacteria were enriched in the effluent after laundering, although their presence in the cotton sample was low. Nearly all bacterial genera detected on the initial cotton sample were still present in the washed cotton samples. A selection for typical skin- and clothes-related microbial species occurred in the cotton samples after laundering. Accordingly, malodour-causing microbial species might be further distributed to other clothes. The bacteria on the ingoing textiles contributed for a large part to the microbiome found in the textiles after laundering. PMID:26696989

  20. Fundamental Effects of Aging on Creep Properties of Solution-Treated Low-Carbon N-155 Alloy

    NASA Technical Reports Server (NTRS)

    Frey, D N; Freeman, J W; White, A E

    1950-01-01

    A method is developed whereby the fundamental mechanisms are investigated by which processing, heat treatment, and chemical composition control the properties of alloys at high temperatures. The method used metallographic examination -- both optical and electronic --studies of x-ray diffraction-line widths, intensities, and lattice parameters, and hardness surveys to evaluate fundamental structural conditions. Mechanical properties at high temperatures are then measured and correlated with these measured structural conditions. In accordance with this method, a study was made of the fundamental mechanism by which aging controlled the short-time creep and rupture properties of solution-treated low-carbon n-155 alloy at 1200 degrees F.

  1. Optical limiting response of multi-walled carbon nanotube-phthalocyanine nanocomposite in solution and when in poly (acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sekhosana, Kutloano Edward; Nyokong, Tebello

    2016-08-01

    Bis{23-(3,4-di-yloxybenzoic acid)-(2(3), 9(10), 16(17), 23(24)-(hexakis-pyridin-3-yloxy phthalocyaninato)} dineodymium (III) acetate (3) is linked to amino-functionalized multi-walled carbon nanotubes (MWCNT) to form 3-MWCNT. Z-scan technique was employed to experimentally determine the nonlinear absorption coefficient from the open-aperture data. The limiting threshold values as low as 0.045 J cm-2 were found in solution. The conjugate (3-MWCNT) gave better optical limiting behavior than complex 3 alone.

  2. Irreversible Wash Aid Additive for Cesium Mitigation: WARRP Demonstration

    SciTech Connect

    Kaminski, Michael

    2015-01-01

    This activity demonstrated, on a practical scale, the primary unit operations for building a containment structure for radioactive wash waters, washing down a hypothetically radioactively contaminated vehicle, collecting the hypothetically radioactive slurry waste water, filtering the hypothetically radioactive wash waters, disassembling the containment, and transporting the materials for final disposition.

  3. Application of Chinese Ink Wash Drawing in Product Design

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Huang, Qiming; Qin, Chuan

    Based on the analysis of the art of Chinese Ink Wash Drawing style, then explains the purpose and meaning of the study for product design with Ink Wash Drawing, in the end combined with actual cases, describes the application of product design using Chinese Ink Wash Drawing.

  4. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  5. Thin Fluoropolymer Films and Nanoparticle Coatings from the Rapid Expansion of Supercritical Carbon Dioxide Solutions with Electrostatic Collection.

    SciTech Connect

    Fulton, John L.; Deverman, George S.; Yonker, Clement R.; Grate, Jay W.; Deyoung, James; Mcclain, James B.

    2003-03-12

    Application of nanometer thick fluoropolymer films to substrates ranging from microelectronic components to cardiovascular implants is described. In the first step, nanometer-sized polymer particles are generated during the rapid expansion of supercritical fluid solutions. These particles are then charged as they are being formed by application of a high voltage to the expansion nozzle. The charged particles are forced to a solid surface forming uniform coatings with thicknesses from 10?s of nanometers to several micrometers thick. Supercritical carbon dioxide solutions of three different fluoropolymers were used to generate different types of coatings. The method can also be used to generate a solid matrix with nanometer size domains of two chemically diverse solid materials. The size of the particles are so small that they can be deposited to electrically conducting microscopic regions with a spatial resolution better than 50 nm.

  6. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Hai-Shui; Zeng, Qiang

    2016-09-01

    The polymorph control of calcium carbonate by the vapor diffusion method is still a challenging issue because the resultant crystal polymorphs and morphologies highly depend on the experimental setup. In this communication, we demonstrated that the concentration gradients accompanied by the vapor diffusion method (ammonia concentration, pH and the ratio of CO32- to Ca2+ are changed with the solution depth and with time) are probably the main reasons to significantly affect the formation of crystal polymorphs. Raman, SEM and XRD data showed that calcite and vaterite crystals were preferred to nucleate and grow in the upper or the lower areas of aqueous solution respectively. The above results can be explained by the gradient effect.

  7. The effect of fatal carbon monoxide poisoning on the equilibria between cell membranes and the electrolyte solution.

    PubMed

    Petelska, Aneta D; Kotyńska, Joanna; Figaszewski, Zbigniew A

    2015-02-01

    The effect of fatal carbon monoxide poisoning on equilibria between cell membranes and surrounding ions was described using a theoretical four-equilibria model. The model was developed to obtain parameters characterizing the interactions between solution ions and erythrocyte or thrombocyte membrane surface. The parameters are the total surface concentrations of both acidic and basic groups C A, C B and their association constants with solution ions K AH, K BOH. These parameters were used to calculate the theoretical values of surface charge density. The model was validated by comparison of these values to experimental data, which were determined from the electrophoretic mobility measurements of the blood cells. The experimental and theoretical surface charge density values agree at pH 2-8, and at higher pH, the deviation was observed.

  8. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis.

    PubMed

    Ai, Lunhong; Zhang, Chunying; Liao, Fang; Wang, Yao; Li, Ming; Meng, Lanying; Jiang, Jing

    2011-12-30

    In this study, we have demonstrated the efficient removal of cationic dye, methylene blue (MB), from aqueous solution with the one-pot solvothermal synthesized magnetite-loaded multi-walled carbon nanotubes (M-MWCNTs). The as-prepared M-MWCNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The effects of contact time, initial dye concentration, and solution pH on the adsorption of MB onto M-MWCNTs were systematically studied. It was shown that the MB adsorption was pH-dependent. Adsorption kinetics was best described by the pseudo-second-order model. Equilibrium data were well fitted to the Langmuir isotherm model, yielding maximum monolayer adsorption capacity of 48.06 mg g(-1). FTIR analysis suggested that the adsorption mechanism was possibly attributed to the electrostatic attraction and π-π stacking interactions between MWCNTs and MB.

  9. Precipitation polymerization of hydrophobically modified polyelectrolyte poly(AA-co-ODA) in supercritical carbon dioxide and solution rheology properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiping; Li, Wei; Cao, Qing; Chen, Mingcai

    2014-05-01

    Hydrophobically modified (HM) polyelectrolytes were prepared by using precipitation polymerization of acrylic acid (AA) and octadecyl acrylate (ODA) in various molar ratios in supercritical carbon dioxide. The product was obtained in the form of a white powder and the micrographs show aggregates of primary particles < 1 μm in size. The effects of polymer concentration, ODA content in polymer, surfactant, shear time, shear rate on the apparent viscosity were investigated. The reason leaded to a significant viscosity enhancement was discussed. Steady-state and oscillatory tests of solution were also investigated. Solution exhibited shear thinning behavior and thixotropy. Polymers contain octadecyl acrylate (3.4 mol%) at 0.2 g/dL behaved as high entanglement structures or association gels, since the modulus G' were being higher than G″ throughout the frequency range. The comparison of apparent and complex viscosities confirmed the association gel properties.

  10. Sodium carbonate poisoning

    MedlinePlus

    Sal soda poisoning; Soda ash poisoning; Disodium salt poisoning; Carbonic acid poisoning; Washing soda poisoning ... number will let you talk to experts in poisoning. They will give you further instructions. This is ...

  11. Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media.

    PubMed

    Tian, Yuan; Gao, Bin; Wu, Lei; Muñoz-Carpena, Rafael; Huang, Qingguo

    2012-09-15

    There are increasing concerns over the environmental impact and health risks of carbon nanotubes (CNTs) because they may be released into soil and groundwater systems. The present work systematically investigated the transport, deposition, and mobilization behaviors of multi-walled carbon nanotubes (MWNTs) in saturated columns packed with acid-cleaned glass beads and quartz sand of two different grain sizes. Combined effects of pH (5.6 and 10) and ionic strength (IS: DI water, 1mM, and 10mM) on the fate and transport of the MWNTs in the columns were examined. MWNTs were relatively mobile in all the tested conditions with DI water as the experimental solution. Their deposition in the saturated porous media, however, was very sensitive to solution chemistry, particularly IS. Slight increase in solution IS (1 mM) caused strong deposition of MWNTs in both quartz sand (>44%) and glass beads (>39%). Mobilization experimental results indicated that most of the MWNT attachment (>73%) to the porous media was irreversible and reduction in solution IS only caused a small portion of re-entrainment (<27%) of deposited MWNT for all the tested conditions. This indicates that more MWNTs are trapped in the primary minimum, although the deposition of MWNTs in saturated porous media occurs in both primary and secondary minimum. It is suggested that, under unfavorable conditions, weak associated MWNTs in the secondary minimum may be transferred into the primary minimum due to the effect of hydrodynamic force and/or local favorable sites associated with surface heterogeneity.

  12. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  13. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGESBeta

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  14. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  15. Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection

    EPA Science Inventory

    This study examines using the threshold critical pressure increase and the extent of the carbon dioxide (CO2) plume to delineate the area of potential impact (AoPI) for geologic CO2 storage projects. The combined area covering both the CO2 plume and the region where the pressure ...

  16. The microwave assisted synthesis of 1-alkyl-3-methylimidazolium bromide as potential corrosion inhibitor toward carbon steel in 1 M HCl solution saturated with carbon dioxide

    SciTech Connect

    Pasasa, Norman Vincent A. Bundjali, Bunbun; Wahyuningrum, Deana

    2015-09-30

    Injection of corrosion inhibitor into the fluid current of oil and gas pipelines is an effective way to mitigate corrosion rate on the inner-surface parts of pipelines, especially carbon steel pipelines. In this research, two alkylimidazolium ionic liquids, 1-decyl-3-methylimidazolium bromide (IL1) and 1-dodecyl-3-methylimidazolium bromide (IL2) have been synthesized and studied as a potential corrosion inhibitor towards carbon steel in 1 M HCl solution saturated with carbon dioxide. IL1 and IL2 were synthesized using microwave assisted organic synthesis (MAOS) method. Mass Spectrometry analysis of IL1 and IL2 showed molecular mass [M-H+] peak at 223.2166 and 251.2484, respectively. The FTIR,{sup 1}H-NMR and {sup 13}C-NMR spectra confirmed that IL1 and IL2 were successfully synthesized. Corrosion inhibition activity of IL1 and IL2 were determined using weight loss method. The results showed that IL1 and IL2 have the potential as good corrosion inhibitors with corrosion inhibition efficiency of IL1 and IL2 are 96.00% at 100 ppm (343 K) and 95.60% at 50 ppm (343 K), respectively. The increase in the concentration of IL1 and IL2 tends to improve their corrosion inhibition activities. Analysis of the data obtained from the weight loss method shows that the adsorption of IL1 and IL2 on carbon steel is classified into chemisorption which obeys Langmuir’s adsorption isotherm.

  17. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links.

    PubMed

    Ngure, Francis M; Reid, Brianna M; Humphrey, Jean H; Mbuya, Mduduzi N; Pelto, Gretel; Stoltzfus, Rebecca J

    2014-01-01

    There is scarce research and programmatic evidence on the effect of poor water, sanitation, and hygiene (WASH) conditions of the physical environment on early child cognitive, sensorimotor, and socioemotional development. Furthermore, many common WASH interventions are not specifically designed to protect babies in the first 3 years of life, when gut health and linear growth are established. We review evidence linking WASH, anemia, and child growth, and highlight pathways through which WASH may affect early child development, primarily through inflammation, stunting, and anemia. Environmental enteropathy, a prevalent subclinical condition of the gut, may be a key mediating pathway linking poor hygiene to developmental deficits. Current early child development research and programs lack evidence-based interventions to provide a clean play and infant feeding environment in addition to established priorities of nutrition, stimulation, and child protection. Solutions to this problem will require appropriate behavior change and technologies that are adapted to the social and physical context and conducive to infant play and socialization. We propose the concept of baby WASH as an additional component of early childhood development programs.

  18. Washing and alkaline leaching of Hanford tank sludges: A status report

    SciTech Connect

    Lumetta, G.J.; Rapko, B.M.

    1994-09-01

    Because of the assumed high cost of high-level waste (HLW) immobilization and disposal, pretreatment methods are being developed to minimize the volume of HLW requiring vitrification. Pacific Northwest Laboratory (PNL) is investigating several options for pretreating the radioactive wastes stored in underground tanks at the Hanford Site. The pretreatment methods under study for the tank sludges include: (1) simply washing the sludges with dilute NaOH, (2) performing caustic leaching (as well as washing) to remove certain wash components, and (3) dissolving the sludges in acid and extracting key radionuclides from the dissolved sludge solutions. The data collected in this effort will be used to support the March 1998 decision on the extent of pretreatment to be performed on the Hanford tank sludges. This document describes sludge washing and caustic leaching tests conducted in FY 1994. These tests were performed using sludges from single-shell tanks (SST) B-201 and U-110. A summary is given of all the sludge washing and caustic leaching studies conducted at PNL in the last few years.

  19. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links.

    PubMed

    Ngure, Francis M; Reid, Brianna M; Humphrey, Jean H; Mbuya, Mduduzi N; Pelto, Gretel; Stoltzfus, Rebecca J

    2014-01-01

    There is scarce research and programmatic evidence on the effect of poor water, sanitation, and hygiene (WASH) conditions of the physical environment on early child cognitive, sensorimotor, and socioemotional development. Furthermore, many common WASH interventions are not specifically designed to protect babies in the first 3 years of life, when gut health and linear growth are established. We review evidence linking WASH, anemia, and child growth, and highlight pathways through which WASH may affect early child development, primarily through inflammation, stunting, and anemia. Environmental enteropathy, a prevalent subclinical condition of the gut, may be a key mediating pathway linking poor hygiene to developmental deficits. Current early child development research and programs lack evidence-based interventions to provide a clean play and infant feeding environment in addition to established priorities of nutrition, stimulation, and child protection. Solutions to this problem will require appropriate behavior change and technologies that are adapted to the social and physical context and conducive to infant play and socialization. We propose the concept of baby WASH as an additional component of early childhood development programs. PMID:24571214

  20. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil.

  1. An HPLC chromatographic framework to analyze the β-cyclodextrin/solute complexation mechanism using a carbon nanotube stationary phase.

    PubMed

    Aljhni, Rania; Andre, Claire; Lethier, Lydie; Guillaume, Yves Claude

    2015-11-01

    A carbon nanotube (CNT) stationary phase was used for the first time to study the β-cyclodextrin (β-CD) solute complexation mechanism using high performance liquid chromatography (HPLC). For this, the β-CD was added at various concentrations in the mobile phase and the effect of column temperature was studied on both the retention of a series of aniline and benzoic acid derivatives with the CNT stationary phase and their complexation mechanism with β-CD. A decrease in the solute retention factor was observed for all the studied molecules without change in the retention order. The apparent formation constant KF of the inclusion complex β-CD/solute was determined at various temperatures. Our results showed that the interaction of β-CD with both the mobile phase and the stationary phase interfered in the complex formation. The enthalpy and entropy of the complex formation (ΔHF and ΔSF) between the solute molecule and CD were determined using a thermodynamic approach. Negative enthalpies and entropies indicated that the inclusion process of the studied molecule in the CD cavity was enthalpically driven and that the hydrogen bonds between carboxylic or aniline groups and the functional groups on the β-CD rim play an important role in the complex formation. PMID:26452814

  2. Effect of preputial washing on bacterial load and preservability of semen in Murrah buffalo bulls

    PubMed Central

    Meena, G. S.; Raina, V. S.; Gupta, A. K.; Mohanty, T. K.; Bhakat, M.; Abdullah, M.; Bishist, R.

    2015-01-01

    Aim: To study the effect of preputial washing on bacterial load, preservability and semen quality in Murrah buffalo bulls Materials and Methods: A total of 36 collections of three Murrah buffalo bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, were collected at weekly intervals from each bull without preputial washing and latter ejaculates from same bull with preputial washing by infusing normal saline (0.85%), KMnO4 (0.02%) and savlon (2.0%) to first, second and third bull, respectively. The microbial load and semen quality were evaluated during different hours of storage at refrigerated temperature (0, 24 and 48 h) and after thrawing of cryopreserved (at −196°C) semen. Results: The results of preservation of semen at refrigerated temperature showed that bacterial load was markedly lower in ejaculates of bulls subjected to preputial washing. Semen preserved at refrigerator temperature and cryopreserved, the effect of washing solution was significant for individual motility (IM), non-eosiniphilic count, hypo-osmotic swelling reactivity (HOST), total plate count (TPC) and acrosome integrity. KMnO4 was found to be the best in lowering bacterial load, sperm abnormalities and in improving semen quality such as motility, non-eosinophilic count, HOST and acrosome integrity even up to 48 h of preservation and cryopreserved semen. Effect of duration of preservation and stage of cryopreservation was also significant for IM, non-eosiniphilic count, HOST, sperm abnormalities and acrosome integrity. Conclusion: Overall the results suggested that preputial washing with KMnO4 solution improved the semen quality and reduced microbial load of Murrah buffalo bull’s semen preserved at refrigerated temperature and cryopreservation. PMID:27065650

  3. Wash-off potential of urban use insecticides on concrete surfaces.

    PubMed

    Jiang, Weiying; Lin, Kunde; Haver, Darren; Qin, Sujie; Ayre, Gilboa; Spurlock, Frank; Gan, Jay

    2010-06-01

    Contamination of surface aquatic systems by insecticides is an emerging concern in urban watersheds, but sources of contamination are poorly understood, hindering development of regulatory or mitigation strategies. Hardscapes such as concrete surfaces are considered an important facilitator for pesticide runoff following applications around homes. However, pesticide behavior on concrete has seldom been studied, and standardized evaluation methods are nonexistent. In the present study, a simple batch method for measuring pesticide wash-off potential from concrete surfaces was developed, and the dependence of washable pesticide residues was evaluated on pesticide types, formulations, time exposed to outdoor conditions, and number of washing cycles. After application to concrete, the washable fraction of four pyrethroids (bifenthrin, permethrin, cyfluthrin, and cyhalothrin) and fipronil rapidly decreased, with half-lives < or =3 d, likely due to irreversible retention in micropores below the concrete surface. The initial fast decrease was followed by a much slower declining phase with half-lives ranging from one week to two months, and detectable residues were still found in the wash-off solution for most treatments after 112 d. The slow decrease may be attributed to a fraction of pesticides being isolated from degradation or volatilization after retention below the concrete surface. Wash-off potential was consistently higher for solid formulations than for liquid formulations, implying an increased runoff contamination risk for granular and powder formulations. Trace levels of pyrethroids were detected in the wash-off solution even after 14 washing-drying cycles over 42 d under outdoor conditions. Results from the present study suggest that pesticide residues remain on concrete and are available for contaminating runoff for a prolonged time. Mechanisms for the long persistence were not clearly known from the present study and merit further investigation.

  4. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH){sub 2} solutions

    SciTech Connect

    Zheng, Haibing; Li, Weihua; Ma, Fubin; Kong, Qinglin

    2014-01-15

    In the present work, the performance of an amino alcohol based surface applied inhibitor was studied by the electrochemical techniques in saturated Ca(OH){sub 2} solutions. The surface morphology of the carbon steel was observed by scanning electron microscope, and the energy diffraction spectrum was also tested. Results showed that the inhibitor used in this work demonstrated obvious inhibition efficiency on the carbon steel in saturated Ca(OH){sub 2} solutions. The inhibition mechanism of the inhibitor lies in the quick adsorption of the active component on carbon steel surface.

  5. Viscoelasticity of Single-Walled Carbon Nanotube Solutions with Tunable Attractive Interactions

    NASA Astrophysics Data System (ADS)

    Young, Colin Christopher

    Understanding the microstructure of single walled nanotubes (SWNTs) in solution is an essential step in the development of fluid processing techniques for the creation of multifunctional macroscopic SWNT materials and is also useful in the more fundamental study of rigid rod solutions. In this thesis, the microstructure of SWNT solutions in ClHSO3 and in mixtures of ClHSO3 and 102% H2SO4 is studied by investigation of their viscoelastic properties. These results are compared to previous investigations of SWNTs in 102% H2SO4 and in ClHSO3 at higher concentrations in order to study the effects of concentration and inter-SWNT attractive potential. Attractive interactions between the SWNTs are found to have a strong effect on percolation threshold concentration. A percolation transition is also observed in solutions at a fixed concentration as the solvent strength is decreased. Measurements obtained below the percolation transition are compared to the predictions of existing rigid rod solution models.

  6. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds.

    PubMed

    Lin, Chia-Chang; Lin, Yu-Hong; Tan, Chung-Sung

    2010-03-15

    The removal of CO(2) from a 10 vol% CO(2) gas by chemical absorption with 30 wt% alkanolamine solutions containing monoethanolamine (MEA), piperazine (PZ), and 2-amino-2-methyl-1-propanol (AMP) in the cross-flow rotating packed bed (RPB) was investigated. The CO(2) removal efficiency increased with rotor speed, liquid flow rate and inlet liquid temperature. However, the CO(2) removal efficiency decreased with gas flow rate. Also, the CO(2) removal efficiency was independent of inlet gas temperature. The 30 wt% alkanolamine solutions containing PZ with MEA were the appropriate absorbents compared with the single alkanolamine (MEA, AMP) and the mixed alkanolamine solutions containing AMP with MEA. A higher portion of PZ in alkanolamine solutions was more favorable to CO(2) removal. Owing to less contact time in the cross-flow RPB, alkanolamines having high reaction rates with CO(2) are suggested to be used. For the mixed alkanolamine solution containing 12 wt% PZ and 18 wt% MEA, the highest gas flow rate allowed to achieve the CO(2) removal efficiency more than 90% at a liquid flow rate of 0.54 L/min was of 29 L/min. The corresponding height of a transfer unit (HTU) was found to be less than 5.0 cm, lower than that in the conventional packed bed.

  7. Molecular Simulation of the Diffusion of Uranyl Carbonate Species in Aqueous Solution

    SciTech Connect

    Kerisit, Sebastien N.; Liu, Chongxuan

    2010-09-01

    Molecular dynamics simulations of aqueous uranyl carbonate species were carried out with two different potential models to gain molecular-level insight into the hydration properties of these species and evaluate the ability of the two models to reproduce published ab initio and experimental data. The simulation results were used to estimate the self-diffusion coefficients of uranyl carbonate species that often dominate uranyl speciation in groundwater systems. The first potential model was based on a series of shell models developed by Parker and co-workers (including (DE LEEUW and PARKER, 1998; KERISIT and PARKER, 2004; PAVESE et al., 1996). The second potential model was a rigid-ion model based on the flexible SPC water model (TELEMAN et al., 1987), the uranyl model of Guilbaud and Wipff (GUILBAUD and WIPFF, 1996), and the parameters for the carbonate ion given by Greathouse and co-workers (GREATHOUSE and CYGAN, 2005; GREATHOUSE et al., 2002). Analysis of structural (mean interatomic distances and coordination numbers) and dynamical (water residence times in hydration shell and self-diffusion coefficients) properties showed that, overall, the first potential model performed best when compared to published data, although the only major discrepancy with the second model was a misrepresentation of the configuration adopted by the alkaline-earth uranyl carbonate ions. The diffusion coefficients obtained for the alkaline-earth cations and the uranyl ion were compared with three variants of the Stokes-Einstein (SE) equation and it was found that none of the three SE models were able to reproduce both the absolute values and the overall trend determined from the molecular dynamics simulations. However, as would be expected based on the SE equation, a plot of the diffusion coefficients of the uranyl carbonate complexes as a function of the inverse of the equivalent spherical radius showed a general linear dependence with the two models yielding almost identical gradients

  8. In situ electron microscopy studies of calcium carbonate precipitation from aqueous solution with and without organic additives.

    PubMed

    Verch, Andreas; Morrison, Ian E G; Locht, Renee van de; Kröger, Roland

    2013-08-01

    For the understanding of mineral formation processes from solution it is important to obtain a deeper insight into the dynamics of crystal growth. In this study we applied for this purpose a novel atmospheric scanning electron microscope that allows the investigation of CaCO3 particle formation in solution under atmospheric conditions with a resolution of approximately 10nm. Furthermore it permits the in situ observation of the dynamics of crystal evolution. With this tool the precipitation of CaCO3 was studied in the absence and presence of additives, namely poly(acrylic acid) and poly(styrene sulfonate-co-maleic acid) which are known to influence the crystal growth rate and morphology. We determined particle growth rates and investigated the formation and dissolution dynamics of an observed transient phase, believed to be amorphous calcium carbonate. This technique also enabled us to study the depletion zones, areas of lower intensity due to reduced ion concentrations. Ion flux rates were obtained from the depletion zone width, which amounted to several μm assuming the formation and dissolution dynamics of amorphous calcium carbonate being the rate determining process. This assumption was confirmed since the obtained fluxes were found to be in good agreement with fluxes derived from the experimentally observed crystal growth rates.

  9. Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution.

    PubMed

    Zhang, Shihan; Lu, Hong; Lu, Yongqi

    2013-12-01

    A novel potassium-carbonate-based absorption process is currently being developed to reduce the energy consumption when capturing CO2 from coal combustion flue gas. The process employs the enzyme carbonic anhydrase (CA) as a catalyst to accelerate the rate of CO2 absorption. This study focused on the immobilization of a new variant of the CA enzyme onto a new group of nonporous nanoparticles to improve the enzyme's thermal stability and its chemical resistance to major impurities from the flue gas. The CA enzyme was manufactured at the pilot scale by a leading enzyme company. As carrier materials, two different batches of SiO2-ZrO2 composite nanoparticles and one batch of silica nanoparticle were synthesized using a flame spray pyrolysis method. Classic Danckwerts absorption theory with reaction was applied to determine the kinetics of the immobilized enzymes for CO2 absorption. The immobilized enzymes retained 56-88% of their original activity in a K2CO3/KHCO3 solution over a 60-day test period at 50 °C, compared with a 30% activity retention for their free CA enzyme counterpart. The immobilized CA enzymes also revealed improved chemical stability. The inactivation kinetics of the free and immobilized CA enzymes in the K2CO3/KHCO3 solution were experimentally quantified. PMID:24187930

  10. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution.

    PubMed

    Bo, Xiangjie; Guo, Liping

    2013-02-21

    Ordered mesoporous boron-doped carbons (BOMCs) were prepared by co-impregnation and carbonization of sucrose and 4-hydroxyphenylboronic acid into SBA-15 silica template. Nitrogen sorption, small angle X-ray diffraction (XRD), and transmission electron microscopy (TEM) reveals that BOMCs possess highly ordered mesoporous structure, uniform pore size distribution, and high surface area. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that B atoms can be successfully doped into the framework of OMCs. Due to the desirable characteristics of BOMCs, BOMCs are highly active, cheap, and selective metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution. Although B content is a key factor in determining ORR activity, the ORR activity of BOMCs is also dependent on the surface area. The high surface area of BOMCs facilitates the exposure of the active sites for ORR. BOMCs may be further exploited as potentially efficient and inexpensive metal-free ORR catalysts with good long-term stability in alkaline solution. PMID:23318553

  11. Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon.

    PubMed

    Zolfaghari, Ghasem; Esmaili-Sari, Abbas; Anbia, Mansoor; Younesi, Habibollah; Amirmahmoodi, Shahram; Ghafari-Nazari, Ali

    2011-09-15

    Using the Taguchi method, this study presents a systematic optimization approach for removal of lead (Pb) and mercury (Hg) by a nanostructure, zinc oxide-modified mesoporous carbon CMK-3 denoted as Zn-OCMK-3. CMK-3 was synthesized by using SBA-15 and then oxidized by nitric acid. The zinc oxide was loaded to the modified CMK-3 by the equilibrium adsorption of Zn(II) ions from aqueous solution followed by calcination to convert zinc nitrate to zinc oxide. The CMK-3 had porous structure and high specific surface area which can accommodate zinc oxide in a spreading manner, the zinc oxide connects to the carbon surface via oxygen atoms. The controllable factors such as agitation time, initial concentration, temperature, dose and pH of solution have been optimized. Under optimum conditions, the pollutant removal efficiency (PRE) was 97.25% for Pb(II) and 99% for Hg(II). The percentage contribution of each controllable factor was also determined. The initial concentration of pollutant is the most influential factor, and its value of percentage contribution is up to 31% and 43% for Pb and Hg, respectively. Our results show that the Zn-OCMK-3 is an effective nanoadsorbent for lead and mercury pollution remediation. Langmuir and Freundlich adsorption isotherms were used to model the equilibrium adsorption data for Pb(II) and Hg(II).

  12. The Inhibitory Effect of Some Bipyridine Derivatives on the Corrosion Behavior of N80 Carbon Steel in Sulphuric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Okafor, Peter C.; Jiang, Bin; Hu, Hongxiang; Zheng, Yugui

    2015-11-01

    The corrosion inhibition characteristics of 2,2‧-bipyridine (BIPY) and 2,2‧-bipyridine-3,3‧-dicarboxylic acid (BIDA), on carbon steel in sulphuric acid solutions was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques at 20°C, 30°C and 40°C. The results indicate that the organic compounds inhibit the corrosion of mild steel in H2SO4 solutions and the extent of inhibition increases with inhibitor concentration and decreases with temperature. A mixed-inhibition mechanism is proposed for the inhibitive effects of the compounds. The order of inhibition efficiency obtained was BIDA>BIPY. There is a good correlation between the quantum chemical parameters and experimentally determined inhibition efficiency of the inhibitors. The adsorption characteristics of the inhibitor were approximated by Temkin isotherm. Morphological study of the carbon steel electrode surface was undertaken by scanning electron microscope (SEM) and the interfacial species formed on the surface in the presence of inhibitors analyzed by Infrared spectroscopy.

  13. Removal of р-nitrophenol from aqueous solution by magnetically modified activated carbon

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Zhao, Feng; Sun, Jian; Wang, Bin; Wei, Rongyan; Yan, Shiqiang

    2013-09-01

    Activated carbon was modified with γ-Fe2O3 nanoparticles, using the chemical co-precipitation technique and the carboxylic acid vapor treatment technique. Two magnetic composites were characterized and compared by Fourier Transform Infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry and nitrogen adsorption-desorption. Then the two materials were used to remove p-nitrophenol in water. The equilibrium data revealed that the Langmuir isotherm was better in fitting the experiment result than the Freundlich isotherm, and the sorption capacity of the nanocomposite made by the chemical co-precipitation technique was higher than that of the other one. We suggest that the chemical co-precipitation technique is a more efficient and practical method to produce magnetically modified activated carbon.

  14. Face washing promotion for preventing active trachoma

    PubMed Central

    Ejere, Henry OD; Alhassan, Mahmoud B; Rabiu, Mansur

    2015-01-01

    Background Trachoma remains a major cause of avoidable blindness among underprivileged populations in many developing countries. It is estimated that about 146 million people have active trachoma and nearly six million people are blind due to complications associated with repeat infections. Objectives The objective of this review was to assess the effects of face washing promotion for the prevention of active trachoma in endemic communities. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 1), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to January 2015), EMBASE (January 1980 to January 2015), PubMed (January 1948 to January 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to January 2015), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) (accessed 10 January 2014), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 26 January 2015. To identify further relevant trials we checked the reference lists of the included trials. Also, we used the Science Citation Index to search for references to publications that cited the trials included in the review. We contacted investigators and experts in the field to identify additional trials. Selection criteria We included randomized controlled trials (RCTs) or quasi-RCTs that compared face washing with no treatment or face washing combined with antibiotics against antibiotics alone. Trial participants were residents of endemic trachoma communities. Data collection and analysis Two review authors independently extracted data and assessed trial quality. We contacted trial

  15. Hand washing promotion for preventing diarrhoea

    PubMed Central

    Ejemot-Nwadiaro, Regina I; Ehiri, John E; Arikpo, Dachi; Meremikwu, Martin M; Critchley, Julia A

    2015-01-01

    Background Diarrhoea accounts for 1.8 million deaths in children in low- and middle-income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. Objectives To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adults. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (27 May 2015); CENTRAL (published in the Cochrane Library 2015, Issue 5); MEDLINE (1966 to 27 May 2015); EMBASE (1974 to 27 May 2015); LILACS (1982 to 27 May 2015); PsycINFO (1967 to 27 May 2015); Science Citation Index and Social Science Citation Index (1981 to 27 May 2015); ERIC (1966 to 27 May 2015); SPECTR (2000 to 27 May 2015); Bibliomap (1990 to 27 May 2015); RoRe, The Grey Literature (2002 to 27 May 2015); World Health Organization (WHO) International Clinical Trial Registry Platform (ICTRP), metaRegister of Controlled Trials (mRCT), and reference lists of articles up to 27 May 2015. We also contacted researchers and organizations in the field. Selection criteria Individually randomized controlled trials (RCTs) and cluster-RCTs that compared the effects of hand washing interventions on diarrhoea episodes in children and adults with no intervention. Data collection and analysis Three review authors independently assessed trial eligibility, extracted data, and assessed risk of bias. We stratified the analyses for child day-care centres or schools, community, and hospital-based settings. Where appropriate, incidence rate ratios (IRR) were pooled using the generic inverse variance method and random-effects model with 95% confidence intervals (CIs). We used the GRADE approach to assess the quality of evidence. Main results We included 22 RCTs: 12 trials from child day-care centres or schools in mainly high-income countries (54,006 participants), nine community-based trials in LMICs (15,303 participants), and one hospital-based trial among people with acquired immune deficiency

  16. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation

    NASA Astrophysics Data System (ADS)

    Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçduygu, G.

    2005-12-01

    Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K 2CO 3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N 2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m 2/g) and micropore volume (0.355 cm 3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.

  17. Isotopic geochemistry of the Saratoga springs: Implications for the origin of solutes and source of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Siegel, Donald I.; Lesniak, Keri A.; Stute, Martin; Frape, Shaun

    2004-03-01

    We report the results of an isotopic study designed to determine the source of solutes and carbon dioxide in the famed Saratoga Springs (New York) mineral waters. These waters have thousands of milligrams per liter total dissolved solid concentrations and are highly charged with carbon dioxide gas. The spring waters are cold (˜12 °C) and there is no local, deep-seated thermal anomaly. They emerge through thick shale caprock along the surface expression of normal faults. The δ13C (-5.8‰ to +0.8‰ Vienna Peedee belemnite) of the dissolved inorganic carbon and elevated 3He/4He ratios suggest that the source of the CO2 is the mantle or an ancient deep crystallized igneous melt. The stable isotopic content of the spring waters defines a mixing line between modern local meteoric waters (δ ˜ 70‰) and a component with heavier δD but similar δ18O values. This trend and that of 87Sr/86Sr of dissolved strontium versus 1/Sr are consistent with the hypothesis that Canadian Shield type brines contribute salinity to the springs. These brines plausibly migrate from the Adirondack Mountains to the topographically low McGregor fault system in the Hudson River lowlands, where the Saratoga springs discharge.

  18. Tuning indium tin oxide work function with solution-processed alkali carbonate interfacial layers for high-efficiency inverted organic photovoltaic cells.

    PubMed

    Chen, Fei; Chen, Qi; Mao, Lin; Wang, Yixin; Huang, Xun; Lu, Wei; Wang, Bing; Chen, Liwei

    2013-12-01

    Selective electron collection by an interfacial layer modified indium tin oxide cathode is critically important for achieving high-efficiency inverted structure organic photovoltaic (OPV) cells. Here, we demonstrate that solution-processed alkali carbonates, such as Li2CO3, Na2CO3, K2CO3, Rb2CO3, Cs2CO3, are good interfacial layer materials. Both carbonate concentration and annealing conditions can affect cathode work function and surface roughness. By proper optimization, different alkali carbonates can be almost equally effective as the cathode interfacial layer. Furthermore, good device performance can be achieved at a low annealing temperature (<50 ° C), which allows for potential applications in solution-processed inverted OPV cells on plastic substrates. This work indicates that alkali carbonates, not just cesium carbonate, are valid choices as the cathode interlayer in inverted OPV devices.

  19. Processes at the magnesium-bearing carbonates/solution interface. II. kinetics and mechanism of magnesite dissolution.

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques

    1999-07-01

    Steady-state dissolution rates of magnesite (MgCO 3) were measured at 25°C as a function of pH (from 0.2 to 12), total dissolved carbonate concentration (10 -5 < ΣCO 2 < 0.1 M), and ionic strength (0.002 < I < 0.5 M) using a mixed-flow reactor. Dissolution rates were found to be pH-independent at 0 < pH < 3, proportional to a H+ at 3 < pH < 5, pH-independent at 5 < pH < 8, and decreasing with increasing pH at pH > 8 and ΣCO 2 > 10 -3 M. In the acid pH region (3 ≤ pH ≤ 5), the rates increase significantly with ionic strength. In the alkaline pH region, carbonate and bicarbonate ions and ionic strength inhibit significantly the dissolution rate even at far from equilibrium conditions. The surface complexation model developed by Pokrovsky et al. (1999a) was used to correlate magnesite dissolution kinetics with its surface speciation. Dissolution rates in the acid pH region are controlled by the protonation of >CO 3- surface complexes. In neutral and carbonate-rich alkaline solutions, >MgOH 2+ controls the dissolution kinetics. The following rate equation, consistent with transition state theory was used to describe magnesite dissolution kinetics over the full range of solution composition: R (mol/cm 2/s)=[10 7.198·{>CO 3H°} 3.97+10 5.38·{>MgOH 2+} 3.94]·(1-exp(-4 A/ RT)) where {> i} stands for surface species concentration (mol/m 2), and A refers to the chemical affinity of the overall reaction. This equation reflects the formation of two different precursor-activated complexes which contain four protonated >CO 3H° species in acid solutions and four protonated (hydrated) >MgOH 2+ groups in neutral and alkaline solutions. The very low magnesite dissolution/precipitation rates predicted by this equation, especially at close to equilibrium conditions, are consistent with those deduced from field measurements.

  20. Carbide Formation and Dissolution in Biomedical Co-Cr-Mo Alloys with Different Carbon Contents during Solution Treatment

    NASA Astrophysics Data System (ADS)

    Mineta, Shingo; Namba, Shigenobu; Yoneda, Takashi; Ueda, Kyosuke; Narushima, Takayuki

    2010-08-01

    The microstructures of as-cast and heat-treated biomedical Co-Cr-Mo (ASTM F75) alloys with four different carbon contents were investigated. The as-cast alloys were solution treated at 1473 to 1548 K for 0 to 43.2 ks. The precipitates in the matrix were electrolytically extracted from the as-cast and heat-treated alloys. An M23C6 type carbide and an intermetallic σ phase (Co(Cr,Mo)) were detected as precipitates in the as-cast Co-28Cr-6Mo-0.12C alloy; an M23C6 type carbide, a σ phase, an η phase (M6C-M12C type carbide), and a π phase (M2T3X type carbide with a β-manganese structure) were detected in the as-cast Co-28Cr-6Mo-0.15C alloy; and an M23C6 type carbide and an η phase were detected in the as-cast Co-28Cr-6Mo-0.25C and Co-28Cr-6Mo-0.35C alloys. After solution treatment, complete precipitate dissolution occurred in all four alloys. Under incomplete precipitate dissolution conditions, the phase and shape of precipitates depended on the heat-treatment conditions and the carbon content in the alloys. The π phase was detected in the alloys with carbon contents of 0.15, 0.25, and 0.35 mass pct after heat treatment at high temperature such as 1548 K for a short holding time of less than 1.8 ks. The presence of the π phase in the Co-Cr-Mo alloys has been revealed in this study for the first time.